2001-02-20 Martin M. Hunt <hunt@redhat.com>
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
CommitLineData
13437d4b 1/* Handle SunOS and SVR4 shared libraries for GDB, the GNU Debugger.
8e65ff28 2 Copyright 1990, 91, 92, 93, 94, 95, 96, 98, 1999, 2000, 2001
13437d4b
KB
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22#define _SYSCALL32 /* for Sparc64 cross Sparc32 */
23#include "defs.h"
24
25
26#include <sys/types.h>
27#include <signal.h>
28#include "gdb_string.h"
29#include <sys/param.h>
30#include <fcntl.h>
31
32#ifndef SVR4_SHARED_LIBS
33 /* SunOS shared libs need the nlist structure. */
34#include <a.out.h>
35#else
36#include "elf/external.h"
37#endif
38
39#ifdef HAVE_LINK_H
40#include <link.h>
41#endif
42
43#include "symtab.h"
44#include "bfd.h"
45#include "symfile.h"
46#include "objfiles.h"
47#include "gdbcore.h"
48#include "command.h"
49#include "target.h"
50#include "frame.h"
51#include "gdb_regex.h"
52#include "inferior.h"
53#include "environ.h"
54#include "language.h"
55#include "gdbcmd.h"
56
57#include "solist.h"
58#include "solib-svr4.h"
59
60/* Link map info to include in an allocated so_list entry */
61
62struct lm_info
63 {
64 /* Pointer to copy of link map from inferior. The type is char *
65 rather than void *, so that we may use byte offsets to find the
66 various fields without the need for a cast. */
67 char *lm;
68 };
69
70/* On SVR4 systems, a list of symbols in the dynamic linker where
71 GDB can try to place a breakpoint to monitor shared library
72 events.
73
74 If none of these symbols are found, or other errors occur, then
75 SVR4 systems will fall back to using a symbol as the "startup
76 mapping complete" breakpoint address. */
77
78#ifdef SVR4_SHARED_LIBS
79static char *solib_break_names[] =
80{
81 "r_debug_state",
82 "_r_debug_state",
83 "_dl_debug_state",
84 "rtld_db_dlactivity",
1f72e589 85 "_rtld_debug_state",
13437d4b
KB
86 NULL
87};
88#endif
89
90#define BKPT_AT_SYMBOL 1
91
92#if defined (BKPT_AT_SYMBOL) && defined (SVR4_SHARED_LIBS)
93static char *bkpt_names[] =
94{
95#ifdef SOLIB_BKPT_NAME
96 SOLIB_BKPT_NAME, /* Prefer configured name if it exists. */
97#endif
98 "_start",
99 "main",
100 NULL
101};
102#endif
103
104/* Symbols which are used to locate the base of the link map structures. */
105
106#ifndef SVR4_SHARED_LIBS
107static char *debug_base_symbols[] =
108{
109 "_DYNAMIC",
110 "_DYNAMIC__MGC",
111 NULL
112};
113#endif
114
115static char *main_name_list[] =
116{
117 "main_$main",
118 NULL
119};
120
121
122/* Fetch (and possibly build) an appropriate link_map_offsets structure
123 for native targets using struct definitions from link.h. */
124
125struct link_map_offsets *
126default_svr4_fetch_link_map_offsets (void)
127{
128#ifdef HAVE_LINK_H
129 static struct link_map_offsets lmo;
130 static struct link_map_offsets *lmp = 0;
131#if defined (HAVE_STRUCT_LINK_MAP32)
132 static struct link_map_offsets lmo32;
133 static struct link_map_offsets *lmp32 = 0;
134#endif
135
136#ifndef offsetof
137#define offsetof(TYPE, MEMBER) ((unsigned long) &((TYPE *)0)->MEMBER)
138#endif
139#define fieldsize(TYPE, MEMBER) (sizeof (((TYPE *)0)->MEMBER))
140
141 if (lmp == 0)
142 {
143 lmp = &lmo;
144
145#ifdef SVR4_SHARED_LIBS
146 lmo.r_debug_size = sizeof (struct r_debug);
147
148 lmo.r_map_offset = offsetof (struct r_debug, r_map);
149 lmo.r_map_size = fieldsize (struct r_debug, r_map);
150
151 lmo.link_map_size = sizeof (struct link_map);
152
153 lmo.l_addr_offset = offsetof (struct link_map, l_addr);
154 lmo.l_addr_size = fieldsize (struct link_map, l_addr);
155
156 lmo.l_next_offset = offsetof (struct link_map, l_next);
157 lmo.l_next_size = fieldsize (struct link_map, l_next);
158
159 lmo.l_prev_offset = offsetof (struct link_map, l_prev);
160 lmo.l_prev_size = fieldsize (struct link_map, l_prev);
161
162 lmo.l_name_offset = offsetof (struct link_map, l_name);
163 lmo.l_name_size = fieldsize (struct link_map, l_name);
164#else /* !SVR4_SHARED_LIBS */
165 lmo.link_map_size = sizeof (struct link_map);
166
167 lmo.l_addr_offset = offsetof (struct link_map, lm_addr);
168 lmo.l_addr_size = fieldsize (struct link_map, lm_addr);
169
170 lmo.l_next_offset = offsetof (struct link_map, lm_next);
171 lmo.l_next_size = fieldsize (struct link_map, lm_next);
172
173 lmo.l_name_offset = offsetof (struct link_map, lm_name);
174 lmo.l_name_size = fieldsize (struct link_map, lm_name);
175#endif /* SVR4_SHARED_LIBS */
176 }
177
178#if defined (HAVE_STRUCT_LINK_MAP32)
179 if (lmp32 == 0)
180 {
181 lmp32 = &lmo32;
182
183 lmo32.r_debug_size = sizeof (struct r_debug32);
184
185 lmo32.r_map_offset = offsetof (struct r_debug32, r_map);
186 lmo32.r_map_size = fieldsize (struct r_debug32, r_map);
187
188 lmo32.link_map_size = sizeof (struct link_map32);
189
190 lmo32.l_addr_offset = offsetof (struct link_map32, l_addr);
191 lmo32.l_addr_size = fieldsize (struct link_map32, l_addr);
192
193 lmo32.l_next_offset = offsetof (struct link_map32, l_next);
194 lmo32.l_next_size = fieldsize (struct link_map32, l_next);
195
196 lmo32.l_prev_offset = offsetof (struct link_map32, l_prev);
197 lmo32.l_prev_size = fieldsize (struct link_map32, l_prev);
198
199 lmo32.l_name_offset = offsetof (struct link_map32, l_name);
200 lmo32.l_name_size = fieldsize (struct link_map32, l_name);
201 }
202#endif /* defined (HAVE_STRUCT_LINK_MAP32) */
203
204#if defined (HAVE_STRUCT_LINK_MAP32)
205 if (bfd_get_arch_size (exec_bfd) == 32)
206 return lmp32;
207 else
208#endif
209 return lmp;
210
211#else
212
8e65ff28
AC
213 internal_error (__FILE__, __LINE__,
214 "default_svr4_fetch_link_map_offsets called without HAVE_LINK_H defined.");
13437d4b
KB
215 return 0;
216
217#endif /* HAVE_LINK_H */
218}
219
220/* Macro to extract an address from a solib structure.
221 When GDB is configured for some 32-bit targets (e.g. Solaris 2.7
222 sparc), BFD is configured to handle 64-bit targets, so CORE_ADDR is
223 64 bits. We have to extract only the significant bits of addresses
224 to get the right address when accessing the core file BFD. */
225
226#define SOLIB_EXTRACT_ADDRESS(MEMBER) \
227 extract_address (&(MEMBER), sizeof (MEMBER))
228
229/* local data declarations */
230
231#ifndef SVR4_SHARED_LIBS
232
233/* NOTE: converted the macros LM_ADDR, LM_NEXT, LM_NAME and
234 IGNORE_FIRST_LINK_MAP_ENTRY into functions (see below).
235 MVS, June 2000 */
236
237static struct link_dynamic dynamic_copy;
238static struct link_dynamic_2 ld_2_copy;
239static struct ld_debug debug_copy;
240static CORE_ADDR debug_addr;
241static CORE_ADDR flag_addr;
242
243#endif /* !SVR4_SHARED_LIBS */
244
245/* link map access functions */
246
247static CORE_ADDR
248LM_ADDR (struct so_list *so)
249{
250 struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ();
251
252 return extract_address (so->lm_info->lm + lmo->l_addr_offset, lmo->l_addr_size);
253}
254
255static CORE_ADDR
256LM_NEXT (struct so_list *so)
257{
258 struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ();
259
260 return extract_address (so->lm_info->lm + lmo->l_next_offset, lmo->l_next_size);
261}
262
263static CORE_ADDR
264LM_NAME (struct so_list *so)
265{
266 struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ();
267
268 return extract_address (so->lm_info->lm + lmo->l_name_offset, lmo->l_name_size);
269}
270
271#ifndef SVR4_SHARED_LIBS
272
273static int
274IGNORE_FIRST_LINK_MAP_ENTRY (struct so_list *so)
275{
276 return 0;
277}
278
279#else /* SVR4_SHARED_LIBS */
280
281static int
282IGNORE_FIRST_LINK_MAP_ENTRY (struct so_list *so)
283{
284 struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ();
285
286 return extract_address (so->lm_info->lm + lmo->l_prev_offset,
287 lmo->l_prev_size) == 0;
288}
289
290#endif /* !SVR4_SHARED_LIBS */
291
13437d4b
KB
292static CORE_ADDR debug_base; /* Base of dynamic linker structures */
293static CORE_ADDR breakpoint_addr; /* Address where end bkpt is set */
294
295/* Local function prototypes */
296
297static int match_main (char *);
298
13437d4b
KB
299#ifndef SVR4_SHARED_LIBS
300
301/* Allocate the runtime common object file. */
302
303static void
304allocate_rt_common_objfile (void)
305{
306 struct objfile *objfile;
307 struct objfile *last_one;
308
309 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
310 memset (objfile, 0, sizeof (struct objfile));
311 objfile->md = NULL;
312 obstack_specify_allocation (&objfile->psymbol_cache.cache, 0, 0,
b8c9b27d 313 xmalloc, xfree);
13437d4b 314 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0, xmalloc,
b8c9b27d 315 xfree);
13437d4b 316 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0, xmalloc,
b8c9b27d 317 xfree);
13437d4b 318 obstack_specify_allocation (&objfile->type_obstack, 0, 0, xmalloc,
b8c9b27d 319 xfree);
13437d4b
KB
320 objfile->name = mstrsave (objfile->md, "rt_common");
321
322 /* Add this file onto the tail of the linked list of other such files. */
323
324 objfile->next = NULL;
325 if (object_files == NULL)
326 object_files = objfile;
327 else
328 {
329 for (last_one = object_files;
330 last_one->next;
331 last_one = last_one->next);
332 last_one->next = objfile;
333 }
334
335 rt_common_objfile = objfile;
336}
337
338/* Read all dynamically loaded common symbol definitions from the inferior
339 and put them into the minimal symbol table for the runtime common
340 objfile. */
341
342static void
343solib_add_common_symbols (CORE_ADDR rtc_symp)
344{
345 struct rtc_symb inferior_rtc_symb;
346 struct nlist inferior_rtc_nlist;
347 int len;
348 char *name;
349
350 /* Remove any runtime common symbols from previous runs. */
351
352 if (rt_common_objfile != NULL && rt_common_objfile->minimal_symbol_count)
353 {
354 obstack_free (&rt_common_objfile->symbol_obstack, 0);
355 obstack_specify_allocation (&rt_common_objfile->symbol_obstack, 0, 0,
b8c9b27d 356 xmalloc, xfree);
13437d4b
KB
357 rt_common_objfile->minimal_symbol_count = 0;
358 rt_common_objfile->msymbols = NULL;
359 }
360
361 init_minimal_symbol_collection ();
362 make_cleanup_discard_minimal_symbols ();
363
364 while (rtc_symp)
365 {
366 read_memory (rtc_symp,
367 (char *) &inferior_rtc_symb,
368 sizeof (inferior_rtc_symb));
369 read_memory (SOLIB_EXTRACT_ADDRESS (inferior_rtc_symb.rtc_sp),
370 (char *) &inferior_rtc_nlist,
371 sizeof (inferior_rtc_nlist));
372 if (inferior_rtc_nlist.n_type == N_COMM)
373 {
374 /* FIXME: The length of the symbol name is not available, but in the
375 current implementation the common symbol is allocated immediately
376 behind the name of the symbol. */
377 len = inferior_rtc_nlist.n_value - inferior_rtc_nlist.n_un.n_strx;
378
379 name = xmalloc (len);
380 read_memory (SOLIB_EXTRACT_ADDRESS (inferior_rtc_nlist.n_un.n_name),
381 name, len);
382
383 /* Allocate the runtime common objfile if necessary. */
384 if (rt_common_objfile == NULL)
385 allocate_rt_common_objfile ();
386
387 prim_record_minimal_symbol (name, inferior_rtc_nlist.n_value,
388 mst_bss, rt_common_objfile);
b8c9b27d 389 xfree (name);
13437d4b
KB
390 }
391 rtc_symp = SOLIB_EXTRACT_ADDRESS (inferior_rtc_symb.rtc_next);
392 }
393
394 /* Install any minimal symbols that have been collected as the current
395 minimal symbols for the runtime common objfile. */
396
397 install_minimal_symbols (rt_common_objfile);
398}
399
400#endif /* SVR4_SHARED_LIBS */
401
402
403#ifdef SVR4_SHARED_LIBS
404
405static CORE_ADDR bfd_lookup_symbol (bfd *, char *);
406
407/*
408
409 LOCAL FUNCTION
410
411 bfd_lookup_symbol -- lookup the value for a specific symbol
412
413 SYNOPSIS
414
415 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
416
417 DESCRIPTION
418
419 An expensive way to lookup the value of a single symbol for
420 bfd's that are only temporary anyway. This is used by the
421 shared library support to find the address of the debugger
422 interface structures in the shared library.
423
424 Note that 0 is specifically allowed as an error return (no
425 such symbol).
426 */
427
428static CORE_ADDR
429bfd_lookup_symbol (bfd *abfd, char *symname)
430{
431 unsigned int storage_needed;
432 asymbol *sym;
433 asymbol **symbol_table;
434 unsigned int number_of_symbols;
435 unsigned int i;
436 struct cleanup *back_to;
437 CORE_ADDR symaddr = 0;
438
439 storage_needed = bfd_get_symtab_upper_bound (abfd);
440
441 if (storage_needed > 0)
442 {
443 symbol_table = (asymbol **) xmalloc (storage_needed);
b8c9b27d 444 back_to = make_cleanup (xfree, (PTR) symbol_table);
13437d4b
KB
445 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
446
447 for (i = 0; i < number_of_symbols; i++)
448 {
449 sym = *symbol_table++;
450 if (STREQ (sym->name, symname))
451 {
452 /* Bfd symbols are section relative. */
453 symaddr = sym->value + sym->section->vma;
454 break;
455 }
456 }
457 do_cleanups (back_to);
458 }
459
460 if (symaddr)
461 return symaddr;
462
463 /* On FreeBSD, the dynamic linker is stripped by default. So we'll
464 have to check the dynamic string table too. */
465
466 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
467
468 if (storage_needed > 0)
469 {
470 symbol_table = (asymbol **) xmalloc (storage_needed);
b8c9b27d 471 back_to = make_cleanup (xfree, (PTR) symbol_table);
13437d4b
KB
472 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
473
474 for (i = 0; i < number_of_symbols; i++)
475 {
476 sym = *symbol_table++;
477 if (STREQ (sym->name, symname))
478 {
479 /* Bfd symbols are section relative. */
480 symaddr = sym->value + sym->section->vma;
481 break;
482 }
483 }
484 do_cleanups (back_to);
485 }
486
487 return symaddr;
488}
489
490#ifdef HANDLE_SVR4_EXEC_EMULATORS
491
492/*
493 Solaris BCP (the part of Solaris which allows it to run SunOS4
494 a.out files) throws in another wrinkle. Solaris does not fill
495 in the usual a.out link map structures when running BCP programs,
496 the only way to get at them is via groping around in the dynamic
497 linker.
498 The dynamic linker and it's structures are located in the shared
499 C library, which gets run as the executable's "interpreter" by
500 the kernel.
501
502 Note that we can assume nothing about the process state at the time
503 we need to find these structures. We may be stopped on the first
504 instruction of the interpreter (C shared library), the first
505 instruction of the executable itself, or somewhere else entirely
506 (if we attached to the process for example).
507 */
508
509static char *debug_base_symbols[] =
510{
511 "r_debug", /* Solaris 2.3 */
512 "_r_debug", /* Solaris 2.1, 2.2 */
513 NULL
514};
515
516static int look_for_base (int, CORE_ADDR);
517
518/*
519
520 LOCAL FUNCTION
521
522 look_for_base -- examine file for each mapped address segment
523
524 SYNOPSYS
525
526 static int look_for_base (int fd, CORE_ADDR baseaddr)
527
528 DESCRIPTION
529
530 This function is passed to proc_iterate_over_mappings, which
531 causes it to get called once for each mapped address space, with
532 an open file descriptor for the file mapped to that space, and the
533 base address of that mapped space.
534
535 Our job is to find the debug base symbol in the file that this
536 fd is open on, if it exists, and if so, initialize the dynamic
537 linker structure base address debug_base.
538
539 Note that this is a computationally expensive proposition, since
540 we basically have to open a bfd on every call, so we specifically
541 avoid opening the exec file.
542 */
543
544static int
545look_for_base (int fd, CORE_ADDR baseaddr)
546{
547 bfd *interp_bfd;
548 CORE_ADDR address = 0;
549 char **symbolp;
550
551 /* If the fd is -1, then there is no file that corresponds to this
552 mapped memory segment, so skip it. Also, if the fd corresponds
553 to the exec file, skip it as well. */
554
555 if (fd == -1
556 || (exec_bfd != NULL
557 && fdmatch (fileno ((FILE *) (exec_bfd->iostream)), fd)))
558 {
559 return (0);
560 }
561
562 /* Try to open whatever random file this fd corresponds to. Note that
563 we have no way currently to find the filename. Don't gripe about
564 any problems we might have, just fail. */
565
566 if ((interp_bfd = bfd_fdopenr ("unnamed", gnutarget, fd)) == NULL)
567 {
568 return (0);
569 }
570 if (!bfd_check_format (interp_bfd, bfd_object))
571 {
572 /* FIXME-leak: on failure, might not free all memory associated with
573 interp_bfd. */
574 bfd_close (interp_bfd);
575 return (0);
576 }
577
578 /* Now try to find our debug base symbol in this file, which we at
579 least know to be a valid ELF executable or shared library. */
580
581 for (symbolp = debug_base_symbols; *symbolp != NULL; symbolp++)
582 {
583 address = bfd_lookup_symbol (interp_bfd, *symbolp);
584 if (address != 0)
585 {
586 break;
587 }
588 }
589 if (address == 0)
590 {
591 /* FIXME-leak: on failure, might not free all memory associated with
592 interp_bfd. */
593 bfd_close (interp_bfd);
594 return (0);
595 }
596
597 /* Eureka! We found the symbol. But now we may need to relocate it
598 by the base address. If the symbol's value is less than the base
599 address of the shared library, then it hasn't yet been relocated
600 by the dynamic linker, and we have to do it ourself. FIXME: Note
601 that we make the assumption that the first segment that corresponds
602 to the shared library has the base address to which the library
603 was relocated. */
604
605 if (address < baseaddr)
606 {
607 address += baseaddr;
608 }
609 debug_base = address;
610 /* FIXME-leak: on failure, might not free all memory associated with
611 interp_bfd. */
612 bfd_close (interp_bfd);
613 return (1);
614}
615#endif /* HANDLE_SVR4_EXEC_EMULATORS */
616
617/*
618
619 LOCAL FUNCTION
620
621 elf_locate_base -- locate the base address of dynamic linker structs
622 for SVR4 elf targets.
623
624 SYNOPSIS
625
626 CORE_ADDR elf_locate_base (void)
627
628 DESCRIPTION
629
630 For SVR4 elf targets the address of the dynamic linker's runtime
631 structure is contained within the dynamic info section in the
632 executable file. The dynamic section is also mapped into the
633 inferior address space. Because the runtime loader fills in the
634 real address before starting the inferior, we have to read in the
635 dynamic info section from the inferior address space.
636 If there are any errors while trying to find the address, we
637 silently return 0, otherwise the found address is returned.
638
639 */
640
641static CORE_ADDR
642elf_locate_base (void)
643{
644 sec_ptr dyninfo_sect;
645 int dyninfo_sect_size;
646 CORE_ADDR dyninfo_addr;
647 char *buf;
648 char *bufend;
649 int arch_size;
650
651 /* Find the start address of the .dynamic section. */
652 dyninfo_sect = bfd_get_section_by_name (exec_bfd, ".dynamic");
653 if (dyninfo_sect == NULL)
654 return 0;
655 dyninfo_addr = bfd_section_vma (exec_bfd, dyninfo_sect);
656
657 /* Read in .dynamic section, silently ignore errors. */
658 dyninfo_sect_size = bfd_section_size (exec_bfd, dyninfo_sect);
659 buf = alloca (dyninfo_sect_size);
660 if (target_read_memory (dyninfo_addr, buf, dyninfo_sect_size))
661 return 0;
662
663 /* Find the DT_DEBUG entry in the the .dynamic section.
664 For mips elf we look for DT_MIPS_RLD_MAP, mips elf apparently has
665 no DT_DEBUG entries. */
666
667 arch_size = bfd_get_arch_size (exec_bfd);
668 if (arch_size == -1) /* failure */
669 return 0;
670
671 if (arch_size == 32)
672 { /* 32-bit elf */
673 for (bufend = buf + dyninfo_sect_size;
674 buf < bufend;
675 buf += sizeof (Elf32_External_Dyn))
676 {
677 Elf32_External_Dyn *x_dynp = (Elf32_External_Dyn *) buf;
678 long dyn_tag;
679 CORE_ADDR dyn_ptr;
680
681 dyn_tag = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_tag);
682 if (dyn_tag == DT_NULL)
683 break;
684 else if (dyn_tag == DT_DEBUG)
685 {
686 dyn_ptr = bfd_h_get_32 (exec_bfd,
687 (bfd_byte *) x_dynp->d_un.d_ptr);
688 return dyn_ptr;
689 }
690#ifdef DT_MIPS_RLD_MAP
691 else if (dyn_tag == DT_MIPS_RLD_MAP)
692 {
693 char *pbuf;
694
695 pbuf = alloca (TARGET_PTR_BIT / HOST_CHAR_BIT);
696 /* DT_MIPS_RLD_MAP contains a pointer to the address
697 of the dynamic link structure. */
698 dyn_ptr = bfd_h_get_32 (exec_bfd,
699 (bfd_byte *) x_dynp->d_un.d_ptr);
700 if (target_read_memory (dyn_ptr, pbuf, sizeof (pbuf)))
701 return 0;
702 return extract_unsigned_integer (pbuf, sizeof (pbuf));
703 }
704#endif
705 }
706 }
707 else /* 64-bit elf */
708 {
709 for (bufend = buf + dyninfo_sect_size;
710 buf < bufend;
711 buf += sizeof (Elf64_External_Dyn))
712 {
713 Elf64_External_Dyn *x_dynp = (Elf64_External_Dyn *) buf;
714 long dyn_tag;
715 CORE_ADDR dyn_ptr;
716
717 dyn_tag = bfd_h_get_64 (exec_bfd, (bfd_byte *) x_dynp->d_tag);
718 if (dyn_tag == DT_NULL)
719 break;
720 else if (dyn_tag == DT_DEBUG)
721 {
722 dyn_ptr = bfd_h_get_64 (exec_bfd,
723 (bfd_byte *) x_dynp->d_un.d_ptr);
724 return dyn_ptr;
725 }
726 }
727 }
728
729 /* DT_DEBUG entry not found. */
730 return 0;
731}
732
733#endif /* SVR4_SHARED_LIBS */
734
735/*
736
737 LOCAL FUNCTION
738
739 locate_base -- locate the base address of dynamic linker structs
740
741 SYNOPSIS
742
743 CORE_ADDR locate_base (void)
744
745 DESCRIPTION
746
747 For both the SunOS and SVR4 shared library implementations, if the
748 inferior executable has been linked dynamically, there is a single
749 address somewhere in the inferior's data space which is the key to
750 locating all of the dynamic linker's runtime structures. This
751 address is the value of the debug base symbol. The job of this
752 function is to find and return that address, or to return 0 if there
753 is no such address (the executable is statically linked for example).
754
755 For SunOS, the job is almost trivial, since the dynamic linker and
756 all of it's structures are statically linked to the executable at
757 link time. Thus the symbol for the address we are looking for has
758 already been added to the minimal symbol table for the executable's
759 objfile at the time the symbol file's symbols were read, and all we
760 have to do is look it up there. Note that we explicitly do NOT want
761 to find the copies in the shared library.
762
763 The SVR4 version is a bit more complicated because the address
764 is contained somewhere in the dynamic info section. We have to go
765 to a lot more work to discover the address of the debug base symbol.
766 Because of this complexity, we cache the value we find and return that
767 value on subsequent invocations. Note there is no copy in the
768 executable symbol tables.
769
770 */
771
772static CORE_ADDR
773locate_base (void)
774{
775
776#ifndef SVR4_SHARED_LIBS
777
778 struct minimal_symbol *msymbol;
779 CORE_ADDR address = 0;
780 char **symbolp;
781
782 /* For SunOS, we want to limit the search for the debug base symbol to the
783 executable being debugged, since there is a duplicate named symbol in the
784 shared library. We don't want the shared library versions. */
785
786 for (symbolp = debug_base_symbols; *symbolp != NULL; symbolp++)
787 {
788 msymbol = lookup_minimal_symbol (*symbolp, NULL, symfile_objfile);
789 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
790 {
791 address = SYMBOL_VALUE_ADDRESS (msymbol);
792 return (address);
793 }
794 }
795 return (0);
796
797#else /* SVR4_SHARED_LIBS */
798
799 /* Check to see if we have a currently valid address, and if so, avoid
800 doing all this work again and just return the cached address. If
801 we have no cached address, try to locate it in the dynamic info
802 section for ELF executables. */
803
804 if (debug_base == 0)
805 {
806 if (exec_bfd != NULL
807 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
808 debug_base = elf_locate_base ();
809#ifdef HANDLE_SVR4_EXEC_EMULATORS
810 /* Try it the hard way for emulated executables. */
811 else if (inferior_pid != 0 && target_has_execution)
812 proc_iterate_over_mappings (look_for_base);
813#endif
814 }
815 return (debug_base);
816
817#endif /* !SVR4_SHARED_LIBS */
818
819}
820
821/*
822
823 LOCAL FUNCTION
824
825 first_link_map_member -- locate first member in dynamic linker's map
826
827 SYNOPSIS
828
829 static CORE_ADDR first_link_map_member (void)
830
831 DESCRIPTION
832
833 Find the first element in the inferior's dynamic link map, and
834 return its address in the inferior. This function doesn't copy the
835 link map entry itself into our address space; current_sos actually
836 does the reading. */
837
838static CORE_ADDR
839first_link_map_member (void)
840{
841 CORE_ADDR lm = 0;
842
843#ifndef SVR4_SHARED_LIBS
844
845 read_memory (debug_base, (char *) &dynamic_copy, sizeof (dynamic_copy));
846 if (dynamic_copy.ld_version >= 2)
847 {
848 /* It is a version that we can deal with, so read in the secondary
849 structure and find the address of the link map list from it. */
850 read_memory (SOLIB_EXTRACT_ADDRESS (dynamic_copy.ld_un.ld_2),
851 (char *) &ld_2_copy, sizeof (struct link_dynamic_2));
852 lm = SOLIB_EXTRACT_ADDRESS (ld_2_copy.ld_loaded);
853 }
854
855#else /* SVR4_SHARED_LIBS */
856 struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ();
857 char *r_map_buf = xmalloc (lmo->r_map_size);
b8c9b27d 858 struct cleanup *cleanups = make_cleanup (xfree, r_map_buf);
13437d4b
KB
859
860 read_memory (debug_base + lmo->r_map_offset, r_map_buf, lmo->r_map_size);
861
862 lm = extract_address (r_map_buf, lmo->r_map_size);
863
864 /* FIXME: Perhaps we should validate the info somehow, perhaps by
865 checking r_version for a known version number, or r_state for
866 RT_CONSISTENT. */
867
868 do_cleanups (cleanups);
869
870#endif /* !SVR4_SHARED_LIBS */
871
872 return (lm);
873}
874
875#ifdef SVR4_SHARED_LIBS
876/*
877
878 LOCAL FUNCTION
879
880 open_symbol_file_object
881
882 SYNOPSIS
883
884 void open_symbol_file_object (void *from_tty)
885
886 DESCRIPTION
887
888 If no open symbol file, attempt to locate and open the main symbol
889 file. On SVR4 systems, this is the first link map entry. If its
890 name is here, we can open it. Useful when attaching to a process
891 without first loading its symbol file.
892
893 If FROM_TTYP dereferences to a non-zero integer, allow messages to
894 be printed. This parameter is a pointer rather than an int because
895 open_symbol_file_object() is called via catch_errors() and
896 catch_errors() requires a pointer argument. */
897
898static int
899open_symbol_file_object (void *from_ttyp)
900{
901 CORE_ADDR lm, l_name;
902 char *filename;
903 int errcode;
904 int from_tty = *(int *)from_ttyp;
905 struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ();
906 char *l_name_buf = xmalloc (lmo->l_name_size);
b8c9b27d 907 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
13437d4b
KB
908
909 if (symfile_objfile)
910 if (!query ("Attempt to reload symbols from process? "))
911 return 0;
912
913 if ((debug_base = locate_base ()) == 0)
914 return 0; /* failed somehow... */
915
916 /* First link map member should be the executable. */
917 if ((lm = first_link_map_member ()) == 0)
918 return 0; /* failed somehow... */
919
920 /* Read address of name from target memory to GDB. */
921 read_memory (lm + lmo->l_name_offset, l_name_buf, lmo->l_name_size);
922
923 /* Convert the address to host format. */
924 l_name = extract_address (l_name_buf, lmo->l_name_size);
925
926 /* Free l_name_buf. */
927 do_cleanups (cleanups);
928
929 if (l_name == 0)
930 return 0; /* No filename. */
931
932 /* Now fetch the filename from target memory. */
933 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
934
935 if (errcode)
936 {
937 warning ("failed to read exec filename from attached file: %s",
938 safe_strerror (errcode));
939 return 0;
940 }
941
b8c9b27d 942 make_cleanup (xfree, filename);
13437d4b 943 /* Have a pathname: read the symbol file. */
1adeb98a 944 symbol_file_add_main (filename, from_tty);
13437d4b
KB
945
946 return 1;
947}
948#else
949
950static int
951open_symbol_file_object (int *from_ttyp)
952{
953 return 1;
954}
955
956#endif /* SVR4_SHARED_LIBS */
957
958
959/* LOCAL FUNCTION
960
961 current_sos -- build a list of currently loaded shared objects
962
963 SYNOPSIS
964
965 struct so_list *current_sos ()
966
967 DESCRIPTION
968
969 Build a list of `struct so_list' objects describing the shared
970 objects currently loaded in the inferior. This list does not
971 include an entry for the main executable file.
972
973 Note that we only gather information directly available from the
974 inferior --- we don't examine any of the shared library files
975 themselves. The declaration of `struct so_list' says which fields
976 we provide values for. */
977
978static struct so_list *
979svr4_current_sos (void)
980{
981 CORE_ADDR lm;
982 struct so_list *head = 0;
983 struct so_list **link_ptr = &head;
984
985 /* Make sure we've looked up the inferior's dynamic linker's base
986 structure. */
987 if (! debug_base)
988 {
989 debug_base = locate_base ();
990
991 /* If we can't find the dynamic linker's base structure, this
992 must not be a dynamically linked executable. Hmm. */
993 if (! debug_base)
994 return 0;
995 }
996
997 /* Walk the inferior's link map list, and build our list of
998 `struct so_list' nodes. */
999 lm = first_link_map_member ();
1000 while (lm)
1001 {
1002 struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ();
1003 struct so_list *new
1004 = (struct so_list *) xmalloc (sizeof (struct so_list));
b8c9b27d 1005 struct cleanup *old_chain = make_cleanup (xfree, new);
13437d4b
KB
1006
1007 memset (new, 0, sizeof (*new));
1008
1009 new->lm_info = xmalloc (sizeof (struct lm_info));
b8c9b27d 1010 make_cleanup (xfree, new->lm_info);
13437d4b
KB
1011
1012 new->lm_info->lm = xmalloc (lmo->link_map_size);
b8c9b27d 1013 make_cleanup (xfree, new->lm_info->lm);
13437d4b
KB
1014 memset (new->lm_info->lm, 0, lmo->link_map_size);
1015
1016 read_memory (lm, new->lm_info->lm, lmo->link_map_size);
1017
1018 lm = LM_NEXT (new);
1019
1020 /* For SVR4 versions, the first entry in the link map is for the
1021 inferior executable, so we must ignore it. For some versions of
1022 SVR4, it has no name. For others (Solaris 2.3 for example), it
1023 does have a name, so we can no longer use a missing name to
1024 decide when to ignore it. */
1025 if (IGNORE_FIRST_LINK_MAP_ENTRY (new))
1026 free_so (new);
1027 else
1028 {
1029 int errcode;
1030 char *buffer;
1031
1032 /* Extract this shared object's name. */
1033 target_read_string (LM_NAME (new), &buffer,
1034 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1035 if (errcode != 0)
1036 {
1037 warning ("current_sos: Can't read pathname for load map: %s\n",
1038 safe_strerror (errcode));
1039 }
1040 else
1041 {
1042 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
1043 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
b8c9b27d 1044 xfree (buffer);
13437d4b
KB
1045 strcpy (new->so_original_name, new->so_name);
1046 }
1047
1048 /* If this entry has no name, or its name matches the name
1049 for the main executable, don't include it in the list. */
1050 if (! new->so_name[0]
1051 || match_main (new->so_name))
1052 free_so (new);
1053 else
1054 {
1055 new->next = 0;
1056 *link_ptr = new;
1057 link_ptr = &new->next;
1058 }
1059 }
1060
1061 discard_cleanups (old_chain);
1062 }
1063
1064 return head;
1065}
1066
1067
1068/* On some systems, the only way to recognize the link map entry for
1069 the main executable file is by looking at its name. Return
1070 non-zero iff SONAME matches one of the known main executable names. */
1071
1072static int
1073match_main (char *soname)
1074{
1075 char **mainp;
1076
1077 for (mainp = main_name_list; *mainp != NULL; mainp++)
1078 {
1079 if (strcmp (soname, *mainp) == 0)
1080 return (1);
1081 }
1082
1083 return (0);
1084}
1085
1086
1087#ifdef SVR4_SHARED_LIBS
1088
1089/* Return 1 if PC lies in the dynamic symbol resolution code of the
1090 SVR4 run time loader. */
1091
1092static CORE_ADDR interp_text_sect_low;
1093static CORE_ADDR interp_text_sect_high;
1094static CORE_ADDR interp_plt_sect_low;
1095static CORE_ADDR interp_plt_sect_high;
1096
1097int
1098in_svr4_dynsym_resolve_code (CORE_ADDR pc)
1099{
1100 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
1101 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
1102 || in_plt_section (pc, NULL));
1103}
1104#endif
1105
1106/*
1107
1108 LOCAL FUNCTION
1109
1110 disable_break -- remove the "mapping changed" breakpoint
1111
1112 SYNOPSIS
1113
1114 static int disable_break ()
1115
1116 DESCRIPTION
1117
1118 Removes the breakpoint that gets hit when the dynamic linker
1119 completes a mapping change.
1120
1121 */
1122
1123#ifndef SVR4_SHARED_LIBS
1124
1125static int
1126disable_break (void)
1127{
1128 int status = 1;
1129
1130 int in_debugger = 0;
1131
1132 /* Read the debugger structure from the inferior to retrieve the
1133 address of the breakpoint and the original contents of the
1134 breakpoint address. Remove the breakpoint by writing the original
1135 contents back. */
1136
1137 read_memory (debug_addr, (char *) &debug_copy, sizeof (debug_copy));
1138
1139 /* Set `in_debugger' to zero now. */
1140
1141 write_memory (flag_addr, (char *) &in_debugger, sizeof (in_debugger));
1142
1143 breakpoint_addr = SOLIB_EXTRACT_ADDRESS (debug_copy.ldd_bp_addr);
1144 write_memory (breakpoint_addr, (char *) &debug_copy.ldd_bp_inst,
1145 sizeof (debug_copy.ldd_bp_inst));
1146
1147 /* For the SVR4 version, we always know the breakpoint address. For the
1148 SunOS version we don't know it until the above code is executed.
1149 Grumble if we are stopped anywhere besides the breakpoint address. */
1150
1151 if (stop_pc != breakpoint_addr)
1152 {
1153 warning ("stopped at unknown breakpoint while handling shared libraries");
1154 }
1155
1156 return (status);
1157}
1158
1159#endif /* #ifdef SVR4_SHARED_LIBS */
1160
1161/*
1162
1163 LOCAL FUNCTION
1164
1165 enable_break -- arrange for dynamic linker to hit breakpoint
1166
1167 SYNOPSIS
1168
1169 int enable_break (void)
1170
1171 DESCRIPTION
1172
1173 Both the SunOS and the SVR4 dynamic linkers have, as part of their
1174 debugger interface, support for arranging for the inferior to hit
1175 a breakpoint after mapping in the shared libraries. This function
1176 enables that breakpoint.
1177
1178 For SunOS, there is a special flag location (in_debugger) which we
1179 set to 1. When the dynamic linker sees this flag set, it will set
1180 a breakpoint at a location known only to itself, after saving the
1181 original contents of that place and the breakpoint address itself,
1182 in it's own internal structures. When we resume the inferior, it
1183 will eventually take a SIGTRAP when it runs into the breakpoint.
1184 We handle this (in a different place) by restoring the contents of
1185 the breakpointed location (which is only known after it stops),
1186 chasing around to locate the shared libraries that have been
1187 loaded, then resuming.
1188
1189 For SVR4, the debugger interface structure contains a member (r_brk)
1190 which is statically initialized at the time the shared library is
1191 built, to the offset of a function (_r_debug_state) which is guaran-
1192 teed to be called once before mapping in a library, and again when
1193 the mapping is complete. At the time we are examining this member,
1194 it contains only the unrelocated offset of the function, so we have
1195 to do our own relocation. Later, when the dynamic linker actually
1196 runs, it relocates r_brk to be the actual address of _r_debug_state().
1197
1198 The debugger interface structure also contains an enumeration which
1199 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
1200 depending upon whether or not the library is being mapped or unmapped,
1201 and then set to RT_CONSISTENT after the library is mapped/unmapped.
1202 */
1203
1204static int
1205enable_break (void)
1206{
1207 int success = 0;
1208
1209#ifndef SVR4_SHARED_LIBS
1210
1211 int j;
1212 int in_debugger;
1213
1214 /* Get link_dynamic structure */
1215
1216 j = target_read_memory (debug_base, (char *) &dynamic_copy,
1217 sizeof (dynamic_copy));
1218 if (j)
1219 {
1220 /* unreadable */
1221 return (0);
1222 }
1223
1224 /* Calc address of debugger interface structure */
1225
1226 debug_addr = SOLIB_EXTRACT_ADDRESS (dynamic_copy.ldd);
1227
1228 /* Calc address of `in_debugger' member of debugger interface structure */
1229
1230 flag_addr = debug_addr + (CORE_ADDR) ((char *) &debug_copy.ldd_in_debugger -
1231 (char *) &debug_copy);
1232
1233 /* Write a value of 1 to this member. */
1234
1235 in_debugger = 1;
1236 write_memory (flag_addr, (char *) &in_debugger, sizeof (in_debugger));
1237 success = 1;
1238
1239#else /* SVR4_SHARED_LIBS */
1240
1241#ifdef BKPT_AT_SYMBOL
1242
1243 struct minimal_symbol *msymbol;
1244 char **bkpt_namep;
1245 asection *interp_sect;
1246
1247 /* First, remove all the solib event breakpoints. Their addresses
1248 may have changed since the last time we ran the program. */
1249 remove_solib_event_breakpoints ();
1250
1251#ifdef SVR4_SHARED_LIBS
1252 interp_text_sect_low = interp_text_sect_high = 0;
1253 interp_plt_sect_low = interp_plt_sect_high = 0;
1254
1255 /* Find the .interp section; if not found, warn the user and drop
1256 into the old breakpoint at symbol code. */
1257 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
1258 if (interp_sect)
1259 {
1260 unsigned int interp_sect_size;
1261 char *buf;
1262 CORE_ADDR load_addr;
e4f7b8c8
MS
1263 bfd *tmp_bfd = NULL;
1264 int tmp_fd = -1;
1265 char *tmp_pathname = NULL;
13437d4b
KB
1266 CORE_ADDR sym_addr = 0;
1267
1268 /* Read the contents of the .interp section into a local buffer;
1269 the contents specify the dynamic linker this program uses. */
1270 interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
1271 buf = alloca (interp_sect_size);
1272 bfd_get_section_contents (exec_bfd, interp_sect,
1273 buf, 0, interp_sect_size);
1274
1275 /* Now we need to figure out where the dynamic linker was
1276 loaded so that we can load its symbols and place a breakpoint
1277 in the dynamic linker itself.
1278
1279 This address is stored on the stack. However, I've been unable
1280 to find any magic formula to find it for Solaris (appears to
1281 be trivial on GNU/Linux). Therefore, we have to try an alternate
1282 mechanism to find the dynamic linker's base address. */
e4f7b8c8
MS
1283
1284 tmp_fd = solib_open (buf, &tmp_pathname);
1285 if (tmp_fd >= 0)
1286 tmp_bfd = bfd_fdopenr (tmp_pathname, gnutarget, tmp_fd);
1287
13437d4b
KB
1288 if (tmp_bfd == NULL)
1289 goto bkpt_at_symbol;
1290
1291 /* Make sure the dynamic linker's really a useful object. */
1292 if (!bfd_check_format (tmp_bfd, bfd_object))
1293 {
1294 warning ("Unable to grok dynamic linker %s as an object file", buf);
1295 bfd_close (tmp_bfd);
1296 goto bkpt_at_symbol;
1297 }
1298
1299 /* We find the dynamic linker's base address by examining the
1300 current pc (which point at the entry point for the dynamic
1301 linker) and subtracting the offset of the entry point. */
1302 load_addr = read_pc () - tmp_bfd->start_address;
1303
1304 /* Record the relocated start and end address of the dynamic linker
1305 text and plt section for in_svr4_dynsym_resolve_code. */
1306 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1307 if (interp_sect)
1308 {
1309 interp_text_sect_low =
1310 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1311 interp_text_sect_high =
1312 interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1313 }
1314 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1315 if (interp_sect)
1316 {
1317 interp_plt_sect_low =
1318 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1319 interp_plt_sect_high =
1320 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1321 }
1322
1323 /* Now try to set a breakpoint in the dynamic linker. */
1324 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1325 {
1326 sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep);
1327 if (sym_addr != 0)
1328 break;
1329 }
1330
1331 /* We're done with the temporary bfd. */
1332 bfd_close (tmp_bfd);
1333
1334 if (sym_addr != 0)
1335 {
1336 create_solib_event_breakpoint (load_addr + sym_addr);
1337 return 1;
1338 }
1339
1340 /* For whatever reason we couldn't set a breakpoint in the dynamic
1341 linker. Warn and drop into the old code. */
1342 bkpt_at_symbol:
1343 warning ("Unable to find dynamic linker breakpoint function.\nGDB will be unable to debug shared library initializers\nand track explicitly loaded dynamic code.");
1344 }
1345#endif
1346
1347 /* Scan through the list of symbols, trying to look up the symbol and
1348 set a breakpoint there. Terminate loop when we/if we succeed. */
1349
1350 breakpoint_addr = 0;
1351 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
1352 {
1353 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1354 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1355 {
1356 create_solib_event_breakpoint (SYMBOL_VALUE_ADDRESS (msymbol));
1357 return 1;
1358 }
1359 }
1360
1361 /* Nothing good happened. */
1362 success = 0;
1363
1364#endif /* BKPT_AT_SYMBOL */
1365
1366#endif /* !SVR4_SHARED_LIBS */
1367
1368 return (success);
1369}
1370
1371/*
1372
1373 LOCAL FUNCTION
1374
1375 special_symbol_handling -- additional shared library symbol handling
1376
1377 SYNOPSIS
1378
1379 void special_symbol_handling ()
1380
1381 DESCRIPTION
1382
1383 Once the symbols from a shared object have been loaded in the usual
1384 way, we are called to do any system specific symbol handling that
1385 is needed.
1386
1387 For SunOS4, this consists of grunging around in the dynamic
1388 linkers structures to find symbol definitions for "common" symbols
1389 and adding them to the minimal symbol table for the runtime common
1390 objfile.
1391
1392 */
1393
1394static void
1395svr4_special_symbol_handling (void)
1396{
1397#ifndef SVR4_SHARED_LIBS
1398 int j;
1399
1400 if (debug_addr == 0)
1401 {
1402 /* Get link_dynamic structure */
1403
1404 j = target_read_memory (debug_base, (char *) &dynamic_copy,
1405 sizeof (dynamic_copy));
1406 if (j)
1407 {
1408 /* unreadable */
1409 return;
1410 }
1411
1412 /* Calc address of debugger interface structure */
1413 /* FIXME, this needs work for cross-debugging of core files
1414 (byteorder, size, alignment, etc). */
1415
1416 debug_addr = SOLIB_EXTRACT_ADDRESS (dynamic_copy.ldd);
1417 }
1418
1419 /* Read the debugger structure from the inferior, just to make sure
1420 we have a current copy. */
1421
1422 j = target_read_memory (debug_addr, (char *) &debug_copy,
1423 sizeof (debug_copy));
1424 if (j)
1425 return; /* unreadable */
1426
1427 /* Get common symbol definitions for the loaded object. */
1428
1429 if (debug_copy.ldd_cp)
1430 {
1431 solib_add_common_symbols (SOLIB_EXTRACT_ADDRESS (debug_copy.ldd_cp));
1432 }
1433
1434#endif /* !SVR4_SHARED_LIBS */
1435}
1436
e2a44558
KB
1437/* Relocate the main executable. This function should be called upon
1438 stopping the inferior process at the entry point to the program.
1439 The entry point from BFD is compared to the PC and if they are
1440 different, the main executable is relocated by the proper amount.
1441
1442 As written it will only attempt to relocate executables which
1443 lack interpreter sections. It seems likely that only dynamic
1444 linker executables will get relocated, though it should work
1445 properly for a position-independent static executable as well. */
1446
1447static void
1448svr4_relocate_main_executable (void)
1449{
1450 asection *interp_sect;
1451 CORE_ADDR pc = read_pc ();
1452
1453 /* Decide if the objfile needs to be relocated. As indicated above,
1454 we will only be here when execution is stopped at the beginning
1455 of the program. Relocation is necessary if the address at which
1456 we are presently stopped differs from the start address stored in
1457 the executable AND there's no interpreter section. The condition
1458 regarding the interpreter section is very important because if
1459 there *is* an interpreter section, execution will begin there
1460 instead. When there is an interpreter section, the start address
1461 is (presumably) used by the interpreter at some point to start
1462 execution of the program.
1463
1464 If there is an interpreter, it is normal for it to be set to an
1465 arbitrary address at the outset. The job of finding it is
1466 handled in enable_break().
1467
1468 So, to summarize, relocations are necessary when there is no
1469 interpreter section and the start address obtained from the
1470 executable is different from the address at which GDB is
1471 currently stopped.
1472
1473 [ The astute reader will note that we also test to make sure that
1474 the executable in question has the DYNAMIC flag set. It is my
1475 opinion that this test is unnecessary (undesirable even). It
1476 was added to avoid inadvertent relocation of an executable
1477 whose e_type member in the ELF header is not ET_DYN. There may
1478 be a time in the future when it is desirable to do relocations
1479 on other types of files as well in which case this condition
1480 should either be removed or modified to accomodate the new file
1481 type. (E.g, an ET_EXEC executable which has been built to be
1482 position-independent could safely be relocated by the OS if
1483 desired. It is true that this violates the ABI, but the ABI
1484 has been known to be bent from time to time.) - Kevin, Nov 2000. ]
1485 */
1486
1487 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
1488 if (interp_sect == NULL
1489 && (bfd_get_file_flags (exec_bfd) & DYNAMIC) != 0
1490 && bfd_get_start_address (exec_bfd) != pc)
1491 {
1492 struct cleanup *old_chain;
1493 struct section_offsets *new_offsets;
1494 int i, changed;
1495 CORE_ADDR displacement;
1496
1497 /* It is necessary to relocate the objfile. The amount to
1498 relocate by is simply the address at which we are stopped
1499 minus the starting address from the executable.
1500
1501 We relocate all of the sections by the same amount. This
1502 behavior is mandated by recent editions of the System V ABI.
1503 According to the System V Application Binary Interface,
1504 Edition 4.1, page 5-5:
1505
1506 ... Though the system chooses virtual addresses for
1507 individual processes, it maintains the segments' relative
1508 positions. Because position-independent code uses relative
1509 addressesing between segments, the difference between
1510 virtual addresses in memory must match the difference
1511 between virtual addresses in the file. The difference
1512 between the virtual address of any segment in memory and
1513 the corresponding virtual address in the file is thus a
1514 single constant value for any one executable or shared
1515 object in a given process. This difference is the base
1516 address. One use of the base address is to relocate the
1517 memory image of the program during dynamic linking.
1518
1519 The same language also appears in Edition 4.0 of the System V
1520 ABI and is left unspecified in some of the earlier editions. */
1521
1522 displacement = pc - bfd_get_start_address (exec_bfd);
1523 changed = 0;
1524
1525 new_offsets = xcalloc (sizeof (struct section_offsets),
1526 symfile_objfile->num_sections);
b8c9b27d 1527 old_chain = make_cleanup (xfree, new_offsets);
e2a44558
KB
1528
1529 for (i = 0; i < symfile_objfile->num_sections; i++)
1530 {
1531 if (displacement != ANOFFSET (symfile_objfile->section_offsets, i))
1532 changed = 1;
1533 new_offsets->offsets[i] = displacement;
1534 }
1535
1536 if (changed)
1537 objfile_relocate (symfile_objfile, new_offsets);
1538
1539 do_cleanups (old_chain);
1540 }
1541}
1542
13437d4b
KB
1543/*
1544
1545 GLOBAL FUNCTION
1546
1547 svr4_solib_create_inferior_hook -- shared library startup support
1548
1549 SYNOPSIS
1550
1551 void svr4_solib_create_inferior_hook()
1552
1553 DESCRIPTION
1554
1555 When gdb starts up the inferior, it nurses it along (through the
1556 shell) until it is ready to execute it's first instruction. At this
1557 point, this function gets called via expansion of the macro
1558 SOLIB_CREATE_INFERIOR_HOOK.
1559
1560 For SunOS executables, this first instruction is typically the
1561 one at "_start", or a similar text label, regardless of whether
1562 the executable is statically or dynamically linked. The runtime
1563 startup code takes care of dynamically linking in any shared
1564 libraries, once gdb allows the inferior to continue.
1565
1566 For SVR4 executables, this first instruction is either the first
1567 instruction in the dynamic linker (for dynamically linked
1568 executables) or the instruction at "start" for statically linked
1569 executables. For dynamically linked executables, the system
1570 first exec's /lib/libc.so.N, which contains the dynamic linker,
1571 and starts it running. The dynamic linker maps in any needed
1572 shared libraries, maps in the actual user executable, and then
1573 jumps to "start" in the user executable.
1574
1575 For both SunOS shared libraries, and SVR4 shared libraries, we
1576 can arrange to cooperate with the dynamic linker to discover the
1577 names of shared libraries that are dynamically linked, and the
1578 base addresses to which they are linked.
1579
1580 This function is responsible for discovering those names and
1581 addresses, and saving sufficient information about them to allow
1582 their symbols to be read at a later time.
1583
1584 FIXME
1585
1586 Between enable_break() and disable_break(), this code does not
1587 properly handle hitting breakpoints which the user might have
1588 set in the startup code or in the dynamic linker itself. Proper
1589 handling will probably have to wait until the implementation is
1590 changed to use the "breakpoint handler function" method.
1591
1592 Also, what if child has exit()ed? Must exit loop somehow.
1593 */
1594
e2a44558 1595static void
13437d4b
KB
1596svr4_solib_create_inferior_hook (void)
1597{
e2a44558
KB
1598 /* Relocate the main executable if necessary. */
1599 svr4_relocate_main_executable ();
1600
13437d4b
KB
1601 /* If we are using the BKPT_AT_SYMBOL code, then we don't need the base
1602 yet. In fact, in the case of a SunOS4 executable being run on
1603 Solaris, we can't get it yet. current_sos will get it when it needs
1604 it. */
1605#if !(defined (SVR4_SHARED_LIBS) && defined (BKPT_AT_SYMBOL))
1606 if ((debug_base = locate_base ()) == 0)
1607 {
1608 /* Can't find the symbol or the executable is statically linked. */
1609 return;
1610 }
1611#endif
1612
1613 if (!enable_break ())
1614 {
1615 warning ("shared library handler failed to enable breakpoint");
1616 return;
1617 }
1618
1619#if !defined(SVR4_SHARED_LIBS) || defined(_SCO_DS)
1620 /* SCO and SunOS need the loop below, other systems should be using the
1621 special shared library breakpoints and the shared library breakpoint
1622 service routine.
1623
1624 Now run the target. It will eventually hit the breakpoint, at
1625 which point all of the libraries will have been mapped in and we
1626 can go groveling around in the dynamic linker structures to find
1627 out what we need to know about them. */
1628
1629 clear_proceed_status ();
1630 stop_soon_quietly = 1;
1631 stop_signal = TARGET_SIGNAL_0;
1632 do
1633 {
1634 target_resume (-1, 0, stop_signal);
1635 wait_for_inferior ();
1636 }
1637 while (stop_signal != TARGET_SIGNAL_TRAP);
1638 stop_soon_quietly = 0;
1639
1640#if !defined(_SCO_DS)
1641 /* We are now either at the "mapping complete" breakpoint (or somewhere
1642 else, a condition we aren't prepared to deal with anyway), so adjust
1643 the PC as necessary after a breakpoint, disable the breakpoint, and
1644 add any shared libraries that were mapped in. */
1645
1646 if (DECR_PC_AFTER_BREAK)
1647 {
1648 stop_pc -= DECR_PC_AFTER_BREAK;
1649 write_register (PC_REGNUM, stop_pc);
1650 }
1651
1652 if (!disable_break ())
1653 {
1654 warning ("shared library handler failed to disable breakpoint");
1655 }
1656
1657 if (auto_solib_add)
1658 solib_add ((char *) 0, 0, (struct target_ops *) 0);
1659#endif /* ! _SCO_DS */
1660#endif
1661}
1662
1663static void
1664svr4_clear_solib (void)
1665{
1666 debug_base = 0;
1667}
1668
1669static void
1670svr4_free_so (struct so_list *so)
1671{
b8c9b27d
KB
1672 xfree (so->lm_info->lm);
1673 xfree (so->lm_info);
13437d4b
KB
1674}
1675
749499cb
KB
1676static void
1677svr4_relocate_section_addresses (struct so_list *so,
1678 struct section_table *sec)
1679{
1680 sec->addr += LM_ADDR (so);
1681 sec->endaddr += LM_ADDR (so);
1682}
1683
13437d4b
KB
1684static struct target_so_ops svr4_so_ops;
1685
1686void
1687_initialize_svr4_solib (void)
1688{
749499cb 1689 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
13437d4b
KB
1690 svr4_so_ops.free_so = svr4_free_so;
1691 svr4_so_ops.clear_solib = svr4_clear_solib;
1692 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
1693 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
1694 svr4_so_ops.current_sos = svr4_current_sos;
1695 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
1696
1697 /* FIXME: Don't do this here. *_gdbarch_init() should set so_ops. */
1698 current_target_so_ops = &svr4_so_ops;
1699}
1700
This page took 0.10917 seconds and 4 git commands to generate.