2000-12-14 Kazu Hirata <kazu@hxi.com>
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
CommitLineData
13437d4b
KB
1/* Handle SunOS and SVR4 shared libraries for GDB, the GNU Debugger.
2 Copyright 1990, 91, 92, 93, 94, 95, 96, 98, 1999, 2000
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22#define _SYSCALL32 /* for Sparc64 cross Sparc32 */
23#include "defs.h"
24
25
26#include <sys/types.h>
27#include <signal.h>
28#include "gdb_string.h"
29#include <sys/param.h>
30#include <fcntl.h>
31
32#ifndef SVR4_SHARED_LIBS
33 /* SunOS shared libs need the nlist structure. */
34#include <a.out.h>
35#else
36#include "elf/external.h"
37#endif
38
39#ifdef HAVE_LINK_H
40#include <link.h>
41#endif
42
43#include "symtab.h"
44#include "bfd.h"
45#include "symfile.h"
46#include "objfiles.h"
47#include "gdbcore.h"
48#include "command.h"
49#include "target.h"
50#include "frame.h"
51#include "gdb_regex.h"
52#include "inferior.h"
53#include "environ.h"
54#include "language.h"
55#include "gdbcmd.h"
56
57#include "solist.h"
58#include "solib-svr4.h"
59
60/* Link map info to include in an allocated so_list entry */
61
62struct lm_info
63 {
64 /* Pointer to copy of link map from inferior. The type is char *
65 rather than void *, so that we may use byte offsets to find the
66 various fields without the need for a cast. */
67 char *lm;
68 };
69
70/* On SVR4 systems, a list of symbols in the dynamic linker where
71 GDB can try to place a breakpoint to monitor shared library
72 events.
73
74 If none of these symbols are found, or other errors occur, then
75 SVR4 systems will fall back to using a symbol as the "startup
76 mapping complete" breakpoint address. */
77
78#ifdef SVR4_SHARED_LIBS
79static char *solib_break_names[] =
80{
81 "r_debug_state",
82 "_r_debug_state",
83 "_dl_debug_state",
84 "rtld_db_dlactivity",
85 NULL
86};
87#endif
88
89#define BKPT_AT_SYMBOL 1
90
91#if defined (BKPT_AT_SYMBOL) && defined (SVR4_SHARED_LIBS)
92static char *bkpt_names[] =
93{
94#ifdef SOLIB_BKPT_NAME
95 SOLIB_BKPT_NAME, /* Prefer configured name if it exists. */
96#endif
97 "_start",
98 "main",
99 NULL
100};
101#endif
102
103/* Symbols which are used to locate the base of the link map structures. */
104
105#ifndef SVR4_SHARED_LIBS
106static char *debug_base_symbols[] =
107{
108 "_DYNAMIC",
109 "_DYNAMIC__MGC",
110 NULL
111};
112#endif
113
114static char *main_name_list[] =
115{
116 "main_$main",
117 NULL
118};
119
120
121/* Fetch (and possibly build) an appropriate link_map_offsets structure
122 for native targets using struct definitions from link.h. */
123
124struct link_map_offsets *
125default_svr4_fetch_link_map_offsets (void)
126{
127#ifdef HAVE_LINK_H
128 static struct link_map_offsets lmo;
129 static struct link_map_offsets *lmp = 0;
130#if defined (HAVE_STRUCT_LINK_MAP32)
131 static struct link_map_offsets lmo32;
132 static struct link_map_offsets *lmp32 = 0;
133#endif
134
135#ifndef offsetof
136#define offsetof(TYPE, MEMBER) ((unsigned long) &((TYPE *)0)->MEMBER)
137#endif
138#define fieldsize(TYPE, MEMBER) (sizeof (((TYPE *)0)->MEMBER))
139
140 if (lmp == 0)
141 {
142 lmp = &lmo;
143
144#ifdef SVR4_SHARED_LIBS
145 lmo.r_debug_size = sizeof (struct r_debug);
146
147 lmo.r_map_offset = offsetof (struct r_debug, r_map);
148 lmo.r_map_size = fieldsize (struct r_debug, r_map);
149
150 lmo.link_map_size = sizeof (struct link_map);
151
152 lmo.l_addr_offset = offsetof (struct link_map, l_addr);
153 lmo.l_addr_size = fieldsize (struct link_map, l_addr);
154
155 lmo.l_next_offset = offsetof (struct link_map, l_next);
156 lmo.l_next_size = fieldsize (struct link_map, l_next);
157
158 lmo.l_prev_offset = offsetof (struct link_map, l_prev);
159 lmo.l_prev_size = fieldsize (struct link_map, l_prev);
160
161 lmo.l_name_offset = offsetof (struct link_map, l_name);
162 lmo.l_name_size = fieldsize (struct link_map, l_name);
163#else /* !SVR4_SHARED_LIBS */
164 lmo.link_map_size = sizeof (struct link_map);
165
166 lmo.l_addr_offset = offsetof (struct link_map, lm_addr);
167 lmo.l_addr_size = fieldsize (struct link_map, lm_addr);
168
169 lmo.l_next_offset = offsetof (struct link_map, lm_next);
170 lmo.l_next_size = fieldsize (struct link_map, lm_next);
171
172 lmo.l_name_offset = offsetof (struct link_map, lm_name);
173 lmo.l_name_size = fieldsize (struct link_map, lm_name);
174#endif /* SVR4_SHARED_LIBS */
175 }
176
177#if defined (HAVE_STRUCT_LINK_MAP32)
178 if (lmp32 == 0)
179 {
180 lmp32 = &lmo32;
181
182 lmo32.r_debug_size = sizeof (struct r_debug32);
183
184 lmo32.r_map_offset = offsetof (struct r_debug32, r_map);
185 lmo32.r_map_size = fieldsize (struct r_debug32, r_map);
186
187 lmo32.link_map_size = sizeof (struct link_map32);
188
189 lmo32.l_addr_offset = offsetof (struct link_map32, l_addr);
190 lmo32.l_addr_size = fieldsize (struct link_map32, l_addr);
191
192 lmo32.l_next_offset = offsetof (struct link_map32, l_next);
193 lmo32.l_next_size = fieldsize (struct link_map32, l_next);
194
195 lmo32.l_prev_offset = offsetof (struct link_map32, l_prev);
196 lmo32.l_prev_size = fieldsize (struct link_map32, l_prev);
197
198 lmo32.l_name_offset = offsetof (struct link_map32, l_name);
199 lmo32.l_name_size = fieldsize (struct link_map32, l_name);
200 }
201#endif /* defined (HAVE_STRUCT_LINK_MAP32) */
202
203#if defined (HAVE_STRUCT_LINK_MAP32)
204 if (bfd_get_arch_size (exec_bfd) == 32)
205 return lmp32;
206 else
207#endif
208 return lmp;
209
210#else
211
212 internal_error ("default_svr4_fetch_link_map_offsets called without HAVE_LINK_H defined.");
213 return 0;
214
215#endif /* HAVE_LINK_H */
216}
217
218/* Macro to extract an address from a solib structure.
219 When GDB is configured for some 32-bit targets (e.g. Solaris 2.7
220 sparc), BFD is configured to handle 64-bit targets, so CORE_ADDR is
221 64 bits. We have to extract only the significant bits of addresses
222 to get the right address when accessing the core file BFD. */
223
224#define SOLIB_EXTRACT_ADDRESS(MEMBER) \
225 extract_address (&(MEMBER), sizeof (MEMBER))
226
227/* local data declarations */
228
229#ifndef SVR4_SHARED_LIBS
230
231/* NOTE: converted the macros LM_ADDR, LM_NEXT, LM_NAME and
232 IGNORE_FIRST_LINK_MAP_ENTRY into functions (see below).
233 MVS, June 2000 */
234
235static struct link_dynamic dynamic_copy;
236static struct link_dynamic_2 ld_2_copy;
237static struct ld_debug debug_copy;
238static CORE_ADDR debug_addr;
239static CORE_ADDR flag_addr;
240
241#endif /* !SVR4_SHARED_LIBS */
242
243/* link map access functions */
244
245static CORE_ADDR
246LM_ADDR (struct so_list *so)
247{
248 struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ();
249
250 return extract_address (so->lm_info->lm + lmo->l_addr_offset, lmo->l_addr_size);
251}
252
253static CORE_ADDR
254LM_NEXT (struct so_list *so)
255{
256 struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ();
257
258 return extract_address (so->lm_info->lm + lmo->l_next_offset, lmo->l_next_size);
259}
260
261static CORE_ADDR
262LM_NAME (struct so_list *so)
263{
264 struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ();
265
266 return extract_address (so->lm_info->lm + lmo->l_name_offset, lmo->l_name_size);
267}
268
269#ifndef SVR4_SHARED_LIBS
270
271static int
272IGNORE_FIRST_LINK_MAP_ENTRY (struct so_list *so)
273{
274 return 0;
275}
276
277#else /* SVR4_SHARED_LIBS */
278
279static int
280IGNORE_FIRST_LINK_MAP_ENTRY (struct so_list *so)
281{
282 struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ();
283
284 return extract_address (so->lm_info->lm + lmo->l_prev_offset,
285 lmo->l_prev_size) == 0;
286}
287
288#endif /* !SVR4_SHARED_LIBS */
289
13437d4b
KB
290static CORE_ADDR debug_base; /* Base of dynamic linker structures */
291static CORE_ADDR breakpoint_addr; /* Address where end bkpt is set */
292
293/* Local function prototypes */
294
295static int match_main (char *);
296
13437d4b
KB
297#ifndef SVR4_SHARED_LIBS
298
299/* Allocate the runtime common object file. */
300
301static void
302allocate_rt_common_objfile (void)
303{
304 struct objfile *objfile;
305 struct objfile *last_one;
306
307 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
308 memset (objfile, 0, sizeof (struct objfile));
309 objfile->md = NULL;
310 obstack_specify_allocation (&objfile->psymbol_cache.cache, 0, 0,
311 xmalloc, free);
312 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0, xmalloc,
313 free);
314 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0, xmalloc,
315 free);
316 obstack_specify_allocation (&objfile->type_obstack, 0, 0, xmalloc,
317 free);
318 objfile->name = mstrsave (objfile->md, "rt_common");
319
320 /* Add this file onto the tail of the linked list of other such files. */
321
322 objfile->next = NULL;
323 if (object_files == NULL)
324 object_files = objfile;
325 else
326 {
327 for (last_one = object_files;
328 last_one->next;
329 last_one = last_one->next);
330 last_one->next = objfile;
331 }
332
333 rt_common_objfile = objfile;
334}
335
336/* Read all dynamically loaded common symbol definitions from the inferior
337 and put them into the minimal symbol table for the runtime common
338 objfile. */
339
340static void
341solib_add_common_symbols (CORE_ADDR rtc_symp)
342{
343 struct rtc_symb inferior_rtc_symb;
344 struct nlist inferior_rtc_nlist;
345 int len;
346 char *name;
347
348 /* Remove any runtime common symbols from previous runs. */
349
350 if (rt_common_objfile != NULL && rt_common_objfile->minimal_symbol_count)
351 {
352 obstack_free (&rt_common_objfile->symbol_obstack, 0);
353 obstack_specify_allocation (&rt_common_objfile->symbol_obstack, 0, 0,
354 xmalloc, free);
355 rt_common_objfile->minimal_symbol_count = 0;
356 rt_common_objfile->msymbols = NULL;
357 }
358
359 init_minimal_symbol_collection ();
360 make_cleanup_discard_minimal_symbols ();
361
362 while (rtc_symp)
363 {
364 read_memory (rtc_symp,
365 (char *) &inferior_rtc_symb,
366 sizeof (inferior_rtc_symb));
367 read_memory (SOLIB_EXTRACT_ADDRESS (inferior_rtc_symb.rtc_sp),
368 (char *) &inferior_rtc_nlist,
369 sizeof (inferior_rtc_nlist));
370 if (inferior_rtc_nlist.n_type == N_COMM)
371 {
372 /* FIXME: The length of the symbol name is not available, but in the
373 current implementation the common symbol is allocated immediately
374 behind the name of the symbol. */
375 len = inferior_rtc_nlist.n_value - inferior_rtc_nlist.n_un.n_strx;
376
377 name = xmalloc (len);
378 read_memory (SOLIB_EXTRACT_ADDRESS (inferior_rtc_nlist.n_un.n_name),
379 name, len);
380
381 /* Allocate the runtime common objfile if necessary. */
382 if (rt_common_objfile == NULL)
383 allocate_rt_common_objfile ();
384
385 prim_record_minimal_symbol (name, inferior_rtc_nlist.n_value,
386 mst_bss, rt_common_objfile);
387 free (name);
388 }
389 rtc_symp = SOLIB_EXTRACT_ADDRESS (inferior_rtc_symb.rtc_next);
390 }
391
392 /* Install any minimal symbols that have been collected as the current
393 minimal symbols for the runtime common objfile. */
394
395 install_minimal_symbols (rt_common_objfile);
396}
397
398#endif /* SVR4_SHARED_LIBS */
399
400
401#ifdef SVR4_SHARED_LIBS
402
403static CORE_ADDR bfd_lookup_symbol (bfd *, char *);
404
405/*
406
407 LOCAL FUNCTION
408
409 bfd_lookup_symbol -- lookup the value for a specific symbol
410
411 SYNOPSIS
412
413 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
414
415 DESCRIPTION
416
417 An expensive way to lookup the value of a single symbol for
418 bfd's that are only temporary anyway. This is used by the
419 shared library support to find the address of the debugger
420 interface structures in the shared library.
421
422 Note that 0 is specifically allowed as an error return (no
423 such symbol).
424 */
425
426static CORE_ADDR
427bfd_lookup_symbol (bfd *abfd, char *symname)
428{
429 unsigned int storage_needed;
430 asymbol *sym;
431 asymbol **symbol_table;
432 unsigned int number_of_symbols;
433 unsigned int i;
434 struct cleanup *back_to;
435 CORE_ADDR symaddr = 0;
436
437 storage_needed = bfd_get_symtab_upper_bound (abfd);
438
439 if (storage_needed > 0)
440 {
441 symbol_table = (asymbol **) xmalloc (storage_needed);
442 back_to = make_cleanup (free, (PTR) symbol_table);
443 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
444
445 for (i = 0; i < number_of_symbols; i++)
446 {
447 sym = *symbol_table++;
448 if (STREQ (sym->name, symname))
449 {
450 /* Bfd symbols are section relative. */
451 symaddr = sym->value + sym->section->vma;
452 break;
453 }
454 }
455 do_cleanups (back_to);
456 }
457
458 if (symaddr)
459 return symaddr;
460
461 /* On FreeBSD, the dynamic linker is stripped by default. So we'll
462 have to check the dynamic string table too. */
463
464 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
465
466 if (storage_needed > 0)
467 {
468 symbol_table = (asymbol **) xmalloc (storage_needed);
469 back_to = make_cleanup (free, (PTR) symbol_table);
470 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
471
472 for (i = 0; i < number_of_symbols; i++)
473 {
474 sym = *symbol_table++;
475 if (STREQ (sym->name, symname))
476 {
477 /* Bfd symbols are section relative. */
478 symaddr = sym->value + sym->section->vma;
479 break;
480 }
481 }
482 do_cleanups (back_to);
483 }
484
485 return symaddr;
486}
487
488#ifdef HANDLE_SVR4_EXEC_EMULATORS
489
490/*
491 Solaris BCP (the part of Solaris which allows it to run SunOS4
492 a.out files) throws in another wrinkle. Solaris does not fill
493 in the usual a.out link map structures when running BCP programs,
494 the only way to get at them is via groping around in the dynamic
495 linker.
496 The dynamic linker and it's structures are located in the shared
497 C library, which gets run as the executable's "interpreter" by
498 the kernel.
499
500 Note that we can assume nothing about the process state at the time
501 we need to find these structures. We may be stopped on the first
502 instruction of the interpreter (C shared library), the first
503 instruction of the executable itself, or somewhere else entirely
504 (if we attached to the process for example).
505 */
506
507static char *debug_base_symbols[] =
508{
509 "r_debug", /* Solaris 2.3 */
510 "_r_debug", /* Solaris 2.1, 2.2 */
511 NULL
512};
513
514static int look_for_base (int, CORE_ADDR);
515
516/*
517
518 LOCAL FUNCTION
519
520 look_for_base -- examine file for each mapped address segment
521
522 SYNOPSYS
523
524 static int look_for_base (int fd, CORE_ADDR baseaddr)
525
526 DESCRIPTION
527
528 This function is passed to proc_iterate_over_mappings, which
529 causes it to get called once for each mapped address space, with
530 an open file descriptor for the file mapped to that space, and the
531 base address of that mapped space.
532
533 Our job is to find the debug base symbol in the file that this
534 fd is open on, if it exists, and if so, initialize the dynamic
535 linker structure base address debug_base.
536
537 Note that this is a computationally expensive proposition, since
538 we basically have to open a bfd on every call, so we specifically
539 avoid opening the exec file.
540 */
541
542static int
543look_for_base (int fd, CORE_ADDR baseaddr)
544{
545 bfd *interp_bfd;
546 CORE_ADDR address = 0;
547 char **symbolp;
548
549 /* If the fd is -1, then there is no file that corresponds to this
550 mapped memory segment, so skip it. Also, if the fd corresponds
551 to the exec file, skip it as well. */
552
553 if (fd == -1
554 || (exec_bfd != NULL
555 && fdmatch (fileno ((FILE *) (exec_bfd->iostream)), fd)))
556 {
557 return (0);
558 }
559
560 /* Try to open whatever random file this fd corresponds to. Note that
561 we have no way currently to find the filename. Don't gripe about
562 any problems we might have, just fail. */
563
564 if ((interp_bfd = bfd_fdopenr ("unnamed", gnutarget, fd)) == NULL)
565 {
566 return (0);
567 }
568 if (!bfd_check_format (interp_bfd, bfd_object))
569 {
570 /* FIXME-leak: on failure, might not free all memory associated with
571 interp_bfd. */
572 bfd_close (interp_bfd);
573 return (0);
574 }
575
576 /* Now try to find our debug base symbol in this file, which we at
577 least know to be a valid ELF executable or shared library. */
578
579 for (symbolp = debug_base_symbols; *symbolp != NULL; symbolp++)
580 {
581 address = bfd_lookup_symbol (interp_bfd, *symbolp);
582 if (address != 0)
583 {
584 break;
585 }
586 }
587 if (address == 0)
588 {
589 /* FIXME-leak: on failure, might not free all memory associated with
590 interp_bfd. */
591 bfd_close (interp_bfd);
592 return (0);
593 }
594
595 /* Eureka! We found the symbol. But now we may need to relocate it
596 by the base address. If the symbol's value is less than the base
597 address of the shared library, then it hasn't yet been relocated
598 by the dynamic linker, and we have to do it ourself. FIXME: Note
599 that we make the assumption that the first segment that corresponds
600 to the shared library has the base address to which the library
601 was relocated. */
602
603 if (address < baseaddr)
604 {
605 address += baseaddr;
606 }
607 debug_base = address;
608 /* FIXME-leak: on failure, might not free all memory associated with
609 interp_bfd. */
610 bfd_close (interp_bfd);
611 return (1);
612}
613#endif /* HANDLE_SVR4_EXEC_EMULATORS */
614
615/*
616
617 LOCAL FUNCTION
618
619 elf_locate_base -- locate the base address of dynamic linker structs
620 for SVR4 elf targets.
621
622 SYNOPSIS
623
624 CORE_ADDR elf_locate_base (void)
625
626 DESCRIPTION
627
628 For SVR4 elf targets the address of the dynamic linker's runtime
629 structure is contained within the dynamic info section in the
630 executable file. The dynamic section is also mapped into the
631 inferior address space. Because the runtime loader fills in the
632 real address before starting the inferior, we have to read in the
633 dynamic info section from the inferior address space.
634 If there are any errors while trying to find the address, we
635 silently return 0, otherwise the found address is returned.
636
637 */
638
639static CORE_ADDR
640elf_locate_base (void)
641{
642 sec_ptr dyninfo_sect;
643 int dyninfo_sect_size;
644 CORE_ADDR dyninfo_addr;
645 char *buf;
646 char *bufend;
647 int arch_size;
648
649 /* Find the start address of the .dynamic section. */
650 dyninfo_sect = bfd_get_section_by_name (exec_bfd, ".dynamic");
651 if (dyninfo_sect == NULL)
652 return 0;
653 dyninfo_addr = bfd_section_vma (exec_bfd, dyninfo_sect);
654
655 /* Read in .dynamic section, silently ignore errors. */
656 dyninfo_sect_size = bfd_section_size (exec_bfd, dyninfo_sect);
657 buf = alloca (dyninfo_sect_size);
658 if (target_read_memory (dyninfo_addr, buf, dyninfo_sect_size))
659 return 0;
660
661 /* Find the DT_DEBUG entry in the the .dynamic section.
662 For mips elf we look for DT_MIPS_RLD_MAP, mips elf apparently has
663 no DT_DEBUG entries. */
664
665 arch_size = bfd_get_arch_size (exec_bfd);
666 if (arch_size == -1) /* failure */
667 return 0;
668
669 if (arch_size == 32)
670 { /* 32-bit elf */
671 for (bufend = buf + dyninfo_sect_size;
672 buf < bufend;
673 buf += sizeof (Elf32_External_Dyn))
674 {
675 Elf32_External_Dyn *x_dynp = (Elf32_External_Dyn *) buf;
676 long dyn_tag;
677 CORE_ADDR dyn_ptr;
678
679 dyn_tag = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_tag);
680 if (dyn_tag == DT_NULL)
681 break;
682 else if (dyn_tag == DT_DEBUG)
683 {
684 dyn_ptr = bfd_h_get_32 (exec_bfd,
685 (bfd_byte *) x_dynp->d_un.d_ptr);
686 return dyn_ptr;
687 }
688#ifdef DT_MIPS_RLD_MAP
689 else if (dyn_tag == DT_MIPS_RLD_MAP)
690 {
691 char *pbuf;
692
693 pbuf = alloca (TARGET_PTR_BIT / HOST_CHAR_BIT);
694 /* DT_MIPS_RLD_MAP contains a pointer to the address
695 of the dynamic link structure. */
696 dyn_ptr = bfd_h_get_32 (exec_bfd,
697 (bfd_byte *) x_dynp->d_un.d_ptr);
698 if (target_read_memory (dyn_ptr, pbuf, sizeof (pbuf)))
699 return 0;
700 return extract_unsigned_integer (pbuf, sizeof (pbuf));
701 }
702#endif
703 }
704 }
705 else /* 64-bit elf */
706 {
707 for (bufend = buf + dyninfo_sect_size;
708 buf < bufend;
709 buf += sizeof (Elf64_External_Dyn))
710 {
711 Elf64_External_Dyn *x_dynp = (Elf64_External_Dyn *) buf;
712 long dyn_tag;
713 CORE_ADDR dyn_ptr;
714
715 dyn_tag = bfd_h_get_64 (exec_bfd, (bfd_byte *) x_dynp->d_tag);
716 if (dyn_tag == DT_NULL)
717 break;
718 else if (dyn_tag == DT_DEBUG)
719 {
720 dyn_ptr = bfd_h_get_64 (exec_bfd,
721 (bfd_byte *) x_dynp->d_un.d_ptr);
722 return dyn_ptr;
723 }
724 }
725 }
726
727 /* DT_DEBUG entry not found. */
728 return 0;
729}
730
731#endif /* SVR4_SHARED_LIBS */
732
733/*
734
735 LOCAL FUNCTION
736
737 locate_base -- locate the base address of dynamic linker structs
738
739 SYNOPSIS
740
741 CORE_ADDR locate_base (void)
742
743 DESCRIPTION
744
745 For both the SunOS and SVR4 shared library implementations, if the
746 inferior executable has been linked dynamically, there is a single
747 address somewhere in the inferior's data space which is the key to
748 locating all of the dynamic linker's runtime structures. This
749 address is the value of the debug base symbol. The job of this
750 function is to find and return that address, or to return 0 if there
751 is no such address (the executable is statically linked for example).
752
753 For SunOS, the job is almost trivial, since the dynamic linker and
754 all of it's structures are statically linked to the executable at
755 link time. Thus the symbol for the address we are looking for has
756 already been added to the minimal symbol table for the executable's
757 objfile at the time the symbol file's symbols were read, and all we
758 have to do is look it up there. Note that we explicitly do NOT want
759 to find the copies in the shared library.
760
761 The SVR4 version is a bit more complicated because the address
762 is contained somewhere in the dynamic info section. We have to go
763 to a lot more work to discover the address of the debug base symbol.
764 Because of this complexity, we cache the value we find and return that
765 value on subsequent invocations. Note there is no copy in the
766 executable symbol tables.
767
768 */
769
770static CORE_ADDR
771locate_base (void)
772{
773
774#ifndef SVR4_SHARED_LIBS
775
776 struct minimal_symbol *msymbol;
777 CORE_ADDR address = 0;
778 char **symbolp;
779
780 /* For SunOS, we want to limit the search for the debug base symbol to the
781 executable being debugged, since there is a duplicate named symbol in the
782 shared library. We don't want the shared library versions. */
783
784 for (symbolp = debug_base_symbols; *symbolp != NULL; symbolp++)
785 {
786 msymbol = lookup_minimal_symbol (*symbolp, NULL, symfile_objfile);
787 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
788 {
789 address = SYMBOL_VALUE_ADDRESS (msymbol);
790 return (address);
791 }
792 }
793 return (0);
794
795#else /* SVR4_SHARED_LIBS */
796
797 /* Check to see if we have a currently valid address, and if so, avoid
798 doing all this work again and just return the cached address. If
799 we have no cached address, try to locate it in the dynamic info
800 section for ELF executables. */
801
802 if (debug_base == 0)
803 {
804 if (exec_bfd != NULL
805 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
806 debug_base = elf_locate_base ();
807#ifdef HANDLE_SVR4_EXEC_EMULATORS
808 /* Try it the hard way for emulated executables. */
809 else if (inferior_pid != 0 && target_has_execution)
810 proc_iterate_over_mappings (look_for_base);
811#endif
812 }
813 return (debug_base);
814
815#endif /* !SVR4_SHARED_LIBS */
816
817}
818
819/*
820
821 LOCAL FUNCTION
822
823 first_link_map_member -- locate first member in dynamic linker's map
824
825 SYNOPSIS
826
827 static CORE_ADDR first_link_map_member (void)
828
829 DESCRIPTION
830
831 Find the first element in the inferior's dynamic link map, and
832 return its address in the inferior. This function doesn't copy the
833 link map entry itself into our address space; current_sos actually
834 does the reading. */
835
836static CORE_ADDR
837first_link_map_member (void)
838{
839 CORE_ADDR lm = 0;
840
841#ifndef SVR4_SHARED_LIBS
842
843 read_memory (debug_base, (char *) &dynamic_copy, sizeof (dynamic_copy));
844 if (dynamic_copy.ld_version >= 2)
845 {
846 /* It is a version that we can deal with, so read in the secondary
847 structure and find the address of the link map list from it. */
848 read_memory (SOLIB_EXTRACT_ADDRESS (dynamic_copy.ld_un.ld_2),
849 (char *) &ld_2_copy, sizeof (struct link_dynamic_2));
850 lm = SOLIB_EXTRACT_ADDRESS (ld_2_copy.ld_loaded);
851 }
852
853#else /* SVR4_SHARED_LIBS */
854 struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ();
855 char *r_map_buf = xmalloc (lmo->r_map_size);
856 struct cleanup *cleanups = make_cleanup (free, r_map_buf);
857
858 read_memory (debug_base + lmo->r_map_offset, r_map_buf, lmo->r_map_size);
859
860 lm = extract_address (r_map_buf, lmo->r_map_size);
861
862 /* FIXME: Perhaps we should validate the info somehow, perhaps by
863 checking r_version for a known version number, or r_state for
864 RT_CONSISTENT. */
865
866 do_cleanups (cleanups);
867
868#endif /* !SVR4_SHARED_LIBS */
869
870 return (lm);
871}
872
873#ifdef SVR4_SHARED_LIBS
874/*
875
876 LOCAL FUNCTION
877
878 open_symbol_file_object
879
880 SYNOPSIS
881
882 void open_symbol_file_object (void *from_tty)
883
884 DESCRIPTION
885
886 If no open symbol file, attempt to locate and open the main symbol
887 file. On SVR4 systems, this is the first link map entry. If its
888 name is here, we can open it. Useful when attaching to a process
889 without first loading its symbol file.
890
891 If FROM_TTYP dereferences to a non-zero integer, allow messages to
892 be printed. This parameter is a pointer rather than an int because
893 open_symbol_file_object() is called via catch_errors() and
894 catch_errors() requires a pointer argument. */
895
896static int
897open_symbol_file_object (void *from_ttyp)
898{
899 CORE_ADDR lm, l_name;
900 char *filename;
901 int errcode;
902 int from_tty = *(int *)from_ttyp;
903 struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ();
904 char *l_name_buf = xmalloc (lmo->l_name_size);
905 struct cleanup *cleanups = make_cleanup (free, l_name_buf);
906
907 if (symfile_objfile)
908 if (!query ("Attempt to reload symbols from process? "))
909 return 0;
910
911 if ((debug_base = locate_base ()) == 0)
912 return 0; /* failed somehow... */
913
914 /* First link map member should be the executable. */
915 if ((lm = first_link_map_member ()) == 0)
916 return 0; /* failed somehow... */
917
918 /* Read address of name from target memory to GDB. */
919 read_memory (lm + lmo->l_name_offset, l_name_buf, lmo->l_name_size);
920
921 /* Convert the address to host format. */
922 l_name = extract_address (l_name_buf, lmo->l_name_size);
923
924 /* Free l_name_buf. */
925 do_cleanups (cleanups);
926
927 if (l_name == 0)
928 return 0; /* No filename. */
929
930 /* Now fetch the filename from target memory. */
931 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
932
933 if (errcode)
934 {
935 warning ("failed to read exec filename from attached file: %s",
936 safe_strerror (errcode));
937 return 0;
938 }
939
940 make_cleanup (free, filename);
941 /* Have a pathname: read the symbol file. */
942 symbol_file_command (filename, from_tty);
943
944 return 1;
945}
946#else
947
948static int
949open_symbol_file_object (int *from_ttyp)
950{
951 return 1;
952}
953
954#endif /* SVR4_SHARED_LIBS */
955
956
957/* LOCAL FUNCTION
958
959 current_sos -- build a list of currently loaded shared objects
960
961 SYNOPSIS
962
963 struct so_list *current_sos ()
964
965 DESCRIPTION
966
967 Build a list of `struct so_list' objects describing the shared
968 objects currently loaded in the inferior. This list does not
969 include an entry for the main executable file.
970
971 Note that we only gather information directly available from the
972 inferior --- we don't examine any of the shared library files
973 themselves. The declaration of `struct so_list' says which fields
974 we provide values for. */
975
976static struct so_list *
977svr4_current_sos (void)
978{
979 CORE_ADDR lm;
980 struct so_list *head = 0;
981 struct so_list **link_ptr = &head;
982
983 /* Make sure we've looked up the inferior's dynamic linker's base
984 structure. */
985 if (! debug_base)
986 {
987 debug_base = locate_base ();
988
989 /* If we can't find the dynamic linker's base structure, this
990 must not be a dynamically linked executable. Hmm. */
991 if (! debug_base)
992 return 0;
993 }
994
995 /* Walk the inferior's link map list, and build our list of
996 `struct so_list' nodes. */
997 lm = first_link_map_member ();
998 while (lm)
999 {
1000 struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS ();
1001 struct so_list *new
1002 = (struct so_list *) xmalloc (sizeof (struct so_list));
1003 struct cleanup *old_chain = make_cleanup (free, new);
1004
1005 memset (new, 0, sizeof (*new));
1006
1007 new->lm_info = xmalloc (sizeof (struct lm_info));
1008 make_cleanup (free, new->lm_info);
1009
1010 new->lm_info->lm = xmalloc (lmo->link_map_size);
1011 make_cleanup (free, new->lm_info->lm);
1012 memset (new->lm_info->lm, 0, lmo->link_map_size);
1013
1014 read_memory (lm, new->lm_info->lm, lmo->link_map_size);
1015
1016 lm = LM_NEXT (new);
1017
1018 /* For SVR4 versions, the first entry in the link map is for the
1019 inferior executable, so we must ignore it. For some versions of
1020 SVR4, it has no name. For others (Solaris 2.3 for example), it
1021 does have a name, so we can no longer use a missing name to
1022 decide when to ignore it. */
1023 if (IGNORE_FIRST_LINK_MAP_ENTRY (new))
1024 free_so (new);
1025 else
1026 {
1027 int errcode;
1028 char *buffer;
1029
1030 /* Extract this shared object's name. */
1031 target_read_string (LM_NAME (new), &buffer,
1032 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1033 if (errcode != 0)
1034 {
1035 warning ("current_sos: Can't read pathname for load map: %s\n",
1036 safe_strerror (errcode));
1037 }
1038 else
1039 {
1040 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
1041 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1042 free (buffer);
1043 strcpy (new->so_original_name, new->so_name);
1044 }
1045
1046 /* If this entry has no name, or its name matches the name
1047 for the main executable, don't include it in the list. */
1048 if (! new->so_name[0]
1049 || match_main (new->so_name))
1050 free_so (new);
1051 else
1052 {
1053 new->next = 0;
1054 *link_ptr = new;
1055 link_ptr = &new->next;
1056 }
1057 }
1058
1059 discard_cleanups (old_chain);
1060 }
1061
1062 return head;
1063}
1064
1065
1066/* On some systems, the only way to recognize the link map entry for
1067 the main executable file is by looking at its name. Return
1068 non-zero iff SONAME matches one of the known main executable names. */
1069
1070static int
1071match_main (char *soname)
1072{
1073 char **mainp;
1074
1075 for (mainp = main_name_list; *mainp != NULL; mainp++)
1076 {
1077 if (strcmp (soname, *mainp) == 0)
1078 return (1);
1079 }
1080
1081 return (0);
1082}
1083
1084
1085#ifdef SVR4_SHARED_LIBS
1086
1087/* Return 1 if PC lies in the dynamic symbol resolution code of the
1088 SVR4 run time loader. */
1089
1090static CORE_ADDR interp_text_sect_low;
1091static CORE_ADDR interp_text_sect_high;
1092static CORE_ADDR interp_plt_sect_low;
1093static CORE_ADDR interp_plt_sect_high;
1094
1095int
1096in_svr4_dynsym_resolve_code (CORE_ADDR pc)
1097{
1098 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
1099 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
1100 || in_plt_section (pc, NULL));
1101}
1102#endif
1103
1104/*
1105
1106 LOCAL FUNCTION
1107
1108 disable_break -- remove the "mapping changed" breakpoint
1109
1110 SYNOPSIS
1111
1112 static int disable_break ()
1113
1114 DESCRIPTION
1115
1116 Removes the breakpoint that gets hit when the dynamic linker
1117 completes a mapping change.
1118
1119 */
1120
1121#ifndef SVR4_SHARED_LIBS
1122
1123static int
1124disable_break (void)
1125{
1126 int status = 1;
1127
1128 int in_debugger = 0;
1129
1130 /* Read the debugger structure from the inferior to retrieve the
1131 address of the breakpoint and the original contents of the
1132 breakpoint address. Remove the breakpoint by writing the original
1133 contents back. */
1134
1135 read_memory (debug_addr, (char *) &debug_copy, sizeof (debug_copy));
1136
1137 /* Set `in_debugger' to zero now. */
1138
1139 write_memory (flag_addr, (char *) &in_debugger, sizeof (in_debugger));
1140
1141 breakpoint_addr = SOLIB_EXTRACT_ADDRESS (debug_copy.ldd_bp_addr);
1142 write_memory (breakpoint_addr, (char *) &debug_copy.ldd_bp_inst,
1143 sizeof (debug_copy.ldd_bp_inst));
1144
1145 /* For the SVR4 version, we always know the breakpoint address. For the
1146 SunOS version we don't know it until the above code is executed.
1147 Grumble if we are stopped anywhere besides the breakpoint address. */
1148
1149 if (stop_pc != breakpoint_addr)
1150 {
1151 warning ("stopped at unknown breakpoint while handling shared libraries");
1152 }
1153
1154 return (status);
1155}
1156
1157#endif /* #ifdef SVR4_SHARED_LIBS */
1158
1159/*
1160
1161 LOCAL FUNCTION
1162
1163 enable_break -- arrange for dynamic linker to hit breakpoint
1164
1165 SYNOPSIS
1166
1167 int enable_break (void)
1168
1169 DESCRIPTION
1170
1171 Both the SunOS and the SVR4 dynamic linkers have, as part of their
1172 debugger interface, support for arranging for the inferior to hit
1173 a breakpoint after mapping in the shared libraries. This function
1174 enables that breakpoint.
1175
1176 For SunOS, there is a special flag location (in_debugger) which we
1177 set to 1. When the dynamic linker sees this flag set, it will set
1178 a breakpoint at a location known only to itself, after saving the
1179 original contents of that place and the breakpoint address itself,
1180 in it's own internal structures. When we resume the inferior, it
1181 will eventually take a SIGTRAP when it runs into the breakpoint.
1182 We handle this (in a different place) by restoring the contents of
1183 the breakpointed location (which is only known after it stops),
1184 chasing around to locate the shared libraries that have been
1185 loaded, then resuming.
1186
1187 For SVR4, the debugger interface structure contains a member (r_brk)
1188 which is statically initialized at the time the shared library is
1189 built, to the offset of a function (_r_debug_state) which is guaran-
1190 teed to be called once before mapping in a library, and again when
1191 the mapping is complete. At the time we are examining this member,
1192 it contains only the unrelocated offset of the function, so we have
1193 to do our own relocation. Later, when the dynamic linker actually
1194 runs, it relocates r_brk to be the actual address of _r_debug_state().
1195
1196 The debugger interface structure also contains an enumeration which
1197 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
1198 depending upon whether or not the library is being mapped or unmapped,
1199 and then set to RT_CONSISTENT after the library is mapped/unmapped.
1200 */
1201
1202static int
1203enable_break (void)
1204{
1205 int success = 0;
1206
1207#ifndef SVR4_SHARED_LIBS
1208
1209 int j;
1210 int in_debugger;
1211
1212 /* Get link_dynamic structure */
1213
1214 j = target_read_memory (debug_base, (char *) &dynamic_copy,
1215 sizeof (dynamic_copy));
1216 if (j)
1217 {
1218 /* unreadable */
1219 return (0);
1220 }
1221
1222 /* Calc address of debugger interface structure */
1223
1224 debug_addr = SOLIB_EXTRACT_ADDRESS (dynamic_copy.ldd);
1225
1226 /* Calc address of `in_debugger' member of debugger interface structure */
1227
1228 flag_addr = debug_addr + (CORE_ADDR) ((char *) &debug_copy.ldd_in_debugger -
1229 (char *) &debug_copy);
1230
1231 /* Write a value of 1 to this member. */
1232
1233 in_debugger = 1;
1234 write_memory (flag_addr, (char *) &in_debugger, sizeof (in_debugger));
1235 success = 1;
1236
1237#else /* SVR4_SHARED_LIBS */
1238
1239#ifdef BKPT_AT_SYMBOL
1240
1241 struct minimal_symbol *msymbol;
1242 char **bkpt_namep;
1243 asection *interp_sect;
1244
1245 /* First, remove all the solib event breakpoints. Their addresses
1246 may have changed since the last time we ran the program. */
1247 remove_solib_event_breakpoints ();
1248
1249#ifdef SVR4_SHARED_LIBS
1250 interp_text_sect_low = interp_text_sect_high = 0;
1251 interp_plt_sect_low = interp_plt_sect_high = 0;
1252
1253 /* Find the .interp section; if not found, warn the user and drop
1254 into the old breakpoint at symbol code. */
1255 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
1256 if (interp_sect)
1257 {
1258 unsigned int interp_sect_size;
1259 char *buf;
1260 CORE_ADDR load_addr;
e4f7b8c8
MS
1261 bfd *tmp_bfd = NULL;
1262 int tmp_fd = -1;
1263 char *tmp_pathname = NULL;
13437d4b
KB
1264 CORE_ADDR sym_addr = 0;
1265
1266 /* Read the contents of the .interp section into a local buffer;
1267 the contents specify the dynamic linker this program uses. */
1268 interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
1269 buf = alloca (interp_sect_size);
1270 bfd_get_section_contents (exec_bfd, interp_sect,
1271 buf, 0, interp_sect_size);
1272
1273 /* Now we need to figure out where the dynamic linker was
1274 loaded so that we can load its symbols and place a breakpoint
1275 in the dynamic linker itself.
1276
1277 This address is stored on the stack. However, I've been unable
1278 to find any magic formula to find it for Solaris (appears to
1279 be trivial on GNU/Linux). Therefore, we have to try an alternate
1280 mechanism to find the dynamic linker's base address. */
e4f7b8c8
MS
1281
1282 tmp_fd = solib_open (buf, &tmp_pathname);
1283 if (tmp_fd >= 0)
1284 tmp_bfd = bfd_fdopenr (tmp_pathname, gnutarget, tmp_fd);
1285
13437d4b
KB
1286 if (tmp_bfd == NULL)
1287 goto bkpt_at_symbol;
1288
1289 /* Make sure the dynamic linker's really a useful object. */
1290 if (!bfd_check_format (tmp_bfd, bfd_object))
1291 {
1292 warning ("Unable to grok dynamic linker %s as an object file", buf);
1293 bfd_close (tmp_bfd);
1294 goto bkpt_at_symbol;
1295 }
1296
1297 /* We find the dynamic linker's base address by examining the
1298 current pc (which point at the entry point for the dynamic
1299 linker) and subtracting the offset of the entry point. */
1300 load_addr = read_pc () - tmp_bfd->start_address;
1301
1302 /* Record the relocated start and end address of the dynamic linker
1303 text and plt section for in_svr4_dynsym_resolve_code. */
1304 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1305 if (interp_sect)
1306 {
1307 interp_text_sect_low =
1308 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1309 interp_text_sect_high =
1310 interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1311 }
1312 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1313 if (interp_sect)
1314 {
1315 interp_plt_sect_low =
1316 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1317 interp_plt_sect_high =
1318 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1319 }
1320
1321 /* Now try to set a breakpoint in the dynamic linker. */
1322 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1323 {
1324 sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep);
1325 if (sym_addr != 0)
1326 break;
1327 }
1328
1329 /* We're done with the temporary bfd. */
1330 bfd_close (tmp_bfd);
1331
1332 if (sym_addr != 0)
1333 {
1334 create_solib_event_breakpoint (load_addr + sym_addr);
1335 return 1;
1336 }
1337
1338 /* For whatever reason we couldn't set a breakpoint in the dynamic
1339 linker. Warn and drop into the old code. */
1340 bkpt_at_symbol:
1341 warning ("Unable to find dynamic linker breakpoint function.\nGDB will be unable to debug shared library initializers\nand track explicitly loaded dynamic code.");
1342 }
1343#endif
1344
1345 /* Scan through the list of symbols, trying to look up the symbol and
1346 set a breakpoint there. Terminate loop when we/if we succeed. */
1347
1348 breakpoint_addr = 0;
1349 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
1350 {
1351 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1352 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1353 {
1354 create_solib_event_breakpoint (SYMBOL_VALUE_ADDRESS (msymbol));
1355 return 1;
1356 }
1357 }
1358
1359 /* Nothing good happened. */
1360 success = 0;
1361
1362#endif /* BKPT_AT_SYMBOL */
1363
1364#endif /* !SVR4_SHARED_LIBS */
1365
1366 return (success);
1367}
1368
1369/*
1370
1371 LOCAL FUNCTION
1372
1373 special_symbol_handling -- additional shared library symbol handling
1374
1375 SYNOPSIS
1376
1377 void special_symbol_handling ()
1378
1379 DESCRIPTION
1380
1381 Once the symbols from a shared object have been loaded in the usual
1382 way, we are called to do any system specific symbol handling that
1383 is needed.
1384
1385 For SunOS4, this consists of grunging around in the dynamic
1386 linkers structures to find symbol definitions for "common" symbols
1387 and adding them to the minimal symbol table for the runtime common
1388 objfile.
1389
1390 */
1391
1392static void
1393svr4_special_symbol_handling (void)
1394{
1395#ifndef SVR4_SHARED_LIBS
1396 int j;
1397
1398 if (debug_addr == 0)
1399 {
1400 /* Get link_dynamic structure */
1401
1402 j = target_read_memory (debug_base, (char *) &dynamic_copy,
1403 sizeof (dynamic_copy));
1404 if (j)
1405 {
1406 /* unreadable */
1407 return;
1408 }
1409
1410 /* Calc address of debugger interface structure */
1411 /* FIXME, this needs work for cross-debugging of core files
1412 (byteorder, size, alignment, etc). */
1413
1414 debug_addr = SOLIB_EXTRACT_ADDRESS (dynamic_copy.ldd);
1415 }
1416
1417 /* Read the debugger structure from the inferior, just to make sure
1418 we have a current copy. */
1419
1420 j = target_read_memory (debug_addr, (char *) &debug_copy,
1421 sizeof (debug_copy));
1422 if (j)
1423 return; /* unreadable */
1424
1425 /* Get common symbol definitions for the loaded object. */
1426
1427 if (debug_copy.ldd_cp)
1428 {
1429 solib_add_common_symbols (SOLIB_EXTRACT_ADDRESS (debug_copy.ldd_cp));
1430 }
1431
1432#endif /* !SVR4_SHARED_LIBS */
1433}
1434
e2a44558
KB
1435/* Relocate the main executable. This function should be called upon
1436 stopping the inferior process at the entry point to the program.
1437 The entry point from BFD is compared to the PC and if they are
1438 different, the main executable is relocated by the proper amount.
1439
1440 As written it will only attempt to relocate executables which
1441 lack interpreter sections. It seems likely that only dynamic
1442 linker executables will get relocated, though it should work
1443 properly for a position-independent static executable as well. */
1444
1445static void
1446svr4_relocate_main_executable (void)
1447{
1448 asection *interp_sect;
1449 CORE_ADDR pc = read_pc ();
1450
1451 /* Decide if the objfile needs to be relocated. As indicated above,
1452 we will only be here when execution is stopped at the beginning
1453 of the program. Relocation is necessary if the address at which
1454 we are presently stopped differs from the start address stored in
1455 the executable AND there's no interpreter section. The condition
1456 regarding the interpreter section is very important because if
1457 there *is* an interpreter section, execution will begin there
1458 instead. When there is an interpreter section, the start address
1459 is (presumably) used by the interpreter at some point to start
1460 execution of the program.
1461
1462 If there is an interpreter, it is normal for it to be set to an
1463 arbitrary address at the outset. The job of finding it is
1464 handled in enable_break().
1465
1466 So, to summarize, relocations are necessary when there is no
1467 interpreter section and the start address obtained from the
1468 executable is different from the address at which GDB is
1469 currently stopped.
1470
1471 [ The astute reader will note that we also test to make sure that
1472 the executable in question has the DYNAMIC flag set. It is my
1473 opinion that this test is unnecessary (undesirable even). It
1474 was added to avoid inadvertent relocation of an executable
1475 whose e_type member in the ELF header is not ET_DYN. There may
1476 be a time in the future when it is desirable to do relocations
1477 on other types of files as well in which case this condition
1478 should either be removed or modified to accomodate the new file
1479 type. (E.g, an ET_EXEC executable which has been built to be
1480 position-independent could safely be relocated by the OS if
1481 desired. It is true that this violates the ABI, but the ABI
1482 has been known to be bent from time to time.) - Kevin, Nov 2000. ]
1483 */
1484
1485 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
1486 if (interp_sect == NULL
1487 && (bfd_get_file_flags (exec_bfd) & DYNAMIC) != 0
1488 && bfd_get_start_address (exec_bfd) != pc)
1489 {
1490 struct cleanup *old_chain;
1491 struct section_offsets *new_offsets;
1492 int i, changed;
1493 CORE_ADDR displacement;
1494
1495 /* It is necessary to relocate the objfile. The amount to
1496 relocate by is simply the address at which we are stopped
1497 minus the starting address from the executable.
1498
1499 We relocate all of the sections by the same amount. This
1500 behavior is mandated by recent editions of the System V ABI.
1501 According to the System V Application Binary Interface,
1502 Edition 4.1, page 5-5:
1503
1504 ... Though the system chooses virtual addresses for
1505 individual processes, it maintains the segments' relative
1506 positions. Because position-independent code uses relative
1507 addressesing between segments, the difference between
1508 virtual addresses in memory must match the difference
1509 between virtual addresses in the file. The difference
1510 between the virtual address of any segment in memory and
1511 the corresponding virtual address in the file is thus a
1512 single constant value for any one executable or shared
1513 object in a given process. This difference is the base
1514 address. One use of the base address is to relocate the
1515 memory image of the program during dynamic linking.
1516
1517 The same language also appears in Edition 4.0 of the System V
1518 ABI and is left unspecified in some of the earlier editions. */
1519
1520 displacement = pc - bfd_get_start_address (exec_bfd);
1521 changed = 0;
1522
1523 new_offsets = xcalloc (sizeof (struct section_offsets),
1524 symfile_objfile->num_sections);
1525 old_chain = make_cleanup (free, new_offsets);
1526
1527 for (i = 0; i < symfile_objfile->num_sections; i++)
1528 {
1529 if (displacement != ANOFFSET (symfile_objfile->section_offsets, i))
1530 changed = 1;
1531 new_offsets->offsets[i] = displacement;
1532 }
1533
1534 if (changed)
1535 objfile_relocate (symfile_objfile, new_offsets);
1536
1537 do_cleanups (old_chain);
1538 }
1539}
1540
13437d4b
KB
1541/*
1542
1543 GLOBAL FUNCTION
1544
1545 svr4_solib_create_inferior_hook -- shared library startup support
1546
1547 SYNOPSIS
1548
1549 void svr4_solib_create_inferior_hook()
1550
1551 DESCRIPTION
1552
1553 When gdb starts up the inferior, it nurses it along (through the
1554 shell) until it is ready to execute it's first instruction. At this
1555 point, this function gets called via expansion of the macro
1556 SOLIB_CREATE_INFERIOR_HOOK.
1557
1558 For SunOS executables, this first instruction is typically the
1559 one at "_start", or a similar text label, regardless of whether
1560 the executable is statically or dynamically linked. The runtime
1561 startup code takes care of dynamically linking in any shared
1562 libraries, once gdb allows the inferior to continue.
1563
1564 For SVR4 executables, this first instruction is either the first
1565 instruction in the dynamic linker (for dynamically linked
1566 executables) or the instruction at "start" for statically linked
1567 executables. For dynamically linked executables, the system
1568 first exec's /lib/libc.so.N, which contains the dynamic linker,
1569 and starts it running. The dynamic linker maps in any needed
1570 shared libraries, maps in the actual user executable, and then
1571 jumps to "start" in the user executable.
1572
1573 For both SunOS shared libraries, and SVR4 shared libraries, we
1574 can arrange to cooperate with the dynamic linker to discover the
1575 names of shared libraries that are dynamically linked, and the
1576 base addresses to which they are linked.
1577
1578 This function is responsible for discovering those names and
1579 addresses, and saving sufficient information about them to allow
1580 their symbols to be read at a later time.
1581
1582 FIXME
1583
1584 Between enable_break() and disable_break(), this code does not
1585 properly handle hitting breakpoints which the user might have
1586 set in the startup code or in the dynamic linker itself. Proper
1587 handling will probably have to wait until the implementation is
1588 changed to use the "breakpoint handler function" method.
1589
1590 Also, what if child has exit()ed? Must exit loop somehow.
1591 */
1592
e2a44558 1593static void
13437d4b
KB
1594svr4_solib_create_inferior_hook (void)
1595{
e2a44558
KB
1596 /* Relocate the main executable if necessary. */
1597 svr4_relocate_main_executable ();
1598
13437d4b
KB
1599 /* If we are using the BKPT_AT_SYMBOL code, then we don't need the base
1600 yet. In fact, in the case of a SunOS4 executable being run on
1601 Solaris, we can't get it yet. current_sos will get it when it needs
1602 it. */
1603#if !(defined (SVR4_SHARED_LIBS) && defined (BKPT_AT_SYMBOL))
1604 if ((debug_base = locate_base ()) == 0)
1605 {
1606 /* Can't find the symbol or the executable is statically linked. */
1607 return;
1608 }
1609#endif
1610
1611 if (!enable_break ())
1612 {
1613 warning ("shared library handler failed to enable breakpoint");
1614 return;
1615 }
1616
1617#if !defined(SVR4_SHARED_LIBS) || defined(_SCO_DS)
1618 /* SCO and SunOS need the loop below, other systems should be using the
1619 special shared library breakpoints and the shared library breakpoint
1620 service routine.
1621
1622 Now run the target. It will eventually hit the breakpoint, at
1623 which point all of the libraries will have been mapped in and we
1624 can go groveling around in the dynamic linker structures to find
1625 out what we need to know about them. */
1626
1627 clear_proceed_status ();
1628 stop_soon_quietly = 1;
1629 stop_signal = TARGET_SIGNAL_0;
1630 do
1631 {
1632 target_resume (-1, 0, stop_signal);
1633 wait_for_inferior ();
1634 }
1635 while (stop_signal != TARGET_SIGNAL_TRAP);
1636 stop_soon_quietly = 0;
1637
1638#if !defined(_SCO_DS)
1639 /* We are now either at the "mapping complete" breakpoint (or somewhere
1640 else, a condition we aren't prepared to deal with anyway), so adjust
1641 the PC as necessary after a breakpoint, disable the breakpoint, and
1642 add any shared libraries that were mapped in. */
1643
1644 if (DECR_PC_AFTER_BREAK)
1645 {
1646 stop_pc -= DECR_PC_AFTER_BREAK;
1647 write_register (PC_REGNUM, stop_pc);
1648 }
1649
1650 if (!disable_break ())
1651 {
1652 warning ("shared library handler failed to disable breakpoint");
1653 }
1654
1655 if (auto_solib_add)
1656 solib_add ((char *) 0, 0, (struct target_ops *) 0);
1657#endif /* ! _SCO_DS */
1658#endif
1659}
1660
1661static void
1662svr4_clear_solib (void)
1663{
1664 debug_base = 0;
1665}
1666
1667static void
1668svr4_free_so (struct so_list *so)
1669{
1670 free (so->lm_info->lm);
1671 free (so->lm_info);
1672}
1673
749499cb
KB
1674static void
1675svr4_relocate_section_addresses (struct so_list *so,
1676 struct section_table *sec)
1677{
1678 sec->addr += LM_ADDR (so);
1679 sec->endaddr += LM_ADDR (so);
1680}
1681
13437d4b
KB
1682static struct target_so_ops svr4_so_ops;
1683
1684void
1685_initialize_svr4_solib (void)
1686{
749499cb 1687 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
13437d4b
KB
1688 svr4_so_ops.free_so = svr4_free_so;
1689 svr4_so_ops.clear_solib = svr4_clear_solib;
1690 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
1691 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
1692 svr4_so_ops.current_sos = svr4_current_sos;
1693 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
1694
1695 /* FIXME: Don't do this here. *_gdbarch_init() should set so_ops. */
1696 current_target_so_ops = &svr4_so_ops;
1697}
1698
This page took 0.106854 seconds and 4 git commands to generate.