[ARM] PR ld/21402, only override the symbol dynamic decision on undefined weak symbol.
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
CommitLineData
ab31aa69 1/* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2f4950cd 2
61baf725 3 Copyright (C) 1990-2017 Free Software Foundation, Inc.
13437d4b
KB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
13437d4b
KB
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
13437d4b 19
13437d4b
KB
20#include "defs.h"
21
13437d4b 22#include "elf/external.h"
21479ded 23#include "elf/common.h"
f7856c8f 24#include "elf/mips.h"
13437d4b
KB
25
26#include "symtab.h"
27#include "bfd.h"
28#include "symfile.h"
29#include "objfiles.h"
30#include "gdbcore.h"
13437d4b 31#include "target.h"
13437d4b 32#include "inferior.h"
45741a9c 33#include "infrun.h"
fb14de7b 34#include "regcache.h"
2020b7ab 35#include "gdbthread.h"
1a816a87 36#include "observer.h"
13437d4b
KB
37
38#include "solist.h"
bba93f6c 39#include "solib.h"
13437d4b
KB
40#include "solib-svr4.h"
41
2f4950cd 42#include "bfd-target.h"
cc10cae3 43#include "elf-bfd.h"
2f4950cd 44#include "exec.h"
8d4e36ba 45#include "auxv.h"
695c3173 46#include "gdb_bfd.h"
f9e14852 47#include "probe.h"
2f4950cd 48
e5e2b9ff 49static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
d5a921c9 50static int svr4_have_link_map_offsets (void);
9f2982ff 51static void svr4_relocate_main_executable (void);
f9e14852 52static void svr4_free_library_list (void *p_list);
1c4dcb57 53
13437d4b
KB
54/* On SVR4 systems, a list of symbols in the dynamic linker where
55 GDB can try to place a breakpoint to monitor shared library
56 events.
57
58 If none of these symbols are found, or other errors occur, then
59 SVR4 systems will fall back to using a symbol as the "startup
60 mapping complete" breakpoint address. */
61
bc043ef3 62static const char * const solib_break_names[] =
13437d4b
KB
63{
64 "r_debug_state",
65 "_r_debug_state",
66 "_dl_debug_state",
67 "rtld_db_dlactivity",
4c7dcb84 68 "__dl_rtld_db_dlactivity",
1f72e589 69 "_rtld_debug_state",
4c0122c8 70
13437d4b
KB
71 NULL
72};
13437d4b 73
bc043ef3 74static const char * const bkpt_names[] =
13437d4b 75{
13437d4b 76 "_start",
ad3dcc5c 77 "__start",
13437d4b
KB
78 "main",
79 NULL
80};
13437d4b 81
bc043ef3 82static const char * const main_name_list[] =
13437d4b
KB
83{
84 "main_$main",
85 NULL
86};
87
f9e14852
GB
88/* What to do when a probe stop occurs. */
89
90enum probe_action
91{
92 /* Something went seriously wrong. Stop using probes and
93 revert to using the older interface. */
94 PROBES_INTERFACE_FAILED,
95
96 /* No action is required. The shared object list is still
97 valid. */
98 DO_NOTHING,
99
100 /* The shared object list should be reloaded entirely. */
101 FULL_RELOAD,
102
103 /* Attempt to incrementally update the shared object list. If
104 the update fails or is not possible, fall back to reloading
105 the list in full. */
106 UPDATE_OR_RELOAD,
107};
108
109/* A probe's name and its associated action. */
110
111struct probe_info
112{
113 /* The name of the probe. */
114 const char *name;
115
116 /* What to do when a probe stop occurs. */
117 enum probe_action action;
118};
119
120/* A list of named probes and their associated actions. If all
121 probes are present in the dynamic linker then the probes-based
122 interface will be used. */
123
124static const struct probe_info probe_info[] =
125{
126 { "init_start", DO_NOTHING },
127 { "init_complete", FULL_RELOAD },
128 { "map_start", DO_NOTHING },
129 { "map_failed", DO_NOTHING },
130 { "reloc_complete", UPDATE_OR_RELOAD },
131 { "unmap_start", DO_NOTHING },
132 { "unmap_complete", FULL_RELOAD },
133};
134
135#define NUM_PROBES ARRAY_SIZE (probe_info)
136
4d7b2d5b
JB
137/* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
138 the same shared library. */
139
140static int
141svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
142{
143 if (strcmp (gdb_so_name, inferior_so_name) == 0)
144 return 1;
145
146 /* On Solaris, when starting inferior we think that dynamic linker is
d989b283
PP
147 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
148 contains /lib/ld.so.1. Sometimes one file is a link to another, but
4d7b2d5b
JB
149 sometimes they have identical content, but are not linked to each
150 other. We don't restrict this check for Solaris, but the chances
151 of running into this situation elsewhere are very low. */
152 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
153 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
154 return 1;
155
156 /* Similarly, we observed the same issue with sparc64, but with
157 different locations. */
158 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
159 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
160 return 1;
161
162 return 0;
163}
164
165static int
166svr4_same (struct so_list *gdb, struct so_list *inferior)
167{
168 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
169}
170
d0e449a1 171static lm_info_svr4 *
3957565a 172lm_info_read (CORE_ADDR lm_addr)
13437d4b 173{
4b188b9f 174 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
3957565a 175 gdb_byte *lm;
d0e449a1 176 lm_info_svr4 *lm_info;
3957565a
JK
177 struct cleanup *back_to;
178
224c3ddb 179 lm = (gdb_byte *) xmalloc (lmo->link_map_size);
3957565a
JK
180 back_to = make_cleanup (xfree, lm);
181
182 if (target_read_memory (lm_addr, lm, lmo->link_map_size) != 0)
183 {
184 warning (_("Error reading shared library list entry at %s"),
f5656ead 185 paddress (target_gdbarch (), lm_addr)),
3957565a
JK
186 lm_info = NULL;
187 }
188 else
189 {
f5656ead 190 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
13437d4b 191
76e75227 192 lm_info = new lm_info_svr4;
3957565a
JK
193 lm_info->lm_addr = lm_addr;
194
195 lm_info->l_addr_inferior = extract_typed_address (&lm[lmo->l_addr_offset],
196 ptr_type);
197 lm_info->l_ld = extract_typed_address (&lm[lmo->l_ld_offset], ptr_type);
198 lm_info->l_next = extract_typed_address (&lm[lmo->l_next_offset],
199 ptr_type);
200 lm_info->l_prev = extract_typed_address (&lm[lmo->l_prev_offset],
201 ptr_type);
202 lm_info->l_name = extract_typed_address (&lm[lmo->l_name_offset],
203 ptr_type);
204 }
205
206 do_cleanups (back_to);
207
208 return lm_info;
13437d4b
KB
209}
210
cc10cae3 211static int
b23518f0 212has_lm_dynamic_from_link_map (void)
cc10cae3
AO
213{
214 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
215
cfaefc65 216 return lmo->l_ld_offset >= 0;
cc10cae3
AO
217}
218
cc10cae3 219static CORE_ADDR
f65ce5fb 220lm_addr_check (const struct so_list *so, bfd *abfd)
cc10cae3 221{
d0e449a1
SM
222 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
223
224 if (!li->l_addr_p)
cc10cae3
AO
225 {
226 struct bfd_section *dyninfo_sect;
28f34a8f 227 CORE_ADDR l_addr, l_dynaddr, dynaddr;
cc10cae3 228
d0e449a1 229 l_addr = li->l_addr_inferior;
cc10cae3 230
b23518f0 231 if (! abfd || ! has_lm_dynamic_from_link_map ())
cc10cae3
AO
232 goto set_addr;
233
d0e449a1 234 l_dynaddr = li->l_ld;
cc10cae3
AO
235
236 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
237 if (dyninfo_sect == NULL)
238 goto set_addr;
239
240 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
241
242 if (dynaddr + l_addr != l_dynaddr)
243 {
28f34a8f 244 CORE_ADDR align = 0x1000;
4e1fc9c9 245 CORE_ADDR minpagesize = align;
28f34a8f 246
cc10cae3
AO
247 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
248 {
249 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
250 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
251 int i;
252
253 align = 1;
254
255 for (i = 0; i < ehdr->e_phnum; i++)
256 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
257 align = phdr[i].p_align;
4e1fc9c9
JK
258
259 minpagesize = get_elf_backend_data (abfd)->minpagesize;
cc10cae3
AO
260 }
261
262 /* Turn it into a mask. */
263 align--;
264
265 /* If the changes match the alignment requirements, we
266 assume we're using a core file that was generated by the
267 same binary, just prelinked with a different base offset.
268 If it doesn't match, we may have a different binary, the
269 same binary with the dynamic table loaded at an unrelated
270 location, or anything, really. To avoid regressions,
271 don't adjust the base offset in the latter case, although
272 odds are that, if things really changed, debugging won't
5c0d192f
JK
273 quite work.
274
275 One could expect more the condition
276 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
277 but the one below is relaxed for PPC. The PPC kernel supports
278 either 4k or 64k page sizes. To be prepared for 64k pages,
279 PPC ELF files are built using an alignment requirement of 64k.
280 However, when running on a kernel supporting 4k pages, the memory
281 mapping of the library may not actually happen on a 64k boundary!
282
283 (In the usual case where (l_addr & align) == 0, this check is
4e1fc9c9
JK
284 equivalent to the possibly expected check above.)
285
286 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
5c0d192f 287
02835898
JK
288 l_addr = l_dynaddr - dynaddr;
289
4e1fc9c9
JK
290 if ((l_addr & (minpagesize - 1)) == 0
291 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
cc10cae3 292 {
701ed6dc 293 if (info_verbose)
ccf26247
JK
294 printf_unfiltered (_("Using PIC (Position Independent Code) "
295 "prelink displacement %s for \"%s\".\n"),
f5656ead 296 paddress (target_gdbarch (), l_addr),
ccf26247 297 so->so_name);
cc10cae3 298 }
79d4c408 299 else
02835898
JK
300 {
301 /* There is no way to verify the library file matches. prelink
302 can during prelinking of an unprelinked file (or unprelinking
303 of a prelinked file) shift the DYNAMIC segment by arbitrary
304 offset without any page size alignment. There is no way to
305 find out the ELF header and/or Program Headers for a limited
306 verification if it they match. One could do a verification
307 of the DYNAMIC segment. Still the found address is the best
308 one GDB could find. */
309
310 warning (_(".dynamic section for \"%s\" "
311 "is not at the expected address "
312 "(wrong library or version mismatch?)"), so->so_name);
313 }
cc10cae3
AO
314 }
315
316 set_addr:
d0e449a1
SM
317 li->l_addr = l_addr;
318 li->l_addr_p = 1;
cc10cae3
AO
319 }
320
d0e449a1 321 return li->l_addr;
cc10cae3
AO
322}
323
6c95b8df 324/* Per pspace SVR4 specific data. */
13437d4b 325
1a816a87
PA
326struct svr4_info
327{
c378eb4e 328 CORE_ADDR debug_base; /* Base of dynamic linker structures. */
1a816a87
PA
329
330 /* Validity flag for debug_loader_offset. */
331 int debug_loader_offset_p;
332
333 /* Load address for the dynamic linker, inferred. */
334 CORE_ADDR debug_loader_offset;
335
336 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
337 char *debug_loader_name;
338
339 /* Load map address for the main executable. */
340 CORE_ADDR main_lm_addr;
1a816a87 341
6c95b8df
PA
342 CORE_ADDR interp_text_sect_low;
343 CORE_ADDR interp_text_sect_high;
344 CORE_ADDR interp_plt_sect_low;
345 CORE_ADDR interp_plt_sect_high;
f9e14852
GB
346
347 /* Nonzero if the list of objects was last obtained from the target
348 via qXfer:libraries-svr4:read. */
349 int using_xfer;
350
351 /* Table of struct probe_and_action instances, used by the
352 probes-based interface to map breakpoint addresses to probes
353 and their associated actions. Lookup is performed using
354 probe_and_action->probe->address. */
355 htab_t probes_table;
356
357 /* List of objects loaded into the inferior, used by the probes-
358 based interface. */
359 struct so_list *solib_list;
6c95b8df 360};
1a816a87 361
6c95b8df
PA
362/* Per-program-space data key. */
363static const struct program_space_data *solib_svr4_pspace_data;
1a816a87 364
f9e14852
GB
365/* Free the probes table. */
366
367static void
368free_probes_table (struct svr4_info *info)
369{
370 if (info->probes_table == NULL)
371 return;
372
373 htab_delete (info->probes_table);
374 info->probes_table = NULL;
375}
376
377/* Free the solib list. */
378
379static void
380free_solib_list (struct svr4_info *info)
381{
382 svr4_free_library_list (&info->solib_list);
383 info->solib_list = NULL;
384}
385
6c95b8df
PA
386static void
387svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
1a816a87 388{
19ba03f4 389 struct svr4_info *info = (struct svr4_info *) arg;
f9e14852
GB
390
391 free_probes_table (info);
392 free_solib_list (info);
393
6c95b8df 394 xfree (info);
1a816a87
PA
395}
396
6c95b8df
PA
397/* Get the current svr4 data. If none is found yet, add it now. This
398 function always returns a valid object. */
34439770 399
6c95b8df
PA
400static struct svr4_info *
401get_svr4_info (void)
1a816a87 402{
6c95b8df 403 struct svr4_info *info;
1a816a87 404
19ba03f4
SM
405 info = (struct svr4_info *) program_space_data (current_program_space,
406 solib_svr4_pspace_data);
6c95b8df
PA
407 if (info != NULL)
408 return info;
34439770 409
41bf6aca 410 info = XCNEW (struct svr4_info);
6c95b8df
PA
411 set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
412 return info;
1a816a87 413}
93a57060 414
13437d4b
KB
415/* Local function prototypes */
416
bc043ef3 417static int match_main (const char *);
13437d4b 418
97ec2c2f
UW
419/* Read program header TYPE from inferior memory. The header is found
420 by scanning the OS auxillary vector.
421
09919ac2
JK
422 If TYPE == -1, return the program headers instead of the contents of
423 one program header.
424
97ec2c2f
UW
425 Return a pointer to allocated memory holding the program header contents,
426 or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the
427 size of those contents is returned to P_SECT_SIZE. Likewise, the target
a738da3a
MF
428 architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE and
429 the base address of the section is returned in BASE_ADDR. */
97ec2c2f
UW
430
431static gdb_byte *
a738da3a
MF
432read_program_header (int type, int *p_sect_size, int *p_arch_size,
433 CORE_ADDR *base_addr)
97ec2c2f 434{
f5656ead 435 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
43136979 436 CORE_ADDR at_phdr, at_phent, at_phnum, pt_phdr = 0;
97ec2c2f
UW
437 int arch_size, sect_size;
438 CORE_ADDR sect_addr;
439 gdb_byte *buf;
43136979 440 int pt_phdr_p = 0;
97ec2c2f
UW
441
442 /* Get required auxv elements from target. */
443 if (target_auxv_search (&current_target, AT_PHDR, &at_phdr) <= 0)
444 return 0;
445 if (target_auxv_search (&current_target, AT_PHENT, &at_phent) <= 0)
446 return 0;
447 if (target_auxv_search (&current_target, AT_PHNUM, &at_phnum) <= 0)
448 return 0;
449 if (!at_phdr || !at_phnum)
450 return 0;
451
452 /* Determine ELF architecture type. */
453 if (at_phent == sizeof (Elf32_External_Phdr))
454 arch_size = 32;
455 else if (at_phent == sizeof (Elf64_External_Phdr))
456 arch_size = 64;
457 else
458 return 0;
459
09919ac2
JK
460 /* Find the requested segment. */
461 if (type == -1)
462 {
463 sect_addr = at_phdr;
464 sect_size = at_phent * at_phnum;
465 }
466 else if (arch_size == 32)
97ec2c2f
UW
467 {
468 Elf32_External_Phdr phdr;
469 int i;
470
471 /* Search for requested PHDR. */
472 for (i = 0; i < at_phnum; i++)
473 {
43136979
AR
474 int p_type;
475
97ec2c2f
UW
476 if (target_read_memory (at_phdr + i * sizeof (phdr),
477 (gdb_byte *)&phdr, sizeof (phdr)))
478 return 0;
479
43136979
AR
480 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
481 4, byte_order);
482
483 if (p_type == PT_PHDR)
484 {
485 pt_phdr_p = 1;
486 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
487 4, byte_order);
488 }
489
490 if (p_type == type)
97ec2c2f
UW
491 break;
492 }
493
494 if (i == at_phnum)
495 return 0;
496
497 /* Retrieve address and size. */
e17a4113
UW
498 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
499 4, byte_order);
500 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
501 4, byte_order);
97ec2c2f
UW
502 }
503 else
504 {
505 Elf64_External_Phdr phdr;
506 int i;
507
508 /* Search for requested PHDR. */
509 for (i = 0; i < at_phnum; i++)
510 {
43136979
AR
511 int p_type;
512
97ec2c2f
UW
513 if (target_read_memory (at_phdr + i * sizeof (phdr),
514 (gdb_byte *)&phdr, sizeof (phdr)))
515 return 0;
516
43136979
AR
517 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
518 4, byte_order);
519
520 if (p_type == PT_PHDR)
521 {
522 pt_phdr_p = 1;
523 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
524 8, byte_order);
525 }
526
527 if (p_type == type)
97ec2c2f
UW
528 break;
529 }
530
531 if (i == at_phnum)
532 return 0;
533
534 /* Retrieve address and size. */
e17a4113
UW
535 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
536 8, byte_order);
537 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
538 8, byte_order);
97ec2c2f
UW
539 }
540
43136979
AR
541 /* PT_PHDR is optional, but we really need it
542 for PIE to make this work in general. */
543
544 if (pt_phdr_p)
545 {
546 /* at_phdr is real address in memory. pt_phdr is what pheader says it is.
547 Relocation offset is the difference between the two. */
548 sect_addr = sect_addr + (at_phdr - pt_phdr);
549 }
550
97ec2c2f 551 /* Read in requested program header. */
224c3ddb 552 buf = (gdb_byte *) xmalloc (sect_size);
97ec2c2f
UW
553 if (target_read_memory (sect_addr, buf, sect_size))
554 {
555 xfree (buf);
556 return NULL;
557 }
558
559 if (p_arch_size)
560 *p_arch_size = arch_size;
561 if (p_sect_size)
562 *p_sect_size = sect_size;
a738da3a
MF
563 if (base_addr)
564 *base_addr = sect_addr;
97ec2c2f
UW
565
566 return buf;
567}
568
569
570/* Return program interpreter string. */
001f13d8 571static char *
97ec2c2f
UW
572find_program_interpreter (void)
573{
574 gdb_byte *buf = NULL;
575
576 /* If we have an exec_bfd, use its section table. */
577 if (exec_bfd
578 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
579 {
580 struct bfd_section *interp_sect;
581
582 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
583 if (interp_sect != NULL)
584 {
97ec2c2f
UW
585 int sect_size = bfd_section_size (exec_bfd, interp_sect);
586
224c3ddb 587 buf = (gdb_byte *) xmalloc (sect_size);
97ec2c2f
UW
588 bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size);
589 }
590 }
591
592 /* If we didn't find it, use the target auxillary vector. */
593 if (!buf)
a738da3a 594 buf = read_program_header (PT_INTERP, NULL, NULL, NULL);
97ec2c2f 595
001f13d8 596 return (char *) buf;
97ec2c2f
UW
597}
598
599
b6d7a4bf
SM
600/* Scan for DESIRED_DYNTAG in .dynamic section of ABFD. If DESIRED_DYNTAG is
601 found, 1 is returned and the corresponding PTR is set. */
3a40aaa0
UW
602
603static int
a738da3a
MF
604scan_dyntag (const int desired_dyntag, bfd *abfd, CORE_ADDR *ptr,
605 CORE_ADDR *ptr_addr)
3a40aaa0
UW
606{
607 int arch_size, step, sect_size;
b6d7a4bf 608 long current_dyntag;
b381ea14 609 CORE_ADDR dyn_ptr, dyn_addr;
65728c26 610 gdb_byte *bufend, *bufstart, *buf;
3a40aaa0
UW
611 Elf32_External_Dyn *x_dynp_32;
612 Elf64_External_Dyn *x_dynp_64;
613 struct bfd_section *sect;
61f0d762 614 struct target_section *target_section;
3a40aaa0
UW
615
616 if (abfd == NULL)
617 return 0;
0763ab81
PA
618
619 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
620 return 0;
621
3a40aaa0
UW
622 arch_size = bfd_get_arch_size (abfd);
623 if (arch_size == -1)
0763ab81 624 return 0;
3a40aaa0
UW
625
626 /* Find the start address of the .dynamic section. */
627 sect = bfd_get_section_by_name (abfd, ".dynamic");
628 if (sect == NULL)
629 return 0;
61f0d762
JK
630
631 for (target_section = current_target_sections->sections;
632 target_section < current_target_sections->sections_end;
633 target_section++)
634 if (sect == target_section->the_bfd_section)
635 break;
b381ea14
JK
636 if (target_section < current_target_sections->sections_end)
637 dyn_addr = target_section->addr;
638 else
639 {
640 /* ABFD may come from OBJFILE acting only as a symbol file without being
641 loaded into the target (see add_symbol_file_command). This case is
642 such fallback to the file VMA address without the possibility of
643 having the section relocated to its actual in-memory address. */
644
645 dyn_addr = bfd_section_vma (abfd, sect);
646 }
3a40aaa0 647
65728c26
DJ
648 /* Read in .dynamic from the BFD. We will get the actual value
649 from memory later. */
3a40aaa0 650 sect_size = bfd_section_size (abfd, sect);
224c3ddb 651 buf = bufstart = (gdb_byte *) alloca (sect_size);
65728c26
DJ
652 if (!bfd_get_section_contents (abfd, sect,
653 buf, 0, sect_size))
654 return 0;
3a40aaa0
UW
655
656 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
657 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
658 : sizeof (Elf64_External_Dyn);
659 for (bufend = buf + sect_size;
660 buf < bufend;
661 buf += step)
662 {
663 if (arch_size == 32)
664 {
665 x_dynp_32 = (Elf32_External_Dyn *) buf;
b6d7a4bf 666 current_dyntag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
3a40aaa0
UW
667 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
668 }
65728c26 669 else
3a40aaa0
UW
670 {
671 x_dynp_64 = (Elf64_External_Dyn *) buf;
b6d7a4bf 672 current_dyntag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
3a40aaa0
UW
673 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
674 }
b6d7a4bf 675 if (current_dyntag == DT_NULL)
3a40aaa0 676 return 0;
b6d7a4bf 677 if (current_dyntag == desired_dyntag)
3a40aaa0 678 {
65728c26
DJ
679 /* If requested, try to read the runtime value of this .dynamic
680 entry. */
3a40aaa0 681 if (ptr)
65728c26 682 {
b6da22b0 683 struct type *ptr_type;
65728c26 684 gdb_byte ptr_buf[8];
a738da3a 685 CORE_ADDR ptr_addr_1;
65728c26 686
f5656ead 687 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
a738da3a
MF
688 ptr_addr_1 = dyn_addr + (buf - bufstart) + arch_size / 8;
689 if (target_read_memory (ptr_addr_1, ptr_buf, arch_size / 8) == 0)
b6da22b0 690 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
65728c26 691 *ptr = dyn_ptr;
a738da3a
MF
692 if (ptr_addr)
693 *ptr_addr = dyn_addr + (buf - bufstart);
65728c26
DJ
694 }
695 return 1;
3a40aaa0
UW
696 }
697 }
698
699 return 0;
700}
701
b6d7a4bf
SM
702/* Scan for DESIRED_DYNTAG in .dynamic section of the target's main executable,
703 found by consulting the OS auxillary vector. If DESIRED_DYNTAG is found, 1
704 is returned and the corresponding PTR is set. */
97ec2c2f
UW
705
706static int
a738da3a
MF
707scan_dyntag_auxv (const int desired_dyntag, CORE_ADDR *ptr,
708 CORE_ADDR *ptr_addr)
97ec2c2f 709{
f5656ead 710 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
97ec2c2f 711 int sect_size, arch_size, step;
b6d7a4bf 712 long current_dyntag;
97ec2c2f 713 CORE_ADDR dyn_ptr;
a738da3a 714 CORE_ADDR base_addr;
97ec2c2f
UW
715 gdb_byte *bufend, *bufstart, *buf;
716
717 /* Read in .dynamic section. */
a738da3a
MF
718 buf = bufstart = read_program_header (PT_DYNAMIC, &sect_size, &arch_size,
719 &base_addr);
97ec2c2f
UW
720 if (!buf)
721 return 0;
722
723 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
724 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
725 : sizeof (Elf64_External_Dyn);
726 for (bufend = buf + sect_size;
727 buf < bufend;
728 buf += step)
729 {
730 if (arch_size == 32)
731 {
732 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
433759f7 733
b6d7a4bf 734 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
e17a4113
UW
735 4, byte_order);
736 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
737 4, byte_order);
97ec2c2f
UW
738 }
739 else
740 {
741 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
433759f7 742
b6d7a4bf 743 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
e17a4113
UW
744 8, byte_order);
745 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
746 8, byte_order);
97ec2c2f 747 }
b6d7a4bf 748 if (current_dyntag == DT_NULL)
97ec2c2f
UW
749 break;
750
b6d7a4bf 751 if (current_dyntag == desired_dyntag)
97ec2c2f
UW
752 {
753 if (ptr)
754 *ptr = dyn_ptr;
755
a738da3a
MF
756 if (ptr_addr)
757 *ptr_addr = base_addr + buf - bufstart;
758
97ec2c2f
UW
759 xfree (bufstart);
760 return 1;
761 }
762 }
763
764 xfree (bufstart);
765 return 0;
766}
767
7f86f058
PA
768/* Locate the base address of dynamic linker structs for SVR4 elf
769 targets.
13437d4b
KB
770
771 For SVR4 elf targets the address of the dynamic linker's runtime
772 structure is contained within the dynamic info section in the
773 executable file. The dynamic section is also mapped into the
774 inferior address space. Because the runtime loader fills in the
775 real address before starting the inferior, we have to read in the
776 dynamic info section from the inferior address space.
777 If there are any errors while trying to find the address, we
7f86f058 778 silently return 0, otherwise the found address is returned. */
13437d4b
KB
779
780static CORE_ADDR
781elf_locate_base (void)
782{
3b7344d5 783 struct bound_minimal_symbol msymbol;
a738da3a 784 CORE_ADDR dyn_ptr, dyn_ptr_addr;
13437d4b 785
65728c26
DJ
786 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
787 instead of DT_DEBUG, although they sometimes contain an unused
788 DT_DEBUG. */
a738da3a
MF
789 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr, NULL)
790 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr, NULL))
3a40aaa0 791 {
f5656ead 792 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
3a40aaa0 793 gdb_byte *pbuf;
b6da22b0 794 int pbuf_size = TYPE_LENGTH (ptr_type);
433759f7 795
224c3ddb 796 pbuf = (gdb_byte *) alloca (pbuf_size);
3a40aaa0
UW
797 /* DT_MIPS_RLD_MAP contains a pointer to the address
798 of the dynamic link structure. */
799 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
e499d0f1 800 return 0;
b6da22b0 801 return extract_typed_address (pbuf, ptr_type);
e499d0f1
DJ
802 }
803
a738da3a
MF
804 /* Then check DT_MIPS_RLD_MAP_REL. MIPS executables now use this form
805 because of needing to support PIE. DT_MIPS_RLD_MAP will also exist
806 in non-PIE. */
807 if (scan_dyntag (DT_MIPS_RLD_MAP_REL, exec_bfd, &dyn_ptr, &dyn_ptr_addr)
808 || scan_dyntag_auxv (DT_MIPS_RLD_MAP_REL, &dyn_ptr, &dyn_ptr_addr))
809 {
810 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
811 gdb_byte *pbuf;
812 int pbuf_size = TYPE_LENGTH (ptr_type);
813
224c3ddb 814 pbuf = (gdb_byte *) alloca (pbuf_size);
a738da3a
MF
815 /* DT_MIPS_RLD_MAP_REL contains an offset from the address of the
816 DT slot to the address of the dynamic link structure. */
817 if (target_read_memory (dyn_ptr + dyn_ptr_addr, pbuf, pbuf_size))
818 return 0;
819 return extract_typed_address (pbuf, ptr_type);
820 }
821
65728c26 822 /* Find DT_DEBUG. */
a738da3a
MF
823 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr, NULL)
824 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr, NULL))
65728c26
DJ
825 return dyn_ptr;
826
3a40aaa0
UW
827 /* This may be a static executable. Look for the symbol
828 conventionally named _r_debug, as a last resort. */
829 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
3b7344d5 830 if (msymbol.minsym != NULL)
77e371c0 831 return BMSYMBOL_VALUE_ADDRESS (msymbol);
13437d4b
KB
832
833 /* DT_DEBUG entry not found. */
834 return 0;
835}
836
7f86f058 837/* Locate the base address of dynamic linker structs.
13437d4b
KB
838
839 For both the SunOS and SVR4 shared library implementations, if the
840 inferior executable has been linked dynamically, there is a single
841 address somewhere in the inferior's data space which is the key to
842 locating all of the dynamic linker's runtime structures. This
843 address is the value of the debug base symbol. The job of this
844 function is to find and return that address, or to return 0 if there
845 is no such address (the executable is statically linked for example).
846
847 For SunOS, the job is almost trivial, since the dynamic linker and
848 all of it's structures are statically linked to the executable at
849 link time. Thus the symbol for the address we are looking for has
850 already been added to the minimal symbol table for the executable's
851 objfile at the time the symbol file's symbols were read, and all we
852 have to do is look it up there. Note that we explicitly do NOT want
853 to find the copies in the shared library.
854
855 The SVR4 version is a bit more complicated because the address
856 is contained somewhere in the dynamic info section. We have to go
857 to a lot more work to discover the address of the debug base symbol.
858 Because of this complexity, we cache the value we find and return that
859 value on subsequent invocations. Note there is no copy in the
7f86f058 860 executable symbol tables. */
13437d4b
KB
861
862static CORE_ADDR
1a816a87 863locate_base (struct svr4_info *info)
13437d4b 864{
13437d4b
KB
865 /* Check to see if we have a currently valid address, and if so, avoid
866 doing all this work again and just return the cached address. If
867 we have no cached address, try to locate it in the dynamic info
d5a921c9
KB
868 section for ELF executables. There's no point in doing any of this
869 though if we don't have some link map offsets to work with. */
13437d4b 870
1a816a87 871 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
0763ab81 872 info->debug_base = elf_locate_base ();
1a816a87 873 return info->debug_base;
13437d4b
KB
874}
875
e4cd0d6a 876/* Find the first element in the inferior's dynamic link map, and
6f992fbf
JB
877 return its address in the inferior. Return zero if the address
878 could not be determined.
13437d4b 879
e4cd0d6a
MK
880 FIXME: Perhaps we should validate the info somehow, perhaps by
881 checking r_version for a known version number, or r_state for
882 RT_CONSISTENT. */
13437d4b
KB
883
884static CORE_ADDR
1a816a87 885solib_svr4_r_map (struct svr4_info *info)
13437d4b 886{
4b188b9f 887 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 888 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
08597104 889 CORE_ADDR addr = 0;
13437d4b 890
492d29ea 891 TRY
08597104
JB
892 {
893 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
894 ptr_type);
895 }
492d29ea
PA
896 CATCH (ex, RETURN_MASK_ERROR)
897 {
898 exception_print (gdb_stderr, ex);
899 }
900 END_CATCH
901
08597104 902 return addr;
e4cd0d6a 903}
13437d4b 904
7cd25cfc
DJ
905/* Find r_brk from the inferior's debug base. */
906
907static CORE_ADDR
1a816a87 908solib_svr4_r_brk (struct svr4_info *info)
7cd25cfc
DJ
909{
910 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 911 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
7cd25cfc 912
1a816a87
PA
913 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
914 ptr_type);
7cd25cfc
DJ
915}
916
e4cd0d6a
MK
917/* Find the link map for the dynamic linker (if it is not in the
918 normal list of loaded shared objects). */
13437d4b 919
e4cd0d6a 920static CORE_ADDR
1a816a87 921solib_svr4_r_ldsomap (struct svr4_info *info)
e4cd0d6a
MK
922{
923 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead
TT
924 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
925 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
416f679e
SDJ
926 ULONGEST version = 0;
927
928 TRY
929 {
930 /* Check version, and return zero if `struct r_debug' doesn't have
931 the r_ldsomap member. */
932 version
933 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
934 lmo->r_version_size, byte_order);
935 }
936 CATCH (ex, RETURN_MASK_ERROR)
937 {
938 exception_print (gdb_stderr, ex);
939 }
940 END_CATCH
13437d4b 941
e4cd0d6a
MK
942 if (version < 2 || lmo->r_ldsomap_offset == -1)
943 return 0;
13437d4b 944
1a816a87 945 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
b6da22b0 946 ptr_type);
13437d4b
KB
947}
948
de18c1d8
JM
949/* On Solaris systems with some versions of the dynamic linker,
950 ld.so's l_name pointer points to the SONAME in the string table
951 rather than into writable memory. So that GDB can find shared
952 libraries when loading a core file generated by gcore, ensure that
953 memory areas containing the l_name string are saved in the core
954 file. */
955
956static int
957svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
958{
959 struct svr4_info *info;
960 CORE_ADDR ldsomap;
fe978cb0 961 struct so_list *newobj;
de18c1d8 962 struct cleanup *old_chain;
74de0234 963 CORE_ADDR name_lm;
de18c1d8
JM
964
965 info = get_svr4_info ();
966
967 info->debug_base = 0;
968 locate_base (info);
969 if (!info->debug_base)
970 return 0;
971
972 ldsomap = solib_svr4_r_ldsomap (info);
973 if (!ldsomap)
974 return 0;
975
fe978cb0
PA
976 newobj = XCNEW (struct so_list);
977 old_chain = make_cleanup (xfree, newobj);
d0e449a1
SM
978 lm_info_svr4 *li = lm_info_read (ldsomap);
979 newobj->lm_info = li;
fe978cb0 980 make_cleanup (xfree, newobj->lm_info);
d0e449a1 981 name_lm = li != NULL ? li->l_name : 0;
de18c1d8
JM
982 do_cleanups (old_chain);
983
74de0234 984 return (name_lm >= vaddr && name_lm < vaddr + size);
de18c1d8
JM
985}
986
7f86f058 987/* Implement the "open_symbol_file_object" target_so_ops method.
13437d4b 988
7f86f058
PA
989 If no open symbol file, attempt to locate and open the main symbol
990 file. On SVR4 systems, this is the first link map entry. If its
991 name is here, we can open it. Useful when attaching to a process
992 without first loading its symbol file. */
13437d4b
KB
993
994static int
995open_symbol_file_object (void *from_ttyp)
996{
997 CORE_ADDR lm, l_name;
998 char *filename;
999 int errcode;
1000 int from_tty = *(int *)from_ttyp;
4b188b9f 1001 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 1002 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
b6da22b0 1003 int l_name_size = TYPE_LENGTH (ptr_type);
224c3ddb 1004 gdb_byte *l_name_buf = (gdb_byte *) xmalloc (l_name_size);
b8c9b27d 1005 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
6c95b8df 1006 struct svr4_info *info = get_svr4_info ();
ecf45d2c
SL
1007 symfile_add_flags add_flags = 0;
1008
1009 if (from_tty)
1010 add_flags |= SYMFILE_VERBOSE;
13437d4b
KB
1011
1012 if (symfile_objfile)
9e2f0ad4 1013 if (!query (_("Attempt to reload symbols from process? ")))
3bb47e8b
TT
1014 {
1015 do_cleanups (cleanups);
1016 return 0;
1017 }
13437d4b 1018
7cd25cfc 1019 /* Always locate the debug struct, in case it has moved. */
1a816a87
PA
1020 info->debug_base = 0;
1021 if (locate_base (info) == 0)
3bb47e8b
TT
1022 {
1023 do_cleanups (cleanups);
1024 return 0; /* failed somehow... */
1025 }
13437d4b
KB
1026
1027 /* First link map member should be the executable. */
1a816a87 1028 lm = solib_svr4_r_map (info);
e4cd0d6a 1029 if (lm == 0)
3bb47e8b
TT
1030 {
1031 do_cleanups (cleanups);
1032 return 0; /* failed somehow... */
1033 }
13437d4b
KB
1034
1035 /* Read address of name from target memory to GDB. */
cfaefc65 1036 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
13437d4b 1037
cfaefc65 1038 /* Convert the address to host format. */
b6da22b0 1039 l_name = extract_typed_address (l_name_buf, ptr_type);
13437d4b 1040
13437d4b 1041 if (l_name == 0)
3bb47e8b
TT
1042 {
1043 do_cleanups (cleanups);
1044 return 0; /* No filename. */
1045 }
13437d4b
KB
1046
1047 /* Now fetch the filename from target memory. */
1048 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
ea5bf0a1 1049 make_cleanup (xfree, filename);
13437d4b
KB
1050
1051 if (errcode)
1052 {
8a3fe4f8 1053 warning (_("failed to read exec filename from attached file: %s"),
13437d4b 1054 safe_strerror (errcode));
3bb47e8b 1055 do_cleanups (cleanups);
13437d4b
KB
1056 return 0;
1057 }
1058
13437d4b 1059 /* Have a pathname: read the symbol file. */
ecf45d2c 1060 symbol_file_add_main (filename, add_flags);
13437d4b 1061
3bb47e8b 1062 do_cleanups (cleanups);
13437d4b
KB
1063 return 1;
1064}
13437d4b 1065
2268b414
JK
1066/* Data exchange structure for the XML parser as returned by
1067 svr4_current_sos_via_xfer_libraries. */
1068
1069struct svr4_library_list
1070{
1071 struct so_list *head, **tailp;
1072
1073 /* Inferior address of struct link_map used for the main executable. It is
1074 NULL if not known. */
1075 CORE_ADDR main_lm;
1076};
1077
93f2a35e
JK
1078/* Implementation for target_so_ops.free_so. */
1079
1080static void
1081svr4_free_so (struct so_list *so)
1082{
76e75227
SM
1083 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1084
1085 delete li;
93f2a35e
JK
1086}
1087
0892cb63
DE
1088/* Implement target_so_ops.clear_so. */
1089
1090static void
1091svr4_clear_so (struct so_list *so)
1092{
d0e449a1
SM
1093 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1094
1095 if (li != NULL)
1096 li->l_addr_p = 0;
0892cb63
DE
1097}
1098
93f2a35e
JK
1099/* Free so_list built so far (called via cleanup). */
1100
1101static void
1102svr4_free_library_list (void *p_list)
1103{
1104 struct so_list *list = *(struct so_list **) p_list;
1105
1106 while (list != NULL)
1107 {
1108 struct so_list *next = list->next;
1109
3756ef7e 1110 free_so (list);
93f2a35e
JK
1111 list = next;
1112 }
1113}
1114
f9e14852
GB
1115/* Copy library list. */
1116
1117static struct so_list *
1118svr4_copy_library_list (struct so_list *src)
1119{
1120 struct so_list *dst = NULL;
1121 struct so_list **link = &dst;
1122
1123 while (src != NULL)
1124 {
fe978cb0 1125 struct so_list *newobj;
f9e14852 1126
8d749320 1127 newobj = XNEW (struct so_list);
fe978cb0 1128 memcpy (newobj, src, sizeof (struct so_list));
f9e14852 1129
76e75227
SM
1130 lm_info_svr4 *src_li = (lm_info_svr4 *) src->lm_info;
1131 newobj->lm_info = new lm_info_svr4 (*src_li);
f9e14852 1132
fe978cb0
PA
1133 newobj->next = NULL;
1134 *link = newobj;
1135 link = &newobj->next;
f9e14852
GB
1136
1137 src = src->next;
1138 }
1139
1140 return dst;
1141}
1142
2268b414
JK
1143#ifdef HAVE_LIBEXPAT
1144
1145#include "xml-support.h"
1146
1147/* Handle the start of a <library> element. Note: new elements are added
1148 at the tail of the list, keeping the list in order. */
1149
1150static void
1151library_list_start_library (struct gdb_xml_parser *parser,
1152 const struct gdb_xml_element *element,
1153 void *user_data, VEC(gdb_xml_value_s) *attributes)
1154{
19ba03f4
SM
1155 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1156 const char *name
1157 = (const char *) xml_find_attribute (attributes, "name")->value;
1158 ULONGEST *lmp
bc84451b 1159 = (ULONGEST *) xml_find_attribute (attributes, "lm")->value;
19ba03f4 1160 ULONGEST *l_addrp
bc84451b 1161 = (ULONGEST *) xml_find_attribute (attributes, "l_addr")->value;
19ba03f4 1162 ULONGEST *l_ldp
bc84451b 1163 = (ULONGEST *) xml_find_attribute (attributes, "l_ld")->value;
2268b414
JK
1164 struct so_list *new_elem;
1165
41bf6aca 1166 new_elem = XCNEW (struct so_list);
76e75227 1167 lm_info_svr4 *li = new lm_info_svr4;
d0e449a1
SM
1168 new_elem->lm_info = li;
1169 li->lm_addr = *lmp;
1170 li->l_addr_inferior = *l_addrp;
1171 li->l_ld = *l_ldp;
2268b414
JK
1172
1173 strncpy (new_elem->so_name, name, sizeof (new_elem->so_name) - 1);
1174 new_elem->so_name[sizeof (new_elem->so_name) - 1] = 0;
1175 strcpy (new_elem->so_original_name, new_elem->so_name);
1176
1177 *list->tailp = new_elem;
1178 list->tailp = &new_elem->next;
1179}
1180
1181/* Handle the start of a <library-list-svr4> element. */
1182
1183static void
1184svr4_library_list_start_list (struct gdb_xml_parser *parser,
1185 const struct gdb_xml_element *element,
1186 void *user_data, VEC(gdb_xml_value_s) *attributes)
1187{
19ba03f4
SM
1188 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1189 const char *version
1190 = (const char *) xml_find_attribute (attributes, "version")->value;
2268b414
JK
1191 struct gdb_xml_value *main_lm = xml_find_attribute (attributes, "main-lm");
1192
1193 if (strcmp (version, "1.0") != 0)
1194 gdb_xml_error (parser,
1195 _("SVR4 Library list has unsupported version \"%s\""),
1196 version);
1197
1198 if (main_lm)
1199 list->main_lm = *(ULONGEST *) main_lm->value;
1200}
1201
1202/* The allowed elements and attributes for an XML library list.
1203 The root element is a <library-list>. */
1204
1205static const struct gdb_xml_attribute svr4_library_attributes[] =
1206{
1207 { "name", GDB_XML_AF_NONE, NULL, NULL },
1208 { "lm", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1209 { "l_addr", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1210 { "l_ld", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1211 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1212};
1213
1214static const struct gdb_xml_element svr4_library_list_children[] =
1215{
1216 {
1217 "library", svr4_library_attributes, NULL,
1218 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
1219 library_list_start_library, NULL
1220 },
1221 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1222};
1223
1224static const struct gdb_xml_attribute svr4_library_list_attributes[] =
1225{
1226 { "version", GDB_XML_AF_NONE, NULL, NULL },
1227 { "main-lm", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
1228 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1229};
1230
1231static const struct gdb_xml_element svr4_library_list_elements[] =
1232{
1233 { "library-list-svr4", svr4_library_list_attributes, svr4_library_list_children,
1234 GDB_XML_EF_NONE, svr4_library_list_start_list, NULL },
1235 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1236};
1237
2268b414
JK
1238/* Parse qXfer:libraries:read packet into *SO_LIST_RETURN. Return 1 if
1239
1240 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1241 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1242 empty, caller is responsible for freeing all its entries. */
1243
1244static int
1245svr4_parse_libraries (const char *document, struct svr4_library_list *list)
1246{
1247 struct cleanup *back_to = make_cleanup (svr4_free_library_list,
1248 &list->head);
1249
1250 memset (list, 0, sizeof (*list));
1251 list->tailp = &list->head;
2eca4a8d 1252 if (gdb_xml_parse_quick (_("target library list"), "library-list-svr4.dtd",
2268b414
JK
1253 svr4_library_list_elements, document, list) == 0)
1254 {
1255 /* Parsed successfully, keep the result. */
1256 discard_cleanups (back_to);
1257 return 1;
1258 }
1259
1260 do_cleanups (back_to);
1261 return 0;
1262}
1263
f9e14852 1264/* Attempt to get so_list from target via qXfer:libraries-svr4:read packet.
2268b414
JK
1265
1266 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1267 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
f9e14852
GB
1268 empty, caller is responsible for freeing all its entries.
1269
1270 Note that ANNEX must be NULL if the remote does not explicitly allow
1271 qXfer:libraries-svr4:read packets with non-empty annexes. Support for
1272 this can be checked using target_augmented_libraries_svr4_read (). */
2268b414
JK
1273
1274static int
f9e14852
GB
1275svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1276 const char *annex)
2268b414
JK
1277{
1278 char *svr4_library_document;
1279 int result;
1280 struct cleanup *back_to;
1281
f9e14852
GB
1282 gdb_assert (annex == NULL || target_augmented_libraries_svr4_read ());
1283
2268b414
JK
1284 /* Fetch the list of shared libraries. */
1285 svr4_library_document = target_read_stralloc (&current_target,
1286 TARGET_OBJECT_LIBRARIES_SVR4,
f9e14852 1287 annex);
2268b414
JK
1288 if (svr4_library_document == NULL)
1289 return 0;
1290
1291 back_to = make_cleanup (xfree, svr4_library_document);
1292 result = svr4_parse_libraries (svr4_library_document, list);
1293 do_cleanups (back_to);
1294
1295 return result;
1296}
1297
1298#else
1299
1300static int
f9e14852
GB
1301svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1302 const char *annex)
2268b414
JK
1303{
1304 return 0;
1305}
1306
1307#endif
1308
34439770
DJ
1309/* If no shared library information is available from the dynamic
1310 linker, build a fallback list from other sources. */
1311
1312static struct so_list *
1313svr4_default_sos (void)
1314{
6c95b8df 1315 struct svr4_info *info = get_svr4_info ();
fe978cb0 1316 struct so_list *newobj;
1a816a87 1317
8e5c319d
JK
1318 if (!info->debug_loader_offset_p)
1319 return NULL;
34439770 1320
fe978cb0 1321 newobj = XCNEW (struct so_list);
76e75227 1322 lm_info_svr4 *li = new lm_info_svr4;
d0e449a1 1323 newobj->lm_info = li;
34439770 1324
3957565a 1325 /* Nothing will ever check the other fields if we set l_addr_p. */
d0e449a1
SM
1326 li->l_addr = info->debug_loader_offset;
1327 li->l_addr_p = 1;
34439770 1328
fe978cb0
PA
1329 strncpy (newobj->so_name, info->debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
1330 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1331 strcpy (newobj->so_original_name, newobj->so_name);
34439770 1332
fe978cb0 1333 return newobj;
34439770
DJ
1334}
1335
f9e14852
GB
1336/* Read the whole inferior libraries chain starting at address LM.
1337 Expect the first entry in the chain's previous entry to be PREV_LM.
1338 Add the entries to the tail referenced by LINK_PTR_PTR. Ignore the
1339 first entry if IGNORE_FIRST and set global MAIN_LM_ADDR according
1340 to it. Returns nonzero upon success. If zero is returned the
1341 entries stored to LINK_PTR_PTR are still valid although they may
1342 represent only part of the inferior library list. */
13437d4b 1343
f9e14852
GB
1344static int
1345svr4_read_so_list (CORE_ADDR lm, CORE_ADDR prev_lm,
1346 struct so_list ***link_ptr_ptr, int ignore_first)
13437d4b 1347{
c725e7b6 1348 CORE_ADDR first_l_name = 0;
f9e14852 1349 CORE_ADDR next_lm;
13437d4b 1350
cb08cc53 1351 for (; lm != 0; prev_lm = lm, lm = next_lm)
13437d4b 1352 {
cb08cc53
JK
1353 int errcode;
1354 char *buffer;
13437d4b 1355
b3bc8453 1356 so_list_up newobj (XCNEW (struct so_list));
13437d4b 1357
d0e449a1
SM
1358 lm_info_svr4 *li = lm_info_read (lm);
1359 newobj->lm_info = li;
1360 if (li == NULL)
b3bc8453 1361 return 0;
13437d4b 1362
d0e449a1 1363 next_lm = li->l_next;
492928e4 1364
d0e449a1 1365 if (li->l_prev != prev_lm)
492928e4 1366 {
2268b414 1367 warning (_("Corrupted shared library list: %s != %s"),
f5656ead 1368 paddress (target_gdbarch (), prev_lm),
d0e449a1 1369 paddress (target_gdbarch (), li->l_prev));
f9e14852 1370 return 0;
492928e4 1371 }
13437d4b
KB
1372
1373 /* For SVR4 versions, the first entry in the link map is for the
1374 inferior executable, so we must ignore it. For some versions of
1375 SVR4, it has no name. For others (Solaris 2.3 for example), it
1376 does have a name, so we can no longer use a missing name to
c378eb4e 1377 decide when to ignore it. */
d0e449a1 1378 if (ignore_first && li->l_prev == 0)
93a57060 1379 {
cb08cc53
JK
1380 struct svr4_info *info = get_svr4_info ();
1381
d0e449a1
SM
1382 first_l_name = li->l_name;
1383 info->main_lm_addr = li->lm_addr;
cb08cc53 1384 continue;
93a57060 1385 }
13437d4b 1386
cb08cc53 1387 /* Extract this shared object's name. */
d0e449a1
SM
1388 target_read_string (li->l_name, &buffer, SO_NAME_MAX_PATH_SIZE - 1,
1389 &errcode);
cb08cc53
JK
1390 if (errcode != 0)
1391 {
7d760051
UW
1392 /* If this entry's l_name address matches that of the
1393 inferior executable, then this is not a normal shared
1394 object, but (most likely) a vDSO. In this case, silently
1395 skip it; otherwise emit a warning. */
d0e449a1 1396 if (first_l_name == 0 || li->l_name != first_l_name)
7d760051
UW
1397 warning (_("Can't read pathname for load map: %s."),
1398 safe_strerror (errcode));
cb08cc53 1399 continue;
13437d4b
KB
1400 }
1401
fe978cb0
PA
1402 strncpy (newobj->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
1403 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1404 strcpy (newobj->so_original_name, newobj->so_name);
cb08cc53 1405 xfree (buffer);
492928e4 1406
cb08cc53
JK
1407 /* If this entry has no name, or its name matches the name
1408 for the main executable, don't include it in the list. */
fe978cb0 1409 if (! newobj->so_name[0] || match_main (newobj->so_name))
b3bc8453 1410 continue;
e4cd0d6a 1411
fe978cb0 1412 newobj->next = 0;
b3bc8453
TT
1413 /* Don't free it now. */
1414 **link_ptr_ptr = newobj.release ();
1415 *link_ptr_ptr = &(**link_ptr_ptr)->next;
13437d4b 1416 }
f9e14852
GB
1417
1418 return 1;
cb08cc53
JK
1419}
1420
f9e14852
GB
1421/* Read the full list of currently loaded shared objects directly
1422 from the inferior, without referring to any libraries read and
1423 stored by the probes interface. Handle special cases relating
1424 to the first elements of the list. */
cb08cc53
JK
1425
1426static struct so_list *
f9e14852 1427svr4_current_sos_direct (struct svr4_info *info)
cb08cc53
JK
1428{
1429 CORE_ADDR lm;
1430 struct so_list *head = NULL;
1431 struct so_list **link_ptr = &head;
cb08cc53
JK
1432 struct cleanup *back_to;
1433 int ignore_first;
2268b414
JK
1434 struct svr4_library_list library_list;
1435
0c5bf5a9
JK
1436 /* Fall back to manual examination of the target if the packet is not
1437 supported or gdbserver failed to find DT_DEBUG. gdb.server/solib-list.exp
1438 tests a case where gdbserver cannot find the shared libraries list while
1439 GDB itself is able to find it via SYMFILE_OBJFILE.
1440
1441 Unfortunately statically linked inferiors will also fall back through this
1442 suboptimal code path. */
1443
f9e14852
GB
1444 info->using_xfer = svr4_current_sos_via_xfer_libraries (&library_list,
1445 NULL);
1446 if (info->using_xfer)
2268b414
JK
1447 {
1448 if (library_list.main_lm)
f9e14852 1449 info->main_lm_addr = library_list.main_lm;
2268b414
JK
1450
1451 return library_list.head ? library_list.head : svr4_default_sos ();
1452 }
cb08cc53 1453
cb08cc53
JK
1454 /* Always locate the debug struct, in case it has moved. */
1455 info->debug_base = 0;
1456 locate_base (info);
1457
1458 /* If we can't find the dynamic linker's base structure, this
1459 must not be a dynamically linked executable. Hmm. */
1460 if (! info->debug_base)
1461 return svr4_default_sos ();
1462
1463 /* Assume that everything is a library if the dynamic loader was loaded
1464 late by a static executable. */
1465 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
1466 ignore_first = 0;
1467 else
1468 ignore_first = 1;
1469
1470 back_to = make_cleanup (svr4_free_library_list, &head);
1471
1472 /* Walk the inferior's link map list, and build our list of
1473 `struct so_list' nodes. */
1474 lm = solib_svr4_r_map (info);
1475 if (lm)
f9e14852 1476 svr4_read_so_list (lm, 0, &link_ptr, ignore_first);
cb08cc53
JK
1477
1478 /* On Solaris, the dynamic linker is not in the normal list of
1479 shared objects, so make sure we pick it up too. Having
1480 symbol information for the dynamic linker is quite crucial
1481 for skipping dynamic linker resolver code. */
1482 lm = solib_svr4_r_ldsomap (info);
1483 if (lm)
f9e14852 1484 svr4_read_so_list (lm, 0, &link_ptr, 0);
cb08cc53
JK
1485
1486 discard_cleanups (back_to);
13437d4b 1487
34439770
DJ
1488 if (head == NULL)
1489 return svr4_default_sos ();
1490
13437d4b
KB
1491 return head;
1492}
1493
8b9a549d
PA
1494/* Implement the main part of the "current_sos" target_so_ops
1495 method. */
f9e14852
GB
1496
1497static struct so_list *
8b9a549d 1498svr4_current_sos_1 (void)
f9e14852
GB
1499{
1500 struct svr4_info *info = get_svr4_info ();
1501
1502 /* If the solib list has been read and stored by the probes
1503 interface then we return a copy of the stored list. */
1504 if (info->solib_list != NULL)
1505 return svr4_copy_library_list (info->solib_list);
1506
1507 /* Otherwise obtain the solib list directly from the inferior. */
1508 return svr4_current_sos_direct (info);
1509}
1510
8b9a549d
PA
1511/* Implement the "current_sos" target_so_ops method. */
1512
1513static struct so_list *
1514svr4_current_sos (void)
1515{
1516 struct so_list *so_head = svr4_current_sos_1 ();
1517 struct mem_range vsyscall_range;
1518
1519 /* Filter out the vDSO module, if present. Its symbol file would
1520 not be found on disk. The vDSO/vsyscall's OBJFILE is instead
1521 managed by symfile-mem.c:add_vsyscall_page. */
1522 if (gdbarch_vsyscall_range (target_gdbarch (), &vsyscall_range)
1523 && vsyscall_range.length != 0)
1524 {
1525 struct so_list **sop;
1526
1527 sop = &so_head;
1528 while (*sop != NULL)
1529 {
1530 struct so_list *so = *sop;
1531
1532 /* We can't simply match the vDSO by starting address alone,
1533 because lm_info->l_addr_inferior (and also l_addr) do not
1534 necessarily represent the real starting address of the
1535 ELF if the vDSO's ELF itself is "prelinked". The l_ld
1536 field (the ".dynamic" section of the shared object)
1537 always points at the absolute/resolved address though.
1538 So check whether that address is inside the vDSO's
1539 mapping instead.
1540
1541 E.g., on Linux 3.16 (x86_64) the vDSO is a regular
1542 0-based ELF, and we see:
1543
1544 (gdb) info auxv
1545 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffb000
1546 (gdb) p/x *_r_debug.r_map.l_next
1547 $1 = {l_addr = 0x7ffff7ffb000, ..., l_ld = 0x7ffff7ffb318, ...}
1548
1549 And on Linux 2.6.32 (x86_64) we see:
1550
1551 (gdb) info auxv
1552 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffe000
1553 (gdb) p/x *_r_debug.r_map.l_next
1554 $5 = {l_addr = 0x7ffff88fe000, ..., l_ld = 0x7ffff7ffe580, ... }
1555
1556 Dumping that vDSO shows:
1557
1558 (gdb) info proc mappings
1559 0x7ffff7ffe000 0x7ffff7fff000 0x1000 0 [vdso]
1560 (gdb) dump memory vdso.bin 0x7ffff7ffe000 0x7ffff7fff000
1561 # readelf -Wa vdso.bin
1562 [...]
1563 Entry point address: 0xffffffffff700700
1564 [...]
1565 Section Headers:
1566 [Nr] Name Type Address Off Size
1567 [ 0] NULL 0000000000000000 000000 000000
1568 [ 1] .hash HASH ffffffffff700120 000120 000038
1569 [ 2] .dynsym DYNSYM ffffffffff700158 000158 0000d8
1570 [...]
1571 [ 9] .dynamic DYNAMIC ffffffffff700580 000580 0000f0
1572 */
d0e449a1
SM
1573
1574 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1575
1576 if (address_in_mem_range (li->l_ld, &vsyscall_range))
8b9a549d
PA
1577 {
1578 *sop = so->next;
1579 free_so (so);
1580 break;
1581 }
1582
1583 sop = &so->next;
1584 }
1585 }
1586
1587 return so_head;
1588}
1589
93a57060 1590/* Get the address of the link_map for a given OBJFILE. */
bc4a16ae
EZ
1591
1592CORE_ADDR
1593svr4_fetch_objfile_link_map (struct objfile *objfile)
1594{
93a57060 1595 struct so_list *so;
6c95b8df 1596 struct svr4_info *info = get_svr4_info ();
bc4a16ae 1597
93a57060 1598 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1a816a87 1599 if (info->main_lm_addr == 0)
e696b3ad 1600 solib_add (NULL, 0, auto_solib_add);
bc4a16ae 1601
93a57060
DJ
1602 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1603 if (objfile == symfile_objfile)
1a816a87 1604 return info->main_lm_addr;
93a57060
DJ
1605
1606 /* The other link map addresses may be found by examining the list
1607 of shared libraries. */
1608 for (so = master_so_list (); so; so = so->next)
1609 if (so->objfile == objfile)
d0e449a1
SM
1610 {
1611 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1612
1613 return li->lm_addr;
1614 }
93a57060
DJ
1615
1616 /* Not found! */
bc4a16ae
EZ
1617 return 0;
1618}
13437d4b
KB
1619
1620/* On some systems, the only way to recognize the link map entry for
1621 the main executable file is by looking at its name. Return
1622 non-zero iff SONAME matches one of the known main executable names. */
1623
1624static int
bc043ef3 1625match_main (const char *soname)
13437d4b 1626{
bc043ef3 1627 const char * const *mainp;
13437d4b
KB
1628
1629 for (mainp = main_name_list; *mainp != NULL; mainp++)
1630 {
1631 if (strcmp (soname, *mainp) == 0)
1632 return (1);
1633 }
1634
1635 return (0);
1636}
1637
13437d4b
KB
1638/* Return 1 if PC lies in the dynamic symbol resolution code of the
1639 SVR4 run time loader. */
13437d4b 1640
7d522c90 1641int
d7fa2ae2 1642svr4_in_dynsym_resolve_code (CORE_ADDR pc)
13437d4b 1643{
6c95b8df
PA
1644 struct svr4_info *info = get_svr4_info ();
1645
1646 return ((pc >= info->interp_text_sect_low
1647 && pc < info->interp_text_sect_high)
1648 || (pc >= info->interp_plt_sect_low
1649 && pc < info->interp_plt_sect_high)
3e5d3a5a 1650 || in_plt_section (pc)
0875794a 1651 || in_gnu_ifunc_stub (pc));
13437d4b 1652}
13437d4b 1653
2f4950cd
AC
1654/* Given an executable's ABFD and target, compute the entry-point
1655 address. */
1656
1657static CORE_ADDR
1658exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1659{
8c2b9656
YQ
1660 CORE_ADDR addr;
1661
2f4950cd
AC
1662 /* KevinB wrote ... for most targets, the address returned by
1663 bfd_get_start_address() is the entry point for the start
1664 function. But, for some targets, bfd_get_start_address() returns
1665 the address of a function descriptor from which the entry point
1666 address may be extracted. This address is extracted by
1667 gdbarch_convert_from_func_ptr_addr(). The method
1668 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1669 function for targets which don't use function descriptors. */
8c2b9656 1670 addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2f4950cd
AC
1671 bfd_get_start_address (abfd),
1672 targ);
8c2b9656 1673 return gdbarch_addr_bits_remove (target_gdbarch (), addr);
2f4950cd 1674}
13437d4b 1675
f9e14852
GB
1676/* A probe and its associated action. */
1677
1678struct probe_and_action
1679{
1680 /* The probe. */
1681 struct probe *probe;
1682
729662a5
TT
1683 /* The relocated address of the probe. */
1684 CORE_ADDR address;
1685
f9e14852
GB
1686 /* The action. */
1687 enum probe_action action;
1688};
1689
1690/* Returns a hash code for the probe_and_action referenced by p. */
1691
1692static hashval_t
1693hash_probe_and_action (const void *p)
1694{
19ba03f4 1695 const struct probe_and_action *pa = (const struct probe_and_action *) p;
f9e14852 1696
729662a5 1697 return (hashval_t) pa->address;
f9e14852
GB
1698}
1699
1700/* Returns non-zero if the probe_and_actions referenced by p1 and p2
1701 are equal. */
1702
1703static int
1704equal_probe_and_action (const void *p1, const void *p2)
1705{
19ba03f4
SM
1706 const struct probe_and_action *pa1 = (const struct probe_and_action *) p1;
1707 const struct probe_and_action *pa2 = (const struct probe_and_action *) p2;
f9e14852 1708
729662a5 1709 return pa1->address == pa2->address;
f9e14852
GB
1710}
1711
1712/* Register a solib event probe and its associated action in the
1713 probes table. */
1714
1715static void
729662a5
TT
1716register_solib_event_probe (struct probe *probe, CORE_ADDR address,
1717 enum probe_action action)
f9e14852
GB
1718{
1719 struct svr4_info *info = get_svr4_info ();
1720 struct probe_and_action lookup, *pa;
1721 void **slot;
1722
1723 /* Create the probes table, if necessary. */
1724 if (info->probes_table == NULL)
1725 info->probes_table = htab_create_alloc (1, hash_probe_and_action,
1726 equal_probe_and_action,
1727 xfree, xcalloc, xfree);
1728
1729 lookup.probe = probe;
729662a5 1730 lookup.address = address;
f9e14852
GB
1731 slot = htab_find_slot (info->probes_table, &lookup, INSERT);
1732 gdb_assert (*slot == HTAB_EMPTY_ENTRY);
1733
1734 pa = XCNEW (struct probe_and_action);
1735 pa->probe = probe;
729662a5 1736 pa->address = address;
f9e14852
GB
1737 pa->action = action;
1738
1739 *slot = pa;
1740}
1741
1742/* Get the solib event probe at the specified location, and the
1743 action associated with it. Returns NULL if no solib event probe
1744 was found. */
1745
1746static struct probe_and_action *
1747solib_event_probe_at (struct svr4_info *info, CORE_ADDR address)
1748{
f9e14852
GB
1749 struct probe_and_action lookup;
1750 void **slot;
1751
729662a5 1752 lookup.address = address;
f9e14852
GB
1753 slot = htab_find_slot (info->probes_table, &lookup, NO_INSERT);
1754
1755 if (slot == NULL)
1756 return NULL;
1757
1758 return (struct probe_and_action *) *slot;
1759}
1760
1761/* Decide what action to take when the specified solib event probe is
1762 hit. */
1763
1764static enum probe_action
1765solib_event_probe_action (struct probe_and_action *pa)
1766{
1767 enum probe_action action;
73c6b475 1768 unsigned probe_argc = 0;
08a6411c 1769 struct frame_info *frame = get_current_frame ();
f9e14852
GB
1770
1771 action = pa->action;
1772 if (action == DO_NOTHING || action == PROBES_INTERFACE_FAILED)
1773 return action;
1774
1775 gdb_assert (action == FULL_RELOAD || action == UPDATE_OR_RELOAD);
1776
1777 /* Check that an appropriate number of arguments has been supplied.
1778 We expect:
1779 arg0: Lmid_t lmid (mandatory)
1780 arg1: struct r_debug *debug_base (mandatory)
1781 arg2: struct link_map *new (optional, for incremental updates) */
3bd7e5b7
SDJ
1782 TRY
1783 {
1784 probe_argc = get_probe_argument_count (pa->probe, frame);
1785 }
1786 CATCH (ex, RETURN_MASK_ERROR)
1787 {
1788 exception_print (gdb_stderr, ex);
1789 probe_argc = 0;
1790 }
1791 END_CATCH
1792
1793 /* If get_probe_argument_count throws an exception, probe_argc will
1794 be set to zero. However, if pa->probe does not have arguments,
1795 then get_probe_argument_count will succeed but probe_argc will
1796 also be zero. Both cases happen because of different things, but
1797 they are treated equally here: action will be set to
1798 PROBES_INTERFACE_FAILED. */
f9e14852
GB
1799 if (probe_argc == 2)
1800 action = FULL_RELOAD;
1801 else if (probe_argc < 2)
1802 action = PROBES_INTERFACE_FAILED;
1803
1804 return action;
1805}
1806
1807/* Populate the shared object list by reading the entire list of
1808 shared objects from the inferior. Handle special cases relating
1809 to the first elements of the list. Returns nonzero on success. */
1810
1811static int
1812solist_update_full (struct svr4_info *info)
1813{
1814 free_solib_list (info);
1815 info->solib_list = svr4_current_sos_direct (info);
1816
1817 return 1;
1818}
1819
1820/* Update the shared object list starting from the link-map entry
1821 passed by the linker in the probe's third argument. Returns
1822 nonzero if the list was successfully updated, or zero to indicate
1823 failure. */
1824
1825static int
1826solist_update_incremental (struct svr4_info *info, CORE_ADDR lm)
1827{
1828 struct so_list *tail;
1829 CORE_ADDR prev_lm;
1830
1831 /* svr4_current_sos_direct contains logic to handle a number of
1832 special cases relating to the first elements of the list. To
1833 avoid duplicating this logic we defer to solist_update_full
1834 if the list is empty. */
1835 if (info->solib_list == NULL)
1836 return 0;
1837
1838 /* Fall back to a full update if we are using a remote target
1839 that does not support incremental transfers. */
1840 if (info->using_xfer && !target_augmented_libraries_svr4_read ())
1841 return 0;
1842
1843 /* Walk to the end of the list. */
1844 for (tail = info->solib_list; tail->next != NULL; tail = tail->next)
1845 /* Nothing. */;
d0e449a1
SM
1846
1847 lm_info_svr4 *li = (lm_info_svr4 *) tail->lm_info;
1848 prev_lm = li->lm_addr;
f9e14852
GB
1849
1850 /* Read the new objects. */
1851 if (info->using_xfer)
1852 {
1853 struct svr4_library_list library_list;
1854 char annex[64];
1855
1856 xsnprintf (annex, sizeof (annex), "start=%s;prev=%s",
1857 phex_nz (lm, sizeof (lm)),
1858 phex_nz (prev_lm, sizeof (prev_lm)));
1859 if (!svr4_current_sos_via_xfer_libraries (&library_list, annex))
1860 return 0;
1861
1862 tail->next = library_list.head;
1863 }
1864 else
1865 {
1866 struct so_list **link = &tail->next;
1867
1868 /* IGNORE_FIRST may safely be set to zero here because the
1869 above check and deferral to solist_update_full ensures
1870 that this call to svr4_read_so_list will never see the
1871 first element. */
1872 if (!svr4_read_so_list (lm, prev_lm, &link, 0))
1873 return 0;
1874 }
1875
1876 return 1;
1877}
1878
1879/* Disable the probes-based linker interface and revert to the
1880 original interface. We don't reset the breakpoints as the
1881 ones set up for the probes-based interface are adequate. */
1882
1883static void
1884disable_probes_interface_cleanup (void *arg)
1885{
1886 struct svr4_info *info = get_svr4_info ();
1887
1888 warning (_("Probes-based dynamic linker interface failed.\n"
1889 "Reverting to original interface.\n"));
1890
1891 free_probes_table (info);
1892 free_solib_list (info);
1893}
1894
1895/* Update the solib list as appropriate when using the
1896 probes-based linker interface. Do nothing if using the
1897 standard interface. */
1898
1899static void
1900svr4_handle_solib_event (void)
1901{
1902 struct svr4_info *info = get_svr4_info ();
1903 struct probe_and_action *pa;
1904 enum probe_action action;
1905 struct cleanup *old_chain, *usm_chain;
ad1c917a 1906 struct value *val = NULL;
f9e14852 1907 CORE_ADDR pc, debug_base, lm = 0;
08a6411c 1908 struct frame_info *frame = get_current_frame ();
f9e14852
GB
1909
1910 /* Do nothing if not using the probes interface. */
1911 if (info->probes_table == NULL)
1912 return;
1913
1914 /* If anything goes wrong we revert to the original linker
1915 interface. */
1916 old_chain = make_cleanup (disable_probes_interface_cleanup, NULL);
1917
1918 pc = regcache_read_pc (get_current_regcache ());
1919 pa = solib_event_probe_at (info, pc);
1920 if (pa == NULL)
1921 {
1922 do_cleanups (old_chain);
1923 return;
1924 }
1925
1926 action = solib_event_probe_action (pa);
1927 if (action == PROBES_INTERFACE_FAILED)
1928 {
1929 do_cleanups (old_chain);
1930 return;
1931 }
1932
1933 if (action == DO_NOTHING)
1934 {
1935 discard_cleanups (old_chain);
1936 return;
1937 }
1938
1939 /* evaluate_probe_argument looks up symbols in the dynamic linker
1940 using find_pc_section. find_pc_section is accelerated by a cache
1941 called the section map. The section map is invalidated every
1942 time a shared library is loaded or unloaded, and if the inferior
1943 is generating a lot of shared library events then the section map
1944 will be updated every time svr4_handle_solib_event is called.
1945 We called find_pc_section in svr4_create_solib_event_breakpoints,
1946 so we can guarantee that the dynamic linker's sections are in the
1947 section map. We can therefore inhibit section map updates across
1948 these calls to evaluate_probe_argument and save a lot of time. */
1949 inhibit_section_map_updates (current_program_space);
1950 usm_chain = make_cleanup (resume_section_map_updates_cleanup,
1951 current_program_space);
1952
3bd7e5b7
SDJ
1953 TRY
1954 {
1955 val = evaluate_probe_argument (pa->probe, 1, frame);
1956 }
1957 CATCH (ex, RETURN_MASK_ERROR)
1958 {
1959 exception_print (gdb_stderr, ex);
1960 val = NULL;
1961 }
1962 END_CATCH
1963
f9e14852
GB
1964 if (val == NULL)
1965 {
1966 do_cleanups (old_chain);
1967 return;
1968 }
1969
1970 debug_base = value_as_address (val);
1971 if (debug_base == 0)
1972 {
1973 do_cleanups (old_chain);
1974 return;
1975 }
1976
1977 /* Always locate the debug struct, in case it moved. */
1978 info->debug_base = 0;
1979 if (locate_base (info) == 0)
1980 {
1981 do_cleanups (old_chain);
1982 return;
1983 }
1984
1985 /* GDB does not currently support libraries loaded via dlmopen
1986 into namespaces other than the initial one. We must ignore
1987 any namespace other than the initial namespace here until
1988 support for this is added to GDB. */
1989 if (debug_base != info->debug_base)
1990 action = DO_NOTHING;
1991
1992 if (action == UPDATE_OR_RELOAD)
1993 {
3bd7e5b7
SDJ
1994 TRY
1995 {
1996 val = evaluate_probe_argument (pa->probe, 2, frame);
1997 }
1998 CATCH (ex, RETURN_MASK_ERROR)
1999 {
2000 exception_print (gdb_stderr, ex);
2001 do_cleanups (old_chain);
2002 return;
2003 }
2004 END_CATCH
2005
f9e14852
GB
2006 if (val != NULL)
2007 lm = value_as_address (val);
2008
2009 if (lm == 0)
2010 action = FULL_RELOAD;
2011 }
2012
2013 /* Resume section map updates. */
2014 do_cleanups (usm_chain);
2015
2016 if (action == UPDATE_OR_RELOAD)
2017 {
2018 if (!solist_update_incremental (info, lm))
2019 action = FULL_RELOAD;
2020 }
2021
2022 if (action == FULL_RELOAD)
2023 {
2024 if (!solist_update_full (info))
2025 {
2026 do_cleanups (old_chain);
2027 return;
2028 }
2029 }
2030
2031 discard_cleanups (old_chain);
2032}
2033
2034/* Helper function for svr4_update_solib_event_breakpoints. */
2035
2036static int
2037svr4_update_solib_event_breakpoint (struct breakpoint *b, void *arg)
2038{
2039 struct bp_location *loc;
2040
2041 if (b->type != bp_shlib_event)
2042 {
2043 /* Continue iterating. */
2044 return 0;
2045 }
2046
2047 for (loc = b->loc; loc != NULL; loc = loc->next)
2048 {
2049 struct svr4_info *info;
2050 struct probe_and_action *pa;
2051
19ba03f4
SM
2052 info = ((struct svr4_info *)
2053 program_space_data (loc->pspace, solib_svr4_pspace_data));
f9e14852
GB
2054 if (info == NULL || info->probes_table == NULL)
2055 continue;
2056
2057 pa = solib_event_probe_at (info, loc->address);
2058 if (pa == NULL)
2059 continue;
2060
2061 if (pa->action == DO_NOTHING)
2062 {
2063 if (b->enable_state == bp_disabled && stop_on_solib_events)
2064 enable_breakpoint (b);
2065 else if (b->enable_state == bp_enabled && !stop_on_solib_events)
2066 disable_breakpoint (b);
2067 }
2068
2069 break;
2070 }
2071
2072 /* Continue iterating. */
2073 return 0;
2074}
2075
2076/* Enable or disable optional solib event breakpoints as appropriate.
2077 Called whenever stop_on_solib_events is changed. */
2078
2079static void
2080svr4_update_solib_event_breakpoints (void)
2081{
2082 iterate_over_breakpoints (svr4_update_solib_event_breakpoint, NULL);
2083}
2084
2085/* Create and register solib event breakpoints. PROBES is an array
2086 of NUM_PROBES elements, each of which is vector of probes. A
2087 solib event breakpoint will be created and registered for each
2088 probe. */
2089
2090static void
2091svr4_create_probe_breakpoints (struct gdbarch *gdbarch,
729662a5
TT
2092 VEC (probe_p) **probes,
2093 struct objfile *objfile)
f9e14852
GB
2094{
2095 int i;
2096
2097 for (i = 0; i < NUM_PROBES; i++)
2098 {
2099 enum probe_action action = probe_info[i].action;
2100 struct probe *probe;
2101 int ix;
2102
2103 for (ix = 0;
2104 VEC_iterate (probe_p, probes[i], ix, probe);
2105 ++ix)
2106 {
729662a5
TT
2107 CORE_ADDR address = get_probe_address (probe, objfile);
2108
2109 create_solib_event_breakpoint (gdbarch, address);
2110 register_solib_event_probe (probe, address, action);
f9e14852
GB
2111 }
2112 }
2113
2114 svr4_update_solib_event_breakpoints ();
2115}
2116
2117/* Both the SunOS and the SVR4 dynamic linkers call a marker function
2118 before and after mapping and unmapping shared libraries. The sole
2119 purpose of this method is to allow debuggers to set a breakpoint so
2120 they can track these changes.
2121
2122 Some versions of the glibc dynamic linker contain named probes
2123 to allow more fine grained stopping. Given the address of the
2124 original marker function, this function attempts to find these
2125 probes, and if found, sets breakpoints on those instead. If the
2126 probes aren't found, a single breakpoint is set on the original
2127 marker function. */
2128
2129static void
2130svr4_create_solib_event_breakpoints (struct gdbarch *gdbarch,
2131 CORE_ADDR address)
2132{
2133 struct obj_section *os;
2134
2135 os = find_pc_section (address);
2136 if (os != NULL)
2137 {
2138 int with_prefix;
2139
2140 for (with_prefix = 0; with_prefix <= 1; with_prefix++)
2141 {
2142 VEC (probe_p) *probes[NUM_PROBES];
2143 int all_probes_found = 1;
25f9533e 2144 int checked_can_use_probe_arguments = 0;
f9e14852
GB
2145 int i;
2146
2147 memset (probes, 0, sizeof (probes));
2148 for (i = 0; i < NUM_PROBES; i++)
2149 {
2150 const char *name = probe_info[i].name;
25f9533e 2151 struct probe *p;
f9e14852
GB
2152 char buf[32];
2153
2154 /* Fedora 17 and Red Hat Enterprise Linux 6.2-6.4
2155 shipped with an early version of the probes code in
2156 which the probes' names were prefixed with "rtld_"
2157 and the "map_failed" probe did not exist. The
2158 locations of the probes are otherwise the same, so
2159 we check for probes with prefixed names if probes
2160 with unprefixed names are not present. */
2161 if (with_prefix)
2162 {
2163 xsnprintf (buf, sizeof (buf), "rtld_%s", name);
2164 name = buf;
2165 }
2166
2167 probes[i] = find_probes_in_objfile (os->objfile, "rtld", name);
2168
2169 /* The "map_failed" probe did not exist in early
2170 versions of the probes code in which the probes'
2171 names were prefixed with "rtld_". */
2172 if (strcmp (name, "rtld_map_failed") == 0)
2173 continue;
2174
2175 if (VEC_empty (probe_p, probes[i]))
2176 {
2177 all_probes_found = 0;
2178 break;
2179 }
25f9533e
SDJ
2180
2181 /* Ensure probe arguments can be evaluated. */
2182 if (!checked_can_use_probe_arguments)
2183 {
2184 p = VEC_index (probe_p, probes[i], 0);
2185 if (!can_evaluate_probe_arguments (p))
2186 {
2187 all_probes_found = 0;
2188 break;
2189 }
2190 checked_can_use_probe_arguments = 1;
2191 }
f9e14852
GB
2192 }
2193
2194 if (all_probes_found)
729662a5 2195 svr4_create_probe_breakpoints (gdbarch, probes, os->objfile);
f9e14852
GB
2196
2197 for (i = 0; i < NUM_PROBES; i++)
2198 VEC_free (probe_p, probes[i]);
2199
2200 if (all_probes_found)
2201 return;
2202 }
2203 }
2204
2205 create_solib_event_breakpoint (gdbarch, address);
2206}
2207
cb457ae2
YQ
2208/* Helper function for gdb_bfd_lookup_symbol. */
2209
2210static int
3953f15c 2211cmp_name_and_sec_flags (const asymbol *sym, const void *data)
cb457ae2
YQ
2212{
2213 return (strcmp (sym->name, (const char *) data) == 0
2214 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0);
2215}
7f86f058 2216/* Arrange for dynamic linker to hit breakpoint.
13437d4b
KB
2217
2218 Both the SunOS and the SVR4 dynamic linkers have, as part of their
2219 debugger interface, support for arranging for the inferior to hit
2220 a breakpoint after mapping in the shared libraries. This function
2221 enables that breakpoint.
2222
2223 For SunOS, there is a special flag location (in_debugger) which we
2224 set to 1. When the dynamic linker sees this flag set, it will set
2225 a breakpoint at a location known only to itself, after saving the
2226 original contents of that place and the breakpoint address itself,
2227 in it's own internal structures. When we resume the inferior, it
2228 will eventually take a SIGTRAP when it runs into the breakpoint.
2229 We handle this (in a different place) by restoring the contents of
2230 the breakpointed location (which is only known after it stops),
2231 chasing around to locate the shared libraries that have been
2232 loaded, then resuming.
2233
2234 For SVR4, the debugger interface structure contains a member (r_brk)
2235 which is statically initialized at the time the shared library is
2236 built, to the offset of a function (_r_debug_state) which is guaran-
2237 teed to be called once before mapping in a library, and again when
2238 the mapping is complete. At the time we are examining this member,
2239 it contains only the unrelocated offset of the function, so we have
2240 to do our own relocation. Later, when the dynamic linker actually
2241 runs, it relocates r_brk to be the actual address of _r_debug_state().
2242
2243 The debugger interface structure also contains an enumeration which
2244 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
2245 depending upon whether or not the library is being mapped or unmapped,
7f86f058 2246 and then set to RT_CONSISTENT after the library is mapped/unmapped. */
13437d4b
KB
2247
2248static int
268a4a75 2249enable_break (struct svr4_info *info, int from_tty)
13437d4b 2250{
3b7344d5 2251 struct bound_minimal_symbol msymbol;
bc043ef3 2252 const char * const *bkpt_namep;
13437d4b 2253 asection *interp_sect;
001f13d8 2254 char *interp_name;
7cd25cfc 2255 CORE_ADDR sym_addr;
13437d4b 2256
6c95b8df
PA
2257 info->interp_text_sect_low = info->interp_text_sect_high = 0;
2258 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
13437d4b 2259
7cd25cfc
DJ
2260 /* If we already have a shared library list in the target, and
2261 r_debug contains r_brk, set the breakpoint there - this should
2262 mean r_brk has already been relocated. Assume the dynamic linker
2263 is the object containing r_brk. */
2264
e696b3ad 2265 solib_add (NULL, from_tty, auto_solib_add);
7cd25cfc 2266 sym_addr = 0;
1a816a87
PA
2267 if (info->debug_base && solib_svr4_r_map (info) != 0)
2268 sym_addr = solib_svr4_r_brk (info);
7cd25cfc
DJ
2269
2270 if (sym_addr != 0)
2271 {
2272 struct obj_section *os;
2273
b36ec657 2274 sym_addr = gdbarch_addr_bits_remove
f5656ead 2275 (target_gdbarch (), gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
3e43a32a
MS
2276 sym_addr,
2277 &current_target));
b36ec657 2278
48379de6
DE
2279 /* On at least some versions of Solaris there's a dynamic relocation
2280 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
2281 we get control before the dynamic linker has self-relocated.
2282 Check if SYM_ADDR is in a known section, if it is assume we can
2283 trust its value. This is just a heuristic though, it could go away
2284 or be replaced if it's getting in the way.
2285
2286 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
2287 however it's spelled in your particular system) is ARM or Thumb.
2288 That knowledge is encoded in the address, if it's Thumb the low bit
2289 is 1. However, we've stripped that info above and it's not clear
2290 what all the consequences are of passing a non-addr_bits_remove'd
f9e14852 2291 address to svr4_create_solib_event_breakpoints. The call to
48379de6
DE
2292 find_pc_section verifies we know about the address and have some
2293 hope of computing the right kind of breakpoint to use (via
2294 symbol info). It does mean that GDB needs to be pointed at a
2295 non-stripped version of the dynamic linker in order to obtain
2296 information it already knows about. Sigh. */
2297
7cd25cfc
DJ
2298 os = find_pc_section (sym_addr);
2299 if (os != NULL)
2300 {
2301 /* Record the relocated start and end address of the dynamic linker
2302 text and plt section for svr4_in_dynsym_resolve_code. */
2303 bfd *tmp_bfd;
2304 CORE_ADDR load_addr;
2305
2306 tmp_bfd = os->objfile->obfd;
2307 load_addr = ANOFFSET (os->objfile->section_offsets,
e03e6279 2308 SECT_OFF_TEXT (os->objfile));
7cd25cfc
DJ
2309
2310 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
2311 if (interp_sect)
2312 {
6c95b8df 2313 info->interp_text_sect_low =
7cd25cfc 2314 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
2315 info->interp_text_sect_high =
2316 info->interp_text_sect_low
2317 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
2318 }
2319 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
2320 if (interp_sect)
2321 {
6c95b8df 2322 info->interp_plt_sect_low =
7cd25cfc 2323 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
2324 info->interp_plt_sect_high =
2325 info->interp_plt_sect_low
2326 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
2327 }
2328
f9e14852 2329 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
7cd25cfc
DJ
2330 return 1;
2331 }
2332 }
2333
97ec2c2f 2334 /* Find the program interpreter; if not found, warn the user and drop
13437d4b 2335 into the old breakpoint at symbol code. */
97ec2c2f
UW
2336 interp_name = find_program_interpreter ();
2337 if (interp_name)
13437d4b 2338 {
8ad2fcde
KB
2339 CORE_ADDR load_addr = 0;
2340 int load_addr_found = 0;
2ec9a4f8 2341 int loader_found_in_list = 0;
f8766ec1 2342 struct so_list *so;
2f4950cd 2343 struct target_ops *tmp_bfd_target;
13437d4b 2344
7cd25cfc 2345 sym_addr = 0;
13437d4b
KB
2346
2347 /* Now we need to figure out where the dynamic linker was
2348 loaded so that we can load its symbols and place a breakpoint
2349 in the dynamic linker itself.
2350
2351 This address is stored on the stack. However, I've been unable
2352 to find any magic formula to find it for Solaris (appears to
2353 be trivial on GNU/Linux). Therefore, we have to try an alternate
2354 mechanism to find the dynamic linker's base address. */
e4f7b8c8 2355
192b62ce 2356 gdb_bfd_ref_ptr tmp_bfd;
492d29ea 2357 TRY
f1838a98 2358 {
97ec2c2f 2359 tmp_bfd = solib_bfd_open (interp_name);
f1838a98 2360 }
492d29ea
PA
2361 CATCH (ex, RETURN_MASK_ALL)
2362 {
2363 }
2364 END_CATCH
2365
13437d4b
KB
2366 if (tmp_bfd == NULL)
2367 goto bkpt_at_symbol;
2368
2f4950cd 2369 /* Now convert the TMP_BFD into a target. That way target, as
192b62ce
TT
2370 well as BFD operations can be used. target_bfd_reopen
2371 acquires its own reference. */
2372 tmp_bfd_target = target_bfd_reopen (tmp_bfd.get ());
2f4950cd 2373
f8766ec1
KB
2374 /* On a running target, we can get the dynamic linker's base
2375 address from the shared library table. */
f8766ec1
KB
2376 so = master_so_list ();
2377 while (so)
8ad2fcde 2378 {
97ec2c2f 2379 if (svr4_same_1 (interp_name, so->so_original_name))
8ad2fcde
KB
2380 {
2381 load_addr_found = 1;
2ec9a4f8 2382 loader_found_in_list = 1;
192b62ce 2383 load_addr = lm_addr_check (so, tmp_bfd.get ());
8ad2fcde
KB
2384 break;
2385 }
f8766ec1 2386 so = so->next;
8ad2fcde
KB
2387 }
2388
8d4e36ba
JB
2389 /* If we were not able to find the base address of the loader
2390 from our so_list, then try using the AT_BASE auxilliary entry. */
2391 if (!load_addr_found)
2392 if (target_auxv_search (&current_target, AT_BASE, &load_addr) > 0)
ad3a0e5b 2393 {
f5656ead 2394 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
ad3a0e5b
JK
2395
2396 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
2397 that `+ load_addr' will overflow CORE_ADDR width not creating
2398 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
2399 GDB. */
2400
d182d057 2401 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
ad3a0e5b 2402 {
d182d057 2403 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
192b62ce 2404 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd.get (),
ad3a0e5b
JK
2405 tmp_bfd_target);
2406
2407 gdb_assert (load_addr < space_size);
2408
2409 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
2410 64bit ld.so with 32bit executable, it should not happen. */
2411
2412 if (tmp_entry_point < space_size
2413 && tmp_entry_point + load_addr >= space_size)
2414 load_addr -= space_size;
2415 }
2416
2417 load_addr_found = 1;
2418 }
8d4e36ba 2419
8ad2fcde
KB
2420 /* Otherwise we find the dynamic linker's base address by examining
2421 the current pc (which should point at the entry point for the
8d4e36ba
JB
2422 dynamic linker) and subtracting the offset of the entry point.
2423
2424 This is more fragile than the previous approaches, but is a good
2425 fallback method because it has actually been working well in
2426 most cases. */
8ad2fcde 2427 if (!load_addr_found)
fb14de7b 2428 {
c2250ad1 2429 struct regcache *regcache
f5656ead 2430 = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
433759f7 2431
fb14de7b 2432 load_addr = (regcache_read_pc (regcache)
192b62ce 2433 - exec_entry_point (tmp_bfd.get (), tmp_bfd_target));
fb14de7b 2434 }
2ec9a4f8
DJ
2435
2436 if (!loader_found_in_list)
34439770 2437 {
1a816a87
PA
2438 info->debug_loader_name = xstrdup (interp_name);
2439 info->debug_loader_offset_p = 1;
2440 info->debug_loader_offset = load_addr;
e696b3ad 2441 solib_add (NULL, from_tty, auto_solib_add);
34439770 2442 }
13437d4b
KB
2443
2444 /* Record the relocated start and end address of the dynamic linker
d7fa2ae2 2445 text and plt section for svr4_in_dynsym_resolve_code. */
192b62ce 2446 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".text");
13437d4b
KB
2447 if (interp_sect)
2448 {
6c95b8df 2449 info->interp_text_sect_low =
192b62ce 2450 bfd_section_vma (tmp_bfd.get (), interp_sect) + load_addr;
6c95b8df
PA
2451 info->interp_text_sect_high =
2452 info->interp_text_sect_low
192b62ce 2453 + bfd_section_size (tmp_bfd.get (), interp_sect);
13437d4b 2454 }
192b62ce 2455 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".plt");
13437d4b
KB
2456 if (interp_sect)
2457 {
6c95b8df 2458 info->interp_plt_sect_low =
192b62ce 2459 bfd_section_vma (tmp_bfd.get (), interp_sect) + load_addr;
6c95b8df
PA
2460 info->interp_plt_sect_high =
2461 info->interp_plt_sect_low
192b62ce 2462 + bfd_section_size (tmp_bfd.get (), interp_sect);
13437d4b
KB
2463 }
2464
2465 /* Now try to set a breakpoint in the dynamic linker. */
2466 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2467 {
192b62ce
TT
2468 sym_addr = gdb_bfd_lookup_symbol (tmp_bfd.get (),
2469 cmp_name_and_sec_flags,
3953f15c 2470 *bkpt_namep);
13437d4b
KB
2471 if (sym_addr != 0)
2472 break;
2473 }
2474
2bbe3cc1
DJ
2475 if (sym_addr != 0)
2476 /* Convert 'sym_addr' from a function pointer to an address.
2477 Because we pass tmp_bfd_target instead of the current
2478 target, this will always produce an unrelocated value. */
f5656ead 2479 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2bbe3cc1
DJ
2480 sym_addr,
2481 tmp_bfd_target);
2482
695c3173
TT
2483 /* We're done with both the temporary bfd and target. Closing
2484 the target closes the underlying bfd, because it holds the
2485 only remaining reference. */
460014f5 2486 target_close (tmp_bfd_target);
13437d4b
KB
2487
2488 if (sym_addr != 0)
2489 {
f9e14852
GB
2490 svr4_create_solib_event_breakpoints (target_gdbarch (),
2491 load_addr + sym_addr);
97ec2c2f 2492 xfree (interp_name);
13437d4b
KB
2493 return 1;
2494 }
2495
2496 /* For whatever reason we couldn't set a breakpoint in the dynamic
2497 linker. Warn and drop into the old code. */
2498 bkpt_at_symbol:
97ec2c2f 2499 xfree (interp_name);
82d03102
PG
2500 warning (_("Unable to find dynamic linker breakpoint function.\n"
2501 "GDB will be unable to debug shared library initializers\n"
2502 "and track explicitly loaded dynamic code."));
13437d4b 2503 }
13437d4b 2504
e499d0f1
DJ
2505 /* Scan through the lists of symbols, trying to look up the symbol and
2506 set a breakpoint there. Terminate loop when we/if we succeed. */
2507
2508 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2509 {
2510 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
3b7344d5 2511 if ((msymbol.minsym != NULL)
77e371c0 2512 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
e499d0f1 2513 {
77e371c0 2514 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
f5656ead 2515 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
de64a9ac
JM
2516 sym_addr,
2517 &current_target);
f9e14852 2518 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
e499d0f1
DJ
2519 return 1;
2520 }
2521 }
13437d4b 2522
fb139f32 2523 if (interp_name != NULL && !current_inferior ()->attach_flag)
13437d4b 2524 {
c6490bf2 2525 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
13437d4b 2526 {
c6490bf2 2527 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
3b7344d5 2528 if ((msymbol.minsym != NULL)
77e371c0 2529 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
c6490bf2 2530 {
77e371c0 2531 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
f5656ead 2532 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
c6490bf2
KB
2533 sym_addr,
2534 &current_target);
f9e14852 2535 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
c6490bf2
KB
2536 return 1;
2537 }
13437d4b
KB
2538 }
2539 }
542c95c2 2540 return 0;
13437d4b
KB
2541}
2542
09919ac2
JK
2543/* Read the ELF program headers from ABFD. Return the contents and
2544 set *PHDRS_SIZE to the size of the program headers. */
e2a44558 2545
09919ac2
JK
2546static gdb_byte *
2547read_program_headers_from_bfd (bfd *abfd, int *phdrs_size)
e2a44558 2548{
09919ac2
JK
2549 Elf_Internal_Ehdr *ehdr;
2550 gdb_byte *buf;
e2a44558 2551
09919ac2 2552 ehdr = elf_elfheader (abfd);
b8040f19 2553
09919ac2
JK
2554 *phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
2555 if (*phdrs_size == 0)
2556 return NULL;
2557
224c3ddb 2558 buf = (gdb_byte *) xmalloc (*phdrs_size);
09919ac2
JK
2559 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
2560 || bfd_bread (buf, *phdrs_size, abfd) != *phdrs_size)
2561 {
2562 xfree (buf);
2563 return NULL;
2564 }
2565
2566 return buf;
b8040f19
JK
2567}
2568
01c30d6e
JK
2569/* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
2570 exec_bfd. Otherwise return 0.
2571
2572 We relocate all of the sections by the same amount. This
c378eb4e 2573 behavior is mandated by recent editions of the System V ABI.
b8040f19
JK
2574 According to the System V Application Binary Interface,
2575 Edition 4.1, page 5-5:
2576
2577 ... Though the system chooses virtual addresses for
2578 individual processes, it maintains the segments' relative
2579 positions. Because position-independent code uses relative
2580 addressesing between segments, the difference between
2581 virtual addresses in memory must match the difference
2582 between virtual addresses in the file. The difference
2583 between the virtual address of any segment in memory and
2584 the corresponding virtual address in the file is thus a
2585 single constant value for any one executable or shared
2586 object in a given process. This difference is the base
2587 address. One use of the base address is to relocate the
2588 memory image of the program during dynamic linking.
2589
2590 The same language also appears in Edition 4.0 of the System V
09919ac2
JK
2591 ABI and is left unspecified in some of the earlier editions.
2592
2593 Decide if the objfile needs to be relocated. As indicated above, we will
2594 only be here when execution is stopped. But during attachment PC can be at
2595 arbitrary address therefore regcache_read_pc can be misleading (contrary to
2596 the auxv AT_ENTRY value). Moreover for executable with interpreter section
2597 regcache_read_pc would point to the interpreter and not the main executable.
2598
2599 So, to summarize, relocations are necessary when the start address obtained
2600 from the executable is different from the address in auxv AT_ENTRY entry.
d989b283 2601
09919ac2
JK
2602 [ The astute reader will note that we also test to make sure that
2603 the executable in question has the DYNAMIC flag set. It is my
2604 opinion that this test is unnecessary (undesirable even). It
2605 was added to avoid inadvertent relocation of an executable
2606 whose e_type member in the ELF header is not ET_DYN. There may
2607 be a time in the future when it is desirable to do relocations
2608 on other types of files as well in which case this condition
2609 should either be removed or modified to accomodate the new file
2610 type. - Kevin, Nov 2000. ] */
b8040f19 2611
01c30d6e
JK
2612static int
2613svr4_exec_displacement (CORE_ADDR *displacementp)
b8040f19 2614{
41752192
JK
2615 /* ENTRY_POINT is a possible function descriptor - before
2616 a call to gdbarch_convert_from_func_ptr_addr. */
8f61baf8 2617 CORE_ADDR entry_point, exec_displacement;
b8040f19
JK
2618
2619 if (exec_bfd == NULL)
2620 return 0;
2621
09919ac2
JK
2622 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
2623 being executed themselves and PIE (Position Independent Executable)
2624 executables are ET_DYN. */
2625
2626 if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0)
2627 return 0;
2628
2629 if (target_auxv_search (&current_target, AT_ENTRY, &entry_point) <= 0)
2630 return 0;
2631
8f61baf8 2632 exec_displacement = entry_point - bfd_get_start_address (exec_bfd);
09919ac2 2633
8f61baf8 2634 /* Verify the EXEC_DISPLACEMENT candidate complies with the required page
09919ac2
JK
2635 alignment. It is cheaper than the program headers comparison below. */
2636
2637 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2638 {
2639 const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd);
2640
2641 /* p_align of PT_LOAD segments does not specify any alignment but
2642 only congruency of addresses:
2643 p_offset % p_align == p_vaddr % p_align
2644 Kernel is free to load the executable with lower alignment. */
2645
8f61baf8 2646 if ((exec_displacement & (elf->minpagesize - 1)) != 0)
09919ac2
JK
2647 return 0;
2648 }
2649
2650 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
2651 comparing their program headers. If the program headers in the auxilliary
2652 vector do not match the program headers in the executable, then we are
2653 looking at a different file than the one used by the kernel - for
2654 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
2655
2656 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2657 {
2658 /* Be optimistic and clear OK only if GDB was able to verify the headers
2659 really do not match. */
2660 int phdrs_size, phdrs2_size, ok = 1;
2661 gdb_byte *buf, *buf2;
0a1e94c7 2662 int arch_size;
09919ac2 2663
a738da3a 2664 buf = read_program_header (-1, &phdrs_size, &arch_size, NULL);
09919ac2 2665 buf2 = read_program_headers_from_bfd (exec_bfd, &phdrs2_size);
0a1e94c7
JK
2666 if (buf != NULL && buf2 != NULL)
2667 {
f5656ead 2668 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
0a1e94c7
JK
2669
2670 /* We are dealing with three different addresses. EXEC_BFD
2671 represents current address in on-disk file. target memory content
2672 may be different from EXEC_BFD as the file may have been prelinked
2673 to a different address after the executable has been loaded.
2674 Moreover the address of placement in target memory can be
3e43a32a
MS
2675 different from what the program headers in target memory say -
2676 this is the goal of PIE.
0a1e94c7
JK
2677
2678 Detected DISPLACEMENT covers both the offsets of PIE placement and
2679 possible new prelink performed after start of the program. Here
2680 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
2681 content offset for the verification purpose. */
2682
2683 if (phdrs_size != phdrs2_size
2684 || bfd_get_arch_size (exec_bfd) != arch_size)
2685 ok = 0;
3e43a32a
MS
2686 else if (arch_size == 32
2687 && phdrs_size >= sizeof (Elf32_External_Phdr)
0a1e94c7
JK
2688 && phdrs_size % sizeof (Elf32_External_Phdr) == 0)
2689 {
2690 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2691 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2692 CORE_ADDR displacement = 0;
2693 int i;
2694
2695 /* DISPLACEMENT could be found more easily by the difference of
2696 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2697 already have enough information to compute that displacement
2698 with what we've read. */
2699
2700 for (i = 0; i < ehdr2->e_phnum; i++)
2701 if (phdr2[i].p_type == PT_LOAD)
2702 {
2703 Elf32_External_Phdr *phdrp;
2704 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2705 CORE_ADDR vaddr, paddr;
2706 CORE_ADDR displacement_vaddr = 0;
2707 CORE_ADDR displacement_paddr = 0;
2708
2709 phdrp = &((Elf32_External_Phdr *) buf)[i];
2710 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2711 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2712
2713 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2714 byte_order);
2715 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2716
2717 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2718 byte_order);
2719 displacement_paddr = paddr - phdr2[i].p_paddr;
2720
2721 if (displacement_vaddr == displacement_paddr)
2722 displacement = displacement_vaddr;
2723
2724 break;
2725 }
2726
2727 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2728
2729 for (i = 0; i < phdrs_size / sizeof (Elf32_External_Phdr); i++)
2730 {
2731 Elf32_External_Phdr *phdrp;
2732 Elf32_External_Phdr *phdr2p;
2733 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2734 CORE_ADDR vaddr, paddr;
43b8e241 2735 asection *plt2_asect;
0a1e94c7
JK
2736
2737 phdrp = &((Elf32_External_Phdr *) buf)[i];
2738 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2739 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2740 phdr2p = &((Elf32_External_Phdr *) buf2)[i];
2741
2742 /* PT_GNU_STACK is an exception by being never relocated by
2743 prelink as its addresses are always zero. */
2744
2745 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2746 continue;
2747
2748 /* Check also other adjustment combinations - PR 11786. */
2749
3e43a32a
MS
2750 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2751 byte_order);
0a1e94c7
JK
2752 vaddr -= displacement;
2753 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
2754
3e43a32a
MS
2755 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2756 byte_order);
0a1e94c7
JK
2757 paddr -= displacement;
2758 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
2759
2760 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2761 continue;
2762
204b5331
DE
2763 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2764 CentOS-5 has problems with filesz, memsz as well.
2765 See PR 11786. */
2766 if (phdr2[i].p_type == PT_GNU_RELRO)
2767 {
2768 Elf32_External_Phdr tmp_phdr = *phdrp;
2769 Elf32_External_Phdr tmp_phdr2 = *phdr2p;
2770
2771 memset (tmp_phdr.p_filesz, 0, 4);
2772 memset (tmp_phdr.p_memsz, 0, 4);
2773 memset (tmp_phdr.p_flags, 0, 4);
2774 memset (tmp_phdr.p_align, 0, 4);
2775 memset (tmp_phdr2.p_filesz, 0, 4);
2776 memset (tmp_phdr2.p_memsz, 0, 4);
2777 memset (tmp_phdr2.p_flags, 0, 4);
2778 memset (tmp_phdr2.p_align, 0, 4);
2779
2780 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2781 == 0)
2782 continue;
2783 }
2784
43b8e241
JK
2785 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2786 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2787 if (plt2_asect)
2788 {
2789 int content2;
2790 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2791 CORE_ADDR filesz;
2792
2793 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2794 & SEC_HAS_CONTENTS) != 0;
2795
2796 filesz = extract_unsigned_integer (buf_filesz_p, 4,
2797 byte_order);
2798
2799 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2800 FILESZ is from the in-memory image. */
2801 if (content2)
2802 filesz += bfd_get_section_size (plt2_asect);
2803 else
2804 filesz -= bfd_get_section_size (plt2_asect);
2805
2806 store_unsigned_integer (buf_filesz_p, 4, byte_order,
2807 filesz);
2808
2809 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2810 continue;
2811 }
2812
0a1e94c7
JK
2813 ok = 0;
2814 break;
2815 }
2816 }
3e43a32a
MS
2817 else if (arch_size == 64
2818 && phdrs_size >= sizeof (Elf64_External_Phdr)
0a1e94c7
JK
2819 && phdrs_size % sizeof (Elf64_External_Phdr) == 0)
2820 {
2821 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2822 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2823 CORE_ADDR displacement = 0;
2824 int i;
2825
2826 /* DISPLACEMENT could be found more easily by the difference of
2827 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2828 already have enough information to compute that displacement
2829 with what we've read. */
2830
2831 for (i = 0; i < ehdr2->e_phnum; i++)
2832 if (phdr2[i].p_type == PT_LOAD)
2833 {
2834 Elf64_External_Phdr *phdrp;
2835 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2836 CORE_ADDR vaddr, paddr;
2837 CORE_ADDR displacement_vaddr = 0;
2838 CORE_ADDR displacement_paddr = 0;
2839
2840 phdrp = &((Elf64_External_Phdr *) buf)[i];
2841 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2842 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2843
2844 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2845 byte_order);
2846 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2847
2848 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2849 byte_order);
2850 displacement_paddr = paddr - phdr2[i].p_paddr;
2851
2852 if (displacement_vaddr == displacement_paddr)
2853 displacement = displacement_vaddr;
2854
2855 break;
2856 }
2857
2858 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2859
2860 for (i = 0; i < phdrs_size / sizeof (Elf64_External_Phdr); i++)
2861 {
2862 Elf64_External_Phdr *phdrp;
2863 Elf64_External_Phdr *phdr2p;
2864 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2865 CORE_ADDR vaddr, paddr;
43b8e241 2866 asection *plt2_asect;
0a1e94c7
JK
2867
2868 phdrp = &((Elf64_External_Phdr *) buf)[i];
2869 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2870 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2871 phdr2p = &((Elf64_External_Phdr *) buf2)[i];
2872
2873 /* PT_GNU_STACK is an exception by being never relocated by
2874 prelink as its addresses are always zero. */
2875
2876 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2877 continue;
2878
2879 /* Check also other adjustment combinations - PR 11786. */
2880
3e43a32a
MS
2881 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2882 byte_order);
0a1e94c7
JK
2883 vaddr -= displacement;
2884 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
2885
3e43a32a
MS
2886 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2887 byte_order);
0a1e94c7
JK
2888 paddr -= displacement;
2889 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
2890
2891 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2892 continue;
2893
204b5331
DE
2894 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2895 CentOS-5 has problems with filesz, memsz as well.
2896 See PR 11786. */
2897 if (phdr2[i].p_type == PT_GNU_RELRO)
2898 {
2899 Elf64_External_Phdr tmp_phdr = *phdrp;
2900 Elf64_External_Phdr tmp_phdr2 = *phdr2p;
2901
2902 memset (tmp_phdr.p_filesz, 0, 8);
2903 memset (tmp_phdr.p_memsz, 0, 8);
2904 memset (tmp_phdr.p_flags, 0, 4);
2905 memset (tmp_phdr.p_align, 0, 8);
2906 memset (tmp_phdr2.p_filesz, 0, 8);
2907 memset (tmp_phdr2.p_memsz, 0, 8);
2908 memset (tmp_phdr2.p_flags, 0, 4);
2909 memset (tmp_phdr2.p_align, 0, 8);
2910
2911 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2912 == 0)
2913 continue;
2914 }
2915
43b8e241
JK
2916 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2917 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2918 if (plt2_asect)
2919 {
2920 int content2;
2921 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2922 CORE_ADDR filesz;
2923
2924 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2925 & SEC_HAS_CONTENTS) != 0;
2926
2927 filesz = extract_unsigned_integer (buf_filesz_p, 8,
2928 byte_order);
2929
2930 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2931 FILESZ is from the in-memory image. */
2932 if (content2)
2933 filesz += bfd_get_section_size (plt2_asect);
2934 else
2935 filesz -= bfd_get_section_size (plt2_asect);
2936
2937 store_unsigned_integer (buf_filesz_p, 8, byte_order,
2938 filesz);
2939
2940 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2941 continue;
2942 }
2943
0a1e94c7
JK
2944 ok = 0;
2945 break;
2946 }
2947 }
2948 else
2949 ok = 0;
2950 }
09919ac2
JK
2951
2952 xfree (buf);
2953 xfree (buf2);
2954
2955 if (!ok)
2956 return 0;
2957 }
b8040f19 2958
ccf26247
JK
2959 if (info_verbose)
2960 {
2961 /* It can be printed repeatedly as there is no easy way to check
2962 the executable symbols/file has been already relocated to
2963 displacement. */
2964
2965 printf_unfiltered (_("Using PIE (Position Independent Executable) "
2966 "displacement %s for \"%s\".\n"),
8f61baf8 2967 paddress (target_gdbarch (), exec_displacement),
ccf26247
JK
2968 bfd_get_filename (exec_bfd));
2969 }
2970
8f61baf8 2971 *displacementp = exec_displacement;
01c30d6e 2972 return 1;
b8040f19
JK
2973}
2974
2975/* Relocate the main executable. This function should be called upon
c378eb4e 2976 stopping the inferior process at the entry point to the program.
b8040f19
JK
2977 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
2978 different, the main executable is relocated by the proper amount. */
2979
2980static void
2981svr4_relocate_main_executable (void)
2982{
01c30d6e
JK
2983 CORE_ADDR displacement;
2984
4e5799b6
JK
2985 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
2986 probably contains the offsets computed using the PIE displacement
2987 from the previous run, which of course are irrelevant for this run.
2988 So we need to determine the new PIE displacement and recompute the
2989 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
2990 already contains pre-computed offsets.
01c30d6e 2991
4e5799b6 2992 If we cannot compute the PIE displacement, either:
01c30d6e 2993
4e5799b6
JK
2994 - The executable is not PIE.
2995
2996 - SYMFILE_OBJFILE does not match the executable started in the target.
2997 This can happen for main executable symbols loaded at the host while
2998 `ld.so --ld-args main-executable' is loaded in the target.
2999
3000 Then we leave the section offsets untouched and use them as is for
3001 this run. Either:
3002
3003 - These section offsets were properly reset earlier, and thus
3004 already contain the correct values. This can happen for instance
3005 when reconnecting via the remote protocol to a target that supports
3006 the `qOffsets' packet.
3007
3008 - The section offsets were not reset earlier, and the best we can
c378eb4e 3009 hope is that the old offsets are still applicable to the new run. */
01c30d6e
JK
3010
3011 if (! svr4_exec_displacement (&displacement))
3012 return;
b8040f19 3013
01c30d6e
JK
3014 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
3015 addresses. */
b8040f19
JK
3016
3017 if (symfile_objfile)
e2a44558 3018 {
e2a44558 3019 struct section_offsets *new_offsets;
b8040f19 3020 int i;
e2a44558 3021
224c3ddb
SM
3022 new_offsets = XALLOCAVEC (struct section_offsets,
3023 symfile_objfile->num_sections);
e2a44558 3024
b8040f19
JK
3025 for (i = 0; i < symfile_objfile->num_sections; i++)
3026 new_offsets->offsets[i] = displacement;
e2a44558 3027
b8040f19 3028 objfile_relocate (symfile_objfile, new_offsets);
e2a44558 3029 }
51bee8e9
JK
3030 else if (exec_bfd)
3031 {
3032 asection *asect;
3033
3034 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
3035 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
3036 (bfd_section_vma (exec_bfd, asect)
3037 + displacement));
3038 }
e2a44558
KB
3039}
3040
7f86f058 3041/* Implement the "create_inferior_hook" target_solib_ops method.
13437d4b
KB
3042
3043 For SVR4 executables, this first instruction is either the first
3044 instruction in the dynamic linker (for dynamically linked
3045 executables) or the instruction at "start" for statically linked
3046 executables. For dynamically linked executables, the system
3047 first exec's /lib/libc.so.N, which contains the dynamic linker,
3048 and starts it running. The dynamic linker maps in any needed
3049 shared libraries, maps in the actual user executable, and then
3050 jumps to "start" in the user executable.
3051
7f86f058
PA
3052 We can arrange to cooperate with the dynamic linker to discover the
3053 names of shared libraries that are dynamically linked, and the base
3054 addresses to which they are linked.
13437d4b
KB
3055
3056 This function is responsible for discovering those names and
3057 addresses, and saving sufficient information about them to allow
d2e5c99a 3058 their symbols to be read at a later time. */
13437d4b 3059
e2a44558 3060static void
268a4a75 3061svr4_solib_create_inferior_hook (int from_tty)
13437d4b 3062{
1a816a87
PA
3063 struct svr4_info *info;
3064
6c95b8df 3065 info = get_svr4_info ();
2020b7ab 3066
f9e14852
GB
3067 /* Clear the probes-based interface's state. */
3068 free_probes_table (info);
3069 free_solib_list (info);
3070
e2a44558 3071 /* Relocate the main executable if necessary. */
86e4bafc 3072 svr4_relocate_main_executable ();
e2a44558 3073
c91c8c16
PA
3074 /* No point setting a breakpoint in the dynamic linker if we can't
3075 hit it (e.g., a core file, or a trace file). */
3076 if (!target_has_execution)
3077 return;
3078
d5a921c9 3079 if (!svr4_have_link_map_offsets ())
513f5903 3080 return;
d5a921c9 3081
268a4a75 3082 if (!enable_break (info, from_tty))
542c95c2 3083 return;
13437d4b
KB
3084}
3085
3086static void
3087svr4_clear_solib (void)
3088{
6c95b8df
PA
3089 struct svr4_info *info;
3090
3091 info = get_svr4_info ();
3092 info->debug_base = 0;
3093 info->debug_loader_offset_p = 0;
3094 info->debug_loader_offset = 0;
3095 xfree (info->debug_loader_name);
3096 info->debug_loader_name = NULL;
13437d4b
KB
3097}
3098
6bb7be43
JB
3099/* Clear any bits of ADDR that wouldn't fit in a target-format
3100 data pointer. "Data pointer" here refers to whatever sort of
3101 address the dynamic linker uses to manage its sections. At the
3102 moment, we don't support shared libraries on any processors where
3103 code and data pointers are different sizes.
3104
3105 This isn't really the right solution. What we really need here is
3106 a way to do arithmetic on CORE_ADDR values that respects the
3107 natural pointer/address correspondence. (For example, on the MIPS,
3108 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
3109 sign-extend the value. There, simply truncating the bits above
819844ad 3110 gdbarch_ptr_bit, as we do below, is no good.) This should probably
6bb7be43
JB
3111 be a new gdbarch method or something. */
3112static CORE_ADDR
3113svr4_truncate_ptr (CORE_ADDR addr)
3114{
f5656ead 3115 if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8)
6bb7be43
JB
3116 /* We don't need to truncate anything, and the bit twiddling below
3117 will fail due to overflow problems. */
3118 return addr;
3119 else
f5656ead 3120 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1);
6bb7be43
JB
3121}
3122
3123
749499cb
KB
3124static void
3125svr4_relocate_section_addresses (struct so_list *so,
0542c86d 3126 struct target_section *sec)
749499cb 3127{
2b2848e2
DE
3128 bfd *abfd = sec->the_bfd_section->owner;
3129
3130 sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so, abfd));
3131 sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so, abfd));
749499cb 3132}
4b188b9f 3133\f
749499cb 3134
4b188b9f 3135/* Architecture-specific operations. */
6bb7be43 3136
4b188b9f
MK
3137/* Per-architecture data key. */
3138static struct gdbarch_data *solib_svr4_data;
e5e2b9ff 3139
4b188b9f 3140struct solib_svr4_ops
e5e2b9ff 3141{
4b188b9f
MK
3142 /* Return a description of the layout of `struct link_map'. */
3143 struct link_map_offsets *(*fetch_link_map_offsets)(void);
3144};
e5e2b9ff 3145
4b188b9f 3146/* Return a default for the architecture-specific operations. */
e5e2b9ff 3147
4b188b9f
MK
3148static void *
3149solib_svr4_init (struct obstack *obstack)
e5e2b9ff 3150{
4b188b9f 3151 struct solib_svr4_ops *ops;
e5e2b9ff 3152
4b188b9f 3153 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
8d005789 3154 ops->fetch_link_map_offsets = NULL;
4b188b9f 3155 return ops;
e5e2b9ff
KB
3156}
3157
4b188b9f 3158/* Set the architecture-specific `struct link_map_offsets' fetcher for
7e3cb44c 3159 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
1c4dcb57 3160
21479ded 3161void
e5e2b9ff
KB
3162set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
3163 struct link_map_offsets *(*flmo) (void))
21479ded 3164{
19ba03f4
SM
3165 struct solib_svr4_ops *ops
3166 = (struct solib_svr4_ops *) gdbarch_data (gdbarch, solib_svr4_data);
4b188b9f
MK
3167
3168 ops->fetch_link_map_offsets = flmo;
7e3cb44c
UW
3169
3170 set_solib_ops (gdbarch, &svr4_so_ops);
21479ded
KB
3171}
3172
4b188b9f
MK
3173/* Fetch a link_map_offsets structure using the architecture-specific
3174 `struct link_map_offsets' fetcher. */
1c4dcb57 3175
4b188b9f
MK
3176static struct link_map_offsets *
3177svr4_fetch_link_map_offsets (void)
21479ded 3178{
19ba03f4
SM
3179 struct solib_svr4_ops *ops
3180 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3181 solib_svr4_data);
4b188b9f
MK
3182
3183 gdb_assert (ops->fetch_link_map_offsets);
3184 return ops->fetch_link_map_offsets ();
21479ded
KB
3185}
3186
4b188b9f
MK
3187/* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
3188
3189static int
3190svr4_have_link_map_offsets (void)
3191{
19ba03f4
SM
3192 struct solib_svr4_ops *ops
3193 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3194 solib_svr4_data);
433759f7 3195
4b188b9f
MK
3196 return (ops->fetch_link_map_offsets != NULL);
3197}
3198\f
3199
e4bbbda8
MK
3200/* Most OS'es that have SVR4-style ELF dynamic libraries define a
3201 `struct r_debug' and a `struct link_map' that are binary compatible
3202 with the origional SVR4 implementation. */
3203
3204/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3205 for an ILP32 SVR4 system. */
d989b283 3206
e4bbbda8
MK
3207struct link_map_offsets *
3208svr4_ilp32_fetch_link_map_offsets (void)
3209{
3210 static struct link_map_offsets lmo;
3211 static struct link_map_offsets *lmp = NULL;
3212
3213 if (lmp == NULL)
3214 {
3215 lmp = &lmo;
3216
e4cd0d6a
MK
3217 lmo.r_version_offset = 0;
3218 lmo.r_version_size = 4;
e4bbbda8 3219 lmo.r_map_offset = 4;
7cd25cfc 3220 lmo.r_brk_offset = 8;
e4cd0d6a 3221 lmo.r_ldsomap_offset = 20;
e4bbbda8
MK
3222
3223 /* Everything we need is in the first 20 bytes. */
3224 lmo.link_map_size = 20;
3225 lmo.l_addr_offset = 0;
e4bbbda8 3226 lmo.l_name_offset = 4;
cc10cae3 3227 lmo.l_ld_offset = 8;
e4bbbda8 3228 lmo.l_next_offset = 12;
e4bbbda8 3229 lmo.l_prev_offset = 16;
e4bbbda8
MK
3230 }
3231
3232 return lmp;
3233}
3234
3235/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3236 for an LP64 SVR4 system. */
d989b283 3237
e4bbbda8
MK
3238struct link_map_offsets *
3239svr4_lp64_fetch_link_map_offsets (void)
3240{
3241 static struct link_map_offsets lmo;
3242 static struct link_map_offsets *lmp = NULL;
3243
3244 if (lmp == NULL)
3245 {
3246 lmp = &lmo;
3247
e4cd0d6a
MK
3248 lmo.r_version_offset = 0;
3249 lmo.r_version_size = 4;
e4bbbda8 3250 lmo.r_map_offset = 8;
7cd25cfc 3251 lmo.r_brk_offset = 16;
e4cd0d6a 3252 lmo.r_ldsomap_offset = 40;
e4bbbda8
MK
3253
3254 /* Everything we need is in the first 40 bytes. */
3255 lmo.link_map_size = 40;
3256 lmo.l_addr_offset = 0;
e4bbbda8 3257 lmo.l_name_offset = 8;
cc10cae3 3258 lmo.l_ld_offset = 16;
e4bbbda8 3259 lmo.l_next_offset = 24;
e4bbbda8 3260 lmo.l_prev_offset = 32;
e4bbbda8
MK
3261 }
3262
3263 return lmp;
3264}
3265\f
3266
7d522c90 3267struct target_so_ops svr4_so_ops;
13437d4b 3268
c378eb4e 3269/* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
3a40aaa0
UW
3270 different rule for symbol lookup. The lookup begins here in the DSO, not in
3271 the main executable. */
3272
d12307c1 3273static struct block_symbol
efad9b6a 3274elf_lookup_lib_symbol (struct objfile *objfile,
3a40aaa0 3275 const char *name,
21b556f4 3276 const domain_enum domain)
3a40aaa0 3277{
61f0d762
JK
3278 bfd *abfd;
3279
3280 if (objfile == symfile_objfile)
3281 abfd = exec_bfd;
3282 else
3283 {
3284 /* OBJFILE should have been passed as the non-debug one. */
3285 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
3286
3287 abfd = objfile->obfd;
3288 }
3289
a738da3a 3290 if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL, NULL) != 1)
d12307c1 3291 return (struct block_symbol) {NULL, NULL};
3a40aaa0 3292
94af9270 3293 return lookup_global_symbol_from_objfile (objfile, name, domain);
3a40aaa0
UW
3294}
3295
13437d4b
KB
3296void
3297_initialize_svr4_solib (void)
3298{
4b188b9f 3299 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
6c95b8df 3300 solib_svr4_pspace_data
8e260fc0 3301 = register_program_space_data_with_cleanup (NULL, svr4_pspace_data_cleanup);
4b188b9f 3302
749499cb 3303 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
13437d4b 3304 svr4_so_ops.free_so = svr4_free_so;
0892cb63 3305 svr4_so_ops.clear_so = svr4_clear_so;
13437d4b
KB
3306 svr4_so_ops.clear_solib = svr4_clear_solib;
3307 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
13437d4b
KB
3308 svr4_so_ops.current_sos = svr4_current_sos;
3309 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
d7fa2ae2 3310 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
831a0c44 3311 svr4_so_ops.bfd_open = solib_bfd_open;
3a40aaa0 3312 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
a7c02bc8 3313 svr4_so_ops.same = svr4_same;
de18c1d8 3314 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
f9e14852
GB
3315 svr4_so_ops.update_breakpoints = svr4_update_solib_event_breakpoints;
3316 svr4_so_ops.handle_event = svr4_handle_solib_event;
13437d4b 3317}
This page took 2.887702 seconds and 4 git commands to generate.