[PATCH] Add micromips support to the MIPS simulator
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
CommitLineData
ab31aa69 1/* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2f4950cd 2
32d0add0 3 Copyright (C) 1990-2015 Free Software Foundation, Inc.
13437d4b
KB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
13437d4b
KB
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
13437d4b 19
13437d4b
KB
20#include "defs.h"
21
13437d4b 22#include "elf/external.h"
21479ded 23#include "elf/common.h"
f7856c8f 24#include "elf/mips.h"
13437d4b
KB
25
26#include "symtab.h"
27#include "bfd.h"
28#include "symfile.h"
29#include "objfiles.h"
30#include "gdbcore.h"
13437d4b 31#include "target.h"
13437d4b 32#include "inferior.h"
45741a9c 33#include "infrun.h"
fb14de7b 34#include "regcache.h"
2020b7ab 35#include "gdbthread.h"
1a816a87 36#include "observer.h"
13437d4b
KB
37
38#include "solist.h"
bba93f6c 39#include "solib.h"
13437d4b
KB
40#include "solib-svr4.h"
41
2f4950cd 42#include "bfd-target.h"
cc10cae3 43#include "elf-bfd.h"
2f4950cd 44#include "exec.h"
8d4e36ba 45#include "auxv.h"
695c3173 46#include "gdb_bfd.h"
f9e14852 47#include "probe.h"
2f4950cd 48
e5e2b9ff 49static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
d5a921c9 50static int svr4_have_link_map_offsets (void);
9f2982ff 51static void svr4_relocate_main_executable (void);
f9e14852 52static void svr4_free_library_list (void *p_list);
1c4dcb57 53
c378eb4e 54/* Link map info to include in an allocated so_list entry. */
13437d4b
KB
55
56struct lm_info
57 {
cc10cae3 58 /* Amount by which addresses in the binary should be relocated to
3957565a
JK
59 match the inferior. The direct inferior value is L_ADDR_INFERIOR.
60 When prelinking is involved and the prelink base address changes,
61 we may need a different offset - the recomputed offset is in L_ADDR.
62 It is commonly the same value. It is cached as we want to warn about
63 the difference and compute it only once. L_ADDR is valid
64 iff L_ADDR_P. */
65 CORE_ADDR l_addr, l_addr_inferior;
66 unsigned int l_addr_p : 1;
93a57060
DJ
67
68 /* The target location of lm. */
69 CORE_ADDR lm_addr;
3957565a
JK
70
71 /* Values read in from inferior's fields of the same name. */
72 CORE_ADDR l_ld, l_next, l_prev, l_name;
13437d4b
KB
73 };
74
75/* On SVR4 systems, a list of symbols in the dynamic linker where
76 GDB can try to place a breakpoint to monitor shared library
77 events.
78
79 If none of these symbols are found, or other errors occur, then
80 SVR4 systems will fall back to using a symbol as the "startup
81 mapping complete" breakpoint address. */
82
bc043ef3 83static const char * const solib_break_names[] =
13437d4b
KB
84{
85 "r_debug_state",
86 "_r_debug_state",
87 "_dl_debug_state",
88 "rtld_db_dlactivity",
4c7dcb84 89 "__dl_rtld_db_dlactivity",
1f72e589 90 "_rtld_debug_state",
4c0122c8 91
13437d4b
KB
92 NULL
93};
13437d4b 94
bc043ef3 95static const char * const bkpt_names[] =
13437d4b 96{
13437d4b 97 "_start",
ad3dcc5c 98 "__start",
13437d4b
KB
99 "main",
100 NULL
101};
13437d4b 102
bc043ef3 103static const char * const main_name_list[] =
13437d4b
KB
104{
105 "main_$main",
106 NULL
107};
108
f9e14852
GB
109/* What to do when a probe stop occurs. */
110
111enum probe_action
112{
113 /* Something went seriously wrong. Stop using probes and
114 revert to using the older interface. */
115 PROBES_INTERFACE_FAILED,
116
117 /* No action is required. The shared object list is still
118 valid. */
119 DO_NOTHING,
120
121 /* The shared object list should be reloaded entirely. */
122 FULL_RELOAD,
123
124 /* Attempt to incrementally update the shared object list. If
125 the update fails or is not possible, fall back to reloading
126 the list in full. */
127 UPDATE_OR_RELOAD,
128};
129
130/* A probe's name and its associated action. */
131
132struct probe_info
133{
134 /* The name of the probe. */
135 const char *name;
136
137 /* What to do when a probe stop occurs. */
138 enum probe_action action;
139};
140
141/* A list of named probes and their associated actions. If all
142 probes are present in the dynamic linker then the probes-based
143 interface will be used. */
144
145static const struct probe_info probe_info[] =
146{
147 { "init_start", DO_NOTHING },
148 { "init_complete", FULL_RELOAD },
149 { "map_start", DO_NOTHING },
150 { "map_failed", DO_NOTHING },
151 { "reloc_complete", UPDATE_OR_RELOAD },
152 { "unmap_start", DO_NOTHING },
153 { "unmap_complete", FULL_RELOAD },
154};
155
156#define NUM_PROBES ARRAY_SIZE (probe_info)
157
4d7b2d5b
JB
158/* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
159 the same shared library. */
160
161static int
162svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
163{
164 if (strcmp (gdb_so_name, inferior_so_name) == 0)
165 return 1;
166
167 /* On Solaris, when starting inferior we think that dynamic linker is
d989b283
PP
168 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
169 contains /lib/ld.so.1. Sometimes one file is a link to another, but
4d7b2d5b
JB
170 sometimes they have identical content, but are not linked to each
171 other. We don't restrict this check for Solaris, but the chances
172 of running into this situation elsewhere are very low. */
173 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
174 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
175 return 1;
176
177 /* Similarly, we observed the same issue with sparc64, but with
178 different locations. */
179 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
180 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
181 return 1;
182
183 return 0;
184}
185
186static int
187svr4_same (struct so_list *gdb, struct so_list *inferior)
188{
189 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
190}
191
3957565a
JK
192static struct lm_info *
193lm_info_read (CORE_ADDR lm_addr)
13437d4b 194{
4b188b9f 195 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
3957565a
JK
196 gdb_byte *lm;
197 struct lm_info *lm_info;
198 struct cleanup *back_to;
199
200 lm = xmalloc (lmo->link_map_size);
201 back_to = make_cleanup (xfree, lm);
202
203 if (target_read_memory (lm_addr, lm, lmo->link_map_size) != 0)
204 {
205 warning (_("Error reading shared library list entry at %s"),
f5656ead 206 paddress (target_gdbarch (), lm_addr)),
3957565a
JK
207 lm_info = NULL;
208 }
209 else
210 {
f5656ead 211 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
13437d4b 212
8d749320 213 lm_info = XCNEW (struct lm_info);
3957565a
JK
214 lm_info->lm_addr = lm_addr;
215
216 lm_info->l_addr_inferior = extract_typed_address (&lm[lmo->l_addr_offset],
217 ptr_type);
218 lm_info->l_ld = extract_typed_address (&lm[lmo->l_ld_offset], ptr_type);
219 lm_info->l_next = extract_typed_address (&lm[lmo->l_next_offset],
220 ptr_type);
221 lm_info->l_prev = extract_typed_address (&lm[lmo->l_prev_offset],
222 ptr_type);
223 lm_info->l_name = extract_typed_address (&lm[lmo->l_name_offset],
224 ptr_type);
225 }
226
227 do_cleanups (back_to);
228
229 return lm_info;
13437d4b
KB
230}
231
cc10cae3 232static int
b23518f0 233has_lm_dynamic_from_link_map (void)
cc10cae3
AO
234{
235 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
236
cfaefc65 237 return lmo->l_ld_offset >= 0;
cc10cae3
AO
238}
239
cc10cae3 240static CORE_ADDR
f65ce5fb 241lm_addr_check (const struct so_list *so, bfd *abfd)
cc10cae3 242{
3957565a 243 if (!so->lm_info->l_addr_p)
cc10cae3
AO
244 {
245 struct bfd_section *dyninfo_sect;
28f34a8f 246 CORE_ADDR l_addr, l_dynaddr, dynaddr;
cc10cae3 247
3957565a 248 l_addr = so->lm_info->l_addr_inferior;
cc10cae3 249
b23518f0 250 if (! abfd || ! has_lm_dynamic_from_link_map ())
cc10cae3
AO
251 goto set_addr;
252
3957565a 253 l_dynaddr = so->lm_info->l_ld;
cc10cae3
AO
254
255 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
256 if (dyninfo_sect == NULL)
257 goto set_addr;
258
259 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
260
261 if (dynaddr + l_addr != l_dynaddr)
262 {
28f34a8f 263 CORE_ADDR align = 0x1000;
4e1fc9c9 264 CORE_ADDR minpagesize = align;
28f34a8f 265
cc10cae3
AO
266 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
267 {
268 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
269 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
270 int i;
271
272 align = 1;
273
274 for (i = 0; i < ehdr->e_phnum; i++)
275 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
276 align = phdr[i].p_align;
4e1fc9c9
JK
277
278 minpagesize = get_elf_backend_data (abfd)->minpagesize;
cc10cae3
AO
279 }
280
281 /* Turn it into a mask. */
282 align--;
283
284 /* If the changes match the alignment requirements, we
285 assume we're using a core file that was generated by the
286 same binary, just prelinked with a different base offset.
287 If it doesn't match, we may have a different binary, the
288 same binary with the dynamic table loaded at an unrelated
289 location, or anything, really. To avoid regressions,
290 don't adjust the base offset in the latter case, although
291 odds are that, if things really changed, debugging won't
5c0d192f
JK
292 quite work.
293
294 One could expect more the condition
295 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
296 but the one below is relaxed for PPC. The PPC kernel supports
297 either 4k or 64k page sizes. To be prepared for 64k pages,
298 PPC ELF files are built using an alignment requirement of 64k.
299 However, when running on a kernel supporting 4k pages, the memory
300 mapping of the library may not actually happen on a 64k boundary!
301
302 (In the usual case where (l_addr & align) == 0, this check is
4e1fc9c9
JK
303 equivalent to the possibly expected check above.)
304
305 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
5c0d192f 306
02835898
JK
307 l_addr = l_dynaddr - dynaddr;
308
4e1fc9c9
JK
309 if ((l_addr & (minpagesize - 1)) == 0
310 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
cc10cae3 311 {
701ed6dc 312 if (info_verbose)
ccf26247
JK
313 printf_unfiltered (_("Using PIC (Position Independent Code) "
314 "prelink displacement %s for \"%s\".\n"),
f5656ead 315 paddress (target_gdbarch (), l_addr),
ccf26247 316 so->so_name);
cc10cae3 317 }
79d4c408 318 else
02835898
JK
319 {
320 /* There is no way to verify the library file matches. prelink
321 can during prelinking of an unprelinked file (or unprelinking
322 of a prelinked file) shift the DYNAMIC segment by arbitrary
323 offset without any page size alignment. There is no way to
324 find out the ELF header and/or Program Headers for a limited
325 verification if it they match. One could do a verification
326 of the DYNAMIC segment. Still the found address is the best
327 one GDB could find. */
328
329 warning (_(".dynamic section for \"%s\" "
330 "is not at the expected address "
331 "(wrong library or version mismatch?)"), so->so_name);
332 }
cc10cae3
AO
333 }
334
335 set_addr:
336 so->lm_info->l_addr = l_addr;
3957565a 337 so->lm_info->l_addr_p = 1;
cc10cae3
AO
338 }
339
340 return so->lm_info->l_addr;
341}
342
6c95b8df 343/* Per pspace SVR4 specific data. */
13437d4b 344
1a816a87
PA
345struct svr4_info
346{
c378eb4e 347 CORE_ADDR debug_base; /* Base of dynamic linker structures. */
1a816a87
PA
348
349 /* Validity flag for debug_loader_offset. */
350 int debug_loader_offset_p;
351
352 /* Load address for the dynamic linker, inferred. */
353 CORE_ADDR debug_loader_offset;
354
355 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
356 char *debug_loader_name;
357
358 /* Load map address for the main executable. */
359 CORE_ADDR main_lm_addr;
1a816a87 360
6c95b8df
PA
361 CORE_ADDR interp_text_sect_low;
362 CORE_ADDR interp_text_sect_high;
363 CORE_ADDR interp_plt_sect_low;
364 CORE_ADDR interp_plt_sect_high;
f9e14852
GB
365
366 /* Nonzero if the list of objects was last obtained from the target
367 via qXfer:libraries-svr4:read. */
368 int using_xfer;
369
370 /* Table of struct probe_and_action instances, used by the
371 probes-based interface to map breakpoint addresses to probes
372 and their associated actions. Lookup is performed using
373 probe_and_action->probe->address. */
374 htab_t probes_table;
375
376 /* List of objects loaded into the inferior, used by the probes-
377 based interface. */
378 struct so_list *solib_list;
6c95b8df 379};
1a816a87 380
6c95b8df
PA
381/* Per-program-space data key. */
382static const struct program_space_data *solib_svr4_pspace_data;
1a816a87 383
f9e14852
GB
384/* Free the probes table. */
385
386static void
387free_probes_table (struct svr4_info *info)
388{
389 if (info->probes_table == NULL)
390 return;
391
392 htab_delete (info->probes_table);
393 info->probes_table = NULL;
394}
395
396/* Free the solib list. */
397
398static void
399free_solib_list (struct svr4_info *info)
400{
401 svr4_free_library_list (&info->solib_list);
402 info->solib_list = NULL;
403}
404
6c95b8df
PA
405static void
406svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
1a816a87 407{
487ad57c 408 struct svr4_info *info = arg;
f9e14852
GB
409
410 free_probes_table (info);
411 free_solib_list (info);
412
6c95b8df 413 xfree (info);
1a816a87
PA
414}
415
6c95b8df
PA
416/* Get the current svr4 data. If none is found yet, add it now. This
417 function always returns a valid object. */
34439770 418
6c95b8df
PA
419static struct svr4_info *
420get_svr4_info (void)
1a816a87 421{
6c95b8df 422 struct svr4_info *info;
1a816a87 423
6c95b8df
PA
424 info = program_space_data (current_program_space, solib_svr4_pspace_data);
425 if (info != NULL)
426 return info;
34439770 427
41bf6aca 428 info = XCNEW (struct svr4_info);
6c95b8df
PA
429 set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
430 return info;
1a816a87 431}
93a57060 432
13437d4b
KB
433/* Local function prototypes */
434
bc043ef3 435static int match_main (const char *);
13437d4b 436
97ec2c2f
UW
437/* Read program header TYPE from inferior memory. The header is found
438 by scanning the OS auxillary vector.
439
09919ac2
JK
440 If TYPE == -1, return the program headers instead of the contents of
441 one program header.
442
97ec2c2f
UW
443 Return a pointer to allocated memory holding the program header contents,
444 or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the
445 size of those contents is returned to P_SECT_SIZE. Likewise, the target
a738da3a
MF
446 architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE and
447 the base address of the section is returned in BASE_ADDR. */
97ec2c2f
UW
448
449static gdb_byte *
a738da3a
MF
450read_program_header (int type, int *p_sect_size, int *p_arch_size,
451 CORE_ADDR *base_addr)
97ec2c2f 452{
f5656ead 453 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
43136979 454 CORE_ADDR at_phdr, at_phent, at_phnum, pt_phdr = 0;
97ec2c2f
UW
455 int arch_size, sect_size;
456 CORE_ADDR sect_addr;
457 gdb_byte *buf;
43136979 458 int pt_phdr_p = 0;
97ec2c2f
UW
459
460 /* Get required auxv elements from target. */
461 if (target_auxv_search (&current_target, AT_PHDR, &at_phdr) <= 0)
462 return 0;
463 if (target_auxv_search (&current_target, AT_PHENT, &at_phent) <= 0)
464 return 0;
465 if (target_auxv_search (&current_target, AT_PHNUM, &at_phnum) <= 0)
466 return 0;
467 if (!at_phdr || !at_phnum)
468 return 0;
469
470 /* Determine ELF architecture type. */
471 if (at_phent == sizeof (Elf32_External_Phdr))
472 arch_size = 32;
473 else if (at_phent == sizeof (Elf64_External_Phdr))
474 arch_size = 64;
475 else
476 return 0;
477
09919ac2
JK
478 /* Find the requested segment. */
479 if (type == -1)
480 {
481 sect_addr = at_phdr;
482 sect_size = at_phent * at_phnum;
483 }
484 else if (arch_size == 32)
97ec2c2f
UW
485 {
486 Elf32_External_Phdr phdr;
487 int i;
488
489 /* Search for requested PHDR. */
490 for (i = 0; i < at_phnum; i++)
491 {
43136979
AR
492 int p_type;
493
97ec2c2f
UW
494 if (target_read_memory (at_phdr + i * sizeof (phdr),
495 (gdb_byte *)&phdr, sizeof (phdr)))
496 return 0;
497
43136979
AR
498 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
499 4, byte_order);
500
501 if (p_type == PT_PHDR)
502 {
503 pt_phdr_p = 1;
504 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
505 4, byte_order);
506 }
507
508 if (p_type == type)
97ec2c2f
UW
509 break;
510 }
511
512 if (i == at_phnum)
513 return 0;
514
515 /* Retrieve address and size. */
e17a4113
UW
516 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
517 4, byte_order);
518 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
519 4, byte_order);
97ec2c2f
UW
520 }
521 else
522 {
523 Elf64_External_Phdr phdr;
524 int i;
525
526 /* Search for requested PHDR. */
527 for (i = 0; i < at_phnum; i++)
528 {
43136979
AR
529 int p_type;
530
97ec2c2f
UW
531 if (target_read_memory (at_phdr + i * sizeof (phdr),
532 (gdb_byte *)&phdr, sizeof (phdr)))
533 return 0;
534
43136979
AR
535 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
536 4, byte_order);
537
538 if (p_type == PT_PHDR)
539 {
540 pt_phdr_p = 1;
541 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
542 8, byte_order);
543 }
544
545 if (p_type == type)
97ec2c2f
UW
546 break;
547 }
548
549 if (i == at_phnum)
550 return 0;
551
552 /* Retrieve address and size. */
e17a4113
UW
553 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
554 8, byte_order);
555 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
556 8, byte_order);
97ec2c2f
UW
557 }
558
43136979
AR
559 /* PT_PHDR is optional, but we really need it
560 for PIE to make this work in general. */
561
562 if (pt_phdr_p)
563 {
564 /* at_phdr is real address in memory. pt_phdr is what pheader says it is.
565 Relocation offset is the difference between the two. */
566 sect_addr = sect_addr + (at_phdr - pt_phdr);
567 }
568
97ec2c2f
UW
569 /* Read in requested program header. */
570 buf = xmalloc (sect_size);
571 if (target_read_memory (sect_addr, buf, sect_size))
572 {
573 xfree (buf);
574 return NULL;
575 }
576
577 if (p_arch_size)
578 *p_arch_size = arch_size;
579 if (p_sect_size)
580 *p_sect_size = sect_size;
a738da3a
MF
581 if (base_addr)
582 *base_addr = sect_addr;
97ec2c2f
UW
583
584 return buf;
585}
586
587
588/* Return program interpreter string. */
001f13d8 589static char *
97ec2c2f
UW
590find_program_interpreter (void)
591{
592 gdb_byte *buf = NULL;
593
594 /* If we have an exec_bfd, use its section table. */
595 if (exec_bfd
596 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
597 {
598 struct bfd_section *interp_sect;
599
600 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
601 if (interp_sect != NULL)
602 {
97ec2c2f
UW
603 int sect_size = bfd_section_size (exec_bfd, interp_sect);
604
605 buf = xmalloc (sect_size);
606 bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size);
607 }
608 }
609
610 /* If we didn't find it, use the target auxillary vector. */
611 if (!buf)
a738da3a 612 buf = read_program_header (PT_INTERP, NULL, NULL, NULL);
97ec2c2f 613
001f13d8 614 return (char *) buf;
97ec2c2f
UW
615}
616
617
b6d7a4bf
SM
618/* Scan for DESIRED_DYNTAG in .dynamic section of ABFD. If DESIRED_DYNTAG is
619 found, 1 is returned and the corresponding PTR is set. */
3a40aaa0
UW
620
621static int
a738da3a
MF
622scan_dyntag (const int desired_dyntag, bfd *abfd, CORE_ADDR *ptr,
623 CORE_ADDR *ptr_addr)
3a40aaa0
UW
624{
625 int arch_size, step, sect_size;
b6d7a4bf 626 long current_dyntag;
b381ea14 627 CORE_ADDR dyn_ptr, dyn_addr;
65728c26 628 gdb_byte *bufend, *bufstart, *buf;
3a40aaa0
UW
629 Elf32_External_Dyn *x_dynp_32;
630 Elf64_External_Dyn *x_dynp_64;
631 struct bfd_section *sect;
61f0d762 632 struct target_section *target_section;
3a40aaa0
UW
633
634 if (abfd == NULL)
635 return 0;
0763ab81
PA
636
637 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
638 return 0;
639
3a40aaa0
UW
640 arch_size = bfd_get_arch_size (abfd);
641 if (arch_size == -1)
0763ab81 642 return 0;
3a40aaa0
UW
643
644 /* Find the start address of the .dynamic section. */
645 sect = bfd_get_section_by_name (abfd, ".dynamic");
646 if (sect == NULL)
647 return 0;
61f0d762
JK
648
649 for (target_section = current_target_sections->sections;
650 target_section < current_target_sections->sections_end;
651 target_section++)
652 if (sect == target_section->the_bfd_section)
653 break;
b381ea14
JK
654 if (target_section < current_target_sections->sections_end)
655 dyn_addr = target_section->addr;
656 else
657 {
658 /* ABFD may come from OBJFILE acting only as a symbol file without being
659 loaded into the target (see add_symbol_file_command). This case is
660 such fallback to the file VMA address without the possibility of
661 having the section relocated to its actual in-memory address. */
662
663 dyn_addr = bfd_section_vma (abfd, sect);
664 }
3a40aaa0 665
65728c26
DJ
666 /* Read in .dynamic from the BFD. We will get the actual value
667 from memory later. */
3a40aaa0 668 sect_size = bfd_section_size (abfd, sect);
65728c26
DJ
669 buf = bufstart = alloca (sect_size);
670 if (!bfd_get_section_contents (abfd, sect,
671 buf, 0, sect_size))
672 return 0;
3a40aaa0
UW
673
674 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
675 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
676 : sizeof (Elf64_External_Dyn);
677 for (bufend = buf + sect_size;
678 buf < bufend;
679 buf += step)
680 {
681 if (arch_size == 32)
682 {
683 x_dynp_32 = (Elf32_External_Dyn *) buf;
b6d7a4bf 684 current_dyntag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
3a40aaa0
UW
685 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
686 }
65728c26 687 else
3a40aaa0
UW
688 {
689 x_dynp_64 = (Elf64_External_Dyn *) buf;
b6d7a4bf 690 current_dyntag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
3a40aaa0
UW
691 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
692 }
b6d7a4bf 693 if (current_dyntag == DT_NULL)
3a40aaa0 694 return 0;
b6d7a4bf 695 if (current_dyntag == desired_dyntag)
3a40aaa0 696 {
65728c26
DJ
697 /* If requested, try to read the runtime value of this .dynamic
698 entry. */
3a40aaa0 699 if (ptr)
65728c26 700 {
b6da22b0 701 struct type *ptr_type;
65728c26 702 gdb_byte ptr_buf[8];
a738da3a 703 CORE_ADDR ptr_addr_1;
65728c26 704
f5656ead 705 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
a738da3a
MF
706 ptr_addr_1 = dyn_addr + (buf - bufstart) + arch_size / 8;
707 if (target_read_memory (ptr_addr_1, ptr_buf, arch_size / 8) == 0)
b6da22b0 708 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
65728c26 709 *ptr = dyn_ptr;
a738da3a
MF
710 if (ptr_addr)
711 *ptr_addr = dyn_addr + (buf - bufstart);
65728c26
DJ
712 }
713 return 1;
3a40aaa0
UW
714 }
715 }
716
717 return 0;
718}
719
b6d7a4bf
SM
720/* Scan for DESIRED_DYNTAG in .dynamic section of the target's main executable,
721 found by consulting the OS auxillary vector. If DESIRED_DYNTAG is found, 1
722 is returned and the corresponding PTR is set. */
97ec2c2f
UW
723
724static int
a738da3a
MF
725scan_dyntag_auxv (const int desired_dyntag, CORE_ADDR *ptr,
726 CORE_ADDR *ptr_addr)
97ec2c2f 727{
f5656ead 728 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
97ec2c2f 729 int sect_size, arch_size, step;
b6d7a4bf 730 long current_dyntag;
97ec2c2f 731 CORE_ADDR dyn_ptr;
a738da3a 732 CORE_ADDR base_addr;
97ec2c2f
UW
733 gdb_byte *bufend, *bufstart, *buf;
734
735 /* Read in .dynamic section. */
a738da3a
MF
736 buf = bufstart = read_program_header (PT_DYNAMIC, &sect_size, &arch_size,
737 &base_addr);
97ec2c2f
UW
738 if (!buf)
739 return 0;
740
741 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
742 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
743 : sizeof (Elf64_External_Dyn);
744 for (bufend = buf + sect_size;
745 buf < bufend;
746 buf += step)
747 {
748 if (arch_size == 32)
749 {
750 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
433759f7 751
b6d7a4bf 752 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
e17a4113
UW
753 4, byte_order);
754 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
755 4, byte_order);
97ec2c2f
UW
756 }
757 else
758 {
759 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
433759f7 760
b6d7a4bf 761 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
e17a4113
UW
762 8, byte_order);
763 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
764 8, byte_order);
97ec2c2f 765 }
b6d7a4bf 766 if (current_dyntag == DT_NULL)
97ec2c2f
UW
767 break;
768
b6d7a4bf 769 if (current_dyntag == desired_dyntag)
97ec2c2f
UW
770 {
771 if (ptr)
772 *ptr = dyn_ptr;
773
a738da3a
MF
774 if (ptr_addr)
775 *ptr_addr = base_addr + buf - bufstart;
776
97ec2c2f
UW
777 xfree (bufstart);
778 return 1;
779 }
780 }
781
782 xfree (bufstart);
783 return 0;
784}
785
7f86f058
PA
786/* Locate the base address of dynamic linker structs for SVR4 elf
787 targets.
13437d4b
KB
788
789 For SVR4 elf targets the address of the dynamic linker's runtime
790 structure is contained within the dynamic info section in the
791 executable file. The dynamic section is also mapped into the
792 inferior address space. Because the runtime loader fills in the
793 real address before starting the inferior, we have to read in the
794 dynamic info section from the inferior address space.
795 If there are any errors while trying to find the address, we
7f86f058 796 silently return 0, otherwise the found address is returned. */
13437d4b
KB
797
798static CORE_ADDR
799elf_locate_base (void)
800{
3b7344d5 801 struct bound_minimal_symbol msymbol;
a738da3a 802 CORE_ADDR dyn_ptr, dyn_ptr_addr;
13437d4b 803
65728c26
DJ
804 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
805 instead of DT_DEBUG, although they sometimes contain an unused
806 DT_DEBUG. */
a738da3a
MF
807 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr, NULL)
808 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr, NULL))
3a40aaa0 809 {
f5656ead 810 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
3a40aaa0 811 gdb_byte *pbuf;
b6da22b0 812 int pbuf_size = TYPE_LENGTH (ptr_type);
433759f7 813
3a40aaa0
UW
814 pbuf = alloca (pbuf_size);
815 /* DT_MIPS_RLD_MAP contains a pointer to the address
816 of the dynamic link structure. */
817 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
e499d0f1 818 return 0;
b6da22b0 819 return extract_typed_address (pbuf, ptr_type);
e499d0f1
DJ
820 }
821
a738da3a
MF
822 /* Then check DT_MIPS_RLD_MAP_REL. MIPS executables now use this form
823 because of needing to support PIE. DT_MIPS_RLD_MAP will also exist
824 in non-PIE. */
825 if (scan_dyntag (DT_MIPS_RLD_MAP_REL, exec_bfd, &dyn_ptr, &dyn_ptr_addr)
826 || scan_dyntag_auxv (DT_MIPS_RLD_MAP_REL, &dyn_ptr, &dyn_ptr_addr))
827 {
828 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
829 gdb_byte *pbuf;
830 int pbuf_size = TYPE_LENGTH (ptr_type);
831
832 pbuf = alloca (pbuf_size);
833 /* DT_MIPS_RLD_MAP_REL contains an offset from the address of the
834 DT slot to the address of the dynamic link structure. */
835 if (target_read_memory (dyn_ptr + dyn_ptr_addr, pbuf, pbuf_size))
836 return 0;
837 return extract_typed_address (pbuf, ptr_type);
838 }
839
65728c26 840 /* Find DT_DEBUG. */
a738da3a
MF
841 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr, NULL)
842 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr, NULL))
65728c26
DJ
843 return dyn_ptr;
844
3a40aaa0
UW
845 /* This may be a static executable. Look for the symbol
846 conventionally named _r_debug, as a last resort. */
847 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
3b7344d5 848 if (msymbol.minsym != NULL)
77e371c0 849 return BMSYMBOL_VALUE_ADDRESS (msymbol);
13437d4b
KB
850
851 /* DT_DEBUG entry not found. */
852 return 0;
853}
854
7f86f058 855/* Locate the base address of dynamic linker structs.
13437d4b
KB
856
857 For both the SunOS and SVR4 shared library implementations, if the
858 inferior executable has been linked dynamically, there is a single
859 address somewhere in the inferior's data space which is the key to
860 locating all of the dynamic linker's runtime structures. This
861 address is the value of the debug base symbol. The job of this
862 function is to find and return that address, or to return 0 if there
863 is no such address (the executable is statically linked for example).
864
865 For SunOS, the job is almost trivial, since the dynamic linker and
866 all of it's structures are statically linked to the executable at
867 link time. Thus the symbol for the address we are looking for has
868 already been added to the minimal symbol table for the executable's
869 objfile at the time the symbol file's symbols were read, and all we
870 have to do is look it up there. Note that we explicitly do NOT want
871 to find the copies in the shared library.
872
873 The SVR4 version is a bit more complicated because the address
874 is contained somewhere in the dynamic info section. We have to go
875 to a lot more work to discover the address of the debug base symbol.
876 Because of this complexity, we cache the value we find and return that
877 value on subsequent invocations. Note there is no copy in the
7f86f058 878 executable symbol tables. */
13437d4b
KB
879
880static CORE_ADDR
1a816a87 881locate_base (struct svr4_info *info)
13437d4b 882{
13437d4b
KB
883 /* Check to see if we have a currently valid address, and if so, avoid
884 doing all this work again and just return the cached address. If
885 we have no cached address, try to locate it in the dynamic info
d5a921c9
KB
886 section for ELF executables. There's no point in doing any of this
887 though if we don't have some link map offsets to work with. */
13437d4b 888
1a816a87 889 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
0763ab81 890 info->debug_base = elf_locate_base ();
1a816a87 891 return info->debug_base;
13437d4b
KB
892}
893
e4cd0d6a 894/* Find the first element in the inferior's dynamic link map, and
6f992fbf
JB
895 return its address in the inferior. Return zero if the address
896 could not be determined.
13437d4b 897
e4cd0d6a
MK
898 FIXME: Perhaps we should validate the info somehow, perhaps by
899 checking r_version for a known version number, or r_state for
900 RT_CONSISTENT. */
13437d4b
KB
901
902static CORE_ADDR
1a816a87 903solib_svr4_r_map (struct svr4_info *info)
13437d4b 904{
4b188b9f 905 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 906 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
08597104 907 CORE_ADDR addr = 0;
13437d4b 908
492d29ea 909 TRY
08597104
JB
910 {
911 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
912 ptr_type);
913 }
492d29ea
PA
914 CATCH (ex, RETURN_MASK_ERROR)
915 {
916 exception_print (gdb_stderr, ex);
917 }
918 END_CATCH
919
08597104 920 return addr;
e4cd0d6a 921}
13437d4b 922
7cd25cfc
DJ
923/* Find r_brk from the inferior's debug base. */
924
925static CORE_ADDR
1a816a87 926solib_svr4_r_brk (struct svr4_info *info)
7cd25cfc
DJ
927{
928 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 929 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
7cd25cfc 930
1a816a87
PA
931 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
932 ptr_type);
7cd25cfc
DJ
933}
934
e4cd0d6a
MK
935/* Find the link map for the dynamic linker (if it is not in the
936 normal list of loaded shared objects). */
13437d4b 937
e4cd0d6a 938static CORE_ADDR
1a816a87 939solib_svr4_r_ldsomap (struct svr4_info *info)
e4cd0d6a
MK
940{
941 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead
TT
942 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
943 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
416f679e
SDJ
944 ULONGEST version = 0;
945
946 TRY
947 {
948 /* Check version, and return zero if `struct r_debug' doesn't have
949 the r_ldsomap member. */
950 version
951 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
952 lmo->r_version_size, byte_order);
953 }
954 CATCH (ex, RETURN_MASK_ERROR)
955 {
956 exception_print (gdb_stderr, ex);
957 }
958 END_CATCH
13437d4b 959
e4cd0d6a
MK
960 if (version < 2 || lmo->r_ldsomap_offset == -1)
961 return 0;
13437d4b 962
1a816a87 963 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
b6da22b0 964 ptr_type);
13437d4b
KB
965}
966
de18c1d8
JM
967/* On Solaris systems with some versions of the dynamic linker,
968 ld.so's l_name pointer points to the SONAME in the string table
969 rather than into writable memory. So that GDB can find shared
970 libraries when loading a core file generated by gcore, ensure that
971 memory areas containing the l_name string are saved in the core
972 file. */
973
974static int
975svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
976{
977 struct svr4_info *info;
978 CORE_ADDR ldsomap;
fe978cb0 979 struct so_list *newobj;
de18c1d8 980 struct cleanup *old_chain;
74de0234 981 CORE_ADDR name_lm;
de18c1d8
JM
982
983 info = get_svr4_info ();
984
985 info->debug_base = 0;
986 locate_base (info);
987 if (!info->debug_base)
988 return 0;
989
990 ldsomap = solib_svr4_r_ldsomap (info);
991 if (!ldsomap)
992 return 0;
993
fe978cb0
PA
994 newobj = XCNEW (struct so_list);
995 old_chain = make_cleanup (xfree, newobj);
996 newobj->lm_info = lm_info_read (ldsomap);
997 make_cleanup (xfree, newobj->lm_info);
998 name_lm = newobj->lm_info ? newobj->lm_info->l_name : 0;
de18c1d8
JM
999 do_cleanups (old_chain);
1000
74de0234 1001 return (name_lm >= vaddr && name_lm < vaddr + size);
de18c1d8
JM
1002}
1003
7f86f058 1004/* Implement the "open_symbol_file_object" target_so_ops method.
13437d4b 1005
7f86f058
PA
1006 If no open symbol file, attempt to locate and open the main symbol
1007 file. On SVR4 systems, this is the first link map entry. If its
1008 name is here, we can open it. Useful when attaching to a process
1009 without first loading its symbol file. */
13437d4b
KB
1010
1011static int
1012open_symbol_file_object (void *from_ttyp)
1013{
1014 CORE_ADDR lm, l_name;
1015 char *filename;
1016 int errcode;
1017 int from_tty = *(int *)from_ttyp;
4b188b9f 1018 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 1019 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
b6da22b0 1020 int l_name_size = TYPE_LENGTH (ptr_type);
cfaefc65 1021 gdb_byte *l_name_buf = xmalloc (l_name_size);
b8c9b27d 1022 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
6c95b8df 1023 struct svr4_info *info = get_svr4_info ();
13437d4b
KB
1024
1025 if (symfile_objfile)
9e2f0ad4 1026 if (!query (_("Attempt to reload symbols from process? ")))
3bb47e8b
TT
1027 {
1028 do_cleanups (cleanups);
1029 return 0;
1030 }
13437d4b 1031
7cd25cfc 1032 /* Always locate the debug struct, in case it has moved. */
1a816a87
PA
1033 info->debug_base = 0;
1034 if (locate_base (info) == 0)
3bb47e8b
TT
1035 {
1036 do_cleanups (cleanups);
1037 return 0; /* failed somehow... */
1038 }
13437d4b
KB
1039
1040 /* First link map member should be the executable. */
1a816a87 1041 lm = solib_svr4_r_map (info);
e4cd0d6a 1042 if (lm == 0)
3bb47e8b
TT
1043 {
1044 do_cleanups (cleanups);
1045 return 0; /* failed somehow... */
1046 }
13437d4b
KB
1047
1048 /* Read address of name from target memory to GDB. */
cfaefc65 1049 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
13437d4b 1050
cfaefc65 1051 /* Convert the address to host format. */
b6da22b0 1052 l_name = extract_typed_address (l_name_buf, ptr_type);
13437d4b 1053
13437d4b 1054 if (l_name == 0)
3bb47e8b
TT
1055 {
1056 do_cleanups (cleanups);
1057 return 0; /* No filename. */
1058 }
13437d4b
KB
1059
1060 /* Now fetch the filename from target memory. */
1061 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
ea5bf0a1 1062 make_cleanup (xfree, filename);
13437d4b
KB
1063
1064 if (errcode)
1065 {
8a3fe4f8 1066 warning (_("failed to read exec filename from attached file: %s"),
13437d4b 1067 safe_strerror (errcode));
3bb47e8b 1068 do_cleanups (cleanups);
13437d4b
KB
1069 return 0;
1070 }
1071
13437d4b 1072 /* Have a pathname: read the symbol file. */
1adeb98a 1073 symbol_file_add_main (filename, from_tty);
13437d4b 1074
3bb47e8b 1075 do_cleanups (cleanups);
13437d4b
KB
1076 return 1;
1077}
13437d4b 1078
2268b414
JK
1079/* Data exchange structure for the XML parser as returned by
1080 svr4_current_sos_via_xfer_libraries. */
1081
1082struct svr4_library_list
1083{
1084 struct so_list *head, **tailp;
1085
1086 /* Inferior address of struct link_map used for the main executable. It is
1087 NULL if not known. */
1088 CORE_ADDR main_lm;
1089};
1090
93f2a35e
JK
1091/* Implementation for target_so_ops.free_so. */
1092
1093static void
1094svr4_free_so (struct so_list *so)
1095{
1096 xfree (so->lm_info);
1097}
1098
0892cb63
DE
1099/* Implement target_so_ops.clear_so. */
1100
1101static void
1102svr4_clear_so (struct so_list *so)
1103{
6dcc1893
PP
1104 if (so->lm_info != NULL)
1105 so->lm_info->l_addr_p = 0;
0892cb63
DE
1106}
1107
93f2a35e
JK
1108/* Free so_list built so far (called via cleanup). */
1109
1110static void
1111svr4_free_library_list (void *p_list)
1112{
1113 struct so_list *list = *(struct so_list **) p_list;
1114
1115 while (list != NULL)
1116 {
1117 struct so_list *next = list->next;
1118
3756ef7e 1119 free_so (list);
93f2a35e
JK
1120 list = next;
1121 }
1122}
1123
f9e14852
GB
1124/* Copy library list. */
1125
1126static struct so_list *
1127svr4_copy_library_list (struct so_list *src)
1128{
1129 struct so_list *dst = NULL;
1130 struct so_list **link = &dst;
1131
1132 while (src != NULL)
1133 {
fe978cb0 1134 struct so_list *newobj;
f9e14852 1135
8d749320 1136 newobj = XNEW (struct so_list);
fe978cb0 1137 memcpy (newobj, src, sizeof (struct so_list));
f9e14852 1138
8d749320 1139 newobj->lm_info = XNEW (struct lm_info);
fe978cb0 1140 memcpy (newobj->lm_info, src->lm_info, sizeof (struct lm_info));
f9e14852 1141
fe978cb0
PA
1142 newobj->next = NULL;
1143 *link = newobj;
1144 link = &newobj->next;
f9e14852
GB
1145
1146 src = src->next;
1147 }
1148
1149 return dst;
1150}
1151
2268b414
JK
1152#ifdef HAVE_LIBEXPAT
1153
1154#include "xml-support.h"
1155
1156/* Handle the start of a <library> element. Note: new elements are added
1157 at the tail of the list, keeping the list in order. */
1158
1159static void
1160library_list_start_library (struct gdb_xml_parser *parser,
1161 const struct gdb_xml_element *element,
1162 void *user_data, VEC(gdb_xml_value_s) *attributes)
1163{
1164 struct svr4_library_list *list = user_data;
1165 const char *name = xml_find_attribute (attributes, "name")->value;
1166 ULONGEST *lmp = xml_find_attribute (attributes, "lm")->value;
1167 ULONGEST *l_addrp = xml_find_attribute (attributes, "l_addr")->value;
1168 ULONGEST *l_ldp = xml_find_attribute (attributes, "l_ld")->value;
1169 struct so_list *new_elem;
1170
41bf6aca
TT
1171 new_elem = XCNEW (struct so_list);
1172 new_elem->lm_info = XCNEW (struct lm_info);
2268b414
JK
1173 new_elem->lm_info->lm_addr = *lmp;
1174 new_elem->lm_info->l_addr_inferior = *l_addrp;
1175 new_elem->lm_info->l_ld = *l_ldp;
1176
1177 strncpy (new_elem->so_name, name, sizeof (new_elem->so_name) - 1);
1178 new_elem->so_name[sizeof (new_elem->so_name) - 1] = 0;
1179 strcpy (new_elem->so_original_name, new_elem->so_name);
1180
1181 *list->tailp = new_elem;
1182 list->tailp = &new_elem->next;
1183}
1184
1185/* Handle the start of a <library-list-svr4> element. */
1186
1187static void
1188svr4_library_list_start_list (struct gdb_xml_parser *parser,
1189 const struct gdb_xml_element *element,
1190 void *user_data, VEC(gdb_xml_value_s) *attributes)
1191{
1192 struct svr4_library_list *list = user_data;
1193 const char *version = xml_find_attribute (attributes, "version")->value;
1194 struct gdb_xml_value *main_lm = xml_find_attribute (attributes, "main-lm");
1195
1196 if (strcmp (version, "1.0") != 0)
1197 gdb_xml_error (parser,
1198 _("SVR4 Library list has unsupported version \"%s\""),
1199 version);
1200
1201 if (main_lm)
1202 list->main_lm = *(ULONGEST *) main_lm->value;
1203}
1204
1205/* The allowed elements and attributes for an XML library list.
1206 The root element is a <library-list>. */
1207
1208static const struct gdb_xml_attribute svr4_library_attributes[] =
1209{
1210 { "name", GDB_XML_AF_NONE, NULL, NULL },
1211 { "lm", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1212 { "l_addr", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1213 { "l_ld", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1214 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1215};
1216
1217static const struct gdb_xml_element svr4_library_list_children[] =
1218{
1219 {
1220 "library", svr4_library_attributes, NULL,
1221 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
1222 library_list_start_library, NULL
1223 },
1224 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1225};
1226
1227static const struct gdb_xml_attribute svr4_library_list_attributes[] =
1228{
1229 { "version", GDB_XML_AF_NONE, NULL, NULL },
1230 { "main-lm", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
1231 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1232};
1233
1234static const struct gdb_xml_element svr4_library_list_elements[] =
1235{
1236 { "library-list-svr4", svr4_library_list_attributes, svr4_library_list_children,
1237 GDB_XML_EF_NONE, svr4_library_list_start_list, NULL },
1238 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1239};
1240
2268b414
JK
1241/* Parse qXfer:libraries:read packet into *SO_LIST_RETURN. Return 1 if
1242
1243 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1244 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1245 empty, caller is responsible for freeing all its entries. */
1246
1247static int
1248svr4_parse_libraries (const char *document, struct svr4_library_list *list)
1249{
1250 struct cleanup *back_to = make_cleanup (svr4_free_library_list,
1251 &list->head);
1252
1253 memset (list, 0, sizeof (*list));
1254 list->tailp = &list->head;
2eca4a8d 1255 if (gdb_xml_parse_quick (_("target library list"), "library-list-svr4.dtd",
2268b414
JK
1256 svr4_library_list_elements, document, list) == 0)
1257 {
1258 /* Parsed successfully, keep the result. */
1259 discard_cleanups (back_to);
1260 return 1;
1261 }
1262
1263 do_cleanups (back_to);
1264 return 0;
1265}
1266
f9e14852 1267/* Attempt to get so_list from target via qXfer:libraries-svr4:read packet.
2268b414
JK
1268
1269 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1270 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
f9e14852
GB
1271 empty, caller is responsible for freeing all its entries.
1272
1273 Note that ANNEX must be NULL if the remote does not explicitly allow
1274 qXfer:libraries-svr4:read packets with non-empty annexes. Support for
1275 this can be checked using target_augmented_libraries_svr4_read (). */
2268b414
JK
1276
1277static int
f9e14852
GB
1278svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1279 const char *annex)
2268b414
JK
1280{
1281 char *svr4_library_document;
1282 int result;
1283 struct cleanup *back_to;
1284
f9e14852
GB
1285 gdb_assert (annex == NULL || target_augmented_libraries_svr4_read ());
1286
2268b414
JK
1287 /* Fetch the list of shared libraries. */
1288 svr4_library_document = target_read_stralloc (&current_target,
1289 TARGET_OBJECT_LIBRARIES_SVR4,
f9e14852 1290 annex);
2268b414
JK
1291 if (svr4_library_document == NULL)
1292 return 0;
1293
1294 back_to = make_cleanup (xfree, svr4_library_document);
1295 result = svr4_parse_libraries (svr4_library_document, list);
1296 do_cleanups (back_to);
1297
1298 return result;
1299}
1300
1301#else
1302
1303static int
f9e14852
GB
1304svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1305 const char *annex)
2268b414
JK
1306{
1307 return 0;
1308}
1309
1310#endif
1311
34439770
DJ
1312/* If no shared library information is available from the dynamic
1313 linker, build a fallback list from other sources. */
1314
1315static struct so_list *
1316svr4_default_sos (void)
1317{
6c95b8df 1318 struct svr4_info *info = get_svr4_info ();
fe978cb0 1319 struct so_list *newobj;
1a816a87 1320
8e5c319d
JK
1321 if (!info->debug_loader_offset_p)
1322 return NULL;
34439770 1323
fe978cb0 1324 newobj = XCNEW (struct so_list);
34439770 1325
8d749320 1326 newobj->lm_info = XCNEW (struct lm_info);
34439770 1327
3957565a 1328 /* Nothing will ever check the other fields if we set l_addr_p. */
fe978cb0
PA
1329 newobj->lm_info->l_addr = info->debug_loader_offset;
1330 newobj->lm_info->l_addr_p = 1;
34439770 1331
fe978cb0
PA
1332 strncpy (newobj->so_name, info->debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
1333 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1334 strcpy (newobj->so_original_name, newobj->so_name);
34439770 1335
fe978cb0 1336 return newobj;
34439770
DJ
1337}
1338
f9e14852
GB
1339/* Read the whole inferior libraries chain starting at address LM.
1340 Expect the first entry in the chain's previous entry to be PREV_LM.
1341 Add the entries to the tail referenced by LINK_PTR_PTR. Ignore the
1342 first entry if IGNORE_FIRST and set global MAIN_LM_ADDR according
1343 to it. Returns nonzero upon success. If zero is returned the
1344 entries stored to LINK_PTR_PTR are still valid although they may
1345 represent only part of the inferior library list. */
13437d4b 1346
f9e14852
GB
1347static int
1348svr4_read_so_list (CORE_ADDR lm, CORE_ADDR prev_lm,
1349 struct so_list ***link_ptr_ptr, int ignore_first)
13437d4b 1350{
c725e7b6 1351 CORE_ADDR first_l_name = 0;
f9e14852 1352 CORE_ADDR next_lm;
13437d4b 1353
cb08cc53 1354 for (; lm != 0; prev_lm = lm, lm = next_lm)
13437d4b 1355 {
fe978cb0 1356 struct so_list *newobj;
cb08cc53
JK
1357 struct cleanup *old_chain;
1358 int errcode;
1359 char *buffer;
13437d4b 1360
fe978cb0
PA
1361 newobj = XCNEW (struct so_list);
1362 old_chain = make_cleanup_free_so (newobj);
13437d4b 1363
fe978cb0
PA
1364 newobj->lm_info = lm_info_read (lm);
1365 if (newobj->lm_info == NULL)
3957565a
JK
1366 {
1367 do_cleanups (old_chain);
f9e14852 1368 return 0;
3957565a 1369 }
13437d4b 1370
fe978cb0 1371 next_lm = newobj->lm_info->l_next;
492928e4 1372
fe978cb0 1373 if (newobj->lm_info->l_prev != prev_lm)
492928e4 1374 {
2268b414 1375 warning (_("Corrupted shared library list: %s != %s"),
f5656ead 1376 paddress (target_gdbarch (), prev_lm),
fe978cb0 1377 paddress (target_gdbarch (), newobj->lm_info->l_prev));
cb08cc53 1378 do_cleanups (old_chain);
f9e14852 1379 return 0;
492928e4 1380 }
13437d4b
KB
1381
1382 /* For SVR4 versions, the first entry in the link map is for the
1383 inferior executable, so we must ignore it. For some versions of
1384 SVR4, it has no name. For others (Solaris 2.3 for example), it
1385 does have a name, so we can no longer use a missing name to
c378eb4e 1386 decide when to ignore it. */
fe978cb0 1387 if (ignore_first && newobj->lm_info->l_prev == 0)
93a57060 1388 {
cb08cc53
JK
1389 struct svr4_info *info = get_svr4_info ();
1390
fe978cb0
PA
1391 first_l_name = newobj->lm_info->l_name;
1392 info->main_lm_addr = newobj->lm_info->lm_addr;
cb08cc53
JK
1393 do_cleanups (old_chain);
1394 continue;
93a57060 1395 }
13437d4b 1396
cb08cc53 1397 /* Extract this shared object's name. */
fe978cb0 1398 target_read_string (newobj->lm_info->l_name, &buffer,
cb08cc53
JK
1399 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1400 if (errcode != 0)
1401 {
7d760051
UW
1402 /* If this entry's l_name address matches that of the
1403 inferior executable, then this is not a normal shared
1404 object, but (most likely) a vDSO. In this case, silently
1405 skip it; otherwise emit a warning. */
fe978cb0 1406 if (first_l_name == 0 || newobj->lm_info->l_name != first_l_name)
7d760051
UW
1407 warning (_("Can't read pathname for load map: %s."),
1408 safe_strerror (errcode));
cb08cc53
JK
1409 do_cleanups (old_chain);
1410 continue;
13437d4b
KB
1411 }
1412
fe978cb0
PA
1413 strncpy (newobj->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
1414 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1415 strcpy (newobj->so_original_name, newobj->so_name);
cb08cc53 1416 xfree (buffer);
492928e4 1417
cb08cc53
JK
1418 /* If this entry has no name, or its name matches the name
1419 for the main executable, don't include it in the list. */
fe978cb0 1420 if (! newobj->so_name[0] || match_main (newobj->so_name))
492928e4 1421 {
cb08cc53
JK
1422 do_cleanups (old_chain);
1423 continue;
492928e4 1424 }
e4cd0d6a 1425
13437d4b 1426 discard_cleanups (old_chain);
fe978cb0
PA
1427 newobj->next = 0;
1428 **link_ptr_ptr = newobj;
1429 *link_ptr_ptr = &newobj->next;
13437d4b 1430 }
f9e14852
GB
1431
1432 return 1;
cb08cc53
JK
1433}
1434
f9e14852
GB
1435/* Read the full list of currently loaded shared objects directly
1436 from the inferior, without referring to any libraries read and
1437 stored by the probes interface. Handle special cases relating
1438 to the first elements of the list. */
cb08cc53
JK
1439
1440static struct so_list *
f9e14852 1441svr4_current_sos_direct (struct svr4_info *info)
cb08cc53
JK
1442{
1443 CORE_ADDR lm;
1444 struct so_list *head = NULL;
1445 struct so_list **link_ptr = &head;
cb08cc53
JK
1446 struct cleanup *back_to;
1447 int ignore_first;
2268b414
JK
1448 struct svr4_library_list library_list;
1449
0c5bf5a9
JK
1450 /* Fall back to manual examination of the target if the packet is not
1451 supported or gdbserver failed to find DT_DEBUG. gdb.server/solib-list.exp
1452 tests a case where gdbserver cannot find the shared libraries list while
1453 GDB itself is able to find it via SYMFILE_OBJFILE.
1454
1455 Unfortunately statically linked inferiors will also fall back through this
1456 suboptimal code path. */
1457
f9e14852
GB
1458 info->using_xfer = svr4_current_sos_via_xfer_libraries (&library_list,
1459 NULL);
1460 if (info->using_xfer)
2268b414
JK
1461 {
1462 if (library_list.main_lm)
f9e14852 1463 info->main_lm_addr = library_list.main_lm;
2268b414
JK
1464
1465 return library_list.head ? library_list.head : svr4_default_sos ();
1466 }
cb08cc53 1467
cb08cc53
JK
1468 /* Always locate the debug struct, in case it has moved. */
1469 info->debug_base = 0;
1470 locate_base (info);
1471
1472 /* If we can't find the dynamic linker's base structure, this
1473 must not be a dynamically linked executable. Hmm. */
1474 if (! info->debug_base)
1475 return svr4_default_sos ();
1476
1477 /* Assume that everything is a library if the dynamic loader was loaded
1478 late by a static executable. */
1479 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
1480 ignore_first = 0;
1481 else
1482 ignore_first = 1;
1483
1484 back_to = make_cleanup (svr4_free_library_list, &head);
1485
1486 /* Walk the inferior's link map list, and build our list of
1487 `struct so_list' nodes. */
1488 lm = solib_svr4_r_map (info);
1489 if (lm)
f9e14852 1490 svr4_read_so_list (lm, 0, &link_ptr, ignore_first);
cb08cc53
JK
1491
1492 /* On Solaris, the dynamic linker is not in the normal list of
1493 shared objects, so make sure we pick it up too. Having
1494 symbol information for the dynamic linker is quite crucial
1495 for skipping dynamic linker resolver code. */
1496 lm = solib_svr4_r_ldsomap (info);
1497 if (lm)
f9e14852 1498 svr4_read_so_list (lm, 0, &link_ptr, 0);
cb08cc53
JK
1499
1500 discard_cleanups (back_to);
13437d4b 1501
34439770
DJ
1502 if (head == NULL)
1503 return svr4_default_sos ();
1504
13437d4b
KB
1505 return head;
1506}
1507
8b9a549d
PA
1508/* Implement the main part of the "current_sos" target_so_ops
1509 method. */
f9e14852
GB
1510
1511static struct so_list *
8b9a549d 1512svr4_current_sos_1 (void)
f9e14852
GB
1513{
1514 struct svr4_info *info = get_svr4_info ();
1515
1516 /* If the solib list has been read and stored by the probes
1517 interface then we return a copy of the stored list. */
1518 if (info->solib_list != NULL)
1519 return svr4_copy_library_list (info->solib_list);
1520
1521 /* Otherwise obtain the solib list directly from the inferior. */
1522 return svr4_current_sos_direct (info);
1523}
1524
8b9a549d
PA
1525/* Implement the "current_sos" target_so_ops method. */
1526
1527static struct so_list *
1528svr4_current_sos (void)
1529{
1530 struct so_list *so_head = svr4_current_sos_1 ();
1531 struct mem_range vsyscall_range;
1532
1533 /* Filter out the vDSO module, if present. Its symbol file would
1534 not be found on disk. The vDSO/vsyscall's OBJFILE is instead
1535 managed by symfile-mem.c:add_vsyscall_page. */
1536 if (gdbarch_vsyscall_range (target_gdbarch (), &vsyscall_range)
1537 && vsyscall_range.length != 0)
1538 {
1539 struct so_list **sop;
1540
1541 sop = &so_head;
1542 while (*sop != NULL)
1543 {
1544 struct so_list *so = *sop;
1545
1546 /* We can't simply match the vDSO by starting address alone,
1547 because lm_info->l_addr_inferior (and also l_addr) do not
1548 necessarily represent the real starting address of the
1549 ELF if the vDSO's ELF itself is "prelinked". The l_ld
1550 field (the ".dynamic" section of the shared object)
1551 always points at the absolute/resolved address though.
1552 So check whether that address is inside the vDSO's
1553 mapping instead.
1554
1555 E.g., on Linux 3.16 (x86_64) the vDSO is a regular
1556 0-based ELF, and we see:
1557
1558 (gdb) info auxv
1559 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffb000
1560 (gdb) p/x *_r_debug.r_map.l_next
1561 $1 = {l_addr = 0x7ffff7ffb000, ..., l_ld = 0x7ffff7ffb318, ...}
1562
1563 And on Linux 2.6.32 (x86_64) we see:
1564
1565 (gdb) info auxv
1566 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffe000
1567 (gdb) p/x *_r_debug.r_map.l_next
1568 $5 = {l_addr = 0x7ffff88fe000, ..., l_ld = 0x7ffff7ffe580, ... }
1569
1570 Dumping that vDSO shows:
1571
1572 (gdb) info proc mappings
1573 0x7ffff7ffe000 0x7ffff7fff000 0x1000 0 [vdso]
1574 (gdb) dump memory vdso.bin 0x7ffff7ffe000 0x7ffff7fff000
1575 # readelf -Wa vdso.bin
1576 [...]
1577 Entry point address: 0xffffffffff700700
1578 [...]
1579 Section Headers:
1580 [Nr] Name Type Address Off Size
1581 [ 0] NULL 0000000000000000 000000 000000
1582 [ 1] .hash HASH ffffffffff700120 000120 000038
1583 [ 2] .dynsym DYNSYM ffffffffff700158 000158 0000d8
1584 [...]
1585 [ 9] .dynamic DYNAMIC ffffffffff700580 000580 0000f0
1586 */
1587 if (address_in_mem_range (so->lm_info->l_ld, &vsyscall_range))
1588 {
1589 *sop = so->next;
1590 free_so (so);
1591 break;
1592 }
1593
1594 sop = &so->next;
1595 }
1596 }
1597
1598 return so_head;
1599}
1600
93a57060 1601/* Get the address of the link_map for a given OBJFILE. */
bc4a16ae
EZ
1602
1603CORE_ADDR
1604svr4_fetch_objfile_link_map (struct objfile *objfile)
1605{
93a57060 1606 struct so_list *so;
6c95b8df 1607 struct svr4_info *info = get_svr4_info ();
bc4a16ae 1608
93a57060 1609 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1a816a87 1610 if (info->main_lm_addr == 0)
93a57060 1611 solib_add (NULL, 0, &current_target, auto_solib_add);
bc4a16ae 1612
93a57060
DJ
1613 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1614 if (objfile == symfile_objfile)
1a816a87 1615 return info->main_lm_addr;
93a57060
DJ
1616
1617 /* The other link map addresses may be found by examining the list
1618 of shared libraries. */
1619 for (so = master_so_list (); so; so = so->next)
1620 if (so->objfile == objfile)
1621 return so->lm_info->lm_addr;
1622
1623 /* Not found! */
bc4a16ae
EZ
1624 return 0;
1625}
13437d4b
KB
1626
1627/* On some systems, the only way to recognize the link map entry for
1628 the main executable file is by looking at its name. Return
1629 non-zero iff SONAME matches one of the known main executable names. */
1630
1631static int
bc043ef3 1632match_main (const char *soname)
13437d4b 1633{
bc043ef3 1634 const char * const *mainp;
13437d4b
KB
1635
1636 for (mainp = main_name_list; *mainp != NULL; mainp++)
1637 {
1638 if (strcmp (soname, *mainp) == 0)
1639 return (1);
1640 }
1641
1642 return (0);
1643}
1644
13437d4b
KB
1645/* Return 1 if PC lies in the dynamic symbol resolution code of the
1646 SVR4 run time loader. */
13437d4b 1647
7d522c90 1648int
d7fa2ae2 1649svr4_in_dynsym_resolve_code (CORE_ADDR pc)
13437d4b 1650{
6c95b8df
PA
1651 struct svr4_info *info = get_svr4_info ();
1652
1653 return ((pc >= info->interp_text_sect_low
1654 && pc < info->interp_text_sect_high)
1655 || (pc >= info->interp_plt_sect_low
1656 && pc < info->interp_plt_sect_high)
3e5d3a5a 1657 || in_plt_section (pc)
0875794a 1658 || in_gnu_ifunc_stub (pc));
13437d4b 1659}
13437d4b 1660
2f4950cd
AC
1661/* Given an executable's ABFD and target, compute the entry-point
1662 address. */
1663
1664static CORE_ADDR
1665exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1666{
8c2b9656
YQ
1667 CORE_ADDR addr;
1668
2f4950cd
AC
1669 /* KevinB wrote ... for most targets, the address returned by
1670 bfd_get_start_address() is the entry point for the start
1671 function. But, for some targets, bfd_get_start_address() returns
1672 the address of a function descriptor from which the entry point
1673 address may be extracted. This address is extracted by
1674 gdbarch_convert_from_func_ptr_addr(). The method
1675 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1676 function for targets which don't use function descriptors. */
8c2b9656 1677 addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2f4950cd
AC
1678 bfd_get_start_address (abfd),
1679 targ);
8c2b9656 1680 return gdbarch_addr_bits_remove (target_gdbarch (), addr);
2f4950cd 1681}
13437d4b 1682
f9e14852
GB
1683/* A probe and its associated action. */
1684
1685struct probe_and_action
1686{
1687 /* The probe. */
1688 struct probe *probe;
1689
729662a5
TT
1690 /* The relocated address of the probe. */
1691 CORE_ADDR address;
1692
f9e14852
GB
1693 /* The action. */
1694 enum probe_action action;
1695};
1696
1697/* Returns a hash code for the probe_and_action referenced by p. */
1698
1699static hashval_t
1700hash_probe_and_action (const void *p)
1701{
1702 const struct probe_and_action *pa = p;
1703
729662a5 1704 return (hashval_t) pa->address;
f9e14852
GB
1705}
1706
1707/* Returns non-zero if the probe_and_actions referenced by p1 and p2
1708 are equal. */
1709
1710static int
1711equal_probe_and_action (const void *p1, const void *p2)
1712{
1713 const struct probe_and_action *pa1 = p1;
1714 const struct probe_and_action *pa2 = p2;
1715
729662a5 1716 return pa1->address == pa2->address;
f9e14852
GB
1717}
1718
1719/* Register a solib event probe and its associated action in the
1720 probes table. */
1721
1722static void
729662a5
TT
1723register_solib_event_probe (struct probe *probe, CORE_ADDR address,
1724 enum probe_action action)
f9e14852
GB
1725{
1726 struct svr4_info *info = get_svr4_info ();
1727 struct probe_and_action lookup, *pa;
1728 void **slot;
1729
1730 /* Create the probes table, if necessary. */
1731 if (info->probes_table == NULL)
1732 info->probes_table = htab_create_alloc (1, hash_probe_and_action,
1733 equal_probe_and_action,
1734 xfree, xcalloc, xfree);
1735
1736 lookup.probe = probe;
729662a5 1737 lookup.address = address;
f9e14852
GB
1738 slot = htab_find_slot (info->probes_table, &lookup, INSERT);
1739 gdb_assert (*slot == HTAB_EMPTY_ENTRY);
1740
1741 pa = XCNEW (struct probe_and_action);
1742 pa->probe = probe;
729662a5 1743 pa->address = address;
f9e14852
GB
1744 pa->action = action;
1745
1746 *slot = pa;
1747}
1748
1749/* Get the solib event probe at the specified location, and the
1750 action associated with it. Returns NULL if no solib event probe
1751 was found. */
1752
1753static struct probe_and_action *
1754solib_event_probe_at (struct svr4_info *info, CORE_ADDR address)
1755{
f9e14852
GB
1756 struct probe_and_action lookup;
1757 void **slot;
1758
729662a5 1759 lookup.address = address;
f9e14852
GB
1760 slot = htab_find_slot (info->probes_table, &lookup, NO_INSERT);
1761
1762 if (slot == NULL)
1763 return NULL;
1764
1765 return (struct probe_and_action *) *slot;
1766}
1767
1768/* Decide what action to take when the specified solib event probe is
1769 hit. */
1770
1771static enum probe_action
1772solib_event_probe_action (struct probe_and_action *pa)
1773{
1774 enum probe_action action;
73c6b475 1775 unsigned probe_argc = 0;
08a6411c 1776 struct frame_info *frame = get_current_frame ();
f9e14852
GB
1777
1778 action = pa->action;
1779 if (action == DO_NOTHING || action == PROBES_INTERFACE_FAILED)
1780 return action;
1781
1782 gdb_assert (action == FULL_RELOAD || action == UPDATE_OR_RELOAD);
1783
1784 /* Check that an appropriate number of arguments has been supplied.
1785 We expect:
1786 arg0: Lmid_t lmid (mandatory)
1787 arg1: struct r_debug *debug_base (mandatory)
1788 arg2: struct link_map *new (optional, for incremental updates) */
3bd7e5b7
SDJ
1789 TRY
1790 {
1791 probe_argc = get_probe_argument_count (pa->probe, frame);
1792 }
1793 CATCH (ex, RETURN_MASK_ERROR)
1794 {
1795 exception_print (gdb_stderr, ex);
1796 probe_argc = 0;
1797 }
1798 END_CATCH
1799
1800 /* If get_probe_argument_count throws an exception, probe_argc will
1801 be set to zero. However, if pa->probe does not have arguments,
1802 then get_probe_argument_count will succeed but probe_argc will
1803 also be zero. Both cases happen because of different things, but
1804 they are treated equally here: action will be set to
1805 PROBES_INTERFACE_FAILED. */
f9e14852
GB
1806 if (probe_argc == 2)
1807 action = FULL_RELOAD;
1808 else if (probe_argc < 2)
1809 action = PROBES_INTERFACE_FAILED;
1810
1811 return action;
1812}
1813
1814/* Populate the shared object list by reading the entire list of
1815 shared objects from the inferior. Handle special cases relating
1816 to the first elements of the list. Returns nonzero on success. */
1817
1818static int
1819solist_update_full (struct svr4_info *info)
1820{
1821 free_solib_list (info);
1822 info->solib_list = svr4_current_sos_direct (info);
1823
1824 return 1;
1825}
1826
1827/* Update the shared object list starting from the link-map entry
1828 passed by the linker in the probe's third argument. Returns
1829 nonzero if the list was successfully updated, or zero to indicate
1830 failure. */
1831
1832static int
1833solist_update_incremental (struct svr4_info *info, CORE_ADDR lm)
1834{
1835 struct so_list *tail;
1836 CORE_ADDR prev_lm;
1837
1838 /* svr4_current_sos_direct contains logic to handle a number of
1839 special cases relating to the first elements of the list. To
1840 avoid duplicating this logic we defer to solist_update_full
1841 if the list is empty. */
1842 if (info->solib_list == NULL)
1843 return 0;
1844
1845 /* Fall back to a full update if we are using a remote target
1846 that does not support incremental transfers. */
1847 if (info->using_xfer && !target_augmented_libraries_svr4_read ())
1848 return 0;
1849
1850 /* Walk to the end of the list. */
1851 for (tail = info->solib_list; tail->next != NULL; tail = tail->next)
1852 /* Nothing. */;
1853 prev_lm = tail->lm_info->lm_addr;
1854
1855 /* Read the new objects. */
1856 if (info->using_xfer)
1857 {
1858 struct svr4_library_list library_list;
1859 char annex[64];
1860
1861 xsnprintf (annex, sizeof (annex), "start=%s;prev=%s",
1862 phex_nz (lm, sizeof (lm)),
1863 phex_nz (prev_lm, sizeof (prev_lm)));
1864 if (!svr4_current_sos_via_xfer_libraries (&library_list, annex))
1865 return 0;
1866
1867 tail->next = library_list.head;
1868 }
1869 else
1870 {
1871 struct so_list **link = &tail->next;
1872
1873 /* IGNORE_FIRST may safely be set to zero here because the
1874 above check and deferral to solist_update_full ensures
1875 that this call to svr4_read_so_list will never see the
1876 first element. */
1877 if (!svr4_read_so_list (lm, prev_lm, &link, 0))
1878 return 0;
1879 }
1880
1881 return 1;
1882}
1883
1884/* Disable the probes-based linker interface and revert to the
1885 original interface. We don't reset the breakpoints as the
1886 ones set up for the probes-based interface are adequate. */
1887
1888static void
1889disable_probes_interface_cleanup (void *arg)
1890{
1891 struct svr4_info *info = get_svr4_info ();
1892
1893 warning (_("Probes-based dynamic linker interface failed.\n"
1894 "Reverting to original interface.\n"));
1895
1896 free_probes_table (info);
1897 free_solib_list (info);
1898}
1899
1900/* Update the solib list as appropriate when using the
1901 probes-based linker interface. Do nothing if using the
1902 standard interface. */
1903
1904static void
1905svr4_handle_solib_event (void)
1906{
1907 struct svr4_info *info = get_svr4_info ();
1908 struct probe_and_action *pa;
1909 enum probe_action action;
1910 struct cleanup *old_chain, *usm_chain;
ad1c917a 1911 struct value *val = NULL;
f9e14852
GB
1912 CORE_ADDR pc, debug_base, lm = 0;
1913 int is_initial_ns;
08a6411c 1914 struct frame_info *frame = get_current_frame ();
f9e14852
GB
1915
1916 /* Do nothing if not using the probes interface. */
1917 if (info->probes_table == NULL)
1918 return;
1919
1920 /* If anything goes wrong we revert to the original linker
1921 interface. */
1922 old_chain = make_cleanup (disable_probes_interface_cleanup, NULL);
1923
1924 pc = regcache_read_pc (get_current_regcache ());
1925 pa = solib_event_probe_at (info, pc);
1926 if (pa == NULL)
1927 {
1928 do_cleanups (old_chain);
1929 return;
1930 }
1931
1932 action = solib_event_probe_action (pa);
1933 if (action == PROBES_INTERFACE_FAILED)
1934 {
1935 do_cleanups (old_chain);
1936 return;
1937 }
1938
1939 if (action == DO_NOTHING)
1940 {
1941 discard_cleanups (old_chain);
1942 return;
1943 }
1944
1945 /* evaluate_probe_argument looks up symbols in the dynamic linker
1946 using find_pc_section. find_pc_section is accelerated by a cache
1947 called the section map. The section map is invalidated every
1948 time a shared library is loaded or unloaded, and if the inferior
1949 is generating a lot of shared library events then the section map
1950 will be updated every time svr4_handle_solib_event is called.
1951 We called find_pc_section in svr4_create_solib_event_breakpoints,
1952 so we can guarantee that the dynamic linker's sections are in the
1953 section map. We can therefore inhibit section map updates across
1954 these calls to evaluate_probe_argument and save a lot of time. */
1955 inhibit_section_map_updates (current_program_space);
1956 usm_chain = make_cleanup (resume_section_map_updates_cleanup,
1957 current_program_space);
1958
3bd7e5b7
SDJ
1959 TRY
1960 {
1961 val = evaluate_probe_argument (pa->probe, 1, frame);
1962 }
1963 CATCH (ex, RETURN_MASK_ERROR)
1964 {
1965 exception_print (gdb_stderr, ex);
1966 val = NULL;
1967 }
1968 END_CATCH
1969
f9e14852
GB
1970 if (val == NULL)
1971 {
1972 do_cleanups (old_chain);
1973 return;
1974 }
1975
1976 debug_base = value_as_address (val);
1977 if (debug_base == 0)
1978 {
1979 do_cleanups (old_chain);
1980 return;
1981 }
1982
1983 /* Always locate the debug struct, in case it moved. */
1984 info->debug_base = 0;
1985 if (locate_base (info) == 0)
1986 {
1987 do_cleanups (old_chain);
1988 return;
1989 }
1990
1991 /* GDB does not currently support libraries loaded via dlmopen
1992 into namespaces other than the initial one. We must ignore
1993 any namespace other than the initial namespace here until
1994 support for this is added to GDB. */
1995 if (debug_base != info->debug_base)
1996 action = DO_NOTHING;
1997
1998 if (action == UPDATE_OR_RELOAD)
1999 {
3bd7e5b7
SDJ
2000 TRY
2001 {
2002 val = evaluate_probe_argument (pa->probe, 2, frame);
2003 }
2004 CATCH (ex, RETURN_MASK_ERROR)
2005 {
2006 exception_print (gdb_stderr, ex);
2007 do_cleanups (old_chain);
2008 return;
2009 }
2010 END_CATCH
2011
f9e14852
GB
2012 if (val != NULL)
2013 lm = value_as_address (val);
2014
2015 if (lm == 0)
2016 action = FULL_RELOAD;
2017 }
2018
2019 /* Resume section map updates. */
2020 do_cleanups (usm_chain);
2021
2022 if (action == UPDATE_OR_RELOAD)
2023 {
2024 if (!solist_update_incremental (info, lm))
2025 action = FULL_RELOAD;
2026 }
2027
2028 if (action == FULL_RELOAD)
2029 {
2030 if (!solist_update_full (info))
2031 {
2032 do_cleanups (old_chain);
2033 return;
2034 }
2035 }
2036
2037 discard_cleanups (old_chain);
2038}
2039
2040/* Helper function for svr4_update_solib_event_breakpoints. */
2041
2042static int
2043svr4_update_solib_event_breakpoint (struct breakpoint *b, void *arg)
2044{
2045 struct bp_location *loc;
2046
2047 if (b->type != bp_shlib_event)
2048 {
2049 /* Continue iterating. */
2050 return 0;
2051 }
2052
2053 for (loc = b->loc; loc != NULL; loc = loc->next)
2054 {
2055 struct svr4_info *info;
2056 struct probe_and_action *pa;
2057
2058 info = program_space_data (loc->pspace, solib_svr4_pspace_data);
2059 if (info == NULL || info->probes_table == NULL)
2060 continue;
2061
2062 pa = solib_event_probe_at (info, loc->address);
2063 if (pa == NULL)
2064 continue;
2065
2066 if (pa->action == DO_NOTHING)
2067 {
2068 if (b->enable_state == bp_disabled && stop_on_solib_events)
2069 enable_breakpoint (b);
2070 else if (b->enable_state == bp_enabled && !stop_on_solib_events)
2071 disable_breakpoint (b);
2072 }
2073
2074 break;
2075 }
2076
2077 /* Continue iterating. */
2078 return 0;
2079}
2080
2081/* Enable or disable optional solib event breakpoints as appropriate.
2082 Called whenever stop_on_solib_events is changed. */
2083
2084static void
2085svr4_update_solib_event_breakpoints (void)
2086{
2087 iterate_over_breakpoints (svr4_update_solib_event_breakpoint, NULL);
2088}
2089
2090/* Create and register solib event breakpoints. PROBES is an array
2091 of NUM_PROBES elements, each of which is vector of probes. A
2092 solib event breakpoint will be created and registered for each
2093 probe. */
2094
2095static void
2096svr4_create_probe_breakpoints (struct gdbarch *gdbarch,
729662a5
TT
2097 VEC (probe_p) **probes,
2098 struct objfile *objfile)
f9e14852
GB
2099{
2100 int i;
2101
2102 for (i = 0; i < NUM_PROBES; i++)
2103 {
2104 enum probe_action action = probe_info[i].action;
2105 struct probe *probe;
2106 int ix;
2107
2108 for (ix = 0;
2109 VEC_iterate (probe_p, probes[i], ix, probe);
2110 ++ix)
2111 {
729662a5
TT
2112 CORE_ADDR address = get_probe_address (probe, objfile);
2113
2114 create_solib_event_breakpoint (gdbarch, address);
2115 register_solib_event_probe (probe, address, action);
f9e14852
GB
2116 }
2117 }
2118
2119 svr4_update_solib_event_breakpoints ();
2120}
2121
2122/* Both the SunOS and the SVR4 dynamic linkers call a marker function
2123 before and after mapping and unmapping shared libraries. The sole
2124 purpose of this method is to allow debuggers to set a breakpoint so
2125 they can track these changes.
2126
2127 Some versions of the glibc dynamic linker contain named probes
2128 to allow more fine grained stopping. Given the address of the
2129 original marker function, this function attempts to find these
2130 probes, and if found, sets breakpoints on those instead. If the
2131 probes aren't found, a single breakpoint is set on the original
2132 marker function. */
2133
2134static void
2135svr4_create_solib_event_breakpoints (struct gdbarch *gdbarch,
2136 CORE_ADDR address)
2137{
2138 struct obj_section *os;
2139
2140 os = find_pc_section (address);
2141 if (os != NULL)
2142 {
2143 int with_prefix;
2144
2145 for (with_prefix = 0; with_prefix <= 1; with_prefix++)
2146 {
2147 VEC (probe_p) *probes[NUM_PROBES];
2148 int all_probes_found = 1;
25f9533e 2149 int checked_can_use_probe_arguments = 0;
f9e14852
GB
2150 int i;
2151
2152 memset (probes, 0, sizeof (probes));
2153 for (i = 0; i < NUM_PROBES; i++)
2154 {
2155 const char *name = probe_info[i].name;
25f9533e 2156 struct probe *p;
f9e14852
GB
2157 char buf[32];
2158
2159 /* Fedora 17 and Red Hat Enterprise Linux 6.2-6.4
2160 shipped with an early version of the probes code in
2161 which the probes' names were prefixed with "rtld_"
2162 and the "map_failed" probe did not exist. The
2163 locations of the probes are otherwise the same, so
2164 we check for probes with prefixed names if probes
2165 with unprefixed names are not present. */
2166 if (with_prefix)
2167 {
2168 xsnprintf (buf, sizeof (buf), "rtld_%s", name);
2169 name = buf;
2170 }
2171
2172 probes[i] = find_probes_in_objfile (os->objfile, "rtld", name);
2173
2174 /* The "map_failed" probe did not exist in early
2175 versions of the probes code in which the probes'
2176 names were prefixed with "rtld_". */
2177 if (strcmp (name, "rtld_map_failed") == 0)
2178 continue;
2179
2180 if (VEC_empty (probe_p, probes[i]))
2181 {
2182 all_probes_found = 0;
2183 break;
2184 }
25f9533e
SDJ
2185
2186 /* Ensure probe arguments can be evaluated. */
2187 if (!checked_can_use_probe_arguments)
2188 {
2189 p = VEC_index (probe_p, probes[i], 0);
2190 if (!can_evaluate_probe_arguments (p))
2191 {
2192 all_probes_found = 0;
2193 break;
2194 }
2195 checked_can_use_probe_arguments = 1;
2196 }
f9e14852
GB
2197 }
2198
2199 if (all_probes_found)
729662a5 2200 svr4_create_probe_breakpoints (gdbarch, probes, os->objfile);
f9e14852
GB
2201
2202 for (i = 0; i < NUM_PROBES; i++)
2203 VEC_free (probe_p, probes[i]);
2204
2205 if (all_probes_found)
2206 return;
2207 }
2208 }
2209
2210 create_solib_event_breakpoint (gdbarch, address);
2211}
2212
cb457ae2
YQ
2213/* Helper function for gdb_bfd_lookup_symbol. */
2214
2215static int
2216cmp_name_and_sec_flags (asymbol *sym, void *data)
2217{
2218 return (strcmp (sym->name, (const char *) data) == 0
2219 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0);
2220}
7f86f058 2221/* Arrange for dynamic linker to hit breakpoint.
13437d4b
KB
2222
2223 Both the SunOS and the SVR4 dynamic linkers have, as part of their
2224 debugger interface, support for arranging for the inferior to hit
2225 a breakpoint after mapping in the shared libraries. This function
2226 enables that breakpoint.
2227
2228 For SunOS, there is a special flag location (in_debugger) which we
2229 set to 1. When the dynamic linker sees this flag set, it will set
2230 a breakpoint at a location known only to itself, after saving the
2231 original contents of that place and the breakpoint address itself,
2232 in it's own internal structures. When we resume the inferior, it
2233 will eventually take a SIGTRAP when it runs into the breakpoint.
2234 We handle this (in a different place) by restoring the contents of
2235 the breakpointed location (which is only known after it stops),
2236 chasing around to locate the shared libraries that have been
2237 loaded, then resuming.
2238
2239 For SVR4, the debugger interface structure contains a member (r_brk)
2240 which is statically initialized at the time the shared library is
2241 built, to the offset of a function (_r_debug_state) which is guaran-
2242 teed to be called once before mapping in a library, and again when
2243 the mapping is complete. At the time we are examining this member,
2244 it contains only the unrelocated offset of the function, so we have
2245 to do our own relocation. Later, when the dynamic linker actually
2246 runs, it relocates r_brk to be the actual address of _r_debug_state().
2247
2248 The debugger interface structure also contains an enumeration which
2249 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
2250 depending upon whether or not the library is being mapped or unmapped,
7f86f058 2251 and then set to RT_CONSISTENT after the library is mapped/unmapped. */
13437d4b
KB
2252
2253static int
268a4a75 2254enable_break (struct svr4_info *info, int from_tty)
13437d4b 2255{
3b7344d5 2256 struct bound_minimal_symbol msymbol;
bc043ef3 2257 const char * const *bkpt_namep;
13437d4b 2258 asection *interp_sect;
001f13d8 2259 char *interp_name;
7cd25cfc 2260 CORE_ADDR sym_addr;
13437d4b 2261
6c95b8df
PA
2262 info->interp_text_sect_low = info->interp_text_sect_high = 0;
2263 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
13437d4b 2264
7cd25cfc
DJ
2265 /* If we already have a shared library list in the target, and
2266 r_debug contains r_brk, set the breakpoint there - this should
2267 mean r_brk has already been relocated. Assume the dynamic linker
2268 is the object containing r_brk. */
2269
268a4a75 2270 solib_add (NULL, from_tty, &current_target, auto_solib_add);
7cd25cfc 2271 sym_addr = 0;
1a816a87
PA
2272 if (info->debug_base && solib_svr4_r_map (info) != 0)
2273 sym_addr = solib_svr4_r_brk (info);
7cd25cfc
DJ
2274
2275 if (sym_addr != 0)
2276 {
2277 struct obj_section *os;
2278
b36ec657 2279 sym_addr = gdbarch_addr_bits_remove
f5656ead 2280 (target_gdbarch (), gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
3e43a32a
MS
2281 sym_addr,
2282 &current_target));
b36ec657 2283
48379de6
DE
2284 /* On at least some versions of Solaris there's a dynamic relocation
2285 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
2286 we get control before the dynamic linker has self-relocated.
2287 Check if SYM_ADDR is in a known section, if it is assume we can
2288 trust its value. This is just a heuristic though, it could go away
2289 or be replaced if it's getting in the way.
2290
2291 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
2292 however it's spelled in your particular system) is ARM or Thumb.
2293 That knowledge is encoded in the address, if it's Thumb the low bit
2294 is 1. However, we've stripped that info above and it's not clear
2295 what all the consequences are of passing a non-addr_bits_remove'd
f9e14852 2296 address to svr4_create_solib_event_breakpoints. The call to
48379de6
DE
2297 find_pc_section verifies we know about the address and have some
2298 hope of computing the right kind of breakpoint to use (via
2299 symbol info). It does mean that GDB needs to be pointed at a
2300 non-stripped version of the dynamic linker in order to obtain
2301 information it already knows about. Sigh. */
2302
7cd25cfc
DJ
2303 os = find_pc_section (sym_addr);
2304 if (os != NULL)
2305 {
2306 /* Record the relocated start and end address of the dynamic linker
2307 text and plt section for svr4_in_dynsym_resolve_code. */
2308 bfd *tmp_bfd;
2309 CORE_ADDR load_addr;
2310
2311 tmp_bfd = os->objfile->obfd;
2312 load_addr = ANOFFSET (os->objfile->section_offsets,
e03e6279 2313 SECT_OFF_TEXT (os->objfile));
7cd25cfc
DJ
2314
2315 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
2316 if (interp_sect)
2317 {
6c95b8df 2318 info->interp_text_sect_low =
7cd25cfc 2319 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
2320 info->interp_text_sect_high =
2321 info->interp_text_sect_low
2322 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
2323 }
2324 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
2325 if (interp_sect)
2326 {
6c95b8df 2327 info->interp_plt_sect_low =
7cd25cfc 2328 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
2329 info->interp_plt_sect_high =
2330 info->interp_plt_sect_low
2331 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
2332 }
2333
f9e14852 2334 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
7cd25cfc
DJ
2335 return 1;
2336 }
2337 }
2338
97ec2c2f 2339 /* Find the program interpreter; if not found, warn the user and drop
13437d4b 2340 into the old breakpoint at symbol code. */
97ec2c2f
UW
2341 interp_name = find_program_interpreter ();
2342 if (interp_name)
13437d4b 2343 {
8ad2fcde
KB
2344 CORE_ADDR load_addr = 0;
2345 int load_addr_found = 0;
2ec9a4f8 2346 int loader_found_in_list = 0;
f8766ec1 2347 struct so_list *so;
e4f7b8c8 2348 bfd *tmp_bfd = NULL;
2f4950cd 2349 struct target_ops *tmp_bfd_target;
13437d4b 2350
7cd25cfc 2351 sym_addr = 0;
13437d4b
KB
2352
2353 /* Now we need to figure out where the dynamic linker was
2354 loaded so that we can load its symbols and place a breakpoint
2355 in the dynamic linker itself.
2356
2357 This address is stored on the stack. However, I've been unable
2358 to find any magic formula to find it for Solaris (appears to
2359 be trivial on GNU/Linux). Therefore, we have to try an alternate
2360 mechanism to find the dynamic linker's base address. */
e4f7b8c8 2361
492d29ea 2362 TRY
f1838a98 2363 {
97ec2c2f 2364 tmp_bfd = solib_bfd_open (interp_name);
f1838a98 2365 }
492d29ea
PA
2366 CATCH (ex, RETURN_MASK_ALL)
2367 {
2368 }
2369 END_CATCH
2370
13437d4b
KB
2371 if (tmp_bfd == NULL)
2372 goto bkpt_at_symbol;
2373
2f4950cd 2374 /* Now convert the TMP_BFD into a target. That way target, as
695c3173 2375 well as BFD operations can be used. */
2f4950cd 2376 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
695c3173
TT
2377 /* target_bfd_reopen acquired its own reference, so we can
2378 release ours now. */
2379 gdb_bfd_unref (tmp_bfd);
2f4950cd 2380
f8766ec1
KB
2381 /* On a running target, we can get the dynamic linker's base
2382 address from the shared library table. */
f8766ec1
KB
2383 so = master_so_list ();
2384 while (so)
8ad2fcde 2385 {
97ec2c2f 2386 if (svr4_same_1 (interp_name, so->so_original_name))
8ad2fcde
KB
2387 {
2388 load_addr_found = 1;
2ec9a4f8 2389 loader_found_in_list = 1;
b23518f0 2390 load_addr = lm_addr_check (so, tmp_bfd);
8ad2fcde
KB
2391 break;
2392 }
f8766ec1 2393 so = so->next;
8ad2fcde
KB
2394 }
2395
8d4e36ba
JB
2396 /* If we were not able to find the base address of the loader
2397 from our so_list, then try using the AT_BASE auxilliary entry. */
2398 if (!load_addr_found)
2399 if (target_auxv_search (&current_target, AT_BASE, &load_addr) > 0)
ad3a0e5b 2400 {
f5656ead 2401 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
ad3a0e5b
JK
2402
2403 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
2404 that `+ load_addr' will overflow CORE_ADDR width not creating
2405 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
2406 GDB. */
2407
d182d057 2408 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
ad3a0e5b 2409 {
d182d057 2410 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
ad3a0e5b
JK
2411 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd,
2412 tmp_bfd_target);
2413
2414 gdb_assert (load_addr < space_size);
2415
2416 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
2417 64bit ld.so with 32bit executable, it should not happen. */
2418
2419 if (tmp_entry_point < space_size
2420 && tmp_entry_point + load_addr >= space_size)
2421 load_addr -= space_size;
2422 }
2423
2424 load_addr_found = 1;
2425 }
8d4e36ba 2426
8ad2fcde
KB
2427 /* Otherwise we find the dynamic linker's base address by examining
2428 the current pc (which should point at the entry point for the
8d4e36ba
JB
2429 dynamic linker) and subtracting the offset of the entry point.
2430
2431 This is more fragile than the previous approaches, but is a good
2432 fallback method because it has actually been working well in
2433 most cases. */
8ad2fcde 2434 if (!load_addr_found)
fb14de7b 2435 {
c2250ad1 2436 struct regcache *regcache
f5656ead 2437 = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
433759f7 2438
fb14de7b
UW
2439 load_addr = (regcache_read_pc (regcache)
2440 - exec_entry_point (tmp_bfd, tmp_bfd_target));
2441 }
2ec9a4f8
DJ
2442
2443 if (!loader_found_in_list)
34439770 2444 {
1a816a87
PA
2445 info->debug_loader_name = xstrdup (interp_name);
2446 info->debug_loader_offset_p = 1;
2447 info->debug_loader_offset = load_addr;
268a4a75 2448 solib_add (NULL, from_tty, &current_target, auto_solib_add);
34439770 2449 }
13437d4b
KB
2450
2451 /* Record the relocated start and end address of the dynamic linker
d7fa2ae2 2452 text and plt section for svr4_in_dynsym_resolve_code. */
13437d4b
KB
2453 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
2454 if (interp_sect)
2455 {
6c95b8df 2456 info->interp_text_sect_low =
13437d4b 2457 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
2458 info->interp_text_sect_high =
2459 info->interp_text_sect_low
2460 + bfd_section_size (tmp_bfd, interp_sect);
13437d4b
KB
2461 }
2462 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
2463 if (interp_sect)
2464 {
6c95b8df 2465 info->interp_plt_sect_low =
13437d4b 2466 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
2467 info->interp_plt_sect_high =
2468 info->interp_plt_sect_low
2469 + bfd_section_size (tmp_bfd, interp_sect);
13437d4b
KB
2470 }
2471
2472 /* Now try to set a breakpoint in the dynamic linker. */
2473 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2474 {
cb457ae2
YQ
2475 sym_addr = gdb_bfd_lookup_symbol (tmp_bfd, cmp_name_and_sec_flags,
2476 (void *) *bkpt_namep);
13437d4b
KB
2477 if (sym_addr != 0)
2478 break;
2479 }
2480
2bbe3cc1
DJ
2481 if (sym_addr != 0)
2482 /* Convert 'sym_addr' from a function pointer to an address.
2483 Because we pass tmp_bfd_target instead of the current
2484 target, this will always produce an unrelocated value. */
f5656ead 2485 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2bbe3cc1
DJ
2486 sym_addr,
2487 tmp_bfd_target);
2488
695c3173
TT
2489 /* We're done with both the temporary bfd and target. Closing
2490 the target closes the underlying bfd, because it holds the
2491 only remaining reference. */
460014f5 2492 target_close (tmp_bfd_target);
13437d4b
KB
2493
2494 if (sym_addr != 0)
2495 {
f9e14852
GB
2496 svr4_create_solib_event_breakpoints (target_gdbarch (),
2497 load_addr + sym_addr);
97ec2c2f 2498 xfree (interp_name);
13437d4b
KB
2499 return 1;
2500 }
2501
2502 /* For whatever reason we couldn't set a breakpoint in the dynamic
2503 linker. Warn and drop into the old code. */
2504 bkpt_at_symbol:
97ec2c2f 2505 xfree (interp_name);
82d03102
PG
2506 warning (_("Unable to find dynamic linker breakpoint function.\n"
2507 "GDB will be unable to debug shared library initializers\n"
2508 "and track explicitly loaded dynamic code."));
13437d4b 2509 }
13437d4b 2510
e499d0f1
DJ
2511 /* Scan through the lists of symbols, trying to look up the symbol and
2512 set a breakpoint there. Terminate loop when we/if we succeed. */
2513
2514 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2515 {
2516 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
3b7344d5 2517 if ((msymbol.minsym != NULL)
77e371c0 2518 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
e499d0f1 2519 {
77e371c0 2520 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
f5656ead 2521 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
de64a9ac
JM
2522 sym_addr,
2523 &current_target);
f9e14852 2524 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
e499d0f1
DJ
2525 return 1;
2526 }
2527 }
13437d4b 2528
fb139f32 2529 if (interp_name != NULL && !current_inferior ()->attach_flag)
13437d4b 2530 {
c6490bf2 2531 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
13437d4b 2532 {
c6490bf2 2533 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
3b7344d5 2534 if ((msymbol.minsym != NULL)
77e371c0 2535 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
c6490bf2 2536 {
77e371c0 2537 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
f5656ead 2538 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
c6490bf2
KB
2539 sym_addr,
2540 &current_target);
f9e14852 2541 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
c6490bf2
KB
2542 return 1;
2543 }
13437d4b
KB
2544 }
2545 }
542c95c2 2546 return 0;
13437d4b
KB
2547}
2548
7f86f058 2549/* Implement the "special_symbol_handling" target_so_ops method. */
13437d4b
KB
2550
2551static void
2552svr4_special_symbol_handling (void)
2553{
7f86f058 2554 /* Nothing to do. */
13437d4b
KB
2555}
2556
09919ac2
JK
2557/* Read the ELF program headers from ABFD. Return the contents and
2558 set *PHDRS_SIZE to the size of the program headers. */
e2a44558 2559
09919ac2
JK
2560static gdb_byte *
2561read_program_headers_from_bfd (bfd *abfd, int *phdrs_size)
e2a44558 2562{
09919ac2
JK
2563 Elf_Internal_Ehdr *ehdr;
2564 gdb_byte *buf;
e2a44558 2565
09919ac2 2566 ehdr = elf_elfheader (abfd);
b8040f19 2567
09919ac2
JK
2568 *phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
2569 if (*phdrs_size == 0)
2570 return NULL;
2571
2572 buf = xmalloc (*phdrs_size);
2573 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
2574 || bfd_bread (buf, *phdrs_size, abfd) != *phdrs_size)
2575 {
2576 xfree (buf);
2577 return NULL;
2578 }
2579
2580 return buf;
b8040f19
JK
2581}
2582
01c30d6e
JK
2583/* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
2584 exec_bfd. Otherwise return 0.
2585
2586 We relocate all of the sections by the same amount. This
c378eb4e 2587 behavior is mandated by recent editions of the System V ABI.
b8040f19
JK
2588 According to the System V Application Binary Interface,
2589 Edition 4.1, page 5-5:
2590
2591 ... Though the system chooses virtual addresses for
2592 individual processes, it maintains the segments' relative
2593 positions. Because position-independent code uses relative
2594 addressesing between segments, the difference between
2595 virtual addresses in memory must match the difference
2596 between virtual addresses in the file. The difference
2597 between the virtual address of any segment in memory and
2598 the corresponding virtual address in the file is thus a
2599 single constant value for any one executable or shared
2600 object in a given process. This difference is the base
2601 address. One use of the base address is to relocate the
2602 memory image of the program during dynamic linking.
2603
2604 The same language also appears in Edition 4.0 of the System V
09919ac2
JK
2605 ABI and is left unspecified in some of the earlier editions.
2606
2607 Decide if the objfile needs to be relocated. As indicated above, we will
2608 only be here when execution is stopped. But during attachment PC can be at
2609 arbitrary address therefore regcache_read_pc can be misleading (contrary to
2610 the auxv AT_ENTRY value). Moreover for executable with interpreter section
2611 regcache_read_pc would point to the interpreter and not the main executable.
2612
2613 So, to summarize, relocations are necessary when the start address obtained
2614 from the executable is different from the address in auxv AT_ENTRY entry.
d989b283 2615
09919ac2
JK
2616 [ The astute reader will note that we also test to make sure that
2617 the executable in question has the DYNAMIC flag set. It is my
2618 opinion that this test is unnecessary (undesirable even). It
2619 was added to avoid inadvertent relocation of an executable
2620 whose e_type member in the ELF header is not ET_DYN. There may
2621 be a time in the future when it is desirable to do relocations
2622 on other types of files as well in which case this condition
2623 should either be removed or modified to accomodate the new file
2624 type. - Kevin, Nov 2000. ] */
b8040f19 2625
01c30d6e
JK
2626static int
2627svr4_exec_displacement (CORE_ADDR *displacementp)
b8040f19 2628{
41752192
JK
2629 /* ENTRY_POINT is a possible function descriptor - before
2630 a call to gdbarch_convert_from_func_ptr_addr. */
8f61baf8 2631 CORE_ADDR entry_point, exec_displacement;
b8040f19
JK
2632
2633 if (exec_bfd == NULL)
2634 return 0;
2635
09919ac2
JK
2636 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
2637 being executed themselves and PIE (Position Independent Executable)
2638 executables are ET_DYN. */
2639
2640 if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0)
2641 return 0;
2642
2643 if (target_auxv_search (&current_target, AT_ENTRY, &entry_point) <= 0)
2644 return 0;
2645
8f61baf8 2646 exec_displacement = entry_point - bfd_get_start_address (exec_bfd);
09919ac2 2647
8f61baf8 2648 /* Verify the EXEC_DISPLACEMENT candidate complies with the required page
09919ac2
JK
2649 alignment. It is cheaper than the program headers comparison below. */
2650
2651 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2652 {
2653 const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd);
2654
2655 /* p_align of PT_LOAD segments does not specify any alignment but
2656 only congruency of addresses:
2657 p_offset % p_align == p_vaddr % p_align
2658 Kernel is free to load the executable with lower alignment. */
2659
8f61baf8 2660 if ((exec_displacement & (elf->minpagesize - 1)) != 0)
09919ac2
JK
2661 return 0;
2662 }
2663
2664 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
2665 comparing their program headers. If the program headers in the auxilliary
2666 vector do not match the program headers in the executable, then we are
2667 looking at a different file than the one used by the kernel - for
2668 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
2669
2670 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2671 {
2672 /* Be optimistic and clear OK only if GDB was able to verify the headers
2673 really do not match. */
2674 int phdrs_size, phdrs2_size, ok = 1;
2675 gdb_byte *buf, *buf2;
0a1e94c7 2676 int arch_size;
09919ac2 2677
a738da3a 2678 buf = read_program_header (-1, &phdrs_size, &arch_size, NULL);
09919ac2 2679 buf2 = read_program_headers_from_bfd (exec_bfd, &phdrs2_size);
0a1e94c7
JK
2680 if (buf != NULL && buf2 != NULL)
2681 {
f5656ead 2682 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
0a1e94c7
JK
2683
2684 /* We are dealing with three different addresses. EXEC_BFD
2685 represents current address in on-disk file. target memory content
2686 may be different from EXEC_BFD as the file may have been prelinked
2687 to a different address after the executable has been loaded.
2688 Moreover the address of placement in target memory can be
3e43a32a
MS
2689 different from what the program headers in target memory say -
2690 this is the goal of PIE.
0a1e94c7
JK
2691
2692 Detected DISPLACEMENT covers both the offsets of PIE placement and
2693 possible new prelink performed after start of the program. Here
2694 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
2695 content offset for the verification purpose. */
2696
2697 if (phdrs_size != phdrs2_size
2698 || bfd_get_arch_size (exec_bfd) != arch_size)
2699 ok = 0;
3e43a32a
MS
2700 else if (arch_size == 32
2701 && phdrs_size >= sizeof (Elf32_External_Phdr)
0a1e94c7
JK
2702 && phdrs_size % sizeof (Elf32_External_Phdr) == 0)
2703 {
2704 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2705 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2706 CORE_ADDR displacement = 0;
2707 int i;
2708
2709 /* DISPLACEMENT could be found more easily by the difference of
2710 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2711 already have enough information to compute that displacement
2712 with what we've read. */
2713
2714 for (i = 0; i < ehdr2->e_phnum; i++)
2715 if (phdr2[i].p_type == PT_LOAD)
2716 {
2717 Elf32_External_Phdr *phdrp;
2718 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2719 CORE_ADDR vaddr, paddr;
2720 CORE_ADDR displacement_vaddr = 0;
2721 CORE_ADDR displacement_paddr = 0;
2722
2723 phdrp = &((Elf32_External_Phdr *) buf)[i];
2724 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2725 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2726
2727 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2728 byte_order);
2729 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2730
2731 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2732 byte_order);
2733 displacement_paddr = paddr - phdr2[i].p_paddr;
2734
2735 if (displacement_vaddr == displacement_paddr)
2736 displacement = displacement_vaddr;
2737
2738 break;
2739 }
2740
2741 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2742
2743 for (i = 0; i < phdrs_size / sizeof (Elf32_External_Phdr); i++)
2744 {
2745 Elf32_External_Phdr *phdrp;
2746 Elf32_External_Phdr *phdr2p;
2747 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2748 CORE_ADDR vaddr, paddr;
43b8e241 2749 asection *plt2_asect;
0a1e94c7
JK
2750
2751 phdrp = &((Elf32_External_Phdr *) buf)[i];
2752 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2753 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2754 phdr2p = &((Elf32_External_Phdr *) buf2)[i];
2755
2756 /* PT_GNU_STACK is an exception by being never relocated by
2757 prelink as its addresses are always zero. */
2758
2759 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2760 continue;
2761
2762 /* Check also other adjustment combinations - PR 11786. */
2763
3e43a32a
MS
2764 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2765 byte_order);
0a1e94c7
JK
2766 vaddr -= displacement;
2767 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
2768
3e43a32a
MS
2769 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2770 byte_order);
0a1e94c7
JK
2771 paddr -= displacement;
2772 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
2773
2774 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2775 continue;
2776
204b5331
DE
2777 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2778 CentOS-5 has problems with filesz, memsz as well.
2779 See PR 11786. */
2780 if (phdr2[i].p_type == PT_GNU_RELRO)
2781 {
2782 Elf32_External_Phdr tmp_phdr = *phdrp;
2783 Elf32_External_Phdr tmp_phdr2 = *phdr2p;
2784
2785 memset (tmp_phdr.p_filesz, 0, 4);
2786 memset (tmp_phdr.p_memsz, 0, 4);
2787 memset (tmp_phdr.p_flags, 0, 4);
2788 memset (tmp_phdr.p_align, 0, 4);
2789 memset (tmp_phdr2.p_filesz, 0, 4);
2790 memset (tmp_phdr2.p_memsz, 0, 4);
2791 memset (tmp_phdr2.p_flags, 0, 4);
2792 memset (tmp_phdr2.p_align, 0, 4);
2793
2794 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2795 == 0)
2796 continue;
2797 }
2798
43b8e241
JK
2799 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2800 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2801 if (plt2_asect)
2802 {
2803 int content2;
2804 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2805 CORE_ADDR filesz;
2806
2807 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2808 & SEC_HAS_CONTENTS) != 0;
2809
2810 filesz = extract_unsigned_integer (buf_filesz_p, 4,
2811 byte_order);
2812
2813 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2814 FILESZ is from the in-memory image. */
2815 if (content2)
2816 filesz += bfd_get_section_size (plt2_asect);
2817 else
2818 filesz -= bfd_get_section_size (plt2_asect);
2819
2820 store_unsigned_integer (buf_filesz_p, 4, byte_order,
2821 filesz);
2822
2823 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2824 continue;
2825 }
2826
0a1e94c7
JK
2827 ok = 0;
2828 break;
2829 }
2830 }
3e43a32a
MS
2831 else if (arch_size == 64
2832 && phdrs_size >= sizeof (Elf64_External_Phdr)
0a1e94c7
JK
2833 && phdrs_size % sizeof (Elf64_External_Phdr) == 0)
2834 {
2835 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2836 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2837 CORE_ADDR displacement = 0;
2838 int i;
2839
2840 /* DISPLACEMENT could be found more easily by the difference of
2841 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2842 already have enough information to compute that displacement
2843 with what we've read. */
2844
2845 for (i = 0; i < ehdr2->e_phnum; i++)
2846 if (phdr2[i].p_type == PT_LOAD)
2847 {
2848 Elf64_External_Phdr *phdrp;
2849 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2850 CORE_ADDR vaddr, paddr;
2851 CORE_ADDR displacement_vaddr = 0;
2852 CORE_ADDR displacement_paddr = 0;
2853
2854 phdrp = &((Elf64_External_Phdr *) buf)[i];
2855 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2856 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2857
2858 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2859 byte_order);
2860 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2861
2862 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2863 byte_order);
2864 displacement_paddr = paddr - phdr2[i].p_paddr;
2865
2866 if (displacement_vaddr == displacement_paddr)
2867 displacement = displacement_vaddr;
2868
2869 break;
2870 }
2871
2872 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2873
2874 for (i = 0; i < phdrs_size / sizeof (Elf64_External_Phdr); i++)
2875 {
2876 Elf64_External_Phdr *phdrp;
2877 Elf64_External_Phdr *phdr2p;
2878 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2879 CORE_ADDR vaddr, paddr;
43b8e241 2880 asection *plt2_asect;
0a1e94c7
JK
2881
2882 phdrp = &((Elf64_External_Phdr *) buf)[i];
2883 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2884 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2885 phdr2p = &((Elf64_External_Phdr *) buf2)[i];
2886
2887 /* PT_GNU_STACK is an exception by being never relocated by
2888 prelink as its addresses are always zero. */
2889
2890 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2891 continue;
2892
2893 /* Check also other adjustment combinations - PR 11786. */
2894
3e43a32a
MS
2895 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2896 byte_order);
0a1e94c7
JK
2897 vaddr -= displacement;
2898 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
2899
3e43a32a
MS
2900 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2901 byte_order);
0a1e94c7
JK
2902 paddr -= displacement;
2903 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
2904
2905 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2906 continue;
2907
204b5331
DE
2908 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2909 CentOS-5 has problems with filesz, memsz as well.
2910 See PR 11786. */
2911 if (phdr2[i].p_type == PT_GNU_RELRO)
2912 {
2913 Elf64_External_Phdr tmp_phdr = *phdrp;
2914 Elf64_External_Phdr tmp_phdr2 = *phdr2p;
2915
2916 memset (tmp_phdr.p_filesz, 0, 8);
2917 memset (tmp_phdr.p_memsz, 0, 8);
2918 memset (tmp_phdr.p_flags, 0, 4);
2919 memset (tmp_phdr.p_align, 0, 8);
2920 memset (tmp_phdr2.p_filesz, 0, 8);
2921 memset (tmp_phdr2.p_memsz, 0, 8);
2922 memset (tmp_phdr2.p_flags, 0, 4);
2923 memset (tmp_phdr2.p_align, 0, 8);
2924
2925 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2926 == 0)
2927 continue;
2928 }
2929
43b8e241
JK
2930 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2931 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2932 if (plt2_asect)
2933 {
2934 int content2;
2935 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2936 CORE_ADDR filesz;
2937
2938 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2939 & SEC_HAS_CONTENTS) != 0;
2940
2941 filesz = extract_unsigned_integer (buf_filesz_p, 8,
2942 byte_order);
2943
2944 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2945 FILESZ is from the in-memory image. */
2946 if (content2)
2947 filesz += bfd_get_section_size (plt2_asect);
2948 else
2949 filesz -= bfd_get_section_size (plt2_asect);
2950
2951 store_unsigned_integer (buf_filesz_p, 8, byte_order,
2952 filesz);
2953
2954 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2955 continue;
2956 }
2957
0a1e94c7
JK
2958 ok = 0;
2959 break;
2960 }
2961 }
2962 else
2963 ok = 0;
2964 }
09919ac2
JK
2965
2966 xfree (buf);
2967 xfree (buf2);
2968
2969 if (!ok)
2970 return 0;
2971 }
b8040f19 2972
ccf26247
JK
2973 if (info_verbose)
2974 {
2975 /* It can be printed repeatedly as there is no easy way to check
2976 the executable symbols/file has been already relocated to
2977 displacement. */
2978
2979 printf_unfiltered (_("Using PIE (Position Independent Executable) "
2980 "displacement %s for \"%s\".\n"),
8f61baf8 2981 paddress (target_gdbarch (), exec_displacement),
ccf26247
JK
2982 bfd_get_filename (exec_bfd));
2983 }
2984
8f61baf8 2985 *displacementp = exec_displacement;
01c30d6e 2986 return 1;
b8040f19
JK
2987}
2988
2989/* Relocate the main executable. This function should be called upon
c378eb4e 2990 stopping the inferior process at the entry point to the program.
b8040f19
JK
2991 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
2992 different, the main executable is relocated by the proper amount. */
2993
2994static void
2995svr4_relocate_main_executable (void)
2996{
01c30d6e
JK
2997 CORE_ADDR displacement;
2998
4e5799b6
JK
2999 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
3000 probably contains the offsets computed using the PIE displacement
3001 from the previous run, which of course are irrelevant for this run.
3002 So we need to determine the new PIE displacement and recompute the
3003 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
3004 already contains pre-computed offsets.
01c30d6e 3005
4e5799b6 3006 If we cannot compute the PIE displacement, either:
01c30d6e 3007
4e5799b6
JK
3008 - The executable is not PIE.
3009
3010 - SYMFILE_OBJFILE does not match the executable started in the target.
3011 This can happen for main executable symbols loaded at the host while
3012 `ld.so --ld-args main-executable' is loaded in the target.
3013
3014 Then we leave the section offsets untouched and use them as is for
3015 this run. Either:
3016
3017 - These section offsets were properly reset earlier, and thus
3018 already contain the correct values. This can happen for instance
3019 when reconnecting via the remote protocol to a target that supports
3020 the `qOffsets' packet.
3021
3022 - The section offsets were not reset earlier, and the best we can
c378eb4e 3023 hope is that the old offsets are still applicable to the new run. */
01c30d6e
JK
3024
3025 if (! svr4_exec_displacement (&displacement))
3026 return;
b8040f19 3027
01c30d6e
JK
3028 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
3029 addresses. */
b8040f19
JK
3030
3031 if (symfile_objfile)
e2a44558 3032 {
e2a44558 3033 struct section_offsets *new_offsets;
b8040f19 3034 int i;
e2a44558 3035
b8040f19
JK
3036 new_offsets = alloca (symfile_objfile->num_sections
3037 * sizeof (*new_offsets));
e2a44558 3038
b8040f19
JK
3039 for (i = 0; i < symfile_objfile->num_sections; i++)
3040 new_offsets->offsets[i] = displacement;
e2a44558 3041
b8040f19 3042 objfile_relocate (symfile_objfile, new_offsets);
e2a44558 3043 }
51bee8e9
JK
3044 else if (exec_bfd)
3045 {
3046 asection *asect;
3047
3048 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
3049 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
3050 (bfd_section_vma (exec_bfd, asect)
3051 + displacement));
3052 }
e2a44558
KB
3053}
3054
7f86f058 3055/* Implement the "create_inferior_hook" target_solib_ops method.
13437d4b
KB
3056
3057 For SVR4 executables, this first instruction is either the first
3058 instruction in the dynamic linker (for dynamically linked
3059 executables) or the instruction at "start" for statically linked
3060 executables. For dynamically linked executables, the system
3061 first exec's /lib/libc.so.N, which contains the dynamic linker,
3062 and starts it running. The dynamic linker maps in any needed
3063 shared libraries, maps in the actual user executable, and then
3064 jumps to "start" in the user executable.
3065
7f86f058
PA
3066 We can arrange to cooperate with the dynamic linker to discover the
3067 names of shared libraries that are dynamically linked, and the base
3068 addresses to which they are linked.
13437d4b
KB
3069
3070 This function is responsible for discovering those names and
3071 addresses, and saving sufficient information about them to allow
d2e5c99a 3072 their symbols to be read at a later time. */
13437d4b 3073
e2a44558 3074static void
268a4a75 3075svr4_solib_create_inferior_hook (int from_tty)
13437d4b 3076{
1a816a87
PA
3077 struct svr4_info *info;
3078
6c95b8df 3079 info = get_svr4_info ();
2020b7ab 3080
f9e14852
GB
3081 /* Clear the probes-based interface's state. */
3082 free_probes_table (info);
3083 free_solib_list (info);
3084
e2a44558 3085 /* Relocate the main executable if necessary. */
86e4bafc 3086 svr4_relocate_main_executable ();
e2a44558 3087
c91c8c16
PA
3088 /* No point setting a breakpoint in the dynamic linker if we can't
3089 hit it (e.g., a core file, or a trace file). */
3090 if (!target_has_execution)
3091 return;
3092
d5a921c9 3093 if (!svr4_have_link_map_offsets ())
513f5903 3094 return;
d5a921c9 3095
268a4a75 3096 if (!enable_break (info, from_tty))
542c95c2 3097 return;
13437d4b
KB
3098}
3099
3100static void
3101svr4_clear_solib (void)
3102{
6c95b8df
PA
3103 struct svr4_info *info;
3104
3105 info = get_svr4_info ();
3106 info->debug_base = 0;
3107 info->debug_loader_offset_p = 0;
3108 info->debug_loader_offset = 0;
3109 xfree (info->debug_loader_name);
3110 info->debug_loader_name = NULL;
13437d4b
KB
3111}
3112
6bb7be43
JB
3113/* Clear any bits of ADDR that wouldn't fit in a target-format
3114 data pointer. "Data pointer" here refers to whatever sort of
3115 address the dynamic linker uses to manage its sections. At the
3116 moment, we don't support shared libraries on any processors where
3117 code and data pointers are different sizes.
3118
3119 This isn't really the right solution. What we really need here is
3120 a way to do arithmetic on CORE_ADDR values that respects the
3121 natural pointer/address correspondence. (For example, on the MIPS,
3122 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
3123 sign-extend the value. There, simply truncating the bits above
819844ad 3124 gdbarch_ptr_bit, as we do below, is no good.) This should probably
6bb7be43
JB
3125 be a new gdbarch method or something. */
3126static CORE_ADDR
3127svr4_truncate_ptr (CORE_ADDR addr)
3128{
f5656ead 3129 if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8)
6bb7be43
JB
3130 /* We don't need to truncate anything, and the bit twiddling below
3131 will fail due to overflow problems. */
3132 return addr;
3133 else
f5656ead 3134 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1);
6bb7be43
JB
3135}
3136
3137
749499cb
KB
3138static void
3139svr4_relocate_section_addresses (struct so_list *so,
0542c86d 3140 struct target_section *sec)
749499cb 3141{
2b2848e2
DE
3142 bfd *abfd = sec->the_bfd_section->owner;
3143
3144 sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so, abfd));
3145 sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so, abfd));
749499cb 3146}
4b188b9f 3147\f
749499cb 3148
4b188b9f 3149/* Architecture-specific operations. */
6bb7be43 3150
4b188b9f
MK
3151/* Per-architecture data key. */
3152static struct gdbarch_data *solib_svr4_data;
e5e2b9ff 3153
4b188b9f 3154struct solib_svr4_ops
e5e2b9ff 3155{
4b188b9f
MK
3156 /* Return a description of the layout of `struct link_map'. */
3157 struct link_map_offsets *(*fetch_link_map_offsets)(void);
3158};
e5e2b9ff 3159
4b188b9f 3160/* Return a default for the architecture-specific operations. */
e5e2b9ff 3161
4b188b9f
MK
3162static void *
3163solib_svr4_init (struct obstack *obstack)
e5e2b9ff 3164{
4b188b9f 3165 struct solib_svr4_ops *ops;
e5e2b9ff 3166
4b188b9f 3167 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
8d005789 3168 ops->fetch_link_map_offsets = NULL;
4b188b9f 3169 return ops;
e5e2b9ff
KB
3170}
3171
4b188b9f 3172/* Set the architecture-specific `struct link_map_offsets' fetcher for
7e3cb44c 3173 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
1c4dcb57 3174
21479ded 3175void
e5e2b9ff
KB
3176set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
3177 struct link_map_offsets *(*flmo) (void))
21479ded 3178{
4b188b9f
MK
3179 struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data);
3180
3181 ops->fetch_link_map_offsets = flmo;
7e3cb44c
UW
3182
3183 set_solib_ops (gdbarch, &svr4_so_ops);
21479ded
KB
3184}
3185
4b188b9f
MK
3186/* Fetch a link_map_offsets structure using the architecture-specific
3187 `struct link_map_offsets' fetcher. */
1c4dcb57 3188
4b188b9f
MK
3189static struct link_map_offsets *
3190svr4_fetch_link_map_offsets (void)
21479ded 3191{
f5656ead 3192 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch (), solib_svr4_data);
4b188b9f
MK
3193
3194 gdb_assert (ops->fetch_link_map_offsets);
3195 return ops->fetch_link_map_offsets ();
21479ded
KB
3196}
3197
4b188b9f
MK
3198/* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
3199
3200static int
3201svr4_have_link_map_offsets (void)
3202{
f5656ead 3203 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch (), solib_svr4_data);
433759f7 3204
4b188b9f
MK
3205 return (ops->fetch_link_map_offsets != NULL);
3206}
3207\f
3208
e4bbbda8
MK
3209/* Most OS'es that have SVR4-style ELF dynamic libraries define a
3210 `struct r_debug' and a `struct link_map' that are binary compatible
3211 with the origional SVR4 implementation. */
3212
3213/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3214 for an ILP32 SVR4 system. */
d989b283 3215
e4bbbda8
MK
3216struct link_map_offsets *
3217svr4_ilp32_fetch_link_map_offsets (void)
3218{
3219 static struct link_map_offsets lmo;
3220 static struct link_map_offsets *lmp = NULL;
3221
3222 if (lmp == NULL)
3223 {
3224 lmp = &lmo;
3225
e4cd0d6a
MK
3226 lmo.r_version_offset = 0;
3227 lmo.r_version_size = 4;
e4bbbda8 3228 lmo.r_map_offset = 4;
7cd25cfc 3229 lmo.r_brk_offset = 8;
e4cd0d6a 3230 lmo.r_ldsomap_offset = 20;
e4bbbda8
MK
3231
3232 /* Everything we need is in the first 20 bytes. */
3233 lmo.link_map_size = 20;
3234 lmo.l_addr_offset = 0;
e4bbbda8 3235 lmo.l_name_offset = 4;
cc10cae3 3236 lmo.l_ld_offset = 8;
e4bbbda8 3237 lmo.l_next_offset = 12;
e4bbbda8 3238 lmo.l_prev_offset = 16;
e4bbbda8
MK
3239 }
3240
3241 return lmp;
3242}
3243
3244/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3245 for an LP64 SVR4 system. */
d989b283 3246
e4bbbda8
MK
3247struct link_map_offsets *
3248svr4_lp64_fetch_link_map_offsets (void)
3249{
3250 static struct link_map_offsets lmo;
3251 static struct link_map_offsets *lmp = NULL;
3252
3253 if (lmp == NULL)
3254 {
3255 lmp = &lmo;
3256
e4cd0d6a
MK
3257 lmo.r_version_offset = 0;
3258 lmo.r_version_size = 4;
e4bbbda8 3259 lmo.r_map_offset = 8;
7cd25cfc 3260 lmo.r_brk_offset = 16;
e4cd0d6a 3261 lmo.r_ldsomap_offset = 40;
e4bbbda8
MK
3262
3263 /* Everything we need is in the first 40 bytes. */
3264 lmo.link_map_size = 40;
3265 lmo.l_addr_offset = 0;
e4bbbda8 3266 lmo.l_name_offset = 8;
cc10cae3 3267 lmo.l_ld_offset = 16;
e4bbbda8 3268 lmo.l_next_offset = 24;
e4bbbda8 3269 lmo.l_prev_offset = 32;
e4bbbda8
MK
3270 }
3271
3272 return lmp;
3273}
3274\f
3275
7d522c90 3276struct target_so_ops svr4_so_ops;
13437d4b 3277
c378eb4e 3278/* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
3a40aaa0
UW
3279 different rule for symbol lookup. The lookup begins here in the DSO, not in
3280 the main executable. */
3281
d12307c1 3282static struct block_symbol
efad9b6a 3283elf_lookup_lib_symbol (struct objfile *objfile,
3a40aaa0 3284 const char *name,
21b556f4 3285 const domain_enum domain)
3a40aaa0 3286{
61f0d762
JK
3287 bfd *abfd;
3288
3289 if (objfile == symfile_objfile)
3290 abfd = exec_bfd;
3291 else
3292 {
3293 /* OBJFILE should have been passed as the non-debug one. */
3294 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
3295
3296 abfd = objfile->obfd;
3297 }
3298
a738da3a 3299 if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL, NULL) != 1)
d12307c1 3300 return (struct block_symbol) {NULL, NULL};
3a40aaa0 3301
94af9270 3302 return lookup_global_symbol_from_objfile (objfile, name, domain);
3a40aaa0
UW
3303}
3304
a78f21af
AC
3305extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
3306
13437d4b
KB
3307void
3308_initialize_svr4_solib (void)
3309{
4b188b9f 3310 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
6c95b8df 3311 solib_svr4_pspace_data
8e260fc0 3312 = register_program_space_data_with_cleanup (NULL, svr4_pspace_data_cleanup);
4b188b9f 3313
749499cb 3314 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
13437d4b 3315 svr4_so_ops.free_so = svr4_free_so;
0892cb63 3316 svr4_so_ops.clear_so = svr4_clear_so;
13437d4b
KB
3317 svr4_so_ops.clear_solib = svr4_clear_solib;
3318 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
3319 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
3320 svr4_so_ops.current_sos = svr4_current_sos;
3321 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
d7fa2ae2 3322 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
831a0c44 3323 svr4_so_ops.bfd_open = solib_bfd_open;
3a40aaa0 3324 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
a7c02bc8 3325 svr4_so_ops.same = svr4_same;
de18c1d8 3326 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
f9e14852
GB
3327 svr4_so_ops.update_breakpoints = svr4_update_solib_event_breakpoints;
3328 svr4_so_ops.handle_event = svr4_handle_solib_event;
13437d4b 3329}
This page took 1.712616 seconds and 4 git commands to generate.