Fix bug introduced when multiarching NUM_REGS.
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
CommitLineData
ab31aa69 1/* Handle SVR4 shared libraries for GDB, the GNU Debugger.
b6ba6518
KB
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000,
3 2001
13437d4b
KB
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
13437d4b
KB
23#include "defs.h"
24
13437d4b 25#include "elf/external.h"
21479ded 26#include "elf/common.h"
f7856c8f 27#include "elf/mips.h"
13437d4b
KB
28
29#include "symtab.h"
30#include "bfd.h"
31#include "symfile.h"
32#include "objfiles.h"
33#include "gdbcore.h"
13437d4b 34#include "target.h"
13437d4b 35#include "inferior.h"
13437d4b
KB
36
37#include "solist.h"
38#include "solib-svr4.h"
39
21479ded 40#ifndef SVR4_FETCH_LINK_MAP_OFFSETS
e5e2b9ff 41#define SVR4_FETCH_LINK_MAP_OFFSETS() svr4_fetch_link_map_offsets ()
21479ded
KB
42#endif
43
e5e2b9ff
KB
44static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
45static struct link_map_offsets *legacy_fetch_link_map_offsets (void);
1c4dcb57 46
e5e2b9ff
KB
47/* fetch_link_map_offsets_gdbarch_data is a handle used to obtain the
48 architecture specific link map offsets fetching function. */
21479ded 49
e5e2b9ff 50static struct gdbarch_data *fetch_link_map_offsets_gdbarch_data;
1c4dcb57 51
21479ded
KB
52/* legacy_svr4_fetch_link_map_offsets_hook is a pointer to a function
53 which is used to fetch link map offsets. It will only be set
54 by solib-legacy.c, if at all. */
e5e2b9ff 55
21479ded
KB
56struct link_map_offsets *(*legacy_svr4_fetch_link_map_offsets_hook)(void) = 0;
57
13437d4b
KB
58/* Link map info to include in an allocated so_list entry */
59
60struct lm_info
61 {
62 /* Pointer to copy of link map from inferior. The type is char *
63 rather than void *, so that we may use byte offsets to find the
64 various fields without the need for a cast. */
65 char *lm;
66 };
67
68/* On SVR4 systems, a list of symbols in the dynamic linker where
69 GDB can try to place a breakpoint to monitor shared library
70 events.
71
72 If none of these symbols are found, or other errors occur, then
73 SVR4 systems will fall back to using a symbol as the "startup
74 mapping complete" breakpoint address. */
75
13437d4b
KB
76static char *solib_break_names[] =
77{
78 "r_debug_state",
79 "_r_debug_state",
80 "_dl_debug_state",
81 "rtld_db_dlactivity",
1f72e589 82 "_rtld_debug_state",
13437d4b
KB
83 NULL
84};
13437d4b
KB
85
86#define BKPT_AT_SYMBOL 1
87
ab31aa69 88#if defined (BKPT_AT_SYMBOL)
13437d4b
KB
89static char *bkpt_names[] =
90{
91#ifdef SOLIB_BKPT_NAME
92 SOLIB_BKPT_NAME, /* Prefer configured name if it exists. */
93#endif
94 "_start",
ad3dcc5c 95 "__start",
13437d4b
KB
96 "main",
97 NULL
98};
99#endif
100
13437d4b
KB
101static char *main_name_list[] =
102{
103 "main_$main",
104 NULL
105};
106
13437d4b
KB
107/* Macro to extract an address from a solib structure.
108 When GDB is configured for some 32-bit targets (e.g. Solaris 2.7
109 sparc), BFD is configured to handle 64-bit targets, so CORE_ADDR is
110 64 bits. We have to extract only the significant bits of addresses
111 to get the right address when accessing the core file BFD. */
112
113#define SOLIB_EXTRACT_ADDRESS(MEMBER) \
114 extract_address (&(MEMBER), sizeof (MEMBER))
115
116/* local data declarations */
117
13437d4b
KB
118/* link map access functions */
119
120static CORE_ADDR
121LM_ADDR (struct so_list *so)
122{
123 struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ();
124
58bc91c9
MH
125 return (CORE_ADDR) extract_signed_integer (so->lm_info->lm + lmo->l_addr_offset,
126 lmo->l_addr_size);
13437d4b
KB
127}
128
129static CORE_ADDR
130LM_NEXT (struct so_list *so)
131{
132 struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ();
133
134 return extract_address (so->lm_info->lm + lmo->l_next_offset, lmo->l_next_size);
135}
136
137static CORE_ADDR
138LM_NAME (struct so_list *so)
139{
140 struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ();
141
142 return extract_address (so->lm_info->lm + lmo->l_name_offset, lmo->l_name_size);
143}
144
13437d4b
KB
145static int
146IGNORE_FIRST_LINK_MAP_ENTRY (struct so_list *so)
147{
148 struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ();
149
150 return extract_address (so->lm_info->lm + lmo->l_prev_offset,
151 lmo->l_prev_size) == 0;
152}
153
13437d4b
KB
154static CORE_ADDR debug_base; /* Base of dynamic linker structures */
155static CORE_ADDR breakpoint_addr; /* Address where end bkpt is set */
156
157/* Local function prototypes */
158
159static int match_main (char *);
160
13437d4b
KB
161static CORE_ADDR bfd_lookup_symbol (bfd *, char *);
162
163/*
164
165 LOCAL FUNCTION
166
167 bfd_lookup_symbol -- lookup the value for a specific symbol
168
169 SYNOPSIS
170
171 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
172
173 DESCRIPTION
174
175 An expensive way to lookup the value of a single symbol for
176 bfd's that are only temporary anyway. This is used by the
177 shared library support to find the address of the debugger
178 interface structures in the shared library.
179
180 Note that 0 is specifically allowed as an error return (no
181 such symbol).
182 */
183
184static CORE_ADDR
185bfd_lookup_symbol (bfd *abfd, char *symname)
186{
435b259c 187 long storage_needed;
13437d4b
KB
188 asymbol *sym;
189 asymbol **symbol_table;
190 unsigned int number_of_symbols;
191 unsigned int i;
192 struct cleanup *back_to;
193 CORE_ADDR symaddr = 0;
194
195 storage_needed = bfd_get_symtab_upper_bound (abfd);
196
197 if (storage_needed > 0)
198 {
199 symbol_table = (asymbol **) xmalloc (storage_needed);
b8c9b27d 200 back_to = make_cleanup (xfree, (PTR) symbol_table);
13437d4b
KB
201 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
202
203 for (i = 0; i < number_of_symbols; i++)
204 {
205 sym = *symbol_table++;
206 if (STREQ (sym->name, symname))
207 {
208 /* Bfd symbols are section relative. */
209 symaddr = sym->value + sym->section->vma;
210 break;
211 }
212 }
213 do_cleanups (back_to);
214 }
215
216 if (symaddr)
217 return symaddr;
218
219 /* On FreeBSD, the dynamic linker is stripped by default. So we'll
220 have to check the dynamic string table too. */
221
222 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
223
224 if (storage_needed > 0)
225 {
226 symbol_table = (asymbol **) xmalloc (storage_needed);
b8c9b27d 227 back_to = make_cleanup (xfree, (PTR) symbol_table);
13437d4b
KB
228 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
229
230 for (i = 0; i < number_of_symbols; i++)
231 {
232 sym = *symbol_table++;
233 if (STREQ (sym->name, symname))
234 {
235 /* Bfd symbols are section relative. */
236 symaddr = sym->value + sym->section->vma;
237 break;
238 }
239 }
240 do_cleanups (back_to);
241 }
242
243 return symaddr;
244}
245
246#ifdef HANDLE_SVR4_EXEC_EMULATORS
247
248/*
249 Solaris BCP (the part of Solaris which allows it to run SunOS4
250 a.out files) throws in another wrinkle. Solaris does not fill
251 in the usual a.out link map structures when running BCP programs,
252 the only way to get at them is via groping around in the dynamic
253 linker.
254 The dynamic linker and it's structures are located in the shared
255 C library, which gets run as the executable's "interpreter" by
256 the kernel.
257
258 Note that we can assume nothing about the process state at the time
259 we need to find these structures. We may be stopped on the first
260 instruction of the interpreter (C shared library), the first
261 instruction of the executable itself, or somewhere else entirely
262 (if we attached to the process for example).
263 */
264
265static char *debug_base_symbols[] =
266{
267 "r_debug", /* Solaris 2.3 */
268 "_r_debug", /* Solaris 2.1, 2.2 */
269 NULL
270};
271
272static int look_for_base (int, CORE_ADDR);
273
274/*
275
276 LOCAL FUNCTION
277
278 look_for_base -- examine file for each mapped address segment
279
280 SYNOPSYS
281
282 static int look_for_base (int fd, CORE_ADDR baseaddr)
283
284 DESCRIPTION
285
286 This function is passed to proc_iterate_over_mappings, which
287 causes it to get called once for each mapped address space, with
288 an open file descriptor for the file mapped to that space, and the
289 base address of that mapped space.
290
291 Our job is to find the debug base symbol in the file that this
292 fd is open on, if it exists, and if so, initialize the dynamic
293 linker structure base address debug_base.
294
295 Note that this is a computationally expensive proposition, since
296 we basically have to open a bfd on every call, so we specifically
297 avoid opening the exec file.
298 */
299
300static int
301look_for_base (int fd, CORE_ADDR baseaddr)
302{
303 bfd *interp_bfd;
304 CORE_ADDR address = 0;
305 char **symbolp;
306
307 /* If the fd is -1, then there is no file that corresponds to this
308 mapped memory segment, so skip it. Also, if the fd corresponds
309 to the exec file, skip it as well. */
310
311 if (fd == -1
312 || (exec_bfd != NULL
313 && fdmatch (fileno ((FILE *) (exec_bfd->iostream)), fd)))
314 {
315 return (0);
316 }
317
318 /* Try to open whatever random file this fd corresponds to. Note that
319 we have no way currently to find the filename. Don't gripe about
320 any problems we might have, just fail. */
321
322 if ((interp_bfd = bfd_fdopenr ("unnamed", gnutarget, fd)) == NULL)
323 {
324 return (0);
325 }
326 if (!bfd_check_format (interp_bfd, bfd_object))
327 {
328 /* FIXME-leak: on failure, might not free all memory associated with
329 interp_bfd. */
330 bfd_close (interp_bfd);
331 return (0);
332 }
333
334 /* Now try to find our debug base symbol in this file, which we at
335 least know to be a valid ELF executable or shared library. */
336
337 for (symbolp = debug_base_symbols; *symbolp != NULL; symbolp++)
338 {
339 address = bfd_lookup_symbol (interp_bfd, *symbolp);
340 if (address != 0)
341 {
342 break;
343 }
344 }
345 if (address == 0)
346 {
347 /* FIXME-leak: on failure, might not free all memory associated with
348 interp_bfd. */
349 bfd_close (interp_bfd);
350 return (0);
351 }
352
353 /* Eureka! We found the symbol. But now we may need to relocate it
354 by the base address. If the symbol's value is less than the base
355 address of the shared library, then it hasn't yet been relocated
356 by the dynamic linker, and we have to do it ourself. FIXME: Note
357 that we make the assumption that the first segment that corresponds
358 to the shared library has the base address to which the library
359 was relocated. */
360
361 if (address < baseaddr)
362 {
363 address += baseaddr;
364 }
365 debug_base = address;
366 /* FIXME-leak: on failure, might not free all memory associated with
367 interp_bfd. */
368 bfd_close (interp_bfd);
369 return (1);
370}
371#endif /* HANDLE_SVR4_EXEC_EMULATORS */
372
373/*
374
375 LOCAL FUNCTION
376
377 elf_locate_base -- locate the base address of dynamic linker structs
378 for SVR4 elf targets.
379
380 SYNOPSIS
381
382 CORE_ADDR elf_locate_base (void)
383
384 DESCRIPTION
385
386 For SVR4 elf targets the address of the dynamic linker's runtime
387 structure is contained within the dynamic info section in the
388 executable file. The dynamic section is also mapped into the
389 inferior address space. Because the runtime loader fills in the
390 real address before starting the inferior, we have to read in the
391 dynamic info section from the inferior address space.
392 If there are any errors while trying to find the address, we
393 silently return 0, otherwise the found address is returned.
394
395 */
396
397static CORE_ADDR
398elf_locate_base (void)
399{
400 sec_ptr dyninfo_sect;
401 int dyninfo_sect_size;
402 CORE_ADDR dyninfo_addr;
403 char *buf;
404 char *bufend;
405 int arch_size;
406
407 /* Find the start address of the .dynamic section. */
408 dyninfo_sect = bfd_get_section_by_name (exec_bfd, ".dynamic");
409 if (dyninfo_sect == NULL)
410 return 0;
411 dyninfo_addr = bfd_section_vma (exec_bfd, dyninfo_sect);
412
413 /* Read in .dynamic section, silently ignore errors. */
414 dyninfo_sect_size = bfd_section_size (exec_bfd, dyninfo_sect);
415 buf = alloca (dyninfo_sect_size);
416 if (target_read_memory (dyninfo_addr, buf, dyninfo_sect_size))
417 return 0;
418
419 /* Find the DT_DEBUG entry in the the .dynamic section.
420 For mips elf we look for DT_MIPS_RLD_MAP, mips elf apparently has
421 no DT_DEBUG entries. */
422
423 arch_size = bfd_get_arch_size (exec_bfd);
424 if (arch_size == -1) /* failure */
425 return 0;
426
427 if (arch_size == 32)
428 { /* 32-bit elf */
429 for (bufend = buf + dyninfo_sect_size;
430 buf < bufend;
431 buf += sizeof (Elf32_External_Dyn))
432 {
433 Elf32_External_Dyn *x_dynp = (Elf32_External_Dyn *) buf;
434 long dyn_tag;
435 CORE_ADDR dyn_ptr;
436
437 dyn_tag = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_tag);
438 if (dyn_tag == DT_NULL)
439 break;
440 else if (dyn_tag == DT_DEBUG)
441 {
442 dyn_ptr = bfd_h_get_32 (exec_bfd,
443 (bfd_byte *) x_dynp->d_un.d_ptr);
444 return dyn_ptr;
445 }
13437d4b
KB
446 else if (dyn_tag == DT_MIPS_RLD_MAP)
447 {
448 char *pbuf;
449
450 pbuf = alloca (TARGET_PTR_BIT / HOST_CHAR_BIT);
451 /* DT_MIPS_RLD_MAP contains a pointer to the address
452 of the dynamic link structure. */
453 dyn_ptr = bfd_h_get_32 (exec_bfd,
454 (bfd_byte *) x_dynp->d_un.d_ptr);
455 if (target_read_memory (dyn_ptr, pbuf, sizeof (pbuf)))
456 return 0;
457 return extract_unsigned_integer (pbuf, sizeof (pbuf));
458 }
13437d4b
KB
459 }
460 }
461 else /* 64-bit elf */
462 {
463 for (bufend = buf + dyninfo_sect_size;
464 buf < bufend;
465 buf += sizeof (Elf64_External_Dyn))
466 {
467 Elf64_External_Dyn *x_dynp = (Elf64_External_Dyn *) buf;
468 long dyn_tag;
469 CORE_ADDR dyn_ptr;
470
471 dyn_tag = bfd_h_get_64 (exec_bfd, (bfd_byte *) x_dynp->d_tag);
472 if (dyn_tag == DT_NULL)
473 break;
474 else if (dyn_tag == DT_DEBUG)
475 {
476 dyn_ptr = bfd_h_get_64 (exec_bfd,
477 (bfd_byte *) x_dynp->d_un.d_ptr);
478 return dyn_ptr;
479 }
480 }
481 }
482
483 /* DT_DEBUG entry not found. */
484 return 0;
485}
486
13437d4b
KB
487/*
488
489 LOCAL FUNCTION
490
491 locate_base -- locate the base address of dynamic linker structs
492
493 SYNOPSIS
494
495 CORE_ADDR locate_base (void)
496
497 DESCRIPTION
498
499 For both the SunOS and SVR4 shared library implementations, if the
500 inferior executable has been linked dynamically, there is a single
501 address somewhere in the inferior's data space which is the key to
502 locating all of the dynamic linker's runtime structures. This
503 address is the value of the debug base symbol. The job of this
504 function is to find and return that address, or to return 0 if there
505 is no such address (the executable is statically linked for example).
506
507 For SunOS, the job is almost trivial, since the dynamic linker and
508 all of it's structures are statically linked to the executable at
509 link time. Thus the symbol for the address we are looking for has
510 already been added to the minimal symbol table for the executable's
511 objfile at the time the symbol file's symbols were read, and all we
512 have to do is look it up there. Note that we explicitly do NOT want
513 to find the copies in the shared library.
514
515 The SVR4 version is a bit more complicated because the address
516 is contained somewhere in the dynamic info section. We have to go
517 to a lot more work to discover the address of the debug base symbol.
518 Because of this complexity, we cache the value we find and return that
519 value on subsequent invocations. Note there is no copy in the
520 executable symbol tables.
521
522 */
523
524static CORE_ADDR
525locate_base (void)
526{
13437d4b
KB
527 /* Check to see if we have a currently valid address, and if so, avoid
528 doing all this work again and just return the cached address. If
529 we have no cached address, try to locate it in the dynamic info
530 section for ELF executables. */
531
532 if (debug_base == 0)
533 {
534 if (exec_bfd != NULL
535 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
536 debug_base = elf_locate_base ();
537#ifdef HANDLE_SVR4_EXEC_EMULATORS
538 /* Try it the hard way for emulated executables. */
39f77062 539 else if (!ptid_equal (inferior_ptid, null_ptid) && target_has_execution)
13437d4b
KB
540 proc_iterate_over_mappings (look_for_base);
541#endif
542 }
543 return (debug_base);
13437d4b
KB
544}
545
546/*
547
548 LOCAL FUNCTION
549
550 first_link_map_member -- locate first member in dynamic linker's map
551
552 SYNOPSIS
553
554 static CORE_ADDR first_link_map_member (void)
555
556 DESCRIPTION
557
558 Find the first element in the inferior's dynamic link map, and
559 return its address in the inferior. This function doesn't copy the
560 link map entry itself into our address space; current_sos actually
561 does the reading. */
562
563static CORE_ADDR
564first_link_map_member (void)
565{
566 CORE_ADDR lm = 0;
13437d4b
KB
567 struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ();
568 char *r_map_buf = xmalloc (lmo->r_map_size);
b8c9b27d 569 struct cleanup *cleanups = make_cleanup (xfree, r_map_buf);
13437d4b
KB
570
571 read_memory (debug_base + lmo->r_map_offset, r_map_buf, lmo->r_map_size);
572
573 lm = extract_address (r_map_buf, lmo->r_map_size);
574
575 /* FIXME: Perhaps we should validate the info somehow, perhaps by
576 checking r_version for a known version number, or r_state for
577 RT_CONSISTENT. */
578
579 do_cleanups (cleanups);
580
13437d4b
KB
581 return (lm);
582}
583
13437d4b
KB
584/*
585
586 LOCAL FUNCTION
587
588 open_symbol_file_object
589
590 SYNOPSIS
591
592 void open_symbol_file_object (void *from_tty)
593
594 DESCRIPTION
595
596 If no open symbol file, attempt to locate and open the main symbol
597 file. On SVR4 systems, this is the first link map entry. If its
598 name is here, we can open it. Useful when attaching to a process
599 without first loading its symbol file.
600
601 If FROM_TTYP dereferences to a non-zero integer, allow messages to
602 be printed. This parameter is a pointer rather than an int because
603 open_symbol_file_object() is called via catch_errors() and
604 catch_errors() requires a pointer argument. */
605
606static int
607open_symbol_file_object (void *from_ttyp)
608{
609 CORE_ADDR lm, l_name;
610 char *filename;
611 int errcode;
612 int from_tty = *(int *)from_ttyp;
613 struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ();
614 char *l_name_buf = xmalloc (lmo->l_name_size);
b8c9b27d 615 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
13437d4b
KB
616
617 if (symfile_objfile)
618 if (!query ("Attempt to reload symbols from process? "))
619 return 0;
620
621 if ((debug_base = locate_base ()) == 0)
622 return 0; /* failed somehow... */
623
624 /* First link map member should be the executable. */
625 if ((lm = first_link_map_member ()) == 0)
626 return 0; /* failed somehow... */
627
628 /* Read address of name from target memory to GDB. */
629 read_memory (lm + lmo->l_name_offset, l_name_buf, lmo->l_name_size);
630
631 /* Convert the address to host format. */
632 l_name = extract_address (l_name_buf, lmo->l_name_size);
633
634 /* Free l_name_buf. */
635 do_cleanups (cleanups);
636
637 if (l_name == 0)
638 return 0; /* No filename. */
639
640 /* Now fetch the filename from target memory. */
641 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
642
643 if (errcode)
644 {
645 warning ("failed to read exec filename from attached file: %s",
646 safe_strerror (errcode));
647 return 0;
648 }
649
b8c9b27d 650 make_cleanup (xfree, filename);
13437d4b 651 /* Have a pathname: read the symbol file. */
1adeb98a 652 symbol_file_add_main (filename, from_tty);
13437d4b
KB
653
654 return 1;
655}
13437d4b
KB
656
657/* LOCAL FUNCTION
658
659 current_sos -- build a list of currently loaded shared objects
660
661 SYNOPSIS
662
663 struct so_list *current_sos ()
664
665 DESCRIPTION
666
667 Build a list of `struct so_list' objects describing the shared
668 objects currently loaded in the inferior. This list does not
669 include an entry for the main executable file.
670
671 Note that we only gather information directly available from the
672 inferior --- we don't examine any of the shared library files
673 themselves. The declaration of `struct so_list' says which fields
674 we provide values for. */
675
676static struct so_list *
677svr4_current_sos (void)
678{
679 CORE_ADDR lm;
680 struct so_list *head = 0;
681 struct so_list **link_ptr = &head;
682
683 /* Make sure we've looked up the inferior's dynamic linker's base
684 structure. */
685 if (! debug_base)
686 {
687 debug_base = locate_base ();
688
689 /* If we can't find the dynamic linker's base structure, this
690 must not be a dynamically linked executable. Hmm. */
691 if (! debug_base)
692 return 0;
693 }
694
695 /* Walk the inferior's link map list, and build our list of
696 `struct so_list' nodes. */
697 lm = first_link_map_member ();
698 while (lm)
699 {
700 struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ();
701 struct so_list *new
702 = (struct so_list *) xmalloc (sizeof (struct so_list));
b8c9b27d 703 struct cleanup *old_chain = make_cleanup (xfree, new);
13437d4b
KB
704
705 memset (new, 0, sizeof (*new));
706
707 new->lm_info = xmalloc (sizeof (struct lm_info));
b8c9b27d 708 make_cleanup (xfree, new->lm_info);
13437d4b
KB
709
710 new->lm_info->lm = xmalloc (lmo->link_map_size);
b8c9b27d 711 make_cleanup (xfree, new->lm_info->lm);
13437d4b
KB
712 memset (new->lm_info->lm, 0, lmo->link_map_size);
713
714 read_memory (lm, new->lm_info->lm, lmo->link_map_size);
715
716 lm = LM_NEXT (new);
717
718 /* For SVR4 versions, the first entry in the link map is for the
719 inferior executable, so we must ignore it. For some versions of
720 SVR4, it has no name. For others (Solaris 2.3 for example), it
721 does have a name, so we can no longer use a missing name to
722 decide when to ignore it. */
723 if (IGNORE_FIRST_LINK_MAP_ENTRY (new))
724 free_so (new);
725 else
726 {
727 int errcode;
728 char *buffer;
729
730 /* Extract this shared object's name. */
731 target_read_string (LM_NAME (new), &buffer,
732 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
733 if (errcode != 0)
734 {
735 warning ("current_sos: Can't read pathname for load map: %s\n",
736 safe_strerror (errcode));
737 }
738 else
739 {
740 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
741 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
b8c9b27d 742 xfree (buffer);
13437d4b
KB
743 strcpy (new->so_original_name, new->so_name);
744 }
745
746 /* If this entry has no name, or its name matches the name
747 for the main executable, don't include it in the list. */
748 if (! new->so_name[0]
749 || match_main (new->so_name))
750 free_so (new);
751 else
752 {
753 new->next = 0;
754 *link_ptr = new;
755 link_ptr = &new->next;
756 }
757 }
758
759 discard_cleanups (old_chain);
760 }
761
762 return head;
763}
764
bc4a16ae
EZ
765/* Get the address of the link_map for a given OBJFILE. Loop through
766 the link maps, and return the address of the one corresponding to
767 the given objfile. Note that this function takes into account that
768 objfile can be the main executable, not just a shared library. The
769 main executable has always an empty name field in the linkmap. */
770
771CORE_ADDR
772svr4_fetch_objfile_link_map (struct objfile *objfile)
773{
774 CORE_ADDR lm;
775
776 if ((debug_base = locate_base ()) == 0)
777 return 0; /* failed somehow... */
778
779 /* Position ourselves on the first link map. */
780 lm = first_link_map_member ();
781 while (lm)
782 {
783 /* Get info on the layout of the r_debug and link_map structures. */
784 struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ();
785 int errcode;
786 char *buffer;
787 struct lm_info objfile_lm_info;
788 struct cleanup *old_chain;
789 CORE_ADDR name_address;
790 char *l_name_buf = xmalloc (lmo->l_name_size);
791 old_chain = make_cleanup (xfree, l_name_buf);
792
793 /* Set up the buffer to contain the portion of the link_map
794 structure that gdb cares about. Note that this is not the
795 whole link_map structure. */
796 objfile_lm_info.lm = xmalloc (lmo->link_map_size);
797 make_cleanup (xfree, objfile_lm_info.lm);
798 memset (objfile_lm_info.lm, 0, lmo->link_map_size);
799
800 /* Read the link map into our internal structure. */
801 read_memory (lm, objfile_lm_info.lm, lmo->link_map_size);
802
803 /* Read address of name from target memory to GDB. */
804 read_memory (lm + lmo->l_name_offset, l_name_buf, lmo->l_name_size);
805
806 /* Extract this object's name. */
807 name_address = extract_address (l_name_buf,
808 lmo->l_name_size);
809 target_read_string (name_address, &buffer,
810 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
811 make_cleanup (xfree, buffer);
812 if (errcode != 0)
813 {
814 warning ("svr4_fetch_objfile_link_map: Can't read pathname for load map: %s\n",
815 safe_strerror (errcode));
816 }
817 else
818 {
819 /* Is this the linkmap for the file we want? */
820 /* If the file is not a shared library and has no name,
821 we are sure it is the main executable, so we return that. */
822 if ((buffer && strcmp (buffer, objfile->name) == 0)
823 || (!(objfile->flags & OBJF_SHARED) && (strcmp (buffer, "") == 0)))
824 {
825 do_cleanups (old_chain);
826 return lm;
827 }
828 }
829 /* Not the file we wanted, continue checking. */
830 lm = extract_address (objfile_lm_info.lm + lmo->l_next_offset,
831 lmo->l_next_size);
832 do_cleanups (old_chain);
833 }
834 return 0;
835}
13437d4b
KB
836
837/* On some systems, the only way to recognize the link map entry for
838 the main executable file is by looking at its name. Return
839 non-zero iff SONAME matches one of the known main executable names. */
840
841static int
842match_main (char *soname)
843{
844 char **mainp;
845
846 for (mainp = main_name_list; *mainp != NULL; mainp++)
847 {
848 if (strcmp (soname, *mainp) == 0)
849 return (1);
850 }
851
852 return (0);
853}
854
13437d4b
KB
855/* Return 1 if PC lies in the dynamic symbol resolution code of the
856 SVR4 run time loader. */
13437d4b
KB
857static CORE_ADDR interp_text_sect_low;
858static CORE_ADDR interp_text_sect_high;
859static CORE_ADDR interp_plt_sect_low;
860static CORE_ADDR interp_plt_sect_high;
861
d7fa2ae2
KB
862static int
863svr4_in_dynsym_resolve_code (CORE_ADDR pc)
13437d4b
KB
864{
865 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
866 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
867 || in_plt_section (pc, NULL));
868}
13437d4b 869
13437d4b
KB
870
871/*
872
873 LOCAL FUNCTION
874
875 enable_break -- arrange for dynamic linker to hit breakpoint
876
877 SYNOPSIS
878
879 int enable_break (void)
880
881 DESCRIPTION
882
883 Both the SunOS and the SVR4 dynamic linkers have, as part of their
884 debugger interface, support for arranging for the inferior to hit
885 a breakpoint after mapping in the shared libraries. This function
886 enables that breakpoint.
887
888 For SunOS, there is a special flag location (in_debugger) which we
889 set to 1. When the dynamic linker sees this flag set, it will set
890 a breakpoint at a location known only to itself, after saving the
891 original contents of that place and the breakpoint address itself,
892 in it's own internal structures. When we resume the inferior, it
893 will eventually take a SIGTRAP when it runs into the breakpoint.
894 We handle this (in a different place) by restoring the contents of
895 the breakpointed location (which is only known after it stops),
896 chasing around to locate the shared libraries that have been
897 loaded, then resuming.
898
899 For SVR4, the debugger interface structure contains a member (r_brk)
900 which is statically initialized at the time the shared library is
901 built, to the offset of a function (_r_debug_state) which is guaran-
902 teed to be called once before mapping in a library, and again when
903 the mapping is complete. At the time we are examining this member,
904 it contains only the unrelocated offset of the function, so we have
905 to do our own relocation. Later, when the dynamic linker actually
906 runs, it relocates r_brk to be the actual address of _r_debug_state().
907
908 The debugger interface structure also contains an enumeration which
909 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
910 depending upon whether or not the library is being mapped or unmapped,
911 and then set to RT_CONSISTENT after the library is mapped/unmapped.
912 */
913
914static int
915enable_break (void)
916{
917 int success = 0;
918
13437d4b
KB
919#ifdef BKPT_AT_SYMBOL
920
921 struct minimal_symbol *msymbol;
922 char **bkpt_namep;
923 asection *interp_sect;
924
925 /* First, remove all the solib event breakpoints. Their addresses
926 may have changed since the last time we ran the program. */
927 remove_solib_event_breakpoints ();
928
13437d4b
KB
929 interp_text_sect_low = interp_text_sect_high = 0;
930 interp_plt_sect_low = interp_plt_sect_high = 0;
931
932 /* Find the .interp section; if not found, warn the user and drop
933 into the old breakpoint at symbol code. */
934 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
935 if (interp_sect)
936 {
937 unsigned int interp_sect_size;
938 char *buf;
8ad2fcde
KB
939 CORE_ADDR load_addr = 0;
940 int load_addr_found = 0;
941 struct so_list *inferior_sos;
e4f7b8c8
MS
942 bfd *tmp_bfd = NULL;
943 int tmp_fd = -1;
944 char *tmp_pathname = NULL;
13437d4b
KB
945 CORE_ADDR sym_addr = 0;
946
947 /* Read the contents of the .interp section into a local buffer;
948 the contents specify the dynamic linker this program uses. */
949 interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
950 buf = alloca (interp_sect_size);
951 bfd_get_section_contents (exec_bfd, interp_sect,
952 buf, 0, interp_sect_size);
953
954 /* Now we need to figure out where the dynamic linker was
955 loaded so that we can load its symbols and place a breakpoint
956 in the dynamic linker itself.
957
958 This address is stored on the stack. However, I've been unable
959 to find any magic formula to find it for Solaris (appears to
960 be trivial on GNU/Linux). Therefore, we have to try an alternate
961 mechanism to find the dynamic linker's base address. */
e4f7b8c8
MS
962
963 tmp_fd = solib_open (buf, &tmp_pathname);
964 if (tmp_fd >= 0)
965 tmp_bfd = bfd_fdopenr (tmp_pathname, gnutarget, tmp_fd);
966
13437d4b
KB
967 if (tmp_bfd == NULL)
968 goto bkpt_at_symbol;
969
970 /* Make sure the dynamic linker's really a useful object. */
971 if (!bfd_check_format (tmp_bfd, bfd_object))
972 {
973 warning ("Unable to grok dynamic linker %s as an object file", buf);
974 bfd_close (tmp_bfd);
975 goto bkpt_at_symbol;
976 }
977
8ad2fcde
KB
978 /* If the entry in _DYNAMIC for the dynamic linker has already
979 been filled in, we can read its base address from there. */
980 inferior_sos = svr4_current_sos ();
981 if (inferior_sos)
982 {
983 /* Connected to a running target. Update our shared library table. */
990f9fe3 984 solib_add (NULL, 0, NULL, auto_solib_add);
8ad2fcde
KB
985 }
986 while (inferior_sos)
987 {
988 if (strcmp (buf, inferior_sos->so_original_name) == 0)
989 {
990 load_addr_found = 1;
991 load_addr = LM_ADDR (inferior_sos);
992 break;
993 }
994 inferior_sos = inferior_sos->next;
995 }
996
997 /* Otherwise we find the dynamic linker's base address by examining
998 the current pc (which should point at the entry point for the
999 dynamic linker) and subtracting the offset of the entry point. */
1000 if (!load_addr_found)
1001 load_addr = read_pc () - tmp_bfd->start_address;
13437d4b
KB
1002
1003 /* Record the relocated start and end address of the dynamic linker
d7fa2ae2 1004 text and plt section for svr4_in_dynsym_resolve_code. */
13437d4b
KB
1005 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1006 if (interp_sect)
1007 {
1008 interp_text_sect_low =
1009 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1010 interp_text_sect_high =
1011 interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1012 }
1013 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1014 if (interp_sect)
1015 {
1016 interp_plt_sect_low =
1017 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1018 interp_plt_sect_high =
1019 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1020 }
1021
1022 /* Now try to set a breakpoint in the dynamic linker. */
1023 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1024 {
1025 sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep);
1026 if (sym_addr != 0)
1027 break;
1028 }
1029
1030 /* We're done with the temporary bfd. */
1031 bfd_close (tmp_bfd);
1032
1033 if (sym_addr != 0)
1034 {
1035 create_solib_event_breakpoint (load_addr + sym_addr);
1036 return 1;
1037 }
1038
1039 /* For whatever reason we couldn't set a breakpoint in the dynamic
1040 linker. Warn and drop into the old code. */
1041 bkpt_at_symbol:
1042 warning ("Unable to find dynamic linker breakpoint function.\nGDB will be unable to debug shared library initializers\nand track explicitly loaded dynamic code.");
1043 }
13437d4b
KB
1044
1045 /* Scan through the list of symbols, trying to look up the symbol and
1046 set a breakpoint there. Terminate loop when we/if we succeed. */
1047
1048 breakpoint_addr = 0;
1049 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
1050 {
1051 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1052 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1053 {
1054 create_solib_event_breakpoint (SYMBOL_VALUE_ADDRESS (msymbol));
1055 return 1;
1056 }
1057 }
1058
1059 /* Nothing good happened. */
1060 success = 0;
1061
1062#endif /* BKPT_AT_SYMBOL */
1063
13437d4b
KB
1064 return (success);
1065}
1066
1067/*
1068
1069 LOCAL FUNCTION
1070
1071 special_symbol_handling -- additional shared library symbol handling
1072
1073 SYNOPSIS
1074
1075 void special_symbol_handling ()
1076
1077 DESCRIPTION
1078
1079 Once the symbols from a shared object have been loaded in the usual
1080 way, we are called to do any system specific symbol handling that
1081 is needed.
1082
ab31aa69 1083 For SunOS4, this consisted of grunging around in the dynamic
13437d4b
KB
1084 linkers structures to find symbol definitions for "common" symbols
1085 and adding them to the minimal symbol table for the runtime common
1086 objfile.
1087
ab31aa69
KB
1088 However, for SVR4, there's nothing to do.
1089
13437d4b
KB
1090 */
1091
1092static void
1093svr4_special_symbol_handling (void)
1094{
13437d4b
KB
1095}
1096
e2a44558
KB
1097/* Relocate the main executable. This function should be called upon
1098 stopping the inferior process at the entry point to the program.
1099 The entry point from BFD is compared to the PC and if they are
1100 different, the main executable is relocated by the proper amount.
1101
1102 As written it will only attempt to relocate executables which
1103 lack interpreter sections. It seems likely that only dynamic
1104 linker executables will get relocated, though it should work
1105 properly for a position-independent static executable as well. */
1106
1107static void
1108svr4_relocate_main_executable (void)
1109{
1110 asection *interp_sect;
1111 CORE_ADDR pc = read_pc ();
1112
1113 /* Decide if the objfile needs to be relocated. As indicated above,
1114 we will only be here when execution is stopped at the beginning
1115 of the program. Relocation is necessary if the address at which
1116 we are presently stopped differs from the start address stored in
1117 the executable AND there's no interpreter section. The condition
1118 regarding the interpreter section is very important because if
1119 there *is* an interpreter section, execution will begin there
1120 instead. When there is an interpreter section, the start address
1121 is (presumably) used by the interpreter at some point to start
1122 execution of the program.
1123
1124 If there is an interpreter, it is normal for it to be set to an
1125 arbitrary address at the outset. The job of finding it is
1126 handled in enable_break().
1127
1128 So, to summarize, relocations are necessary when there is no
1129 interpreter section and the start address obtained from the
1130 executable is different from the address at which GDB is
1131 currently stopped.
1132
1133 [ The astute reader will note that we also test to make sure that
1134 the executable in question has the DYNAMIC flag set. It is my
1135 opinion that this test is unnecessary (undesirable even). It
1136 was added to avoid inadvertent relocation of an executable
1137 whose e_type member in the ELF header is not ET_DYN. There may
1138 be a time in the future when it is desirable to do relocations
1139 on other types of files as well in which case this condition
1140 should either be removed or modified to accomodate the new file
1141 type. (E.g, an ET_EXEC executable which has been built to be
1142 position-independent could safely be relocated by the OS if
1143 desired. It is true that this violates the ABI, but the ABI
1144 has been known to be bent from time to time.) - Kevin, Nov 2000. ]
1145 */
1146
1147 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
1148 if (interp_sect == NULL
1149 && (bfd_get_file_flags (exec_bfd) & DYNAMIC) != 0
1150 && bfd_get_start_address (exec_bfd) != pc)
1151 {
1152 struct cleanup *old_chain;
1153 struct section_offsets *new_offsets;
1154 int i, changed;
1155 CORE_ADDR displacement;
1156
1157 /* It is necessary to relocate the objfile. The amount to
1158 relocate by is simply the address at which we are stopped
1159 minus the starting address from the executable.
1160
1161 We relocate all of the sections by the same amount. This
1162 behavior is mandated by recent editions of the System V ABI.
1163 According to the System V Application Binary Interface,
1164 Edition 4.1, page 5-5:
1165
1166 ... Though the system chooses virtual addresses for
1167 individual processes, it maintains the segments' relative
1168 positions. Because position-independent code uses relative
1169 addressesing between segments, the difference between
1170 virtual addresses in memory must match the difference
1171 between virtual addresses in the file. The difference
1172 between the virtual address of any segment in memory and
1173 the corresponding virtual address in the file is thus a
1174 single constant value for any one executable or shared
1175 object in a given process. This difference is the base
1176 address. One use of the base address is to relocate the
1177 memory image of the program during dynamic linking.
1178
1179 The same language also appears in Edition 4.0 of the System V
1180 ABI and is left unspecified in some of the earlier editions. */
1181
1182 displacement = pc - bfd_get_start_address (exec_bfd);
1183 changed = 0;
1184
13fc0c2f
KB
1185 new_offsets = xcalloc (symfile_objfile->num_sections,
1186 sizeof (struct section_offsets));
b8c9b27d 1187 old_chain = make_cleanup (xfree, new_offsets);
e2a44558
KB
1188
1189 for (i = 0; i < symfile_objfile->num_sections; i++)
1190 {
1191 if (displacement != ANOFFSET (symfile_objfile->section_offsets, i))
1192 changed = 1;
1193 new_offsets->offsets[i] = displacement;
1194 }
1195
1196 if (changed)
1197 objfile_relocate (symfile_objfile, new_offsets);
1198
1199 do_cleanups (old_chain);
1200 }
1201}
1202
13437d4b
KB
1203/*
1204
1205 GLOBAL FUNCTION
1206
1207 svr4_solib_create_inferior_hook -- shared library startup support
1208
1209 SYNOPSIS
1210
1211 void svr4_solib_create_inferior_hook()
1212
1213 DESCRIPTION
1214
1215 When gdb starts up the inferior, it nurses it along (through the
1216 shell) until it is ready to execute it's first instruction. At this
1217 point, this function gets called via expansion of the macro
1218 SOLIB_CREATE_INFERIOR_HOOK.
1219
1220 For SunOS executables, this first instruction is typically the
1221 one at "_start", or a similar text label, regardless of whether
1222 the executable is statically or dynamically linked. The runtime
1223 startup code takes care of dynamically linking in any shared
1224 libraries, once gdb allows the inferior to continue.
1225
1226 For SVR4 executables, this first instruction is either the first
1227 instruction in the dynamic linker (for dynamically linked
1228 executables) or the instruction at "start" for statically linked
1229 executables. For dynamically linked executables, the system
1230 first exec's /lib/libc.so.N, which contains the dynamic linker,
1231 and starts it running. The dynamic linker maps in any needed
1232 shared libraries, maps in the actual user executable, and then
1233 jumps to "start" in the user executable.
1234
1235 For both SunOS shared libraries, and SVR4 shared libraries, we
1236 can arrange to cooperate with the dynamic linker to discover the
1237 names of shared libraries that are dynamically linked, and the
1238 base addresses to which they are linked.
1239
1240 This function is responsible for discovering those names and
1241 addresses, and saving sufficient information about them to allow
1242 their symbols to be read at a later time.
1243
1244 FIXME
1245
1246 Between enable_break() and disable_break(), this code does not
1247 properly handle hitting breakpoints which the user might have
1248 set in the startup code or in the dynamic linker itself. Proper
1249 handling will probably have to wait until the implementation is
1250 changed to use the "breakpoint handler function" method.
1251
1252 Also, what if child has exit()ed? Must exit loop somehow.
1253 */
1254
e2a44558 1255static void
13437d4b
KB
1256svr4_solib_create_inferior_hook (void)
1257{
e2a44558
KB
1258 /* Relocate the main executable if necessary. */
1259 svr4_relocate_main_executable ();
1260
13437d4b
KB
1261 if (!enable_break ())
1262 {
1263 warning ("shared library handler failed to enable breakpoint");
1264 return;
1265 }
1266
ab31aa69
KB
1267#if defined(_SCO_DS)
1268 /* SCO needs the loop below, other systems should be using the
13437d4b
KB
1269 special shared library breakpoints and the shared library breakpoint
1270 service routine.
1271
1272 Now run the target. It will eventually hit the breakpoint, at
1273 which point all of the libraries will have been mapped in and we
1274 can go groveling around in the dynamic linker structures to find
1275 out what we need to know about them. */
1276
1277 clear_proceed_status ();
1278 stop_soon_quietly = 1;
1279 stop_signal = TARGET_SIGNAL_0;
1280 do
1281 {
39f77062 1282 target_resume (pid_to_ptid (-1), 0, stop_signal);
13437d4b
KB
1283 wait_for_inferior ();
1284 }
1285 while (stop_signal != TARGET_SIGNAL_TRAP);
1286 stop_soon_quietly = 0;
ab31aa69 1287#endif /* defined(_SCO_DS) */
13437d4b
KB
1288}
1289
1290static void
1291svr4_clear_solib (void)
1292{
1293 debug_base = 0;
1294}
1295
1296static void
1297svr4_free_so (struct so_list *so)
1298{
b8c9b27d
KB
1299 xfree (so->lm_info->lm);
1300 xfree (so->lm_info);
13437d4b
KB
1301}
1302
6bb7be43
JB
1303
1304/* Clear any bits of ADDR that wouldn't fit in a target-format
1305 data pointer. "Data pointer" here refers to whatever sort of
1306 address the dynamic linker uses to manage its sections. At the
1307 moment, we don't support shared libraries on any processors where
1308 code and data pointers are different sizes.
1309
1310 This isn't really the right solution. What we really need here is
1311 a way to do arithmetic on CORE_ADDR values that respects the
1312 natural pointer/address correspondence. (For example, on the MIPS,
1313 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
1314 sign-extend the value. There, simply truncating the bits above
1315 TARGET_PTR_BIT, as we do below, is no good.) This should probably
1316 be a new gdbarch method or something. */
1317static CORE_ADDR
1318svr4_truncate_ptr (CORE_ADDR addr)
1319{
1320 if (TARGET_PTR_BIT == sizeof (CORE_ADDR) * 8)
1321 /* We don't need to truncate anything, and the bit twiddling below
1322 will fail due to overflow problems. */
1323 return addr;
1324 else
1325 return addr & (((CORE_ADDR) 1 << TARGET_PTR_BIT) - 1);
1326}
1327
1328
749499cb
KB
1329static void
1330svr4_relocate_section_addresses (struct so_list *so,
1331 struct section_table *sec)
1332{
6bb7be43
JB
1333 sec->addr = svr4_truncate_ptr (sec->addr + LM_ADDR (so));
1334 sec->endaddr = svr4_truncate_ptr (sec->endaddr + LM_ADDR (so));
749499cb
KB
1335}
1336
6bb7be43 1337
e5e2b9ff
KB
1338/* Fetch a link_map_offsets structure for native targets using struct
1339 definitions from link.h. See solib-legacy.c for the function
1340 which does the actual work.
1341
1342 Note: For non-native targets (i.e. cross-debugging situations),
1343 a target specific fetch_link_map_offsets() function should be
1344 defined and registered via set_solib_svr4_fetch_link_map_offsets(). */
1345
1346static struct link_map_offsets *
1347legacy_fetch_link_map_offsets (void)
1348{
1349 if (legacy_svr4_fetch_link_map_offsets_hook)
1350 return legacy_svr4_fetch_link_map_offsets_hook ();
1351 else
1352 {
1353 internal_error (__FILE__, __LINE__,
1354 "legacy_fetch_link_map_offsets called without legacy "
1355 "link_map support enabled.");
1356 return 0;
1357 }
1358}
1359
1360/* Fetch a link_map_offsets structure using the method registered in the
1361 architecture vector. */
1362
1363static struct link_map_offsets *
1364svr4_fetch_link_map_offsets (void)
1365{
1366 struct link_map_offsets *(*flmo)(void) =
451fbdda 1367 gdbarch_data (current_gdbarch, fetch_link_map_offsets_gdbarch_data);
e5e2b9ff
KB
1368
1369 if (flmo == NULL)
1370 {
1371 internal_error (__FILE__, __LINE__,
1372 "svr4_fetch_link_map_offsets: fetch_link_map_offsets "
1373 "method not defined for this architecture.");
1374 return 0;
1375 }
1376 else
1377 return (flmo ());
1378}
1379
1c4dcb57 1380/* set_solib_svr4_fetch_link_map_offsets() is intended to be called by
e5e2b9ff
KB
1381 a <arch>_gdbarch_init() function. It is used to establish an
1382 architecture specific link_map_offsets fetcher for the architecture
1383 being defined. */
1c4dcb57 1384
21479ded 1385void
e5e2b9ff
KB
1386set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
1387 struct link_map_offsets *(*flmo) (void))
21479ded 1388{
e5e2b9ff 1389 set_gdbarch_data (gdbarch, fetch_link_map_offsets_gdbarch_data, flmo);
21479ded
KB
1390}
1391
6ac5df3a
MK
1392/* Initialize the architecture-specific link_map_offsets fetcher.
1393 This is called after <arch>_gdbarch_init() has set up its `struct
1394 gdbarch' for the new architecture, and is only called if the
1395 link_map_offsets fetcher isn't already initialized (which is
1396 usually done by calling set_solib_svr4_fetch_link_map_offsets()
1397 above in <arch>_gdbarch_init()). Therefore we attempt to provide a
1398 reasonable alternative (for native targets anyway) if the
1399 <arch>_gdbarch_init() fails to call
e5e2b9ff 1400 set_solib_svr4_fetch_link_map_offsets(). */
1c4dcb57 1401
e5e2b9ff
KB
1402static void *
1403init_fetch_link_map_offsets (struct gdbarch *gdbarch)
21479ded 1404{
6ac5df3a 1405 return legacy_fetch_link_map_offsets;
21479ded
KB
1406}
1407
13437d4b
KB
1408static struct target_so_ops svr4_so_ops;
1409
1410void
1411_initialize_svr4_solib (void)
1412{
e5e2b9ff
KB
1413 fetch_link_map_offsets_gdbarch_data =
1414 register_gdbarch_data (init_fetch_link_map_offsets, 0);
21479ded 1415
749499cb 1416 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
13437d4b
KB
1417 svr4_so_ops.free_so = svr4_free_so;
1418 svr4_so_ops.clear_solib = svr4_clear_solib;
1419 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
1420 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
1421 svr4_so_ops.current_sos = svr4_current_sos;
1422 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
d7fa2ae2 1423 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
13437d4b
KB
1424
1425 /* FIXME: Don't do this here. *_gdbarch_init() should set so_ops. */
1426 current_target_so_ops = &svr4_so_ops;
1427}
This page took 0.290729 seconds and 4 git commands to generate.