* elf32-cris.c (cris_elf_gc_sweep_hook) <R_CRIS_16_GOTPLT>
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
CommitLineData
ab31aa69 1/* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2f4950cd 2
6aba47ca 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000,
7b6bb8da 4 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
0fb0cc75 5 Free Software Foundation, Inc.
13437d4b
KB
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
13437d4b
KB
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
13437d4b 21
13437d4b
KB
22#include "defs.h"
23
13437d4b 24#include "elf/external.h"
21479ded 25#include "elf/common.h"
f7856c8f 26#include "elf/mips.h"
13437d4b
KB
27
28#include "symtab.h"
29#include "bfd.h"
30#include "symfile.h"
31#include "objfiles.h"
32#include "gdbcore.h"
13437d4b 33#include "target.h"
13437d4b 34#include "inferior.h"
fb14de7b 35#include "regcache.h"
2020b7ab 36#include "gdbthread.h"
1a816a87 37#include "observer.h"
13437d4b 38
4b188b9f
MK
39#include "gdb_assert.h"
40
13437d4b 41#include "solist.h"
bba93f6c 42#include "solib.h"
13437d4b
KB
43#include "solib-svr4.h"
44
2f4950cd 45#include "bfd-target.h"
cc10cae3 46#include "elf-bfd.h"
2f4950cd 47#include "exec.h"
8d4e36ba 48#include "auxv.h"
f1838a98 49#include "exceptions.h"
2f4950cd 50
e5e2b9ff 51static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
d5a921c9 52static int svr4_have_link_map_offsets (void);
9f2982ff 53static void svr4_relocate_main_executable (void);
1c4dcb57 54
c378eb4e 55/* Link map info to include in an allocated so_list entry. */
13437d4b
KB
56
57struct lm_info
58 {
59 /* Pointer to copy of link map from inferior. The type is char *
60 rather than void *, so that we may use byte offsets to find the
61 various fields without the need for a cast. */
4066fc10 62 gdb_byte *lm;
cc10cae3
AO
63
64 /* Amount by which addresses in the binary should be relocated to
65 match the inferior. This could most often be taken directly
66 from lm, but when prelinking is involved and the prelink base
67 address changes, we may need a different offset, we want to
68 warn about the difference and compute it only once. */
69 CORE_ADDR l_addr;
93a57060
DJ
70
71 /* The target location of lm. */
72 CORE_ADDR lm_addr;
13437d4b
KB
73 };
74
75/* On SVR4 systems, a list of symbols in the dynamic linker where
76 GDB can try to place a breakpoint to monitor shared library
77 events.
78
79 If none of these symbols are found, or other errors occur, then
80 SVR4 systems will fall back to using a symbol as the "startup
81 mapping complete" breakpoint address. */
82
bc043ef3 83static const char * const solib_break_names[] =
13437d4b
KB
84{
85 "r_debug_state",
86 "_r_debug_state",
87 "_dl_debug_state",
88 "rtld_db_dlactivity",
4c7dcb84 89 "__dl_rtld_db_dlactivity",
1f72e589 90 "_rtld_debug_state",
4c0122c8 91
13437d4b
KB
92 NULL
93};
13437d4b 94
bc043ef3 95static const char * const bkpt_names[] =
13437d4b 96{
13437d4b 97 "_start",
ad3dcc5c 98 "__start",
13437d4b
KB
99 "main",
100 NULL
101};
13437d4b 102
bc043ef3 103static const char * const main_name_list[] =
13437d4b
KB
104{
105 "main_$main",
106 NULL
107};
108
4d7b2d5b
JB
109/* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
110 the same shared library. */
111
112static int
113svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
114{
115 if (strcmp (gdb_so_name, inferior_so_name) == 0)
116 return 1;
117
118 /* On Solaris, when starting inferior we think that dynamic linker is
d989b283
PP
119 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
120 contains /lib/ld.so.1. Sometimes one file is a link to another, but
4d7b2d5b
JB
121 sometimes they have identical content, but are not linked to each
122 other. We don't restrict this check for Solaris, but the chances
123 of running into this situation elsewhere are very low. */
124 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
125 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
126 return 1;
127
128 /* Similarly, we observed the same issue with sparc64, but with
129 different locations. */
130 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
131 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
132 return 1;
133
134 return 0;
135}
136
137static int
138svr4_same (struct so_list *gdb, struct so_list *inferior)
139{
140 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
141}
142
c378eb4e 143/* link map access functions. */
13437d4b
KB
144
145static CORE_ADDR
b23518f0 146lm_addr_from_link_map (struct so_list *so)
13437d4b 147{
4b188b9f 148 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 149 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
13437d4b 150
cfaefc65 151 return extract_typed_address (so->lm_info->lm + lmo->l_addr_offset,
b6da22b0 152 ptr_type);
13437d4b
KB
153}
154
cc10cae3 155static int
b23518f0 156has_lm_dynamic_from_link_map (void)
cc10cae3
AO
157{
158 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
159
cfaefc65 160 return lmo->l_ld_offset >= 0;
cc10cae3
AO
161}
162
163static CORE_ADDR
b23518f0 164lm_dynamic_from_link_map (struct so_list *so)
cc10cae3
AO
165{
166 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 167 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
cc10cae3 168
cfaefc65 169 return extract_typed_address (so->lm_info->lm + lmo->l_ld_offset,
b6da22b0 170 ptr_type);
cc10cae3
AO
171}
172
173static CORE_ADDR
b23518f0 174lm_addr_check (struct so_list *so, bfd *abfd)
cc10cae3
AO
175{
176 if (so->lm_info->l_addr == (CORE_ADDR)-1)
177 {
178 struct bfd_section *dyninfo_sect;
28f34a8f 179 CORE_ADDR l_addr, l_dynaddr, dynaddr;
cc10cae3 180
b23518f0 181 l_addr = lm_addr_from_link_map (so);
cc10cae3 182
b23518f0 183 if (! abfd || ! has_lm_dynamic_from_link_map ())
cc10cae3
AO
184 goto set_addr;
185
b23518f0 186 l_dynaddr = lm_dynamic_from_link_map (so);
cc10cae3
AO
187
188 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
189 if (dyninfo_sect == NULL)
190 goto set_addr;
191
192 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
193
194 if (dynaddr + l_addr != l_dynaddr)
195 {
28f34a8f 196 CORE_ADDR align = 0x1000;
4e1fc9c9 197 CORE_ADDR minpagesize = align;
28f34a8f 198
cc10cae3
AO
199 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
200 {
201 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
202 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
203 int i;
204
205 align = 1;
206
207 for (i = 0; i < ehdr->e_phnum; i++)
208 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
209 align = phdr[i].p_align;
4e1fc9c9
JK
210
211 minpagesize = get_elf_backend_data (abfd)->minpagesize;
cc10cae3
AO
212 }
213
214 /* Turn it into a mask. */
215 align--;
216
217 /* If the changes match the alignment requirements, we
218 assume we're using a core file that was generated by the
219 same binary, just prelinked with a different base offset.
220 If it doesn't match, we may have a different binary, the
221 same binary with the dynamic table loaded at an unrelated
222 location, or anything, really. To avoid regressions,
223 don't adjust the base offset in the latter case, although
224 odds are that, if things really changed, debugging won't
5c0d192f
JK
225 quite work.
226
227 One could expect more the condition
228 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
229 but the one below is relaxed for PPC. The PPC kernel supports
230 either 4k or 64k page sizes. To be prepared for 64k pages,
231 PPC ELF files are built using an alignment requirement of 64k.
232 However, when running on a kernel supporting 4k pages, the memory
233 mapping of the library may not actually happen on a 64k boundary!
234
235 (In the usual case where (l_addr & align) == 0, this check is
4e1fc9c9
JK
236 equivalent to the possibly expected check above.)
237
238 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
5c0d192f 239
02835898
JK
240 l_addr = l_dynaddr - dynaddr;
241
4e1fc9c9
JK
242 if ((l_addr & (minpagesize - 1)) == 0
243 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
cc10cae3 244 {
701ed6dc 245 if (info_verbose)
ccf26247
JK
246 printf_unfiltered (_("Using PIC (Position Independent Code) "
247 "prelink displacement %s for \"%s\".\n"),
248 paddress (target_gdbarch, l_addr),
249 so->so_name);
cc10cae3 250 }
79d4c408 251 else
02835898
JK
252 {
253 /* There is no way to verify the library file matches. prelink
254 can during prelinking of an unprelinked file (or unprelinking
255 of a prelinked file) shift the DYNAMIC segment by arbitrary
256 offset without any page size alignment. There is no way to
257 find out the ELF header and/or Program Headers for a limited
258 verification if it they match. One could do a verification
259 of the DYNAMIC segment. Still the found address is the best
260 one GDB could find. */
261
262 warning (_(".dynamic section for \"%s\" "
263 "is not at the expected address "
264 "(wrong library or version mismatch?)"), so->so_name);
265 }
cc10cae3
AO
266 }
267
268 set_addr:
269 so->lm_info->l_addr = l_addr;
270 }
271
272 return so->lm_info->l_addr;
273}
274
13437d4b 275static CORE_ADDR
b23518f0 276lm_next (struct so_list *so)
13437d4b 277{
4b188b9f 278 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 279 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
13437d4b 280
cfaefc65 281 return extract_typed_address (so->lm_info->lm + lmo->l_next_offset,
b6da22b0 282 ptr_type);
13437d4b
KB
283}
284
492928e4 285static CORE_ADDR
b23518f0 286lm_prev (struct so_list *so)
492928e4
JK
287{
288 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
289 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
290
291 return extract_typed_address (so->lm_info->lm + lmo->l_prev_offset,
292 ptr_type);
293}
294
13437d4b 295static CORE_ADDR
b23518f0 296lm_name (struct so_list *so)
13437d4b 297{
4b188b9f 298 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 299 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
13437d4b 300
cfaefc65 301 return extract_typed_address (so->lm_info->lm + lmo->l_name_offset,
b6da22b0 302 ptr_type);
13437d4b
KB
303}
304
13437d4b 305static int
b23518f0 306ignore_first_link_map_entry (struct so_list *so)
13437d4b 307{
e499d0f1
DJ
308 /* Assume that everything is a library if the dynamic loader was loaded
309 late by a static executable. */
0763ab81 310 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
e499d0f1
DJ
311 return 0;
312
b23518f0 313 return lm_prev (so) == 0;
13437d4b
KB
314}
315
6c95b8df 316/* Per pspace SVR4 specific data. */
13437d4b 317
1a816a87
PA
318struct svr4_info
319{
c378eb4e 320 CORE_ADDR debug_base; /* Base of dynamic linker structures. */
1a816a87
PA
321
322 /* Validity flag for debug_loader_offset. */
323 int debug_loader_offset_p;
324
325 /* Load address for the dynamic linker, inferred. */
326 CORE_ADDR debug_loader_offset;
327
328 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
329 char *debug_loader_name;
330
331 /* Load map address for the main executable. */
332 CORE_ADDR main_lm_addr;
1a816a87 333
6c95b8df
PA
334 CORE_ADDR interp_text_sect_low;
335 CORE_ADDR interp_text_sect_high;
336 CORE_ADDR interp_plt_sect_low;
337 CORE_ADDR interp_plt_sect_high;
338};
1a816a87 339
6c95b8df
PA
340/* Per-program-space data key. */
341static const struct program_space_data *solib_svr4_pspace_data;
1a816a87 342
6c95b8df
PA
343static void
344svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
1a816a87 345{
6c95b8df 346 struct svr4_info *info;
1a816a87 347
6c95b8df
PA
348 info = program_space_data (pspace, solib_svr4_pspace_data);
349 xfree (info);
1a816a87
PA
350}
351
6c95b8df
PA
352/* Get the current svr4 data. If none is found yet, add it now. This
353 function always returns a valid object. */
34439770 354
6c95b8df
PA
355static struct svr4_info *
356get_svr4_info (void)
1a816a87 357{
6c95b8df 358 struct svr4_info *info;
1a816a87 359
6c95b8df
PA
360 info = program_space_data (current_program_space, solib_svr4_pspace_data);
361 if (info != NULL)
362 return info;
34439770 363
6c95b8df
PA
364 info = XZALLOC (struct svr4_info);
365 set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
366 return info;
1a816a87 367}
93a57060 368
13437d4b
KB
369/* Local function prototypes */
370
bc043ef3 371static int match_main (const char *);
13437d4b 372
97ec2c2f
UW
373/* Read program header TYPE from inferior memory. The header is found
374 by scanning the OS auxillary vector.
375
09919ac2
JK
376 If TYPE == -1, return the program headers instead of the contents of
377 one program header.
378
97ec2c2f
UW
379 Return a pointer to allocated memory holding the program header contents,
380 or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the
381 size of those contents is returned to P_SECT_SIZE. Likewise, the target
382 architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE. */
383
384static gdb_byte *
385read_program_header (int type, int *p_sect_size, int *p_arch_size)
386{
e17a4113 387 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
97ec2c2f
UW
388 CORE_ADDR at_phdr, at_phent, at_phnum;
389 int arch_size, sect_size;
390 CORE_ADDR sect_addr;
391 gdb_byte *buf;
392
393 /* Get required auxv elements from target. */
394 if (target_auxv_search (&current_target, AT_PHDR, &at_phdr) <= 0)
395 return 0;
396 if (target_auxv_search (&current_target, AT_PHENT, &at_phent) <= 0)
397 return 0;
398 if (target_auxv_search (&current_target, AT_PHNUM, &at_phnum) <= 0)
399 return 0;
400 if (!at_phdr || !at_phnum)
401 return 0;
402
403 /* Determine ELF architecture type. */
404 if (at_phent == sizeof (Elf32_External_Phdr))
405 arch_size = 32;
406 else if (at_phent == sizeof (Elf64_External_Phdr))
407 arch_size = 64;
408 else
409 return 0;
410
09919ac2
JK
411 /* Find the requested segment. */
412 if (type == -1)
413 {
414 sect_addr = at_phdr;
415 sect_size = at_phent * at_phnum;
416 }
417 else if (arch_size == 32)
97ec2c2f
UW
418 {
419 Elf32_External_Phdr phdr;
420 int i;
421
422 /* Search for requested PHDR. */
423 for (i = 0; i < at_phnum; i++)
424 {
425 if (target_read_memory (at_phdr + i * sizeof (phdr),
426 (gdb_byte *)&phdr, sizeof (phdr)))
427 return 0;
428
e17a4113
UW
429 if (extract_unsigned_integer ((gdb_byte *)phdr.p_type,
430 4, byte_order) == type)
97ec2c2f
UW
431 break;
432 }
433
434 if (i == at_phnum)
435 return 0;
436
437 /* Retrieve address and size. */
e17a4113
UW
438 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
439 4, byte_order);
440 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
441 4, byte_order);
97ec2c2f
UW
442 }
443 else
444 {
445 Elf64_External_Phdr phdr;
446 int i;
447
448 /* Search for requested PHDR. */
449 for (i = 0; i < at_phnum; i++)
450 {
451 if (target_read_memory (at_phdr + i * sizeof (phdr),
452 (gdb_byte *)&phdr, sizeof (phdr)))
453 return 0;
454
e17a4113
UW
455 if (extract_unsigned_integer ((gdb_byte *)phdr.p_type,
456 4, byte_order) == type)
97ec2c2f
UW
457 break;
458 }
459
460 if (i == at_phnum)
461 return 0;
462
463 /* Retrieve address and size. */
e17a4113
UW
464 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
465 8, byte_order);
466 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
467 8, byte_order);
97ec2c2f
UW
468 }
469
470 /* Read in requested program header. */
471 buf = xmalloc (sect_size);
472 if (target_read_memory (sect_addr, buf, sect_size))
473 {
474 xfree (buf);
475 return NULL;
476 }
477
478 if (p_arch_size)
479 *p_arch_size = arch_size;
480 if (p_sect_size)
481 *p_sect_size = sect_size;
482
483 return buf;
484}
485
486
487/* Return program interpreter string. */
488static gdb_byte *
489find_program_interpreter (void)
490{
491 gdb_byte *buf = NULL;
492
493 /* If we have an exec_bfd, use its section table. */
494 if (exec_bfd
495 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
496 {
497 struct bfd_section *interp_sect;
498
499 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
500 if (interp_sect != NULL)
501 {
97ec2c2f
UW
502 int sect_size = bfd_section_size (exec_bfd, interp_sect);
503
504 buf = xmalloc (sect_size);
505 bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size);
506 }
507 }
508
509 /* If we didn't find it, use the target auxillary vector. */
510 if (!buf)
511 buf = read_program_header (PT_INTERP, NULL, NULL);
512
513 return buf;
514}
515
516
c378eb4e 517/* Scan for DYNTAG in .dynamic section of ABFD. If DYNTAG is found 1 is
3a40aaa0
UW
518 returned and the corresponding PTR is set. */
519
520static int
521scan_dyntag (int dyntag, bfd *abfd, CORE_ADDR *ptr)
522{
523 int arch_size, step, sect_size;
524 long dyn_tag;
b381ea14 525 CORE_ADDR dyn_ptr, dyn_addr;
65728c26 526 gdb_byte *bufend, *bufstart, *buf;
3a40aaa0
UW
527 Elf32_External_Dyn *x_dynp_32;
528 Elf64_External_Dyn *x_dynp_64;
529 struct bfd_section *sect;
61f0d762 530 struct target_section *target_section;
3a40aaa0
UW
531
532 if (abfd == NULL)
533 return 0;
0763ab81
PA
534
535 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
536 return 0;
537
3a40aaa0
UW
538 arch_size = bfd_get_arch_size (abfd);
539 if (arch_size == -1)
0763ab81 540 return 0;
3a40aaa0
UW
541
542 /* Find the start address of the .dynamic section. */
543 sect = bfd_get_section_by_name (abfd, ".dynamic");
544 if (sect == NULL)
545 return 0;
61f0d762
JK
546
547 for (target_section = current_target_sections->sections;
548 target_section < current_target_sections->sections_end;
549 target_section++)
550 if (sect == target_section->the_bfd_section)
551 break;
b381ea14
JK
552 if (target_section < current_target_sections->sections_end)
553 dyn_addr = target_section->addr;
554 else
555 {
556 /* ABFD may come from OBJFILE acting only as a symbol file without being
557 loaded into the target (see add_symbol_file_command). This case is
558 such fallback to the file VMA address without the possibility of
559 having the section relocated to its actual in-memory address. */
560
561 dyn_addr = bfd_section_vma (abfd, sect);
562 }
3a40aaa0 563
65728c26
DJ
564 /* Read in .dynamic from the BFD. We will get the actual value
565 from memory later. */
3a40aaa0 566 sect_size = bfd_section_size (abfd, sect);
65728c26
DJ
567 buf = bufstart = alloca (sect_size);
568 if (!bfd_get_section_contents (abfd, sect,
569 buf, 0, sect_size))
570 return 0;
3a40aaa0
UW
571
572 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
573 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
574 : sizeof (Elf64_External_Dyn);
575 for (bufend = buf + sect_size;
576 buf < bufend;
577 buf += step)
578 {
579 if (arch_size == 32)
580 {
581 x_dynp_32 = (Elf32_External_Dyn *) buf;
582 dyn_tag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
583 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
584 }
65728c26 585 else
3a40aaa0
UW
586 {
587 x_dynp_64 = (Elf64_External_Dyn *) buf;
588 dyn_tag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
589 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
590 }
591 if (dyn_tag == DT_NULL)
592 return 0;
593 if (dyn_tag == dyntag)
594 {
65728c26
DJ
595 /* If requested, try to read the runtime value of this .dynamic
596 entry. */
3a40aaa0 597 if (ptr)
65728c26 598 {
b6da22b0 599 struct type *ptr_type;
65728c26
DJ
600 gdb_byte ptr_buf[8];
601 CORE_ADDR ptr_addr;
602
b6da22b0 603 ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
b381ea14 604 ptr_addr = dyn_addr + (buf - bufstart) + arch_size / 8;
65728c26 605 if (target_read_memory (ptr_addr, ptr_buf, arch_size / 8) == 0)
b6da22b0 606 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
65728c26
DJ
607 *ptr = dyn_ptr;
608 }
609 return 1;
3a40aaa0
UW
610 }
611 }
612
613 return 0;
614}
615
97ec2c2f
UW
616/* Scan for DYNTAG in .dynamic section of the target's main executable,
617 found by consulting the OS auxillary vector. If DYNTAG is found 1 is
618 returned and the corresponding PTR is set. */
619
620static int
621scan_dyntag_auxv (int dyntag, CORE_ADDR *ptr)
622{
e17a4113 623 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
97ec2c2f
UW
624 int sect_size, arch_size, step;
625 long dyn_tag;
626 CORE_ADDR dyn_ptr;
627 gdb_byte *bufend, *bufstart, *buf;
628
629 /* Read in .dynamic section. */
630 buf = bufstart = read_program_header (PT_DYNAMIC, &sect_size, &arch_size);
631 if (!buf)
632 return 0;
633
634 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
635 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
636 : sizeof (Elf64_External_Dyn);
637 for (bufend = buf + sect_size;
638 buf < bufend;
639 buf += step)
640 {
641 if (arch_size == 32)
642 {
643 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
433759f7 644
e17a4113
UW
645 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
646 4, byte_order);
647 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
648 4, byte_order);
97ec2c2f
UW
649 }
650 else
651 {
652 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
433759f7 653
e17a4113
UW
654 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
655 8, byte_order);
656 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
657 8, byte_order);
97ec2c2f
UW
658 }
659 if (dyn_tag == DT_NULL)
660 break;
661
662 if (dyn_tag == dyntag)
663 {
664 if (ptr)
665 *ptr = dyn_ptr;
666
667 xfree (bufstart);
668 return 1;
669 }
670 }
671
672 xfree (bufstart);
673 return 0;
674}
675
7f86f058
PA
676/* Locate the base address of dynamic linker structs for SVR4 elf
677 targets.
13437d4b
KB
678
679 For SVR4 elf targets the address of the dynamic linker's runtime
680 structure is contained within the dynamic info section in the
681 executable file. The dynamic section is also mapped into the
682 inferior address space. Because the runtime loader fills in the
683 real address before starting the inferior, we have to read in the
684 dynamic info section from the inferior address space.
685 If there are any errors while trying to find the address, we
7f86f058 686 silently return 0, otherwise the found address is returned. */
13437d4b
KB
687
688static CORE_ADDR
689elf_locate_base (void)
690{
3a40aaa0
UW
691 struct minimal_symbol *msymbol;
692 CORE_ADDR dyn_ptr;
13437d4b 693
65728c26
DJ
694 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
695 instead of DT_DEBUG, although they sometimes contain an unused
696 DT_DEBUG. */
97ec2c2f
UW
697 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr)
698 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr))
3a40aaa0 699 {
b6da22b0 700 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
3a40aaa0 701 gdb_byte *pbuf;
b6da22b0 702 int pbuf_size = TYPE_LENGTH (ptr_type);
433759f7 703
3a40aaa0
UW
704 pbuf = alloca (pbuf_size);
705 /* DT_MIPS_RLD_MAP contains a pointer to the address
706 of the dynamic link structure. */
707 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
e499d0f1 708 return 0;
b6da22b0 709 return extract_typed_address (pbuf, ptr_type);
e499d0f1
DJ
710 }
711
65728c26 712 /* Find DT_DEBUG. */
97ec2c2f
UW
713 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr)
714 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr))
65728c26
DJ
715 return dyn_ptr;
716
3a40aaa0
UW
717 /* This may be a static executable. Look for the symbol
718 conventionally named _r_debug, as a last resort. */
719 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
720 if (msymbol != NULL)
721 return SYMBOL_VALUE_ADDRESS (msymbol);
13437d4b
KB
722
723 /* DT_DEBUG entry not found. */
724 return 0;
725}
726
7f86f058 727/* Locate the base address of dynamic linker structs.
13437d4b
KB
728
729 For both the SunOS and SVR4 shared library implementations, if the
730 inferior executable has been linked dynamically, there is a single
731 address somewhere in the inferior's data space which is the key to
732 locating all of the dynamic linker's runtime structures. This
733 address is the value of the debug base symbol. The job of this
734 function is to find and return that address, or to return 0 if there
735 is no such address (the executable is statically linked for example).
736
737 For SunOS, the job is almost trivial, since the dynamic linker and
738 all of it's structures are statically linked to the executable at
739 link time. Thus the symbol for the address we are looking for has
740 already been added to the minimal symbol table for the executable's
741 objfile at the time the symbol file's symbols were read, and all we
742 have to do is look it up there. Note that we explicitly do NOT want
743 to find the copies in the shared library.
744
745 The SVR4 version is a bit more complicated because the address
746 is contained somewhere in the dynamic info section. We have to go
747 to a lot more work to discover the address of the debug base symbol.
748 Because of this complexity, we cache the value we find and return that
749 value on subsequent invocations. Note there is no copy in the
7f86f058 750 executable symbol tables. */
13437d4b
KB
751
752static CORE_ADDR
1a816a87 753locate_base (struct svr4_info *info)
13437d4b 754{
13437d4b
KB
755 /* Check to see if we have a currently valid address, and if so, avoid
756 doing all this work again and just return the cached address. If
757 we have no cached address, try to locate it in the dynamic info
d5a921c9
KB
758 section for ELF executables. There's no point in doing any of this
759 though if we don't have some link map offsets to work with. */
13437d4b 760
1a816a87 761 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
0763ab81 762 info->debug_base = elf_locate_base ();
1a816a87 763 return info->debug_base;
13437d4b
KB
764}
765
e4cd0d6a 766/* Find the first element in the inferior's dynamic link map, and
6f992fbf
JB
767 return its address in the inferior. Return zero if the address
768 could not be determined.
13437d4b 769
e4cd0d6a
MK
770 FIXME: Perhaps we should validate the info somehow, perhaps by
771 checking r_version for a known version number, or r_state for
772 RT_CONSISTENT. */
13437d4b
KB
773
774static CORE_ADDR
1a816a87 775solib_svr4_r_map (struct svr4_info *info)
13437d4b 776{
4b188b9f 777 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 778 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
08597104
JB
779 CORE_ADDR addr = 0;
780 volatile struct gdb_exception ex;
13437d4b 781
08597104
JB
782 TRY_CATCH (ex, RETURN_MASK_ERROR)
783 {
784 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
785 ptr_type);
786 }
787 exception_print (gdb_stderr, ex);
788 return addr;
e4cd0d6a 789}
13437d4b 790
7cd25cfc
DJ
791/* Find r_brk from the inferior's debug base. */
792
793static CORE_ADDR
1a816a87 794solib_svr4_r_brk (struct svr4_info *info)
7cd25cfc
DJ
795{
796 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 797 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
7cd25cfc 798
1a816a87
PA
799 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
800 ptr_type);
7cd25cfc
DJ
801}
802
e4cd0d6a
MK
803/* Find the link map for the dynamic linker (if it is not in the
804 normal list of loaded shared objects). */
13437d4b 805
e4cd0d6a 806static CORE_ADDR
1a816a87 807solib_svr4_r_ldsomap (struct svr4_info *info)
e4cd0d6a
MK
808{
809 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 810 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
e17a4113 811 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
e4cd0d6a 812 ULONGEST version;
13437d4b 813
e4cd0d6a
MK
814 /* Check version, and return zero if `struct r_debug' doesn't have
815 the r_ldsomap member. */
1a816a87
PA
816 version
817 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
e17a4113 818 lmo->r_version_size, byte_order);
e4cd0d6a
MK
819 if (version < 2 || lmo->r_ldsomap_offset == -1)
820 return 0;
13437d4b 821
1a816a87 822 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
b6da22b0 823 ptr_type);
13437d4b
KB
824}
825
de18c1d8
JM
826/* On Solaris systems with some versions of the dynamic linker,
827 ld.so's l_name pointer points to the SONAME in the string table
828 rather than into writable memory. So that GDB can find shared
829 libraries when loading a core file generated by gcore, ensure that
830 memory areas containing the l_name string are saved in the core
831 file. */
832
833static int
834svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
835{
836 struct svr4_info *info;
837 CORE_ADDR ldsomap;
838 struct so_list *new;
839 struct cleanup *old_chain;
840 struct link_map_offsets *lmo;
74de0234 841 CORE_ADDR name_lm;
de18c1d8
JM
842
843 info = get_svr4_info ();
844
845 info->debug_base = 0;
846 locate_base (info);
847 if (!info->debug_base)
848 return 0;
849
850 ldsomap = solib_svr4_r_ldsomap (info);
851 if (!ldsomap)
852 return 0;
853
854 lmo = svr4_fetch_link_map_offsets ();
855 new = XZALLOC (struct so_list);
856 old_chain = make_cleanup (xfree, new);
857 new->lm_info = xmalloc (sizeof (struct lm_info));
858 make_cleanup (xfree, new->lm_info);
859 new->lm_info->l_addr = (CORE_ADDR)-1;
860 new->lm_info->lm_addr = ldsomap;
861 new->lm_info->lm = xzalloc (lmo->link_map_size);
862 make_cleanup (xfree, new->lm_info->lm);
863 read_memory (ldsomap, new->lm_info->lm, lmo->link_map_size);
74de0234 864 name_lm = lm_name (new);
de18c1d8
JM
865 do_cleanups (old_chain);
866
74de0234 867 return (name_lm >= vaddr && name_lm < vaddr + size);
de18c1d8
JM
868}
869
7f86f058 870/* Implement the "open_symbol_file_object" target_so_ops method.
13437d4b 871
7f86f058
PA
872 If no open symbol file, attempt to locate and open the main symbol
873 file. On SVR4 systems, this is the first link map entry. If its
874 name is here, we can open it. Useful when attaching to a process
875 without first loading its symbol file. */
13437d4b
KB
876
877static int
878open_symbol_file_object (void *from_ttyp)
879{
880 CORE_ADDR lm, l_name;
881 char *filename;
882 int errcode;
883 int from_tty = *(int *)from_ttyp;
4b188b9f 884 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0
UW
885 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
886 int l_name_size = TYPE_LENGTH (ptr_type);
cfaefc65 887 gdb_byte *l_name_buf = xmalloc (l_name_size);
b8c9b27d 888 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
6c95b8df 889 struct svr4_info *info = get_svr4_info ();
13437d4b
KB
890
891 if (symfile_objfile)
9e2f0ad4 892 if (!query (_("Attempt to reload symbols from process? ")))
3bb47e8b
TT
893 {
894 do_cleanups (cleanups);
895 return 0;
896 }
13437d4b 897
7cd25cfc 898 /* Always locate the debug struct, in case it has moved. */
1a816a87
PA
899 info->debug_base = 0;
900 if (locate_base (info) == 0)
3bb47e8b
TT
901 {
902 do_cleanups (cleanups);
903 return 0; /* failed somehow... */
904 }
13437d4b
KB
905
906 /* First link map member should be the executable. */
1a816a87 907 lm = solib_svr4_r_map (info);
e4cd0d6a 908 if (lm == 0)
3bb47e8b
TT
909 {
910 do_cleanups (cleanups);
911 return 0; /* failed somehow... */
912 }
13437d4b
KB
913
914 /* Read address of name from target memory to GDB. */
cfaefc65 915 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
13437d4b 916
cfaefc65 917 /* Convert the address to host format. */
b6da22b0 918 l_name = extract_typed_address (l_name_buf, ptr_type);
13437d4b 919
13437d4b 920 if (l_name == 0)
3bb47e8b
TT
921 {
922 do_cleanups (cleanups);
923 return 0; /* No filename. */
924 }
13437d4b
KB
925
926 /* Now fetch the filename from target memory. */
927 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
ea5bf0a1 928 make_cleanup (xfree, filename);
13437d4b
KB
929
930 if (errcode)
931 {
8a3fe4f8 932 warning (_("failed to read exec filename from attached file: %s"),
13437d4b 933 safe_strerror (errcode));
3bb47e8b 934 do_cleanups (cleanups);
13437d4b
KB
935 return 0;
936 }
937
13437d4b 938 /* Have a pathname: read the symbol file. */
1adeb98a 939 symbol_file_add_main (filename, from_tty);
13437d4b 940
3bb47e8b 941 do_cleanups (cleanups);
13437d4b
KB
942 return 1;
943}
13437d4b 944
34439770
DJ
945/* If no shared library information is available from the dynamic
946 linker, build a fallback list from other sources. */
947
948static struct so_list *
949svr4_default_sos (void)
950{
6c95b8df 951 struct svr4_info *info = get_svr4_info ();
8e5c319d 952 struct so_list *new;
1a816a87 953
8e5c319d
JK
954 if (!info->debug_loader_offset_p)
955 return NULL;
34439770 956
8e5c319d 957 new = XZALLOC (struct so_list);
34439770 958
8e5c319d 959 new->lm_info = xmalloc (sizeof (struct lm_info));
34439770 960
8e5c319d
JK
961 /* Nothing will ever check the cached copy of the link
962 map if we set l_addr. */
963 new->lm_info->l_addr = info->debug_loader_offset;
964 new->lm_info->lm_addr = 0;
965 new->lm_info->lm = NULL;
34439770 966
8e5c319d
JK
967 strncpy (new->so_name, info->debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
968 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
969 strcpy (new->so_original_name, new->so_name);
34439770 970
8e5c319d 971 return new;
34439770
DJ
972}
973
7f86f058 974/* Implement the "current_sos" target_so_ops method. */
13437d4b
KB
975
976static struct so_list *
977svr4_current_sos (void)
978{
492928e4 979 CORE_ADDR lm, prev_lm;
13437d4b
KB
980 struct so_list *head = 0;
981 struct so_list **link_ptr = &head;
e4cd0d6a 982 CORE_ADDR ldsomap = 0;
1a816a87
PA
983 struct svr4_info *info;
984
6c95b8df 985 info = get_svr4_info ();
13437d4b 986
7cd25cfc 987 /* Always locate the debug struct, in case it has moved. */
1a816a87
PA
988 info->debug_base = 0;
989 locate_base (info);
13437d4b 990
7cd25cfc
DJ
991 /* If we can't find the dynamic linker's base structure, this
992 must not be a dynamically linked executable. Hmm. */
1a816a87 993 if (! info->debug_base)
7cd25cfc 994 return svr4_default_sos ();
13437d4b
KB
995
996 /* Walk the inferior's link map list, and build our list of
997 `struct so_list' nodes. */
492928e4 998 prev_lm = 0;
1a816a87 999 lm = solib_svr4_r_map (info);
34439770 1000
13437d4b
KB
1001 while (lm)
1002 {
4b188b9f 1003 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f4456994 1004 struct so_list *new = XZALLOC (struct so_list);
b8c9b27d 1005 struct cleanup *old_chain = make_cleanup (xfree, new);
492928e4 1006 CORE_ADDR next_lm;
13437d4b 1007
13437d4b 1008 new->lm_info = xmalloc (sizeof (struct lm_info));
b8c9b27d 1009 make_cleanup (xfree, new->lm_info);
13437d4b 1010
831004b7 1011 new->lm_info->l_addr = (CORE_ADDR)-1;
93a57060 1012 new->lm_info->lm_addr = lm;
f4456994 1013 new->lm_info->lm = xzalloc (lmo->link_map_size);
b8c9b27d 1014 make_cleanup (xfree, new->lm_info->lm);
13437d4b
KB
1015
1016 read_memory (lm, new->lm_info->lm, lmo->link_map_size);
1017
b23518f0 1018 next_lm = lm_next (new);
492928e4 1019
b23518f0 1020 if (lm_prev (new) != prev_lm)
492928e4
JK
1021 {
1022 warning (_("Corrupted shared library list"));
1023 free_so (new);
1024 next_lm = 0;
1025 }
13437d4b
KB
1026
1027 /* For SVR4 versions, the first entry in the link map is for the
1028 inferior executable, so we must ignore it. For some versions of
1029 SVR4, it has no name. For others (Solaris 2.3 for example), it
1030 does have a name, so we can no longer use a missing name to
c378eb4e 1031 decide when to ignore it. */
b23518f0 1032 else if (ignore_first_link_map_entry (new) && ldsomap == 0)
93a57060 1033 {
1a816a87 1034 info->main_lm_addr = new->lm_info->lm_addr;
93a57060
DJ
1035 free_so (new);
1036 }
13437d4b
KB
1037 else
1038 {
1039 int errcode;
1040 char *buffer;
1041
1042 /* Extract this shared object's name. */
b23518f0 1043 target_read_string (lm_name (new), &buffer,
13437d4b
KB
1044 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1045 if (errcode != 0)
8a3fe4f8
AC
1046 warning (_("Can't read pathname for load map: %s."),
1047 safe_strerror (errcode));
13437d4b
KB
1048 else
1049 {
1050 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
1051 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
13437d4b
KB
1052 strcpy (new->so_original_name, new->so_name);
1053 }
ea5bf0a1 1054 xfree (buffer);
13437d4b
KB
1055
1056 /* If this entry has no name, or its name matches the name
1057 for the main executable, don't include it in the list. */
1058 if (! new->so_name[0]
1059 || match_main (new->so_name))
1060 free_so (new);
1061 else
1062 {
1063 new->next = 0;
1064 *link_ptr = new;
1065 link_ptr = &new->next;
1066 }
1067 }
1068
492928e4
JK
1069 prev_lm = lm;
1070 lm = next_lm;
1071
e4cd0d6a
MK
1072 /* On Solaris, the dynamic linker is not in the normal list of
1073 shared objects, so make sure we pick it up too. Having
1074 symbol information for the dynamic linker is quite crucial
1075 for skipping dynamic linker resolver code. */
1076 if (lm == 0 && ldsomap == 0)
492928e4
JK
1077 {
1078 lm = ldsomap = solib_svr4_r_ldsomap (info);
1079 prev_lm = 0;
1080 }
e4cd0d6a 1081
13437d4b
KB
1082 discard_cleanups (old_chain);
1083 }
1084
34439770
DJ
1085 if (head == NULL)
1086 return svr4_default_sos ();
1087
13437d4b
KB
1088 return head;
1089}
1090
93a57060 1091/* Get the address of the link_map for a given OBJFILE. */
bc4a16ae
EZ
1092
1093CORE_ADDR
1094svr4_fetch_objfile_link_map (struct objfile *objfile)
1095{
93a57060 1096 struct so_list *so;
6c95b8df 1097 struct svr4_info *info = get_svr4_info ();
bc4a16ae 1098
93a57060 1099 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1a816a87 1100 if (info->main_lm_addr == 0)
93a57060 1101 solib_add (NULL, 0, &current_target, auto_solib_add);
bc4a16ae 1102
93a57060
DJ
1103 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1104 if (objfile == symfile_objfile)
1a816a87 1105 return info->main_lm_addr;
93a57060
DJ
1106
1107 /* The other link map addresses may be found by examining the list
1108 of shared libraries. */
1109 for (so = master_so_list (); so; so = so->next)
1110 if (so->objfile == objfile)
1111 return so->lm_info->lm_addr;
1112
1113 /* Not found! */
bc4a16ae
EZ
1114 return 0;
1115}
13437d4b
KB
1116
1117/* On some systems, the only way to recognize the link map entry for
1118 the main executable file is by looking at its name. Return
1119 non-zero iff SONAME matches one of the known main executable names. */
1120
1121static int
bc043ef3 1122match_main (const char *soname)
13437d4b 1123{
bc043ef3 1124 const char * const *mainp;
13437d4b
KB
1125
1126 for (mainp = main_name_list; *mainp != NULL; mainp++)
1127 {
1128 if (strcmp (soname, *mainp) == 0)
1129 return (1);
1130 }
1131
1132 return (0);
1133}
1134
13437d4b
KB
1135/* Return 1 if PC lies in the dynamic symbol resolution code of the
1136 SVR4 run time loader. */
13437d4b 1137
7d522c90 1138int
d7fa2ae2 1139svr4_in_dynsym_resolve_code (CORE_ADDR pc)
13437d4b 1140{
6c95b8df
PA
1141 struct svr4_info *info = get_svr4_info ();
1142
1143 return ((pc >= info->interp_text_sect_low
1144 && pc < info->interp_text_sect_high)
1145 || (pc >= info->interp_plt_sect_low
1146 && pc < info->interp_plt_sect_high)
0875794a
JK
1147 || in_plt_section (pc, NULL)
1148 || in_gnu_ifunc_stub (pc));
13437d4b 1149}
13437d4b 1150
2f4950cd
AC
1151/* Given an executable's ABFD and target, compute the entry-point
1152 address. */
1153
1154static CORE_ADDR
1155exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1156{
1157 /* KevinB wrote ... for most targets, the address returned by
1158 bfd_get_start_address() is the entry point for the start
1159 function. But, for some targets, bfd_get_start_address() returns
1160 the address of a function descriptor from which the entry point
1161 address may be extracted. This address is extracted by
1162 gdbarch_convert_from_func_ptr_addr(). The method
1163 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1164 function for targets which don't use function descriptors. */
1cf3db46 1165 return gdbarch_convert_from_func_ptr_addr (target_gdbarch,
2f4950cd
AC
1166 bfd_get_start_address (abfd),
1167 targ);
1168}
13437d4b 1169
cb457ae2
YQ
1170/* Helper function for gdb_bfd_lookup_symbol. */
1171
1172static int
1173cmp_name_and_sec_flags (asymbol *sym, void *data)
1174{
1175 return (strcmp (sym->name, (const char *) data) == 0
1176 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0);
1177}
7f86f058 1178/* Arrange for dynamic linker to hit breakpoint.
13437d4b
KB
1179
1180 Both the SunOS and the SVR4 dynamic linkers have, as part of their
1181 debugger interface, support for arranging for the inferior to hit
1182 a breakpoint after mapping in the shared libraries. This function
1183 enables that breakpoint.
1184
1185 For SunOS, there is a special flag location (in_debugger) which we
1186 set to 1. When the dynamic linker sees this flag set, it will set
1187 a breakpoint at a location known only to itself, after saving the
1188 original contents of that place and the breakpoint address itself,
1189 in it's own internal structures. When we resume the inferior, it
1190 will eventually take a SIGTRAP when it runs into the breakpoint.
1191 We handle this (in a different place) by restoring the contents of
1192 the breakpointed location (which is only known after it stops),
1193 chasing around to locate the shared libraries that have been
1194 loaded, then resuming.
1195
1196 For SVR4, the debugger interface structure contains a member (r_brk)
1197 which is statically initialized at the time the shared library is
1198 built, to the offset of a function (_r_debug_state) which is guaran-
1199 teed to be called once before mapping in a library, and again when
1200 the mapping is complete. At the time we are examining this member,
1201 it contains only the unrelocated offset of the function, so we have
1202 to do our own relocation. Later, when the dynamic linker actually
1203 runs, it relocates r_brk to be the actual address of _r_debug_state().
1204
1205 The debugger interface structure also contains an enumeration which
1206 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
1207 depending upon whether or not the library is being mapped or unmapped,
7f86f058 1208 and then set to RT_CONSISTENT after the library is mapped/unmapped. */
13437d4b
KB
1209
1210static int
268a4a75 1211enable_break (struct svr4_info *info, int from_tty)
13437d4b 1212{
13437d4b 1213 struct minimal_symbol *msymbol;
bc043ef3 1214 const char * const *bkpt_namep;
13437d4b 1215 asection *interp_sect;
97ec2c2f 1216 gdb_byte *interp_name;
7cd25cfc 1217 CORE_ADDR sym_addr;
13437d4b 1218
6c95b8df
PA
1219 info->interp_text_sect_low = info->interp_text_sect_high = 0;
1220 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
13437d4b 1221
7cd25cfc
DJ
1222 /* If we already have a shared library list in the target, and
1223 r_debug contains r_brk, set the breakpoint there - this should
1224 mean r_brk has already been relocated. Assume the dynamic linker
1225 is the object containing r_brk. */
1226
268a4a75 1227 solib_add (NULL, from_tty, &current_target, auto_solib_add);
7cd25cfc 1228 sym_addr = 0;
1a816a87
PA
1229 if (info->debug_base && solib_svr4_r_map (info) != 0)
1230 sym_addr = solib_svr4_r_brk (info);
7cd25cfc
DJ
1231
1232 if (sym_addr != 0)
1233 {
1234 struct obj_section *os;
1235
b36ec657 1236 sym_addr = gdbarch_addr_bits_remove
1cf3db46 1237 (target_gdbarch, gdbarch_convert_from_func_ptr_addr (target_gdbarch,
3e43a32a
MS
1238 sym_addr,
1239 &current_target));
b36ec657 1240
48379de6
DE
1241 /* On at least some versions of Solaris there's a dynamic relocation
1242 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
1243 we get control before the dynamic linker has self-relocated.
1244 Check if SYM_ADDR is in a known section, if it is assume we can
1245 trust its value. This is just a heuristic though, it could go away
1246 or be replaced if it's getting in the way.
1247
1248 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
1249 however it's spelled in your particular system) is ARM or Thumb.
1250 That knowledge is encoded in the address, if it's Thumb the low bit
1251 is 1. However, we've stripped that info above and it's not clear
1252 what all the consequences are of passing a non-addr_bits_remove'd
1253 address to create_solib_event_breakpoint. The call to
1254 find_pc_section verifies we know about the address and have some
1255 hope of computing the right kind of breakpoint to use (via
1256 symbol info). It does mean that GDB needs to be pointed at a
1257 non-stripped version of the dynamic linker in order to obtain
1258 information it already knows about. Sigh. */
1259
7cd25cfc
DJ
1260 os = find_pc_section (sym_addr);
1261 if (os != NULL)
1262 {
1263 /* Record the relocated start and end address of the dynamic linker
1264 text and plt section for svr4_in_dynsym_resolve_code. */
1265 bfd *tmp_bfd;
1266 CORE_ADDR load_addr;
1267
1268 tmp_bfd = os->objfile->obfd;
1269 load_addr = ANOFFSET (os->objfile->section_offsets,
1270 os->objfile->sect_index_text);
1271
1272 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1273 if (interp_sect)
1274 {
6c95b8df 1275 info->interp_text_sect_low =
7cd25cfc 1276 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1277 info->interp_text_sect_high =
1278 info->interp_text_sect_low
1279 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
1280 }
1281 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1282 if (interp_sect)
1283 {
6c95b8df 1284 info->interp_plt_sect_low =
7cd25cfc 1285 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1286 info->interp_plt_sect_high =
1287 info->interp_plt_sect_low
1288 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
1289 }
1290
a6d9a66e 1291 create_solib_event_breakpoint (target_gdbarch, sym_addr);
7cd25cfc
DJ
1292 return 1;
1293 }
1294 }
1295
97ec2c2f 1296 /* Find the program interpreter; if not found, warn the user and drop
13437d4b 1297 into the old breakpoint at symbol code. */
97ec2c2f
UW
1298 interp_name = find_program_interpreter ();
1299 if (interp_name)
13437d4b 1300 {
8ad2fcde
KB
1301 CORE_ADDR load_addr = 0;
1302 int load_addr_found = 0;
2ec9a4f8 1303 int loader_found_in_list = 0;
f8766ec1 1304 struct so_list *so;
e4f7b8c8 1305 bfd *tmp_bfd = NULL;
2f4950cd 1306 struct target_ops *tmp_bfd_target;
f1838a98 1307 volatile struct gdb_exception ex;
13437d4b 1308
7cd25cfc 1309 sym_addr = 0;
13437d4b
KB
1310
1311 /* Now we need to figure out where the dynamic linker was
1312 loaded so that we can load its symbols and place a breakpoint
1313 in the dynamic linker itself.
1314
1315 This address is stored on the stack. However, I've been unable
1316 to find any magic formula to find it for Solaris (appears to
1317 be trivial on GNU/Linux). Therefore, we have to try an alternate
1318 mechanism to find the dynamic linker's base address. */
e4f7b8c8 1319
f1838a98
UW
1320 TRY_CATCH (ex, RETURN_MASK_ALL)
1321 {
97ec2c2f 1322 tmp_bfd = solib_bfd_open (interp_name);
f1838a98 1323 }
13437d4b
KB
1324 if (tmp_bfd == NULL)
1325 goto bkpt_at_symbol;
1326
2f4950cd
AC
1327 /* Now convert the TMP_BFD into a target. That way target, as
1328 well as BFD operations can be used. Note that closing the
1329 target will also close the underlying bfd. */
1330 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
1331
f8766ec1
KB
1332 /* On a running target, we can get the dynamic linker's base
1333 address from the shared library table. */
f8766ec1
KB
1334 so = master_so_list ();
1335 while (so)
8ad2fcde 1336 {
97ec2c2f 1337 if (svr4_same_1 (interp_name, so->so_original_name))
8ad2fcde
KB
1338 {
1339 load_addr_found = 1;
2ec9a4f8 1340 loader_found_in_list = 1;
b23518f0 1341 load_addr = lm_addr_check (so, tmp_bfd);
8ad2fcde
KB
1342 break;
1343 }
f8766ec1 1344 so = so->next;
8ad2fcde
KB
1345 }
1346
8d4e36ba
JB
1347 /* If we were not able to find the base address of the loader
1348 from our so_list, then try using the AT_BASE auxilliary entry. */
1349 if (!load_addr_found)
1350 if (target_auxv_search (&current_target, AT_BASE, &load_addr) > 0)
ad3a0e5b
JK
1351 {
1352 int addr_bit = gdbarch_addr_bit (target_gdbarch);
1353
1354 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
1355 that `+ load_addr' will overflow CORE_ADDR width not creating
1356 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
1357 GDB. */
1358
d182d057 1359 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
ad3a0e5b 1360 {
d182d057 1361 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
ad3a0e5b
JK
1362 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd,
1363 tmp_bfd_target);
1364
1365 gdb_assert (load_addr < space_size);
1366
1367 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
1368 64bit ld.so with 32bit executable, it should not happen. */
1369
1370 if (tmp_entry_point < space_size
1371 && tmp_entry_point + load_addr >= space_size)
1372 load_addr -= space_size;
1373 }
1374
1375 load_addr_found = 1;
1376 }
8d4e36ba 1377
8ad2fcde
KB
1378 /* Otherwise we find the dynamic linker's base address by examining
1379 the current pc (which should point at the entry point for the
8d4e36ba
JB
1380 dynamic linker) and subtracting the offset of the entry point.
1381
1382 This is more fragile than the previous approaches, but is a good
1383 fallback method because it has actually been working well in
1384 most cases. */
8ad2fcde 1385 if (!load_addr_found)
fb14de7b 1386 {
c2250ad1
UW
1387 struct regcache *regcache
1388 = get_thread_arch_regcache (inferior_ptid, target_gdbarch);
433759f7 1389
fb14de7b
UW
1390 load_addr = (regcache_read_pc (regcache)
1391 - exec_entry_point (tmp_bfd, tmp_bfd_target));
1392 }
2ec9a4f8
DJ
1393
1394 if (!loader_found_in_list)
34439770 1395 {
1a816a87
PA
1396 info->debug_loader_name = xstrdup (interp_name);
1397 info->debug_loader_offset_p = 1;
1398 info->debug_loader_offset = load_addr;
268a4a75 1399 solib_add (NULL, from_tty, &current_target, auto_solib_add);
34439770 1400 }
13437d4b
KB
1401
1402 /* Record the relocated start and end address of the dynamic linker
d7fa2ae2 1403 text and plt section for svr4_in_dynsym_resolve_code. */
13437d4b
KB
1404 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1405 if (interp_sect)
1406 {
6c95b8df 1407 info->interp_text_sect_low =
13437d4b 1408 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1409 info->interp_text_sect_high =
1410 info->interp_text_sect_low
1411 + bfd_section_size (tmp_bfd, interp_sect);
13437d4b
KB
1412 }
1413 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1414 if (interp_sect)
1415 {
6c95b8df 1416 info->interp_plt_sect_low =
13437d4b 1417 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1418 info->interp_plt_sect_high =
1419 info->interp_plt_sect_low
1420 + bfd_section_size (tmp_bfd, interp_sect);
13437d4b
KB
1421 }
1422
1423 /* Now try to set a breakpoint in the dynamic linker. */
1424 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1425 {
cb457ae2
YQ
1426 sym_addr = gdb_bfd_lookup_symbol (tmp_bfd, cmp_name_and_sec_flags,
1427 (void *) *bkpt_namep);
13437d4b
KB
1428 if (sym_addr != 0)
1429 break;
1430 }
1431
2bbe3cc1
DJ
1432 if (sym_addr != 0)
1433 /* Convert 'sym_addr' from a function pointer to an address.
1434 Because we pass tmp_bfd_target instead of the current
1435 target, this will always produce an unrelocated value. */
1cf3db46 1436 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
2bbe3cc1
DJ
1437 sym_addr,
1438 tmp_bfd_target);
1439
2f4950cd
AC
1440 /* We're done with both the temporary bfd and target. Remember,
1441 closing the target closes the underlying bfd. */
1442 target_close (tmp_bfd_target, 0);
13437d4b
KB
1443
1444 if (sym_addr != 0)
1445 {
a6d9a66e 1446 create_solib_event_breakpoint (target_gdbarch, load_addr + sym_addr);
97ec2c2f 1447 xfree (interp_name);
13437d4b
KB
1448 return 1;
1449 }
1450
1451 /* For whatever reason we couldn't set a breakpoint in the dynamic
1452 linker. Warn and drop into the old code. */
1453 bkpt_at_symbol:
97ec2c2f 1454 xfree (interp_name);
82d03102
PG
1455 warning (_("Unable to find dynamic linker breakpoint function.\n"
1456 "GDB will be unable to debug shared library initializers\n"
1457 "and track explicitly loaded dynamic code."));
13437d4b 1458 }
13437d4b 1459
e499d0f1
DJ
1460 /* Scan through the lists of symbols, trying to look up the symbol and
1461 set a breakpoint there. Terminate loop when we/if we succeed. */
1462
1463 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1464 {
1465 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1466 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1467 {
de64a9ac
JM
1468 sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1469 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1470 sym_addr,
1471 &current_target);
1472 create_solib_event_breakpoint (target_gdbarch, sym_addr);
e499d0f1
DJ
1473 return 1;
1474 }
1475 }
13437d4b 1476
c6490bf2 1477 if (!current_inferior ()->attach_flag)
13437d4b 1478 {
c6490bf2 1479 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
13437d4b 1480 {
c6490bf2
KB
1481 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1482 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1483 {
1484 sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1485 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1486 sym_addr,
1487 &current_target);
1488 create_solib_event_breakpoint (target_gdbarch, sym_addr);
1489 return 1;
1490 }
13437d4b
KB
1491 }
1492 }
542c95c2 1493 return 0;
13437d4b
KB
1494}
1495
7f86f058 1496/* Implement the "special_symbol_handling" target_so_ops method. */
13437d4b
KB
1497
1498static void
1499svr4_special_symbol_handling (void)
1500{
7f86f058 1501 /* Nothing to do. */
13437d4b
KB
1502}
1503
09919ac2
JK
1504/* Read the ELF program headers from ABFD. Return the contents and
1505 set *PHDRS_SIZE to the size of the program headers. */
e2a44558 1506
09919ac2
JK
1507static gdb_byte *
1508read_program_headers_from_bfd (bfd *abfd, int *phdrs_size)
e2a44558 1509{
09919ac2
JK
1510 Elf_Internal_Ehdr *ehdr;
1511 gdb_byte *buf;
e2a44558 1512
09919ac2 1513 ehdr = elf_elfheader (abfd);
b8040f19 1514
09919ac2
JK
1515 *phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
1516 if (*phdrs_size == 0)
1517 return NULL;
1518
1519 buf = xmalloc (*phdrs_size);
1520 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
1521 || bfd_bread (buf, *phdrs_size, abfd) != *phdrs_size)
1522 {
1523 xfree (buf);
1524 return NULL;
1525 }
1526
1527 return buf;
b8040f19
JK
1528}
1529
01c30d6e
JK
1530/* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
1531 exec_bfd. Otherwise return 0.
1532
1533 We relocate all of the sections by the same amount. This
c378eb4e 1534 behavior is mandated by recent editions of the System V ABI.
b8040f19
JK
1535 According to the System V Application Binary Interface,
1536 Edition 4.1, page 5-5:
1537
1538 ... Though the system chooses virtual addresses for
1539 individual processes, it maintains the segments' relative
1540 positions. Because position-independent code uses relative
1541 addressesing between segments, the difference between
1542 virtual addresses in memory must match the difference
1543 between virtual addresses in the file. The difference
1544 between the virtual address of any segment in memory and
1545 the corresponding virtual address in the file is thus a
1546 single constant value for any one executable or shared
1547 object in a given process. This difference is the base
1548 address. One use of the base address is to relocate the
1549 memory image of the program during dynamic linking.
1550
1551 The same language also appears in Edition 4.0 of the System V
09919ac2
JK
1552 ABI and is left unspecified in some of the earlier editions.
1553
1554 Decide if the objfile needs to be relocated. As indicated above, we will
1555 only be here when execution is stopped. But during attachment PC can be at
1556 arbitrary address therefore regcache_read_pc can be misleading (contrary to
1557 the auxv AT_ENTRY value). Moreover for executable with interpreter section
1558 regcache_read_pc would point to the interpreter and not the main executable.
1559
1560 So, to summarize, relocations are necessary when the start address obtained
1561 from the executable is different from the address in auxv AT_ENTRY entry.
d989b283 1562
09919ac2
JK
1563 [ The astute reader will note that we also test to make sure that
1564 the executable in question has the DYNAMIC flag set. It is my
1565 opinion that this test is unnecessary (undesirable even). It
1566 was added to avoid inadvertent relocation of an executable
1567 whose e_type member in the ELF header is not ET_DYN. There may
1568 be a time in the future when it is desirable to do relocations
1569 on other types of files as well in which case this condition
1570 should either be removed or modified to accomodate the new file
1571 type. - Kevin, Nov 2000. ] */
b8040f19 1572
01c30d6e
JK
1573static int
1574svr4_exec_displacement (CORE_ADDR *displacementp)
b8040f19 1575{
41752192
JK
1576 /* ENTRY_POINT is a possible function descriptor - before
1577 a call to gdbarch_convert_from_func_ptr_addr. */
09919ac2 1578 CORE_ADDR entry_point, displacement;
b8040f19
JK
1579
1580 if (exec_bfd == NULL)
1581 return 0;
1582
09919ac2
JK
1583 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
1584 being executed themselves and PIE (Position Independent Executable)
1585 executables are ET_DYN. */
1586
1587 if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0)
1588 return 0;
1589
1590 if (target_auxv_search (&current_target, AT_ENTRY, &entry_point) <= 0)
1591 return 0;
1592
1593 displacement = entry_point - bfd_get_start_address (exec_bfd);
1594
1595 /* Verify the DISPLACEMENT candidate complies with the required page
1596 alignment. It is cheaper than the program headers comparison below. */
1597
1598 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
1599 {
1600 const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd);
1601
1602 /* p_align of PT_LOAD segments does not specify any alignment but
1603 only congruency of addresses:
1604 p_offset % p_align == p_vaddr % p_align
1605 Kernel is free to load the executable with lower alignment. */
1606
1607 if ((displacement & (elf->minpagesize - 1)) != 0)
1608 return 0;
1609 }
1610
1611 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
1612 comparing their program headers. If the program headers in the auxilliary
1613 vector do not match the program headers in the executable, then we are
1614 looking at a different file than the one used by the kernel - for
1615 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
1616
1617 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
1618 {
1619 /* Be optimistic and clear OK only if GDB was able to verify the headers
1620 really do not match. */
1621 int phdrs_size, phdrs2_size, ok = 1;
1622 gdb_byte *buf, *buf2;
0a1e94c7 1623 int arch_size;
09919ac2 1624
0a1e94c7 1625 buf = read_program_header (-1, &phdrs_size, &arch_size);
09919ac2 1626 buf2 = read_program_headers_from_bfd (exec_bfd, &phdrs2_size);
0a1e94c7
JK
1627 if (buf != NULL && buf2 != NULL)
1628 {
1629 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
1630
1631 /* We are dealing with three different addresses. EXEC_BFD
1632 represents current address in on-disk file. target memory content
1633 may be different from EXEC_BFD as the file may have been prelinked
1634 to a different address after the executable has been loaded.
1635 Moreover the address of placement in target memory can be
3e43a32a
MS
1636 different from what the program headers in target memory say -
1637 this is the goal of PIE.
0a1e94c7
JK
1638
1639 Detected DISPLACEMENT covers both the offsets of PIE placement and
1640 possible new prelink performed after start of the program. Here
1641 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
1642 content offset for the verification purpose. */
1643
1644 if (phdrs_size != phdrs2_size
1645 || bfd_get_arch_size (exec_bfd) != arch_size)
1646 ok = 0;
3e43a32a
MS
1647 else if (arch_size == 32
1648 && phdrs_size >= sizeof (Elf32_External_Phdr)
0a1e94c7
JK
1649 && phdrs_size % sizeof (Elf32_External_Phdr) == 0)
1650 {
1651 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
1652 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
1653 CORE_ADDR displacement = 0;
1654 int i;
1655
1656 /* DISPLACEMENT could be found more easily by the difference of
1657 ehdr2->e_entry. But we haven't read the ehdr yet, and we
1658 already have enough information to compute that displacement
1659 with what we've read. */
1660
1661 for (i = 0; i < ehdr2->e_phnum; i++)
1662 if (phdr2[i].p_type == PT_LOAD)
1663 {
1664 Elf32_External_Phdr *phdrp;
1665 gdb_byte *buf_vaddr_p, *buf_paddr_p;
1666 CORE_ADDR vaddr, paddr;
1667 CORE_ADDR displacement_vaddr = 0;
1668 CORE_ADDR displacement_paddr = 0;
1669
1670 phdrp = &((Elf32_External_Phdr *) buf)[i];
1671 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
1672 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
1673
1674 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
1675 byte_order);
1676 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
1677
1678 paddr = extract_unsigned_integer (buf_paddr_p, 4,
1679 byte_order);
1680 displacement_paddr = paddr - phdr2[i].p_paddr;
1681
1682 if (displacement_vaddr == displacement_paddr)
1683 displacement = displacement_vaddr;
1684
1685 break;
1686 }
1687
1688 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
1689
1690 for (i = 0; i < phdrs_size / sizeof (Elf32_External_Phdr); i++)
1691 {
1692 Elf32_External_Phdr *phdrp;
1693 Elf32_External_Phdr *phdr2p;
1694 gdb_byte *buf_vaddr_p, *buf_paddr_p;
1695 CORE_ADDR vaddr, paddr;
43b8e241 1696 asection *plt2_asect;
0a1e94c7
JK
1697
1698 phdrp = &((Elf32_External_Phdr *) buf)[i];
1699 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
1700 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
1701 phdr2p = &((Elf32_External_Phdr *) buf2)[i];
1702
1703 /* PT_GNU_STACK is an exception by being never relocated by
1704 prelink as its addresses are always zero. */
1705
1706 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1707 continue;
1708
1709 /* Check also other adjustment combinations - PR 11786. */
1710
3e43a32a
MS
1711 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
1712 byte_order);
0a1e94c7
JK
1713 vaddr -= displacement;
1714 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
1715
3e43a32a
MS
1716 paddr = extract_unsigned_integer (buf_paddr_p, 4,
1717 byte_order);
0a1e94c7
JK
1718 paddr -= displacement;
1719 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
1720
1721 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1722 continue;
1723
43b8e241
JK
1724 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
1725 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
1726 if (plt2_asect)
1727 {
1728 int content2;
1729 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
1730 CORE_ADDR filesz;
1731
1732 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
1733 & SEC_HAS_CONTENTS) != 0;
1734
1735 filesz = extract_unsigned_integer (buf_filesz_p, 4,
1736 byte_order);
1737
1738 /* PLT2_ASECT is from on-disk file (exec_bfd) while
1739 FILESZ is from the in-memory image. */
1740 if (content2)
1741 filesz += bfd_get_section_size (plt2_asect);
1742 else
1743 filesz -= bfd_get_section_size (plt2_asect);
1744
1745 store_unsigned_integer (buf_filesz_p, 4, byte_order,
1746 filesz);
1747
1748 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1749 continue;
1750 }
1751
0a1e94c7
JK
1752 ok = 0;
1753 break;
1754 }
1755 }
3e43a32a
MS
1756 else if (arch_size == 64
1757 && phdrs_size >= sizeof (Elf64_External_Phdr)
0a1e94c7
JK
1758 && phdrs_size % sizeof (Elf64_External_Phdr) == 0)
1759 {
1760 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
1761 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
1762 CORE_ADDR displacement = 0;
1763 int i;
1764
1765 /* DISPLACEMENT could be found more easily by the difference of
1766 ehdr2->e_entry. But we haven't read the ehdr yet, and we
1767 already have enough information to compute that displacement
1768 with what we've read. */
1769
1770 for (i = 0; i < ehdr2->e_phnum; i++)
1771 if (phdr2[i].p_type == PT_LOAD)
1772 {
1773 Elf64_External_Phdr *phdrp;
1774 gdb_byte *buf_vaddr_p, *buf_paddr_p;
1775 CORE_ADDR vaddr, paddr;
1776 CORE_ADDR displacement_vaddr = 0;
1777 CORE_ADDR displacement_paddr = 0;
1778
1779 phdrp = &((Elf64_External_Phdr *) buf)[i];
1780 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
1781 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
1782
1783 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
1784 byte_order);
1785 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
1786
1787 paddr = extract_unsigned_integer (buf_paddr_p, 8,
1788 byte_order);
1789 displacement_paddr = paddr - phdr2[i].p_paddr;
1790
1791 if (displacement_vaddr == displacement_paddr)
1792 displacement = displacement_vaddr;
1793
1794 break;
1795 }
1796
1797 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
1798
1799 for (i = 0; i < phdrs_size / sizeof (Elf64_External_Phdr); i++)
1800 {
1801 Elf64_External_Phdr *phdrp;
1802 Elf64_External_Phdr *phdr2p;
1803 gdb_byte *buf_vaddr_p, *buf_paddr_p;
1804 CORE_ADDR vaddr, paddr;
43b8e241 1805 asection *plt2_asect;
0a1e94c7
JK
1806
1807 phdrp = &((Elf64_External_Phdr *) buf)[i];
1808 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
1809 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
1810 phdr2p = &((Elf64_External_Phdr *) buf2)[i];
1811
1812 /* PT_GNU_STACK is an exception by being never relocated by
1813 prelink as its addresses are always zero. */
1814
1815 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1816 continue;
1817
1818 /* Check also other adjustment combinations - PR 11786. */
1819
3e43a32a
MS
1820 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
1821 byte_order);
0a1e94c7
JK
1822 vaddr -= displacement;
1823 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
1824
3e43a32a
MS
1825 paddr = extract_unsigned_integer (buf_paddr_p, 8,
1826 byte_order);
0a1e94c7
JK
1827 paddr -= displacement;
1828 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
1829
1830 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1831 continue;
1832
43b8e241
JK
1833 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
1834 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
1835 if (plt2_asect)
1836 {
1837 int content2;
1838 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
1839 CORE_ADDR filesz;
1840
1841 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
1842 & SEC_HAS_CONTENTS) != 0;
1843
1844 filesz = extract_unsigned_integer (buf_filesz_p, 8,
1845 byte_order);
1846
1847 /* PLT2_ASECT is from on-disk file (exec_bfd) while
1848 FILESZ is from the in-memory image. */
1849 if (content2)
1850 filesz += bfd_get_section_size (plt2_asect);
1851 else
1852 filesz -= bfd_get_section_size (plt2_asect);
1853
1854 store_unsigned_integer (buf_filesz_p, 8, byte_order,
1855 filesz);
1856
1857 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1858 continue;
1859 }
1860
0a1e94c7
JK
1861 ok = 0;
1862 break;
1863 }
1864 }
1865 else
1866 ok = 0;
1867 }
09919ac2
JK
1868
1869 xfree (buf);
1870 xfree (buf2);
1871
1872 if (!ok)
1873 return 0;
1874 }
b8040f19 1875
ccf26247
JK
1876 if (info_verbose)
1877 {
1878 /* It can be printed repeatedly as there is no easy way to check
1879 the executable symbols/file has been already relocated to
1880 displacement. */
1881
1882 printf_unfiltered (_("Using PIE (Position Independent Executable) "
1883 "displacement %s for \"%s\".\n"),
1884 paddress (target_gdbarch, displacement),
1885 bfd_get_filename (exec_bfd));
1886 }
1887
01c30d6e
JK
1888 *displacementp = displacement;
1889 return 1;
b8040f19
JK
1890}
1891
1892/* Relocate the main executable. This function should be called upon
c378eb4e 1893 stopping the inferior process at the entry point to the program.
b8040f19
JK
1894 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
1895 different, the main executable is relocated by the proper amount. */
1896
1897static void
1898svr4_relocate_main_executable (void)
1899{
01c30d6e
JK
1900 CORE_ADDR displacement;
1901
4e5799b6
JK
1902 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
1903 probably contains the offsets computed using the PIE displacement
1904 from the previous run, which of course are irrelevant for this run.
1905 So we need to determine the new PIE displacement and recompute the
1906 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
1907 already contains pre-computed offsets.
01c30d6e 1908
4e5799b6 1909 If we cannot compute the PIE displacement, either:
01c30d6e 1910
4e5799b6
JK
1911 - The executable is not PIE.
1912
1913 - SYMFILE_OBJFILE does not match the executable started in the target.
1914 This can happen for main executable symbols loaded at the host while
1915 `ld.so --ld-args main-executable' is loaded in the target.
1916
1917 Then we leave the section offsets untouched and use them as is for
1918 this run. Either:
1919
1920 - These section offsets were properly reset earlier, and thus
1921 already contain the correct values. This can happen for instance
1922 when reconnecting via the remote protocol to a target that supports
1923 the `qOffsets' packet.
1924
1925 - The section offsets were not reset earlier, and the best we can
c378eb4e 1926 hope is that the old offsets are still applicable to the new run. */
01c30d6e
JK
1927
1928 if (! svr4_exec_displacement (&displacement))
1929 return;
b8040f19 1930
01c30d6e
JK
1931 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
1932 addresses. */
b8040f19
JK
1933
1934 if (symfile_objfile)
e2a44558 1935 {
e2a44558 1936 struct section_offsets *new_offsets;
b8040f19 1937 int i;
e2a44558 1938
b8040f19
JK
1939 new_offsets = alloca (symfile_objfile->num_sections
1940 * sizeof (*new_offsets));
e2a44558 1941
b8040f19
JK
1942 for (i = 0; i < symfile_objfile->num_sections; i++)
1943 new_offsets->offsets[i] = displacement;
e2a44558 1944
b8040f19 1945 objfile_relocate (symfile_objfile, new_offsets);
e2a44558 1946 }
51bee8e9
JK
1947 else if (exec_bfd)
1948 {
1949 asection *asect;
1950
1951 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
1952 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
1953 (bfd_section_vma (exec_bfd, asect)
1954 + displacement));
1955 }
e2a44558
KB
1956}
1957
7f86f058 1958/* Implement the "create_inferior_hook" target_solib_ops method.
13437d4b
KB
1959
1960 For SVR4 executables, this first instruction is either the first
1961 instruction in the dynamic linker (for dynamically linked
1962 executables) or the instruction at "start" for statically linked
1963 executables. For dynamically linked executables, the system
1964 first exec's /lib/libc.so.N, which contains the dynamic linker,
1965 and starts it running. The dynamic linker maps in any needed
1966 shared libraries, maps in the actual user executable, and then
1967 jumps to "start" in the user executable.
1968
7f86f058
PA
1969 We can arrange to cooperate with the dynamic linker to discover the
1970 names of shared libraries that are dynamically linked, and the base
1971 addresses to which they are linked.
13437d4b
KB
1972
1973 This function is responsible for discovering those names and
1974 addresses, and saving sufficient information about them to allow
1975 their symbols to be read at a later time.
1976
1977 FIXME
1978
1979 Between enable_break() and disable_break(), this code does not
1980 properly handle hitting breakpoints which the user might have
1981 set in the startup code or in the dynamic linker itself. Proper
1982 handling will probably have to wait until the implementation is
1983 changed to use the "breakpoint handler function" method.
1984
7f86f058 1985 Also, what if child has exit()ed? Must exit loop somehow. */
13437d4b 1986
e2a44558 1987static void
268a4a75 1988svr4_solib_create_inferior_hook (int from_tty)
13437d4b 1989{
1cd337a5 1990#if defined(_SCO_DS)
d6b48e9c 1991 struct inferior *inf;
2020b7ab 1992 struct thread_info *tp;
1cd337a5 1993#endif /* defined(_SCO_DS) */
1a816a87
PA
1994 struct svr4_info *info;
1995
6c95b8df 1996 info = get_svr4_info ();
2020b7ab 1997
e2a44558 1998 /* Relocate the main executable if necessary. */
86e4bafc 1999 svr4_relocate_main_executable ();
e2a44558 2000
c91c8c16
PA
2001 /* No point setting a breakpoint in the dynamic linker if we can't
2002 hit it (e.g., a core file, or a trace file). */
2003 if (!target_has_execution)
2004 return;
2005
d5a921c9 2006 if (!svr4_have_link_map_offsets ())
513f5903 2007 return;
d5a921c9 2008
268a4a75 2009 if (!enable_break (info, from_tty))
542c95c2 2010 return;
13437d4b 2011
ab31aa69
KB
2012#if defined(_SCO_DS)
2013 /* SCO needs the loop below, other systems should be using the
13437d4b
KB
2014 special shared library breakpoints and the shared library breakpoint
2015 service routine.
2016
2017 Now run the target. It will eventually hit the breakpoint, at
2018 which point all of the libraries will have been mapped in and we
2019 can go groveling around in the dynamic linker structures to find
c378eb4e 2020 out what we need to know about them. */
13437d4b 2021
d6b48e9c 2022 inf = current_inferior ();
2020b7ab
PA
2023 tp = inferior_thread ();
2024
13437d4b 2025 clear_proceed_status ();
16c381f0
JK
2026 inf->control.stop_soon = STOP_QUIETLY;
2027 tp->suspend.stop_signal = TARGET_SIGNAL_0;
13437d4b
KB
2028 do
2029 {
16c381f0 2030 target_resume (pid_to_ptid (-1), 0, tp->suspend.stop_signal);
e4c8541f 2031 wait_for_inferior ();
13437d4b 2032 }
16c381f0
JK
2033 while (tp->suspend.stop_signal != TARGET_SIGNAL_TRAP);
2034 inf->control.stop_soon = NO_STOP_QUIETLY;
ab31aa69 2035#endif /* defined(_SCO_DS) */
13437d4b
KB
2036}
2037
2038static void
2039svr4_clear_solib (void)
2040{
6c95b8df
PA
2041 struct svr4_info *info;
2042
2043 info = get_svr4_info ();
2044 info->debug_base = 0;
2045 info->debug_loader_offset_p = 0;
2046 info->debug_loader_offset = 0;
2047 xfree (info->debug_loader_name);
2048 info->debug_loader_name = NULL;
13437d4b
KB
2049}
2050
2051static void
2052svr4_free_so (struct so_list *so)
2053{
b8c9b27d
KB
2054 xfree (so->lm_info->lm);
2055 xfree (so->lm_info);
13437d4b
KB
2056}
2057
6bb7be43
JB
2058
2059/* Clear any bits of ADDR that wouldn't fit in a target-format
2060 data pointer. "Data pointer" here refers to whatever sort of
2061 address the dynamic linker uses to manage its sections. At the
2062 moment, we don't support shared libraries on any processors where
2063 code and data pointers are different sizes.
2064
2065 This isn't really the right solution. What we really need here is
2066 a way to do arithmetic on CORE_ADDR values that respects the
2067 natural pointer/address correspondence. (For example, on the MIPS,
2068 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
2069 sign-extend the value. There, simply truncating the bits above
819844ad 2070 gdbarch_ptr_bit, as we do below, is no good.) This should probably
6bb7be43
JB
2071 be a new gdbarch method or something. */
2072static CORE_ADDR
2073svr4_truncate_ptr (CORE_ADDR addr)
2074{
1cf3db46 2075 if (gdbarch_ptr_bit (target_gdbarch) == sizeof (CORE_ADDR) * 8)
6bb7be43
JB
2076 /* We don't need to truncate anything, and the bit twiddling below
2077 will fail due to overflow problems. */
2078 return addr;
2079 else
1cf3db46 2080 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch)) - 1);
6bb7be43
JB
2081}
2082
2083
749499cb
KB
2084static void
2085svr4_relocate_section_addresses (struct so_list *so,
0542c86d 2086 struct target_section *sec)
749499cb 2087{
b23518f0 2088 sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so,
cc10cae3 2089 sec->bfd));
b23518f0 2090 sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so,
cc10cae3 2091 sec->bfd));
749499cb 2092}
4b188b9f 2093\f
749499cb 2094
4b188b9f 2095/* Architecture-specific operations. */
6bb7be43 2096
4b188b9f
MK
2097/* Per-architecture data key. */
2098static struct gdbarch_data *solib_svr4_data;
e5e2b9ff 2099
4b188b9f 2100struct solib_svr4_ops
e5e2b9ff 2101{
4b188b9f
MK
2102 /* Return a description of the layout of `struct link_map'. */
2103 struct link_map_offsets *(*fetch_link_map_offsets)(void);
2104};
e5e2b9ff 2105
4b188b9f 2106/* Return a default for the architecture-specific operations. */
e5e2b9ff 2107
4b188b9f
MK
2108static void *
2109solib_svr4_init (struct obstack *obstack)
e5e2b9ff 2110{
4b188b9f 2111 struct solib_svr4_ops *ops;
e5e2b9ff 2112
4b188b9f 2113 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
8d005789 2114 ops->fetch_link_map_offsets = NULL;
4b188b9f 2115 return ops;
e5e2b9ff
KB
2116}
2117
4b188b9f 2118/* Set the architecture-specific `struct link_map_offsets' fetcher for
7e3cb44c 2119 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
1c4dcb57 2120
21479ded 2121void
e5e2b9ff
KB
2122set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
2123 struct link_map_offsets *(*flmo) (void))
21479ded 2124{
4b188b9f
MK
2125 struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data);
2126
2127 ops->fetch_link_map_offsets = flmo;
7e3cb44c
UW
2128
2129 set_solib_ops (gdbarch, &svr4_so_ops);
21479ded
KB
2130}
2131
4b188b9f
MK
2132/* Fetch a link_map_offsets structure using the architecture-specific
2133 `struct link_map_offsets' fetcher. */
1c4dcb57 2134
4b188b9f
MK
2135static struct link_map_offsets *
2136svr4_fetch_link_map_offsets (void)
21479ded 2137{
1cf3db46 2138 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
4b188b9f
MK
2139
2140 gdb_assert (ops->fetch_link_map_offsets);
2141 return ops->fetch_link_map_offsets ();
21479ded
KB
2142}
2143
4b188b9f
MK
2144/* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
2145
2146static int
2147svr4_have_link_map_offsets (void)
2148{
1cf3db46 2149 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
433759f7 2150
4b188b9f
MK
2151 return (ops->fetch_link_map_offsets != NULL);
2152}
2153\f
2154
e4bbbda8
MK
2155/* Most OS'es that have SVR4-style ELF dynamic libraries define a
2156 `struct r_debug' and a `struct link_map' that are binary compatible
2157 with the origional SVR4 implementation. */
2158
2159/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
2160 for an ILP32 SVR4 system. */
d989b283 2161
e4bbbda8
MK
2162struct link_map_offsets *
2163svr4_ilp32_fetch_link_map_offsets (void)
2164{
2165 static struct link_map_offsets lmo;
2166 static struct link_map_offsets *lmp = NULL;
2167
2168 if (lmp == NULL)
2169 {
2170 lmp = &lmo;
2171
e4cd0d6a
MK
2172 lmo.r_version_offset = 0;
2173 lmo.r_version_size = 4;
e4bbbda8 2174 lmo.r_map_offset = 4;
7cd25cfc 2175 lmo.r_brk_offset = 8;
e4cd0d6a 2176 lmo.r_ldsomap_offset = 20;
e4bbbda8
MK
2177
2178 /* Everything we need is in the first 20 bytes. */
2179 lmo.link_map_size = 20;
2180 lmo.l_addr_offset = 0;
e4bbbda8 2181 lmo.l_name_offset = 4;
cc10cae3 2182 lmo.l_ld_offset = 8;
e4bbbda8 2183 lmo.l_next_offset = 12;
e4bbbda8 2184 lmo.l_prev_offset = 16;
e4bbbda8
MK
2185 }
2186
2187 return lmp;
2188}
2189
2190/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
2191 for an LP64 SVR4 system. */
d989b283 2192
e4bbbda8
MK
2193struct link_map_offsets *
2194svr4_lp64_fetch_link_map_offsets (void)
2195{
2196 static struct link_map_offsets lmo;
2197 static struct link_map_offsets *lmp = NULL;
2198
2199 if (lmp == NULL)
2200 {
2201 lmp = &lmo;
2202
e4cd0d6a
MK
2203 lmo.r_version_offset = 0;
2204 lmo.r_version_size = 4;
e4bbbda8 2205 lmo.r_map_offset = 8;
7cd25cfc 2206 lmo.r_brk_offset = 16;
e4cd0d6a 2207 lmo.r_ldsomap_offset = 40;
e4bbbda8
MK
2208
2209 /* Everything we need is in the first 40 bytes. */
2210 lmo.link_map_size = 40;
2211 lmo.l_addr_offset = 0;
e4bbbda8 2212 lmo.l_name_offset = 8;
cc10cae3 2213 lmo.l_ld_offset = 16;
e4bbbda8 2214 lmo.l_next_offset = 24;
e4bbbda8 2215 lmo.l_prev_offset = 32;
e4bbbda8
MK
2216 }
2217
2218 return lmp;
2219}
2220\f
2221
7d522c90 2222struct target_so_ops svr4_so_ops;
13437d4b 2223
c378eb4e 2224/* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
3a40aaa0
UW
2225 different rule for symbol lookup. The lookup begins here in the DSO, not in
2226 the main executable. */
2227
2228static struct symbol *
2229elf_lookup_lib_symbol (const struct objfile *objfile,
2230 const char *name,
21b556f4 2231 const domain_enum domain)
3a40aaa0 2232{
61f0d762
JK
2233 bfd *abfd;
2234
2235 if (objfile == symfile_objfile)
2236 abfd = exec_bfd;
2237 else
2238 {
2239 /* OBJFILE should have been passed as the non-debug one. */
2240 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
2241
2242 abfd = objfile->obfd;
2243 }
2244
2245 if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL) != 1)
3a40aaa0
UW
2246 return NULL;
2247
94af9270 2248 return lookup_global_symbol_from_objfile (objfile, name, domain);
3a40aaa0
UW
2249}
2250
a78f21af
AC
2251extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
2252
13437d4b
KB
2253void
2254_initialize_svr4_solib (void)
2255{
4b188b9f 2256 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
6c95b8df
PA
2257 solib_svr4_pspace_data
2258 = register_program_space_data_with_cleanup (svr4_pspace_data_cleanup);
4b188b9f 2259
749499cb 2260 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
13437d4b
KB
2261 svr4_so_ops.free_so = svr4_free_so;
2262 svr4_so_ops.clear_solib = svr4_clear_solib;
2263 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
2264 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
2265 svr4_so_ops.current_sos = svr4_current_sos;
2266 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
d7fa2ae2 2267 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
831a0c44 2268 svr4_so_ops.bfd_open = solib_bfd_open;
3a40aaa0 2269 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
a7c02bc8 2270 svr4_so_ops.same = svr4_same;
de18c1d8 2271 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
13437d4b 2272}
This page took 1.447355 seconds and 4 git commands to generate.