gdb/
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
CommitLineData
ab31aa69 1/* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2f4950cd 2
6aba47ca 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000,
7b6bb8da 4 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
0fb0cc75 5 Free Software Foundation, Inc.
13437d4b
KB
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
13437d4b
KB
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
13437d4b 21
13437d4b
KB
22#include "defs.h"
23
13437d4b 24#include "elf/external.h"
21479ded 25#include "elf/common.h"
f7856c8f 26#include "elf/mips.h"
13437d4b
KB
27
28#include "symtab.h"
29#include "bfd.h"
30#include "symfile.h"
31#include "objfiles.h"
32#include "gdbcore.h"
13437d4b 33#include "target.h"
13437d4b 34#include "inferior.h"
fb14de7b 35#include "regcache.h"
2020b7ab 36#include "gdbthread.h"
1a816a87 37#include "observer.h"
13437d4b 38
4b188b9f
MK
39#include "gdb_assert.h"
40
13437d4b 41#include "solist.h"
bba93f6c 42#include "solib.h"
13437d4b
KB
43#include "solib-svr4.h"
44
2f4950cd 45#include "bfd-target.h"
cc10cae3 46#include "elf-bfd.h"
2f4950cd 47#include "exec.h"
8d4e36ba 48#include "auxv.h"
f1838a98 49#include "exceptions.h"
2f4950cd 50
e5e2b9ff 51static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
d5a921c9 52static int svr4_have_link_map_offsets (void);
9f2982ff 53static void svr4_relocate_main_executable (void);
1c4dcb57 54
c378eb4e 55/* Link map info to include in an allocated so_list entry. */
13437d4b
KB
56
57struct lm_info
58 {
59 /* Pointer to copy of link map from inferior. The type is char *
60 rather than void *, so that we may use byte offsets to find the
61 various fields without the need for a cast. */
4066fc10 62 gdb_byte *lm;
cc10cae3
AO
63
64 /* Amount by which addresses in the binary should be relocated to
65 match the inferior. This could most often be taken directly
66 from lm, but when prelinking is involved and the prelink base
67 address changes, we may need a different offset, we want to
68 warn about the difference and compute it only once. */
69 CORE_ADDR l_addr;
93a57060
DJ
70
71 /* The target location of lm. */
72 CORE_ADDR lm_addr;
13437d4b
KB
73 };
74
75/* On SVR4 systems, a list of symbols in the dynamic linker where
76 GDB can try to place a breakpoint to monitor shared library
77 events.
78
79 If none of these symbols are found, or other errors occur, then
80 SVR4 systems will fall back to using a symbol as the "startup
81 mapping complete" breakpoint address. */
82
bc043ef3 83static const char * const solib_break_names[] =
13437d4b
KB
84{
85 "r_debug_state",
86 "_r_debug_state",
87 "_dl_debug_state",
88 "rtld_db_dlactivity",
4c7dcb84 89 "__dl_rtld_db_dlactivity",
1f72e589 90 "_rtld_debug_state",
4c0122c8 91
13437d4b
KB
92 NULL
93};
13437d4b 94
bc043ef3 95static const char * const bkpt_names[] =
13437d4b 96{
13437d4b 97 "_start",
ad3dcc5c 98 "__start",
13437d4b
KB
99 "main",
100 NULL
101};
13437d4b 102
bc043ef3 103static const char * const main_name_list[] =
13437d4b
KB
104{
105 "main_$main",
106 NULL
107};
108
4d7b2d5b
JB
109/* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
110 the same shared library. */
111
112static int
113svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
114{
115 if (strcmp (gdb_so_name, inferior_so_name) == 0)
116 return 1;
117
118 /* On Solaris, when starting inferior we think that dynamic linker is
d989b283
PP
119 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
120 contains /lib/ld.so.1. Sometimes one file is a link to another, but
4d7b2d5b
JB
121 sometimes they have identical content, but are not linked to each
122 other. We don't restrict this check for Solaris, but the chances
123 of running into this situation elsewhere are very low. */
124 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
125 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
126 return 1;
127
128 /* Similarly, we observed the same issue with sparc64, but with
129 different locations. */
130 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
131 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
132 return 1;
133
134 return 0;
135}
136
137static int
138svr4_same (struct so_list *gdb, struct so_list *inferior)
139{
140 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
141}
142
c378eb4e 143/* link map access functions. */
13437d4b
KB
144
145static CORE_ADDR
b23518f0 146lm_addr_from_link_map (struct so_list *so)
13437d4b 147{
4b188b9f 148 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 149 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
13437d4b 150
cfaefc65 151 return extract_typed_address (so->lm_info->lm + lmo->l_addr_offset,
b6da22b0 152 ptr_type);
13437d4b
KB
153}
154
cc10cae3 155static int
b23518f0 156has_lm_dynamic_from_link_map (void)
cc10cae3
AO
157{
158 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
159
cfaefc65 160 return lmo->l_ld_offset >= 0;
cc10cae3
AO
161}
162
163static CORE_ADDR
b23518f0 164lm_dynamic_from_link_map (struct so_list *so)
cc10cae3
AO
165{
166 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 167 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
cc10cae3 168
cfaefc65 169 return extract_typed_address (so->lm_info->lm + lmo->l_ld_offset,
b6da22b0 170 ptr_type);
cc10cae3
AO
171}
172
173static CORE_ADDR
b23518f0 174lm_addr_check (struct so_list *so, bfd *abfd)
cc10cae3
AO
175{
176 if (so->lm_info->l_addr == (CORE_ADDR)-1)
177 {
178 struct bfd_section *dyninfo_sect;
28f34a8f 179 CORE_ADDR l_addr, l_dynaddr, dynaddr;
cc10cae3 180
b23518f0 181 l_addr = lm_addr_from_link_map (so);
cc10cae3 182
b23518f0 183 if (! abfd || ! has_lm_dynamic_from_link_map ())
cc10cae3
AO
184 goto set_addr;
185
b23518f0 186 l_dynaddr = lm_dynamic_from_link_map (so);
cc10cae3
AO
187
188 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
189 if (dyninfo_sect == NULL)
190 goto set_addr;
191
192 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
193
194 if (dynaddr + l_addr != l_dynaddr)
195 {
28f34a8f 196 CORE_ADDR align = 0x1000;
4e1fc9c9 197 CORE_ADDR minpagesize = align;
28f34a8f 198
cc10cae3
AO
199 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
200 {
201 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
202 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
203 int i;
204
205 align = 1;
206
207 for (i = 0; i < ehdr->e_phnum; i++)
208 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
209 align = phdr[i].p_align;
4e1fc9c9
JK
210
211 minpagesize = get_elf_backend_data (abfd)->minpagesize;
cc10cae3
AO
212 }
213
214 /* Turn it into a mask. */
215 align--;
216
217 /* If the changes match the alignment requirements, we
218 assume we're using a core file that was generated by the
219 same binary, just prelinked with a different base offset.
220 If it doesn't match, we may have a different binary, the
221 same binary with the dynamic table loaded at an unrelated
222 location, or anything, really. To avoid regressions,
223 don't adjust the base offset in the latter case, although
224 odds are that, if things really changed, debugging won't
5c0d192f
JK
225 quite work.
226
227 One could expect more the condition
228 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
229 but the one below is relaxed for PPC. The PPC kernel supports
230 either 4k or 64k page sizes. To be prepared for 64k pages,
231 PPC ELF files are built using an alignment requirement of 64k.
232 However, when running on a kernel supporting 4k pages, the memory
233 mapping of the library may not actually happen on a 64k boundary!
234
235 (In the usual case where (l_addr & align) == 0, this check is
4e1fc9c9
JK
236 equivalent to the possibly expected check above.)
237
238 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
5c0d192f 239
02835898
JK
240 l_addr = l_dynaddr - dynaddr;
241
4e1fc9c9
JK
242 if ((l_addr & (minpagesize - 1)) == 0
243 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
cc10cae3 244 {
701ed6dc 245 if (info_verbose)
ccf26247
JK
246 printf_unfiltered (_("Using PIC (Position Independent Code) "
247 "prelink displacement %s for \"%s\".\n"),
248 paddress (target_gdbarch, l_addr),
249 so->so_name);
cc10cae3 250 }
79d4c408 251 else
02835898
JK
252 {
253 /* There is no way to verify the library file matches. prelink
254 can during prelinking of an unprelinked file (or unprelinking
255 of a prelinked file) shift the DYNAMIC segment by arbitrary
256 offset without any page size alignment. There is no way to
257 find out the ELF header and/or Program Headers for a limited
258 verification if it they match. One could do a verification
259 of the DYNAMIC segment. Still the found address is the best
260 one GDB could find. */
261
262 warning (_(".dynamic section for \"%s\" "
263 "is not at the expected address "
264 "(wrong library or version mismatch?)"), so->so_name);
265 }
cc10cae3
AO
266 }
267
268 set_addr:
269 so->lm_info->l_addr = l_addr;
270 }
271
272 return so->lm_info->l_addr;
273}
274
13437d4b 275static CORE_ADDR
b23518f0 276lm_next (struct so_list *so)
13437d4b 277{
4b188b9f 278 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 279 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
13437d4b 280
cfaefc65 281 return extract_typed_address (so->lm_info->lm + lmo->l_next_offset,
b6da22b0 282 ptr_type);
13437d4b
KB
283}
284
492928e4 285static CORE_ADDR
b23518f0 286lm_prev (struct so_list *so)
492928e4
JK
287{
288 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
289 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
290
291 return extract_typed_address (so->lm_info->lm + lmo->l_prev_offset,
292 ptr_type);
293}
294
13437d4b 295static CORE_ADDR
b23518f0 296lm_name (struct so_list *so)
13437d4b 297{
4b188b9f 298 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 299 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
13437d4b 300
cfaefc65 301 return extract_typed_address (so->lm_info->lm + lmo->l_name_offset,
b6da22b0 302 ptr_type);
13437d4b
KB
303}
304
13437d4b 305static int
b23518f0 306ignore_first_link_map_entry (struct so_list *so)
13437d4b 307{
e499d0f1
DJ
308 /* Assume that everything is a library if the dynamic loader was loaded
309 late by a static executable. */
0763ab81 310 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
e499d0f1
DJ
311 return 0;
312
b23518f0 313 return lm_prev (so) == 0;
13437d4b
KB
314}
315
6c95b8df 316/* Per pspace SVR4 specific data. */
13437d4b 317
1a816a87
PA
318struct svr4_info
319{
c378eb4e 320 CORE_ADDR debug_base; /* Base of dynamic linker structures. */
1a816a87
PA
321
322 /* Validity flag for debug_loader_offset. */
323 int debug_loader_offset_p;
324
325 /* Load address for the dynamic linker, inferred. */
326 CORE_ADDR debug_loader_offset;
327
328 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
329 char *debug_loader_name;
330
331 /* Load map address for the main executable. */
332 CORE_ADDR main_lm_addr;
1a816a87 333
6c95b8df
PA
334 CORE_ADDR interp_text_sect_low;
335 CORE_ADDR interp_text_sect_high;
336 CORE_ADDR interp_plt_sect_low;
337 CORE_ADDR interp_plt_sect_high;
338};
1a816a87 339
6c95b8df
PA
340/* Per-program-space data key. */
341static const struct program_space_data *solib_svr4_pspace_data;
1a816a87 342
6c95b8df
PA
343static void
344svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
1a816a87 345{
6c95b8df 346 struct svr4_info *info;
1a816a87 347
6c95b8df
PA
348 info = program_space_data (pspace, solib_svr4_pspace_data);
349 xfree (info);
1a816a87
PA
350}
351
6c95b8df
PA
352/* Get the current svr4 data. If none is found yet, add it now. This
353 function always returns a valid object. */
34439770 354
6c95b8df
PA
355static struct svr4_info *
356get_svr4_info (void)
1a816a87 357{
6c95b8df 358 struct svr4_info *info;
1a816a87 359
6c95b8df
PA
360 info = program_space_data (current_program_space, solib_svr4_pspace_data);
361 if (info != NULL)
362 return info;
34439770 363
6c95b8df
PA
364 info = XZALLOC (struct svr4_info);
365 set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
366 return info;
1a816a87 367}
93a57060 368
13437d4b
KB
369/* Local function prototypes */
370
bc043ef3 371static int match_main (const char *);
13437d4b 372
7f86f058 373/* Lookup the value for a specific symbol.
13437d4b
KB
374
375 An expensive way to lookup the value of a single symbol for
376 bfd's that are only temporary anyway. This is used by the
377 shared library support to find the address of the debugger
2bbe3cc1 378 notification routine in the shared library.
13437d4b 379
2bbe3cc1
DJ
380 The returned symbol may be in a code or data section; functions
381 will normally be in a code section, but may be in a data section
382 if this architecture uses function descriptors.
87f84c9d 383
13437d4b 384 Note that 0 is specifically allowed as an error return (no
7f86f058 385 such symbol). */
13437d4b
KB
386
387static CORE_ADDR
bc043ef3 388bfd_lookup_symbol (bfd *abfd, const char *symname)
13437d4b 389{
435b259c 390 long storage_needed;
13437d4b
KB
391 asymbol *sym;
392 asymbol **symbol_table;
393 unsigned int number_of_symbols;
394 unsigned int i;
395 struct cleanup *back_to;
396 CORE_ADDR symaddr = 0;
397
398 storage_needed = bfd_get_symtab_upper_bound (abfd);
399
400 if (storage_needed > 0)
401 {
402 symbol_table = (asymbol **) xmalloc (storage_needed);
4efb68b1 403 back_to = make_cleanup (xfree, symbol_table);
13437d4b
KB
404 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
405
406 for (i = 0; i < number_of_symbols; i++)
407 {
408 sym = *symbol_table++;
6314a349 409 if (strcmp (sym->name, symname) == 0
2bbe3cc1 410 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
13437d4b 411 {
2bbe3cc1 412 /* BFD symbols are section relative. */
13437d4b
KB
413 symaddr = sym->value + sym->section->vma;
414 break;
415 }
416 }
417 do_cleanups (back_to);
418 }
419
420 if (symaddr)
421 return symaddr;
422
423 /* On FreeBSD, the dynamic linker is stripped by default. So we'll
424 have to check the dynamic string table too. */
425
426 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
427
428 if (storage_needed > 0)
429 {
430 symbol_table = (asymbol **) xmalloc (storage_needed);
4efb68b1 431 back_to = make_cleanup (xfree, symbol_table);
13437d4b
KB
432 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
433
434 for (i = 0; i < number_of_symbols; i++)
435 {
436 sym = *symbol_table++;
87f84c9d 437
6314a349 438 if (strcmp (sym->name, symname) == 0
2bbe3cc1 439 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
13437d4b 440 {
2bbe3cc1 441 /* BFD symbols are section relative. */
13437d4b
KB
442 symaddr = sym->value + sym->section->vma;
443 break;
444 }
445 }
446 do_cleanups (back_to);
447 }
448
449 return symaddr;
450}
451
97ec2c2f
UW
452
453/* Read program header TYPE from inferior memory. The header is found
454 by scanning the OS auxillary vector.
455
09919ac2
JK
456 If TYPE == -1, return the program headers instead of the contents of
457 one program header.
458
97ec2c2f
UW
459 Return a pointer to allocated memory holding the program header contents,
460 or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the
461 size of those contents is returned to P_SECT_SIZE. Likewise, the target
462 architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE. */
463
464static gdb_byte *
465read_program_header (int type, int *p_sect_size, int *p_arch_size)
466{
e17a4113 467 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
97ec2c2f
UW
468 CORE_ADDR at_phdr, at_phent, at_phnum;
469 int arch_size, sect_size;
470 CORE_ADDR sect_addr;
471 gdb_byte *buf;
472
473 /* Get required auxv elements from target. */
474 if (target_auxv_search (&current_target, AT_PHDR, &at_phdr) <= 0)
475 return 0;
476 if (target_auxv_search (&current_target, AT_PHENT, &at_phent) <= 0)
477 return 0;
478 if (target_auxv_search (&current_target, AT_PHNUM, &at_phnum) <= 0)
479 return 0;
480 if (!at_phdr || !at_phnum)
481 return 0;
482
483 /* Determine ELF architecture type. */
484 if (at_phent == sizeof (Elf32_External_Phdr))
485 arch_size = 32;
486 else if (at_phent == sizeof (Elf64_External_Phdr))
487 arch_size = 64;
488 else
489 return 0;
490
09919ac2
JK
491 /* Find the requested segment. */
492 if (type == -1)
493 {
494 sect_addr = at_phdr;
495 sect_size = at_phent * at_phnum;
496 }
497 else if (arch_size == 32)
97ec2c2f
UW
498 {
499 Elf32_External_Phdr phdr;
500 int i;
501
502 /* Search for requested PHDR. */
503 for (i = 0; i < at_phnum; i++)
504 {
505 if (target_read_memory (at_phdr + i * sizeof (phdr),
506 (gdb_byte *)&phdr, sizeof (phdr)))
507 return 0;
508
e17a4113
UW
509 if (extract_unsigned_integer ((gdb_byte *)phdr.p_type,
510 4, byte_order) == type)
97ec2c2f
UW
511 break;
512 }
513
514 if (i == at_phnum)
515 return 0;
516
517 /* Retrieve address and size. */
e17a4113
UW
518 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
519 4, byte_order);
520 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
521 4, byte_order);
97ec2c2f
UW
522 }
523 else
524 {
525 Elf64_External_Phdr phdr;
526 int i;
527
528 /* Search for requested PHDR. */
529 for (i = 0; i < at_phnum; i++)
530 {
531 if (target_read_memory (at_phdr + i * sizeof (phdr),
532 (gdb_byte *)&phdr, sizeof (phdr)))
533 return 0;
534
e17a4113
UW
535 if (extract_unsigned_integer ((gdb_byte *)phdr.p_type,
536 4, byte_order) == type)
97ec2c2f
UW
537 break;
538 }
539
540 if (i == at_phnum)
541 return 0;
542
543 /* Retrieve address and size. */
e17a4113
UW
544 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
545 8, byte_order);
546 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
547 8, byte_order);
97ec2c2f
UW
548 }
549
550 /* Read in requested program header. */
551 buf = xmalloc (sect_size);
552 if (target_read_memory (sect_addr, buf, sect_size))
553 {
554 xfree (buf);
555 return NULL;
556 }
557
558 if (p_arch_size)
559 *p_arch_size = arch_size;
560 if (p_sect_size)
561 *p_sect_size = sect_size;
562
563 return buf;
564}
565
566
567/* Return program interpreter string. */
568static gdb_byte *
569find_program_interpreter (void)
570{
571 gdb_byte *buf = NULL;
572
573 /* If we have an exec_bfd, use its section table. */
574 if (exec_bfd
575 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
576 {
577 struct bfd_section *interp_sect;
578
579 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
580 if (interp_sect != NULL)
581 {
97ec2c2f
UW
582 int sect_size = bfd_section_size (exec_bfd, interp_sect);
583
584 buf = xmalloc (sect_size);
585 bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size);
586 }
587 }
588
589 /* If we didn't find it, use the target auxillary vector. */
590 if (!buf)
591 buf = read_program_header (PT_INTERP, NULL, NULL);
592
593 return buf;
594}
595
596
c378eb4e 597/* Scan for DYNTAG in .dynamic section of ABFD. If DYNTAG is found 1 is
3a40aaa0
UW
598 returned and the corresponding PTR is set. */
599
600static int
601scan_dyntag (int dyntag, bfd *abfd, CORE_ADDR *ptr)
602{
603 int arch_size, step, sect_size;
604 long dyn_tag;
b381ea14 605 CORE_ADDR dyn_ptr, dyn_addr;
65728c26 606 gdb_byte *bufend, *bufstart, *buf;
3a40aaa0
UW
607 Elf32_External_Dyn *x_dynp_32;
608 Elf64_External_Dyn *x_dynp_64;
609 struct bfd_section *sect;
61f0d762 610 struct target_section *target_section;
3a40aaa0
UW
611
612 if (abfd == NULL)
613 return 0;
0763ab81
PA
614
615 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
616 return 0;
617
3a40aaa0
UW
618 arch_size = bfd_get_arch_size (abfd);
619 if (arch_size == -1)
0763ab81 620 return 0;
3a40aaa0
UW
621
622 /* Find the start address of the .dynamic section. */
623 sect = bfd_get_section_by_name (abfd, ".dynamic");
624 if (sect == NULL)
625 return 0;
61f0d762
JK
626
627 for (target_section = current_target_sections->sections;
628 target_section < current_target_sections->sections_end;
629 target_section++)
630 if (sect == target_section->the_bfd_section)
631 break;
b381ea14
JK
632 if (target_section < current_target_sections->sections_end)
633 dyn_addr = target_section->addr;
634 else
635 {
636 /* ABFD may come from OBJFILE acting only as a symbol file without being
637 loaded into the target (see add_symbol_file_command). This case is
638 such fallback to the file VMA address without the possibility of
639 having the section relocated to its actual in-memory address. */
640
641 dyn_addr = bfd_section_vma (abfd, sect);
642 }
3a40aaa0 643
65728c26
DJ
644 /* Read in .dynamic from the BFD. We will get the actual value
645 from memory later. */
3a40aaa0 646 sect_size = bfd_section_size (abfd, sect);
65728c26
DJ
647 buf = bufstart = alloca (sect_size);
648 if (!bfd_get_section_contents (abfd, sect,
649 buf, 0, sect_size))
650 return 0;
3a40aaa0
UW
651
652 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
653 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
654 : sizeof (Elf64_External_Dyn);
655 for (bufend = buf + sect_size;
656 buf < bufend;
657 buf += step)
658 {
659 if (arch_size == 32)
660 {
661 x_dynp_32 = (Elf32_External_Dyn *) buf;
662 dyn_tag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
663 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
664 }
65728c26 665 else
3a40aaa0
UW
666 {
667 x_dynp_64 = (Elf64_External_Dyn *) buf;
668 dyn_tag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
669 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
670 }
671 if (dyn_tag == DT_NULL)
672 return 0;
673 if (dyn_tag == dyntag)
674 {
65728c26
DJ
675 /* If requested, try to read the runtime value of this .dynamic
676 entry. */
3a40aaa0 677 if (ptr)
65728c26 678 {
b6da22b0 679 struct type *ptr_type;
65728c26
DJ
680 gdb_byte ptr_buf[8];
681 CORE_ADDR ptr_addr;
682
b6da22b0 683 ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
b381ea14 684 ptr_addr = dyn_addr + (buf - bufstart) + arch_size / 8;
65728c26 685 if (target_read_memory (ptr_addr, ptr_buf, arch_size / 8) == 0)
b6da22b0 686 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
65728c26
DJ
687 *ptr = dyn_ptr;
688 }
689 return 1;
3a40aaa0
UW
690 }
691 }
692
693 return 0;
694}
695
97ec2c2f
UW
696/* Scan for DYNTAG in .dynamic section of the target's main executable,
697 found by consulting the OS auxillary vector. If DYNTAG is found 1 is
698 returned and the corresponding PTR is set. */
699
700static int
701scan_dyntag_auxv (int dyntag, CORE_ADDR *ptr)
702{
e17a4113 703 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
97ec2c2f
UW
704 int sect_size, arch_size, step;
705 long dyn_tag;
706 CORE_ADDR dyn_ptr;
707 gdb_byte *bufend, *bufstart, *buf;
708
709 /* Read in .dynamic section. */
710 buf = bufstart = read_program_header (PT_DYNAMIC, &sect_size, &arch_size);
711 if (!buf)
712 return 0;
713
714 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
715 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
716 : sizeof (Elf64_External_Dyn);
717 for (bufend = buf + sect_size;
718 buf < bufend;
719 buf += step)
720 {
721 if (arch_size == 32)
722 {
723 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
433759f7 724
e17a4113
UW
725 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
726 4, byte_order);
727 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
728 4, byte_order);
97ec2c2f
UW
729 }
730 else
731 {
732 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
433759f7 733
e17a4113
UW
734 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
735 8, byte_order);
736 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
737 8, byte_order);
97ec2c2f
UW
738 }
739 if (dyn_tag == DT_NULL)
740 break;
741
742 if (dyn_tag == dyntag)
743 {
744 if (ptr)
745 *ptr = dyn_ptr;
746
747 xfree (bufstart);
748 return 1;
749 }
750 }
751
752 xfree (bufstart);
753 return 0;
754}
755
7f86f058
PA
756/* Locate the base address of dynamic linker structs for SVR4 elf
757 targets.
13437d4b
KB
758
759 For SVR4 elf targets the address of the dynamic linker's runtime
760 structure is contained within the dynamic info section in the
761 executable file. The dynamic section is also mapped into the
762 inferior address space. Because the runtime loader fills in the
763 real address before starting the inferior, we have to read in the
764 dynamic info section from the inferior address space.
765 If there are any errors while trying to find the address, we
7f86f058 766 silently return 0, otherwise the found address is returned. */
13437d4b
KB
767
768static CORE_ADDR
769elf_locate_base (void)
770{
3a40aaa0
UW
771 struct minimal_symbol *msymbol;
772 CORE_ADDR dyn_ptr;
13437d4b 773
65728c26
DJ
774 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
775 instead of DT_DEBUG, although they sometimes contain an unused
776 DT_DEBUG. */
97ec2c2f
UW
777 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr)
778 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr))
3a40aaa0 779 {
b6da22b0 780 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
3a40aaa0 781 gdb_byte *pbuf;
b6da22b0 782 int pbuf_size = TYPE_LENGTH (ptr_type);
433759f7 783
3a40aaa0
UW
784 pbuf = alloca (pbuf_size);
785 /* DT_MIPS_RLD_MAP contains a pointer to the address
786 of the dynamic link structure. */
787 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
e499d0f1 788 return 0;
b6da22b0 789 return extract_typed_address (pbuf, ptr_type);
e499d0f1
DJ
790 }
791
65728c26 792 /* Find DT_DEBUG. */
97ec2c2f
UW
793 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr)
794 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr))
65728c26
DJ
795 return dyn_ptr;
796
3a40aaa0
UW
797 /* This may be a static executable. Look for the symbol
798 conventionally named _r_debug, as a last resort. */
799 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
800 if (msymbol != NULL)
801 return SYMBOL_VALUE_ADDRESS (msymbol);
13437d4b
KB
802
803 /* DT_DEBUG entry not found. */
804 return 0;
805}
806
7f86f058 807/* Locate the base address of dynamic linker structs.
13437d4b
KB
808
809 For both the SunOS and SVR4 shared library implementations, if the
810 inferior executable has been linked dynamically, there is a single
811 address somewhere in the inferior's data space which is the key to
812 locating all of the dynamic linker's runtime structures. This
813 address is the value of the debug base symbol. The job of this
814 function is to find and return that address, or to return 0 if there
815 is no such address (the executable is statically linked for example).
816
817 For SunOS, the job is almost trivial, since the dynamic linker and
818 all of it's structures are statically linked to the executable at
819 link time. Thus the symbol for the address we are looking for has
820 already been added to the minimal symbol table for the executable's
821 objfile at the time the symbol file's symbols were read, and all we
822 have to do is look it up there. Note that we explicitly do NOT want
823 to find the copies in the shared library.
824
825 The SVR4 version is a bit more complicated because the address
826 is contained somewhere in the dynamic info section. We have to go
827 to a lot more work to discover the address of the debug base symbol.
828 Because of this complexity, we cache the value we find and return that
829 value on subsequent invocations. Note there is no copy in the
7f86f058 830 executable symbol tables. */
13437d4b
KB
831
832static CORE_ADDR
1a816a87 833locate_base (struct svr4_info *info)
13437d4b 834{
13437d4b
KB
835 /* Check to see if we have a currently valid address, and if so, avoid
836 doing all this work again and just return the cached address. If
837 we have no cached address, try to locate it in the dynamic info
d5a921c9
KB
838 section for ELF executables. There's no point in doing any of this
839 though if we don't have some link map offsets to work with. */
13437d4b 840
1a816a87 841 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
0763ab81 842 info->debug_base = elf_locate_base ();
1a816a87 843 return info->debug_base;
13437d4b
KB
844}
845
e4cd0d6a 846/* Find the first element in the inferior's dynamic link map, and
6f992fbf
JB
847 return its address in the inferior. Return zero if the address
848 could not be determined.
13437d4b 849
e4cd0d6a
MK
850 FIXME: Perhaps we should validate the info somehow, perhaps by
851 checking r_version for a known version number, or r_state for
852 RT_CONSISTENT. */
13437d4b
KB
853
854static CORE_ADDR
1a816a87 855solib_svr4_r_map (struct svr4_info *info)
13437d4b 856{
4b188b9f 857 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 858 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
08597104
JB
859 CORE_ADDR addr = 0;
860 volatile struct gdb_exception ex;
13437d4b 861
08597104
JB
862 TRY_CATCH (ex, RETURN_MASK_ERROR)
863 {
864 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
865 ptr_type);
866 }
867 exception_print (gdb_stderr, ex);
868 return addr;
e4cd0d6a 869}
13437d4b 870
7cd25cfc
DJ
871/* Find r_brk from the inferior's debug base. */
872
873static CORE_ADDR
1a816a87 874solib_svr4_r_brk (struct svr4_info *info)
7cd25cfc
DJ
875{
876 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 877 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
7cd25cfc 878
1a816a87
PA
879 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
880 ptr_type);
7cd25cfc
DJ
881}
882
e4cd0d6a
MK
883/* Find the link map for the dynamic linker (if it is not in the
884 normal list of loaded shared objects). */
13437d4b 885
e4cd0d6a 886static CORE_ADDR
1a816a87 887solib_svr4_r_ldsomap (struct svr4_info *info)
e4cd0d6a
MK
888{
889 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 890 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
e17a4113 891 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
e4cd0d6a 892 ULONGEST version;
13437d4b 893
e4cd0d6a
MK
894 /* Check version, and return zero if `struct r_debug' doesn't have
895 the r_ldsomap member. */
1a816a87
PA
896 version
897 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
e17a4113 898 lmo->r_version_size, byte_order);
e4cd0d6a
MK
899 if (version < 2 || lmo->r_ldsomap_offset == -1)
900 return 0;
13437d4b 901
1a816a87 902 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
b6da22b0 903 ptr_type);
13437d4b
KB
904}
905
de18c1d8
JM
906/* On Solaris systems with some versions of the dynamic linker,
907 ld.so's l_name pointer points to the SONAME in the string table
908 rather than into writable memory. So that GDB can find shared
909 libraries when loading a core file generated by gcore, ensure that
910 memory areas containing the l_name string are saved in the core
911 file. */
912
913static int
914svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
915{
916 struct svr4_info *info;
917 CORE_ADDR ldsomap;
918 struct so_list *new;
919 struct cleanup *old_chain;
920 struct link_map_offsets *lmo;
74de0234 921 CORE_ADDR name_lm;
de18c1d8
JM
922
923 info = get_svr4_info ();
924
925 info->debug_base = 0;
926 locate_base (info);
927 if (!info->debug_base)
928 return 0;
929
930 ldsomap = solib_svr4_r_ldsomap (info);
931 if (!ldsomap)
932 return 0;
933
934 lmo = svr4_fetch_link_map_offsets ();
935 new = XZALLOC (struct so_list);
936 old_chain = make_cleanup (xfree, new);
937 new->lm_info = xmalloc (sizeof (struct lm_info));
938 make_cleanup (xfree, new->lm_info);
939 new->lm_info->l_addr = (CORE_ADDR)-1;
940 new->lm_info->lm_addr = ldsomap;
941 new->lm_info->lm = xzalloc (lmo->link_map_size);
942 make_cleanup (xfree, new->lm_info->lm);
943 read_memory (ldsomap, new->lm_info->lm, lmo->link_map_size);
74de0234 944 name_lm = lm_name (new);
de18c1d8
JM
945 do_cleanups (old_chain);
946
74de0234 947 return (name_lm >= vaddr && name_lm < vaddr + size);
de18c1d8
JM
948}
949
7f86f058 950/* Implement the "open_symbol_file_object" target_so_ops method.
13437d4b 951
7f86f058
PA
952 If no open symbol file, attempt to locate and open the main symbol
953 file. On SVR4 systems, this is the first link map entry. If its
954 name is here, we can open it. Useful when attaching to a process
955 without first loading its symbol file. */
13437d4b
KB
956
957static int
958open_symbol_file_object (void *from_ttyp)
959{
960 CORE_ADDR lm, l_name;
961 char *filename;
962 int errcode;
963 int from_tty = *(int *)from_ttyp;
4b188b9f 964 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0
UW
965 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
966 int l_name_size = TYPE_LENGTH (ptr_type);
cfaefc65 967 gdb_byte *l_name_buf = xmalloc (l_name_size);
b8c9b27d 968 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
6c95b8df 969 struct svr4_info *info = get_svr4_info ();
13437d4b
KB
970
971 if (symfile_objfile)
9e2f0ad4 972 if (!query (_("Attempt to reload symbols from process? ")))
3bb47e8b
TT
973 {
974 do_cleanups (cleanups);
975 return 0;
976 }
13437d4b 977
7cd25cfc 978 /* Always locate the debug struct, in case it has moved. */
1a816a87
PA
979 info->debug_base = 0;
980 if (locate_base (info) == 0)
3bb47e8b
TT
981 {
982 do_cleanups (cleanups);
983 return 0; /* failed somehow... */
984 }
13437d4b
KB
985
986 /* First link map member should be the executable. */
1a816a87 987 lm = solib_svr4_r_map (info);
e4cd0d6a 988 if (lm == 0)
3bb47e8b
TT
989 {
990 do_cleanups (cleanups);
991 return 0; /* failed somehow... */
992 }
13437d4b
KB
993
994 /* Read address of name from target memory to GDB. */
cfaefc65 995 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
13437d4b 996
cfaefc65 997 /* Convert the address to host format. */
b6da22b0 998 l_name = extract_typed_address (l_name_buf, ptr_type);
13437d4b 999
13437d4b 1000 if (l_name == 0)
3bb47e8b
TT
1001 {
1002 do_cleanups (cleanups);
1003 return 0; /* No filename. */
1004 }
13437d4b
KB
1005
1006 /* Now fetch the filename from target memory. */
1007 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
ea5bf0a1 1008 make_cleanup (xfree, filename);
13437d4b
KB
1009
1010 if (errcode)
1011 {
8a3fe4f8 1012 warning (_("failed to read exec filename from attached file: %s"),
13437d4b 1013 safe_strerror (errcode));
3bb47e8b 1014 do_cleanups (cleanups);
13437d4b
KB
1015 return 0;
1016 }
1017
13437d4b 1018 /* Have a pathname: read the symbol file. */
1adeb98a 1019 symbol_file_add_main (filename, from_tty);
13437d4b 1020
3bb47e8b 1021 do_cleanups (cleanups);
13437d4b
KB
1022 return 1;
1023}
13437d4b 1024
34439770
DJ
1025/* If no shared library information is available from the dynamic
1026 linker, build a fallback list from other sources. */
1027
1028static struct so_list *
1029svr4_default_sos (void)
1030{
6c95b8df 1031 struct svr4_info *info = get_svr4_info ();
1a816a87 1032
34439770
DJ
1033 struct so_list *head = NULL;
1034 struct so_list **link_ptr = &head;
1035
1a816a87 1036 if (info->debug_loader_offset_p)
34439770
DJ
1037 {
1038 struct so_list *new = XZALLOC (struct so_list);
1039
1040 new->lm_info = xmalloc (sizeof (struct lm_info));
1041
1042 /* Nothing will ever check the cached copy of the link
1043 map if we set l_addr. */
1a816a87 1044 new->lm_info->l_addr = info->debug_loader_offset;
93a57060 1045 new->lm_info->lm_addr = 0;
34439770
DJ
1046 new->lm_info->lm = NULL;
1047
1a816a87
PA
1048 strncpy (new->so_name, info->debug_loader_name,
1049 SO_NAME_MAX_PATH_SIZE - 1);
34439770
DJ
1050 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1051 strcpy (new->so_original_name, new->so_name);
1052
1053 *link_ptr = new;
1054 link_ptr = &new->next;
1055 }
1056
1057 return head;
1058}
1059
7f86f058 1060/* Implement the "current_sos" target_so_ops method. */
13437d4b
KB
1061
1062static struct so_list *
1063svr4_current_sos (void)
1064{
492928e4 1065 CORE_ADDR lm, prev_lm;
13437d4b
KB
1066 struct so_list *head = 0;
1067 struct so_list **link_ptr = &head;
e4cd0d6a 1068 CORE_ADDR ldsomap = 0;
1a816a87
PA
1069 struct svr4_info *info;
1070
6c95b8df 1071 info = get_svr4_info ();
13437d4b 1072
7cd25cfc 1073 /* Always locate the debug struct, in case it has moved. */
1a816a87
PA
1074 info->debug_base = 0;
1075 locate_base (info);
13437d4b 1076
7cd25cfc
DJ
1077 /* If we can't find the dynamic linker's base structure, this
1078 must not be a dynamically linked executable. Hmm. */
1a816a87 1079 if (! info->debug_base)
7cd25cfc 1080 return svr4_default_sos ();
13437d4b
KB
1081
1082 /* Walk the inferior's link map list, and build our list of
1083 `struct so_list' nodes. */
492928e4 1084 prev_lm = 0;
1a816a87 1085 lm = solib_svr4_r_map (info);
34439770 1086
13437d4b
KB
1087 while (lm)
1088 {
4b188b9f 1089 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f4456994 1090 struct so_list *new = XZALLOC (struct so_list);
b8c9b27d 1091 struct cleanup *old_chain = make_cleanup (xfree, new);
492928e4 1092 CORE_ADDR next_lm;
13437d4b 1093
13437d4b 1094 new->lm_info = xmalloc (sizeof (struct lm_info));
b8c9b27d 1095 make_cleanup (xfree, new->lm_info);
13437d4b 1096
831004b7 1097 new->lm_info->l_addr = (CORE_ADDR)-1;
93a57060 1098 new->lm_info->lm_addr = lm;
f4456994 1099 new->lm_info->lm = xzalloc (lmo->link_map_size);
b8c9b27d 1100 make_cleanup (xfree, new->lm_info->lm);
13437d4b
KB
1101
1102 read_memory (lm, new->lm_info->lm, lmo->link_map_size);
1103
b23518f0 1104 next_lm = lm_next (new);
492928e4 1105
b23518f0 1106 if (lm_prev (new) != prev_lm)
492928e4
JK
1107 {
1108 warning (_("Corrupted shared library list"));
1109 free_so (new);
1110 next_lm = 0;
1111 }
13437d4b
KB
1112
1113 /* For SVR4 versions, the first entry in the link map is for the
1114 inferior executable, so we must ignore it. For some versions of
1115 SVR4, it has no name. For others (Solaris 2.3 for example), it
1116 does have a name, so we can no longer use a missing name to
c378eb4e 1117 decide when to ignore it. */
b23518f0 1118 else if (ignore_first_link_map_entry (new) && ldsomap == 0)
93a57060 1119 {
1a816a87 1120 info->main_lm_addr = new->lm_info->lm_addr;
93a57060
DJ
1121 free_so (new);
1122 }
13437d4b
KB
1123 else
1124 {
1125 int errcode;
1126 char *buffer;
1127
1128 /* Extract this shared object's name. */
b23518f0 1129 target_read_string (lm_name (new), &buffer,
13437d4b
KB
1130 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1131 if (errcode != 0)
8a3fe4f8
AC
1132 warning (_("Can't read pathname for load map: %s."),
1133 safe_strerror (errcode));
13437d4b
KB
1134 else
1135 {
1136 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
1137 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
13437d4b
KB
1138 strcpy (new->so_original_name, new->so_name);
1139 }
ea5bf0a1 1140 xfree (buffer);
13437d4b
KB
1141
1142 /* If this entry has no name, or its name matches the name
1143 for the main executable, don't include it in the list. */
1144 if (! new->so_name[0]
1145 || match_main (new->so_name))
1146 free_so (new);
1147 else
1148 {
1149 new->next = 0;
1150 *link_ptr = new;
1151 link_ptr = &new->next;
1152 }
1153 }
1154
492928e4
JK
1155 prev_lm = lm;
1156 lm = next_lm;
1157
e4cd0d6a
MK
1158 /* On Solaris, the dynamic linker is not in the normal list of
1159 shared objects, so make sure we pick it up too. Having
1160 symbol information for the dynamic linker is quite crucial
1161 for skipping dynamic linker resolver code. */
1162 if (lm == 0 && ldsomap == 0)
492928e4
JK
1163 {
1164 lm = ldsomap = solib_svr4_r_ldsomap (info);
1165 prev_lm = 0;
1166 }
e4cd0d6a 1167
13437d4b
KB
1168 discard_cleanups (old_chain);
1169 }
1170
34439770
DJ
1171 if (head == NULL)
1172 return svr4_default_sos ();
1173
13437d4b
KB
1174 return head;
1175}
1176
93a57060 1177/* Get the address of the link_map for a given OBJFILE. */
bc4a16ae
EZ
1178
1179CORE_ADDR
1180svr4_fetch_objfile_link_map (struct objfile *objfile)
1181{
93a57060 1182 struct so_list *so;
6c95b8df 1183 struct svr4_info *info = get_svr4_info ();
bc4a16ae 1184
93a57060 1185 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1a816a87 1186 if (info->main_lm_addr == 0)
93a57060 1187 solib_add (NULL, 0, &current_target, auto_solib_add);
bc4a16ae 1188
93a57060
DJ
1189 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1190 if (objfile == symfile_objfile)
1a816a87 1191 return info->main_lm_addr;
93a57060
DJ
1192
1193 /* The other link map addresses may be found by examining the list
1194 of shared libraries. */
1195 for (so = master_so_list (); so; so = so->next)
1196 if (so->objfile == objfile)
1197 return so->lm_info->lm_addr;
1198
1199 /* Not found! */
bc4a16ae
EZ
1200 return 0;
1201}
13437d4b
KB
1202
1203/* On some systems, the only way to recognize the link map entry for
1204 the main executable file is by looking at its name. Return
1205 non-zero iff SONAME matches one of the known main executable names. */
1206
1207static int
bc043ef3 1208match_main (const char *soname)
13437d4b 1209{
bc043ef3 1210 const char * const *mainp;
13437d4b
KB
1211
1212 for (mainp = main_name_list; *mainp != NULL; mainp++)
1213 {
1214 if (strcmp (soname, *mainp) == 0)
1215 return (1);
1216 }
1217
1218 return (0);
1219}
1220
13437d4b
KB
1221/* Return 1 if PC lies in the dynamic symbol resolution code of the
1222 SVR4 run time loader. */
13437d4b 1223
7d522c90 1224int
d7fa2ae2 1225svr4_in_dynsym_resolve_code (CORE_ADDR pc)
13437d4b 1226{
6c95b8df
PA
1227 struct svr4_info *info = get_svr4_info ();
1228
1229 return ((pc >= info->interp_text_sect_low
1230 && pc < info->interp_text_sect_high)
1231 || (pc >= info->interp_plt_sect_low
1232 && pc < info->interp_plt_sect_high)
0875794a
JK
1233 || in_plt_section (pc, NULL)
1234 || in_gnu_ifunc_stub (pc));
13437d4b 1235}
13437d4b 1236
2f4950cd
AC
1237/* Given an executable's ABFD and target, compute the entry-point
1238 address. */
1239
1240static CORE_ADDR
1241exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1242{
1243 /* KevinB wrote ... for most targets, the address returned by
1244 bfd_get_start_address() is the entry point for the start
1245 function. But, for some targets, bfd_get_start_address() returns
1246 the address of a function descriptor from which the entry point
1247 address may be extracted. This address is extracted by
1248 gdbarch_convert_from_func_ptr_addr(). The method
1249 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1250 function for targets which don't use function descriptors. */
1cf3db46 1251 return gdbarch_convert_from_func_ptr_addr (target_gdbarch,
2f4950cd
AC
1252 bfd_get_start_address (abfd),
1253 targ);
1254}
13437d4b 1255
7f86f058 1256/* Arrange for dynamic linker to hit breakpoint.
13437d4b
KB
1257
1258 Both the SunOS and the SVR4 dynamic linkers have, as part of their
1259 debugger interface, support for arranging for the inferior to hit
1260 a breakpoint after mapping in the shared libraries. This function
1261 enables that breakpoint.
1262
1263 For SunOS, there is a special flag location (in_debugger) which we
1264 set to 1. When the dynamic linker sees this flag set, it will set
1265 a breakpoint at a location known only to itself, after saving the
1266 original contents of that place and the breakpoint address itself,
1267 in it's own internal structures. When we resume the inferior, it
1268 will eventually take a SIGTRAP when it runs into the breakpoint.
1269 We handle this (in a different place) by restoring the contents of
1270 the breakpointed location (which is only known after it stops),
1271 chasing around to locate the shared libraries that have been
1272 loaded, then resuming.
1273
1274 For SVR4, the debugger interface structure contains a member (r_brk)
1275 which is statically initialized at the time the shared library is
1276 built, to the offset of a function (_r_debug_state) which is guaran-
1277 teed to be called once before mapping in a library, and again when
1278 the mapping is complete. At the time we are examining this member,
1279 it contains only the unrelocated offset of the function, so we have
1280 to do our own relocation. Later, when the dynamic linker actually
1281 runs, it relocates r_brk to be the actual address of _r_debug_state().
1282
1283 The debugger interface structure also contains an enumeration which
1284 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
1285 depending upon whether or not the library is being mapped or unmapped,
7f86f058 1286 and then set to RT_CONSISTENT after the library is mapped/unmapped. */
13437d4b
KB
1287
1288static int
268a4a75 1289enable_break (struct svr4_info *info, int from_tty)
13437d4b 1290{
13437d4b 1291 struct minimal_symbol *msymbol;
bc043ef3 1292 const char * const *bkpt_namep;
13437d4b 1293 asection *interp_sect;
97ec2c2f 1294 gdb_byte *interp_name;
7cd25cfc 1295 CORE_ADDR sym_addr;
13437d4b 1296
6c95b8df
PA
1297 info->interp_text_sect_low = info->interp_text_sect_high = 0;
1298 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
13437d4b 1299
7cd25cfc
DJ
1300 /* If we already have a shared library list in the target, and
1301 r_debug contains r_brk, set the breakpoint there - this should
1302 mean r_brk has already been relocated. Assume the dynamic linker
1303 is the object containing r_brk. */
1304
268a4a75 1305 solib_add (NULL, from_tty, &current_target, auto_solib_add);
7cd25cfc 1306 sym_addr = 0;
1a816a87
PA
1307 if (info->debug_base && solib_svr4_r_map (info) != 0)
1308 sym_addr = solib_svr4_r_brk (info);
7cd25cfc
DJ
1309
1310 if (sym_addr != 0)
1311 {
1312 struct obj_section *os;
1313
b36ec657 1314 sym_addr = gdbarch_addr_bits_remove
1cf3db46 1315 (target_gdbarch, gdbarch_convert_from_func_ptr_addr (target_gdbarch,
3e43a32a
MS
1316 sym_addr,
1317 &current_target));
b36ec657 1318
48379de6
DE
1319 /* On at least some versions of Solaris there's a dynamic relocation
1320 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
1321 we get control before the dynamic linker has self-relocated.
1322 Check if SYM_ADDR is in a known section, if it is assume we can
1323 trust its value. This is just a heuristic though, it could go away
1324 or be replaced if it's getting in the way.
1325
1326 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
1327 however it's spelled in your particular system) is ARM or Thumb.
1328 That knowledge is encoded in the address, if it's Thumb the low bit
1329 is 1. However, we've stripped that info above and it's not clear
1330 what all the consequences are of passing a non-addr_bits_remove'd
1331 address to create_solib_event_breakpoint. The call to
1332 find_pc_section verifies we know about the address and have some
1333 hope of computing the right kind of breakpoint to use (via
1334 symbol info). It does mean that GDB needs to be pointed at a
1335 non-stripped version of the dynamic linker in order to obtain
1336 information it already knows about. Sigh. */
1337
7cd25cfc
DJ
1338 os = find_pc_section (sym_addr);
1339 if (os != NULL)
1340 {
1341 /* Record the relocated start and end address of the dynamic linker
1342 text and plt section for svr4_in_dynsym_resolve_code. */
1343 bfd *tmp_bfd;
1344 CORE_ADDR load_addr;
1345
1346 tmp_bfd = os->objfile->obfd;
1347 load_addr = ANOFFSET (os->objfile->section_offsets,
1348 os->objfile->sect_index_text);
1349
1350 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1351 if (interp_sect)
1352 {
6c95b8df 1353 info->interp_text_sect_low =
7cd25cfc 1354 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1355 info->interp_text_sect_high =
1356 info->interp_text_sect_low
1357 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
1358 }
1359 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1360 if (interp_sect)
1361 {
6c95b8df 1362 info->interp_plt_sect_low =
7cd25cfc 1363 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1364 info->interp_plt_sect_high =
1365 info->interp_plt_sect_low
1366 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
1367 }
1368
a6d9a66e 1369 create_solib_event_breakpoint (target_gdbarch, sym_addr);
7cd25cfc
DJ
1370 return 1;
1371 }
1372 }
1373
97ec2c2f 1374 /* Find the program interpreter; if not found, warn the user and drop
13437d4b 1375 into the old breakpoint at symbol code. */
97ec2c2f
UW
1376 interp_name = find_program_interpreter ();
1377 if (interp_name)
13437d4b 1378 {
8ad2fcde
KB
1379 CORE_ADDR load_addr = 0;
1380 int load_addr_found = 0;
2ec9a4f8 1381 int loader_found_in_list = 0;
f8766ec1 1382 struct so_list *so;
e4f7b8c8 1383 bfd *tmp_bfd = NULL;
2f4950cd 1384 struct target_ops *tmp_bfd_target;
f1838a98 1385 volatile struct gdb_exception ex;
13437d4b 1386
7cd25cfc 1387 sym_addr = 0;
13437d4b
KB
1388
1389 /* Now we need to figure out where the dynamic linker was
1390 loaded so that we can load its symbols and place a breakpoint
1391 in the dynamic linker itself.
1392
1393 This address is stored on the stack. However, I've been unable
1394 to find any magic formula to find it for Solaris (appears to
1395 be trivial on GNU/Linux). Therefore, we have to try an alternate
1396 mechanism to find the dynamic linker's base address. */
e4f7b8c8 1397
f1838a98
UW
1398 TRY_CATCH (ex, RETURN_MASK_ALL)
1399 {
97ec2c2f 1400 tmp_bfd = solib_bfd_open (interp_name);
f1838a98 1401 }
13437d4b
KB
1402 if (tmp_bfd == NULL)
1403 goto bkpt_at_symbol;
1404
2f4950cd
AC
1405 /* Now convert the TMP_BFD into a target. That way target, as
1406 well as BFD operations can be used. Note that closing the
1407 target will also close the underlying bfd. */
1408 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
1409
f8766ec1
KB
1410 /* On a running target, we can get the dynamic linker's base
1411 address from the shared library table. */
f8766ec1
KB
1412 so = master_so_list ();
1413 while (so)
8ad2fcde 1414 {
97ec2c2f 1415 if (svr4_same_1 (interp_name, so->so_original_name))
8ad2fcde
KB
1416 {
1417 load_addr_found = 1;
2ec9a4f8 1418 loader_found_in_list = 1;
b23518f0 1419 load_addr = lm_addr_check (so, tmp_bfd);
8ad2fcde
KB
1420 break;
1421 }
f8766ec1 1422 so = so->next;
8ad2fcde
KB
1423 }
1424
8d4e36ba
JB
1425 /* If we were not able to find the base address of the loader
1426 from our so_list, then try using the AT_BASE auxilliary entry. */
1427 if (!load_addr_found)
1428 if (target_auxv_search (&current_target, AT_BASE, &load_addr) > 0)
ad3a0e5b
JK
1429 {
1430 int addr_bit = gdbarch_addr_bit (target_gdbarch);
1431
1432 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
1433 that `+ load_addr' will overflow CORE_ADDR width not creating
1434 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
1435 GDB. */
1436
d182d057 1437 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
ad3a0e5b 1438 {
d182d057 1439 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
ad3a0e5b
JK
1440 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd,
1441 tmp_bfd_target);
1442
1443 gdb_assert (load_addr < space_size);
1444
1445 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
1446 64bit ld.so with 32bit executable, it should not happen. */
1447
1448 if (tmp_entry_point < space_size
1449 && tmp_entry_point + load_addr >= space_size)
1450 load_addr -= space_size;
1451 }
1452
1453 load_addr_found = 1;
1454 }
8d4e36ba 1455
8ad2fcde
KB
1456 /* Otherwise we find the dynamic linker's base address by examining
1457 the current pc (which should point at the entry point for the
8d4e36ba
JB
1458 dynamic linker) and subtracting the offset of the entry point.
1459
1460 This is more fragile than the previous approaches, but is a good
1461 fallback method because it has actually been working well in
1462 most cases. */
8ad2fcde 1463 if (!load_addr_found)
fb14de7b 1464 {
c2250ad1
UW
1465 struct regcache *regcache
1466 = get_thread_arch_regcache (inferior_ptid, target_gdbarch);
433759f7 1467
fb14de7b
UW
1468 load_addr = (regcache_read_pc (regcache)
1469 - exec_entry_point (tmp_bfd, tmp_bfd_target));
1470 }
2ec9a4f8
DJ
1471
1472 if (!loader_found_in_list)
34439770 1473 {
1a816a87
PA
1474 info->debug_loader_name = xstrdup (interp_name);
1475 info->debug_loader_offset_p = 1;
1476 info->debug_loader_offset = load_addr;
268a4a75 1477 solib_add (NULL, from_tty, &current_target, auto_solib_add);
34439770 1478 }
13437d4b
KB
1479
1480 /* Record the relocated start and end address of the dynamic linker
d7fa2ae2 1481 text and plt section for svr4_in_dynsym_resolve_code. */
13437d4b
KB
1482 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1483 if (interp_sect)
1484 {
6c95b8df 1485 info->interp_text_sect_low =
13437d4b 1486 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1487 info->interp_text_sect_high =
1488 info->interp_text_sect_low
1489 + bfd_section_size (tmp_bfd, interp_sect);
13437d4b
KB
1490 }
1491 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1492 if (interp_sect)
1493 {
6c95b8df 1494 info->interp_plt_sect_low =
13437d4b 1495 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1496 info->interp_plt_sect_high =
1497 info->interp_plt_sect_low
1498 + bfd_section_size (tmp_bfd, interp_sect);
13437d4b
KB
1499 }
1500
1501 /* Now try to set a breakpoint in the dynamic linker. */
1502 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1503 {
2bbe3cc1 1504 sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep);
13437d4b
KB
1505 if (sym_addr != 0)
1506 break;
1507 }
1508
2bbe3cc1
DJ
1509 if (sym_addr != 0)
1510 /* Convert 'sym_addr' from a function pointer to an address.
1511 Because we pass tmp_bfd_target instead of the current
1512 target, this will always produce an unrelocated value. */
1cf3db46 1513 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
2bbe3cc1
DJ
1514 sym_addr,
1515 tmp_bfd_target);
1516
2f4950cd
AC
1517 /* We're done with both the temporary bfd and target. Remember,
1518 closing the target closes the underlying bfd. */
1519 target_close (tmp_bfd_target, 0);
13437d4b
KB
1520
1521 if (sym_addr != 0)
1522 {
a6d9a66e 1523 create_solib_event_breakpoint (target_gdbarch, load_addr + sym_addr);
97ec2c2f 1524 xfree (interp_name);
13437d4b
KB
1525 return 1;
1526 }
1527
1528 /* For whatever reason we couldn't set a breakpoint in the dynamic
1529 linker. Warn and drop into the old code. */
1530 bkpt_at_symbol:
97ec2c2f 1531 xfree (interp_name);
82d03102
PG
1532 warning (_("Unable to find dynamic linker breakpoint function.\n"
1533 "GDB will be unable to debug shared library initializers\n"
1534 "and track explicitly loaded dynamic code."));
13437d4b 1535 }
13437d4b 1536
e499d0f1
DJ
1537 /* Scan through the lists of symbols, trying to look up the symbol and
1538 set a breakpoint there. Terminate loop when we/if we succeed. */
1539
1540 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1541 {
1542 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1543 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1544 {
de64a9ac
JM
1545 sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1546 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1547 sym_addr,
1548 &current_target);
1549 create_solib_event_breakpoint (target_gdbarch, sym_addr);
e499d0f1
DJ
1550 return 1;
1551 }
1552 }
13437d4b 1553
c6490bf2 1554 if (!current_inferior ()->attach_flag)
13437d4b 1555 {
c6490bf2 1556 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
13437d4b 1557 {
c6490bf2
KB
1558 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1559 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1560 {
1561 sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1562 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1563 sym_addr,
1564 &current_target);
1565 create_solib_event_breakpoint (target_gdbarch, sym_addr);
1566 return 1;
1567 }
13437d4b
KB
1568 }
1569 }
542c95c2 1570 return 0;
13437d4b
KB
1571}
1572
7f86f058 1573/* Implement the "special_symbol_handling" target_so_ops method. */
13437d4b
KB
1574
1575static void
1576svr4_special_symbol_handling (void)
1577{
7f86f058 1578 /* Nothing to do. */
13437d4b
KB
1579}
1580
09919ac2
JK
1581/* Read the ELF program headers from ABFD. Return the contents and
1582 set *PHDRS_SIZE to the size of the program headers. */
e2a44558 1583
09919ac2
JK
1584static gdb_byte *
1585read_program_headers_from_bfd (bfd *abfd, int *phdrs_size)
e2a44558 1586{
09919ac2
JK
1587 Elf_Internal_Ehdr *ehdr;
1588 gdb_byte *buf;
e2a44558 1589
09919ac2 1590 ehdr = elf_elfheader (abfd);
b8040f19 1591
09919ac2
JK
1592 *phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
1593 if (*phdrs_size == 0)
1594 return NULL;
1595
1596 buf = xmalloc (*phdrs_size);
1597 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
1598 || bfd_bread (buf, *phdrs_size, abfd) != *phdrs_size)
1599 {
1600 xfree (buf);
1601 return NULL;
1602 }
1603
1604 return buf;
b8040f19
JK
1605}
1606
01c30d6e
JK
1607/* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
1608 exec_bfd. Otherwise return 0.
1609
1610 We relocate all of the sections by the same amount. This
c378eb4e 1611 behavior is mandated by recent editions of the System V ABI.
b8040f19
JK
1612 According to the System V Application Binary Interface,
1613 Edition 4.1, page 5-5:
1614
1615 ... Though the system chooses virtual addresses for
1616 individual processes, it maintains the segments' relative
1617 positions. Because position-independent code uses relative
1618 addressesing between segments, the difference between
1619 virtual addresses in memory must match the difference
1620 between virtual addresses in the file. The difference
1621 between the virtual address of any segment in memory and
1622 the corresponding virtual address in the file is thus a
1623 single constant value for any one executable or shared
1624 object in a given process. This difference is the base
1625 address. One use of the base address is to relocate the
1626 memory image of the program during dynamic linking.
1627
1628 The same language also appears in Edition 4.0 of the System V
09919ac2
JK
1629 ABI and is left unspecified in some of the earlier editions.
1630
1631 Decide if the objfile needs to be relocated. As indicated above, we will
1632 only be here when execution is stopped. But during attachment PC can be at
1633 arbitrary address therefore regcache_read_pc can be misleading (contrary to
1634 the auxv AT_ENTRY value). Moreover for executable with interpreter section
1635 regcache_read_pc would point to the interpreter and not the main executable.
1636
1637 So, to summarize, relocations are necessary when the start address obtained
1638 from the executable is different from the address in auxv AT_ENTRY entry.
d989b283 1639
09919ac2
JK
1640 [ The astute reader will note that we also test to make sure that
1641 the executable in question has the DYNAMIC flag set. It is my
1642 opinion that this test is unnecessary (undesirable even). It
1643 was added to avoid inadvertent relocation of an executable
1644 whose e_type member in the ELF header is not ET_DYN. There may
1645 be a time in the future when it is desirable to do relocations
1646 on other types of files as well in which case this condition
1647 should either be removed or modified to accomodate the new file
1648 type. - Kevin, Nov 2000. ] */
b8040f19 1649
01c30d6e
JK
1650static int
1651svr4_exec_displacement (CORE_ADDR *displacementp)
b8040f19 1652{
41752192
JK
1653 /* ENTRY_POINT is a possible function descriptor - before
1654 a call to gdbarch_convert_from_func_ptr_addr. */
09919ac2 1655 CORE_ADDR entry_point, displacement;
b8040f19
JK
1656
1657 if (exec_bfd == NULL)
1658 return 0;
1659
09919ac2
JK
1660 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
1661 being executed themselves and PIE (Position Independent Executable)
1662 executables are ET_DYN. */
1663
1664 if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0)
1665 return 0;
1666
1667 if (target_auxv_search (&current_target, AT_ENTRY, &entry_point) <= 0)
1668 return 0;
1669
1670 displacement = entry_point - bfd_get_start_address (exec_bfd);
1671
1672 /* Verify the DISPLACEMENT candidate complies with the required page
1673 alignment. It is cheaper than the program headers comparison below. */
1674
1675 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
1676 {
1677 const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd);
1678
1679 /* p_align of PT_LOAD segments does not specify any alignment but
1680 only congruency of addresses:
1681 p_offset % p_align == p_vaddr % p_align
1682 Kernel is free to load the executable with lower alignment. */
1683
1684 if ((displacement & (elf->minpagesize - 1)) != 0)
1685 return 0;
1686 }
1687
1688 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
1689 comparing their program headers. If the program headers in the auxilliary
1690 vector do not match the program headers in the executable, then we are
1691 looking at a different file than the one used by the kernel - for
1692 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
1693
1694 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
1695 {
1696 /* Be optimistic and clear OK only if GDB was able to verify the headers
1697 really do not match. */
1698 int phdrs_size, phdrs2_size, ok = 1;
1699 gdb_byte *buf, *buf2;
0a1e94c7 1700 int arch_size;
09919ac2 1701
0a1e94c7 1702 buf = read_program_header (-1, &phdrs_size, &arch_size);
09919ac2 1703 buf2 = read_program_headers_from_bfd (exec_bfd, &phdrs2_size);
0a1e94c7
JK
1704 if (buf != NULL && buf2 != NULL)
1705 {
1706 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
1707
1708 /* We are dealing with three different addresses. EXEC_BFD
1709 represents current address in on-disk file. target memory content
1710 may be different from EXEC_BFD as the file may have been prelinked
1711 to a different address after the executable has been loaded.
1712 Moreover the address of placement in target memory can be
3e43a32a
MS
1713 different from what the program headers in target memory say -
1714 this is the goal of PIE.
0a1e94c7
JK
1715
1716 Detected DISPLACEMENT covers both the offsets of PIE placement and
1717 possible new prelink performed after start of the program. Here
1718 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
1719 content offset for the verification purpose. */
1720
1721 if (phdrs_size != phdrs2_size
1722 || bfd_get_arch_size (exec_bfd) != arch_size)
1723 ok = 0;
3e43a32a
MS
1724 else if (arch_size == 32
1725 && phdrs_size >= sizeof (Elf32_External_Phdr)
0a1e94c7
JK
1726 && phdrs_size % sizeof (Elf32_External_Phdr) == 0)
1727 {
1728 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
1729 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
1730 CORE_ADDR displacement = 0;
1731 int i;
1732
1733 /* DISPLACEMENT could be found more easily by the difference of
1734 ehdr2->e_entry. But we haven't read the ehdr yet, and we
1735 already have enough information to compute that displacement
1736 with what we've read. */
1737
1738 for (i = 0; i < ehdr2->e_phnum; i++)
1739 if (phdr2[i].p_type == PT_LOAD)
1740 {
1741 Elf32_External_Phdr *phdrp;
1742 gdb_byte *buf_vaddr_p, *buf_paddr_p;
1743 CORE_ADDR vaddr, paddr;
1744 CORE_ADDR displacement_vaddr = 0;
1745 CORE_ADDR displacement_paddr = 0;
1746
1747 phdrp = &((Elf32_External_Phdr *) buf)[i];
1748 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
1749 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
1750
1751 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
1752 byte_order);
1753 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
1754
1755 paddr = extract_unsigned_integer (buf_paddr_p, 4,
1756 byte_order);
1757 displacement_paddr = paddr - phdr2[i].p_paddr;
1758
1759 if (displacement_vaddr == displacement_paddr)
1760 displacement = displacement_vaddr;
1761
1762 break;
1763 }
1764
1765 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
1766
1767 for (i = 0; i < phdrs_size / sizeof (Elf32_External_Phdr); i++)
1768 {
1769 Elf32_External_Phdr *phdrp;
1770 Elf32_External_Phdr *phdr2p;
1771 gdb_byte *buf_vaddr_p, *buf_paddr_p;
1772 CORE_ADDR vaddr, paddr;
43b8e241 1773 asection *plt2_asect;
0a1e94c7
JK
1774
1775 phdrp = &((Elf32_External_Phdr *) buf)[i];
1776 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
1777 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
1778 phdr2p = &((Elf32_External_Phdr *) buf2)[i];
1779
1780 /* PT_GNU_STACK is an exception by being never relocated by
1781 prelink as its addresses are always zero. */
1782
1783 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1784 continue;
1785
1786 /* Check also other adjustment combinations - PR 11786. */
1787
3e43a32a
MS
1788 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
1789 byte_order);
0a1e94c7
JK
1790 vaddr -= displacement;
1791 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
1792
3e43a32a
MS
1793 paddr = extract_unsigned_integer (buf_paddr_p, 4,
1794 byte_order);
0a1e94c7
JK
1795 paddr -= displacement;
1796 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
1797
1798 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1799 continue;
1800
43b8e241
JK
1801 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
1802 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
1803 if (plt2_asect)
1804 {
1805 int content2;
1806 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
1807 CORE_ADDR filesz;
1808
1809 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
1810 & SEC_HAS_CONTENTS) != 0;
1811
1812 filesz = extract_unsigned_integer (buf_filesz_p, 4,
1813 byte_order);
1814
1815 /* PLT2_ASECT is from on-disk file (exec_bfd) while
1816 FILESZ is from the in-memory image. */
1817 if (content2)
1818 filesz += bfd_get_section_size (plt2_asect);
1819 else
1820 filesz -= bfd_get_section_size (plt2_asect);
1821
1822 store_unsigned_integer (buf_filesz_p, 4, byte_order,
1823 filesz);
1824
1825 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1826 continue;
1827 }
1828
0a1e94c7
JK
1829 ok = 0;
1830 break;
1831 }
1832 }
3e43a32a
MS
1833 else if (arch_size == 64
1834 && phdrs_size >= sizeof (Elf64_External_Phdr)
0a1e94c7
JK
1835 && phdrs_size % sizeof (Elf64_External_Phdr) == 0)
1836 {
1837 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
1838 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
1839 CORE_ADDR displacement = 0;
1840 int i;
1841
1842 /* DISPLACEMENT could be found more easily by the difference of
1843 ehdr2->e_entry. But we haven't read the ehdr yet, and we
1844 already have enough information to compute that displacement
1845 with what we've read. */
1846
1847 for (i = 0; i < ehdr2->e_phnum; i++)
1848 if (phdr2[i].p_type == PT_LOAD)
1849 {
1850 Elf64_External_Phdr *phdrp;
1851 gdb_byte *buf_vaddr_p, *buf_paddr_p;
1852 CORE_ADDR vaddr, paddr;
1853 CORE_ADDR displacement_vaddr = 0;
1854 CORE_ADDR displacement_paddr = 0;
1855
1856 phdrp = &((Elf64_External_Phdr *) buf)[i];
1857 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
1858 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
1859
1860 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
1861 byte_order);
1862 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
1863
1864 paddr = extract_unsigned_integer (buf_paddr_p, 8,
1865 byte_order);
1866 displacement_paddr = paddr - phdr2[i].p_paddr;
1867
1868 if (displacement_vaddr == displacement_paddr)
1869 displacement = displacement_vaddr;
1870
1871 break;
1872 }
1873
1874 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
1875
1876 for (i = 0; i < phdrs_size / sizeof (Elf64_External_Phdr); i++)
1877 {
1878 Elf64_External_Phdr *phdrp;
1879 Elf64_External_Phdr *phdr2p;
1880 gdb_byte *buf_vaddr_p, *buf_paddr_p;
1881 CORE_ADDR vaddr, paddr;
43b8e241 1882 asection *plt2_asect;
0a1e94c7
JK
1883
1884 phdrp = &((Elf64_External_Phdr *) buf)[i];
1885 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
1886 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
1887 phdr2p = &((Elf64_External_Phdr *) buf2)[i];
1888
1889 /* PT_GNU_STACK is an exception by being never relocated by
1890 prelink as its addresses are always zero. */
1891
1892 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1893 continue;
1894
1895 /* Check also other adjustment combinations - PR 11786. */
1896
3e43a32a
MS
1897 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
1898 byte_order);
0a1e94c7
JK
1899 vaddr -= displacement;
1900 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
1901
3e43a32a
MS
1902 paddr = extract_unsigned_integer (buf_paddr_p, 8,
1903 byte_order);
0a1e94c7
JK
1904 paddr -= displacement;
1905 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
1906
1907 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1908 continue;
1909
43b8e241
JK
1910 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
1911 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
1912 if (plt2_asect)
1913 {
1914 int content2;
1915 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
1916 CORE_ADDR filesz;
1917
1918 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
1919 & SEC_HAS_CONTENTS) != 0;
1920
1921 filesz = extract_unsigned_integer (buf_filesz_p, 8,
1922 byte_order);
1923
1924 /* PLT2_ASECT is from on-disk file (exec_bfd) while
1925 FILESZ is from the in-memory image. */
1926 if (content2)
1927 filesz += bfd_get_section_size (plt2_asect);
1928 else
1929 filesz -= bfd_get_section_size (plt2_asect);
1930
1931 store_unsigned_integer (buf_filesz_p, 8, byte_order,
1932 filesz);
1933
1934 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1935 continue;
1936 }
1937
0a1e94c7
JK
1938 ok = 0;
1939 break;
1940 }
1941 }
1942 else
1943 ok = 0;
1944 }
09919ac2
JK
1945
1946 xfree (buf);
1947 xfree (buf2);
1948
1949 if (!ok)
1950 return 0;
1951 }
b8040f19 1952
ccf26247
JK
1953 if (info_verbose)
1954 {
1955 /* It can be printed repeatedly as there is no easy way to check
1956 the executable symbols/file has been already relocated to
1957 displacement. */
1958
1959 printf_unfiltered (_("Using PIE (Position Independent Executable) "
1960 "displacement %s for \"%s\".\n"),
1961 paddress (target_gdbarch, displacement),
1962 bfd_get_filename (exec_bfd));
1963 }
1964
01c30d6e
JK
1965 *displacementp = displacement;
1966 return 1;
b8040f19
JK
1967}
1968
1969/* Relocate the main executable. This function should be called upon
c378eb4e 1970 stopping the inferior process at the entry point to the program.
b8040f19
JK
1971 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
1972 different, the main executable is relocated by the proper amount. */
1973
1974static void
1975svr4_relocate_main_executable (void)
1976{
01c30d6e
JK
1977 CORE_ADDR displacement;
1978
4e5799b6
JK
1979 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
1980 probably contains the offsets computed using the PIE displacement
1981 from the previous run, which of course are irrelevant for this run.
1982 So we need to determine the new PIE displacement and recompute the
1983 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
1984 already contains pre-computed offsets.
01c30d6e 1985
4e5799b6 1986 If we cannot compute the PIE displacement, either:
01c30d6e 1987
4e5799b6
JK
1988 - The executable is not PIE.
1989
1990 - SYMFILE_OBJFILE does not match the executable started in the target.
1991 This can happen for main executable symbols loaded at the host while
1992 `ld.so --ld-args main-executable' is loaded in the target.
1993
1994 Then we leave the section offsets untouched and use them as is for
1995 this run. Either:
1996
1997 - These section offsets were properly reset earlier, and thus
1998 already contain the correct values. This can happen for instance
1999 when reconnecting via the remote protocol to a target that supports
2000 the `qOffsets' packet.
2001
2002 - The section offsets were not reset earlier, and the best we can
c378eb4e 2003 hope is that the old offsets are still applicable to the new run. */
01c30d6e
JK
2004
2005 if (! svr4_exec_displacement (&displacement))
2006 return;
b8040f19 2007
01c30d6e
JK
2008 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
2009 addresses. */
b8040f19
JK
2010
2011 if (symfile_objfile)
e2a44558 2012 {
e2a44558 2013 struct section_offsets *new_offsets;
b8040f19 2014 int i;
e2a44558 2015
b8040f19
JK
2016 new_offsets = alloca (symfile_objfile->num_sections
2017 * sizeof (*new_offsets));
e2a44558 2018
b8040f19
JK
2019 for (i = 0; i < symfile_objfile->num_sections; i++)
2020 new_offsets->offsets[i] = displacement;
e2a44558 2021
b8040f19 2022 objfile_relocate (symfile_objfile, new_offsets);
e2a44558 2023 }
51bee8e9
JK
2024 else if (exec_bfd)
2025 {
2026 asection *asect;
2027
2028 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
2029 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
2030 (bfd_section_vma (exec_bfd, asect)
2031 + displacement));
2032 }
e2a44558
KB
2033}
2034
7f86f058 2035/* Implement the "create_inferior_hook" target_solib_ops method.
13437d4b
KB
2036
2037 For SVR4 executables, this first instruction is either the first
2038 instruction in the dynamic linker (for dynamically linked
2039 executables) or the instruction at "start" for statically linked
2040 executables. For dynamically linked executables, the system
2041 first exec's /lib/libc.so.N, which contains the dynamic linker,
2042 and starts it running. The dynamic linker maps in any needed
2043 shared libraries, maps in the actual user executable, and then
2044 jumps to "start" in the user executable.
2045
7f86f058
PA
2046 We can arrange to cooperate with the dynamic linker to discover the
2047 names of shared libraries that are dynamically linked, and the base
2048 addresses to which they are linked.
13437d4b
KB
2049
2050 This function is responsible for discovering those names and
2051 addresses, and saving sufficient information about them to allow
2052 their symbols to be read at a later time.
2053
2054 FIXME
2055
2056 Between enable_break() and disable_break(), this code does not
2057 properly handle hitting breakpoints which the user might have
2058 set in the startup code or in the dynamic linker itself. Proper
2059 handling will probably have to wait until the implementation is
2060 changed to use the "breakpoint handler function" method.
2061
7f86f058 2062 Also, what if child has exit()ed? Must exit loop somehow. */
13437d4b 2063
e2a44558 2064static void
268a4a75 2065svr4_solib_create_inferior_hook (int from_tty)
13437d4b 2066{
1cd337a5 2067#if defined(_SCO_DS)
d6b48e9c 2068 struct inferior *inf;
2020b7ab 2069 struct thread_info *tp;
1cd337a5 2070#endif /* defined(_SCO_DS) */
1a816a87
PA
2071 struct svr4_info *info;
2072
6c95b8df 2073 info = get_svr4_info ();
2020b7ab 2074
e2a44558 2075 /* Relocate the main executable if necessary. */
86e4bafc 2076 svr4_relocate_main_executable ();
e2a44558 2077
c91c8c16
PA
2078 /* No point setting a breakpoint in the dynamic linker if we can't
2079 hit it (e.g., a core file, or a trace file). */
2080 if (!target_has_execution)
2081 return;
2082
d5a921c9 2083 if (!svr4_have_link_map_offsets ())
513f5903 2084 return;
d5a921c9 2085
268a4a75 2086 if (!enable_break (info, from_tty))
542c95c2 2087 return;
13437d4b 2088
ab31aa69
KB
2089#if defined(_SCO_DS)
2090 /* SCO needs the loop below, other systems should be using the
13437d4b
KB
2091 special shared library breakpoints and the shared library breakpoint
2092 service routine.
2093
2094 Now run the target. It will eventually hit the breakpoint, at
2095 which point all of the libraries will have been mapped in and we
2096 can go groveling around in the dynamic linker structures to find
c378eb4e 2097 out what we need to know about them. */
13437d4b 2098
d6b48e9c 2099 inf = current_inferior ();
2020b7ab
PA
2100 tp = inferior_thread ();
2101
13437d4b 2102 clear_proceed_status ();
16c381f0
JK
2103 inf->control.stop_soon = STOP_QUIETLY;
2104 tp->suspend.stop_signal = TARGET_SIGNAL_0;
13437d4b
KB
2105 do
2106 {
16c381f0 2107 target_resume (pid_to_ptid (-1), 0, tp->suspend.stop_signal);
e4c8541f 2108 wait_for_inferior ();
13437d4b 2109 }
16c381f0
JK
2110 while (tp->suspend.stop_signal != TARGET_SIGNAL_TRAP);
2111 inf->control.stop_soon = NO_STOP_QUIETLY;
ab31aa69 2112#endif /* defined(_SCO_DS) */
13437d4b
KB
2113}
2114
2115static void
2116svr4_clear_solib (void)
2117{
6c95b8df
PA
2118 struct svr4_info *info;
2119
2120 info = get_svr4_info ();
2121 info->debug_base = 0;
2122 info->debug_loader_offset_p = 0;
2123 info->debug_loader_offset = 0;
2124 xfree (info->debug_loader_name);
2125 info->debug_loader_name = NULL;
13437d4b
KB
2126}
2127
2128static void
2129svr4_free_so (struct so_list *so)
2130{
b8c9b27d
KB
2131 xfree (so->lm_info->lm);
2132 xfree (so->lm_info);
13437d4b
KB
2133}
2134
6bb7be43
JB
2135
2136/* Clear any bits of ADDR that wouldn't fit in a target-format
2137 data pointer. "Data pointer" here refers to whatever sort of
2138 address the dynamic linker uses to manage its sections. At the
2139 moment, we don't support shared libraries on any processors where
2140 code and data pointers are different sizes.
2141
2142 This isn't really the right solution. What we really need here is
2143 a way to do arithmetic on CORE_ADDR values that respects the
2144 natural pointer/address correspondence. (For example, on the MIPS,
2145 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
2146 sign-extend the value. There, simply truncating the bits above
819844ad 2147 gdbarch_ptr_bit, as we do below, is no good.) This should probably
6bb7be43
JB
2148 be a new gdbarch method or something. */
2149static CORE_ADDR
2150svr4_truncate_ptr (CORE_ADDR addr)
2151{
1cf3db46 2152 if (gdbarch_ptr_bit (target_gdbarch) == sizeof (CORE_ADDR) * 8)
6bb7be43
JB
2153 /* We don't need to truncate anything, and the bit twiddling below
2154 will fail due to overflow problems. */
2155 return addr;
2156 else
1cf3db46 2157 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch)) - 1);
6bb7be43
JB
2158}
2159
2160
749499cb
KB
2161static void
2162svr4_relocate_section_addresses (struct so_list *so,
0542c86d 2163 struct target_section *sec)
749499cb 2164{
b23518f0 2165 sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so,
cc10cae3 2166 sec->bfd));
b23518f0 2167 sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so,
cc10cae3 2168 sec->bfd));
749499cb 2169}
4b188b9f 2170\f
749499cb 2171
4b188b9f 2172/* Architecture-specific operations. */
6bb7be43 2173
4b188b9f
MK
2174/* Per-architecture data key. */
2175static struct gdbarch_data *solib_svr4_data;
e5e2b9ff 2176
4b188b9f 2177struct solib_svr4_ops
e5e2b9ff 2178{
4b188b9f
MK
2179 /* Return a description of the layout of `struct link_map'. */
2180 struct link_map_offsets *(*fetch_link_map_offsets)(void);
2181};
e5e2b9ff 2182
4b188b9f 2183/* Return a default for the architecture-specific operations. */
e5e2b9ff 2184
4b188b9f
MK
2185static void *
2186solib_svr4_init (struct obstack *obstack)
e5e2b9ff 2187{
4b188b9f 2188 struct solib_svr4_ops *ops;
e5e2b9ff 2189
4b188b9f 2190 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
8d005789 2191 ops->fetch_link_map_offsets = NULL;
4b188b9f 2192 return ops;
e5e2b9ff
KB
2193}
2194
4b188b9f 2195/* Set the architecture-specific `struct link_map_offsets' fetcher for
7e3cb44c 2196 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
1c4dcb57 2197
21479ded 2198void
e5e2b9ff
KB
2199set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
2200 struct link_map_offsets *(*flmo) (void))
21479ded 2201{
4b188b9f
MK
2202 struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data);
2203
2204 ops->fetch_link_map_offsets = flmo;
7e3cb44c
UW
2205
2206 set_solib_ops (gdbarch, &svr4_so_ops);
21479ded
KB
2207}
2208
4b188b9f
MK
2209/* Fetch a link_map_offsets structure using the architecture-specific
2210 `struct link_map_offsets' fetcher. */
1c4dcb57 2211
4b188b9f
MK
2212static struct link_map_offsets *
2213svr4_fetch_link_map_offsets (void)
21479ded 2214{
1cf3db46 2215 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
4b188b9f
MK
2216
2217 gdb_assert (ops->fetch_link_map_offsets);
2218 return ops->fetch_link_map_offsets ();
21479ded
KB
2219}
2220
4b188b9f
MK
2221/* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
2222
2223static int
2224svr4_have_link_map_offsets (void)
2225{
1cf3db46 2226 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
433759f7 2227
4b188b9f
MK
2228 return (ops->fetch_link_map_offsets != NULL);
2229}
2230\f
2231
e4bbbda8
MK
2232/* Most OS'es that have SVR4-style ELF dynamic libraries define a
2233 `struct r_debug' and a `struct link_map' that are binary compatible
2234 with the origional SVR4 implementation. */
2235
2236/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
2237 for an ILP32 SVR4 system. */
d989b283 2238
e4bbbda8
MK
2239struct link_map_offsets *
2240svr4_ilp32_fetch_link_map_offsets (void)
2241{
2242 static struct link_map_offsets lmo;
2243 static struct link_map_offsets *lmp = NULL;
2244
2245 if (lmp == NULL)
2246 {
2247 lmp = &lmo;
2248
e4cd0d6a
MK
2249 lmo.r_version_offset = 0;
2250 lmo.r_version_size = 4;
e4bbbda8 2251 lmo.r_map_offset = 4;
7cd25cfc 2252 lmo.r_brk_offset = 8;
e4cd0d6a 2253 lmo.r_ldsomap_offset = 20;
e4bbbda8
MK
2254
2255 /* Everything we need is in the first 20 bytes. */
2256 lmo.link_map_size = 20;
2257 lmo.l_addr_offset = 0;
e4bbbda8 2258 lmo.l_name_offset = 4;
cc10cae3 2259 lmo.l_ld_offset = 8;
e4bbbda8 2260 lmo.l_next_offset = 12;
e4bbbda8 2261 lmo.l_prev_offset = 16;
e4bbbda8
MK
2262 }
2263
2264 return lmp;
2265}
2266
2267/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
2268 for an LP64 SVR4 system. */
d989b283 2269
e4bbbda8
MK
2270struct link_map_offsets *
2271svr4_lp64_fetch_link_map_offsets (void)
2272{
2273 static struct link_map_offsets lmo;
2274 static struct link_map_offsets *lmp = NULL;
2275
2276 if (lmp == NULL)
2277 {
2278 lmp = &lmo;
2279
e4cd0d6a
MK
2280 lmo.r_version_offset = 0;
2281 lmo.r_version_size = 4;
e4bbbda8 2282 lmo.r_map_offset = 8;
7cd25cfc 2283 lmo.r_brk_offset = 16;
e4cd0d6a 2284 lmo.r_ldsomap_offset = 40;
e4bbbda8
MK
2285
2286 /* Everything we need is in the first 40 bytes. */
2287 lmo.link_map_size = 40;
2288 lmo.l_addr_offset = 0;
e4bbbda8 2289 lmo.l_name_offset = 8;
cc10cae3 2290 lmo.l_ld_offset = 16;
e4bbbda8 2291 lmo.l_next_offset = 24;
e4bbbda8 2292 lmo.l_prev_offset = 32;
e4bbbda8
MK
2293 }
2294
2295 return lmp;
2296}
2297\f
2298
7d522c90 2299struct target_so_ops svr4_so_ops;
13437d4b 2300
c378eb4e 2301/* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
3a40aaa0
UW
2302 different rule for symbol lookup. The lookup begins here in the DSO, not in
2303 the main executable. */
2304
2305static struct symbol *
2306elf_lookup_lib_symbol (const struct objfile *objfile,
2307 const char *name,
21b556f4 2308 const domain_enum domain)
3a40aaa0 2309{
61f0d762
JK
2310 bfd *abfd;
2311
2312 if (objfile == symfile_objfile)
2313 abfd = exec_bfd;
2314 else
2315 {
2316 /* OBJFILE should have been passed as the non-debug one. */
2317 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
2318
2319 abfd = objfile->obfd;
2320 }
2321
2322 if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL) != 1)
3a40aaa0
UW
2323 return NULL;
2324
94af9270 2325 return lookup_global_symbol_from_objfile (objfile, name, domain);
3a40aaa0
UW
2326}
2327
a78f21af
AC
2328extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
2329
13437d4b
KB
2330void
2331_initialize_svr4_solib (void)
2332{
4b188b9f 2333 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
6c95b8df
PA
2334 solib_svr4_pspace_data
2335 = register_program_space_data_with_cleanup (svr4_pspace_data_cleanup);
4b188b9f 2336
749499cb 2337 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
13437d4b
KB
2338 svr4_so_ops.free_so = svr4_free_so;
2339 svr4_so_ops.clear_solib = svr4_clear_solib;
2340 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
2341 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
2342 svr4_so_ops.current_sos = svr4_current_sos;
2343 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
d7fa2ae2 2344 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
831a0c44 2345 svr4_so_ops.bfd_open = solib_bfd_open;
3a40aaa0 2346 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
a7c02bc8 2347 svr4_so_ops.same = svr4_same;
de18c1d8 2348 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
13437d4b 2349}
This page took 2.124935 seconds and 4 git commands to generate.