make MSYMBOL_VALUE_ADDRESS an rvalue
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
CommitLineData
ab31aa69 1/* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2f4950cd 2
ecd75fc8 3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
13437d4b
KB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
13437d4b
KB
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
13437d4b 19
13437d4b
KB
20#include "defs.h"
21
13437d4b 22#include "elf/external.h"
21479ded 23#include "elf/common.h"
f7856c8f 24#include "elf/mips.h"
13437d4b
KB
25
26#include "symtab.h"
27#include "bfd.h"
28#include "symfile.h"
29#include "objfiles.h"
30#include "gdbcore.h"
13437d4b 31#include "target.h"
13437d4b 32#include "inferior.h"
fb14de7b 33#include "regcache.h"
2020b7ab 34#include "gdbthread.h"
1a816a87 35#include "observer.h"
13437d4b 36
4b188b9f
MK
37#include "gdb_assert.h"
38
13437d4b 39#include "solist.h"
bba93f6c 40#include "solib.h"
13437d4b
KB
41#include "solib-svr4.h"
42
2f4950cd 43#include "bfd-target.h"
cc10cae3 44#include "elf-bfd.h"
2f4950cd 45#include "exec.h"
8d4e36ba 46#include "auxv.h"
f1838a98 47#include "exceptions.h"
695c3173 48#include "gdb_bfd.h"
f9e14852 49#include "probe.h"
2f4950cd 50
e5e2b9ff 51static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
d5a921c9 52static int svr4_have_link_map_offsets (void);
9f2982ff 53static void svr4_relocate_main_executable (void);
f9e14852 54static void svr4_free_library_list (void *p_list);
1c4dcb57 55
c378eb4e 56/* Link map info to include in an allocated so_list entry. */
13437d4b
KB
57
58struct lm_info
59 {
cc10cae3 60 /* Amount by which addresses in the binary should be relocated to
3957565a
JK
61 match the inferior. The direct inferior value is L_ADDR_INFERIOR.
62 When prelinking is involved and the prelink base address changes,
63 we may need a different offset - the recomputed offset is in L_ADDR.
64 It is commonly the same value. It is cached as we want to warn about
65 the difference and compute it only once. L_ADDR is valid
66 iff L_ADDR_P. */
67 CORE_ADDR l_addr, l_addr_inferior;
68 unsigned int l_addr_p : 1;
93a57060
DJ
69
70 /* The target location of lm. */
71 CORE_ADDR lm_addr;
3957565a
JK
72
73 /* Values read in from inferior's fields of the same name. */
74 CORE_ADDR l_ld, l_next, l_prev, l_name;
13437d4b
KB
75 };
76
77/* On SVR4 systems, a list of symbols in the dynamic linker where
78 GDB can try to place a breakpoint to monitor shared library
79 events.
80
81 If none of these symbols are found, or other errors occur, then
82 SVR4 systems will fall back to using a symbol as the "startup
83 mapping complete" breakpoint address. */
84
bc043ef3 85static const char * const solib_break_names[] =
13437d4b
KB
86{
87 "r_debug_state",
88 "_r_debug_state",
89 "_dl_debug_state",
90 "rtld_db_dlactivity",
4c7dcb84 91 "__dl_rtld_db_dlactivity",
1f72e589 92 "_rtld_debug_state",
4c0122c8 93
13437d4b
KB
94 NULL
95};
13437d4b 96
bc043ef3 97static const char * const bkpt_names[] =
13437d4b 98{
13437d4b 99 "_start",
ad3dcc5c 100 "__start",
13437d4b
KB
101 "main",
102 NULL
103};
13437d4b 104
bc043ef3 105static const char * const main_name_list[] =
13437d4b
KB
106{
107 "main_$main",
108 NULL
109};
110
f9e14852
GB
111/* What to do when a probe stop occurs. */
112
113enum probe_action
114{
115 /* Something went seriously wrong. Stop using probes and
116 revert to using the older interface. */
117 PROBES_INTERFACE_FAILED,
118
119 /* No action is required. The shared object list is still
120 valid. */
121 DO_NOTHING,
122
123 /* The shared object list should be reloaded entirely. */
124 FULL_RELOAD,
125
126 /* Attempt to incrementally update the shared object list. If
127 the update fails or is not possible, fall back to reloading
128 the list in full. */
129 UPDATE_OR_RELOAD,
130};
131
132/* A probe's name and its associated action. */
133
134struct probe_info
135{
136 /* The name of the probe. */
137 const char *name;
138
139 /* What to do when a probe stop occurs. */
140 enum probe_action action;
141};
142
143/* A list of named probes and their associated actions. If all
144 probes are present in the dynamic linker then the probes-based
145 interface will be used. */
146
147static const struct probe_info probe_info[] =
148{
149 { "init_start", DO_NOTHING },
150 { "init_complete", FULL_RELOAD },
151 { "map_start", DO_NOTHING },
152 { "map_failed", DO_NOTHING },
153 { "reloc_complete", UPDATE_OR_RELOAD },
154 { "unmap_start", DO_NOTHING },
155 { "unmap_complete", FULL_RELOAD },
156};
157
158#define NUM_PROBES ARRAY_SIZE (probe_info)
159
4d7b2d5b
JB
160/* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
161 the same shared library. */
162
163static int
164svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
165{
166 if (strcmp (gdb_so_name, inferior_so_name) == 0)
167 return 1;
168
169 /* On Solaris, when starting inferior we think that dynamic linker is
d989b283
PP
170 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
171 contains /lib/ld.so.1. Sometimes one file is a link to another, but
4d7b2d5b
JB
172 sometimes they have identical content, but are not linked to each
173 other. We don't restrict this check for Solaris, but the chances
174 of running into this situation elsewhere are very low. */
175 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
176 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
177 return 1;
178
179 /* Similarly, we observed the same issue with sparc64, but with
180 different locations. */
181 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
182 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
183 return 1;
184
185 return 0;
186}
187
188static int
189svr4_same (struct so_list *gdb, struct so_list *inferior)
190{
191 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
192}
193
3957565a
JK
194static struct lm_info *
195lm_info_read (CORE_ADDR lm_addr)
13437d4b 196{
4b188b9f 197 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
3957565a
JK
198 gdb_byte *lm;
199 struct lm_info *lm_info;
200 struct cleanup *back_to;
201
202 lm = xmalloc (lmo->link_map_size);
203 back_to = make_cleanup (xfree, lm);
204
205 if (target_read_memory (lm_addr, lm, lmo->link_map_size) != 0)
206 {
207 warning (_("Error reading shared library list entry at %s"),
f5656ead 208 paddress (target_gdbarch (), lm_addr)),
3957565a
JK
209 lm_info = NULL;
210 }
211 else
212 {
f5656ead 213 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
13437d4b 214
3957565a
JK
215 lm_info = xzalloc (sizeof (*lm_info));
216 lm_info->lm_addr = lm_addr;
217
218 lm_info->l_addr_inferior = extract_typed_address (&lm[lmo->l_addr_offset],
219 ptr_type);
220 lm_info->l_ld = extract_typed_address (&lm[lmo->l_ld_offset], ptr_type);
221 lm_info->l_next = extract_typed_address (&lm[lmo->l_next_offset],
222 ptr_type);
223 lm_info->l_prev = extract_typed_address (&lm[lmo->l_prev_offset],
224 ptr_type);
225 lm_info->l_name = extract_typed_address (&lm[lmo->l_name_offset],
226 ptr_type);
227 }
228
229 do_cleanups (back_to);
230
231 return lm_info;
13437d4b
KB
232}
233
cc10cae3 234static int
b23518f0 235has_lm_dynamic_from_link_map (void)
cc10cae3
AO
236{
237 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
238
cfaefc65 239 return lmo->l_ld_offset >= 0;
cc10cae3
AO
240}
241
cc10cae3 242static CORE_ADDR
f65ce5fb 243lm_addr_check (const struct so_list *so, bfd *abfd)
cc10cae3 244{
3957565a 245 if (!so->lm_info->l_addr_p)
cc10cae3
AO
246 {
247 struct bfd_section *dyninfo_sect;
28f34a8f 248 CORE_ADDR l_addr, l_dynaddr, dynaddr;
cc10cae3 249
3957565a 250 l_addr = so->lm_info->l_addr_inferior;
cc10cae3 251
b23518f0 252 if (! abfd || ! has_lm_dynamic_from_link_map ())
cc10cae3
AO
253 goto set_addr;
254
3957565a 255 l_dynaddr = so->lm_info->l_ld;
cc10cae3
AO
256
257 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
258 if (dyninfo_sect == NULL)
259 goto set_addr;
260
261 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
262
263 if (dynaddr + l_addr != l_dynaddr)
264 {
28f34a8f 265 CORE_ADDR align = 0x1000;
4e1fc9c9 266 CORE_ADDR minpagesize = align;
28f34a8f 267
cc10cae3
AO
268 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
269 {
270 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
271 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
272 int i;
273
274 align = 1;
275
276 for (i = 0; i < ehdr->e_phnum; i++)
277 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
278 align = phdr[i].p_align;
4e1fc9c9
JK
279
280 minpagesize = get_elf_backend_data (abfd)->minpagesize;
cc10cae3
AO
281 }
282
283 /* Turn it into a mask. */
284 align--;
285
286 /* If the changes match the alignment requirements, we
287 assume we're using a core file that was generated by the
288 same binary, just prelinked with a different base offset.
289 If it doesn't match, we may have a different binary, the
290 same binary with the dynamic table loaded at an unrelated
291 location, or anything, really. To avoid regressions,
292 don't adjust the base offset in the latter case, although
293 odds are that, if things really changed, debugging won't
5c0d192f
JK
294 quite work.
295
296 One could expect more the condition
297 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
298 but the one below is relaxed for PPC. The PPC kernel supports
299 either 4k or 64k page sizes. To be prepared for 64k pages,
300 PPC ELF files are built using an alignment requirement of 64k.
301 However, when running on a kernel supporting 4k pages, the memory
302 mapping of the library may not actually happen on a 64k boundary!
303
304 (In the usual case where (l_addr & align) == 0, this check is
4e1fc9c9
JK
305 equivalent to the possibly expected check above.)
306
307 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
5c0d192f 308
02835898
JK
309 l_addr = l_dynaddr - dynaddr;
310
4e1fc9c9
JK
311 if ((l_addr & (minpagesize - 1)) == 0
312 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
cc10cae3 313 {
701ed6dc 314 if (info_verbose)
ccf26247
JK
315 printf_unfiltered (_("Using PIC (Position Independent Code) "
316 "prelink displacement %s for \"%s\".\n"),
f5656ead 317 paddress (target_gdbarch (), l_addr),
ccf26247 318 so->so_name);
cc10cae3 319 }
79d4c408 320 else
02835898
JK
321 {
322 /* There is no way to verify the library file matches. prelink
323 can during prelinking of an unprelinked file (or unprelinking
324 of a prelinked file) shift the DYNAMIC segment by arbitrary
325 offset without any page size alignment. There is no way to
326 find out the ELF header and/or Program Headers for a limited
327 verification if it they match. One could do a verification
328 of the DYNAMIC segment. Still the found address is the best
329 one GDB could find. */
330
331 warning (_(".dynamic section for \"%s\" "
332 "is not at the expected address "
333 "(wrong library or version mismatch?)"), so->so_name);
334 }
cc10cae3
AO
335 }
336
337 set_addr:
338 so->lm_info->l_addr = l_addr;
3957565a 339 so->lm_info->l_addr_p = 1;
cc10cae3
AO
340 }
341
342 return so->lm_info->l_addr;
343}
344
6c95b8df 345/* Per pspace SVR4 specific data. */
13437d4b 346
1a816a87
PA
347struct svr4_info
348{
c378eb4e 349 CORE_ADDR debug_base; /* Base of dynamic linker structures. */
1a816a87
PA
350
351 /* Validity flag for debug_loader_offset. */
352 int debug_loader_offset_p;
353
354 /* Load address for the dynamic linker, inferred. */
355 CORE_ADDR debug_loader_offset;
356
357 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
358 char *debug_loader_name;
359
360 /* Load map address for the main executable. */
361 CORE_ADDR main_lm_addr;
1a816a87 362
6c95b8df
PA
363 CORE_ADDR interp_text_sect_low;
364 CORE_ADDR interp_text_sect_high;
365 CORE_ADDR interp_plt_sect_low;
366 CORE_ADDR interp_plt_sect_high;
f9e14852
GB
367
368 /* Nonzero if the list of objects was last obtained from the target
369 via qXfer:libraries-svr4:read. */
370 int using_xfer;
371
372 /* Table of struct probe_and_action instances, used by the
373 probes-based interface to map breakpoint addresses to probes
374 and their associated actions. Lookup is performed using
375 probe_and_action->probe->address. */
376 htab_t probes_table;
377
378 /* List of objects loaded into the inferior, used by the probes-
379 based interface. */
380 struct so_list *solib_list;
6c95b8df 381};
1a816a87 382
6c95b8df
PA
383/* Per-program-space data key. */
384static const struct program_space_data *solib_svr4_pspace_data;
1a816a87 385
f9e14852
GB
386/* Free the probes table. */
387
388static void
389free_probes_table (struct svr4_info *info)
390{
391 if (info->probes_table == NULL)
392 return;
393
394 htab_delete (info->probes_table);
395 info->probes_table = NULL;
396}
397
398/* Free the solib list. */
399
400static void
401free_solib_list (struct svr4_info *info)
402{
403 svr4_free_library_list (&info->solib_list);
404 info->solib_list = NULL;
405}
406
6c95b8df
PA
407static void
408svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
1a816a87 409{
487ad57c 410 struct svr4_info *info = arg;
f9e14852
GB
411
412 free_probes_table (info);
413 free_solib_list (info);
414
6c95b8df 415 xfree (info);
1a816a87
PA
416}
417
6c95b8df
PA
418/* Get the current svr4 data. If none is found yet, add it now. This
419 function always returns a valid object. */
34439770 420
6c95b8df
PA
421static struct svr4_info *
422get_svr4_info (void)
1a816a87 423{
6c95b8df 424 struct svr4_info *info;
1a816a87 425
6c95b8df
PA
426 info = program_space_data (current_program_space, solib_svr4_pspace_data);
427 if (info != NULL)
428 return info;
34439770 429
41bf6aca 430 info = XCNEW (struct svr4_info);
6c95b8df
PA
431 set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
432 return info;
1a816a87 433}
93a57060 434
13437d4b
KB
435/* Local function prototypes */
436
bc043ef3 437static int match_main (const char *);
13437d4b 438
97ec2c2f
UW
439/* Read program header TYPE from inferior memory. The header is found
440 by scanning the OS auxillary vector.
441
09919ac2
JK
442 If TYPE == -1, return the program headers instead of the contents of
443 one program header.
444
97ec2c2f
UW
445 Return a pointer to allocated memory holding the program header contents,
446 or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the
447 size of those contents is returned to P_SECT_SIZE. Likewise, the target
448 architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE. */
449
450static gdb_byte *
451read_program_header (int type, int *p_sect_size, int *p_arch_size)
452{
f5656ead 453 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
43136979 454 CORE_ADDR at_phdr, at_phent, at_phnum, pt_phdr = 0;
97ec2c2f
UW
455 int arch_size, sect_size;
456 CORE_ADDR sect_addr;
457 gdb_byte *buf;
43136979 458 int pt_phdr_p = 0;
97ec2c2f
UW
459
460 /* Get required auxv elements from target. */
461 if (target_auxv_search (&current_target, AT_PHDR, &at_phdr) <= 0)
462 return 0;
463 if (target_auxv_search (&current_target, AT_PHENT, &at_phent) <= 0)
464 return 0;
465 if (target_auxv_search (&current_target, AT_PHNUM, &at_phnum) <= 0)
466 return 0;
467 if (!at_phdr || !at_phnum)
468 return 0;
469
470 /* Determine ELF architecture type. */
471 if (at_phent == sizeof (Elf32_External_Phdr))
472 arch_size = 32;
473 else if (at_phent == sizeof (Elf64_External_Phdr))
474 arch_size = 64;
475 else
476 return 0;
477
09919ac2
JK
478 /* Find the requested segment. */
479 if (type == -1)
480 {
481 sect_addr = at_phdr;
482 sect_size = at_phent * at_phnum;
483 }
484 else if (arch_size == 32)
97ec2c2f
UW
485 {
486 Elf32_External_Phdr phdr;
487 int i;
488
489 /* Search for requested PHDR. */
490 for (i = 0; i < at_phnum; i++)
491 {
43136979
AR
492 int p_type;
493
97ec2c2f
UW
494 if (target_read_memory (at_phdr + i * sizeof (phdr),
495 (gdb_byte *)&phdr, sizeof (phdr)))
496 return 0;
497
43136979
AR
498 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
499 4, byte_order);
500
501 if (p_type == PT_PHDR)
502 {
503 pt_phdr_p = 1;
504 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
505 4, byte_order);
506 }
507
508 if (p_type == type)
97ec2c2f
UW
509 break;
510 }
511
512 if (i == at_phnum)
513 return 0;
514
515 /* Retrieve address and size. */
e17a4113
UW
516 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
517 4, byte_order);
518 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
519 4, byte_order);
97ec2c2f
UW
520 }
521 else
522 {
523 Elf64_External_Phdr phdr;
524 int i;
525
526 /* Search for requested PHDR. */
527 for (i = 0; i < at_phnum; i++)
528 {
43136979
AR
529 int p_type;
530
97ec2c2f
UW
531 if (target_read_memory (at_phdr + i * sizeof (phdr),
532 (gdb_byte *)&phdr, sizeof (phdr)))
533 return 0;
534
43136979
AR
535 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
536 4, byte_order);
537
538 if (p_type == PT_PHDR)
539 {
540 pt_phdr_p = 1;
541 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
542 8, byte_order);
543 }
544
545 if (p_type == type)
97ec2c2f
UW
546 break;
547 }
548
549 if (i == at_phnum)
550 return 0;
551
552 /* Retrieve address and size. */
e17a4113
UW
553 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
554 8, byte_order);
555 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
556 8, byte_order);
97ec2c2f
UW
557 }
558
43136979
AR
559 /* PT_PHDR is optional, but we really need it
560 for PIE to make this work in general. */
561
562 if (pt_phdr_p)
563 {
564 /* at_phdr is real address in memory. pt_phdr is what pheader says it is.
565 Relocation offset is the difference between the two. */
566 sect_addr = sect_addr + (at_phdr - pt_phdr);
567 }
568
97ec2c2f
UW
569 /* Read in requested program header. */
570 buf = xmalloc (sect_size);
571 if (target_read_memory (sect_addr, buf, sect_size))
572 {
573 xfree (buf);
574 return NULL;
575 }
576
577 if (p_arch_size)
578 *p_arch_size = arch_size;
579 if (p_sect_size)
580 *p_sect_size = sect_size;
581
582 return buf;
583}
584
585
586/* Return program interpreter string. */
001f13d8 587static char *
97ec2c2f
UW
588find_program_interpreter (void)
589{
590 gdb_byte *buf = NULL;
591
592 /* If we have an exec_bfd, use its section table. */
593 if (exec_bfd
594 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
595 {
596 struct bfd_section *interp_sect;
597
598 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
599 if (interp_sect != NULL)
600 {
97ec2c2f
UW
601 int sect_size = bfd_section_size (exec_bfd, interp_sect);
602
603 buf = xmalloc (sect_size);
604 bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size);
605 }
606 }
607
608 /* If we didn't find it, use the target auxillary vector. */
609 if (!buf)
610 buf = read_program_header (PT_INTERP, NULL, NULL);
611
001f13d8 612 return (char *) buf;
97ec2c2f
UW
613}
614
615
c378eb4e 616/* Scan for DYNTAG in .dynamic section of ABFD. If DYNTAG is found 1 is
3a40aaa0
UW
617 returned and the corresponding PTR is set. */
618
619static int
620scan_dyntag (int dyntag, bfd *abfd, CORE_ADDR *ptr)
621{
622 int arch_size, step, sect_size;
623 long dyn_tag;
b381ea14 624 CORE_ADDR dyn_ptr, dyn_addr;
65728c26 625 gdb_byte *bufend, *bufstart, *buf;
3a40aaa0
UW
626 Elf32_External_Dyn *x_dynp_32;
627 Elf64_External_Dyn *x_dynp_64;
628 struct bfd_section *sect;
61f0d762 629 struct target_section *target_section;
3a40aaa0
UW
630
631 if (abfd == NULL)
632 return 0;
0763ab81
PA
633
634 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
635 return 0;
636
3a40aaa0
UW
637 arch_size = bfd_get_arch_size (abfd);
638 if (arch_size == -1)
0763ab81 639 return 0;
3a40aaa0
UW
640
641 /* Find the start address of the .dynamic section. */
642 sect = bfd_get_section_by_name (abfd, ".dynamic");
643 if (sect == NULL)
644 return 0;
61f0d762
JK
645
646 for (target_section = current_target_sections->sections;
647 target_section < current_target_sections->sections_end;
648 target_section++)
649 if (sect == target_section->the_bfd_section)
650 break;
b381ea14
JK
651 if (target_section < current_target_sections->sections_end)
652 dyn_addr = target_section->addr;
653 else
654 {
655 /* ABFD may come from OBJFILE acting only as a symbol file without being
656 loaded into the target (see add_symbol_file_command). This case is
657 such fallback to the file VMA address without the possibility of
658 having the section relocated to its actual in-memory address. */
659
660 dyn_addr = bfd_section_vma (abfd, sect);
661 }
3a40aaa0 662
65728c26
DJ
663 /* Read in .dynamic from the BFD. We will get the actual value
664 from memory later. */
3a40aaa0 665 sect_size = bfd_section_size (abfd, sect);
65728c26
DJ
666 buf = bufstart = alloca (sect_size);
667 if (!bfd_get_section_contents (abfd, sect,
668 buf, 0, sect_size))
669 return 0;
3a40aaa0
UW
670
671 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
672 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
673 : sizeof (Elf64_External_Dyn);
674 for (bufend = buf + sect_size;
675 buf < bufend;
676 buf += step)
677 {
678 if (arch_size == 32)
679 {
680 x_dynp_32 = (Elf32_External_Dyn *) buf;
681 dyn_tag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
682 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
683 }
65728c26 684 else
3a40aaa0
UW
685 {
686 x_dynp_64 = (Elf64_External_Dyn *) buf;
687 dyn_tag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
688 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
689 }
690 if (dyn_tag == DT_NULL)
691 return 0;
692 if (dyn_tag == dyntag)
693 {
65728c26
DJ
694 /* If requested, try to read the runtime value of this .dynamic
695 entry. */
3a40aaa0 696 if (ptr)
65728c26 697 {
b6da22b0 698 struct type *ptr_type;
65728c26
DJ
699 gdb_byte ptr_buf[8];
700 CORE_ADDR ptr_addr;
701
f5656ead 702 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
b381ea14 703 ptr_addr = dyn_addr + (buf - bufstart) + arch_size / 8;
65728c26 704 if (target_read_memory (ptr_addr, ptr_buf, arch_size / 8) == 0)
b6da22b0 705 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
65728c26
DJ
706 *ptr = dyn_ptr;
707 }
708 return 1;
3a40aaa0
UW
709 }
710 }
711
712 return 0;
713}
714
97ec2c2f
UW
715/* Scan for DYNTAG in .dynamic section of the target's main executable,
716 found by consulting the OS auxillary vector. If DYNTAG is found 1 is
717 returned and the corresponding PTR is set. */
718
719static int
720scan_dyntag_auxv (int dyntag, CORE_ADDR *ptr)
721{
f5656ead 722 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
97ec2c2f
UW
723 int sect_size, arch_size, step;
724 long dyn_tag;
725 CORE_ADDR dyn_ptr;
726 gdb_byte *bufend, *bufstart, *buf;
727
728 /* Read in .dynamic section. */
729 buf = bufstart = read_program_header (PT_DYNAMIC, &sect_size, &arch_size);
730 if (!buf)
731 return 0;
732
733 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
734 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
735 : sizeof (Elf64_External_Dyn);
736 for (bufend = buf + sect_size;
737 buf < bufend;
738 buf += step)
739 {
740 if (arch_size == 32)
741 {
742 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
433759f7 743
e17a4113
UW
744 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
745 4, byte_order);
746 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
747 4, byte_order);
97ec2c2f
UW
748 }
749 else
750 {
751 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
433759f7 752
e17a4113
UW
753 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
754 8, byte_order);
755 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
756 8, byte_order);
97ec2c2f
UW
757 }
758 if (dyn_tag == DT_NULL)
759 break;
760
761 if (dyn_tag == dyntag)
762 {
763 if (ptr)
764 *ptr = dyn_ptr;
765
766 xfree (bufstart);
767 return 1;
768 }
769 }
770
771 xfree (bufstart);
772 return 0;
773}
774
7f86f058
PA
775/* Locate the base address of dynamic linker structs for SVR4 elf
776 targets.
13437d4b
KB
777
778 For SVR4 elf targets the address of the dynamic linker's runtime
779 structure is contained within the dynamic info section in the
780 executable file. The dynamic section is also mapped into the
781 inferior address space. Because the runtime loader fills in the
782 real address before starting the inferior, we have to read in the
783 dynamic info section from the inferior address space.
784 If there are any errors while trying to find the address, we
7f86f058 785 silently return 0, otherwise the found address is returned. */
13437d4b
KB
786
787static CORE_ADDR
788elf_locate_base (void)
789{
3a40aaa0
UW
790 struct minimal_symbol *msymbol;
791 CORE_ADDR dyn_ptr;
13437d4b 792
65728c26
DJ
793 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
794 instead of DT_DEBUG, although they sometimes contain an unused
795 DT_DEBUG. */
97ec2c2f
UW
796 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr)
797 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr))
3a40aaa0 798 {
f5656ead 799 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
3a40aaa0 800 gdb_byte *pbuf;
b6da22b0 801 int pbuf_size = TYPE_LENGTH (ptr_type);
433759f7 802
3a40aaa0
UW
803 pbuf = alloca (pbuf_size);
804 /* DT_MIPS_RLD_MAP contains a pointer to the address
805 of the dynamic link structure. */
806 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
e499d0f1 807 return 0;
b6da22b0 808 return extract_typed_address (pbuf, ptr_type);
e499d0f1
DJ
809 }
810
65728c26 811 /* Find DT_DEBUG. */
97ec2c2f
UW
812 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr)
813 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr))
65728c26
DJ
814 return dyn_ptr;
815
3a40aaa0
UW
816 /* This may be a static executable. Look for the symbol
817 conventionally named _r_debug, as a last resort. */
818 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
819 if (msymbol != NULL)
efd66ac6 820 return MSYMBOL_VALUE_ADDRESS (msymbol);
13437d4b
KB
821
822 /* DT_DEBUG entry not found. */
823 return 0;
824}
825
7f86f058 826/* Locate the base address of dynamic linker structs.
13437d4b
KB
827
828 For both the SunOS and SVR4 shared library implementations, if the
829 inferior executable has been linked dynamically, there is a single
830 address somewhere in the inferior's data space which is the key to
831 locating all of the dynamic linker's runtime structures. This
832 address is the value of the debug base symbol. The job of this
833 function is to find and return that address, or to return 0 if there
834 is no such address (the executable is statically linked for example).
835
836 For SunOS, the job is almost trivial, since the dynamic linker and
837 all of it's structures are statically linked to the executable at
838 link time. Thus the symbol for the address we are looking for has
839 already been added to the minimal symbol table for the executable's
840 objfile at the time the symbol file's symbols were read, and all we
841 have to do is look it up there. Note that we explicitly do NOT want
842 to find the copies in the shared library.
843
844 The SVR4 version is a bit more complicated because the address
845 is contained somewhere in the dynamic info section. We have to go
846 to a lot more work to discover the address of the debug base symbol.
847 Because of this complexity, we cache the value we find and return that
848 value on subsequent invocations. Note there is no copy in the
7f86f058 849 executable symbol tables. */
13437d4b
KB
850
851static CORE_ADDR
1a816a87 852locate_base (struct svr4_info *info)
13437d4b 853{
13437d4b
KB
854 /* Check to see if we have a currently valid address, and if so, avoid
855 doing all this work again and just return the cached address. If
856 we have no cached address, try to locate it in the dynamic info
d5a921c9
KB
857 section for ELF executables. There's no point in doing any of this
858 though if we don't have some link map offsets to work with. */
13437d4b 859
1a816a87 860 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
0763ab81 861 info->debug_base = elf_locate_base ();
1a816a87 862 return info->debug_base;
13437d4b
KB
863}
864
e4cd0d6a 865/* Find the first element in the inferior's dynamic link map, and
6f992fbf
JB
866 return its address in the inferior. Return zero if the address
867 could not be determined.
13437d4b 868
e4cd0d6a
MK
869 FIXME: Perhaps we should validate the info somehow, perhaps by
870 checking r_version for a known version number, or r_state for
871 RT_CONSISTENT. */
13437d4b
KB
872
873static CORE_ADDR
1a816a87 874solib_svr4_r_map (struct svr4_info *info)
13437d4b 875{
4b188b9f 876 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 877 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
08597104
JB
878 CORE_ADDR addr = 0;
879 volatile struct gdb_exception ex;
13437d4b 880
08597104
JB
881 TRY_CATCH (ex, RETURN_MASK_ERROR)
882 {
883 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
884 ptr_type);
885 }
886 exception_print (gdb_stderr, ex);
887 return addr;
e4cd0d6a 888}
13437d4b 889
7cd25cfc
DJ
890/* Find r_brk from the inferior's debug base. */
891
892static CORE_ADDR
1a816a87 893solib_svr4_r_brk (struct svr4_info *info)
7cd25cfc
DJ
894{
895 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 896 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
7cd25cfc 897
1a816a87
PA
898 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
899 ptr_type);
7cd25cfc
DJ
900}
901
e4cd0d6a
MK
902/* Find the link map for the dynamic linker (if it is not in the
903 normal list of loaded shared objects). */
13437d4b 904
e4cd0d6a 905static CORE_ADDR
1a816a87 906solib_svr4_r_ldsomap (struct svr4_info *info)
e4cd0d6a
MK
907{
908 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead
TT
909 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
910 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
e4cd0d6a 911 ULONGEST version;
13437d4b 912
e4cd0d6a
MK
913 /* Check version, and return zero if `struct r_debug' doesn't have
914 the r_ldsomap member. */
1a816a87
PA
915 version
916 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
e17a4113 917 lmo->r_version_size, byte_order);
e4cd0d6a
MK
918 if (version < 2 || lmo->r_ldsomap_offset == -1)
919 return 0;
13437d4b 920
1a816a87 921 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
b6da22b0 922 ptr_type);
13437d4b
KB
923}
924
de18c1d8
JM
925/* On Solaris systems with some versions of the dynamic linker,
926 ld.so's l_name pointer points to the SONAME in the string table
927 rather than into writable memory. So that GDB can find shared
928 libraries when loading a core file generated by gcore, ensure that
929 memory areas containing the l_name string are saved in the core
930 file. */
931
932static int
933svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
934{
935 struct svr4_info *info;
936 CORE_ADDR ldsomap;
937 struct so_list *new;
938 struct cleanup *old_chain;
74de0234 939 CORE_ADDR name_lm;
de18c1d8
JM
940
941 info = get_svr4_info ();
942
943 info->debug_base = 0;
944 locate_base (info);
945 if (!info->debug_base)
946 return 0;
947
948 ldsomap = solib_svr4_r_ldsomap (info);
949 if (!ldsomap)
950 return 0;
951
41bf6aca 952 new = XCNEW (struct so_list);
de18c1d8 953 old_chain = make_cleanup (xfree, new);
3957565a 954 new->lm_info = lm_info_read (ldsomap);
de18c1d8 955 make_cleanup (xfree, new->lm_info);
3957565a 956 name_lm = new->lm_info ? new->lm_info->l_name : 0;
de18c1d8
JM
957 do_cleanups (old_chain);
958
74de0234 959 return (name_lm >= vaddr && name_lm < vaddr + size);
de18c1d8
JM
960}
961
7f86f058 962/* Implement the "open_symbol_file_object" target_so_ops method.
13437d4b 963
7f86f058
PA
964 If no open symbol file, attempt to locate and open the main symbol
965 file. On SVR4 systems, this is the first link map entry. If its
966 name is here, we can open it. Useful when attaching to a process
967 without first loading its symbol file. */
13437d4b
KB
968
969static int
970open_symbol_file_object (void *from_ttyp)
971{
972 CORE_ADDR lm, l_name;
973 char *filename;
974 int errcode;
975 int from_tty = *(int *)from_ttyp;
4b188b9f 976 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 977 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
b6da22b0 978 int l_name_size = TYPE_LENGTH (ptr_type);
cfaefc65 979 gdb_byte *l_name_buf = xmalloc (l_name_size);
b8c9b27d 980 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
6c95b8df 981 struct svr4_info *info = get_svr4_info ();
13437d4b
KB
982
983 if (symfile_objfile)
9e2f0ad4 984 if (!query (_("Attempt to reload symbols from process? ")))
3bb47e8b
TT
985 {
986 do_cleanups (cleanups);
987 return 0;
988 }
13437d4b 989
7cd25cfc 990 /* Always locate the debug struct, in case it has moved. */
1a816a87
PA
991 info->debug_base = 0;
992 if (locate_base (info) == 0)
3bb47e8b
TT
993 {
994 do_cleanups (cleanups);
995 return 0; /* failed somehow... */
996 }
13437d4b
KB
997
998 /* First link map member should be the executable. */
1a816a87 999 lm = solib_svr4_r_map (info);
e4cd0d6a 1000 if (lm == 0)
3bb47e8b
TT
1001 {
1002 do_cleanups (cleanups);
1003 return 0; /* failed somehow... */
1004 }
13437d4b
KB
1005
1006 /* Read address of name from target memory to GDB. */
cfaefc65 1007 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
13437d4b 1008
cfaefc65 1009 /* Convert the address to host format. */
b6da22b0 1010 l_name = extract_typed_address (l_name_buf, ptr_type);
13437d4b 1011
13437d4b 1012 if (l_name == 0)
3bb47e8b
TT
1013 {
1014 do_cleanups (cleanups);
1015 return 0; /* No filename. */
1016 }
13437d4b
KB
1017
1018 /* Now fetch the filename from target memory. */
1019 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
ea5bf0a1 1020 make_cleanup (xfree, filename);
13437d4b
KB
1021
1022 if (errcode)
1023 {
8a3fe4f8 1024 warning (_("failed to read exec filename from attached file: %s"),
13437d4b 1025 safe_strerror (errcode));
3bb47e8b 1026 do_cleanups (cleanups);
13437d4b
KB
1027 return 0;
1028 }
1029
13437d4b 1030 /* Have a pathname: read the symbol file. */
1adeb98a 1031 symbol_file_add_main (filename, from_tty);
13437d4b 1032
3bb47e8b 1033 do_cleanups (cleanups);
13437d4b
KB
1034 return 1;
1035}
13437d4b 1036
2268b414
JK
1037/* Data exchange structure for the XML parser as returned by
1038 svr4_current_sos_via_xfer_libraries. */
1039
1040struct svr4_library_list
1041{
1042 struct so_list *head, **tailp;
1043
1044 /* Inferior address of struct link_map used for the main executable. It is
1045 NULL if not known. */
1046 CORE_ADDR main_lm;
1047};
1048
93f2a35e
JK
1049/* Implementation for target_so_ops.free_so. */
1050
1051static void
1052svr4_free_so (struct so_list *so)
1053{
1054 xfree (so->lm_info);
1055}
1056
0892cb63
DE
1057/* Implement target_so_ops.clear_so. */
1058
1059static void
1060svr4_clear_so (struct so_list *so)
1061{
6dcc1893
PP
1062 if (so->lm_info != NULL)
1063 so->lm_info->l_addr_p = 0;
0892cb63
DE
1064}
1065
93f2a35e
JK
1066/* Free so_list built so far (called via cleanup). */
1067
1068static void
1069svr4_free_library_list (void *p_list)
1070{
1071 struct so_list *list = *(struct so_list **) p_list;
1072
1073 while (list != NULL)
1074 {
1075 struct so_list *next = list->next;
1076
3756ef7e 1077 free_so (list);
93f2a35e
JK
1078 list = next;
1079 }
1080}
1081
f9e14852
GB
1082/* Copy library list. */
1083
1084static struct so_list *
1085svr4_copy_library_list (struct so_list *src)
1086{
1087 struct so_list *dst = NULL;
1088 struct so_list **link = &dst;
1089
1090 while (src != NULL)
1091 {
1092 struct so_list *new;
1093
1094 new = xmalloc (sizeof (struct so_list));
1095 memcpy (new, src, sizeof (struct so_list));
1096
1097 new->lm_info = xmalloc (sizeof (struct lm_info));
1098 memcpy (new->lm_info, src->lm_info, sizeof (struct lm_info));
1099
1100 new->next = NULL;
1101 *link = new;
1102 link = &new->next;
1103
1104 src = src->next;
1105 }
1106
1107 return dst;
1108}
1109
2268b414
JK
1110#ifdef HAVE_LIBEXPAT
1111
1112#include "xml-support.h"
1113
1114/* Handle the start of a <library> element. Note: new elements are added
1115 at the tail of the list, keeping the list in order. */
1116
1117static void
1118library_list_start_library (struct gdb_xml_parser *parser,
1119 const struct gdb_xml_element *element,
1120 void *user_data, VEC(gdb_xml_value_s) *attributes)
1121{
1122 struct svr4_library_list *list = user_data;
1123 const char *name = xml_find_attribute (attributes, "name")->value;
1124 ULONGEST *lmp = xml_find_attribute (attributes, "lm")->value;
1125 ULONGEST *l_addrp = xml_find_attribute (attributes, "l_addr")->value;
1126 ULONGEST *l_ldp = xml_find_attribute (attributes, "l_ld")->value;
1127 struct so_list *new_elem;
1128
41bf6aca
TT
1129 new_elem = XCNEW (struct so_list);
1130 new_elem->lm_info = XCNEW (struct lm_info);
2268b414
JK
1131 new_elem->lm_info->lm_addr = *lmp;
1132 new_elem->lm_info->l_addr_inferior = *l_addrp;
1133 new_elem->lm_info->l_ld = *l_ldp;
1134
1135 strncpy (new_elem->so_name, name, sizeof (new_elem->so_name) - 1);
1136 new_elem->so_name[sizeof (new_elem->so_name) - 1] = 0;
1137 strcpy (new_elem->so_original_name, new_elem->so_name);
1138
1139 *list->tailp = new_elem;
1140 list->tailp = &new_elem->next;
1141}
1142
1143/* Handle the start of a <library-list-svr4> element. */
1144
1145static void
1146svr4_library_list_start_list (struct gdb_xml_parser *parser,
1147 const struct gdb_xml_element *element,
1148 void *user_data, VEC(gdb_xml_value_s) *attributes)
1149{
1150 struct svr4_library_list *list = user_data;
1151 const char *version = xml_find_attribute (attributes, "version")->value;
1152 struct gdb_xml_value *main_lm = xml_find_attribute (attributes, "main-lm");
1153
1154 if (strcmp (version, "1.0") != 0)
1155 gdb_xml_error (parser,
1156 _("SVR4 Library list has unsupported version \"%s\""),
1157 version);
1158
1159 if (main_lm)
1160 list->main_lm = *(ULONGEST *) main_lm->value;
1161}
1162
1163/* The allowed elements and attributes for an XML library list.
1164 The root element is a <library-list>. */
1165
1166static const struct gdb_xml_attribute svr4_library_attributes[] =
1167{
1168 { "name", GDB_XML_AF_NONE, NULL, NULL },
1169 { "lm", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1170 { "l_addr", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1171 { "l_ld", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1172 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1173};
1174
1175static const struct gdb_xml_element svr4_library_list_children[] =
1176{
1177 {
1178 "library", svr4_library_attributes, NULL,
1179 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
1180 library_list_start_library, NULL
1181 },
1182 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1183};
1184
1185static const struct gdb_xml_attribute svr4_library_list_attributes[] =
1186{
1187 { "version", GDB_XML_AF_NONE, NULL, NULL },
1188 { "main-lm", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
1189 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1190};
1191
1192static const struct gdb_xml_element svr4_library_list_elements[] =
1193{
1194 { "library-list-svr4", svr4_library_list_attributes, svr4_library_list_children,
1195 GDB_XML_EF_NONE, svr4_library_list_start_list, NULL },
1196 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1197};
1198
2268b414
JK
1199/* Parse qXfer:libraries:read packet into *SO_LIST_RETURN. Return 1 if
1200
1201 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1202 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1203 empty, caller is responsible for freeing all its entries. */
1204
1205static int
1206svr4_parse_libraries (const char *document, struct svr4_library_list *list)
1207{
1208 struct cleanup *back_to = make_cleanup (svr4_free_library_list,
1209 &list->head);
1210
1211 memset (list, 0, sizeof (*list));
1212 list->tailp = &list->head;
1213 if (gdb_xml_parse_quick (_("target library list"), "library-list.dtd",
1214 svr4_library_list_elements, document, list) == 0)
1215 {
1216 /* Parsed successfully, keep the result. */
1217 discard_cleanups (back_to);
1218 return 1;
1219 }
1220
1221 do_cleanups (back_to);
1222 return 0;
1223}
1224
f9e14852 1225/* Attempt to get so_list from target via qXfer:libraries-svr4:read packet.
2268b414
JK
1226
1227 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1228 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
f9e14852
GB
1229 empty, caller is responsible for freeing all its entries.
1230
1231 Note that ANNEX must be NULL if the remote does not explicitly allow
1232 qXfer:libraries-svr4:read packets with non-empty annexes. Support for
1233 this can be checked using target_augmented_libraries_svr4_read (). */
2268b414
JK
1234
1235static int
f9e14852
GB
1236svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1237 const char *annex)
2268b414
JK
1238{
1239 char *svr4_library_document;
1240 int result;
1241 struct cleanup *back_to;
1242
f9e14852
GB
1243 gdb_assert (annex == NULL || target_augmented_libraries_svr4_read ());
1244
2268b414
JK
1245 /* Fetch the list of shared libraries. */
1246 svr4_library_document = target_read_stralloc (&current_target,
1247 TARGET_OBJECT_LIBRARIES_SVR4,
f9e14852 1248 annex);
2268b414
JK
1249 if (svr4_library_document == NULL)
1250 return 0;
1251
1252 back_to = make_cleanup (xfree, svr4_library_document);
1253 result = svr4_parse_libraries (svr4_library_document, list);
1254 do_cleanups (back_to);
1255
1256 return result;
1257}
1258
1259#else
1260
1261static int
f9e14852
GB
1262svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1263 const char *annex)
2268b414
JK
1264{
1265 return 0;
1266}
1267
1268#endif
1269
34439770
DJ
1270/* If no shared library information is available from the dynamic
1271 linker, build a fallback list from other sources. */
1272
1273static struct so_list *
1274svr4_default_sos (void)
1275{
6c95b8df 1276 struct svr4_info *info = get_svr4_info ();
8e5c319d 1277 struct so_list *new;
1a816a87 1278
8e5c319d
JK
1279 if (!info->debug_loader_offset_p)
1280 return NULL;
34439770 1281
41bf6aca 1282 new = XCNEW (struct so_list);
34439770 1283
3957565a 1284 new->lm_info = xzalloc (sizeof (struct lm_info));
34439770 1285
3957565a 1286 /* Nothing will ever check the other fields if we set l_addr_p. */
8e5c319d 1287 new->lm_info->l_addr = info->debug_loader_offset;
3957565a 1288 new->lm_info->l_addr_p = 1;
34439770 1289
8e5c319d
JK
1290 strncpy (new->so_name, info->debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
1291 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1292 strcpy (new->so_original_name, new->so_name);
34439770 1293
8e5c319d 1294 return new;
34439770
DJ
1295}
1296
f9e14852
GB
1297/* Read the whole inferior libraries chain starting at address LM.
1298 Expect the first entry in the chain's previous entry to be PREV_LM.
1299 Add the entries to the tail referenced by LINK_PTR_PTR. Ignore the
1300 first entry if IGNORE_FIRST and set global MAIN_LM_ADDR according
1301 to it. Returns nonzero upon success. If zero is returned the
1302 entries stored to LINK_PTR_PTR are still valid although they may
1303 represent only part of the inferior library list. */
13437d4b 1304
f9e14852
GB
1305static int
1306svr4_read_so_list (CORE_ADDR lm, CORE_ADDR prev_lm,
1307 struct so_list ***link_ptr_ptr, int ignore_first)
13437d4b 1308{
7d760051 1309 struct so_list *first = NULL;
f9e14852 1310 CORE_ADDR next_lm;
13437d4b 1311
cb08cc53 1312 for (; lm != 0; prev_lm = lm, lm = next_lm)
13437d4b 1313 {
cb08cc53
JK
1314 struct so_list *new;
1315 struct cleanup *old_chain;
1316 int errcode;
1317 char *buffer;
13437d4b 1318
41bf6aca 1319 new = XCNEW (struct so_list);
cb08cc53 1320 old_chain = make_cleanup_free_so (new);
13437d4b 1321
3957565a
JK
1322 new->lm_info = lm_info_read (lm);
1323 if (new->lm_info == NULL)
1324 {
1325 do_cleanups (old_chain);
f9e14852 1326 return 0;
3957565a 1327 }
13437d4b 1328
3957565a 1329 next_lm = new->lm_info->l_next;
492928e4 1330
3957565a 1331 if (new->lm_info->l_prev != prev_lm)
492928e4 1332 {
2268b414 1333 warning (_("Corrupted shared library list: %s != %s"),
f5656ead
TT
1334 paddress (target_gdbarch (), prev_lm),
1335 paddress (target_gdbarch (), new->lm_info->l_prev));
cb08cc53 1336 do_cleanups (old_chain);
f9e14852 1337 return 0;
492928e4 1338 }
13437d4b
KB
1339
1340 /* For SVR4 versions, the first entry in the link map is for the
1341 inferior executable, so we must ignore it. For some versions of
1342 SVR4, it has no name. For others (Solaris 2.3 for example), it
1343 does have a name, so we can no longer use a missing name to
c378eb4e 1344 decide when to ignore it. */
3957565a 1345 if (ignore_first && new->lm_info->l_prev == 0)
93a57060 1346 {
cb08cc53
JK
1347 struct svr4_info *info = get_svr4_info ();
1348
7d760051 1349 first = new;
1a816a87 1350 info->main_lm_addr = new->lm_info->lm_addr;
cb08cc53
JK
1351 do_cleanups (old_chain);
1352 continue;
93a57060 1353 }
13437d4b 1354
cb08cc53 1355 /* Extract this shared object's name. */
3957565a 1356 target_read_string (new->lm_info->l_name, &buffer,
cb08cc53
JK
1357 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1358 if (errcode != 0)
1359 {
7d760051
UW
1360 /* If this entry's l_name address matches that of the
1361 inferior executable, then this is not a normal shared
1362 object, but (most likely) a vDSO. In this case, silently
1363 skip it; otherwise emit a warning. */
1364 if (first == NULL
1365 || new->lm_info->l_name != first->lm_info->l_name)
1366 warning (_("Can't read pathname for load map: %s."),
1367 safe_strerror (errcode));
cb08cc53
JK
1368 do_cleanups (old_chain);
1369 continue;
13437d4b
KB
1370 }
1371
cb08cc53
JK
1372 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
1373 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1374 strcpy (new->so_original_name, new->so_name);
1375 xfree (buffer);
492928e4 1376
cb08cc53
JK
1377 /* If this entry has no name, or its name matches the name
1378 for the main executable, don't include it in the list. */
1379 if (! new->so_name[0] || match_main (new->so_name))
492928e4 1380 {
cb08cc53
JK
1381 do_cleanups (old_chain);
1382 continue;
492928e4 1383 }
e4cd0d6a 1384
13437d4b 1385 discard_cleanups (old_chain);
cb08cc53
JK
1386 new->next = 0;
1387 **link_ptr_ptr = new;
1388 *link_ptr_ptr = &new->next;
13437d4b 1389 }
f9e14852
GB
1390
1391 return 1;
cb08cc53
JK
1392}
1393
f9e14852
GB
1394/* Read the full list of currently loaded shared objects directly
1395 from the inferior, without referring to any libraries read and
1396 stored by the probes interface. Handle special cases relating
1397 to the first elements of the list. */
cb08cc53
JK
1398
1399static struct so_list *
f9e14852 1400svr4_current_sos_direct (struct svr4_info *info)
cb08cc53
JK
1401{
1402 CORE_ADDR lm;
1403 struct so_list *head = NULL;
1404 struct so_list **link_ptr = &head;
cb08cc53
JK
1405 struct cleanup *back_to;
1406 int ignore_first;
2268b414
JK
1407 struct svr4_library_list library_list;
1408
0c5bf5a9
JK
1409 /* Fall back to manual examination of the target if the packet is not
1410 supported or gdbserver failed to find DT_DEBUG. gdb.server/solib-list.exp
1411 tests a case where gdbserver cannot find the shared libraries list while
1412 GDB itself is able to find it via SYMFILE_OBJFILE.
1413
1414 Unfortunately statically linked inferiors will also fall back through this
1415 suboptimal code path. */
1416
f9e14852
GB
1417 info->using_xfer = svr4_current_sos_via_xfer_libraries (&library_list,
1418 NULL);
1419 if (info->using_xfer)
2268b414
JK
1420 {
1421 if (library_list.main_lm)
f9e14852 1422 info->main_lm_addr = library_list.main_lm;
2268b414
JK
1423
1424 return library_list.head ? library_list.head : svr4_default_sos ();
1425 }
cb08cc53 1426
cb08cc53
JK
1427 /* Always locate the debug struct, in case it has moved. */
1428 info->debug_base = 0;
1429 locate_base (info);
1430
1431 /* If we can't find the dynamic linker's base structure, this
1432 must not be a dynamically linked executable. Hmm. */
1433 if (! info->debug_base)
1434 return svr4_default_sos ();
1435
1436 /* Assume that everything is a library if the dynamic loader was loaded
1437 late by a static executable. */
1438 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
1439 ignore_first = 0;
1440 else
1441 ignore_first = 1;
1442
1443 back_to = make_cleanup (svr4_free_library_list, &head);
1444
1445 /* Walk the inferior's link map list, and build our list of
1446 `struct so_list' nodes. */
1447 lm = solib_svr4_r_map (info);
1448 if (lm)
f9e14852 1449 svr4_read_so_list (lm, 0, &link_ptr, ignore_first);
cb08cc53
JK
1450
1451 /* On Solaris, the dynamic linker is not in the normal list of
1452 shared objects, so make sure we pick it up too. Having
1453 symbol information for the dynamic linker is quite crucial
1454 for skipping dynamic linker resolver code. */
1455 lm = solib_svr4_r_ldsomap (info);
1456 if (lm)
f9e14852 1457 svr4_read_so_list (lm, 0, &link_ptr, 0);
cb08cc53
JK
1458
1459 discard_cleanups (back_to);
13437d4b 1460
34439770
DJ
1461 if (head == NULL)
1462 return svr4_default_sos ();
1463
13437d4b
KB
1464 return head;
1465}
1466
f9e14852
GB
1467/* Implement the "current_sos" target_so_ops method. */
1468
1469static struct so_list *
1470svr4_current_sos (void)
1471{
1472 struct svr4_info *info = get_svr4_info ();
1473
1474 /* If the solib list has been read and stored by the probes
1475 interface then we return a copy of the stored list. */
1476 if (info->solib_list != NULL)
1477 return svr4_copy_library_list (info->solib_list);
1478
1479 /* Otherwise obtain the solib list directly from the inferior. */
1480 return svr4_current_sos_direct (info);
1481}
1482
93a57060 1483/* Get the address of the link_map for a given OBJFILE. */
bc4a16ae
EZ
1484
1485CORE_ADDR
1486svr4_fetch_objfile_link_map (struct objfile *objfile)
1487{
93a57060 1488 struct so_list *so;
6c95b8df 1489 struct svr4_info *info = get_svr4_info ();
bc4a16ae 1490
93a57060 1491 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1a816a87 1492 if (info->main_lm_addr == 0)
93a57060 1493 solib_add (NULL, 0, &current_target, auto_solib_add);
bc4a16ae 1494
93a57060
DJ
1495 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1496 if (objfile == symfile_objfile)
1a816a87 1497 return info->main_lm_addr;
93a57060
DJ
1498
1499 /* The other link map addresses may be found by examining the list
1500 of shared libraries. */
1501 for (so = master_so_list (); so; so = so->next)
1502 if (so->objfile == objfile)
1503 return so->lm_info->lm_addr;
1504
1505 /* Not found! */
bc4a16ae
EZ
1506 return 0;
1507}
13437d4b
KB
1508
1509/* On some systems, the only way to recognize the link map entry for
1510 the main executable file is by looking at its name. Return
1511 non-zero iff SONAME matches one of the known main executable names. */
1512
1513static int
bc043ef3 1514match_main (const char *soname)
13437d4b 1515{
bc043ef3 1516 const char * const *mainp;
13437d4b
KB
1517
1518 for (mainp = main_name_list; *mainp != NULL; mainp++)
1519 {
1520 if (strcmp (soname, *mainp) == 0)
1521 return (1);
1522 }
1523
1524 return (0);
1525}
1526
13437d4b
KB
1527/* Return 1 if PC lies in the dynamic symbol resolution code of the
1528 SVR4 run time loader. */
13437d4b 1529
7d522c90 1530int
d7fa2ae2 1531svr4_in_dynsym_resolve_code (CORE_ADDR pc)
13437d4b 1532{
6c95b8df
PA
1533 struct svr4_info *info = get_svr4_info ();
1534
1535 return ((pc >= info->interp_text_sect_low
1536 && pc < info->interp_text_sect_high)
1537 || (pc >= info->interp_plt_sect_low
1538 && pc < info->interp_plt_sect_high)
3e5d3a5a 1539 || in_plt_section (pc)
0875794a 1540 || in_gnu_ifunc_stub (pc));
13437d4b 1541}
13437d4b 1542
2f4950cd
AC
1543/* Given an executable's ABFD and target, compute the entry-point
1544 address. */
1545
1546static CORE_ADDR
1547exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1548{
8c2b9656
YQ
1549 CORE_ADDR addr;
1550
2f4950cd
AC
1551 /* KevinB wrote ... for most targets, the address returned by
1552 bfd_get_start_address() is the entry point for the start
1553 function. But, for some targets, bfd_get_start_address() returns
1554 the address of a function descriptor from which the entry point
1555 address may be extracted. This address is extracted by
1556 gdbarch_convert_from_func_ptr_addr(). The method
1557 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1558 function for targets which don't use function descriptors. */
8c2b9656 1559 addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2f4950cd
AC
1560 bfd_get_start_address (abfd),
1561 targ);
8c2b9656 1562 return gdbarch_addr_bits_remove (target_gdbarch (), addr);
2f4950cd 1563}
13437d4b 1564
f9e14852
GB
1565/* A probe and its associated action. */
1566
1567struct probe_and_action
1568{
1569 /* The probe. */
1570 struct probe *probe;
1571
1572 /* The action. */
1573 enum probe_action action;
1574};
1575
1576/* Returns a hash code for the probe_and_action referenced by p. */
1577
1578static hashval_t
1579hash_probe_and_action (const void *p)
1580{
1581 const struct probe_and_action *pa = p;
1582
1583 return (hashval_t) pa->probe->address;
1584}
1585
1586/* Returns non-zero if the probe_and_actions referenced by p1 and p2
1587 are equal. */
1588
1589static int
1590equal_probe_and_action (const void *p1, const void *p2)
1591{
1592 const struct probe_and_action *pa1 = p1;
1593 const struct probe_and_action *pa2 = p2;
1594
1595 return pa1->probe->address == pa2->probe->address;
1596}
1597
1598/* Register a solib event probe and its associated action in the
1599 probes table. */
1600
1601static void
1602register_solib_event_probe (struct probe *probe, enum probe_action action)
1603{
1604 struct svr4_info *info = get_svr4_info ();
1605 struct probe_and_action lookup, *pa;
1606 void **slot;
1607
1608 /* Create the probes table, if necessary. */
1609 if (info->probes_table == NULL)
1610 info->probes_table = htab_create_alloc (1, hash_probe_and_action,
1611 equal_probe_and_action,
1612 xfree, xcalloc, xfree);
1613
1614 lookup.probe = probe;
1615 slot = htab_find_slot (info->probes_table, &lookup, INSERT);
1616 gdb_assert (*slot == HTAB_EMPTY_ENTRY);
1617
1618 pa = XCNEW (struct probe_and_action);
1619 pa->probe = probe;
1620 pa->action = action;
1621
1622 *slot = pa;
1623}
1624
1625/* Get the solib event probe at the specified location, and the
1626 action associated with it. Returns NULL if no solib event probe
1627 was found. */
1628
1629static struct probe_and_action *
1630solib_event_probe_at (struct svr4_info *info, CORE_ADDR address)
1631{
1632 struct probe lookup_probe;
1633 struct probe_and_action lookup;
1634 void **slot;
1635
1636 lookup_probe.address = address;
1637 lookup.probe = &lookup_probe;
1638 slot = htab_find_slot (info->probes_table, &lookup, NO_INSERT);
1639
1640 if (slot == NULL)
1641 return NULL;
1642
1643 return (struct probe_and_action *) *slot;
1644}
1645
1646/* Decide what action to take when the specified solib event probe is
1647 hit. */
1648
1649static enum probe_action
1650solib_event_probe_action (struct probe_and_action *pa)
1651{
1652 enum probe_action action;
1653 unsigned probe_argc;
08a6411c 1654 struct frame_info *frame = get_current_frame ();
f9e14852
GB
1655
1656 action = pa->action;
1657 if (action == DO_NOTHING || action == PROBES_INTERFACE_FAILED)
1658 return action;
1659
1660 gdb_assert (action == FULL_RELOAD || action == UPDATE_OR_RELOAD);
1661
1662 /* Check that an appropriate number of arguments has been supplied.
1663 We expect:
1664 arg0: Lmid_t lmid (mandatory)
1665 arg1: struct r_debug *debug_base (mandatory)
1666 arg2: struct link_map *new (optional, for incremental updates) */
08a6411c 1667 probe_argc = get_probe_argument_count (pa->probe, frame);
f9e14852
GB
1668 if (probe_argc == 2)
1669 action = FULL_RELOAD;
1670 else if (probe_argc < 2)
1671 action = PROBES_INTERFACE_FAILED;
1672
1673 return action;
1674}
1675
1676/* Populate the shared object list by reading the entire list of
1677 shared objects from the inferior. Handle special cases relating
1678 to the first elements of the list. Returns nonzero on success. */
1679
1680static int
1681solist_update_full (struct svr4_info *info)
1682{
1683 free_solib_list (info);
1684 info->solib_list = svr4_current_sos_direct (info);
1685
1686 return 1;
1687}
1688
1689/* Update the shared object list starting from the link-map entry
1690 passed by the linker in the probe's third argument. Returns
1691 nonzero if the list was successfully updated, or zero to indicate
1692 failure. */
1693
1694static int
1695solist_update_incremental (struct svr4_info *info, CORE_ADDR lm)
1696{
1697 struct so_list *tail;
1698 CORE_ADDR prev_lm;
1699
1700 /* svr4_current_sos_direct contains logic to handle a number of
1701 special cases relating to the first elements of the list. To
1702 avoid duplicating this logic we defer to solist_update_full
1703 if the list is empty. */
1704 if (info->solib_list == NULL)
1705 return 0;
1706
1707 /* Fall back to a full update if we are using a remote target
1708 that does not support incremental transfers. */
1709 if (info->using_xfer && !target_augmented_libraries_svr4_read ())
1710 return 0;
1711
1712 /* Walk to the end of the list. */
1713 for (tail = info->solib_list; tail->next != NULL; tail = tail->next)
1714 /* Nothing. */;
1715 prev_lm = tail->lm_info->lm_addr;
1716
1717 /* Read the new objects. */
1718 if (info->using_xfer)
1719 {
1720 struct svr4_library_list library_list;
1721 char annex[64];
1722
1723 xsnprintf (annex, sizeof (annex), "start=%s;prev=%s",
1724 phex_nz (lm, sizeof (lm)),
1725 phex_nz (prev_lm, sizeof (prev_lm)));
1726 if (!svr4_current_sos_via_xfer_libraries (&library_list, annex))
1727 return 0;
1728
1729 tail->next = library_list.head;
1730 }
1731 else
1732 {
1733 struct so_list **link = &tail->next;
1734
1735 /* IGNORE_FIRST may safely be set to zero here because the
1736 above check and deferral to solist_update_full ensures
1737 that this call to svr4_read_so_list will never see the
1738 first element. */
1739 if (!svr4_read_so_list (lm, prev_lm, &link, 0))
1740 return 0;
1741 }
1742
1743 return 1;
1744}
1745
1746/* Disable the probes-based linker interface and revert to the
1747 original interface. We don't reset the breakpoints as the
1748 ones set up for the probes-based interface are adequate. */
1749
1750static void
1751disable_probes_interface_cleanup (void *arg)
1752{
1753 struct svr4_info *info = get_svr4_info ();
1754
1755 warning (_("Probes-based dynamic linker interface failed.\n"
1756 "Reverting to original interface.\n"));
1757
1758 free_probes_table (info);
1759 free_solib_list (info);
1760}
1761
1762/* Update the solib list as appropriate when using the
1763 probes-based linker interface. Do nothing if using the
1764 standard interface. */
1765
1766static void
1767svr4_handle_solib_event (void)
1768{
1769 struct svr4_info *info = get_svr4_info ();
1770 struct probe_and_action *pa;
1771 enum probe_action action;
1772 struct cleanup *old_chain, *usm_chain;
1773 struct value *val;
1774 CORE_ADDR pc, debug_base, lm = 0;
1775 int is_initial_ns;
08a6411c 1776 struct frame_info *frame = get_current_frame ();
f9e14852
GB
1777
1778 /* Do nothing if not using the probes interface. */
1779 if (info->probes_table == NULL)
1780 return;
1781
1782 /* If anything goes wrong we revert to the original linker
1783 interface. */
1784 old_chain = make_cleanup (disable_probes_interface_cleanup, NULL);
1785
1786 pc = regcache_read_pc (get_current_regcache ());
1787 pa = solib_event_probe_at (info, pc);
1788 if (pa == NULL)
1789 {
1790 do_cleanups (old_chain);
1791 return;
1792 }
1793
1794 action = solib_event_probe_action (pa);
1795 if (action == PROBES_INTERFACE_FAILED)
1796 {
1797 do_cleanups (old_chain);
1798 return;
1799 }
1800
1801 if (action == DO_NOTHING)
1802 {
1803 discard_cleanups (old_chain);
1804 return;
1805 }
1806
1807 /* evaluate_probe_argument looks up symbols in the dynamic linker
1808 using find_pc_section. find_pc_section is accelerated by a cache
1809 called the section map. The section map is invalidated every
1810 time a shared library is loaded or unloaded, and if the inferior
1811 is generating a lot of shared library events then the section map
1812 will be updated every time svr4_handle_solib_event is called.
1813 We called find_pc_section in svr4_create_solib_event_breakpoints,
1814 so we can guarantee that the dynamic linker's sections are in the
1815 section map. We can therefore inhibit section map updates across
1816 these calls to evaluate_probe_argument and save a lot of time. */
1817 inhibit_section_map_updates (current_program_space);
1818 usm_chain = make_cleanup (resume_section_map_updates_cleanup,
1819 current_program_space);
1820
08a6411c 1821 val = evaluate_probe_argument (pa->probe, 1, frame);
f9e14852
GB
1822 if (val == NULL)
1823 {
1824 do_cleanups (old_chain);
1825 return;
1826 }
1827
1828 debug_base = value_as_address (val);
1829 if (debug_base == 0)
1830 {
1831 do_cleanups (old_chain);
1832 return;
1833 }
1834
1835 /* Always locate the debug struct, in case it moved. */
1836 info->debug_base = 0;
1837 if (locate_base (info) == 0)
1838 {
1839 do_cleanups (old_chain);
1840 return;
1841 }
1842
1843 /* GDB does not currently support libraries loaded via dlmopen
1844 into namespaces other than the initial one. We must ignore
1845 any namespace other than the initial namespace here until
1846 support for this is added to GDB. */
1847 if (debug_base != info->debug_base)
1848 action = DO_NOTHING;
1849
1850 if (action == UPDATE_OR_RELOAD)
1851 {
08a6411c 1852 val = evaluate_probe_argument (pa->probe, 2, frame);
f9e14852
GB
1853 if (val != NULL)
1854 lm = value_as_address (val);
1855
1856 if (lm == 0)
1857 action = FULL_RELOAD;
1858 }
1859
1860 /* Resume section map updates. */
1861 do_cleanups (usm_chain);
1862
1863 if (action == UPDATE_OR_RELOAD)
1864 {
1865 if (!solist_update_incremental (info, lm))
1866 action = FULL_RELOAD;
1867 }
1868
1869 if (action == FULL_RELOAD)
1870 {
1871 if (!solist_update_full (info))
1872 {
1873 do_cleanups (old_chain);
1874 return;
1875 }
1876 }
1877
1878 discard_cleanups (old_chain);
1879}
1880
1881/* Helper function for svr4_update_solib_event_breakpoints. */
1882
1883static int
1884svr4_update_solib_event_breakpoint (struct breakpoint *b, void *arg)
1885{
1886 struct bp_location *loc;
1887
1888 if (b->type != bp_shlib_event)
1889 {
1890 /* Continue iterating. */
1891 return 0;
1892 }
1893
1894 for (loc = b->loc; loc != NULL; loc = loc->next)
1895 {
1896 struct svr4_info *info;
1897 struct probe_and_action *pa;
1898
1899 info = program_space_data (loc->pspace, solib_svr4_pspace_data);
1900 if (info == NULL || info->probes_table == NULL)
1901 continue;
1902
1903 pa = solib_event_probe_at (info, loc->address);
1904 if (pa == NULL)
1905 continue;
1906
1907 if (pa->action == DO_NOTHING)
1908 {
1909 if (b->enable_state == bp_disabled && stop_on_solib_events)
1910 enable_breakpoint (b);
1911 else if (b->enable_state == bp_enabled && !stop_on_solib_events)
1912 disable_breakpoint (b);
1913 }
1914
1915 break;
1916 }
1917
1918 /* Continue iterating. */
1919 return 0;
1920}
1921
1922/* Enable or disable optional solib event breakpoints as appropriate.
1923 Called whenever stop_on_solib_events is changed. */
1924
1925static void
1926svr4_update_solib_event_breakpoints (void)
1927{
1928 iterate_over_breakpoints (svr4_update_solib_event_breakpoint, NULL);
1929}
1930
1931/* Create and register solib event breakpoints. PROBES is an array
1932 of NUM_PROBES elements, each of which is vector of probes. A
1933 solib event breakpoint will be created and registered for each
1934 probe. */
1935
1936static void
1937svr4_create_probe_breakpoints (struct gdbarch *gdbarch,
1938 VEC (probe_p) **probes)
1939{
1940 int i;
1941
1942 for (i = 0; i < NUM_PROBES; i++)
1943 {
1944 enum probe_action action = probe_info[i].action;
1945 struct probe *probe;
1946 int ix;
1947
1948 for (ix = 0;
1949 VEC_iterate (probe_p, probes[i], ix, probe);
1950 ++ix)
1951 {
1952 create_solib_event_breakpoint (gdbarch, probe->address);
1953 register_solib_event_probe (probe, action);
1954 }
1955 }
1956
1957 svr4_update_solib_event_breakpoints ();
1958}
1959
1960/* Both the SunOS and the SVR4 dynamic linkers call a marker function
1961 before and after mapping and unmapping shared libraries. The sole
1962 purpose of this method is to allow debuggers to set a breakpoint so
1963 they can track these changes.
1964
1965 Some versions of the glibc dynamic linker contain named probes
1966 to allow more fine grained stopping. Given the address of the
1967 original marker function, this function attempts to find these
1968 probes, and if found, sets breakpoints on those instead. If the
1969 probes aren't found, a single breakpoint is set on the original
1970 marker function. */
1971
1972static void
1973svr4_create_solib_event_breakpoints (struct gdbarch *gdbarch,
1974 CORE_ADDR address)
1975{
1976 struct obj_section *os;
1977
1978 os = find_pc_section (address);
1979 if (os != NULL)
1980 {
1981 int with_prefix;
1982
1983 for (with_prefix = 0; with_prefix <= 1; with_prefix++)
1984 {
1985 VEC (probe_p) *probes[NUM_PROBES];
1986 int all_probes_found = 1;
25f9533e 1987 int checked_can_use_probe_arguments = 0;
f9e14852
GB
1988 int i;
1989
1990 memset (probes, 0, sizeof (probes));
1991 for (i = 0; i < NUM_PROBES; i++)
1992 {
1993 const char *name = probe_info[i].name;
25f9533e 1994 struct probe *p;
f9e14852
GB
1995 char buf[32];
1996
1997 /* Fedora 17 and Red Hat Enterprise Linux 6.2-6.4
1998 shipped with an early version of the probes code in
1999 which the probes' names were prefixed with "rtld_"
2000 and the "map_failed" probe did not exist. The
2001 locations of the probes are otherwise the same, so
2002 we check for probes with prefixed names if probes
2003 with unprefixed names are not present. */
2004 if (with_prefix)
2005 {
2006 xsnprintf (buf, sizeof (buf), "rtld_%s", name);
2007 name = buf;
2008 }
2009
2010 probes[i] = find_probes_in_objfile (os->objfile, "rtld", name);
2011
2012 /* The "map_failed" probe did not exist in early
2013 versions of the probes code in which the probes'
2014 names were prefixed with "rtld_". */
2015 if (strcmp (name, "rtld_map_failed") == 0)
2016 continue;
2017
2018 if (VEC_empty (probe_p, probes[i]))
2019 {
2020 all_probes_found = 0;
2021 break;
2022 }
25f9533e
SDJ
2023
2024 /* Ensure probe arguments can be evaluated. */
2025 if (!checked_can_use_probe_arguments)
2026 {
2027 p = VEC_index (probe_p, probes[i], 0);
2028 if (!can_evaluate_probe_arguments (p))
2029 {
2030 all_probes_found = 0;
2031 break;
2032 }
2033 checked_can_use_probe_arguments = 1;
2034 }
f9e14852
GB
2035 }
2036
2037 if (all_probes_found)
2038 svr4_create_probe_breakpoints (gdbarch, probes);
2039
2040 for (i = 0; i < NUM_PROBES; i++)
2041 VEC_free (probe_p, probes[i]);
2042
2043 if (all_probes_found)
2044 return;
2045 }
2046 }
2047
2048 create_solib_event_breakpoint (gdbarch, address);
2049}
2050
cb457ae2
YQ
2051/* Helper function for gdb_bfd_lookup_symbol. */
2052
2053static int
2054cmp_name_and_sec_flags (asymbol *sym, void *data)
2055{
2056 return (strcmp (sym->name, (const char *) data) == 0
2057 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0);
2058}
7f86f058 2059/* Arrange for dynamic linker to hit breakpoint.
13437d4b
KB
2060
2061 Both the SunOS and the SVR4 dynamic linkers have, as part of their
2062 debugger interface, support for arranging for the inferior to hit
2063 a breakpoint after mapping in the shared libraries. This function
2064 enables that breakpoint.
2065
2066 For SunOS, there is a special flag location (in_debugger) which we
2067 set to 1. When the dynamic linker sees this flag set, it will set
2068 a breakpoint at a location known only to itself, after saving the
2069 original contents of that place and the breakpoint address itself,
2070 in it's own internal structures. When we resume the inferior, it
2071 will eventually take a SIGTRAP when it runs into the breakpoint.
2072 We handle this (in a different place) by restoring the contents of
2073 the breakpointed location (which is only known after it stops),
2074 chasing around to locate the shared libraries that have been
2075 loaded, then resuming.
2076
2077 For SVR4, the debugger interface structure contains a member (r_brk)
2078 which is statically initialized at the time the shared library is
2079 built, to the offset of a function (_r_debug_state) which is guaran-
2080 teed to be called once before mapping in a library, and again when
2081 the mapping is complete. At the time we are examining this member,
2082 it contains only the unrelocated offset of the function, so we have
2083 to do our own relocation. Later, when the dynamic linker actually
2084 runs, it relocates r_brk to be the actual address of _r_debug_state().
2085
2086 The debugger interface structure also contains an enumeration which
2087 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
2088 depending upon whether or not the library is being mapped or unmapped,
7f86f058 2089 and then set to RT_CONSISTENT after the library is mapped/unmapped. */
13437d4b
KB
2090
2091static int
268a4a75 2092enable_break (struct svr4_info *info, int from_tty)
13437d4b 2093{
13437d4b 2094 struct minimal_symbol *msymbol;
bc043ef3 2095 const char * const *bkpt_namep;
13437d4b 2096 asection *interp_sect;
001f13d8 2097 char *interp_name;
7cd25cfc 2098 CORE_ADDR sym_addr;
13437d4b 2099
6c95b8df
PA
2100 info->interp_text_sect_low = info->interp_text_sect_high = 0;
2101 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
13437d4b 2102
7cd25cfc
DJ
2103 /* If we already have a shared library list in the target, and
2104 r_debug contains r_brk, set the breakpoint there - this should
2105 mean r_brk has already been relocated. Assume the dynamic linker
2106 is the object containing r_brk. */
2107
268a4a75 2108 solib_add (NULL, from_tty, &current_target, auto_solib_add);
7cd25cfc 2109 sym_addr = 0;
1a816a87
PA
2110 if (info->debug_base && solib_svr4_r_map (info) != 0)
2111 sym_addr = solib_svr4_r_brk (info);
7cd25cfc
DJ
2112
2113 if (sym_addr != 0)
2114 {
2115 struct obj_section *os;
2116
b36ec657 2117 sym_addr = gdbarch_addr_bits_remove
f5656ead 2118 (target_gdbarch (), gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
3e43a32a
MS
2119 sym_addr,
2120 &current_target));
b36ec657 2121
48379de6
DE
2122 /* On at least some versions of Solaris there's a dynamic relocation
2123 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
2124 we get control before the dynamic linker has self-relocated.
2125 Check if SYM_ADDR is in a known section, if it is assume we can
2126 trust its value. This is just a heuristic though, it could go away
2127 or be replaced if it's getting in the way.
2128
2129 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
2130 however it's spelled in your particular system) is ARM or Thumb.
2131 That knowledge is encoded in the address, if it's Thumb the low bit
2132 is 1. However, we've stripped that info above and it's not clear
2133 what all the consequences are of passing a non-addr_bits_remove'd
f9e14852 2134 address to svr4_create_solib_event_breakpoints. The call to
48379de6
DE
2135 find_pc_section verifies we know about the address and have some
2136 hope of computing the right kind of breakpoint to use (via
2137 symbol info). It does mean that GDB needs to be pointed at a
2138 non-stripped version of the dynamic linker in order to obtain
2139 information it already knows about. Sigh. */
2140
7cd25cfc
DJ
2141 os = find_pc_section (sym_addr);
2142 if (os != NULL)
2143 {
2144 /* Record the relocated start and end address of the dynamic linker
2145 text and plt section for svr4_in_dynsym_resolve_code. */
2146 bfd *tmp_bfd;
2147 CORE_ADDR load_addr;
2148
2149 tmp_bfd = os->objfile->obfd;
2150 load_addr = ANOFFSET (os->objfile->section_offsets,
e03e6279 2151 SECT_OFF_TEXT (os->objfile));
7cd25cfc
DJ
2152
2153 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
2154 if (interp_sect)
2155 {
6c95b8df 2156 info->interp_text_sect_low =
7cd25cfc 2157 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
2158 info->interp_text_sect_high =
2159 info->interp_text_sect_low
2160 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
2161 }
2162 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
2163 if (interp_sect)
2164 {
6c95b8df 2165 info->interp_plt_sect_low =
7cd25cfc 2166 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
2167 info->interp_plt_sect_high =
2168 info->interp_plt_sect_low
2169 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
2170 }
2171
f9e14852 2172 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
7cd25cfc
DJ
2173 return 1;
2174 }
2175 }
2176
97ec2c2f 2177 /* Find the program interpreter; if not found, warn the user and drop
13437d4b 2178 into the old breakpoint at symbol code. */
97ec2c2f
UW
2179 interp_name = find_program_interpreter ();
2180 if (interp_name)
13437d4b 2181 {
8ad2fcde
KB
2182 CORE_ADDR load_addr = 0;
2183 int load_addr_found = 0;
2ec9a4f8 2184 int loader_found_in_list = 0;
f8766ec1 2185 struct so_list *so;
e4f7b8c8 2186 bfd *tmp_bfd = NULL;
2f4950cd 2187 struct target_ops *tmp_bfd_target;
f1838a98 2188 volatile struct gdb_exception ex;
13437d4b 2189
7cd25cfc 2190 sym_addr = 0;
13437d4b
KB
2191
2192 /* Now we need to figure out where the dynamic linker was
2193 loaded so that we can load its symbols and place a breakpoint
2194 in the dynamic linker itself.
2195
2196 This address is stored on the stack. However, I've been unable
2197 to find any magic formula to find it for Solaris (appears to
2198 be trivial on GNU/Linux). Therefore, we have to try an alternate
2199 mechanism to find the dynamic linker's base address. */
e4f7b8c8 2200
f1838a98
UW
2201 TRY_CATCH (ex, RETURN_MASK_ALL)
2202 {
97ec2c2f 2203 tmp_bfd = solib_bfd_open (interp_name);
f1838a98 2204 }
13437d4b
KB
2205 if (tmp_bfd == NULL)
2206 goto bkpt_at_symbol;
2207
2f4950cd 2208 /* Now convert the TMP_BFD into a target. That way target, as
695c3173 2209 well as BFD operations can be used. */
2f4950cd 2210 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
695c3173
TT
2211 /* target_bfd_reopen acquired its own reference, so we can
2212 release ours now. */
2213 gdb_bfd_unref (tmp_bfd);
2f4950cd 2214
f8766ec1
KB
2215 /* On a running target, we can get the dynamic linker's base
2216 address from the shared library table. */
f8766ec1
KB
2217 so = master_so_list ();
2218 while (so)
8ad2fcde 2219 {
97ec2c2f 2220 if (svr4_same_1 (interp_name, so->so_original_name))
8ad2fcde
KB
2221 {
2222 load_addr_found = 1;
2ec9a4f8 2223 loader_found_in_list = 1;
b23518f0 2224 load_addr = lm_addr_check (so, tmp_bfd);
8ad2fcde
KB
2225 break;
2226 }
f8766ec1 2227 so = so->next;
8ad2fcde
KB
2228 }
2229
8d4e36ba
JB
2230 /* If we were not able to find the base address of the loader
2231 from our so_list, then try using the AT_BASE auxilliary entry. */
2232 if (!load_addr_found)
2233 if (target_auxv_search (&current_target, AT_BASE, &load_addr) > 0)
ad3a0e5b 2234 {
f5656ead 2235 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
ad3a0e5b
JK
2236
2237 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
2238 that `+ load_addr' will overflow CORE_ADDR width not creating
2239 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
2240 GDB. */
2241
d182d057 2242 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
ad3a0e5b 2243 {
d182d057 2244 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
ad3a0e5b
JK
2245 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd,
2246 tmp_bfd_target);
2247
2248 gdb_assert (load_addr < space_size);
2249
2250 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
2251 64bit ld.so with 32bit executable, it should not happen. */
2252
2253 if (tmp_entry_point < space_size
2254 && tmp_entry_point + load_addr >= space_size)
2255 load_addr -= space_size;
2256 }
2257
2258 load_addr_found = 1;
2259 }
8d4e36ba 2260
8ad2fcde
KB
2261 /* Otherwise we find the dynamic linker's base address by examining
2262 the current pc (which should point at the entry point for the
8d4e36ba
JB
2263 dynamic linker) and subtracting the offset of the entry point.
2264
2265 This is more fragile than the previous approaches, but is a good
2266 fallback method because it has actually been working well in
2267 most cases. */
8ad2fcde 2268 if (!load_addr_found)
fb14de7b 2269 {
c2250ad1 2270 struct regcache *regcache
f5656ead 2271 = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
433759f7 2272
fb14de7b
UW
2273 load_addr = (regcache_read_pc (regcache)
2274 - exec_entry_point (tmp_bfd, tmp_bfd_target));
2275 }
2ec9a4f8
DJ
2276
2277 if (!loader_found_in_list)
34439770 2278 {
1a816a87
PA
2279 info->debug_loader_name = xstrdup (interp_name);
2280 info->debug_loader_offset_p = 1;
2281 info->debug_loader_offset = load_addr;
268a4a75 2282 solib_add (NULL, from_tty, &current_target, auto_solib_add);
34439770 2283 }
13437d4b
KB
2284
2285 /* Record the relocated start and end address of the dynamic linker
d7fa2ae2 2286 text and plt section for svr4_in_dynsym_resolve_code. */
13437d4b
KB
2287 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
2288 if (interp_sect)
2289 {
6c95b8df 2290 info->interp_text_sect_low =
13437d4b 2291 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
2292 info->interp_text_sect_high =
2293 info->interp_text_sect_low
2294 + bfd_section_size (tmp_bfd, interp_sect);
13437d4b
KB
2295 }
2296 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
2297 if (interp_sect)
2298 {
6c95b8df 2299 info->interp_plt_sect_low =
13437d4b 2300 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
2301 info->interp_plt_sect_high =
2302 info->interp_plt_sect_low
2303 + bfd_section_size (tmp_bfd, interp_sect);
13437d4b
KB
2304 }
2305
2306 /* Now try to set a breakpoint in the dynamic linker. */
2307 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2308 {
cb457ae2
YQ
2309 sym_addr = gdb_bfd_lookup_symbol (tmp_bfd, cmp_name_and_sec_flags,
2310 (void *) *bkpt_namep);
13437d4b
KB
2311 if (sym_addr != 0)
2312 break;
2313 }
2314
2bbe3cc1
DJ
2315 if (sym_addr != 0)
2316 /* Convert 'sym_addr' from a function pointer to an address.
2317 Because we pass tmp_bfd_target instead of the current
2318 target, this will always produce an unrelocated value. */
f5656ead 2319 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2bbe3cc1
DJ
2320 sym_addr,
2321 tmp_bfd_target);
2322
695c3173
TT
2323 /* We're done with both the temporary bfd and target. Closing
2324 the target closes the underlying bfd, because it holds the
2325 only remaining reference. */
460014f5 2326 target_close (tmp_bfd_target);
13437d4b
KB
2327
2328 if (sym_addr != 0)
2329 {
f9e14852
GB
2330 svr4_create_solib_event_breakpoints (target_gdbarch (),
2331 load_addr + sym_addr);
97ec2c2f 2332 xfree (interp_name);
13437d4b
KB
2333 return 1;
2334 }
2335
2336 /* For whatever reason we couldn't set a breakpoint in the dynamic
2337 linker. Warn and drop into the old code. */
2338 bkpt_at_symbol:
97ec2c2f 2339 xfree (interp_name);
82d03102
PG
2340 warning (_("Unable to find dynamic linker breakpoint function.\n"
2341 "GDB will be unable to debug shared library initializers\n"
2342 "and track explicitly loaded dynamic code."));
13437d4b 2343 }
13437d4b 2344
e499d0f1
DJ
2345 /* Scan through the lists of symbols, trying to look up the symbol and
2346 set a breakpoint there. Terminate loop when we/if we succeed. */
2347
2348 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2349 {
2350 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
efd66ac6 2351 if ((msymbol != NULL) && (MSYMBOL_VALUE_ADDRESS (msymbol) != 0))
e499d0f1 2352 {
efd66ac6 2353 sym_addr = MSYMBOL_VALUE_ADDRESS (msymbol);
f5656ead 2354 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
de64a9ac
JM
2355 sym_addr,
2356 &current_target);
f9e14852 2357 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
e499d0f1
DJ
2358 return 1;
2359 }
2360 }
13437d4b 2361
fb139f32 2362 if (interp_name != NULL && !current_inferior ()->attach_flag)
13437d4b 2363 {
c6490bf2 2364 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
13437d4b 2365 {
c6490bf2 2366 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
efd66ac6 2367 if ((msymbol != NULL) && (MSYMBOL_VALUE_ADDRESS (msymbol) != 0))
c6490bf2 2368 {
efd66ac6 2369 sym_addr = MSYMBOL_VALUE_ADDRESS (msymbol);
f5656ead 2370 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
c6490bf2
KB
2371 sym_addr,
2372 &current_target);
f9e14852 2373 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
c6490bf2
KB
2374 return 1;
2375 }
13437d4b
KB
2376 }
2377 }
542c95c2 2378 return 0;
13437d4b
KB
2379}
2380
7f86f058 2381/* Implement the "special_symbol_handling" target_so_ops method. */
13437d4b
KB
2382
2383static void
2384svr4_special_symbol_handling (void)
2385{
7f86f058 2386 /* Nothing to do. */
13437d4b
KB
2387}
2388
09919ac2
JK
2389/* Read the ELF program headers from ABFD. Return the contents and
2390 set *PHDRS_SIZE to the size of the program headers. */
e2a44558 2391
09919ac2
JK
2392static gdb_byte *
2393read_program_headers_from_bfd (bfd *abfd, int *phdrs_size)
e2a44558 2394{
09919ac2
JK
2395 Elf_Internal_Ehdr *ehdr;
2396 gdb_byte *buf;
e2a44558 2397
09919ac2 2398 ehdr = elf_elfheader (abfd);
b8040f19 2399
09919ac2
JK
2400 *phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
2401 if (*phdrs_size == 0)
2402 return NULL;
2403
2404 buf = xmalloc (*phdrs_size);
2405 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
2406 || bfd_bread (buf, *phdrs_size, abfd) != *phdrs_size)
2407 {
2408 xfree (buf);
2409 return NULL;
2410 }
2411
2412 return buf;
b8040f19
JK
2413}
2414
01c30d6e
JK
2415/* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
2416 exec_bfd. Otherwise return 0.
2417
2418 We relocate all of the sections by the same amount. This
c378eb4e 2419 behavior is mandated by recent editions of the System V ABI.
b8040f19
JK
2420 According to the System V Application Binary Interface,
2421 Edition 4.1, page 5-5:
2422
2423 ... Though the system chooses virtual addresses for
2424 individual processes, it maintains the segments' relative
2425 positions. Because position-independent code uses relative
2426 addressesing between segments, the difference between
2427 virtual addresses in memory must match the difference
2428 between virtual addresses in the file. The difference
2429 between the virtual address of any segment in memory and
2430 the corresponding virtual address in the file is thus a
2431 single constant value for any one executable or shared
2432 object in a given process. This difference is the base
2433 address. One use of the base address is to relocate the
2434 memory image of the program during dynamic linking.
2435
2436 The same language also appears in Edition 4.0 of the System V
09919ac2
JK
2437 ABI and is left unspecified in some of the earlier editions.
2438
2439 Decide if the objfile needs to be relocated. As indicated above, we will
2440 only be here when execution is stopped. But during attachment PC can be at
2441 arbitrary address therefore regcache_read_pc can be misleading (contrary to
2442 the auxv AT_ENTRY value). Moreover for executable with interpreter section
2443 regcache_read_pc would point to the interpreter and not the main executable.
2444
2445 So, to summarize, relocations are necessary when the start address obtained
2446 from the executable is different from the address in auxv AT_ENTRY entry.
d989b283 2447
09919ac2
JK
2448 [ The astute reader will note that we also test to make sure that
2449 the executable in question has the DYNAMIC flag set. It is my
2450 opinion that this test is unnecessary (undesirable even). It
2451 was added to avoid inadvertent relocation of an executable
2452 whose e_type member in the ELF header is not ET_DYN. There may
2453 be a time in the future when it is desirable to do relocations
2454 on other types of files as well in which case this condition
2455 should either be removed or modified to accomodate the new file
2456 type. - Kevin, Nov 2000. ] */
b8040f19 2457
01c30d6e
JK
2458static int
2459svr4_exec_displacement (CORE_ADDR *displacementp)
b8040f19 2460{
41752192
JK
2461 /* ENTRY_POINT is a possible function descriptor - before
2462 a call to gdbarch_convert_from_func_ptr_addr. */
09919ac2 2463 CORE_ADDR entry_point, displacement;
b8040f19
JK
2464
2465 if (exec_bfd == NULL)
2466 return 0;
2467
09919ac2
JK
2468 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
2469 being executed themselves and PIE (Position Independent Executable)
2470 executables are ET_DYN. */
2471
2472 if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0)
2473 return 0;
2474
2475 if (target_auxv_search (&current_target, AT_ENTRY, &entry_point) <= 0)
2476 return 0;
2477
2478 displacement = entry_point - bfd_get_start_address (exec_bfd);
2479
2480 /* Verify the DISPLACEMENT candidate complies with the required page
2481 alignment. It is cheaper than the program headers comparison below. */
2482
2483 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2484 {
2485 const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd);
2486
2487 /* p_align of PT_LOAD segments does not specify any alignment but
2488 only congruency of addresses:
2489 p_offset % p_align == p_vaddr % p_align
2490 Kernel is free to load the executable with lower alignment. */
2491
2492 if ((displacement & (elf->minpagesize - 1)) != 0)
2493 return 0;
2494 }
2495
2496 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
2497 comparing their program headers. If the program headers in the auxilliary
2498 vector do not match the program headers in the executable, then we are
2499 looking at a different file than the one used by the kernel - for
2500 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
2501
2502 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2503 {
2504 /* Be optimistic and clear OK only if GDB was able to verify the headers
2505 really do not match. */
2506 int phdrs_size, phdrs2_size, ok = 1;
2507 gdb_byte *buf, *buf2;
0a1e94c7 2508 int arch_size;
09919ac2 2509
0a1e94c7 2510 buf = read_program_header (-1, &phdrs_size, &arch_size);
09919ac2 2511 buf2 = read_program_headers_from_bfd (exec_bfd, &phdrs2_size);
0a1e94c7
JK
2512 if (buf != NULL && buf2 != NULL)
2513 {
f5656ead 2514 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
0a1e94c7
JK
2515
2516 /* We are dealing with three different addresses. EXEC_BFD
2517 represents current address in on-disk file. target memory content
2518 may be different from EXEC_BFD as the file may have been prelinked
2519 to a different address after the executable has been loaded.
2520 Moreover the address of placement in target memory can be
3e43a32a
MS
2521 different from what the program headers in target memory say -
2522 this is the goal of PIE.
0a1e94c7
JK
2523
2524 Detected DISPLACEMENT covers both the offsets of PIE placement and
2525 possible new prelink performed after start of the program. Here
2526 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
2527 content offset for the verification purpose. */
2528
2529 if (phdrs_size != phdrs2_size
2530 || bfd_get_arch_size (exec_bfd) != arch_size)
2531 ok = 0;
3e43a32a
MS
2532 else if (arch_size == 32
2533 && phdrs_size >= sizeof (Elf32_External_Phdr)
0a1e94c7
JK
2534 && phdrs_size % sizeof (Elf32_External_Phdr) == 0)
2535 {
2536 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2537 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2538 CORE_ADDR displacement = 0;
2539 int i;
2540
2541 /* DISPLACEMENT could be found more easily by the difference of
2542 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2543 already have enough information to compute that displacement
2544 with what we've read. */
2545
2546 for (i = 0; i < ehdr2->e_phnum; i++)
2547 if (phdr2[i].p_type == PT_LOAD)
2548 {
2549 Elf32_External_Phdr *phdrp;
2550 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2551 CORE_ADDR vaddr, paddr;
2552 CORE_ADDR displacement_vaddr = 0;
2553 CORE_ADDR displacement_paddr = 0;
2554
2555 phdrp = &((Elf32_External_Phdr *) buf)[i];
2556 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2557 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2558
2559 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2560 byte_order);
2561 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2562
2563 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2564 byte_order);
2565 displacement_paddr = paddr - phdr2[i].p_paddr;
2566
2567 if (displacement_vaddr == displacement_paddr)
2568 displacement = displacement_vaddr;
2569
2570 break;
2571 }
2572
2573 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2574
2575 for (i = 0; i < phdrs_size / sizeof (Elf32_External_Phdr); i++)
2576 {
2577 Elf32_External_Phdr *phdrp;
2578 Elf32_External_Phdr *phdr2p;
2579 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2580 CORE_ADDR vaddr, paddr;
43b8e241 2581 asection *plt2_asect;
0a1e94c7
JK
2582
2583 phdrp = &((Elf32_External_Phdr *) buf)[i];
2584 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2585 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2586 phdr2p = &((Elf32_External_Phdr *) buf2)[i];
2587
2588 /* PT_GNU_STACK is an exception by being never relocated by
2589 prelink as its addresses are always zero. */
2590
2591 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2592 continue;
2593
2594 /* Check also other adjustment combinations - PR 11786. */
2595
3e43a32a
MS
2596 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2597 byte_order);
0a1e94c7
JK
2598 vaddr -= displacement;
2599 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
2600
3e43a32a
MS
2601 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2602 byte_order);
0a1e94c7
JK
2603 paddr -= displacement;
2604 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
2605
2606 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2607 continue;
2608
204b5331
DE
2609 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2610 CentOS-5 has problems with filesz, memsz as well.
2611 See PR 11786. */
2612 if (phdr2[i].p_type == PT_GNU_RELRO)
2613 {
2614 Elf32_External_Phdr tmp_phdr = *phdrp;
2615 Elf32_External_Phdr tmp_phdr2 = *phdr2p;
2616
2617 memset (tmp_phdr.p_filesz, 0, 4);
2618 memset (tmp_phdr.p_memsz, 0, 4);
2619 memset (tmp_phdr.p_flags, 0, 4);
2620 memset (tmp_phdr.p_align, 0, 4);
2621 memset (tmp_phdr2.p_filesz, 0, 4);
2622 memset (tmp_phdr2.p_memsz, 0, 4);
2623 memset (tmp_phdr2.p_flags, 0, 4);
2624 memset (tmp_phdr2.p_align, 0, 4);
2625
2626 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2627 == 0)
2628 continue;
2629 }
2630
43b8e241
JK
2631 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2632 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2633 if (plt2_asect)
2634 {
2635 int content2;
2636 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2637 CORE_ADDR filesz;
2638
2639 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2640 & SEC_HAS_CONTENTS) != 0;
2641
2642 filesz = extract_unsigned_integer (buf_filesz_p, 4,
2643 byte_order);
2644
2645 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2646 FILESZ is from the in-memory image. */
2647 if (content2)
2648 filesz += bfd_get_section_size (plt2_asect);
2649 else
2650 filesz -= bfd_get_section_size (plt2_asect);
2651
2652 store_unsigned_integer (buf_filesz_p, 4, byte_order,
2653 filesz);
2654
2655 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2656 continue;
2657 }
2658
0a1e94c7
JK
2659 ok = 0;
2660 break;
2661 }
2662 }
3e43a32a
MS
2663 else if (arch_size == 64
2664 && phdrs_size >= sizeof (Elf64_External_Phdr)
0a1e94c7
JK
2665 && phdrs_size % sizeof (Elf64_External_Phdr) == 0)
2666 {
2667 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2668 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2669 CORE_ADDR displacement = 0;
2670 int i;
2671
2672 /* DISPLACEMENT could be found more easily by the difference of
2673 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2674 already have enough information to compute that displacement
2675 with what we've read. */
2676
2677 for (i = 0; i < ehdr2->e_phnum; i++)
2678 if (phdr2[i].p_type == PT_LOAD)
2679 {
2680 Elf64_External_Phdr *phdrp;
2681 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2682 CORE_ADDR vaddr, paddr;
2683 CORE_ADDR displacement_vaddr = 0;
2684 CORE_ADDR displacement_paddr = 0;
2685
2686 phdrp = &((Elf64_External_Phdr *) buf)[i];
2687 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2688 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2689
2690 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2691 byte_order);
2692 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2693
2694 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2695 byte_order);
2696 displacement_paddr = paddr - phdr2[i].p_paddr;
2697
2698 if (displacement_vaddr == displacement_paddr)
2699 displacement = displacement_vaddr;
2700
2701 break;
2702 }
2703
2704 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2705
2706 for (i = 0; i < phdrs_size / sizeof (Elf64_External_Phdr); i++)
2707 {
2708 Elf64_External_Phdr *phdrp;
2709 Elf64_External_Phdr *phdr2p;
2710 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2711 CORE_ADDR vaddr, paddr;
43b8e241 2712 asection *plt2_asect;
0a1e94c7
JK
2713
2714 phdrp = &((Elf64_External_Phdr *) buf)[i];
2715 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2716 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2717 phdr2p = &((Elf64_External_Phdr *) buf2)[i];
2718
2719 /* PT_GNU_STACK is an exception by being never relocated by
2720 prelink as its addresses are always zero. */
2721
2722 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2723 continue;
2724
2725 /* Check also other adjustment combinations - PR 11786. */
2726
3e43a32a
MS
2727 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2728 byte_order);
0a1e94c7
JK
2729 vaddr -= displacement;
2730 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
2731
3e43a32a
MS
2732 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2733 byte_order);
0a1e94c7
JK
2734 paddr -= displacement;
2735 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
2736
2737 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2738 continue;
2739
204b5331
DE
2740 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2741 CentOS-5 has problems with filesz, memsz as well.
2742 See PR 11786. */
2743 if (phdr2[i].p_type == PT_GNU_RELRO)
2744 {
2745 Elf64_External_Phdr tmp_phdr = *phdrp;
2746 Elf64_External_Phdr tmp_phdr2 = *phdr2p;
2747
2748 memset (tmp_phdr.p_filesz, 0, 8);
2749 memset (tmp_phdr.p_memsz, 0, 8);
2750 memset (tmp_phdr.p_flags, 0, 4);
2751 memset (tmp_phdr.p_align, 0, 8);
2752 memset (tmp_phdr2.p_filesz, 0, 8);
2753 memset (tmp_phdr2.p_memsz, 0, 8);
2754 memset (tmp_phdr2.p_flags, 0, 4);
2755 memset (tmp_phdr2.p_align, 0, 8);
2756
2757 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2758 == 0)
2759 continue;
2760 }
2761
43b8e241
JK
2762 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2763 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2764 if (plt2_asect)
2765 {
2766 int content2;
2767 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2768 CORE_ADDR filesz;
2769
2770 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2771 & SEC_HAS_CONTENTS) != 0;
2772
2773 filesz = extract_unsigned_integer (buf_filesz_p, 8,
2774 byte_order);
2775
2776 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2777 FILESZ is from the in-memory image. */
2778 if (content2)
2779 filesz += bfd_get_section_size (plt2_asect);
2780 else
2781 filesz -= bfd_get_section_size (plt2_asect);
2782
2783 store_unsigned_integer (buf_filesz_p, 8, byte_order,
2784 filesz);
2785
2786 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2787 continue;
2788 }
2789
0a1e94c7
JK
2790 ok = 0;
2791 break;
2792 }
2793 }
2794 else
2795 ok = 0;
2796 }
09919ac2
JK
2797
2798 xfree (buf);
2799 xfree (buf2);
2800
2801 if (!ok)
2802 return 0;
2803 }
b8040f19 2804
ccf26247
JK
2805 if (info_verbose)
2806 {
2807 /* It can be printed repeatedly as there is no easy way to check
2808 the executable symbols/file has been already relocated to
2809 displacement. */
2810
2811 printf_unfiltered (_("Using PIE (Position Independent Executable) "
2812 "displacement %s for \"%s\".\n"),
f5656ead 2813 paddress (target_gdbarch (), displacement),
ccf26247
JK
2814 bfd_get_filename (exec_bfd));
2815 }
2816
01c30d6e
JK
2817 *displacementp = displacement;
2818 return 1;
b8040f19
JK
2819}
2820
2821/* Relocate the main executable. This function should be called upon
c378eb4e 2822 stopping the inferior process at the entry point to the program.
b8040f19
JK
2823 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
2824 different, the main executable is relocated by the proper amount. */
2825
2826static void
2827svr4_relocate_main_executable (void)
2828{
01c30d6e
JK
2829 CORE_ADDR displacement;
2830
4e5799b6
JK
2831 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
2832 probably contains the offsets computed using the PIE displacement
2833 from the previous run, which of course are irrelevant for this run.
2834 So we need to determine the new PIE displacement and recompute the
2835 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
2836 already contains pre-computed offsets.
01c30d6e 2837
4e5799b6 2838 If we cannot compute the PIE displacement, either:
01c30d6e 2839
4e5799b6
JK
2840 - The executable is not PIE.
2841
2842 - SYMFILE_OBJFILE does not match the executable started in the target.
2843 This can happen for main executable symbols loaded at the host while
2844 `ld.so --ld-args main-executable' is loaded in the target.
2845
2846 Then we leave the section offsets untouched and use them as is for
2847 this run. Either:
2848
2849 - These section offsets were properly reset earlier, and thus
2850 already contain the correct values. This can happen for instance
2851 when reconnecting via the remote protocol to a target that supports
2852 the `qOffsets' packet.
2853
2854 - The section offsets were not reset earlier, and the best we can
c378eb4e 2855 hope is that the old offsets are still applicable to the new run. */
01c30d6e
JK
2856
2857 if (! svr4_exec_displacement (&displacement))
2858 return;
b8040f19 2859
01c30d6e
JK
2860 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
2861 addresses. */
b8040f19
JK
2862
2863 if (symfile_objfile)
e2a44558 2864 {
e2a44558 2865 struct section_offsets *new_offsets;
b8040f19 2866 int i;
e2a44558 2867
b8040f19
JK
2868 new_offsets = alloca (symfile_objfile->num_sections
2869 * sizeof (*new_offsets));
e2a44558 2870
b8040f19
JK
2871 for (i = 0; i < symfile_objfile->num_sections; i++)
2872 new_offsets->offsets[i] = displacement;
e2a44558 2873
b8040f19 2874 objfile_relocate (symfile_objfile, new_offsets);
e2a44558 2875 }
51bee8e9
JK
2876 else if (exec_bfd)
2877 {
2878 asection *asect;
2879
2880 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
2881 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
2882 (bfd_section_vma (exec_bfd, asect)
2883 + displacement));
2884 }
e2a44558
KB
2885}
2886
7f86f058 2887/* Implement the "create_inferior_hook" target_solib_ops method.
13437d4b
KB
2888
2889 For SVR4 executables, this first instruction is either the first
2890 instruction in the dynamic linker (for dynamically linked
2891 executables) or the instruction at "start" for statically linked
2892 executables. For dynamically linked executables, the system
2893 first exec's /lib/libc.so.N, which contains the dynamic linker,
2894 and starts it running. The dynamic linker maps in any needed
2895 shared libraries, maps in the actual user executable, and then
2896 jumps to "start" in the user executable.
2897
7f86f058
PA
2898 We can arrange to cooperate with the dynamic linker to discover the
2899 names of shared libraries that are dynamically linked, and the base
2900 addresses to which they are linked.
13437d4b
KB
2901
2902 This function is responsible for discovering those names and
2903 addresses, and saving sufficient information about them to allow
d2e5c99a 2904 their symbols to be read at a later time. */
13437d4b 2905
e2a44558 2906static void
268a4a75 2907svr4_solib_create_inferior_hook (int from_tty)
13437d4b 2908{
1a816a87
PA
2909 struct svr4_info *info;
2910
6c95b8df 2911 info = get_svr4_info ();
2020b7ab 2912
f9e14852
GB
2913 /* Clear the probes-based interface's state. */
2914 free_probes_table (info);
2915 free_solib_list (info);
2916
e2a44558 2917 /* Relocate the main executable if necessary. */
86e4bafc 2918 svr4_relocate_main_executable ();
e2a44558 2919
c91c8c16
PA
2920 /* No point setting a breakpoint in the dynamic linker if we can't
2921 hit it (e.g., a core file, or a trace file). */
2922 if (!target_has_execution)
2923 return;
2924
d5a921c9 2925 if (!svr4_have_link_map_offsets ())
513f5903 2926 return;
d5a921c9 2927
268a4a75 2928 if (!enable_break (info, from_tty))
542c95c2 2929 return;
13437d4b
KB
2930}
2931
2932static void
2933svr4_clear_solib (void)
2934{
6c95b8df
PA
2935 struct svr4_info *info;
2936
2937 info = get_svr4_info ();
2938 info->debug_base = 0;
2939 info->debug_loader_offset_p = 0;
2940 info->debug_loader_offset = 0;
2941 xfree (info->debug_loader_name);
2942 info->debug_loader_name = NULL;
13437d4b
KB
2943}
2944
6bb7be43
JB
2945/* Clear any bits of ADDR that wouldn't fit in a target-format
2946 data pointer. "Data pointer" here refers to whatever sort of
2947 address the dynamic linker uses to manage its sections. At the
2948 moment, we don't support shared libraries on any processors where
2949 code and data pointers are different sizes.
2950
2951 This isn't really the right solution. What we really need here is
2952 a way to do arithmetic on CORE_ADDR values that respects the
2953 natural pointer/address correspondence. (For example, on the MIPS,
2954 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
2955 sign-extend the value. There, simply truncating the bits above
819844ad 2956 gdbarch_ptr_bit, as we do below, is no good.) This should probably
6bb7be43
JB
2957 be a new gdbarch method or something. */
2958static CORE_ADDR
2959svr4_truncate_ptr (CORE_ADDR addr)
2960{
f5656ead 2961 if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8)
6bb7be43
JB
2962 /* We don't need to truncate anything, and the bit twiddling below
2963 will fail due to overflow problems. */
2964 return addr;
2965 else
f5656ead 2966 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1);
6bb7be43
JB
2967}
2968
2969
749499cb
KB
2970static void
2971svr4_relocate_section_addresses (struct so_list *so,
0542c86d 2972 struct target_section *sec)
749499cb 2973{
2b2848e2
DE
2974 bfd *abfd = sec->the_bfd_section->owner;
2975
2976 sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so, abfd));
2977 sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so, abfd));
749499cb 2978}
4b188b9f 2979\f
749499cb 2980
4b188b9f 2981/* Architecture-specific operations. */
6bb7be43 2982
4b188b9f
MK
2983/* Per-architecture data key. */
2984static struct gdbarch_data *solib_svr4_data;
e5e2b9ff 2985
4b188b9f 2986struct solib_svr4_ops
e5e2b9ff 2987{
4b188b9f
MK
2988 /* Return a description of the layout of `struct link_map'. */
2989 struct link_map_offsets *(*fetch_link_map_offsets)(void);
2990};
e5e2b9ff 2991
4b188b9f 2992/* Return a default for the architecture-specific operations. */
e5e2b9ff 2993
4b188b9f
MK
2994static void *
2995solib_svr4_init (struct obstack *obstack)
e5e2b9ff 2996{
4b188b9f 2997 struct solib_svr4_ops *ops;
e5e2b9ff 2998
4b188b9f 2999 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
8d005789 3000 ops->fetch_link_map_offsets = NULL;
4b188b9f 3001 return ops;
e5e2b9ff
KB
3002}
3003
4b188b9f 3004/* Set the architecture-specific `struct link_map_offsets' fetcher for
7e3cb44c 3005 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
1c4dcb57 3006
21479ded 3007void
e5e2b9ff
KB
3008set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
3009 struct link_map_offsets *(*flmo) (void))
21479ded 3010{
4b188b9f
MK
3011 struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data);
3012
3013 ops->fetch_link_map_offsets = flmo;
7e3cb44c
UW
3014
3015 set_solib_ops (gdbarch, &svr4_so_ops);
21479ded
KB
3016}
3017
4b188b9f
MK
3018/* Fetch a link_map_offsets structure using the architecture-specific
3019 `struct link_map_offsets' fetcher. */
1c4dcb57 3020
4b188b9f
MK
3021static struct link_map_offsets *
3022svr4_fetch_link_map_offsets (void)
21479ded 3023{
f5656ead 3024 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch (), solib_svr4_data);
4b188b9f
MK
3025
3026 gdb_assert (ops->fetch_link_map_offsets);
3027 return ops->fetch_link_map_offsets ();
21479ded
KB
3028}
3029
4b188b9f
MK
3030/* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
3031
3032static int
3033svr4_have_link_map_offsets (void)
3034{
f5656ead 3035 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch (), solib_svr4_data);
433759f7 3036
4b188b9f
MK
3037 return (ops->fetch_link_map_offsets != NULL);
3038}
3039\f
3040
e4bbbda8
MK
3041/* Most OS'es that have SVR4-style ELF dynamic libraries define a
3042 `struct r_debug' and a `struct link_map' that are binary compatible
3043 with the origional SVR4 implementation. */
3044
3045/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3046 for an ILP32 SVR4 system. */
d989b283 3047
e4bbbda8
MK
3048struct link_map_offsets *
3049svr4_ilp32_fetch_link_map_offsets (void)
3050{
3051 static struct link_map_offsets lmo;
3052 static struct link_map_offsets *lmp = NULL;
3053
3054 if (lmp == NULL)
3055 {
3056 lmp = &lmo;
3057
e4cd0d6a
MK
3058 lmo.r_version_offset = 0;
3059 lmo.r_version_size = 4;
e4bbbda8 3060 lmo.r_map_offset = 4;
7cd25cfc 3061 lmo.r_brk_offset = 8;
e4cd0d6a 3062 lmo.r_ldsomap_offset = 20;
e4bbbda8
MK
3063
3064 /* Everything we need is in the first 20 bytes. */
3065 lmo.link_map_size = 20;
3066 lmo.l_addr_offset = 0;
e4bbbda8 3067 lmo.l_name_offset = 4;
cc10cae3 3068 lmo.l_ld_offset = 8;
e4bbbda8 3069 lmo.l_next_offset = 12;
e4bbbda8 3070 lmo.l_prev_offset = 16;
e4bbbda8
MK
3071 }
3072
3073 return lmp;
3074}
3075
3076/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3077 for an LP64 SVR4 system. */
d989b283 3078
e4bbbda8
MK
3079struct link_map_offsets *
3080svr4_lp64_fetch_link_map_offsets (void)
3081{
3082 static struct link_map_offsets lmo;
3083 static struct link_map_offsets *lmp = NULL;
3084
3085 if (lmp == NULL)
3086 {
3087 lmp = &lmo;
3088
e4cd0d6a
MK
3089 lmo.r_version_offset = 0;
3090 lmo.r_version_size = 4;
e4bbbda8 3091 lmo.r_map_offset = 8;
7cd25cfc 3092 lmo.r_brk_offset = 16;
e4cd0d6a 3093 lmo.r_ldsomap_offset = 40;
e4bbbda8
MK
3094
3095 /* Everything we need is in the first 40 bytes. */
3096 lmo.link_map_size = 40;
3097 lmo.l_addr_offset = 0;
e4bbbda8 3098 lmo.l_name_offset = 8;
cc10cae3 3099 lmo.l_ld_offset = 16;
e4bbbda8 3100 lmo.l_next_offset = 24;
e4bbbda8 3101 lmo.l_prev_offset = 32;
e4bbbda8
MK
3102 }
3103
3104 return lmp;
3105}
3106\f
3107
7d522c90 3108struct target_so_ops svr4_so_ops;
13437d4b 3109
c378eb4e 3110/* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
3a40aaa0
UW
3111 different rule for symbol lookup. The lookup begins here in the DSO, not in
3112 the main executable. */
3113
3114static struct symbol *
3115elf_lookup_lib_symbol (const struct objfile *objfile,
3116 const char *name,
21b556f4 3117 const domain_enum domain)
3a40aaa0 3118{
61f0d762
JK
3119 bfd *abfd;
3120
3121 if (objfile == symfile_objfile)
3122 abfd = exec_bfd;
3123 else
3124 {
3125 /* OBJFILE should have been passed as the non-debug one. */
3126 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
3127
3128 abfd = objfile->obfd;
3129 }
3130
3131 if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL) != 1)
3a40aaa0
UW
3132 return NULL;
3133
94af9270 3134 return lookup_global_symbol_from_objfile (objfile, name, domain);
3a40aaa0
UW
3135}
3136
a78f21af
AC
3137extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
3138
13437d4b
KB
3139void
3140_initialize_svr4_solib (void)
3141{
4b188b9f 3142 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
6c95b8df 3143 solib_svr4_pspace_data
8e260fc0 3144 = register_program_space_data_with_cleanup (NULL, svr4_pspace_data_cleanup);
4b188b9f 3145
749499cb 3146 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
13437d4b 3147 svr4_so_ops.free_so = svr4_free_so;
0892cb63 3148 svr4_so_ops.clear_so = svr4_clear_so;
13437d4b
KB
3149 svr4_so_ops.clear_solib = svr4_clear_solib;
3150 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
3151 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
3152 svr4_so_ops.current_sos = svr4_current_sos;
3153 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
d7fa2ae2 3154 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
831a0c44 3155 svr4_so_ops.bfd_open = solib_bfd_open;
3a40aaa0 3156 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
a7c02bc8 3157 svr4_so_ops.same = svr4_same;
de18c1d8 3158 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
f9e14852
GB
3159 svr4_so_ops.update_breakpoints = svr4_update_solib_event_breakpoints;
3160 svr4_so_ops.handle_event = svr4_handle_solib_event;
13437d4b 3161}
This page took 2.134768 seconds and 4 git commands to generate.