2009-10-19 Pedro Alves <pedro@codesourcery.com>
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
CommitLineData
ab31aa69 1/* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2f4950cd 2
6aba47ca 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000,
0fb0cc75
JB
4 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009
5 Free Software Foundation, Inc.
13437d4b
KB
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
13437d4b
KB
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
13437d4b 21
13437d4b
KB
22#include "defs.h"
23
13437d4b 24#include "elf/external.h"
21479ded 25#include "elf/common.h"
f7856c8f 26#include "elf/mips.h"
13437d4b
KB
27
28#include "symtab.h"
29#include "bfd.h"
30#include "symfile.h"
31#include "objfiles.h"
32#include "gdbcore.h"
13437d4b 33#include "target.h"
13437d4b 34#include "inferior.h"
fb14de7b 35#include "regcache.h"
2020b7ab 36#include "gdbthread.h"
1a816a87 37#include "observer.h"
13437d4b 38
4b188b9f
MK
39#include "gdb_assert.h"
40
13437d4b 41#include "solist.h"
bba93f6c 42#include "solib.h"
13437d4b
KB
43#include "solib-svr4.h"
44
2f4950cd 45#include "bfd-target.h"
cc10cae3 46#include "elf-bfd.h"
2f4950cd 47#include "exec.h"
8d4e36ba 48#include "auxv.h"
f1838a98 49#include "exceptions.h"
2f4950cd 50
e5e2b9ff 51static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
d5a921c9 52static int svr4_have_link_map_offsets (void);
1c4dcb57 53
13437d4b
KB
54/* Link map info to include in an allocated so_list entry */
55
56struct lm_info
57 {
58 /* Pointer to copy of link map from inferior. The type is char *
59 rather than void *, so that we may use byte offsets to find the
60 various fields without the need for a cast. */
4066fc10 61 gdb_byte *lm;
cc10cae3
AO
62
63 /* Amount by which addresses in the binary should be relocated to
64 match the inferior. This could most often be taken directly
65 from lm, but when prelinking is involved and the prelink base
66 address changes, we may need a different offset, we want to
67 warn about the difference and compute it only once. */
68 CORE_ADDR l_addr;
93a57060
DJ
69
70 /* The target location of lm. */
71 CORE_ADDR lm_addr;
13437d4b
KB
72 };
73
74/* On SVR4 systems, a list of symbols in the dynamic linker where
75 GDB can try to place a breakpoint to monitor shared library
76 events.
77
78 If none of these symbols are found, or other errors occur, then
79 SVR4 systems will fall back to using a symbol as the "startup
80 mapping complete" breakpoint address. */
81
13437d4b
KB
82static char *solib_break_names[] =
83{
84 "r_debug_state",
85 "_r_debug_state",
86 "_dl_debug_state",
87 "rtld_db_dlactivity",
1f72e589 88 "_rtld_debug_state",
4c0122c8 89
13437d4b
KB
90 NULL
91};
13437d4b 92
13437d4b
KB
93static char *bkpt_names[] =
94{
13437d4b 95 "_start",
ad3dcc5c 96 "__start",
13437d4b
KB
97 "main",
98 NULL
99};
13437d4b 100
13437d4b
KB
101static char *main_name_list[] =
102{
103 "main_$main",
104 NULL
105};
106
4d7b2d5b
JB
107/* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
108 the same shared library. */
109
110static int
111svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
112{
113 if (strcmp (gdb_so_name, inferior_so_name) == 0)
114 return 1;
115
116 /* On Solaris, when starting inferior we think that dynamic linker is
117 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
118 contains /lib/ld.so.1. Sometimes one file is a link to another, but
119 sometimes they have identical content, but are not linked to each
120 other. We don't restrict this check for Solaris, but the chances
121 of running into this situation elsewhere are very low. */
122 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
123 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
124 return 1;
125
126 /* Similarly, we observed the same issue with sparc64, but with
127 different locations. */
128 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
129 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
130 return 1;
131
132 return 0;
133}
134
135static int
136svr4_same (struct so_list *gdb, struct so_list *inferior)
137{
138 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
139}
140
13437d4b
KB
141/* link map access functions */
142
143static CORE_ADDR
cc10cae3 144LM_ADDR_FROM_LINK_MAP (struct so_list *so)
13437d4b 145{
4b188b9f 146 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 147 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
13437d4b 148
cfaefc65 149 return extract_typed_address (so->lm_info->lm + lmo->l_addr_offset,
b6da22b0 150 ptr_type);
13437d4b
KB
151}
152
cc10cae3 153static int
2c0b251b 154HAS_LM_DYNAMIC_FROM_LINK_MAP (void)
cc10cae3
AO
155{
156 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
157
cfaefc65 158 return lmo->l_ld_offset >= 0;
cc10cae3
AO
159}
160
161static CORE_ADDR
162LM_DYNAMIC_FROM_LINK_MAP (struct so_list *so)
163{
164 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 165 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
cc10cae3 166
cfaefc65 167 return extract_typed_address (so->lm_info->lm + lmo->l_ld_offset,
b6da22b0 168 ptr_type);
cc10cae3
AO
169}
170
171static CORE_ADDR
172LM_ADDR_CHECK (struct so_list *so, bfd *abfd)
173{
174 if (so->lm_info->l_addr == (CORE_ADDR)-1)
175 {
176 struct bfd_section *dyninfo_sect;
177 CORE_ADDR l_addr, l_dynaddr, dynaddr, align = 0x1000;
178
179 l_addr = LM_ADDR_FROM_LINK_MAP (so);
180
181 if (! abfd || ! HAS_LM_DYNAMIC_FROM_LINK_MAP ())
182 goto set_addr;
183
184 l_dynaddr = LM_DYNAMIC_FROM_LINK_MAP (so);
185
186 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
187 if (dyninfo_sect == NULL)
188 goto set_addr;
189
190 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
191
192 if (dynaddr + l_addr != l_dynaddr)
193 {
cc10cae3
AO
194 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
195 {
196 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
197 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
198 int i;
199
200 align = 1;
201
202 for (i = 0; i < ehdr->e_phnum; i++)
203 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
204 align = phdr[i].p_align;
205 }
206
207 /* Turn it into a mask. */
208 align--;
209
210 /* If the changes match the alignment requirements, we
211 assume we're using a core file that was generated by the
212 same binary, just prelinked with a different base offset.
213 If it doesn't match, we may have a different binary, the
214 same binary with the dynamic table loaded at an unrelated
215 location, or anything, really. To avoid regressions,
216 don't adjust the base offset in the latter case, although
217 odds are that, if things really changed, debugging won't
218 quite work. */
f1e55806 219 if ((l_addr & align) == ((l_dynaddr - dynaddr) & align))
cc10cae3
AO
220 {
221 l_addr = l_dynaddr - dynaddr;
79d4c408
DJ
222
223 warning (_(".dynamic section for \"%s\" "
224 "is not at the expected address"), so->so_name);
cc10cae3
AO
225 warning (_("difference appears to be caused by prelink, "
226 "adjusting expectations"));
227 }
79d4c408
DJ
228 else
229 warning (_(".dynamic section for \"%s\" "
230 "is not at the expected address "
231 "(wrong library or version mismatch?)"), so->so_name);
cc10cae3
AO
232 }
233
234 set_addr:
235 so->lm_info->l_addr = l_addr;
236 }
237
238 return so->lm_info->l_addr;
239}
240
13437d4b
KB
241static CORE_ADDR
242LM_NEXT (struct so_list *so)
243{
4b188b9f 244 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 245 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
13437d4b 246
cfaefc65 247 return extract_typed_address (so->lm_info->lm + lmo->l_next_offset,
b6da22b0 248 ptr_type);
13437d4b
KB
249}
250
251static CORE_ADDR
252LM_NAME (struct so_list *so)
253{
4b188b9f 254 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 255 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
13437d4b 256
cfaefc65 257 return extract_typed_address (so->lm_info->lm + lmo->l_name_offset,
b6da22b0 258 ptr_type);
13437d4b
KB
259}
260
13437d4b
KB
261static int
262IGNORE_FIRST_LINK_MAP_ENTRY (struct so_list *so)
263{
4b188b9f 264 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 265 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
13437d4b 266
e499d0f1
DJ
267 /* Assume that everything is a library if the dynamic loader was loaded
268 late by a static executable. */
0763ab81 269 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
e499d0f1
DJ
270 return 0;
271
cfaefc65 272 return extract_typed_address (so->lm_info->lm + lmo->l_prev_offset,
b6da22b0 273 ptr_type) == 0;
13437d4b
KB
274}
275
6c95b8df 276/* Per pspace SVR4 specific data. */
13437d4b 277
1a816a87
PA
278struct svr4_info
279{
1a816a87
PA
280 CORE_ADDR debug_base; /* Base of dynamic linker structures */
281
282 /* Validity flag for debug_loader_offset. */
283 int debug_loader_offset_p;
284
285 /* Load address for the dynamic linker, inferred. */
286 CORE_ADDR debug_loader_offset;
287
288 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
289 char *debug_loader_name;
290
291 /* Load map address for the main executable. */
292 CORE_ADDR main_lm_addr;
1a816a87 293
6c95b8df
PA
294 CORE_ADDR interp_text_sect_low;
295 CORE_ADDR interp_text_sect_high;
296 CORE_ADDR interp_plt_sect_low;
297 CORE_ADDR interp_plt_sect_high;
298};
1a816a87 299
6c95b8df
PA
300/* Per-program-space data key. */
301static const struct program_space_data *solib_svr4_pspace_data;
1a816a87 302
6c95b8df
PA
303static void
304svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
1a816a87 305{
6c95b8df 306 struct svr4_info *info;
1a816a87 307
6c95b8df
PA
308 info = program_space_data (pspace, solib_svr4_pspace_data);
309 xfree (info);
1a816a87
PA
310}
311
6c95b8df
PA
312/* Get the current svr4 data. If none is found yet, add it now. This
313 function always returns a valid object. */
34439770 314
6c95b8df
PA
315static struct svr4_info *
316get_svr4_info (void)
1a816a87 317{
6c95b8df 318 struct svr4_info *info;
1a816a87 319
6c95b8df
PA
320 info = program_space_data (current_program_space, solib_svr4_pspace_data);
321 if (info != NULL)
322 return info;
34439770 323
6c95b8df
PA
324 info = XZALLOC (struct svr4_info);
325 set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
326 return info;
1a816a87 327}
93a57060 328
13437d4b
KB
329/* Local function prototypes */
330
331static int match_main (char *);
332
2bbe3cc1 333static CORE_ADDR bfd_lookup_symbol (bfd *, char *);
13437d4b
KB
334
335/*
336
337 LOCAL FUNCTION
338
339 bfd_lookup_symbol -- lookup the value for a specific symbol
340
341 SYNOPSIS
342
2bbe3cc1 343 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
13437d4b
KB
344
345 DESCRIPTION
346
347 An expensive way to lookup the value of a single symbol for
348 bfd's that are only temporary anyway. This is used by the
349 shared library support to find the address of the debugger
2bbe3cc1 350 notification routine in the shared library.
13437d4b 351
2bbe3cc1
DJ
352 The returned symbol may be in a code or data section; functions
353 will normally be in a code section, but may be in a data section
354 if this architecture uses function descriptors.
87f84c9d 355
13437d4b
KB
356 Note that 0 is specifically allowed as an error return (no
357 such symbol).
358 */
359
360static CORE_ADDR
2bbe3cc1 361bfd_lookup_symbol (bfd *abfd, char *symname)
13437d4b 362{
435b259c 363 long storage_needed;
13437d4b
KB
364 asymbol *sym;
365 asymbol **symbol_table;
366 unsigned int number_of_symbols;
367 unsigned int i;
368 struct cleanup *back_to;
369 CORE_ADDR symaddr = 0;
370
371 storage_needed = bfd_get_symtab_upper_bound (abfd);
372
373 if (storage_needed > 0)
374 {
375 symbol_table = (asymbol **) xmalloc (storage_needed);
4efb68b1 376 back_to = make_cleanup (xfree, symbol_table);
13437d4b
KB
377 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
378
379 for (i = 0; i < number_of_symbols; i++)
380 {
381 sym = *symbol_table++;
6314a349 382 if (strcmp (sym->name, symname) == 0
2bbe3cc1 383 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
13437d4b 384 {
2bbe3cc1 385 /* BFD symbols are section relative. */
13437d4b
KB
386 symaddr = sym->value + sym->section->vma;
387 break;
388 }
389 }
390 do_cleanups (back_to);
391 }
392
393 if (symaddr)
394 return symaddr;
395
396 /* On FreeBSD, the dynamic linker is stripped by default. So we'll
397 have to check the dynamic string table too. */
398
399 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
400
401 if (storage_needed > 0)
402 {
403 symbol_table = (asymbol **) xmalloc (storage_needed);
4efb68b1 404 back_to = make_cleanup (xfree, symbol_table);
13437d4b
KB
405 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
406
407 for (i = 0; i < number_of_symbols; i++)
408 {
409 sym = *symbol_table++;
87f84c9d 410
6314a349 411 if (strcmp (sym->name, symname) == 0
2bbe3cc1 412 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
13437d4b 413 {
2bbe3cc1 414 /* BFD symbols are section relative. */
13437d4b
KB
415 symaddr = sym->value + sym->section->vma;
416 break;
417 }
418 }
419 do_cleanups (back_to);
420 }
421
422 return symaddr;
423}
424
97ec2c2f
UW
425
426/* Read program header TYPE from inferior memory. The header is found
427 by scanning the OS auxillary vector.
428
429 Return a pointer to allocated memory holding the program header contents,
430 or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the
431 size of those contents is returned to P_SECT_SIZE. Likewise, the target
432 architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE. */
433
434static gdb_byte *
435read_program_header (int type, int *p_sect_size, int *p_arch_size)
436{
e17a4113 437 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
97ec2c2f
UW
438 CORE_ADDR at_phdr, at_phent, at_phnum;
439 int arch_size, sect_size;
440 CORE_ADDR sect_addr;
441 gdb_byte *buf;
442
443 /* Get required auxv elements from target. */
444 if (target_auxv_search (&current_target, AT_PHDR, &at_phdr) <= 0)
445 return 0;
446 if (target_auxv_search (&current_target, AT_PHENT, &at_phent) <= 0)
447 return 0;
448 if (target_auxv_search (&current_target, AT_PHNUM, &at_phnum) <= 0)
449 return 0;
450 if (!at_phdr || !at_phnum)
451 return 0;
452
453 /* Determine ELF architecture type. */
454 if (at_phent == sizeof (Elf32_External_Phdr))
455 arch_size = 32;
456 else if (at_phent == sizeof (Elf64_External_Phdr))
457 arch_size = 64;
458 else
459 return 0;
460
461 /* Find .dynamic section via the PT_DYNAMIC PHDR. */
462 if (arch_size == 32)
463 {
464 Elf32_External_Phdr phdr;
465 int i;
466
467 /* Search for requested PHDR. */
468 for (i = 0; i < at_phnum; i++)
469 {
470 if (target_read_memory (at_phdr + i * sizeof (phdr),
471 (gdb_byte *)&phdr, sizeof (phdr)))
472 return 0;
473
e17a4113
UW
474 if (extract_unsigned_integer ((gdb_byte *)phdr.p_type,
475 4, byte_order) == type)
97ec2c2f
UW
476 break;
477 }
478
479 if (i == at_phnum)
480 return 0;
481
482 /* Retrieve address and size. */
e17a4113
UW
483 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
484 4, byte_order);
485 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
486 4, byte_order);
97ec2c2f
UW
487 }
488 else
489 {
490 Elf64_External_Phdr phdr;
491 int i;
492
493 /* Search for requested PHDR. */
494 for (i = 0; i < at_phnum; i++)
495 {
496 if (target_read_memory (at_phdr + i * sizeof (phdr),
497 (gdb_byte *)&phdr, sizeof (phdr)))
498 return 0;
499
e17a4113
UW
500 if (extract_unsigned_integer ((gdb_byte *)phdr.p_type,
501 4, byte_order) == type)
97ec2c2f
UW
502 break;
503 }
504
505 if (i == at_phnum)
506 return 0;
507
508 /* Retrieve address and size. */
e17a4113
UW
509 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
510 8, byte_order);
511 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
512 8, byte_order);
97ec2c2f
UW
513 }
514
515 /* Read in requested program header. */
516 buf = xmalloc (sect_size);
517 if (target_read_memory (sect_addr, buf, sect_size))
518 {
519 xfree (buf);
520 return NULL;
521 }
522
523 if (p_arch_size)
524 *p_arch_size = arch_size;
525 if (p_sect_size)
526 *p_sect_size = sect_size;
527
528 return buf;
529}
530
531
532/* Return program interpreter string. */
533static gdb_byte *
534find_program_interpreter (void)
535{
536 gdb_byte *buf = NULL;
537
538 /* If we have an exec_bfd, use its section table. */
539 if (exec_bfd
540 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
541 {
542 struct bfd_section *interp_sect;
543
544 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
545 if (interp_sect != NULL)
546 {
547 CORE_ADDR sect_addr = bfd_section_vma (exec_bfd, interp_sect);
548 int sect_size = bfd_section_size (exec_bfd, interp_sect);
549
550 buf = xmalloc (sect_size);
551 bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size);
552 }
553 }
554
555 /* If we didn't find it, use the target auxillary vector. */
556 if (!buf)
557 buf = read_program_header (PT_INTERP, NULL, NULL);
558
559 return buf;
560}
561
562
3a40aaa0
UW
563/* Scan for DYNTAG in .dynamic section of ABFD. If DYNTAG is found 1 is
564 returned and the corresponding PTR is set. */
565
566static int
567scan_dyntag (int dyntag, bfd *abfd, CORE_ADDR *ptr)
568{
569 int arch_size, step, sect_size;
570 long dyn_tag;
571 CORE_ADDR dyn_ptr, dyn_addr;
65728c26 572 gdb_byte *bufend, *bufstart, *buf;
3a40aaa0
UW
573 Elf32_External_Dyn *x_dynp_32;
574 Elf64_External_Dyn *x_dynp_64;
575 struct bfd_section *sect;
576
577 if (abfd == NULL)
578 return 0;
0763ab81
PA
579
580 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
581 return 0;
582
3a40aaa0
UW
583 arch_size = bfd_get_arch_size (abfd);
584 if (arch_size == -1)
0763ab81 585 return 0;
3a40aaa0
UW
586
587 /* Find the start address of the .dynamic section. */
588 sect = bfd_get_section_by_name (abfd, ".dynamic");
589 if (sect == NULL)
590 return 0;
591 dyn_addr = bfd_section_vma (abfd, sect);
592
65728c26
DJ
593 /* Read in .dynamic from the BFD. We will get the actual value
594 from memory later. */
3a40aaa0 595 sect_size = bfd_section_size (abfd, sect);
65728c26
DJ
596 buf = bufstart = alloca (sect_size);
597 if (!bfd_get_section_contents (abfd, sect,
598 buf, 0, sect_size))
599 return 0;
3a40aaa0
UW
600
601 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
602 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
603 : sizeof (Elf64_External_Dyn);
604 for (bufend = buf + sect_size;
605 buf < bufend;
606 buf += step)
607 {
608 if (arch_size == 32)
609 {
610 x_dynp_32 = (Elf32_External_Dyn *) buf;
611 dyn_tag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
612 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
613 }
65728c26 614 else
3a40aaa0
UW
615 {
616 x_dynp_64 = (Elf64_External_Dyn *) buf;
617 dyn_tag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
618 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
619 }
620 if (dyn_tag == DT_NULL)
621 return 0;
622 if (dyn_tag == dyntag)
623 {
65728c26
DJ
624 /* If requested, try to read the runtime value of this .dynamic
625 entry. */
3a40aaa0 626 if (ptr)
65728c26 627 {
b6da22b0 628 struct type *ptr_type;
65728c26
DJ
629 gdb_byte ptr_buf[8];
630 CORE_ADDR ptr_addr;
631
b6da22b0 632 ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
65728c26
DJ
633 ptr_addr = dyn_addr + (buf - bufstart) + arch_size / 8;
634 if (target_read_memory (ptr_addr, ptr_buf, arch_size / 8) == 0)
b6da22b0 635 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
65728c26
DJ
636 *ptr = dyn_ptr;
637 }
638 return 1;
3a40aaa0
UW
639 }
640 }
641
642 return 0;
643}
644
97ec2c2f
UW
645/* Scan for DYNTAG in .dynamic section of the target's main executable,
646 found by consulting the OS auxillary vector. If DYNTAG is found 1 is
647 returned and the corresponding PTR is set. */
648
649static int
650scan_dyntag_auxv (int dyntag, CORE_ADDR *ptr)
651{
e17a4113 652 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
97ec2c2f
UW
653 int sect_size, arch_size, step;
654 long dyn_tag;
655 CORE_ADDR dyn_ptr;
656 gdb_byte *bufend, *bufstart, *buf;
657
658 /* Read in .dynamic section. */
659 buf = bufstart = read_program_header (PT_DYNAMIC, &sect_size, &arch_size);
660 if (!buf)
661 return 0;
662
663 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
664 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
665 : sizeof (Elf64_External_Dyn);
666 for (bufend = buf + sect_size;
667 buf < bufend;
668 buf += step)
669 {
670 if (arch_size == 32)
671 {
672 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
e17a4113
UW
673 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
674 4, byte_order);
675 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
676 4, byte_order);
97ec2c2f
UW
677 }
678 else
679 {
680 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
e17a4113
UW
681 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
682 8, byte_order);
683 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
684 8, byte_order);
97ec2c2f
UW
685 }
686 if (dyn_tag == DT_NULL)
687 break;
688
689 if (dyn_tag == dyntag)
690 {
691 if (ptr)
692 *ptr = dyn_ptr;
693
694 xfree (bufstart);
695 return 1;
696 }
697 }
698
699 xfree (bufstart);
700 return 0;
701}
702
3a40aaa0 703
13437d4b
KB
704/*
705
706 LOCAL FUNCTION
707
708 elf_locate_base -- locate the base address of dynamic linker structs
709 for SVR4 elf targets.
710
711 SYNOPSIS
712
713 CORE_ADDR elf_locate_base (void)
714
715 DESCRIPTION
716
717 For SVR4 elf targets the address of the dynamic linker's runtime
718 structure is contained within the dynamic info section in the
719 executable file. The dynamic section is also mapped into the
720 inferior address space. Because the runtime loader fills in the
721 real address before starting the inferior, we have to read in the
722 dynamic info section from the inferior address space.
723 If there are any errors while trying to find the address, we
724 silently return 0, otherwise the found address is returned.
725
726 */
727
728static CORE_ADDR
729elf_locate_base (void)
730{
3a40aaa0
UW
731 struct minimal_symbol *msymbol;
732 CORE_ADDR dyn_ptr;
13437d4b 733
65728c26
DJ
734 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
735 instead of DT_DEBUG, although they sometimes contain an unused
736 DT_DEBUG. */
97ec2c2f
UW
737 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr)
738 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr))
3a40aaa0 739 {
b6da22b0 740 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
3a40aaa0 741 gdb_byte *pbuf;
b6da22b0 742 int pbuf_size = TYPE_LENGTH (ptr_type);
3a40aaa0
UW
743 pbuf = alloca (pbuf_size);
744 /* DT_MIPS_RLD_MAP contains a pointer to the address
745 of the dynamic link structure. */
746 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
e499d0f1 747 return 0;
b6da22b0 748 return extract_typed_address (pbuf, ptr_type);
e499d0f1
DJ
749 }
750
65728c26 751 /* Find DT_DEBUG. */
97ec2c2f
UW
752 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr)
753 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr))
65728c26
DJ
754 return dyn_ptr;
755
3a40aaa0
UW
756 /* This may be a static executable. Look for the symbol
757 conventionally named _r_debug, as a last resort. */
758 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
759 if (msymbol != NULL)
760 return SYMBOL_VALUE_ADDRESS (msymbol);
13437d4b
KB
761
762 /* DT_DEBUG entry not found. */
763 return 0;
764}
765
13437d4b
KB
766/*
767
768 LOCAL FUNCTION
769
770 locate_base -- locate the base address of dynamic linker structs
771
772 SYNOPSIS
773
1a816a87 774 CORE_ADDR locate_base (struct svr4_info *)
13437d4b
KB
775
776 DESCRIPTION
777
778 For both the SunOS and SVR4 shared library implementations, if the
779 inferior executable has been linked dynamically, there is a single
780 address somewhere in the inferior's data space which is the key to
781 locating all of the dynamic linker's runtime structures. This
782 address is the value of the debug base symbol. The job of this
783 function is to find and return that address, or to return 0 if there
784 is no such address (the executable is statically linked for example).
785
786 For SunOS, the job is almost trivial, since the dynamic linker and
787 all of it's structures are statically linked to the executable at
788 link time. Thus the symbol for the address we are looking for has
789 already been added to the minimal symbol table for the executable's
790 objfile at the time the symbol file's symbols were read, and all we
791 have to do is look it up there. Note that we explicitly do NOT want
792 to find the copies in the shared library.
793
794 The SVR4 version is a bit more complicated because the address
795 is contained somewhere in the dynamic info section. We have to go
796 to a lot more work to discover the address of the debug base symbol.
797 Because of this complexity, we cache the value we find and return that
798 value on subsequent invocations. Note there is no copy in the
799 executable symbol tables.
800
801 */
802
803static CORE_ADDR
1a816a87 804locate_base (struct svr4_info *info)
13437d4b 805{
13437d4b
KB
806 /* Check to see if we have a currently valid address, and if so, avoid
807 doing all this work again and just return the cached address. If
808 we have no cached address, try to locate it in the dynamic info
d5a921c9
KB
809 section for ELF executables. There's no point in doing any of this
810 though if we don't have some link map offsets to work with. */
13437d4b 811
1a816a87 812 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
0763ab81 813 info->debug_base = elf_locate_base ();
1a816a87 814 return info->debug_base;
13437d4b
KB
815}
816
e4cd0d6a
MK
817/* Find the first element in the inferior's dynamic link map, and
818 return its address in the inferior.
13437d4b 819
e4cd0d6a
MK
820 FIXME: Perhaps we should validate the info somehow, perhaps by
821 checking r_version for a known version number, or r_state for
822 RT_CONSISTENT. */
13437d4b
KB
823
824static CORE_ADDR
1a816a87 825solib_svr4_r_map (struct svr4_info *info)
13437d4b 826{
4b188b9f 827 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 828 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
13437d4b 829
1a816a87
PA
830 return read_memory_typed_address (info->debug_base + lmo->r_map_offset,
831 ptr_type);
e4cd0d6a 832}
13437d4b 833
7cd25cfc
DJ
834/* Find r_brk from the inferior's debug base. */
835
836static CORE_ADDR
1a816a87 837solib_svr4_r_brk (struct svr4_info *info)
7cd25cfc
DJ
838{
839 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 840 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
7cd25cfc 841
1a816a87
PA
842 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
843 ptr_type);
7cd25cfc
DJ
844}
845
e4cd0d6a
MK
846/* Find the link map for the dynamic linker (if it is not in the
847 normal list of loaded shared objects). */
13437d4b 848
e4cd0d6a 849static CORE_ADDR
1a816a87 850solib_svr4_r_ldsomap (struct svr4_info *info)
e4cd0d6a
MK
851{
852 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 853 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
e17a4113 854 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
e4cd0d6a 855 ULONGEST version;
13437d4b 856
e4cd0d6a
MK
857 /* Check version, and return zero if `struct r_debug' doesn't have
858 the r_ldsomap member. */
1a816a87
PA
859 version
860 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
e17a4113 861 lmo->r_version_size, byte_order);
e4cd0d6a
MK
862 if (version < 2 || lmo->r_ldsomap_offset == -1)
863 return 0;
13437d4b 864
1a816a87 865 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
b6da22b0 866 ptr_type);
13437d4b
KB
867}
868
13437d4b
KB
869/*
870
871 LOCAL FUNCTION
872
873 open_symbol_file_object
874
875 SYNOPSIS
876
877 void open_symbol_file_object (void *from_tty)
878
879 DESCRIPTION
880
881 If no open symbol file, attempt to locate and open the main symbol
882 file. On SVR4 systems, this is the first link map entry. If its
883 name is here, we can open it. Useful when attaching to a process
884 without first loading its symbol file.
885
886 If FROM_TTYP dereferences to a non-zero integer, allow messages to
887 be printed. This parameter is a pointer rather than an int because
888 open_symbol_file_object() is called via catch_errors() and
889 catch_errors() requires a pointer argument. */
890
891static int
892open_symbol_file_object (void *from_ttyp)
893{
894 CORE_ADDR lm, l_name;
895 char *filename;
896 int errcode;
897 int from_tty = *(int *)from_ttyp;
4b188b9f 898 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0
UW
899 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
900 int l_name_size = TYPE_LENGTH (ptr_type);
cfaefc65 901 gdb_byte *l_name_buf = xmalloc (l_name_size);
b8c9b27d 902 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
6c95b8df 903 struct svr4_info *info = get_svr4_info ();
13437d4b
KB
904
905 if (symfile_objfile)
9e2f0ad4 906 if (!query (_("Attempt to reload symbols from process? ")))
13437d4b
KB
907 return 0;
908
7cd25cfc 909 /* Always locate the debug struct, in case it has moved. */
1a816a87
PA
910 info->debug_base = 0;
911 if (locate_base (info) == 0)
13437d4b
KB
912 return 0; /* failed somehow... */
913
914 /* First link map member should be the executable. */
1a816a87 915 lm = solib_svr4_r_map (info);
e4cd0d6a 916 if (lm == 0)
13437d4b
KB
917 return 0; /* failed somehow... */
918
919 /* Read address of name from target memory to GDB. */
cfaefc65 920 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
13437d4b 921
cfaefc65 922 /* Convert the address to host format. */
b6da22b0 923 l_name = extract_typed_address (l_name_buf, ptr_type);
13437d4b
KB
924
925 /* Free l_name_buf. */
926 do_cleanups (cleanups);
927
928 if (l_name == 0)
929 return 0; /* No filename. */
930
931 /* Now fetch the filename from target memory. */
932 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
ea5bf0a1 933 make_cleanup (xfree, filename);
13437d4b
KB
934
935 if (errcode)
936 {
8a3fe4f8 937 warning (_("failed to read exec filename from attached file: %s"),
13437d4b
KB
938 safe_strerror (errcode));
939 return 0;
940 }
941
13437d4b 942 /* Have a pathname: read the symbol file. */
1adeb98a 943 symbol_file_add_main (filename, from_tty);
13437d4b
KB
944
945 return 1;
946}
13437d4b 947
34439770
DJ
948/* If no shared library information is available from the dynamic
949 linker, build a fallback list from other sources. */
950
951static struct so_list *
952svr4_default_sos (void)
953{
6c95b8df 954 struct svr4_info *info = get_svr4_info ();
1a816a87 955
34439770
DJ
956 struct so_list *head = NULL;
957 struct so_list **link_ptr = &head;
958
1a816a87 959 if (info->debug_loader_offset_p)
34439770
DJ
960 {
961 struct so_list *new = XZALLOC (struct so_list);
962
963 new->lm_info = xmalloc (sizeof (struct lm_info));
964
965 /* Nothing will ever check the cached copy of the link
966 map if we set l_addr. */
1a816a87 967 new->lm_info->l_addr = info->debug_loader_offset;
93a57060 968 new->lm_info->lm_addr = 0;
34439770
DJ
969 new->lm_info->lm = NULL;
970
1a816a87
PA
971 strncpy (new->so_name, info->debug_loader_name,
972 SO_NAME_MAX_PATH_SIZE - 1);
34439770
DJ
973 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
974 strcpy (new->so_original_name, new->so_name);
975
976 *link_ptr = new;
977 link_ptr = &new->next;
978 }
979
980 return head;
981}
982
13437d4b
KB
983/* LOCAL FUNCTION
984
985 current_sos -- build a list of currently loaded shared objects
986
987 SYNOPSIS
988
989 struct so_list *current_sos ()
990
991 DESCRIPTION
992
993 Build a list of `struct so_list' objects describing the shared
994 objects currently loaded in the inferior. This list does not
995 include an entry for the main executable file.
996
997 Note that we only gather information directly available from the
998 inferior --- we don't examine any of the shared library files
999 themselves. The declaration of `struct so_list' says which fields
1000 we provide values for. */
1001
1002static struct so_list *
1003svr4_current_sos (void)
1004{
1005 CORE_ADDR lm;
1006 struct so_list *head = 0;
1007 struct so_list **link_ptr = &head;
e4cd0d6a 1008 CORE_ADDR ldsomap = 0;
1a816a87
PA
1009 struct svr4_info *info;
1010
6c95b8df 1011 info = get_svr4_info ();
13437d4b 1012
7cd25cfc 1013 /* Always locate the debug struct, in case it has moved. */
1a816a87
PA
1014 info->debug_base = 0;
1015 locate_base (info);
13437d4b 1016
7cd25cfc
DJ
1017 /* If we can't find the dynamic linker's base structure, this
1018 must not be a dynamically linked executable. Hmm. */
1a816a87 1019 if (! info->debug_base)
7cd25cfc 1020 return svr4_default_sos ();
13437d4b
KB
1021
1022 /* Walk the inferior's link map list, and build our list of
1023 `struct so_list' nodes. */
1a816a87 1024 lm = solib_svr4_r_map (info);
34439770 1025
13437d4b
KB
1026 while (lm)
1027 {
4b188b9f 1028 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f4456994 1029 struct so_list *new = XZALLOC (struct so_list);
b8c9b27d 1030 struct cleanup *old_chain = make_cleanup (xfree, new);
13437d4b 1031
13437d4b 1032 new->lm_info = xmalloc (sizeof (struct lm_info));
b8c9b27d 1033 make_cleanup (xfree, new->lm_info);
13437d4b 1034
831004b7 1035 new->lm_info->l_addr = (CORE_ADDR)-1;
93a57060 1036 new->lm_info->lm_addr = lm;
f4456994 1037 new->lm_info->lm = xzalloc (lmo->link_map_size);
b8c9b27d 1038 make_cleanup (xfree, new->lm_info->lm);
13437d4b
KB
1039
1040 read_memory (lm, new->lm_info->lm, lmo->link_map_size);
1041
1042 lm = LM_NEXT (new);
1043
1044 /* For SVR4 versions, the first entry in the link map is for the
1045 inferior executable, so we must ignore it. For some versions of
1046 SVR4, it has no name. For others (Solaris 2.3 for example), it
1047 does have a name, so we can no longer use a missing name to
1048 decide when to ignore it. */
e4cd0d6a 1049 if (IGNORE_FIRST_LINK_MAP_ENTRY (new) && ldsomap == 0)
93a57060 1050 {
1a816a87 1051 info->main_lm_addr = new->lm_info->lm_addr;
93a57060
DJ
1052 free_so (new);
1053 }
13437d4b
KB
1054 else
1055 {
1056 int errcode;
1057 char *buffer;
1058
1059 /* Extract this shared object's name. */
1060 target_read_string (LM_NAME (new), &buffer,
1061 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1062 if (errcode != 0)
8a3fe4f8
AC
1063 warning (_("Can't read pathname for load map: %s."),
1064 safe_strerror (errcode));
13437d4b
KB
1065 else
1066 {
1067 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
1068 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
13437d4b
KB
1069 strcpy (new->so_original_name, new->so_name);
1070 }
ea5bf0a1 1071 xfree (buffer);
13437d4b
KB
1072
1073 /* If this entry has no name, or its name matches the name
1074 for the main executable, don't include it in the list. */
1075 if (! new->so_name[0]
1076 || match_main (new->so_name))
1077 free_so (new);
1078 else
1079 {
1080 new->next = 0;
1081 *link_ptr = new;
1082 link_ptr = &new->next;
1083 }
1084 }
1085
e4cd0d6a
MK
1086 /* On Solaris, the dynamic linker is not in the normal list of
1087 shared objects, so make sure we pick it up too. Having
1088 symbol information for the dynamic linker is quite crucial
1089 for skipping dynamic linker resolver code. */
1090 if (lm == 0 && ldsomap == 0)
1a816a87 1091 lm = ldsomap = solib_svr4_r_ldsomap (info);
e4cd0d6a 1092
13437d4b
KB
1093 discard_cleanups (old_chain);
1094 }
1095
34439770
DJ
1096 if (head == NULL)
1097 return svr4_default_sos ();
1098
13437d4b
KB
1099 return head;
1100}
1101
93a57060 1102/* Get the address of the link_map for a given OBJFILE. */
bc4a16ae
EZ
1103
1104CORE_ADDR
1105svr4_fetch_objfile_link_map (struct objfile *objfile)
1106{
93a57060 1107 struct so_list *so;
6c95b8df 1108 struct svr4_info *info = get_svr4_info ();
bc4a16ae 1109
93a57060 1110 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1a816a87 1111 if (info->main_lm_addr == 0)
93a57060 1112 solib_add (NULL, 0, &current_target, auto_solib_add);
bc4a16ae 1113
93a57060
DJ
1114 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1115 if (objfile == symfile_objfile)
1a816a87 1116 return info->main_lm_addr;
93a57060
DJ
1117
1118 /* The other link map addresses may be found by examining the list
1119 of shared libraries. */
1120 for (so = master_so_list (); so; so = so->next)
1121 if (so->objfile == objfile)
1122 return so->lm_info->lm_addr;
1123
1124 /* Not found! */
bc4a16ae
EZ
1125 return 0;
1126}
13437d4b
KB
1127
1128/* On some systems, the only way to recognize the link map entry for
1129 the main executable file is by looking at its name. Return
1130 non-zero iff SONAME matches one of the known main executable names. */
1131
1132static int
1133match_main (char *soname)
1134{
1135 char **mainp;
1136
1137 for (mainp = main_name_list; *mainp != NULL; mainp++)
1138 {
1139 if (strcmp (soname, *mainp) == 0)
1140 return (1);
1141 }
1142
1143 return (0);
1144}
1145
13437d4b
KB
1146/* Return 1 if PC lies in the dynamic symbol resolution code of the
1147 SVR4 run time loader. */
13437d4b 1148
7d522c90 1149int
d7fa2ae2 1150svr4_in_dynsym_resolve_code (CORE_ADDR pc)
13437d4b 1151{
6c95b8df
PA
1152 struct svr4_info *info = get_svr4_info ();
1153
1154 return ((pc >= info->interp_text_sect_low
1155 && pc < info->interp_text_sect_high)
1156 || (pc >= info->interp_plt_sect_low
1157 && pc < info->interp_plt_sect_high)
13437d4b
KB
1158 || in_plt_section (pc, NULL));
1159}
13437d4b 1160
2f4950cd
AC
1161/* Given an executable's ABFD and target, compute the entry-point
1162 address. */
1163
1164static CORE_ADDR
1165exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1166{
1167 /* KevinB wrote ... for most targets, the address returned by
1168 bfd_get_start_address() is the entry point for the start
1169 function. But, for some targets, bfd_get_start_address() returns
1170 the address of a function descriptor from which the entry point
1171 address may be extracted. This address is extracted by
1172 gdbarch_convert_from_func_ptr_addr(). The method
1173 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1174 function for targets which don't use function descriptors. */
1cf3db46 1175 return gdbarch_convert_from_func_ptr_addr (target_gdbarch,
2f4950cd
AC
1176 bfd_get_start_address (abfd),
1177 targ);
1178}
13437d4b
KB
1179
1180/*
1181
1182 LOCAL FUNCTION
1183
1184 enable_break -- arrange for dynamic linker to hit breakpoint
1185
1186 SYNOPSIS
1187
1188 int enable_break (void)
1189
1190 DESCRIPTION
1191
1192 Both the SunOS and the SVR4 dynamic linkers have, as part of their
1193 debugger interface, support for arranging for the inferior to hit
1194 a breakpoint after mapping in the shared libraries. This function
1195 enables that breakpoint.
1196
1197 For SunOS, there is a special flag location (in_debugger) which we
1198 set to 1. When the dynamic linker sees this flag set, it will set
1199 a breakpoint at a location known only to itself, after saving the
1200 original contents of that place and the breakpoint address itself,
1201 in it's own internal structures. When we resume the inferior, it
1202 will eventually take a SIGTRAP when it runs into the breakpoint.
1203 We handle this (in a different place) by restoring the contents of
1204 the breakpointed location (which is only known after it stops),
1205 chasing around to locate the shared libraries that have been
1206 loaded, then resuming.
1207
1208 For SVR4, the debugger interface structure contains a member (r_brk)
1209 which is statically initialized at the time the shared library is
1210 built, to the offset of a function (_r_debug_state) which is guaran-
1211 teed to be called once before mapping in a library, and again when
1212 the mapping is complete. At the time we are examining this member,
1213 it contains only the unrelocated offset of the function, so we have
1214 to do our own relocation. Later, when the dynamic linker actually
1215 runs, it relocates r_brk to be the actual address of _r_debug_state().
1216
1217 The debugger interface structure also contains an enumeration which
1218 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
1219 depending upon whether or not the library is being mapped or unmapped,
1220 and then set to RT_CONSISTENT after the library is mapped/unmapped.
1221 */
1222
1223static int
1a816a87 1224enable_break (struct svr4_info *info)
13437d4b 1225{
13437d4b
KB
1226 struct minimal_symbol *msymbol;
1227 char **bkpt_namep;
1228 asection *interp_sect;
97ec2c2f 1229 gdb_byte *interp_name;
7cd25cfc 1230 CORE_ADDR sym_addr;
13437d4b
KB
1231
1232 /* First, remove all the solib event breakpoints. Their addresses
1233 may have changed since the last time we ran the program. */
1234 remove_solib_event_breakpoints ();
1235
6c95b8df
PA
1236 info->interp_text_sect_low = info->interp_text_sect_high = 0;
1237 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
13437d4b 1238
7cd25cfc
DJ
1239 /* If we already have a shared library list in the target, and
1240 r_debug contains r_brk, set the breakpoint there - this should
1241 mean r_brk has already been relocated. Assume the dynamic linker
1242 is the object containing r_brk. */
1243
1244 solib_add (NULL, 0, &current_target, auto_solib_add);
1245 sym_addr = 0;
1a816a87
PA
1246 if (info->debug_base && solib_svr4_r_map (info) != 0)
1247 sym_addr = solib_svr4_r_brk (info);
7cd25cfc
DJ
1248
1249 if (sym_addr != 0)
1250 {
1251 struct obj_section *os;
1252
b36ec657 1253 sym_addr = gdbarch_addr_bits_remove
1cf3db46 1254 (target_gdbarch, gdbarch_convert_from_func_ptr_addr (target_gdbarch,
b36ec657
DJ
1255 sym_addr,
1256 &current_target));
1257
7cd25cfc
DJ
1258 os = find_pc_section (sym_addr);
1259 if (os != NULL)
1260 {
1261 /* Record the relocated start and end address of the dynamic linker
1262 text and plt section for svr4_in_dynsym_resolve_code. */
1263 bfd *tmp_bfd;
1264 CORE_ADDR load_addr;
1265
1266 tmp_bfd = os->objfile->obfd;
1267 load_addr = ANOFFSET (os->objfile->section_offsets,
1268 os->objfile->sect_index_text);
1269
1270 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1271 if (interp_sect)
1272 {
6c95b8df 1273 info->interp_text_sect_low =
7cd25cfc 1274 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1275 info->interp_text_sect_high =
1276 info->interp_text_sect_low
1277 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
1278 }
1279 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1280 if (interp_sect)
1281 {
6c95b8df 1282 info->interp_plt_sect_low =
7cd25cfc 1283 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1284 info->interp_plt_sect_high =
1285 info->interp_plt_sect_low
1286 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
1287 }
1288
a6d9a66e 1289 create_solib_event_breakpoint (target_gdbarch, sym_addr);
7cd25cfc
DJ
1290 return 1;
1291 }
1292 }
1293
97ec2c2f 1294 /* Find the program interpreter; if not found, warn the user and drop
13437d4b 1295 into the old breakpoint at symbol code. */
97ec2c2f
UW
1296 interp_name = find_program_interpreter ();
1297 if (interp_name)
13437d4b 1298 {
8ad2fcde
KB
1299 CORE_ADDR load_addr = 0;
1300 int load_addr_found = 0;
2ec9a4f8 1301 int loader_found_in_list = 0;
f8766ec1 1302 struct so_list *so;
e4f7b8c8 1303 bfd *tmp_bfd = NULL;
2f4950cd 1304 struct target_ops *tmp_bfd_target;
f1838a98 1305 volatile struct gdb_exception ex;
13437d4b 1306
7cd25cfc 1307 sym_addr = 0;
13437d4b
KB
1308
1309 /* Now we need to figure out where the dynamic linker was
1310 loaded so that we can load its symbols and place a breakpoint
1311 in the dynamic linker itself.
1312
1313 This address is stored on the stack. However, I've been unable
1314 to find any magic formula to find it for Solaris (appears to
1315 be trivial on GNU/Linux). Therefore, we have to try an alternate
1316 mechanism to find the dynamic linker's base address. */
e4f7b8c8 1317
f1838a98
UW
1318 TRY_CATCH (ex, RETURN_MASK_ALL)
1319 {
97ec2c2f 1320 tmp_bfd = solib_bfd_open (interp_name);
f1838a98 1321 }
13437d4b
KB
1322 if (tmp_bfd == NULL)
1323 goto bkpt_at_symbol;
1324
2f4950cd
AC
1325 /* Now convert the TMP_BFD into a target. That way target, as
1326 well as BFD operations can be used. Note that closing the
1327 target will also close the underlying bfd. */
1328 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
1329
f8766ec1
KB
1330 /* On a running target, we can get the dynamic linker's base
1331 address from the shared library table. */
f8766ec1
KB
1332 so = master_so_list ();
1333 while (so)
8ad2fcde 1334 {
97ec2c2f 1335 if (svr4_same_1 (interp_name, so->so_original_name))
8ad2fcde
KB
1336 {
1337 load_addr_found = 1;
2ec9a4f8 1338 loader_found_in_list = 1;
cc10cae3 1339 load_addr = LM_ADDR_CHECK (so, tmp_bfd);
8ad2fcde
KB
1340 break;
1341 }
f8766ec1 1342 so = so->next;
8ad2fcde
KB
1343 }
1344
8d4e36ba
JB
1345 /* If we were not able to find the base address of the loader
1346 from our so_list, then try using the AT_BASE auxilliary entry. */
1347 if (!load_addr_found)
1348 if (target_auxv_search (&current_target, AT_BASE, &load_addr) > 0)
1349 load_addr_found = 1;
1350
8ad2fcde
KB
1351 /* Otherwise we find the dynamic linker's base address by examining
1352 the current pc (which should point at the entry point for the
8d4e36ba
JB
1353 dynamic linker) and subtracting the offset of the entry point.
1354
1355 This is more fragile than the previous approaches, but is a good
1356 fallback method because it has actually been working well in
1357 most cases. */
8ad2fcde 1358 if (!load_addr_found)
fb14de7b 1359 {
c2250ad1
UW
1360 struct regcache *regcache
1361 = get_thread_arch_regcache (inferior_ptid, target_gdbarch);
fb14de7b
UW
1362 load_addr = (regcache_read_pc (regcache)
1363 - exec_entry_point (tmp_bfd, tmp_bfd_target));
1364 }
2ec9a4f8
DJ
1365
1366 if (!loader_found_in_list)
34439770 1367 {
1a816a87
PA
1368 info->debug_loader_name = xstrdup (interp_name);
1369 info->debug_loader_offset_p = 1;
1370 info->debug_loader_offset = load_addr;
2bbe3cc1 1371 solib_add (NULL, 0, &current_target, auto_solib_add);
34439770 1372 }
13437d4b
KB
1373
1374 /* Record the relocated start and end address of the dynamic linker
d7fa2ae2 1375 text and plt section for svr4_in_dynsym_resolve_code. */
13437d4b
KB
1376 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1377 if (interp_sect)
1378 {
6c95b8df 1379 info->interp_text_sect_low =
13437d4b 1380 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1381 info->interp_text_sect_high =
1382 info->interp_text_sect_low
1383 + bfd_section_size (tmp_bfd, interp_sect);
13437d4b
KB
1384 }
1385 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1386 if (interp_sect)
1387 {
6c95b8df 1388 info->interp_plt_sect_low =
13437d4b 1389 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1390 info->interp_plt_sect_high =
1391 info->interp_plt_sect_low
1392 + bfd_section_size (tmp_bfd, interp_sect);
13437d4b
KB
1393 }
1394
1395 /* Now try to set a breakpoint in the dynamic linker. */
1396 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1397 {
2bbe3cc1 1398 sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep);
13437d4b
KB
1399 if (sym_addr != 0)
1400 break;
1401 }
1402
2bbe3cc1
DJ
1403 if (sym_addr != 0)
1404 /* Convert 'sym_addr' from a function pointer to an address.
1405 Because we pass tmp_bfd_target instead of the current
1406 target, this will always produce an unrelocated value. */
1cf3db46 1407 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
2bbe3cc1
DJ
1408 sym_addr,
1409 tmp_bfd_target);
1410
2f4950cd
AC
1411 /* We're done with both the temporary bfd and target. Remember,
1412 closing the target closes the underlying bfd. */
1413 target_close (tmp_bfd_target, 0);
13437d4b
KB
1414
1415 if (sym_addr != 0)
1416 {
a6d9a66e 1417 create_solib_event_breakpoint (target_gdbarch, load_addr + sym_addr);
97ec2c2f 1418 xfree (interp_name);
13437d4b
KB
1419 return 1;
1420 }
1421
1422 /* For whatever reason we couldn't set a breakpoint in the dynamic
1423 linker. Warn and drop into the old code. */
1424 bkpt_at_symbol:
97ec2c2f 1425 xfree (interp_name);
82d03102
PG
1426 warning (_("Unable to find dynamic linker breakpoint function.\n"
1427 "GDB will be unable to debug shared library initializers\n"
1428 "and track explicitly loaded dynamic code."));
13437d4b 1429 }
13437d4b 1430
e499d0f1
DJ
1431 /* Scan through the lists of symbols, trying to look up the symbol and
1432 set a breakpoint there. Terminate loop when we/if we succeed. */
1433
1434 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1435 {
1436 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1437 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1438 {
a6d9a66e
UW
1439 create_solib_event_breakpoint (target_gdbarch,
1440 SYMBOL_VALUE_ADDRESS (msymbol));
e499d0f1
DJ
1441 return 1;
1442 }
1443 }
13437d4b 1444
13437d4b
KB
1445 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
1446 {
1447 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1448 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1449 {
a6d9a66e
UW
1450 create_solib_event_breakpoint (target_gdbarch,
1451 SYMBOL_VALUE_ADDRESS (msymbol));
13437d4b
KB
1452 return 1;
1453 }
1454 }
542c95c2 1455 return 0;
13437d4b
KB
1456}
1457
1458/*
1459
1460 LOCAL FUNCTION
1461
1462 special_symbol_handling -- additional shared library symbol handling
1463
1464 SYNOPSIS
1465
1466 void special_symbol_handling ()
1467
1468 DESCRIPTION
1469
1470 Once the symbols from a shared object have been loaded in the usual
1471 way, we are called to do any system specific symbol handling that
1472 is needed.
1473
ab31aa69 1474 For SunOS4, this consisted of grunging around in the dynamic
13437d4b
KB
1475 linkers structures to find symbol definitions for "common" symbols
1476 and adding them to the minimal symbol table for the runtime common
1477 objfile.
1478
ab31aa69
KB
1479 However, for SVR4, there's nothing to do.
1480
13437d4b
KB
1481 */
1482
1483static void
1484svr4_special_symbol_handling (void)
1485{
13437d4b
KB
1486}
1487
e2a44558
KB
1488/* Relocate the main executable. This function should be called upon
1489 stopping the inferior process at the entry point to the program.
1490 The entry point from BFD is compared to the PC and if they are
1491 different, the main executable is relocated by the proper amount.
1492
1493 As written it will only attempt to relocate executables which
1494 lack interpreter sections. It seems likely that only dynamic
1495 linker executables will get relocated, though it should work
1496 properly for a position-independent static executable as well. */
1497
1498static void
1499svr4_relocate_main_executable (void)
1500{
1501 asection *interp_sect;
c2250ad1
UW
1502 struct regcache *regcache
1503 = get_thread_arch_regcache (inferior_ptid, target_gdbarch);
fb14de7b 1504 CORE_ADDR pc = regcache_read_pc (regcache);
e2a44558
KB
1505
1506 /* Decide if the objfile needs to be relocated. As indicated above,
1507 we will only be here when execution is stopped at the beginning
1508 of the program. Relocation is necessary if the address at which
1509 we are presently stopped differs from the start address stored in
1510 the executable AND there's no interpreter section. The condition
1511 regarding the interpreter section is very important because if
1512 there *is* an interpreter section, execution will begin there
1513 instead. When there is an interpreter section, the start address
1514 is (presumably) used by the interpreter at some point to start
1515 execution of the program.
1516
1517 If there is an interpreter, it is normal for it to be set to an
1518 arbitrary address at the outset. The job of finding it is
1519 handled in enable_break().
1520
1521 So, to summarize, relocations are necessary when there is no
1522 interpreter section and the start address obtained from the
1523 executable is different from the address at which GDB is
1524 currently stopped.
1525
1526 [ The astute reader will note that we also test to make sure that
1527 the executable in question has the DYNAMIC flag set. It is my
1528 opinion that this test is unnecessary (undesirable even). It
1529 was added to avoid inadvertent relocation of an executable
1530 whose e_type member in the ELF header is not ET_DYN. There may
1531 be a time in the future when it is desirable to do relocations
1532 on other types of files as well in which case this condition
1533 should either be removed or modified to accomodate the new file
1534 type. (E.g, an ET_EXEC executable which has been built to be
1535 position-independent could safely be relocated by the OS if
1536 desired. It is true that this violates the ABI, but the ABI
1537 has been known to be bent from time to time.) - Kevin, Nov 2000. ]
1538 */
1539
1540 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
1541 if (interp_sect == NULL
1542 && (bfd_get_file_flags (exec_bfd) & DYNAMIC) != 0
2f4950cd 1543 && (exec_entry_point (exec_bfd, &exec_ops) != pc))
e2a44558
KB
1544 {
1545 struct cleanup *old_chain;
1546 struct section_offsets *new_offsets;
1547 int i, changed;
1548 CORE_ADDR displacement;
1549
1550 /* It is necessary to relocate the objfile. The amount to
1551 relocate by is simply the address at which we are stopped
1552 minus the starting address from the executable.
1553
1554 We relocate all of the sections by the same amount. This
1555 behavior is mandated by recent editions of the System V ABI.
1556 According to the System V Application Binary Interface,
1557 Edition 4.1, page 5-5:
1558
1559 ... Though the system chooses virtual addresses for
1560 individual processes, it maintains the segments' relative
1561 positions. Because position-independent code uses relative
1562 addressesing between segments, the difference between
1563 virtual addresses in memory must match the difference
1564 between virtual addresses in the file. The difference
1565 between the virtual address of any segment in memory and
1566 the corresponding virtual address in the file is thus a
1567 single constant value for any one executable or shared
1568 object in a given process. This difference is the base
1569 address. One use of the base address is to relocate the
1570 memory image of the program during dynamic linking.
1571
1572 The same language also appears in Edition 4.0 of the System V
1573 ABI and is left unspecified in some of the earlier editions. */
1574
2f4950cd 1575 displacement = pc - exec_entry_point (exec_bfd, &exec_ops);
e2a44558
KB
1576 changed = 0;
1577
13fc0c2f
KB
1578 new_offsets = xcalloc (symfile_objfile->num_sections,
1579 sizeof (struct section_offsets));
b8c9b27d 1580 old_chain = make_cleanup (xfree, new_offsets);
e2a44558
KB
1581
1582 for (i = 0; i < symfile_objfile->num_sections; i++)
1583 {
1584 if (displacement != ANOFFSET (symfile_objfile->section_offsets, i))
1585 changed = 1;
1586 new_offsets->offsets[i] = displacement;
1587 }
1588
1589 if (changed)
1590 objfile_relocate (symfile_objfile, new_offsets);
1591
1592 do_cleanups (old_chain);
1593 }
1594}
1595
13437d4b
KB
1596/*
1597
1598 GLOBAL FUNCTION
1599
1600 svr4_solib_create_inferior_hook -- shared library startup support
1601
1602 SYNOPSIS
1603
7095b863 1604 void svr4_solib_create_inferior_hook ()
13437d4b
KB
1605
1606 DESCRIPTION
1607
1608 When gdb starts up the inferior, it nurses it along (through the
1609 shell) until it is ready to execute it's first instruction. At this
1610 point, this function gets called via expansion of the macro
1611 SOLIB_CREATE_INFERIOR_HOOK.
1612
1613 For SunOS executables, this first instruction is typically the
1614 one at "_start", or a similar text label, regardless of whether
1615 the executable is statically or dynamically linked. The runtime
1616 startup code takes care of dynamically linking in any shared
1617 libraries, once gdb allows the inferior to continue.
1618
1619 For SVR4 executables, this first instruction is either the first
1620 instruction in the dynamic linker (for dynamically linked
1621 executables) or the instruction at "start" for statically linked
1622 executables. For dynamically linked executables, the system
1623 first exec's /lib/libc.so.N, which contains the dynamic linker,
1624 and starts it running. The dynamic linker maps in any needed
1625 shared libraries, maps in the actual user executable, and then
1626 jumps to "start" in the user executable.
1627
1628 For both SunOS shared libraries, and SVR4 shared libraries, we
1629 can arrange to cooperate with the dynamic linker to discover the
1630 names of shared libraries that are dynamically linked, and the
1631 base addresses to which they are linked.
1632
1633 This function is responsible for discovering those names and
1634 addresses, and saving sufficient information about them to allow
1635 their symbols to be read at a later time.
1636
1637 FIXME
1638
1639 Between enable_break() and disable_break(), this code does not
1640 properly handle hitting breakpoints which the user might have
1641 set in the startup code or in the dynamic linker itself. Proper
1642 handling will probably have to wait until the implementation is
1643 changed to use the "breakpoint handler function" method.
1644
1645 Also, what if child has exit()ed? Must exit loop somehow.
1646 */
1647
e2a44558 1648static void
13437d4b
KB
1649svr4_solib_create_inferior_hook (void)
1650{
d6b48e9c 1651 struct inferior *inf;
2020b7ab 1652 struct thread_info *tp;
1a816a87
PA
1653 struct svr4_info *info;
1654
6c95b8df 1655 info = get_svr4_info ();
2020b7ab 1656
e2a44558
KB
1657 /* Relocate the main executable if necessary. */
1658 svr4_relocate_main_executable ();
1659
d5a921c9 1660 if (!svr4_have_link_map_offsets ())
513f5903 1661 return;
d5a921c9 1662
1a816a87 1663 if (!enable_break (info))
542c95c2 1664 return;
13437d4b 1665
ab31aa69
KB
1666#if defined(_SCO_DS)
1667 /* SCO needs the loop below, other systems should be using the
13437d4b
KB
1668 special shared library breakpoints and the shared library breakpoint
1669 service routine.
1670
1671 Now run the target. It will eventually hit the breakpoint, at
1672 which point all of the libraries will have been mapped in and we
1673 can go groveling around in the dynamic linker structures to find
1674 out what we need to know about them. */
1675
d6b48e9c 1676 inf = current_inferior ();
2020b7ab
PA
1677 tp = inferior_thread ();
1678
13437d4b 1679 clear_proceed_status ();
d6b48e9c 1680 inf->stop_soon = STOP_QUIETLY;
2020b7ab 1681 tp->stop_signal = TARGET_SIGNAL_0;
13437d4b
KB
1682 do
1683 {
2020b7ab 1684 target_resume (pid_to_ptid (-1), 0, tp->stop_signal);
ae123ec6 1685 wait_for_inferior (0);
13437d4b 1686 }
2020b7ab 1687 while (tp->stop_signal != TARGET_SIGNAL_TRAP);
d6b48e9c 1688 inf->stop_soon = NO_STOP_QUIETLY;
ab31aa69 1689#endif /* defined(_SCO_DS) */
13437d4b
KB
1690}
1691
1692static void
1693svr4_clear_solib (void)
1694{
6c95b8df
PA
1695 struct svr4_info *info;
1696
1697 info = get_svr4_info ();
1698 info->debug_base = 0;
1699 info->debug_loader_offset_p = 0;
1700 info->debug_loader_offset = 0;
1701 xfree (info->debug_loader_name);
1702 info->debug_loader_name = NULL;
13437d4b
KB
1703}
1704
1705static void
1706svr4_free_so (struct so_list *so)
1707{
b8c9b27d
KB
1708 xfree (so->lm_info->lm);
1709 xfree (so->lm_info);
13437d4b
KB
1710}
1711
6bb7be43
JB
1712
1713/* Clear any bits of ADDR that wouldn't fit in a target-format
1714 data pointer. "Data pointer" here refers to whatever sort of
1715 address the dynamic linker uses to manage its sections. At the
1716 moment, we don't support shared libraries on any processors where
1717 code and data pointers are different sizes.
1718
1719 This isn't really the right solution. What we really need here is
1720 a way to do arithmetic on CORE_ADDR values that respects the
1721 natural pointer/address correspondence. (For example, on the MIPS,
1722 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
1723 sign-extend the value. There, simply truncating the bits above
819844ad 1724 gdbarch_ptr_bit, as we do below, is no good.) This should probably
6bb7be43
JB
1725 be a new gdbarch method or something. */
1726static CORE_ADDR
1727svr4_truncate_ptr (CORE_ADDR addr)
1728{
1cf3db46 1729 if (gdbarch_ptr_bit (target_gdbarch) == sizeof (CORE_ADDR) * 8)
6bb7be43
JB
1730 /* We don't need to truncate anything, and the bit twiddling below
1731 will fail due to overflow problems. */
1732 return addr;
1733 else
1cf3db46 1734 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch)) - 1);
6bb7be43
JB
1735}
1736
1737
749499cb
KB
1738static void
1739svr4_relocate_section_addresses (struct so_list *so,
0542c86d 1740 struct target_section *sec)
749499cb 1741{
cc10cae3
AO
1742 sec->addr = svr4_truncate_ptr (sec->addr + LM_ADDR_CHECK (so,
1743 sec->bfd));
1744 sec->endaddr = svr4_truncate_ptr (sec->endaddr + LM_ADDR_CHECK (so,
1745 sec->bfd));
749499cb 1746}
4b188b9f 1747\f
749499cb 1748
4b188b9f 1749/* Architecture-specific operations. */
6bb7be43 1750
4b188b9f
MK
1751/* Per-architecture data key. */
1752static struct gdbarch_data *solib_svr4_data;
e5e2b9ff 1753
4b188b9f 1754struct solib_svr4_ops
e5e2b9ff 1755{
4b188b9f
MK
1756 /* Return a description of the layout of `struct link_map'. */
1757 struct link_map_offsets *(*fetch_link_map_offsets)(void);
1758};
e5e2b9ff 1759
4b188b9f 1760/* Return a default for the architecture-specific operations. */
e5e2b9ff 1761
4b188b9f
MK
1762static void *
1763solib_svr4_init (struct obstack *obstack)
e5e2b9ff 1764{
4b188b9f 1765 struct solib_svr4_ops *ops;
e5e2b9ff 1766
4b188b9f 1767 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
8d005789 1768 ops->fetch_link_map_offsets = NULL;
4b188b9f 1769 return ops;
e5e2b9ff
KB
1770}
1771
4b188b9f 1772/* Set the architecture-specific `struct link_map_offsets' fetcher for
7e3cb44c 1773 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
1c4dcb57 1774
21479ded 1775void
e5e2b9ff
KB
1776set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
1777 struct link_map_offsets *(*flmo) (void))
21479ded 1778{
4b188b9f
MK
1779 struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data);
1780
1781 ops->fetch_link_map_offsets = flmo;
7e3cb44c
UW
1782
1783 set_solib_ops (gdbarch, &svr4_so_ops);
21479ded
KB
1784}
1785
4b188b9f
MK
1786/* Fetch a link_map_offsets structure using the architecture-specific
1787 `struct link_map_offsets' fetcher. */
1c4dcb57 1788
4b188b9f
MK
1789static struct link_map_offsets *
1790svr4_fetch_link_map_offsets (void)
21479ded 1791{
1cf3db46 1792 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
4b188b9f
MK
1793
1794 gdb_assert (ops->fetch_link_map_offsets);
1795 return ops->fetch_link_map_offsets ();
21479ded
KB
1796}
1797
4b188b9f
MK
1798/* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
1799
1800static int
1801svr4_have_link_map_offsets (void)
1802{
1cf3db46 1803 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
4b188b9f
MK
1804 return (ops->fetch_link_map_offsets != NULL);
1805}
1806\f
1807
e4bbbda8
MK
1808/* Most OS'es that have SVR4-style ELF dynamic libraries define a
1809 `struct r_debug' and a `struct link_map' that are binary compatible
1810 with the origional SVR4 implementation. */
1811
1812/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
1813 for an ILP32 SVR4 system. */
1814
1815struct link_map_offsets *
1816svr4_ilp32_fetch_link_map_offsets (void)
1817{
1818 static struct link_map_offsets lmo;
1819 static struct link_map_offsets *lmp = NULL;
1820
1821 if (lmp == NULL)
1822 {
1823 lmp = &lmo;
1824
e4cd0d6a
MK
1825 lmo.r_version_offset = 0;
1826 lmo.r_version_size = 4;
e4bbbda8 1827 lmo.r_map_offset = 4;
7cd25cfc 1828 lmo.r_brk_offset = 8;
e4cd0d6a 1829 lmo.r_ldsomap_offset = 20;
e4bbbda8
MK
1830
1831 /* Everything we need is in the first 20 bytes. */
1832 lmo.link_map_size = 20;
1833 lmo.l_addr_offset = 0;
e4bbbda8 1834 lmo.l_name_offset = 4;
cc10cae3 1835 lmo.l_ld_offset = 8;
e4bbbda8 1836 lmo.l_next_offset = 12;
e4bbbda8 1837 lmo.l_prev_offset = 16;
e4bbbda8
MK
1838 }
1839
1840 return lmp;
1841}
1842
1843/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
1844 for an LP64 SVR4 system. */
1845
1846struct link_map_offsets *
1847svr4_lp64_fetch_link_map_offsets (void)
1848{
1849 static struct link_map_offsets lmo;
1850 static struct link_map_offsets *lmp = NULL;
1851
1852 if (lmp == NULL)
1853 {
1854 lmp = &lmo;
1855
e4cd0d6a
MK
1856 lmo.r_version_offset = 0;
1857 lmo.r_version_size = 4;
e4bbbda8 1858 lmo.r_map_offset = 8;
7cd25cfc 1859 lmo.r_brk_offset = 16;
e4cd0d6a 1860 lmo.r_ldsomap_offset = 40;
e4bbbda8
MK
1861
1862 /* Everything we need is in the first 40 bytes. */
1863 lmo.link_map_size = 40;
1864 lmo.l_addr_offset = 0;
e4bbbda8 1865 lmo.l_name_offset = 8;
cc10cae3 1866 lmo.l_ld_offset = 16;
e4bbbda8 1867 lmo.l_next_offset = 24;
e4bbbda8 1868 lmo.l_prev_offset = 32;
e4bbbda8
MK
1869 }
1870
1871 return lmp;
1872}
1873\f
1874
7d522c90 1875struct target_so_ops svr4_so_ops;
13437d4b 1876
3a40aaa0
UW
1877/* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
1878 different rule for symbol lookup. The lookup begins here in the DSO, not in
1879 the main executable. */
1880
1881static struct symbol *
1882elf_lookup_lib_symbol (const struct objfile *objfile,
1883 const char *name,
1884 const char *linkage_name,
21b556f4 1885 const domain_enum domain)
3a40aaa0
UW
1886{
1887 if (objfile->obfd == NULL
1888 || scan_dyntag (DT_SYMBOLIC, objfile->obfd, NULL) != 1)
1889 return NULL;
1890
65728c26 1891 return lookup_global_symbol_from_objfile
21b556f4 1892 (objfile, name, linkage_name, domain);
3a40aaa0
UW
1893}
1894
a78f21af
AC
1895extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
1896
13437d4b
KB
1897void
1898_initialize_svr4_solib (void)
1899{
4b188b9f 1900 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
6c95b8df
PA
1901 solib_svr4_pspace_data
1902 = register_program_space_data_with_cleanup (svr4_pspace_data_cleanup);
4b188b9f 1903
749499cb 1904 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
13437d4b
KB
1905 svr4_so_ops.free_so = svr4_free_so;
1906 svr4_so_ops.clear_solib = svr4_clear_solib;
1907 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
1908 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
1909 svr4_so_ops.current_sos = svr4_current_sos;
1910 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
d7fa2ae2 1911 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
831a0c44 1912 svr4_so_ops.bfd_open = solib_bfd_open;
3a40aaa0 1913 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
a7c02bc8 1914 svr4_so_ops.same = svr4_same;
13437d4b 1915}
This page took 0.974863 seconds and 4 git commands to generate.