Add support for NetBSD/sh3 core file sections. Merge multiple copies of auxv section...
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
CommitLineData
ab31aa69 1/* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2f4950cd 2
42a4f53d 3 Copyright (C) 1990-2019 Free Software Foundation, Inc.
13437d4b
KB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
13437d4b
KB
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
13437d4b 19
13437d4b
KB
20#include "defs.h"
21
13437d4b 22#include "elf/external.h"
21479ded 23#include "elf/common.h"
f7856c8f 24#include "elf/mips.h"
13437d4b
KB
25
26#include "symtab.h"
27#include "bfd.h"
28#include "symfile.h"
29#include "objfiles.h"
30#include "gdbcore.h"
13437d4b 31#include "target.h"
13437d4b 32#include "inferior.h"
45741a9c 33#include "infrun.h"
fb14de7b 34#include "regcache.h"
2020b7ab 35#include "gdbthread.h"
76727919 36#include "observable.h"
13437d4b
KB
37
38#include "solist.h"
bba93f6c 39#include "solib.h"
13437d4b
KB
40#include "solib-svr4.h"
41
2f4950cd 42#include "bfd-target.h"
cc10cae3 43#include "elf-bfd.h"
2f4950cd 44#include "exec.h"
8d4e36ba 45#include "auxv.h"
695c3173 46#include "gdb_bfd.h"
f9e14852 47#include "probe.h"
2f4950cd 48
e5e2b9ff 49static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
d5a921c9 50static int svr4_have_link_map_offsets (void);
9f2982ff 51static void svr4_relocate_main_executable (void);
f9e14852 52static void svr4_free_library_list (void *p_list);
7905fc35 53static void probes_table_remove_objfile_probes (struct objfile *objfile);
1c4dcb57 54
13437d4b
KB
55/* On SVR4 systems, a list of symbols in the dynamic linker where
56 GDB can try to place a breakpoint to monitor shared library
57 events.
58
59 If none of these symbols are found, or other errors occur, then
60 SVR4 systems will fall back to using a symbol as the "startup
61 mapping complete" breakpoint address. */
62
bc043ef3 63static const char * const solib_break_names[] =
13437d4b
KB
64{
65 "r_debug_state",
66 "_r_debug_state",
67 "_dl_debug_state",
68 "rtld_db_dlactivity",
4c7dcb84 69 "__dl_rtld_db_dlactivity",
1f72e589 70 "_rtld_debug_state",
4c0122c8 71
13437d4b
KB
72 NULL
73};
13437d4b 74
bc043ef3 75static const char * const bkpt_names[] =
13437d4b 76{
13437d4b 77 "_start",
ad3dcc5c 78 "__start",
13437d4b
KB
79 "main",
80 NULL
81};
13437d4b 82
bc043ef3 83static const char * const main_name_list[] =
13437d4b
KB
84{
85 "main_$main",
86 NULL
87};
88
f9e14852
GB
89/* What to do when a probe stop occurs. */
90
91enum probe_action
92{
93 /* Something went seriously wrong. Stop using probes and
94 revert to using the older interface. */
95 PROBES_INTERFACE_FAILED,
96
97 /* No action is required. The shared object list is still
98 valid. */
99 DO_NOTHING,
100
101 /* The shared object list should be reloaded entirely. */
102 FULL_RELOAD,
103
104 /* Attempt to incrementally update the shared object list. If
105 the update fails or is not possible, fall back to reloading
106 the list in full. */
107 UPDATE_OR_RELOAD,
108};
109
110/* A probe's name and its associated action. */
111
112struct probe_info
113{
114 /* The name of the probe. */
115 const char *name;
116
117 /* What to do when a probe stop occurs. */
118 enum probe_action action;
119};
120
121/* A list of named probes and their associated actions. If all
122 probes are present in the dynamic linker then the probes-based
123 interface will be used. */
124
125static const struct probe_info probe_info[] =
126{
127 { "init_start", DO_NOTHING },
128 { "init_complete", FULL_RELOAD },
129 { "map_start", DO_NOTHING },
130 { "map_failed", DO_NOTHING },
131 { "reloc_complete", UPDATE_OR_RELOAD },
132 { "unmap_start", DO_NOTHING },
133 { "unmap_complete", FULL_RELOAD },
134};
135
136#define NUM_PROBES ARRAY_SIZE (probe_info)
137
4d7b2d5b
JB
138/* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
139 the same shared library. */
140
141static int
142svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
143{
144 if (strcmp (gdb_so_name, inferior_so_name) == 0)
145 return 1;
146
147 /* On Solaris, when starting inferior we think that dynamic linker is
d989b283
PP
148 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
149 contains /lib/ld.so.1. Sometimes one file is a link to another, but
4d7b2d5b
JB
150 sometimes they have identical content, but are not linked to each
151 other. We don't restrict this check for Solaris, but the chances
152 of running into this situation elsewhere are very low. */
153 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
154 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
155 return 1;
156
7307a73a 157 /* Similarly, we observed the same issue with amd64 and sparcv9, but with
4d7b2d5b 158 different locations. */
7307a73a
RO
159 if (strcmp (gdb_so_name, "/usr/lib/amd64/ld.so.1") == 0
160 && strcmp (inferior_so_name, "/lib/amd64/ld.so.1") == 0)
161 return 1;
162
4d7b2d5b
JB
163 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
164 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
165 return 1;
166
167 return 0;
168}
169
170static int
171svr4_same (struct so_list *gdb, struct so_list *inferior)
172{
173 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
174}
175
a7961323 176static std::unique_ptr<lm_info_svr4>
3957565a 177lm_info_read (CORE_ADDR lm_addr)
13437d4b 178{
4b188b9f 179 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
a7961323 180 std::unique_ptr<lm_info_svr4> lm_info;
3957565a 181
a7961323 182 gdb::byte_vector lm (lmo->link_map_size);
3957565a 183
a7961323
TT
184 if (target_read_memory (lm_addr, lm.data (), lmo->link_map_size) != 0)
185 warning (_("Error reading shared library list entry at %s"),
186 paddress (target_gdbarch (), lm_addr));
3957565a
JK
187 else
188 {
f5656ead 189 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
13437d4b 190
a7961323 191 lm_info.reset (new lm_info_svr4);
3957565a
JK
192 lm_info->lm_addr = lm_addr;
193
194 lm_info->l_addr_inferior = extract_typed_address (&lm[lmo->l_addr_offset],
195 ptr_type);
196 lm_info->l_ld = extract_typed_address (&lm[lmo->l_ld_offset], ptr_type);
197 lm_info->l_next = extract_typed_address (&lm[lmo->l_next_offset],
198 ptr_type);
199 lm_info->l_prev = extract_typed_address (&lm[lmo->l_prev_offset],
200 ptr_type);
201 lm_info->l_name = extract_typed_address (&lm[lmo->l_name_offset],
202 ptr_type);
203 }
204
3957565a 205 return lm_info;
13437d4b
KB
206}
207
cc10cae3 208static int
b23518f0 209has_lm_dynamic_from_link_map (void)
cc10cae3
AO
210{
211 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
212
cfaefc65 213 return lmo->l_ld_offset >= 0;
cc10cae3
AO
214}
215
cc10cae3 216static CORE_ADDR
f65ce5fb 217lm_addr_check (const struct so_list *so, bfd *abfd)
cc10cae3 218{
d0e449a1
SM
219 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
220
221 if (!li->l_addr_p)
cc10cae3
AO
222 {
223 struct bfd_section *dyninfo_sect;
28f34a8f 224 CORE_ADDR l_addr, l_dynaddr, dynaddr;
cc10cae3 225
d0e449a1 226 l_addr = li->l_addr_inferior;
cc10cae3 227
b23518f0 228 if (! abfd || ! has_lm_dynamic_from_link_map ())
cc10cae3
AO
229 goto set_addr;
230
d0e449a1 231 l_dynaddr = li->l_ld;
cc10cae3
AO
232
233 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
234 if (dyninfo_sect == NULL)
235 goto set_addr;
236
237 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
238
239 if (dynaddr + l_addr != l_dynaddr)
240 {
28f34a8f 241 CORE_ADDR align = 0x1000;
4e1fc9c9 242 CORE_ADDR minpagesize = align;
28f34a8f 243
cc10cae3
AO
244 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
245 {
246 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
247 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
248 int i;
249
250 align = 1;
251
252 for (i = 0; i < ehdr->e_phnum; i++)
253 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
254 align = phdr[i].p_align;
4e1fc9c9
JK
255
256 minpagesize = get_elf_backend_data (abfd)->minpagesize;
cc10cae3
AO
257 }
258
259 /* Turn it into a mask. */
260 align--;
261
262 /* If the changes match the alignment requirements, we
263 assume we're using a core file that was generated by the
264 same binary, just prelinked with a different base offset.
265 If it doesn't match, we may have a different binary, the
266 same binary with the dynamic table loaded at an unrelated
267 location, or anything, really. To avoid regressions,
268 don't adjust the base offset in the latter case, although
269 odds are that, if things really changed, debugging won't
5c0d192f
JK
270 quite work.
271
272 One could expect more the condition
273 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
274 but the one below is relaxed for PPC. The PPC kernel supports
275 either 4k or 64k page sizes. To be prepared for 64k pages,
276 PPC ELF files are built using an alignment requirement of 64k.
277 However, when running on a kernel supporting 4k pages, the memory
278 mapping of the library may not actually happen on a 64k boundary!
279
280 (In the usual case where (l_addr & align) == 0, this check is
4e1fc9c9
JK
281 equivalent to the possibly expected check above.)
282
283 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
5c0d192f 284
02835898
JK
285 l_addr = l_dynaddr - dynaddr;
286
4e1fc9c9
JK
287 if ((l_addr & (minpagesize - 1)) == 0
288 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
cc10cae3 289 {
701ed6dc 290 if (info_verbose)
ccf26247
JK
291 printf_unfiltered (_("Using PIC (Position Independent Code) "
292 "prelink displacement %s for \"%s\".\n"),
f5656ead 293 paddress (target_gdbarch (), l_addr),
ccf26247 294 so->so_name);
cc10cae3 295 }
79d4c408 296 else
02835898
JK
297 {
298 /* There is no way to verify the library file matches. prelink
299 can during prelinking of an unprelinked file (or unprelinking
300 of a prelinked file) shift the DYNAMIC segment by arbitrary
301 offset without any page size alignment. There is no way to
302 find out the ELF header and/or Program Headers for a limited
303 verification if it they match. One could do a verification
304 of the DYNAMIC segment. Still the found address is the best
305 one GDB could find. */
306
307 warning (_(".dynamic section for \"%s\" "
308 "is not at the expected address "
309 "(wrong library or version mismatch?)"), so->so_name);
310 }
cc10cae3
AO
311 }
312
313 set_addr:
d0e449a1
SM
314 li->l_addr = l_addr;
315 li->l_addr_p = 1;
cc10cae3
AO
316 }
317
d0e449a1 318 return li->l_addr;
cc10cae3
AO
319}
320
6c95b8df 321/* Per pspace SVR4 specific data. */
13437d4b 322
1a816a87
PA
323struct svr4_info
324{
09232438
TT
325 svr4_info () = default;
326 ~svr4_info ();
327
328 /* Base of dynamic linker structures. */
329 CORE_ADDR debug_base = 0;
1a816a87
PA
330
331 /* Validity flag for debug_loader_offset. */
09232438 332 int debug_loader_offset_p = 0;
1a816a87
PA
333
334 /* Load address for the dynamic linker, inferred. */
09232438 335 CORE_ADDR debug_loader_offset = 0;
1a816a87
PA
336
337 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
09232438 338 char *debug_loader_name = nullptr;
1a816a87
PA
339
340 /* Load map address for the main executable. */
09232438 341 CORE_ADDR main_lm_addr = 0;
1a816a87 342
09232438
TT
343 CORE_ADDR interp_text_sect_low = 0;
344 CORE_ADDR interp_text_sect_high = 0;
345 CORE_ADDR interp_plt_sect_low = 0;
346 CORE_ADDR interp_plt_sect_high = 0;
f9e14852
GB
347
348 /* Nonzero if the list of objects was last obtained from the target
349 via qXfer:libraries-svr4:read. */
09232438 350 int using_xfer = 0;
f9e14852
GB
351
352 /* Table of struct probe_and_action instances, used by the
353 probes-based interface to map breakpoint addresses to probes
354 and their associated actions. Lookup is performed using
935676c9 355 probe_and_action->prob->address. */
09232438 356 htab_up probes_table;
f9e14852
GB
357
358 /* List of objects loaded into the inferior, used by the probes-
359 based interface. */
09232438 360 struct so_list *solib_list = nullptr;
6c95b8df 361};
1a816a87 362
6c95b8df 363/* Per-program-space data key. */
09232438 364static const struct program_space_key<svr4_info> solib_svr4_pspace_data;
1a816a87 365
f9e14852
GB
366/* Free the probes table. */
367
368static void
369free_probes_table (struct svr4_info *info)
370{
09232438 371 info->probes_table.reset (nullptr);
f9e14852
GB
372}
373
374/* Free the solib list. */
375
376static void
377free_solib_list (struct svr4_info *info)
378{
379 svr4_free_library_list (&info->solib_list);
380 info->solib_list = NULL;
381}
382
09232438 383svr4_info::~svr4_info ()
1a816a87 384{
09232438 385 free_solib_list (this);
1a816a87
PA
386}
387
d70cc3ba
SM
388/* Get the svr4 data for program space PSPACE. If none is found yet, add it now.
389 This function always returns a valid object. */
34439770 390
6c95b8df 391static struct svr4_info *
d70cc3ba 392get_svr4_info (program_space *pspace)
1a816a87 393{
09232438 394 struct svr4_info *info = solib_svr4_pspace_data.get (pspace);
1a816a87 395
09232438
TT
396 if (info == NULL)
397 info = solib_svr4_pspace_data.emplace (pspace);
34439770 398
6c95b8df 399 return info;
1a816a87 400}
93a57060 401
13437d4b
KB
402/* Local function prototypes */
403
bc043ef3 404static int match_main (const char *);
13437d4b 405
97ec2c2f 406/* Read program header TYPE from inferior memory. The header is found
17658d46 407 by scanning the OS auxiliary vector.
97ec2c2f 408
09919ac2
JK
409 If TYPE == -1, return the program headers instead of the contents of
410 one program header.
411
17658d46
SM
412 Return vector of bytes holding the program header contents, or an empty
413 optional on failure. If successful and P_ARCH_SIZE is non-NULL, the target
414 architecture size (32-bit or 64-bit) is returned to *P_ARCH_SIZE. Likewise,
415 the base address of the section is returned in *BASE_ADDR. */
97ec2c2f 416
17658d46
SM
417static gdb::optional<gdb::byte_vector>
418read_program_header (int type, int *p_arch_size, CORE_ADDR *base_addr)
97ec2c2f 419{
f5656ead 420 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
43136979 421 CORE_ADDR at_phdr, at_phent, at_phnum, pt_phdr = 0;
97ec2c2f
UW
422 int arch_size, sect_size;
423 CORE_ADDR sect_addr;
43136979 424 int pt_phdr_p = 0;
97ec2c2f
UW
425
426 /* Get required auxv elements from target. */
8b88a78e 427 if (target_auxv_search (current_top_target (), AT_PHDR, &at_phdr) <= 0)
17658d46 428 return {};
8b88a78e 429 if (target_auxv_search (current_top_target (), AT_PHENT, &at_phent) <= 0)
17658d46 430 return {};
8b88a78e 431 if (target_auxv_search (current_top_target (), AT_PHNUM, &at_phnum) <= 0)
17658d46 432 return {};
97ec2c2f 433 if (!at_phdr || !at_phnum)
17658d46 434 return {};
97ec2c2f
UW
435
436 /* Determine ELF architecture type. */
437 if (at_phent == sizeof (Elf32_External_Phdr))
438 arch_size = 32;
439 else if (at_phent == sizeof (Elf64_External_Phdr))
440 arch_size = 64;
441 else
17658d46 442 return {};
97ec2c2f 443
09919ac2
JK
444 /* Find the requested segment. */
445 if (type == -1)
446 {
447 sect_addr = at_phdr;
448 sect_size = at_phent * at_phnum;
449 }
450 else if (arch_size == 32)
97ec2c2f
UW
451 {
452 Elf32_External_Phdr phdr;
453 int i;
454
455 /* Search for requested PHDR. */
456 for (i = 0; i < at_phnum; i++)
457 {
43136979
AR
458 int p_type;
459
97ec2c2f
UW
460 if (target_read_memory (at_phdr + i * sizeof (phdr),
461 (gdb_byte *)&phdr, sizeof (phdr)))
17658d46 462 return {};
97ec2c2f 463
43136979
AR
464 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
465 4, byte_order);
466
467 if (p_type == PT_PHDR)
468 {
469 pt_phdr_p = 1;
470 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
471 4, byte_order);
472 }
473
474 if (p_type == type)
97ec2c2f
UW
475 break;
476 }
477
478 if (i == at_phnum)
17658d46 479 return {};
97ec2c2f
UW
480
481 /* Retrieve address and size. */
e17a4113
UW
482 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
483 4, byte_order);
484 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
485 4, byte_order);
97ec2c2f
UW
486 }
487 else
488 {
489 Elf64_External_Phdr phdr;
490 int i;
491
492 /* Search for requested PHDR. */
493 for (i = 0; i < at_phnum; i++)
494 {
43136979
AR
495 int p_type;
496
97ec2c2f
UW
497 if (target_read_memory (at_phdr + i * sizeof (phdr),
498 (gdb_byte *)&phdr, sizeof (phdr)))
17658d46 499 return {};
97ec2c2f 500
43136979
AR
501 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
502 4, byte_order);
503
504 if (p_type == PT_PHDR)
505 {
506 pt_phdr_p = 1;
507 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
508 8, byte_order);
509 }
510
511 if (p_type == type)
97ec2c2f
UW
512 break;
513 }
514
515 if (i == at_phnum)
17658d46 516 return {};
97ec2c2f
UW
517
518 /* Retrieve address and size. */
e17a4113
UW
519 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
520 8, byte_order);
521 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
522 8, byte_order);
97ec2c2f
UW
523 }
524
43136979
AR
525 /* PT_PHDR is optional, but we really need it
526 for PIE to make this work in general. */
527
528 if (pt_phdr_p)
529 {
530 /* at_phdr is real address in memory. pt_phdr is what pheader says it is.
531 Relocation offset is the difference between the two. */
532 sect_addr = sect_addr + (at_phdr - pt_phdr);
533 }
534
97ec2c2f 535 /* Read in requested program header. */
17658d46
SM
536 gdb::byte_vector buf (sect_size);
537 if (target_read_memory (sect_addr, buf.data (), sect_size))
538 return {};
97ec2c2f
UW
539
540 if (p_arch_size)
541 *p_arch_size = arch_size;
a738da3a
MF
542 if (base_addr)
543 *base_addr = sect_addr;
97ec2c2f
UW
544
545 return buf;
546}
547
548
549/* Return program interpreter string. */
17658d46 550static gdb::optional<gdb::byte_vector>
97ec2c2f
UW
551find_program_interpreter (void)
552{
97ec2c2f
UW
553 /* If we have an exec_bfd, use its section table. */
554 if (exec_bfd
555 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
556 {
557 struct bfd_section *interp_sect;
558
559 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
560 if (interp_sect != NULL)
561 {
97ec2c2f
UW
562 int sect_size = bfd_section_size (exec_bfd, interp_sect);
563
17658d46
SM
564 gdb::byte_vector buf (sect_size);
565 bfd_get_section_contents (exec_bfd, interp_sect, buf.data (), 0,
566 sect_size);
567 return buf;
97ec2c2f
UW
568 }
569 }
570
17658d46
SM
571 /* If we didn't find it, use the target auxiliary vector. */
572 return read_program_header (PT_INTERP, NULL, NULL);
97ec2c2f
UW
573}
574
575
b6d7a4bf
SM
576/* Scan for DESIRED_DYNTAG in .dynamic section of ABFD. If DESIRED_DYNTAG is
577 found, 1 is returned and the corresponding PTR is set. */
3a40aaa0
UW
578
579static int
a738da3a
MF
580scan_dyntag (const int desired_dyntag, bfd *abfd, CORE_ADDR *ptr,
581 CORE_ADDR *ptr_addr)
3a40aaa0
UW
582{
583 int arch_size, step, sect_size;
b6d7a4bf 584 long current_dyntag;
b381ea14 585 CORE_ADDR dyn_ptr, dyn_addr;
65728c26 586 gdb_byte *bufend, *bufstart, *buf;
3a40aaa0
UW
587 Elf32_External_Dyn *x_dynp_32;
588 Elf64_External_Dyn *x_dynp_64;
589 struct bfd_section *sect;
61f0d762 590 struct target_section *target_section;
3a40aaa0
UW
591
592 if (abfd == NULL)
593 return 0;
0763ab81
PA
594
595 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
596 return 0;
597
3a40aaa0
UW
598 arch_size = bfd_get_arch_size (abfd);
599 if (arch_size == -1)
0763ab81 600 return 0;
3a40aaa0
UW
601
602 /* Find the start address of the .dynamic section. */
603 sect = bfd_get_section_by_name (abfd, ".dynamic");
604 if (sect == NULL)
605 return 0;
61f0d762
JK
606
607 for (target_section = current_target_sections->sections;
608 target_section < current_target_sections->sections_end;
609 target_section++)
610 if (sect == target_section->the_bfd_section)
611 break;
b381ea14
JK
612 if (target_section < current_target_sections->sections_end)
613 dyn_addr = target_section->addr;
614 else
615 {
616 /* ABFD may come from OBJFILE acting only as a symbol file without being
617 loaded into the target (see add_symbol_file_command). This case is
618 such fallback to the file VMA address without the possibility of
619 having the section relocated to its actual in-memory address. */
620
621 dyn_addr = bfd_section_vma (abfd, sect);
622 }
3a40aaa0 623
65728c26
DJ
624 /* Read in .dynamic from the BFD. We will get the actual value
625 from memory later. */
3a40aaa0 626 sect_size = bfd_section_size (abfd, sect);
224c3ddb 627 buf = bufstart = (gdb_byte *) alloca (sect_size);
65728c26
DJ
628 if (!bfd_get_section_contents (abfd, sect,
629 buf, 0, sect_size))
630 return 0;
3a40aaa0
UW
631
632 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
633 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
634 : sizeof (Elf64_External_Dyn);
635 for (bufend = buf + sect_size;
636 buf < bufend;
637 buf += step)
638 {
639 if (arch_size == 32)
640 {
641 x_dynp_32 = (Elf32_External_Dyn *) buf;
b6d7a4bf 642 current_dyntag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
3a40aaa0
UW
643 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
644 }
65728c26 645 else
3a40aaa0
UW
646 {
647 x_dynp_64 = (Elf64_External_Dyn *) buf;
b6d7a4bf 648 current_dyntag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
3a40aaa0
UW
649 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
650 }
b6d7a4bf 651 if (current_dyntag == DT_NULL)
3a40aaa0 652 return 0;
b6d7a4bf 653 if (current_dyntag == desired_dyntag)
3a40aaa0 654 {
65728c26
DJ
655 /* If requested, try to read the runtime value of this .dynamic
656 entry. */
3a40aaa0 657 if (ptr)
65728c26 658 {
b6da22b0 659 struct type *ptr_type;
65728c26 660 gdb_byte ptr_buf[8];
a738da3a 661 CORE_ADDR ptr_addr_1;
65728c26 662
f5656ead 663 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
a738da3a
MF
664 ptr_addr_1 = dyn_addr + (buf - bufstart) + arch_size / 8;
665 if (target_read_memory (ptr_addr_1, ptr_buf, arch_size / 8) == 0)
b6da22b0 666 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
65728c26 667 *ptr = dyn_ptr;
a738da3a
MF
668 if (ptr_addr)
669 *ptr_addr = dyn_addr + (buf - bufstart);
65728c26
DJ
670 }
671 return 1;
3a40aaa0
UW
672 }
673 }
674
675 return 0;
676}
677
b6d7a4bf
SM
678/* Scan for DESIRED_DYNTAG in .dynamic section of the target's main executable,
679 found by consulting the OS auxillary vector. If DESIRED_DYNTAG is found, 1
680 is returned and the corresponding PTR is set. */
97ec2c2f
UW
681
682static int
a738da3a
MF
683scan_dyntag_auxv (const int desired_dyntag, CORE_ADDR *ptr,
684 CORE_ADDR *ptr_addr)
97ec2c2f 685{
f5656ead 686 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
17658d46 687 int arch_size, step;
b6d7a4bf 688 long current_dyntag;
97ec2c2f 689 CORE_ADDR dyn_ptr;
a738da3a 690 CORE_ADDR base_addr;
97ec2c2f
UW
691
692 /* Read in .dynamic section. */
17658d46
SM
693 gdb::optional<gdb::byte_vector> ph_data
694 = read_program_header (PT_DYNAMIC, &arch_size, &base_addr);
695 if (!ph_data)
97ec2c2f
UW
696 return 0;
697
698 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
699 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
700 : sizeof (Elf64_External_Dyn);
17658d46
SM
701 for (gdb_byte *buf = ph_data->data (), *bufend = buf + ph_data->size ();
702 buf < bufend; buf += step)
97ec2c2f
UW
703 {
704 if (arch_size == 32)
705 {
706 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
433759f7 707
b6d7a4bf 708 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
e17a4113
UW
709 4, byte_order);
710 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
711 4, byte_order);
97ec2c2f
UW
712 }
713 else
714 {
715 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
433759f7 716
b6d7a4bf 717 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
e17a4113
UW
718 8, byte_order);
719 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
720 8, byte_order);
97ec2c2f 721 }
b6d7a4bf 722 if (current_dyntag == DT_NULL)
97ec2c2f
UW
723 break;
724
b6d7a4bf 725 if (current_dyntag == desired_dyntag)
97ec2c2f
UW
726 {
727 if (ptr)
728 *ptr = dyn_ptr;
729
a738da3a 730 if (ptr_addr)
17658d46 731 *ptr_addr = base_addr + buf - ph_data->data ();
a738da3a 732
97ec2c2f
UW
733 return 1;
734 }
735 }
736
97ec2c2f
UW
737 return 0;
738}
739
7f86f058
PA
740/* Locate the base address of dynamic linker structs for SVR4 elf
741 targets.
13437d4b
KB
742
743 For SVR4 elf targets the address of the dynamic linker's runtime
744 structure is contained within the dynamic info section in the
745 executable file. The dynamic section is also mapped into the
746 inferior address space. Because the runtime loader fills in the
747 real address before starting the inferior, we have to read in the
748 dynamic info section from the inferior address space.
749 If there are any errors while trying to find the address, we
7f86f058 750 silently return 0, otherwise the found address is returned. */
13437d4b
KB
751
752static CORE_ADDR
753elf_locate_base (void)
754{
3b7344d5 755 struct bound_minimal_symbol msymbol;
a738da3a 756 CORE_ADDR dyn_ptr, dyn_ptr_addr;
13437d4b 757
65728c26
DJ
758 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
759 instead of DT_DEBUG, although they sometimes contain an unused
760 DT_DEBUG. */
a738da3a
MF
761 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr, NULL)
762 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr, NULL))
3a40aaa0 763 {
f5656ead 764 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
3a40aaa0 765 gdb_byte *pbuf;
b6da22b0 766 int pbuf_size = TYPE_LENGTH (ptr_type);
433759f7 767
224c3ddb 768 pbuf = (gdb_byte *) alloca (pbuf_size);
3a40aaa0
UW
769 /* DT_MIPS_RLD_MAP contains a pointer to the address
770 of the dynamic link structure. */
771 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
e499d0f1 772 return 0;
b6da22b0 773 return extract_typed_address (pbuf, ptr_type);
e499d0f1
DJ
774 }
775
a738da3a
MF
776 /* Then check DT_MIPS_RLD_MAP_REL. MIPS executables now use this form
777 because of needing to support PIE. DT_MIPS_RLD_MAP will also exist
778 in non-PIE. */
779 if (scan_dyntag (DT_MIPS_RLD_MAP_REL, exec_bfd, &dyn_ptr, &dyn_ptr_addr)
780 || scan_dyntag_auxv (DT_MIPS_RLD_MAP_REL, &dyn_ptr, &dyn_ptr_addr))
781 {
782 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
783 gdb_byte *pbuf;
784 int pbuf_size = TYPE_LENGTH (ptr_type);
785
224c3ddb 786 pbuf = (gdb_byte *) alloca (pbuf_size);
a738da3a
MF
787 /* DT_MIPS_RLD_MAP_REL contains an offset from the address of the
788 DT slot to the address of the dynamic link structure. */
789 if (target_read_memory (dyn_ptr + dyn_ptr_addr, pbuf, pbuf_size))
790 return 0;
791 return extract_typed_address (pbuf, ptr_type);
792 }
793
65728c26 794 /* Find DT_DEBUG. */
a738da3a
MF
795 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr, NULL)
796 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr, NULL))
65728c26
DJ
797 return dyn_ptr;
798
3a40aaa0
UW
799 /* This may be a static executable. Look for the symbol
800 conventionally named _r_debug, as a last resort. */
801 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
3b7344d5 802 if (msymbol.minsym != NULL)
77e371c0 803 return BMSYMBOL_VALUE_ADDRESS (msymbol);
13437d4b
KB
804
805 /* DT_DEBUG entry not found. */
806 return 0;
807}
808
7f86f058 809/* Locate the base address of dynamic linker structs.
13437d4b
KB
810
811 For both the SunOS and SVR4 shared library implementations, if the
812 inferior executable has been linked dynamically, there is a single
813 address somewhere in the inferior's data space which is the key to
814 locating all of the dynamic linker's runtime structures. This
815 address is the value of the debug base symbol. The job of this
816 function is to find and return that address, or to return 0 if there
817 is no such address (the executable is statically linked for example).
818
819 For SunOS, the job is almost trivial, since the dynamic linker and
820 all of it's structures are statically linked to the executable at
821 link time. Thus the symbol for the address we are looking for has
822 already been added to the minimal symbol table for the executable's
823 objfile at the time the symbol file's symbols were read, and all we
824 have to do is look it up there. Note that we explicitly do NOT want
825 to find the copies in the shared library.
826
827 The SVR4 version is a bit more complicated because the address
828 is contained somewhere in the dynamic info section. We have to go
829 to a lot more work to discover the address of the debug base symbol.
830 Because of this complexity, we cache the value we find and return that
831 value on subsequent invocations. Note there is no copy in the
7f86f058 832 executable symbol tables. */
13437d4b
KB
833
834static CORE_ADDR
1a816a87 835locate_base (struct svr4_info *info)
13437d4b 836{
13437d4b
KB
837 /* Check to see if we have a currently valid address, and if so, avoid
838 doing all this work again and just return the cached address. If
839 we have no cached address, try to locate it in the dynamic info
d5a921c9
KB
840 section for ELF executables. There's no point in doing any of this
841 though if we don't have some link map offsets to work with. */
13437d4b 842
1a816a87 843 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
0763ab81 844 info->debug_base = elf_locate_base ();
1a816a87 845 return info->debug_base;
13437d4b
KB
846}
847
e4cd0d6a 848/* Find the first element in the inferior's dynamic link map, and
6f992fbf
JB
849 return its address in the inferior. Return zero if the address
850 could not be determined.
13437d4b 851
e4cd0d6a
MK
852 FIXME: Perhaps we should validate the info somehow, perhaps by
853 checking r_version for a known version number, or r_state for
854 RT_CONSISTENT. */
13437d4b
KB
855
856static CORE_ADDR
1a816a87 857solib_svr4_r_map (struct svr4_info *info)
13437d4b 858{
4b188b9f 859 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 860 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
08597104 861 CORE_ADDR addr = 0;
13437d4b 862
a70b8144 863 try
08597104
JB
864 {
865 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
866 ptr_type);
867 }
230d2906 868 catch (const gdb_exception_error &ex)
492d29ea
PA
869 {
870 exception_print (gdb_stderr, ex);
871 }
492d29ea 872
08597104 873 return addr;
e4cd0d6a 874}
13437d4b 875
7cd25cfc
DJ
876/* Find r_brk from the inferior's debug base. */
877
878static CORE_ADDR
1a816a87 879solib_svr4_r_brk (struct svr4_info *info)
7cd25cfc
DJ
880{
881 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 882 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
7cd25cfc 883
1a816a87
PA
884 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
885 ptr_type);
7cd25cfc
DJ
886}
887
e4cd0d6a
MK
888/* Find the link map for the dynamic linker (if it is not in the
889 normal list of loaded shared objects). */
13437d4b 890
e4cd0d6a 891static CORE_ADDR
1a816a87 892solib_svr4_r_ldsomap (struct svr4_info *info)
e4cd0d6a
MK
893{
894 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead
TT
895 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
896 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
416f679e
SDJ
897 ULONGEST version = 0;
898
a70b8144 899 try
416f679e
SDJ
900 {
901 /* Check version, and return zero if `struct r_debug' doesn't have
902 the r_ldsomap member. */
903 version
904 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
905 lmo->r_version_size, byte_order);
906 }
230d2906 907 catch (const gdb_exception_error &ex)
416f679e
SDJ
908 {
909 exception_print (gdb_stderr, ex);
910 }
13437d4b 911
e4cd0d6a
MK
912 if (version < 2 || lmo->r_ldsomap_offset == -1)
913 return 0;
13437d4b 914
1a816a87 915 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
b6da22b0 916 ptr_type);
13437d4b
KB
917}
918
de18c1d8
JM
919/* On Solaris systems with some versions of the dynamic linker,
920 ld.so's l_name pointer points to the SONAME in the string table
921 rather than into writable memory. So that GDB can find shared
922 libraries when loading a core file generated by gcore, ensure that
923 memory areas containing the l_name string are saved in the core
924 file. */
925
926static int
927svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
928{
929 struct svr4_info *info;
930 CORE_ADDR ldsomap;
74de0234 931 CORE_ADDR name_lm;
de18c1d8 932
d70cc3ba 933 info = get_svr4_info (current_program_space);
de18c1d8
JM
934
935 info->debug_base = 0;
936 locate_base (info);
937 if (!info->debug_base)
938 return 0;
939
940 ldsomap = solib_svr4_r_ldsomap (info);
941 if (!ldsomap)
942 return 0;
943
a7961323 944 std::unique_ptr<lm_info_svr4> li = lm_info_read (ldsomap);
d0e449a1 945 name_lm = li != NULL ? li->l_name : 0;
de18c1d8 946
74de0234 947 return (name_lm >= vaddr && name_lm < vaddr + size);
de18c1d8
JM
948}
949
bf469271 950/* See solist.h. */
13437d4b
KB
951
952static int
bf469271 953open_symbol_file_object (int from_tty)
13437d4b
KB
954{
955 CORE_ADDR lm, l_name;
e83e4e24 956 gdb::unique_xmalloc_ptr<char> filename;
13437d4b 957 int errcode;
4b188b9f 958 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 959 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
b6da22b0 960 int l_name_size = TYPE_LENGTH (ptr_type);
a7961323 961 gdb::byte_vector l_name_buf (l_name_size);
d70cc3ba 962 struct svr4_info *info = get_svr4_info (current_program_space);
ecf45d2c
SL
963 symfile_add_flags add_flags = 0;
964
965 if (from_tty)
966 add_flags |= SYMFILE_VERBOSE;
13437d4b
KB
967
968 if (symfile_objfile)
9e2f0ad4 969 if (!query (_("Attempt to reload symbols from process? ")))
a7961323 970 return 0;
13437d4b 971
7cd25cfc 972 /* Always locate the debug struct, in case it has moved. */
1a816a87
PA
973 info->debug_base = 0;
974 if (locate_base (info) == 0)
a7961323 975 return 0; /* failed somehow... */
13437d4b
KB
976
977 /* First link map member should be the executable. */
1a816a87 978 lm = solib_svr4_r_map (info);
e4cd0d6a 979 if (lm == 0)
a7961323 980 return 0; /* failed somehow... */
13437d4b
KB
981
982 /* Read address of name from target memory to GDB. */
a7961323 983 read_memory (lm + lmo->l_name_offset, l_name_buf.data (), l_name_size);
13437d4b 984
cfaefc65 985 /* Convert the address to host format. */
a7961323 986 l_name = extract_typed_address (l_name_buf.data (), ptr_type);
13437d4b 987
13437d4b 988 if (l_name == 0)
a7961323 989 return 0; /* No filename. */
13437d4b
KB
990
991 /* Now fetch the filename from target memory. */
992 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
993
994 if (errcode)
995 {
8a3fe4f8 996 warning (_("failed to read exec filename from attached file: %s"),
13437d4b
KB
997 safe_strerror (errcode));
998 return 0;
999 }
1000
13437d4b 1001 /* Have a pathname: read the symbol file. */
e83e4e24 1002 symbol_file_add_main (filename.get (), add_flags);
13437d4b
KB
1003
1004 return 1;
1005}
13437d4b 1006
2268b414
JK
1007/* Data exchange structure for the XML parser as returned by
1008 svr4_current_sos_via_xfer_libraries. */
1009
1010struct svr4_library_list
1011{
1012 struct so_list *head, **tailp;
1013
1014 /* Inferior address of struct link_map used for the main executable. It is
1015 NULL if not known. */
1016 CORE_ADDR main_lm;
1017};
1018
7905fc35
PA
1019/* This module's 'free_objfile' observer. */
1020
1021static void
1022svr4_free_objfile_observer (struct objfile *objfile)
1023{
1024 probes_table_remove_objfile_probes (objfile);
1025}
1026
93f2a35e
JK
1027/* Implementation for target_so_ops.free_so. */
1028
1029static void
1030svr4_free_so (struct so_list *so)
1031{
76e75227
SM
1032 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1033
1034 delete li;
93f2a35e
JK
1035}
1036
0892cb63
DE
1037/* Implement target_so_ops.clear_so. */
1038
1039static void
1040svr4_clear_so (struct so_list *so)
1041{
d0e449a1
SM
1042 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1043
1044 if (li != NULL)
1045 li->l_addr_p = 0;
0892cb63
DE
1046}
1047
93f2a35e
JK
1048/* Free so_list built so far (called via cleanup). */
1049
1050static void
1051svr4_free_library_list (void *p_list)
1052{
1053 struct so_list *list = *(struct so_list **) p_list;
1054
1055 while (list != NULL)
1056 {
1057 struct so_list *next = list->next;
1058
3756ef7e 1059 free_so (list);
93f2a35e
JK
1060 list = next;
1061 }
1062}
1063
f9e14852
GB
1064/* Copy library list. */
1065
1066static struct so_list *
1067svr4_copy_library_list (struct so_list *src)
1068{
1069 struct so_list *dst = NULL;
1070 struct so_list **link = &dst;
1071
1072 while (src != NULL)
1073 {
fe978cb0 1074 struct so_list *newobj;
f9e14852 1075
8d749320 1076 newobj = XNEW (struct so_list);
fe978cb0 1077 memcpy (newobj, src, sizeof (struct so_list));
f9e14852 1078
76e75227
SM
1079 lm_info_svr4 *src_li = (lm_info_svr4 *) src->lm_info;
1080 newobj->lm_info = new lm_info_svr4 (*src_li);
f9e14852 1081
fe978cb0
PA
1082 newobj->next = NULL;
1083 *link = newobj;
1084 link = &newobj->next;
f9e14852
GB
1085
1086 src = src->next;
1087 }
1088
1089 return dst;
1090}
1091
2268b414
JK
1092#ifdef HAVE_LIBEXPAT
1093
1094#include "xml-support.h"
1095
1096/* Handle the start of a <library> element. Note: new elements are added
1097 at the tail of the list, keeping the list in order. */
1098
1099static void
1100library_list_start_library (struct gdb_xml_parser *parser,
1101 const struct gdb_xml_element *element,
4d0fdd9b
SM
1102 void *user_data,
1103 std::vector<gdb_xml_value> &attributes)
2268b414 1104{
19ba03f4
SM
1105 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1106 const char *name
4d0fdd9b 1107 = (const char *) xml_find_attribute (attributes, "name")->value.get ();
19ba03f4 1108 ULONGEST *lmp
4d0fdd9b 1109 = (ULONGEST *) xml_find_attribute (attributes, "lm")->value.get ();
19ba03f4 1110 ULONGEST *l_addrp
4d0fdd9b 1111 = (ULONGEST *) xml_find_attribute (attributes, "l_addr")->value.get ();
19ba03f4 1112 ULONGEST *l_ldp
4d0fdd9b 1113 = (ULONGEST *) xml_find_attribute (attributes, "l_ld")->value.get ();
2268b414
JK
1114 struct so_list *new_elem;
1115
41bf6aca 1116 new_elem = XCNEW (struct so_list);
76e75227 1117 lm_info_svr4 *li = new lm_info_svr4;
d0e449a1
SM
1118 new_elem->lm_info = li;
1119 li->lm_addr = *lmp;
1120 li->l_addr_inferior = *l_addrp;
1121 li->l_ld = *l_ldp;
2268b414
JK
1122
1123 strncpy (new_elem->so_name, name, sizeof (new_elem->so_name) - 1);
1124 new_elem->so_name[sizeof (new_elem->so_name) - 1] = 0;
1125 strcpy (new_elem->so_original_name, new_elem->so_name);
1126
1127 *list->tailp = new_elem;
1128 list->tailp = &new_elem->next;
1129}
1130
1131/* Handle the start of a <library-list-svr4> element. */
1132
1133static void
1134svr4_library_list_start_list (struct gdb_xml_parser *parser,
1135 const struct gdb_xml_element *element,
4d0fdd9b
SM
1136 void *user_data,
1137 std::vector<gdb_xml_value> &attributes)
2268b414 1138{
19ba03f4
SM
1139 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1140 const char *version
4d0fdd9b 1141 = (const char *) xml_find_attribute (attributes, "version")->value.get ();
2268b414
JK
1142 struct gdb_xml_value *main_lm = xml_find_attribute (attributes, "main-lm");
1143
1144 if (strcmp (version, "1.0") != 0)
1145 gdb_xml_error (parser,
1146 _("SVR4 Library list has unsupported version \"%s\""),
1147 version);
1148
1149 if (main_lm)
4d0fdd9b 1150 list->main_lm = *(ULONGEST *) main_lm->value.get ();
2268b414
JK
1151}
1152
1153/* The allowed elements and attributes for an XML library list.
1154 The root element is a <library-list>. */
1155
1156static const struct gdb_xml_attribute svr4_library_attributes[] =
1157{
1158 { "name", GDB_XML_AF_NONE, NULL, NULL },
1159 { "lm", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1160 { "l_addr", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1161 { "l_ld", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1162 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1163};
1164
1165static const struct gdb_xml_element svr4_library_list_children[] =
1166{
1167 {
1168 "library", svr4_library_attributes, NULL,
1169 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
1170 library_list_start_library, NULL
1171 },
1172 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1173};
1174
1175static const struct gdb_xml_attribute svr4_library_list_attributes[] =
1176{
1177 { "version", GDB_XML_AF_NONE, NULL, NULL },
1178 { "main-lm", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
1179 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1180};
1181
1182static const struct gdb_xml_element svr4_library_list_elements[] =
1183{
1184 { "library-list-svr4", svr4_library_list_attributes, svr4_library_list_children,
1185 GDB_XML_EF_NONE, svr4_library_list_start_list, NULL },
1186 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1187};
1188
2268b414
JK
1189/* Parse qXfer:libraries:read packet into *SO_LIST_RETURN. Return 1 if
1190
1191 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1192 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1193 empty, caller is responsible for freeing all its entries. */
1194
1195static int
1196svr4_parse_libraries (const char *document, struct svr4_library_list *list)
1197{
2b6ff1c0
TT
1198 auto cleanup = make_scope_exit ([&] ()
1199 {
1200 svr4_free_library_list (&list->head);
1201 });
2268b414
JK
1202
1203 memset (list, 0, sizeof (*list));
1204 list->tailp = &list->head;
2eca4a8d 1205 if (gdb_xml_parse_quick (_("target library list"), "library-list-svr4.dtd",
2268b414
JK
1206 svr4_library_list_elements, document, list) == 0)
1207 {
1208 /* Parsed successfully, keep the result. */
2b6ff1c0 1209 cleanup.release ();
2268b414
JK
1210 return 1;
1211 }
1212
2268b414
JK
1213 return 0;
1214}
1215
f9e14852 1216/* Attempt to get so_list from target via qXfer:libraries-svr4:read packet.
2268b414
JK
1217
1218 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1219 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
f9e14852
GB
1220 empty, caller is responsible for freeing all its entries.
1221
1222 Note that ANNEX must be NULL if the remote does not explicitly allow
1223 qXfer:libraries-svr4:read packets with non-empty annexes. Support for
1224 this can be checked using target_augmented_libraries_svr4_read (). */
2268b414
JK
1225
1226static int
f9e14852
GB
1227svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1228 const char *annex)
2268b414 1229{
f9e14852
GB
1230 gdb_assert (annex == NULL || target_augmented_libraries_svr4_read ());
1231
2268b414 1232 /* Fetch the list of shared libraries. */
9018be22 1233 gdb::optional<gdb::char_vector> svr4_library_document
8b88a78e 1234 = target_read_stralloc (current_top_target (), TARGET_OBJECT_LIBRARIES_SVR4,
b7b030ad 1235 annex);
9018be22 1236 if (!svr4_library_document)
2268b414
JK
1237 return 0;
1238
9018be22 1239 return svr4_parse_libraries (svr4_library_document->data (), list);
2268b414
JK
1240}
1241
1242#else
1243
1244static int
f9e14852
GB
1245svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1246 const char *annex)
2268b414
JK
1247{
1248 return 0;
1249}
1250
1251#endif
1252
34439770
DJ
1253/* If no shared library information is available from the dynamic
1254 linker, build a fallback list from other sources. */
1255
1256static struct so_list *
d70cc3ba 1257svr4_default_sos (svr4_info *info)
34439770 1258{
fe978cb0 1259 struct so_list *newobj;
1a816a87 1260
8e5c319d
JK
1261 if (!info->debug_loader_offset_p)
1262 return NULL;
34439770 1263
fe978cb0 1264 newobj = XCNEW (struct so_list);
76e75227 1265 lm_info_svr4 *li = new lm_info_svr4;
d0e449a1 1266 newobj->lm_info = li;
34439770 1267
3957565a 1268 /* Nothing will ever check the other fields if we set l_addr_p. */
d0e449a1
SM
1269 li->l_addr = info->debug_loader_offset;
1270 li->l_addr_p = 1;
34439770 1271
fe978cb0
PA
1272 strncpy (newobj->so_name, info->debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
1273 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1274 strcpy (newobj->so_original_name, newobj->so_name);
34439770 1275
fe978cb0 1276 return newobj;
34439770
DJ
1277}
1278
f9e14852
GB
1279/* Read the whole inferior libraries chain starting at address LM.
1280 Expect the first entry in the chain's previous entry to be PREV_LM.
1281 Add the entries to the tail referenced by LINK_PTR_PTR. Ignore the
1282 first entry if IGNORE_FIRST and set global MAIN_LM_ADDR according
1283 to it. Returns nonzero upon success. If zero is returned the
1284 entries stored to LINK_PTR_PTR are still valid although they may
1285 represent only part of the inferior library list. */
13437d4b 1286
f9e14852 1287static int
d70cc3ba 1288svr4_read_so_list (svr4_info *info, CORE_ADDR lm, CORE_ADDR prev_lm,
f9e14852 1289 struct so_list ***link_ptr_ptr, int ignore_first)
13437d4b 1290{
c725e7b6 1291 CORE_ADDR first_l_name = 0;
f9e14852 1292 CORE_ADDR next_lm;
13437d4b 1293
cb08cc53 1294 for (; lm != 0; prev_lm = lm, lm = next_lm)
13437d4b 1295 {
cb08cc53 1296 int errcode;
e83e4e24 1297 gdb::unique_xmalloc_ptr<char> buffer;
13437d4b 1298
b3bc8453 1299 so_list_up newobj (XCNEW (struct so_list));
13437d4b 1300
a7961323 1301 lm_info_svr4 *li = lm_info_read (lm).release ();
d0e449a1
SM
1302 newobj->lm_info = li;
1303 if (li == NULL)
b3bc8453 1304 return 0;
13437d4b 1305
d0e449a1 1306 next_lm = li->l_next;
492928e4 1307
d0e449a1 1308 if (li->l_prev != prev_lm)
492928e4 1309 {
2268b414 1310 warning (_("Corrupted shared library list: %s != %s"),
f5656ead 1311 paddress (target_gdbarch (), prev_lm),
d0e449a1 1312 paddress (target_gdbarch (), li->l_prev));
f9e14852 1313 return 0;
492928e4 1314 }
13437d4b
KB
1315
1316 /* For SVR4 versions, the first entry in the link map is for the
1317 inferior executable, so we must ignore it. For some versions of
1318 SVR4, it has no name. For others (Solaris 2.3 for example), it
1319 does have a name, so we can no longer use a missing name to
c378eb4e 1320 decide when to ignore it. */
d0e449a1 1321 if (ignore_first && li->l_prev == 0)
93a57060 1322 {
d0e449a1
SM
1323 first_l_name = li->l_name;
1324 info->main_lm_addr = li->lm_addr;
cb08cc53 1325 continue;
93a57060 1326 }
13437d4b 1327
cb08cc53 1328 /* Extract this shared object's name. */
d0e449a1
SM
1329 target_read_string (li->l_name, &buffer, SO_NAME_MAX_PATH_SIZE - 1,
1330 &errcode);
cb08cc53
JK
1331 if (errcode != 0)
1332 {
7d760051
UW
1333 /* If this entry's l_name address matches that of the
1334 inferior executable, then this is not a normal shared
1335 object, but (most likely) a vDSO. In this case, silently
1336 skip it; otherwise emit a warning. */
d0e449a1 1337 if (first_l_name == 0 || li->l_name != first_l_name)
7d760051
UW
1338 warning (_("Can't read pathname for load map: %s."),
1339 safe_strerror (errcode));
cb08cc53 1340 continue;
13437d4b
KB
1341 }
1342
e83e4e24 1343 strncpy (newobj->so_name, buffer.get (), SO_NAME_MAX_PATH_SIZE - 1);
fe978cb0
PA
1344 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1345 strcpy (newobj->so_original_name, newobj->so_name);
492928e4 1346
cb08cc53
JK
1347 /* If this entry has no name, or its name matches the name
1348 for the main executable, don't include it in the list. */
fe978cb0 1349 if (! newobj->so_name[0] || match_main (newobj->so_name))
b3bc8453 1350 continue;
e4cd0d6a 1351
fe978cb0 1352 newobj->next = 0;
b3bc8453
TT
1353 /* Don't free it now. */
1354 **link_ptr_ptr = newobj.release ();
1355 *link_ptr_ptr = &(**link_ptr_ptr)->next;
13437d4b 1356 }
f9e14852
GB
1357
1358 return 1;
cb08cc53
JK
1359}
1360
f9e14852
GB
1361/* Read the full list of currently loaded shared objects directly
1362 from the inferior, without referring to any libraries read and
1363 stored by the probes interface. Handle special cases relating
1364 to the first elements of the list. */
cb08cc53
JK
1365
1366static struct so_list *
f9e14852 1367svr4_current_sos_direct (struct svr4_info *info)
cb08cc53
JK
1368{
1369 CORE_ADDR lm;
1370 struct so_list *head = NULL;
1371 struct so_list **link_ptr = &head;
cb08cc53 1372 int ignore_first;
2268b414
JK
1373 struct svr4_library_list library_list;
1374
0c5bf5a9
JK
1375 /* Fall back to manual examination of the target if the packet is not
1376 supported or gdbserver failed to find DT_DEBUG. gdb.server/solib-list.exp
1377 tests a case where gdbserver cannot find the shared libraries list while
1378 GDB itself is able to find it via SYMFILE_OBJFILE.
1379
1380 Unfortunately statically linked inferiors will also fall back through this
1381 suboptimal code path. */
1382
f9e14852
GB
1383 info->using_xfer = svr4_current_sos_via_xfer_libraries (&library_list,
1384 NULL);
1385 if (info->using_xfer)
2268b414
JK
1386 {
1387 if (library_list.main_lm)
f9e14852 1388 info->main_lm_addr = library_list.main_lm;
2268b414 1389
d70cc3ba 1390 return library_list.head ? library_list.head : svr4_default_sos (info);
2268b414 1391 }
cb08cc53 1392
cb08cc53
JK
1393 /* Always locate the debug struct, in case it has moved. */
1394 info->debug_base = 0;
1395 locate_base (info);
1396
1397 /* If we can't find the dynamic linker's base structure, this
1398 must not be a dynamically linked executable. Hmm. */
1399 if (! info->debug_base)
d70cc3ba 1400 return svr4_default_sos (info);
cb08cc53
JK
1401
1402 /* Assume that everything is a library if the dynamic loader was loaded
1403 late by a static executable. */
1404 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
1405 ignore_first = 0;
1406 else
1407 ignore_first = 1;
1408
2b6ff1c0
TT
1409 auto cleanup = make_scope_exit ([&] ()
1410 {
1411 svr4_free_library_list (&head);
1412 });
cb08cc53
JK
1413
1414 /* Walk the inferior's link map list, and build our list of
1415 `struct so_list' nodes. */
1416 lm = solib_svr4_r_map (info);
1417 if (lm)
d70cc3ba 1418 svr4_read_so_list (info, lm, 0, &link_ptr, ignore_first);
cb08cc53
JK
1419
1420 /* On Solaris, the dynamic linker is not in the normal list of
1421 shared objects, so make sure we pick it up too. Having
1422 symbol information for the dynamic linker is quite crucial
1423 for skipping dynamic linker resolver code. */
1424 lm = solib_svr4_r_ldsomap (info);
1425 if (lm)
d70cc3ba 1426 svr4_read_so_list (info, lm, 0, &link_ptr, 0);
cb08cc53 1427
2b6ff1c0 1428 cleanup.release ();
13437d4b 1429
34439770 1430 if (head == NULL)
d70cc3ba 1431 return svr4_default_sos (info);
34439770 1432
13437d4b
KB
1433 return head;
1434}
1435
8b9a549d
PA
1436/* Implement the main part of the "current_sos" target_so_ops
1437 method. */
f9e14852
GB
1438
1439static struct so_list *
d70cc3ba 1440svr4_current_sos_1 (svr4_info *info)
f9e14852 1441{
f9e14852
GB
1442 /* If the solib list has been read and stored by the probes
1443 interface then we return a copy of the stored list. */
1444 if (info->solib_list != NULL)
1445 return svr4_copy_library_list (info->solib_list);
1446
1447 /* Otherwise obtain the solib list directly from the inferior. */
1448 return svr4_current_sos_direct (info);
1449}
1450
8b9a549d
PA
1451/* Implement the "current_sos" target_so_ops method. */
1452
1453static struct so_list *
1454svr4_current_sos (void)
1455{
d70cc3ba
SM
1456 svr4_info *info = get_svr4_info (current_program_space);
1457 struct so_list *so_head = svr4_current_sos_1 (info);
8b9a549d
PA
1458 struct mem_range vsyscall_range;
1459
1460 /* Filter out the vDSO module, if present. Its symbol file would
1461 not be found on disk. The vDSO/vsyscall's OBJFILE is instead
1462 managed by symfile-mem.c:add_vsyscall_page. */
1463 if (gdbarch_vsyscall_range (target_gdbarch (), &vsyscall_range)
1464 && vsyscall_range.length != 0)
1465 {
1466 struct so_list **sop;
1467
1468 sop = &so_head;
1469 while (*sop != NULL)
1470 {
1471 struct so_list *so = *sop;
1472
1473 /* We can't simply match the vDSO by starting address alone,
1474 because lm_info->l_addr_inferior (and also l_addr) do not
1475 necessarily represent the real starting address of the
1476 ELF if the vDSO's ELF itself is "prelinked". The l_ld
1477 field (the ".dynamic" section of the shared object)
1478 always points at the absolute/resolved address though.
1479 So check whether that address is inside the vDSO's
1480 mapping instead.
1481
1482 E.g., on Linux 3.16 (x86_64) the vDSO is a regular
1483 0-based ELF, and we see:
1484
1485 (gdb) info auxv
1486 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffb000
1487 (gdb) p/x *_r_debug.r_map.l_next
1488 $1 = {l_addr = 0x7ffff7ffb000, ..., l_ld = 0x7ffff7ffb318, ...}
1489
1490 And on Linux 2.6.32 (x86_64) we see:
1491
1492 (gdb) info auxv
1493 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffe000
1494 (gdb) p/x *_r_debug.r_map.l_next
1495 $5 = {l_addr = 0x7ffff88fe000, ..., l_ld = 0x7ffff7ffe580, ... }
1496
1497 Dumping that vDSO shows:
1498
1499 (gdb) info proc mappings
1500 0x7ffff7ffe000 0x7ffff7fff000 0x1000 0 [vdso]
1501 (gdb) dump memory vdso.bin 0x7ffff7ffe000 0x7ffff7fff000
1502 # readelf -Wa vdso.bin
1503 [...]
1504 Entry point address: 0xffffffffff700700
1505 [...]
1506 Section Headers:
1507 [Nr] Name Type Address Off Size
1508 [ 0] NULL 0000000000000000 000000 000000
1509 [ 1] .hash HASH ffffffffff700120 000120 000038
1510 [ 2] .dynsym DYNSYM ffffffffff700158 000158 0000d8
1511 [...]
1512 [ 9] .dynamic DYNAMIC ffffffffff700580 000580 0000f0
1513 */
d0e449a1
SM
1514
1515 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1516
1517 if (address_in_mem_range (li->l_ld, &vsyscall_range))
8b9a549d
PA
1518 {
1519 *sop = so->next;
1520 free_so (so);
1521 break;
1522 }
1523
1524 sop = &so->next;
1525 }
1526 }
1527
1528 return so_head;
1529}
1530
93a57060 1531/* Get the address of the link_map for a given OBJFILE. */
bc4a16ae
EZ
1532
1533CORE_ADDR
1534svr4_fetch_objfile_link_map (struct objfile *objfile)
1535{
93a57060 1536 struct so_list *so;
d70cc3ba 1537 struct svr4_info *info = get_svr4_info (objfile->pspace);
bc4a16ae 1538
93a57060 1539 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1a816a87 1540 if (info->main_lm_addr == 0)
e696b3ad 1541 solib_add (NULL, 0, auto_solib_add);
bc4a16ae 1542
93a57060
DJ
1543 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1544 if (objfile == symfile_objfile)
1a816a87 1545 return info->main_lm_addr;
93a57060 1546
df22c1e5
JB
1547 /* If OBJFILE is a separate debug object file, look for the
1548 original object file. */
1549 if (objfile->separate_debug_objfile_backlink != NULL)
1550 objfile = objfile->separate_debug_objfile_backlink;
1551
93a57060
DJ
1552 /* The other link map addresses may be found by examining the list
1553 of shared libraries. */
1554 for (so = master_so_list (); so; so = so->next)
1555 if (so->objfile == objfile)
d0e449a1
SM
1556 {
1557 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1558
1559 return li->lm_addr;
1560 }
93a57060
DJ
1561
1562 /* Not found! */
bc4a16ae
EZ
1563 return 0;
1564}
13437d4b
KB
1565
1566/* On some systems, the only way to recognize the link map entry for
1567 the main executable file is by looking at its name. Return
1568 non-zero iff SONAME matches one of the known main executable names. */
1569
1570static int
bc043ef3 1571match_main (const char *soname)
13437d4b 1572{
bc043ef3 1573 const char * const *mainp;
13437d4b
KB
1574
1575 for (mainp = main_name_list; *mainp != NULL; mainp++)
1576 {
1577 if (strcmp (soname, *mainp) == 0)
1578 return (1);
1579 }
1580
1581 return (0);
1582}
1583
13437d4b
KB
1584/* Return 1 if PC lies in the dynamic symbol resolution code of the
1585 SVR4 run time loader. */
13437d4b 1586
7d522c90 1587int
d7fa2ae2 1588svr4_in_dynsym_resolve_code (CORE_ADDR pc)
13437d4b 1589{
d70cc3ba 1590 struct svr4_info *info = get_svr4_info (current_program_space);
6c95b8df
PA
1591
1592 return ((pc >= info->interp_text_sect_low
1593 && pc < info->interp_text_sect_high)
1594 || (pc >= info->interp_plt_sect_low
1595 && pc < info->interp_plt_sect_high)
3e5d3a5a 1596 || in_plt_section (pc)
0875794a 1597 || in_gnu_ifunc_stub (pc));
13437d4b 1598}
13437d4b 1599
2f4950cd
AC
1600/* Given an executable's ABFD and target, compute the entry-point
1601 address. */
1602
1603static CORE_ADDR
1604exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1605{
8c2b9656
YQ
1606 CORE_ADDR addr;
1607
2f4950cd
AC
1608 /* KevinB wrote ... for most targets, the address returned by
1609 bfd_get_start_address() is the entry point for the start
1610 function. But, for some targets, bfd_get_start_address() returns
1611 the address of a function descriptor from which the entry point
1612 address may be extracted. This address is extracted by
1613 gdbarch_convert_from_func_ptr_addr(). The method
1614 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1615 function for targets which don't use function descriptors. */
8c2b9656 1616 addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2f4950cd
AC
1617 bfd_get_start_address (abfd),
1618 targ);
8c2b9656 1619 return gdbarch_addr_bits_remove (target_gdbarch (), addr);
2f4950cd 1620}
13437d4b 1621
f9e14852
GB
1622/* A probe and its associated action. */
1623
1624struct probe_and_action
1625{
1626 /* The probe. */
935676c9 1627 probe *prob;
f9e14852 1628
729662a5
TT
1629 /* The relocated address of the probe. */
1630 CORE_ADDR address;
1631
f9e14852
GB
1632 /* The action. */
1633 enum probe_action action;
7905fc35
PA
1634
1635 /* The objfile where this probe was found. */
1636 struct objfile *objfile;
f9e14852
GB
1637};
1638
1639/* Returns a hash code for the probe_and_action referenced by p. */
1640
1641static hashval_t
1642hash_probe_and_action (const void *p)
1643{
19ba03f4 1644 const struct probe_and_action *pa = (const struct probe_and_action *) p;
f9e14852 1645
729662a5 1646 return (hashval_t) pa->address;
f9e14852
GB
1647}
1648
1649/* Returns non-zero if the probe_and_actions referenced by p1 and p2
1650 are equal. */
1651
1652static int
1653equal_probe_and_action (const void *p1, const void *p2)
1654{
19ba03f4
SM
1655 const struct probe_and_action *pa1 = (const struct probe_and_action *) p1;
1656 const struct probe_and_action *pa2 = (const struct probe_and_action *) p2;
f9e14852 1657
729662a5 1658 return pa1->address == pa2->address;
f9e14852
GB
1659}
1660
7905fc35
PA
1661/* Traversal function for probes_table_remove_objfile_probes. */
1662
1663static int
1664probes_table_htab_remove_objfile_probes (void **slot, void *info)
1665{
1666 probe_and_action *pa = (probe_and_action *) *slot;
1667 struct objfile *objfile = (struct objfile *) info;
1668
1669 if (pa->objfile == objfile)
09232438
TT
1670 htab_clear_slot (get_svr4_info (objfile->pspace)->probes_table.get (),
1671 slot);
7905fc35
PA
1672
1673 return 1;
1674}
1675
1676/* Remove all probes that belong to OBJFILE from the probes table. */
1677
1678static void
1679probes_table_remove_objfile_probes (struct objfile *objfile)
1680{
d70cc3ba 1681 svr4_info *info = get_svr4_info (objfile->pspace);
7905fc35 1682 if (info->probes_table != nullptr)
09232438 1683 htab_traverse_noresize (info->probes_table.get (),
7905fc35
PA
1684 probes_table_htab_remove_objfile_probes, objfile);
1685}
1686
f9e14852
GB
1687/* Register a solib event probe and its associated action in the
1688 probes table. */
1689
1690static void
d70cc3ba 1691register_solib_event_probe (svr4_info *info, struct objfile *objfile,
7905fc35 1692 probe *prob, CORE_ADDR address,
729662a5 1693 enum probe_action action)
f9e14852 1694{
f9e14852
GB
1695 struct probe_and_action lookup, *pa;
1696 void **slot;
1697
1698 /* Create the probes table, if necessary. */
1699 if (info->probes_table == NULL)
09232438
TT
1700 info->probes_table.reset (htab_create_alloc (1, hash_probe_and_action,
1701 equal_probe_and_action,
1702 xfree, xcalloc, xfree));
f9e14852 1703
729662a5 1704 lookup.address = address;
09232438 1705 slot = htab_find_slot (info->probes_table.get (), &lookup, INSERT);
f9e14852
GB
1706 gdb_assert (*slot == HTAB_EMPTY_ENTRY);
1707
1708 pa = XCNEW (struct probe_and_action);
935676c9 1709 pa->prob = prob;
729662a5 1710 pa->address = address;
f9e14852 1711 pa->action = action;
7905fc35 1712 pa->objfile = objfile;
f9e14852
GB
1713
1714 *slot = pa;
1715}
1716
1717/* Get the solib event probe at the specified location, and the
1718 action associated with it. Returns NULL if no solib event probe
1719 was found. */
1720
1721static struct probe_and_action *
1722solib_event_probe_at (struct svr4_info *info, CORE_ADDR address)
1723{
f9e14852
GB
1724 struct probe_and_action lookup;
1725 void **slot;
1726
729662a5 1727 lookup.address = address;
09232438 1728 slot = htab_find_slot (info->probes_table.get (), &lookup, NO_INSERT);
f9e14852
GB
1729
1730 if (slot == NULL)
1731 return NULL;
1732
1733 return (struct probe_and_action *) *slot;
1734}
1735
1736/* Decide what action to take when the specified solib event probe is
1737 hit. */
1738
1739static enum probe_action
1740solib_event_probe_action (struct probe_and_action *pa)
1741{
1742 enum probe_action action;
73c6b475 1743 unsigned probe_argc = 0;
08a6411c 1744 struct frame_info *frame = get_current_frame ();
f9e14852
GB
1745
1746 action = pa->action;
1747 if (action == DO_NOTHING || action == PROBES_INTERFACE_FAILED)
1748 return action;
1749
1750 gdb_assert (action == FULL_RELOAD || action == UPDATE_OR_RELOAD);
1751
1752 /* Check that an appropriate number of arguments has been supplied.
1753 We expect:
1754 arg0: Lmid_t lmid (mandatory)
1755 arg1: struct r_debug *debug_base (mandatory)
1756 arg2: struct link_map *new (optional, for incremental updates) */
a70b8144 1757 try
3bd7e5b7 1758 {
935676c9 1759 probe_argc = pa->prob->get_argument_count (frame);
3bd7e5b7 1760 }
230d2906 1761 catch (const gdb_exception_error &ex)
3bd7e5b7
SDJ
1762 {
1763 exception_print (gdb_stderr, ex);
1764 probe_argc = 0;
1765 }
3bd7e5b7 1766
935676c9
SDJ
1767 /* If get_argument_count throws an exception, probe_argc will be set
1768 to zero. However, if pa->prob does not have arguments, then
1769 get_argument_count will succeed but probe_argc will also be zero.
1770 Both cases happen because of different things, but they are
1771 treated equally here: action will be set to
3bd7e5b7 1772 PROBES_INTERFACE_FAILED. */
f9e14852
GB
1773 if (probe_argc == 2)
1774 action = FULL_RELOAD;
1775 else if (probe_argc < 2)
1776 action = PROBES_INTERFACE_FAILED;
1777
1778 return action;
1779}
1780
1781/* Populate the shared object list by reading the entire list of
1782 shared objects from the inferior. Handle special cases relating
1783 to the first elements of the list. Returns nonzero on success. */
1784
1785static int
1786solist_update_full (struct svr4_info *info)
1787{
1788 free_solib_list (info);
1789 info->solib_list = svr4_current_sos_direct (info);
1790
1791 return 1;
1792}
1793
1794/* Update the shared object list starting from the link-map entry
1795 passed by the linker in the probe's third argument. Returns
1796 nonzero if the list was successfully updated, or zero to indicate
1797 failure. */
1798
1799static int
1800solist_update_incremental (struct svr4_info *info, CORE_ADDR lm)
1801{
1802 struct so_list *tail;
1803 CORE_ADDR prev_lm;
1804
1805 /* svr4_current_sos_direct contains logic to handle a number of
1806 special cases relating to the first elements of the list. To
1807 avoid duplicating this logic we defer to solist_update_full
1808 if the list is empty. */
1809 if (info->solib_list == NULL)
1810 return 0;
1811
1812 /* Fall back to a full update if we are using a remote target
1813 that does not support incremental transfers. */
1814 if (info->using_xfer && !target_augmented_libraries_svr4_read ())
1815 return 0;
1816
1817 /* Walk to the end of the list. */
1818 for (tail = info->solib_list; tail->next != NULL; tail = tail->next)
1819 /* Nothing. */;
d0e449a1
SM
1820
1821 lm_info_svr4 *li = (lm_info_svr4 *) tail->lm_info;
1822 prev_lm = li->lm_addr;
f9e14852
GB
1823
1824 /* Read the new objects. */
1825 if (info->using_xfer)
1826 {
1827 struct svr4_library_list library_list;
1828 char annex[64];
1829
1830 xsnprintf (annex, sizeof (annex), "start=%s;prev=%s",
1831 phex_nz (lm, sizeof (lm)),
1832 phex_nz (prev_lm, sizeof (prev_lm)));
1833 if (!svr4_current_sos_via_xfer_libraries (&library_list, annex))
1834 return 0;
1835
1836 tail->next = library_list.head;
1837 }
1838 else
1839 {
1840 struct so_list **link = &tail->next;
1841
1842 /* IGNORE_FIRST may safely be set to zero here because the
1843 above check and deferral to solist_update_full ensures
1844 that this call to svr4_read_so_list will never see the
1845 first element. */
d70cc3ba 1846 if (!svr4_read_so_list (info, lm, prev_lm, &link, 0))
f9e14852
GB
1847 return 0;
1848 }
1849
1850 return 1;
1851}
1852
1853/* Disable the probes-based linker interface and revert to the
1854 original interface. We don't reset the breakpoints as the
1855 ones set up for the probes-based interface are adequate. */
1856
1857static void
d70cc3ba 1858disable_probes_interface (svr4_info *info)
f9e14852 1859{
f9e14852
GB
1860 warning (_("Probes-based dynamic linker interface failed.\n"
1861 "Reverting to original interface.\n"));
1862
1863 free_probes_table (info);
1864 free_solib_list (info);
1865}
1866
1867/* Update the solib list as appropriate when using the
1868 probes-based linker interface. Do nothing if using the
1869 standard interface. */
1870
1871static void
1872svr4_handle_solib_event (void)
1873{
d70cc3ba 1874 struct svr4_info *info = get_svr4_info (current_program_space);
f9e14852
GB
1875 struct probe_and_action *pa;
1876 enum probe_action action;
ad1c917a 1877 struct value *val = NULL;
f9e14852 1878 CORE_ADDR pc, debug_base, lm = 0;
08a6411c 1879 struct frame_info *frame = get_current_frame ();
f9e14852
GB
1880
1881 /* Do nothing if not using the probes interface. */
1882 if (info->probes_table == NULL)
1883 return;
1884
1885 /* If anything goes wrong we revert to the original linker
1886 interface. */
d70cc3ba
SM
1887 auto cleanup = make_scope_exit ([info] ()
1888 {
1889 disable_probes_interface (info);
1890 });
f9e14852
GB
1891
1892 pc = regcache_read_pc (get_current_regcache ());
1893 pa = solib_event_probe_at (info, pc);
1894 if (pa == NULL)
d01c5877 1895 return;
f9e14852
GB
1896
1897 action = solib_event_probe_action (pa);
1898 if (action == PROBES_INTERFACE_FAILED)
d01c5877 1899 return;
f9e14852
GB
1900
1901 if (action == DO_NOTHING)
1902 {
d01c5877 1903 cleanup.release ();
f9e14852
GB
1904 return;
1905 }
1906
935676c9 1907 /* evaluate_argument looks up symbols in the dynamic linker
f9e14852
GB
1908 using find_pc_section. find_pc_section is accelerated by a cache
1909 called the section map. The section map is invalidated every
1910 time a shared library is loaded or unloaded, and if the inferior
1911 is generating a lot of shared library events then the section map
1912 will be updated every time svr4_handle_solib_event is called.
1913 We called find_pc_section in svr4_create_solib_event_breakpoints,
1914 so we can guarantee that the dynamic linker's sections are in the
1915 section map. We can therefore inhibit section map updates across
935676c9 1916 these calls to evaluate_argument and save a lot of time. */
06424eac
TT
1917 {
1918 scoped_restore inhibit_updates
1919 = inhibit_section_map_updates (current_program_space);
f9e14852 1920
a70b8144 1921 try
06424eac
TT
1922 {
1923 val = pa->prob->evaluate_argument (1, frame);
1924 }
230d2906 1925 catch (const gdb_exception_error &ex)
06424eac
TT
1926 {
1927 exception_print (gdb_stderr, ex);
1928 val = NULL;
1929 }
f9e14852 1930
06424eac 1931 if (val == NULL)
d01c5877 1932 return;
f9e14852 1933
06424eac
TT
1934 debug_base = value_as_address (val);
1935 if (debug_base == 0)
d01c5877 1936 return;
f9e14852 1937
06424eac
TT
1938 /* Always locate the debug struct, in case it moved. */
1939 info->debug_base = 0;
1940 if (locate_base (info) == 0)
d01c5877 1941 return;
3bd7e5b7 1942
06424eac
TT
1943 /* GDB does not currently support libraries loaded via dlmopen
1944 into namespaces other than the initial one. We must ignore
1945 any namespace other than the initial namespace here until
1946 support for this is added to GDB. */
1947 if (debug_base != info->debug_base)
1948 action = DO_NOTHING;
f9e14852 1949
06424eac
TT
1950 if (action == UPDATE_OR_RELOAD)
1951 {
a70b8144 1952 try
06424eac
TT
1953 {
1954 val = pa->prob->evaluate_argument (2, frame);
1955 }
230d2906 1956 catch (const gdb_exception_error &ex)
06424eac
TT
1957 {
1958 exception_print (gdb_stderr, ex);
06424eac
TT
1959 return;
1960 }
06424eac
TT
1961
1962 if (val != NULL)
1963 lm = value_as_address (val);
1964
1965 if (lm == 0)
1966 action = FULL_RELOAD;
1967 }
f9e14852 1968
06424eac
TT
1969 /* Resume section map updates. Closing the scope is
1970 sufficient. */
1971 }
f9e14852
GB
1972
1973 if (action == UPDATE_OR_RELOAD)
1974 {
1975 if (!solist_update_incremental (info, lm))
1976 action = FULL_RELOAD;
1977 }
1978
1979 if (action == FULL_RELOAD)
1980 {
1981 if (!solist_update_full (info))
d01c5877 1982 return;
f9e14852
GB
1983 }
1984
d01c5877 1985 cleanup.release ();
f9e14852
GB
1986}
1987
1988/* Helper function for svr4_update_solib_event_breakpoints. */
1989
1990static int
1991svr4_update_solib_event_breakpoint (struct breakpoint *b, void *arg)
1992{
1993 struct bp_location *loc;
1994
1995 if (b->type != bp_shlib_event)
1996 {
1997 /* Continue iterating. */
1998 return 0;
1999 }
2000
2001 for (loc = b->loc; loc != NULL; loc = loc->next)
2002 {
2003 struct svr4_info *info;
2004 struct probe_and_action *pa;
2005
09232438 2006 info = solib_svr4_pspace_data.get (loc->pspace);
f9e14852
GB
2007 if (info == NULL || info->probes_table == NULL)
2008 continue;
2009
2010 pa = solib_event_probe_at (info, loc->address);
2011 if (pa == NULL)
2012 continue;
2013
2014 if (pa->action == DO_NOTHING)
2015 {
2016 if (b->enable_state == bp_disabled && stop_on_solib_events)
2017 enable_breakpoint (b);
2018 else if (b->enable_state == bp_enabled && !stop_on_solib_events)
2019 disable_breakpoint (b);
2020 }
2021
2022 break;
2023 }
2024
2025 /* Continue iterating. */
2026 return 0;
2027}
2028
2029/* Enable or disable optional solib event breakpoints as appropriate.
2030 Called whenever stop_on_solib_events is changed. */
2031
2032static void
2033svr4_update_solib_event_breakpoints (void)
2034{
2035 iterate_over_breakpoints (svr4_update_solib_event_breakpoint, NULL);
2036}
2037
2038/* Create and register solib event breakpoints. PROBES is an array
2039 of NUM_PROBES elements, each of which is vector of probes. A
2040 solib event breakpoint will be created and registered for each
2041 probe. */
2042
2043static void
d70cc3ba 2044svr4_create_probe_breakpoints (svr4_info *info, struct gdbarch *gdbarch,
45461e0d 2045 const std::vector<probe *> *probes,
729662a5 2046 struct objfile *objfile)
f9e14852 2047{
45461e0d 2048 for (int i = 0; i < NUM_PROBES; i++)
f9e14852
GB
2049 {
2050 enum probe_action action = probe_info[i].action;
f9e14852 2051
45461e0d 2052 for (probe *p : probes[i])
f9e14852 2053 {
935676c9 2054 CORE_ADDR address = p->get_relocated_address (objfile);
729662a5
TT
2055
2056 create_solib_event_breakpoint (gdbarch, address);
d70cc3ba 2057 register_solib_event_probe (info, objfile, p, address, action);
f9e14852
GB
2058 }
2059 }
2060
2061 svr4_update_solib_event_breakpoints ();
2062}
2063
2064/* Both the SunOS and the SVR4 dynamic linkers call a marker function
2065 before and after mapping and unmapping shared libraries. The sole
2066 purpose of this method is to allow debuggers to set a breakpoint so
2067 they can track these changes.
2068
2069 Some versions of the glibc dynamic linker contain named probes
2070 to allow more fine grained stopping. Given the address of the
2071 original marker function, this function attempts to find these
2072 probes, and if found, sets breakpoints on those instead. If the
2073 probes aren't found, a single breakpoint is set on the original
2074 marker function. */
2075
2076static void
d70cc3ba 2077svr4_create_solib_event_breakpoints (svr4_info *info, struct gdbarch *gdbarch,
f9e14852
GB
2078 CORE_ADDR address)
2079{
2080 struct obj_section *os;
2081
2082 os = find_pc_section (address);
2083 if (os != NULL)
2084 {
2085 int with_prefix;
2086
2087 for (with_prefix = 0; with_prefix <= 1; with_prefix++)
2088 {
45461e0d 2089 std::vector<probe *> probes[NUM_PROBES];
f9e14852 2090 int all_probes_found = 1;
25f9533e 2091 int checked_can_use_probe_arguments = 0;
f9e14852 2092
45461e0d 2093 for (int i = 0; i < NUM_PROBES; i++)
f9e14852
GB
2094 {
2095 const char *name = probe_info[i].name;
935676c9 2096 probe *p;
f9e14852
GB
2097 char buf[32];
2098
2099 /* Fedora 17 and Red Hat Enterprise Linux 6.2-6.4
2100 shipped with an early version of the probes code in
2101 which the probes' names were prefixed with "rtld_"
2102 and the "map_failed" probe did not exist. The
2103 locations of the probes are otherwise the same, so
2104 we check for probes with prefixed names if probes
2105 with unprefixed names are not present. */
2106 if (with_prefix)
2107 {
2108 xsnprintf (buf, sizeof (buf), "rtld_%s", name);
2109 name = buf;
2110 }
2111
2112 probes[i] = find_probes_in_objfile (os->objfile, "rtld", name);
2113
2114 /* The "map_failed" probe did not exist in early
2115 versions of the probes code in which the probes'
2116 names were prefixed with "rtld_". */
2117 if (strcmp (name, "rtld_map_failed") == 0)
2118 continue;
2119
45461e0d 2120 if (probes[i].empty ())
f9e14852
GB
2121 {
2122 all_probes_found = 0;
2123 break;
2124 }
25f9533e
SDJ
2125
2126 /* Ensure probe arguments can be evaluated. */
2127 if (!checked_can_use_probe_arguments)
2128 {
45461e0d 2129 p = probes[i][0];
935676c9 2130 if (!p->can_evaluate_arguments ())
25f9533e
SDJ
2131 {
2132 all_probes_found = 0;
2133 break;
2134 }
2135 checked_can_use_probe_arguments = 1;
2136 }
f9e14852
GB
2137 }
2138
2139 if (all_probes_found)
d70cc3ba 2140 svr4_create_probe_breakpoints (info, gdbarch, probes, os->objfile);
f9e14852 2141
f9e14852
GB
2142 if (all_probes_found)
2143 return;
2144 }
2145 }
2146
2147 create_solib_event_breakpoint (gdbarch, address);
2148}
2149
cb457ae2
YQ
2150/* Helper function for gdb_bfd_lookup_symbol. */
2151
2152static int
3953f15c 2153cmp_name_and_sec_flags (const asymbol *sym, const void *data)
cb457ae2
YQ
2154{
2155 return (strcmp (sym->name, (const char *) data) == 0
2156 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0);
2157}
7f86f058 2158/* Arrange for dynamic linker to hit breakpoint.
13437d4b
KB
2159
2160 Both the SunOS and the SVR4 dynamic linkers have, as part of their
2161 debugger interface, support for arranging for the inferior to hit
2162 a breakpoint after mapping in the shared libraries. This function
2163 enables that breakpoint.
2164
2165 For SunOS, there is a special flag location (in_debugger) which we
2166 set to 1. When the dynamic linker sees this flag set, it will set
2167 a breakpoint at a location known only to itself, after saving the
2168 original contents of that place and the breakpoint address itself,
2169 in it's own internal structures. When we resume the inferior, it
2170 will eventually take a SIGTRAP when it runs into the breakpoint.
2171 We handle this (in a different place) by restoring the contents of
2172 the breakpointed location (which is only known after it stops),
2173 chasing around to locate the shared libraries that have been
2174 loaded, then resuming.
2175
2176 For SVR4, the debugger interface structure contains a member (r_brk)
2177 which is statically initialized at the time the shared library is
2178 built, to the offset of a function (_r_debug_state) which is guaran-
2179 teed to be called once before mapping in a library, and again when
2180 the mapping is complete. At the time we are examining this member,
2181 it contains only the unrelocated offset of the function, so we have
2182 to do our own relocation. Later, when the dynamic linker actually
2183 runs, it relocates r_brk to be the actual address of _r_debug_state().
2184
2185 The debugger interface structure also contains an enumeration which
2186 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
2187 depending upon whether or not the library is being mapped or unmapped,
7f86f058 2188 and then set to RT_CONSISTENT after the library is mapped/unmapped. */
13437d4b
KB
2189
2190static int
268a4a75 2191enable_break (struct svr4_info *info, int from_tty)
13437d4b 2192{
3b7344d5 2193 struct bound_minimal_symbol msymbol;
bc043ef3 2194 const char * const *bkpt_namep;
13437d4b 2195 asection *interp_sect;
7cd25cfc 2196 CORE_ADDR sym_addr;
13437d4b 2197
6c95b8df
PA
2198 info->interp_text_sect_low = info->interp_text_sect_high = 0;
2199 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
13437d4b 2200
7cd25cfc
DJ
2201 /* If we already have a shared library list in the target, and
2202 r_debug contains r_brk, set the breakpoint there - this should
2203 mean r_brk has already been relocated. Assume the dynamic linker
2204 is the object containing r_brk. */
2205
e696b3ad 2206 solib_add (NULL, from_tty, auto_solib_add);
7cd25cfc 2207 sym_addr = 0;
1a816a87
PA
2208 if (info->debug_base && solib_svr4_r_map (info) != 0)
2209 sym_addr = solib_svr4_r_brk (info);
7cd25cfc
DJ
2210
2211 if (sym_addr != 0)
2212 {
2213 struct obj_section *os;
2214
b36ec657 2215 sym_addr = gdbarch_addr_bits_remove
8b88a78e
PA
2216 (target_gdbarch (),
2217 gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2218 sym_addr,
2219 current_top_target ()));
b36ec657 2220
48379de6
DE
2221 /* On at least some versions of Solaris there's a dynamic relocation
2222 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
2223 we get control before the dynamic linker has self-relocated.
2224 Check if SYM_ADDR is in a known section, if it is assume we can
2225 trust its value. This is just a heuristic though, it could go away
2226 or be replaced if it's getting in the way.
2227
2228 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
2229 however it's spelled in your particular system) is ARM or Thumb.
2230 That knowledge is encoded in the address, if it's Thumb the low bit
2231 is 1. However, we've stripped that info above and it's not clear
2232 what all the consequences are of passing a non-addr_bits_remove'd
f9e14852 2233 address to svr4_create_solib_event_breakpoints. The call to
48379de6
DE
2234 find_pc_section verifies we know about the address and have some
2235 hope of computing the right kind of breakpoint to use (via
2236 symbol info). It does mean that GDB needs to be pointed at a
2237 non-stripped version of the dynamic linker in order to obtain
2238 information it already knows about. Sigh. */
2239
7cd25cfc
DJ
2240 os = find_pc_section (sym_addr);
2241 if (os != NULL)
2242 {
2243 /* Record the relocated start and end address of the dynamic linker
2244 text and plt section for svr4_in_dynsym_resolve_code. */
2245 bfd *tmp_bfd;
2246 CORE_ADDR load_addr;
2247
2248 tmp_bfd = os->objfile->obfd;
2249 load_addr = ANOFFSET (os->objfile->section_offsets,
e03e6279 2250 SECT_OFF_TEXT (os->objfile));
7cd25cfc
DJ
2251
2252 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
2253 if (interp_sect)
2254 {
6c95b8df 2255 info->interp_text_sect_low =
7cd25cfc 2256 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
2257 info->interp_text_sect_high =
2258 info->interp_text_sect_low
2259 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
2260 }
2261 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
2262 if (interp_sect)
2263 {
6c95b8df 2264 info->interp_plt_sect_low =
7cd25cfc 2265 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
2266 info->interp_plt_sect_high =
2267 info->interp_plt_sect_low
2268 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
2269 }
2270
d70cc3ba 2271 svr4_create_solib_event_breakpoints (info, target_gdbarch (), sym_addr);
7cd25cfc
DJ
2272 return 1;
2273 }
2274 }
2275
97ec2c2f 2276 /* Find the program interpreter; if not found, warn the user and drop
13437d4b 2277 into the old breakpoint at symbol code. */
17658d46
SM
2278 gdb::optional<gdb::byte_vector> interp_name_holder
2279 = find_program_interpreter ();
2280 if (interp_name_holder)
13437d4b 2281 {
17658d46 2282 const char *interp_name = (const char *) interp_name_holder->data ();
8ad2fcde
KB
2283 CORE_ADDR load_addr = 0;
2284 int load_addr_found = 0;
2ec9a4f8 2285 int loader_found_in_list = 0;
f8766ec1 2286 struct so_list *so;
2f4950cd 2287 struct target_ops *tmp_bfd_target;
13437d4b 2288
7cd25cfc 2289 sym_addr = 0;
13437d4b
KB
2290
2291 /* Now we need to figure out where the dynamic linker was
2292 loaded so that we can load its symbols and place a breakpoint
2293 in the dynamic linker itself.
2294
2295 This address is stored on the stack. However, I've been unable
2296 to find any magic formula to find it for Solaris (appears to
2297 be trivial on GNU/Linux). Therefore, we have to try an alternate
2298 mechanism to find the dynamic linker's base address. */
e4f7b8c8 2299
192b62ce 2300 gdb_bfd_ref_ptr tmp_bfd;
a70b8144 2301 try
f1838a98 2302 {
97ec2c2f 2303 tmp_bfd = solib_bfd_open (interp_name);
f1838a98 2304 }
230d2906 2305 catch (const gdb_exception &ex)
492d29ea
PA
2306 {
2307 }
492d29ea 2308
13437d4b
KB
2309 if (tmp_bfd == NULL)
2310 goto bkpt_at_symbol;
2311
2f4950cd 2312 /* Now convert the TMP_BFD into a target. That way target, as
192b62ce
TT
2313 well as BFD operations can be used. target_bfd_reopen
2314 acquires its own reference. */
2315 tmp_bfd_target = target_bfd_reopen (tmp_bfd.get ());
2f4950cd 2316
f8766ec1
KB
2317 /* On a running target, we can get the dynamic linker's base
2318 address from the shared library table. */
f8766ec1
KB
2319 so = master_so_list ();
2320 while (so)
8ad2fcde 2321 {
97ec2c2f 2322 if (svr4_same_1 (interp_name, so->so_original_name))
8ad2fcde
KB
2323 {
2324 load_addr_found = 1;
2ec9a4f8 2325 loader_found_in_list = 1;
192b62ce 2326 load_addr = lm_addr_check (so, tmp_bfd.get ());
8ad2fcde
KB
2327 break;
2328 }
f8766ec1 2329 so = so->next;
8ad2fcde
KB
2330 }
2331
8d4e36ba
JB
2332 /* If we were not able to find the base address of the loader
2333 from our so_list, then try using the AT_BASE auxilliary entry. */
2334 if (!load_addr_found)
8b88a78e 2335 if (target_auxv_search (current_top_target (), AT_BASE, &load_addr) > 0)
ad3a0e5b 2336 {
f5656ead 2337 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
ad3a0e5b
JK
2338
2339 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
2340 that `+ load_addr' will overflow CORE_ADDR width not creating
2341 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
2342 GDB. */
2343
d182d057 2344 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
ad3a0e5b 2345 {
d182d057 2346 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
192b62ce 2347 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd.get (),
ad3a0e5b
JK
2348 tmp_bfd_target);
2349
2350 gdb_assert (load_addr < space_size);
2351
2352 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
2353 64bit ld.so with 32bit executable, it should not happen. */
2354
2355 if (tmp_entry_point < space_size
2356 && tmp_entry_point + load_addr >= space_size)
2357 load_addr -= space_size;
2358 }
2359
2360 load_addr_found = 1;
2361 }
8d4e36ba 2362
8ad2fcde
KB
2363 /* Otherwise we find the dynamic linker's base address by examining
2364 the current pc (which should point at the entry point for the
8d4e36ba
JB
2365 dynamic linker) and subtracting the offset of the entry point.
2366
2367 This is more fragile than the previous approaches, but is a good
2368 fallback method because it has actually been working well in
2369 most cases. */
8ad2fcde 2370 if (!load_addr_found)
fb14de7b 2371 {
c2250ad1 2372 struct regcache *regcache
f5656ead 2373 = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
433759f7 2374
fb14de7b 2375 load_addr = (regcache_read_pc (regcache)
192b62ce 2376 - exec_entry_point (tmp_bfd.get (), tmp_bfd_target));
fb14de7b 2377 }
2ec9a4f8
DJ
2378
2379 if (!loader_found_in_list)
34439770 2380 {
1a816a87
PA
2381 info->debug_loader_name = xstrdup (interp_name);
2382 info->debug_loader_offset_p = 1;
2383 info->debug_loader_offset = load_addr;
e696b3ad 2384 solib_add (NULL, from_tty, auto_solib_add);
34439770 2385 }
13437d4b
KB
2386
2387 /* Record the relocated start and end address of the dynamic linker
d7fa2ae2 2388 text and plt section for svr4_in_dynsym_resolve_code. */
192b62ce 2389 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".text");
13437d4b
KB
2390 if (interp_sect)
2391 {
6c95b8df 2392 info->interp_text_sect_low =
192b62ce 2393 bfd_section_vma (tmp_bfd.get (), interp_sect) + load_addr;
6c95b8df
PA
2394 info->interp_text_sect_high =
2395 info->interp_text_sect_low
192b62ce 2396 + bfd_section_size (tmp_bfd.get (), interp_sect);
13437d4b 2397 }
192b62ce 2398 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".plt");
13437d4b
KB
2399 if (interp_sect)
2400 {
6c95b8df 2401 info->interp_plt_sect_low =
192b62ce 2402 bfd_section_vma (tmp_bfd.get (), interp_sect) + load_addr;
6c95b8df
PA
2403 info->interp_plt_sect_high =
2404 info->interp_plt_sect_low
192b62ce 2405 + bfd_section_size (tmp_bfd.get (), interp_sect);
13437d4b
KB
2406 }
2407
2408 /* Now try to set a breakpoint in the dynamic linker. */
2409 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2410 {
192b62ce
TT
2411 sym_addr = gdb_bfd_lookup_symbol (tmp_bfd.get (),
2412 cmp_name_and_sec_flags,
3953f15c 2413 *bkpt_namep);
13437d4b
KB
2414 if (sym_addr != 0)
2415 break;
2416 }
2417
2bbe3cc1
DJ
2418 if (sym_addr != 0)
2419 /* Convert 'sym_addr' from a function pointer to an address.
2420 Because we pass tmp_bfd_target instead of the current
2421 target, this will always produce an unrelocated value. */
f5656ead 2422 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2bbe3cc1
DJ
2423 sym_addr,
2424 tmp_bfd_target);
2425
695c3173
TT
2426 /* We're done with both the temporary bfd and target. Closing
2427 the target closes the underlying bfd, because it holds the
2428 only remaining reference. */
460014f5 2429 target_close (tmp_bfd_target);
13437d4b
KB
2430
2431 if (sym_addr != 0)
2432 {
d70cc3ba 2433 svr4_create_solib_event_breakpoints (info, target_gdbarch (),
f9e14852 2434 load_addr + sym_addr);
13437d4b
KB
2435 return 1;
2436 }
2437
2438 /* For whatever reason we couldn't set a breakpoint in the dynamic
2439 linker. Warn and drop into the old code. */
2440 bkpt_at_symbol:
82d03102
PG
2441 warning (_("Unable to find dynamic linker breakpoint function.\n"
2442 "GDB will be unable to debug shared library initializers\n"
2443 "and track explicitly loaded dynamic code."));
13437d4b 2444 }
13437d4b 2445
e499d0f1
DJ
2446 /* Scan through the lists of symbols, trying to look up the symbol and
2447 set a breakpoint there. Terminate loop when we/if we succeed. */
2448
2449 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2450 {
2451 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
3b7344d5 2452 if ((msymbol.minsym != NULL)
77e371c0 2453 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
e499d0f1 2454 {
77e371c0 2455 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
f5656ead 2456 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
de64a9ac 2457 sym_addr,
8b88a78e 2458 current_top_target ());
d70cc3ba
SM
2459 svr4_create_solib_event_breakpoints (info, target_gdbarch (),
2460 sym_addr);
e499d0f1
DJ
2461 return 1;
2462 }
2463 }
13437d4b 2464
17658d46 2465 if (interp_name_holder && !current_inferior ()->attach_flag)
13437d4b 2466 {
c6490bf2 2467 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
13437d4b 2468 {
c6490bf2 2469 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
3b7344d5 2470 if ((msymbol.minsym != NULL)
77e371c0 2471 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
c6490bf2 2472 {
77e371c0 2473 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
f5656ead 2474 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
c6490bf2 2475 sym_addr,
8b88a78e 2476 current_top_target ());
d70cc3ba
SM
2477 svr4_create_solib_event_breakpoints (info, target_gdbarch (),
2478 sym_addr);
c6490bf2
KB
2479 return 1;
2480 }
13437d4b
KB
2481 }
2482 }
542c95c2 2483 return 0;
13437d4b
KB
2484}
2485
d1012b8e 2486/* Read the ELF program headers from ABFD. */
e2a44558 2487
d1012b8e
SM
2488static gdb::optional<gdb::byte_vector>
2489read_program_headers_from_bfd (bfd *abfd)
e2a44558 2490{
d1012b8e
SM
2491 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
2492 int phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
2493 if (phdrs_size == 0)
2494 return {};
09919ac2 2495
d1012b8e 2496 gdb::byte_vector buf (phdrs_size);
09919ac2 2497 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
d1012b8e
SM
2498 || bfd_bread (buf.data (), phdrs_size, abfd) != phdrs_size)
2499 return {};
09919ac2
JK
2500
2501 return buf;
b8040f19
JK
2502}
2503
01c30d6e
JK
2504/* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
2505 exec_bfd. Otherwise return 0.
2506
2507 We relocate all of the sections by the same amount. This
c378eb4e 2508 behavior is mandated by recent editions of the System V ABI.
b8040f19
JK
2509 According to the System V Application Binary Interface,
2510 Edition 4.1, page 5-5:
2511
2512 ... Though the system chooses virtual addresses for
2513 individual processes, it maintains the segments' relative
2514 positions. Because position-independent code uses relative
2515 addressesing between segments, the difference between
2516 virtual addresses in memory must match the difference
2517 between virtual addresses in the file. The difference
2518 between the virtual address of any segment in memory and
2519 the corresponding virtual address in the file is thus a
2520 single constant value for any one executable or shared
2521 object in a given process. This difference is the base
2522 address. One use of the base address is to relocate the
2523 memory image of the program during dynamic linking.
2524
2525 The same language also appears in Edition 4.0 of the System V
09919ac2
JK
2526 ABI and is left unspecified in some of the earlier editions.
2527
2528 Decide if the objfile needs to be relocated. As indicated above, we will
2529 only be here when execution is stopped. But during attachment PC can be at
2530 arbitrary address therefore regcache_read_pc can be misleading (contrary to
2531 the auxv AT_ENTRY value). Moreover for executable with interpreter section
2532 regcache_read_pc would point to the interpreter and not the main executable.
2533
2534 So, to summarize, relocations are necessary when the start address obtained
2535 from the executable is different from the address in auxv AT_ENTRY entry.
d989b283 2536
09919ac2
JK
2537 [ The astute reader will note that we also test to make sure that
2538 the executable in question has the DYNAMIC flag set. It is my
2539 opinion that this test is unnecessary (undesirable even). It
2540 was added to avoid inadvertent relocation of an executable
2541 whose e_type member in the ELF header is not ET_DYN. There may
2542 be a time in the future when it is desirable to do relocations
2543 on other types of files as well in which case this condition
2544 should either be removed or modified to accomodate the new file
2545 type. - Kevin, Nov 2000. ] */
b8040f19 2546
01c30d6e
JK
2547static int
2548svr4_exec_displacement (CORE_ADDR *displacementp)
b8040f19 2549{
41752192
JK
2550 /* ENTRY_POINT is a possible function descriptor - before
2551 a call to gdbarch_convert_from_func_ptr_addr. */
8f61baf8 2552 CORE_ADDR entry_point, exec_displacement;
b8040f19
JK
2553
2554 if (exec_bfd == NULL)
2555 return 0;
2556
09919ac2
JK
2557 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
2558 being executed themselves and PIE (Position Independent Executable)
2559 executables are ET_DYN. */
2560
2561 if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0)
2562 return 0;
2563
8b88a78e 2564 if (target_auxv_search (current_top_target (), AT_ENTRY, &entry_point) <= 0)
09919ac2
JK
2565 return 0;
2566
8f61baf8 2567 exec_displacement = entry_point - bfd_get_start_address (exec_bfd);
09919ac2 2568
8f61baf8 2569 /* Verify the EXEC_DISPLACEMENT candidate complies with the required page
09919ac2
JK
2570 alignment. It is cheaper than the program headers comparison below. */
2571
2572 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2573 {
2574 const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd);
2575
2576 /* p_align of PT_LOAD segments does not specify any alignment but
2577 only congruency of addresses:
2578 p_offset % p_align == p_vaddr % p_align
2579 Kernel is free to load the executable with lower alignment. */
2580
8f61baf8 2581 if ((exec_displacement & (elf->minpagesize - 1)) != 0)
09919ac2
JK
2582 return 0;
2583 }
2584
2585 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
2586 comparing their program headers. If the program headers in the auxilliary
2587 vector do not match the program headers in the executable, then we are
2588 looking at a different file than the one used by the kernel - for
2589 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
2590
2591 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2592 {
d1012b8e 2593 /* Be optimistic and return 0 only if GDB was able to verify the headers
09919ac2 2594 really do not match. */
0a1e94c7 2595 int arch_size;
09919ac2 2596
17658d46
SM
2597 gdb::optional<gdb::byte_vector> phdrs_target
2598 = read_program_header (-1, &arch_size, NULL);
d1012b8e
SM
2599 gdb::optional<gdb::byte_vector> phdrs_binary
2600 = read_program_headers_from_bfd (exec_bfd);
2601 if (phdrs_target && phdrs_binary)
0a1e94c7 2602 {
f5656ead 2603 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
0a1e94c7
JK
2604
2605 /* We are dealing with three different addresses. EXEC_BFD
2606 represents current address in on-disk file. target memory content
2607 may be different from EXEC_BFD as the file may have been prelinked
2608 to a different address after the executable has been loaded.
2609 Moreover the address of placement in target memory can be
3e43a32a
MS
2610 different from what the program headers in target memory say -
2611 this is the goal of PIE.
0a1e94c7
JK
2612
2613 Detected DISPLACEMENT covers both the offsets of PIE placement and
2614 possible new prelink performed after start of the program. Here
2615 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
2616 content offset for the verification purpose. */
2617
d1012b8e 2618 if (phdrs_target->size () != phdrs_binary->size ()
0a1e94c7 2619 || bfd_get_arch_size (exec_bfd) != arch_size)
d1012b8e 2620 return 0;
3e43a32a 2621 else if (arch_size == 32
17658d46
SM
2622 && phdrs_target->size () >= sizeof (Elf32_External_Phdr)
2623 && phdrs_target->size () % sizeof (Elf32_External_Phdr) == 0)
0a1e94c7
JK
2624 {
2625 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2626 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2627 CORE_ADDR displacement = 0;
2628 int i;
2629
2630 /* DISPLACEMENT could be found more easily by the difference of
2631 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2632 already have enough information to compute that displacement
2633 with what we've read. */
2634
2635 for (i = 0; i < ehdr2->e_phnum; i++)
2636 if (phdr2[i].p_type == PT_LOAD)
2637 {
2638 Elf32_External_Phdr *phdrp;
2639 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2640 CORE_ADDR vaddr, paddr;
2641 CORE_ADDR displacement_vaddr = 0;
2642 CORE_ADDR displacement_paddr = 0;
2643
17658d46 2644 phdrp = &((Elf32_External_Phdr *) phdrs_target->data ())[i];
0a1e94c7
JK
2645 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2646 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2647
2648 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2649 byte_order);
2650 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2651
2652 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2653 byte_order);
2654 displacement_paddr = paddr - phdr2[i].p_paddr;
2655
2656 if (displacement_vaddr == displacement_paddr)
2657 displacement = displacement_vaddr;
2658
2659 break;
2660 }
2661
17658d46
SM
2662 /* Now compare program headers from the target and the binary
2663 with optional DISPLACEMENT. */
0a1e94c7 2664
17658d46
SM
2665 for (i = 0;
2666 i < phdrs_target->size () / sizeof (Elf32_External_Phdr);
2667 i++)
0a1e94c7
JK
2668 {
2669 Elf32_External_Phdr *phdrp;
2670 Elf32_External_Phdr *phdr2p;
2671 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2672 CORE_ADDR vaddr, paddr;
43b8e241 2673 asection *plt2_asect;
0a1e94c7 2674
17658d46 2675 phdrp = &((Elf32_External_Phdr *) phdrs_target->data ())[i];
0a1e94c7
JK
2676 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2677 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
d1012b8e 2678 phdr2p = &((Elf32_External_Phdr *) phdrs_binary->data ())[i];
0a1e94c7
JK
2679
2680 /* PT_GNU_STACK is an exception by being never relocated by
2681 prelink as its addresses are always zero. */
2682
2683 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2684 continue;
2685
2686 /* Check also other adjustment combinations - PR 11786. */
2687
3e43a32a
MS
2688 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2689 byte_order);
0a1e94c7
JK
2690 vaddr -= displacement;
2691 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
2692
3e43a32a
MS
2693 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2694 byte_order);
0a1e94c7
JK
2695 paddr -= displacement;
2696 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
2697
2698 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2699 continue;
2700
204b5331
DE
2701 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2702 CentOS-5 has problems with filesz, memsz as well.
be2d111a 2703 Strip also modifies memsz of PT_TLS.
204b5331 2704 See PR 11786. */
c44deb73
SM
2705 if (phdr2[i].p_type == PT_GNU_RELRO
2706 || phdr2[i].p_type == PT_TLS)
204b5331
DE
2707 {
2708 Elf32_External_Phdr tmp_phdr = *phdrp;
2709 Elf32_External_Phdr tmp_phdr2 = *phdr2p;
2710
2711 memset (tmp_phdr.p_filesz, 0, 4);
2712 memset (tmp_phdr.p_memsz, 0, 4);
2713 memset (tmp_phdr.p_flags, 0, 4);
2714 memset (tmp_phdr.p_align, 0, 4);
2715 memset (tmp_phdr2.p_filesz, 0, 4);
2716 memset (tmp_phdr2.p_memsz, 0, 4);
2717 memset (tmp_phdr2.p_flags, 0, 4);
2718 memset (tmp_phdr2.p_align, 0, 4);
2719
2720 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2721 == 0)
2722 continue;
2723 }
2724
43b8e241
JK
2725 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2726 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2727 if (plt2_asect)
2728 {
2729 int content2;
2730 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2731 CORE_ADDR filesz;
2732
2733 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2734 & SEC_HAS_CONTENTS) != 0;
2735
2736 filesz = extract_unsigned_integer (buf_filesz_p, 4,
2737 byte_order);
2738
2739 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2740 FILESZ is from the in-memory image. */
2741 if (content2)
2742 filesz += bfd_get_section_size (plt2_asect);
2743 else
2744 filesz -= bfd_get_section_size (plt2_asect);
2745
2746 store_unsigned_integer (buf_filesz_p, 4, byte_order,
2747 filesz);
2748
2749 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2750 continue;
2751 }
2752
d1012b8e 2753 return 0;
0a1e94c7
JK
2754 }
2755 }
3e43a32a 2756 else if (arch_size == 64
17658d46
SM
2757 && phdrs_target->size () >= sizeof (Elf64_External_Phdr)
2758 && phdrs_target->size () % sizeof (Elf64_External_Phdr) == 0)
0a1e94c7
JK
2759 {
2760 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2761 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2762 CORE_ADDR displacement = 0;
2763 int i;
2764
2765 /* DISPLACEMENT could be found more easily by the difference of
2766 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2767 already have enough information to compute that displacement
2768 with what we've read. */
2769
2770 for (i = 0; i < ehdr2->e_phnum; i++)
2771 if (phdr2[i].p_type == PT_LOAD)
2772 {
2773 Elf64_External_Phdr *phdrp;
2774 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2775 CORE_ADDR vaddr, paddr;
2776 CORE_ADDR displacement_vaddr = 0;
2777 CORE_ADDR displacement_paddr = 0;
2778
17658d46 2779 phdrp = &((Elf64_External_Phdr *) phdrs_target->data ())[i];
0a1e94c7
JK
2780 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2781 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2782
2783 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2784 byte_order);
2785 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2786
2787 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2788 byte_order);
2789 displacement_paddr = paddr - phdr2[i].p_paddr;
2790
2791 if (displacement_vaddr == displacement_paddr)
2792 displacement = displacement_vaddr;
2793
2794 break;
2795 }
2796
2797 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2798
17658d46
SM
2799 for (i = 0;
2800 i < phdrs_target->size () / sizeof (Elf64_External_Phdr);
2801 i++)
0a1e94c7
JK
2802 {
2803 Elf64_External_Phdr *phdrp;
2804 Elf64_External_Phdr *phdr2p;
2805 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2806 CORE_ADDR vaddr, paddr;
43b8e241 2807 asection *plt2_asect;
0a1e94c7 2808
17658d46 2809 phdrp = &((Elf64_External_Phdr *) phdrs_target->data ())[i];
0a1e94c7
JK
2810 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2811 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
d1012b8e 2812 phdr2p = &((Elf64_External_Phdr *) phdrs_binary->data ())[i];
0a1e94c7
JK
2813
2814 /* PT_GNU_STACK is an exception by being never relocated by
2815 prelink as its addresses are always zero. */
2816
2817 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2818 continue;
2819
2820 /* Check also other adjustment combinations - PR 11786. */
2821
3e43a32a
MS
2822 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2823 byte_order);
0a1e94c7
JK
2824 vaddr -= displacement;
2825 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
2826
3e43a32a
MS
2827 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2828 byte_order);
0a1e94c7
JK
2829 paddr -= displacement;
2830 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
2831
2832 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2833 continue;
2834
204b5331
DE
2835 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2836 CentOS-5 has problems with filesz, memsz as well.
be2d111a 2837 Strip also modifies memsz of PT_TLS.
204b5331 2838 See PR 11786. */
c44deb73
SM
2839 if (phdr2[i].p_type == PT_GNU_RELRO
2840 || phdr2[i].p_type == PT_TLS)
204b5331
DE
2841 {
2842 Elf64_External_Phdr tmp_phdr = *phdrp;
2843 Elf64_External_Phdr tmp_phdr2 = *phdr2p;
2844
2845 memset (tmp_phdr.p_filesz, 0, 8);
2846 memset (tmp_phdr.p_memsz, 0, 8);
2847 memset (tmp_phdr.p_flags, 0, 4);
2848 memset (tmp_phdr.p_align, 0, 8);
2849 memset (tmp_phdr2.p_filesz, 0, 8);
2850 memset (tmp_phdr2.p_memsz, 0, 8);
2851 memset (tmp_phdr2.p_flags, 0, 4);
2852 memset (tmp_phdr2.p_align, 0, 8);
2853
2854 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2855 == 0)
2856 continue;
2857 }
2858
43b8e241
JK
2859 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2860 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2861 if (plt2_asect)
2862 {
2863 int content2;
2864 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2865 CORE_ADDR filesz;
2866
2867 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2868 & SEC_HAS_CONTENTS) != 0;
2869
2870 filesz = extract_unsigned_integer (buf_filesz_p, 8,
2871 byte_order);
2872
2873 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2874 FILESZ is from the in-memory image. */
2875 if (content2)
2876 filesz += bfd_get_section_size (plt2_asect);
2877 else
2878 filesz -= bfd_get_section_size (plt2_asect);
2879
2880 store_unsigned_integer (buf_filesz_p, 8, byte_order,
2881 filesz);
2882
2883 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2884 continue;
2885 }
2886
d1012b8e 2887 return 0;
0a1e94c7
JK
2888 }
2889 }
2890 else
d1012b8e 2891 return 0;
0a1e94c7 2892 }
09919ac2 2893 }
b8040f19 2894
ccf26247
JK
2895 if (info_verbose)
2896 {
2897 /* It can be printed repeatedly as there is no easy way to check
2898 the executable symbols/file has been already relocated to
2899 displacement. */
2900
2901 printf_unfiltered (_("Using PIE (Position Independent Executable) "
2902 "displacement %s for \"%s\".\n"),
8f61baf8 2903 paddress (target_gdbarch (), exec_displacement),
ccf26247
JK
2904 bfd_get_filename (exec_bfd));
2905 }
2906
8f61baf8 2907 *displacementp = exec_displacement;
01c30d6e 2908 return 1;
b8040f19
JK
2909}
2910
2911/* Relocate the main executable. This function should be called upon
c378eb4e 2912 stopping the inferior process at the entry point to the program.
b8040f19
JK
2913 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
2914 different, the main executable is relocated by the proper amount. */
2915
2916static void
2917svr4_relocate_main_executable (void)
2918{
01c30d6e
JK
2919 CORE_ADDR displacement;
2920
4e5799b6
JK
2921 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
2922 probably contains the offsets computed using the PIE displacement
2923 from the previous run, which of course are irrelevant for this run.
2924 So we need to determine the new PIE displacement and recompute the
2925 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
2926 already contains pre-computed offsets.
01c30d6e 2927
4e5799b6 2928 If we cannot compute the PIE displacement, either:
01c30d6e 2929
4e5799b6
JK
2930 - The executable is not PIE.
2931
2932 - SYMFILE_OBJFILE does not match the executable started in the target.
2933 This can happen for main executable symbols loaded at the host while
2934 `ld.so --ld-args main-executable' is loaded in the target.
2935
2936 Then we leave the section offsets untouched and use them as is for
2937 this run. Either:
2938
2939 - These section offsets were properly reset earlier, and thus
2940 already contain the correct values. This can happen for instance
2941 when reconnecting via the remote protocol to a target that supports
2942 the `qOffsets' packet.
2943
2944 - The section offsets were not reset earlier, and the best we can
c378eb4e 2945 hope is that the old offsets are still applicable to the new run. */
01c30d6e
JK
2946
2947 if (! svr4_exec_displacement (&displacement))
2948 return;
b8040f19 2949
01c30d6e
JK
2950 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
2951 addresses. */
b8040f19
JK
2952
2953 if (symfile_objfile)
e2a44558 2954 {
e2a44558 2955 struct section_offsets *new_offsets;
b8040f19 2956 int i;
e2a44558 2957
224c3ddb
SM
2958 new_offsets = XALLOCAVEC (struct section_offsets,
2959 symfile_objfile->num_sections);
e2a44558 2960
b8040f19
JK
2961 for (i = 0; i < symfile_objfile->num_sections; i++)
2962 new_offsets->offsets[i] = displacement;
e2a44558 2963
b8040f19 2964 objfile_relocate (symfile_objfile, new_offsets);
e2a44558 2965 }
51bee8e9
JK
2966 else if (exec_bfd)
2967 {
2968 asection *asect;
2969
2970 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
2971 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
2972 (bfd_section_vma (exec_bfd, asect)
2973 + displacement));
2974 }
e2a44558
KB
2975}
2976
7f86f058 2977/* Implement the "create_inferior_hook" target_solib_ops method.
13437d4b
KB
2978
2979 For SVR4 executables, this first instruction is either the first
2980 instruction in the dynamic linker (for dynamically linked
2981 executables) or the instruction at "start" for statically linked
2982 executables. For dynamically linked executables, the system
2983 first exec's /lib/libc.so.N, which contains the dynamic linker,
2984 and starts it running. The dynamic linker maps in any needed
2985 shared libraries, maps in the actual user executable, and then
2986 jumps to "start" in the user executable.
2987
7f86f058
PA
2988 We can arrange to cooperate with the dynamic linker to discover the
2989 names of shared libraries that are dynamically linked, and the base
2990 addresses to which they are linked.
13437d4b
KB
2991
2992 This function is responsible for discovering those names and
2993 addresses, and saving sufficient information about them to allow
d2e5c99a 2994 their symbols to be read at a later time. */
13437d4b 2995
e2a44558 2996static void
268a4a75 2997svr4_solib_create_inferior_hook (int from_tty)
13437d4b 2998{
1a816a87
PA
2999 struct svr4_info *info;
3000
d70cc3ba 3001 info = get_svr4_info (current_program_space);
2020b7ab 3002
f9e14852
GB
3003 /* Clear the probes-based interface's state. */
3004 free_probes_table (info);
3005 free_solib_list (info);
3006
e2a44558 3007 /* Relocate the main executable if necessary. */
86e4bafc 3008 svr4_relocate_main_executable ();
e2a44558 3009
c91c8c16
PA
3010 /* No point setting a breakpoint in the dynamic linker if we can't
3011 hit it (e.g., a core file, or a trace file). */
3012 if (!target_has_execution)
3013 return;
3014
d5a921c9 3015 if (!svr4_have_link_map_offsets ())
513f5903 3016 return;
d5a921c9 3017
268a4a75 3018 if (!enable_break (info, from_tty))
542c95c2 3019 return;
13437d4b
KB
3020}
3021
3022static void
3023svr4_clear_solib (void)
3024{
6c95b8df
PA
3025 struct svr4_info *info;
3026
d70cc3ba 3027 info = get_svr4_info (current_program_space);
6c95b8df
PA
3028 info->debug_base = 0;
3029 info->debug_loader_offset_p = 0;
3030 info->debug_loader_offset = 0;
3031 xfree (info->debug_loader_name);
3032 info->debug_loader_name = NULL;
13437d4b
KB
3033}
3034
6bb7be43
JB
3035/* Clear any bits of ADDR that wouldn't fit in a target-format
3036 data pointer. "Data pointer" here refers to whatever sort of
3037 address the dynamic linker uses to manage its sections. At the
3038 moment, we don't support shared libraries on any processors where
3039 code and data pointers are different sizes.
3040
3041 This isn't really the right solution. What we really need here is
3042 a way to do arithmetic on CORE_ADDR values that respects the
3043 natural pointer/address correspondence. (For example, on the MIPS,
3044 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
3045 sign-extend the value. There, simply truncating the bits above
819844ad 3046 gdbarch_ptr_bit, as we do below, is no good.) This should probably
6bb7be43
JB
3047 be a new gdbarch method or something. */
3048static CORE_ADDR
3049svr4_truncate_ptr (CORE_ADDR addr)
3050{
f5656ead 3051 if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8)
6bb7be43
JB
3052 /* We don't need to truncate anything, and the bit twiddling below
3053 will fail due to overflow problems. */
3054 return addr;
3055 else
f5656ead 3056 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1);
6bb7be43
JB
3057}
3058
3059
749499cb
KB
3060static void
3061svr4_relocate_section_addresses (struct so_list *so,
0542c86d 3062 struct target_section *sec)
749499cb 3063{
2b2848e2
DE
3064 bfd *abfd = sec->the_bfd_section->owner;
3065
3066 sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so, abfd));
3067 sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so, abfd));
749499cb 3068}
4b188b9f 3069\f
749499cb 3070
4b188b9f 3071/* Architecture-specific operations. */
6bb7be43 3072
4b188b9f
MK
3073/* Per-architecture data key. */
3074static struct gdbarch_data *solib_svr4_data;
e5e2b9ff 3075
4b188b9f 3076struct solib_svr4_ops
e5e2b9ff 3077{
4b188b9f
MK
3078 /* Return a description of the layout of `struct link_map'. */
3079 struct link_map_offsets *(*fetch_link_map_offsets)(void);
3080};
e5e2b9ff 3081
4b188b9f 3082/* Return a default for the architecture-specific operations. */
e5e2b9ff 3083
4b188b9f
MK
3084static void *
3085solib_svr4_init (struct obstack *obstack)
e5e2b9ff 3086{
4b188b9f 3087 struct solib_svr4_ops *ops;
e5e2b9ff 3088
4b188b9f 3089 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
8d005789 3090 ops->fetch_link_map_offsets = NULL;
4b188b9f 3091 return ops;
e5e2b9ff
KB
3092}
3093
4b188b9f 3094/* Set the architecture-specific `struct link_map_offsets' fetcher for
7e3cb44c 3095 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
1c4dcb57 3096
21479ded 3097void
e5e2b9ff
KB
3098set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
3099 struct link_map_offsets *(*flmo) (void))
21479ded 3100{
19ba03f4
SM
3101 struct solib_svr4_ops *ops
3102 = (struct solib_svr4_ops *) gdbarch_data (gdbarch, solib_svr4_data);
4b188b9f
MK
3103
3104 ops->fetch_link_map_offsets = flmo;
7e3cb44c
UW
3105
3106 set_solib_ops (gdbarch, &svr4_so_ops);
21479ded
KB
3107}
3108
4b188b9f
MK
3109/* Fetch a link_map_offsets structure using the architecture-specific
3110 `struct link_map_offsets' fetcher. */
1c4dcb57 3111
4b188b9f
MK
3112static struct link_map_offsets *
3113svr4_fetch_link_map_offsets (void)
21479ded 3114{
19ba03f4
SM
3115 struct solib_svr4_ops *ops
3116 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3117 solib_svr4_data);
4b188b9f
MK
3118
3119 gdb_assert (ops->fetch_link_map_offsets);
3120 return ops->fetch_link_map_offsets ();
21479ded
KB
3121}
3122
4b188b9f
MK
3123/* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
3124
3125static int
3126svr4_have_link_map_offsets (void)
3127{
19ba03f4
SM
3128 struct solib_svr4_ops *ops
3129 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3130 solib_svr4_data);
433759f7 3131
4b188b9f
MK
3132 return (ops->fetch_link_map_offsets != NULL);
3133}
3134\f
3135
e4bbbda8
MK
3136/* Most OS'es that have SVR4-style ELF dynamic libraries define a
3137 `struct r_debug' and a `struct link_map' that are binary compatible
3138 with the origional SVR4 implementation. */
3139
3140/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3141 for an ILP32 SVR4 system. */
d989b283 3142
e4bbbda8
MK
3143struct link_map_offsets *
3144svr4_ilp32_fetch_link_map_offsets (void)
3145{
3146 static struct link_map_offsets lmo;
3147 static struct link_map_offsets *lmp = NULL;
3148
3149 if (lmp == NULL)
3150 {
3151 lmp = &lmo;
3152
e4cd0d6a
MK
3153 lmo.r_version_offset = 0;
3154 lmo.r_version_size = 4;
e4bbbda8 3155 lmo.r_map_offset = 4;
7cd25cfc 3156 lmo.r_brk_offset = 8;
e4cd0d6a 3157 lmo.r_ldsomap_offset = 20;
e4bbbda8
MK
3158
3159 /* Everything we need is in the first 20 bytes. */
3160 lmo.link_map_size = 20;
3161 lmo.l_addr_offset = 0;
e4bbbda8 3162 lmo.l_name_offset = 4;
cc10cae3 3163 lmo.l_ld_offset = 8;
e4bbbda8 3164 lmo.l_next_offset = 12;
e4bbbda8 3165 lmo.l_prev_offset = 16;
e4bbbda8
MK
3166 }
3167
3168 return lmp;
3169}
3170
3171/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3172 for an LP64 SVR4 system. */
d989b283 3173
e4bbbda8
MK
3174struct link_map_offsets *
3175svr4_lp64_fetch_link_map_offsets (void)
3176{
3177 static struct link_map_offsets lmo;
3178 static struct link_map_offsets *lmp = NULL;
3179
3180 if (lmp == NULL)
3181 {
3182 lmp = &lmo;
3183
e4cd0d6a
MK
3184 lmo.r_version_offset = 0;
3185 lmo.r_version_size = 4;
e4bbbda8 3186 lmo.r_map_offset = 8;
7cd25cfc 3187 lmo.r_brk_offset = 16;
e4cd0d6a 3188 lmo.r_ldsomap_offset = 40;
e4bbbda8
MK
3189
3190 /* Everything we need is in the first 40 bytes. */
3191 lmo.link_map_size = 40;
3192 lmo.l_addr_offset = 0;
e4bbbda8 3193 lmo.l_name_offset = 8;
cc10cae3 3194 lmo.l_ld_offset = 16;
e4bbbda8 3195 lmo.l_next_offset = 24;
e4bbbda8 3196 lmo.l_prev_offset = 32;
e4bbbda8
MK
3197 }
3198
3199 return lmp;
3200}
3201\f
3202
7d522c90 3203struct target_so_ops svr4_so_ops;
13437d4b 3204
c378eb4e 3205/* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
3a40aaa0
UW
3206 different rule for symbol lookup. The lookup begins here in the DSO, not in
3207 the main executable. */
3208
d12307c1 3209static struct block_symbol
efad9b6a 3210elf_lookup_lib_symbol (struct objfile *objfile,
3a40aaa0 3211 const char *name,
21b556f4 3212 const domain_enum domain)
3a40aaa0 3213{
61f0d762
JK
3214 bfd *abfd;
3215
3216 if (objfile == symfile_objfile)
3217 abfd = exec_bfd;
3218 else
3219 {
3220 /* OBJFILE should have been passed as the non-debug one. */
3221 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
3222
3223 abfd = objfile->obfd;
3224 }
3225
a738da3a 3226 if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL, NULL) != 1)
6640a367 3227 return {};
3a40aaa0 3228
94af9270 3229 return lookup_global_symbol_from_objfile (objfile, name, domain);
3a40aaa0
UW
3230}
3231
13437d4b
KB
3232void
3233_initialize_svr4_solib (void)
3234{
4b188b9f
MK
3235 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
3236
749499cb 3237 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
13437d4b 3238 svr4_so_ops.free_so = svr4_free_so;
0892cb63 3239 svr4_so_ops.clear_so = svr4_clear_so;
13437d4b
KB
3240 svr4_so_ops.clear_solib = svr4_clear_solib;
3241 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
13437d4b
KB
3242 svr4_so_ops.current_sos = svr4_current_sos;
3243 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
d7fa2ae2 3244 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
831a0c44 3245 svr4_so_ops.bfd_open = solib_bfd_open;
3a40aaa0 3246 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
a7c02bc8 3247 svr4_so_ops.same = svr4_same;
de18c1d8 3248 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
f9e14852
GB
3249 svr4_so_ops.update_breakpoints = svr4_update_solib_event_breakpoints;
3250 svr4_so_ops.handle_event = svr4_handle_solib_event;
7905fc35
PA
3251
3252 gdb::observers::free_objfile.attach (svr4_free_objfile_observer);
13437d4b 3253}
This page took 2.608726 seconds and 4 git commands to generate.