Make symfile_add_flags and objfile->flags strongly typed
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
CommitLineData
ab31aa69 1/* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2f4950cd 2
618f726f 3 Copyright (C) 1990-2016 Free Software Foundation, Inc.
13437d4b
KB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
13437d4b
KB
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
13437d4b 19
13437d4b
KB
20#include "defs.h"
21
13437d4b 22#include "elf/external.h"
21479ded 23#include "elf/common.h"
f7856c8f 24#include "elf/mips.h"
13437d4b
KB
25
26#include "symtab.h"
27#include "bfd.h"
28#include "symfile.h"
29#include "objfiles.h"
30#include "gdbcore.h"
13437d4b 31#include "target.h"
13437d4b 32#include "inferior.h"
45741a9c 33#include "infrun.h"
fb14de7b 34#include "regcache.h"
2020b7ab 35#include "gdbthread.h"
1a816a87 36#include "observer.h"
13437d4b
KB
37
38#include "solist.h"
bba93f6c 39#include "solib.h"
13437d4b
KB
40#include "solib-svr4.h"
41
2f4950cd 42#include "bfd-target.h"
cc10cae3 43#include "elf-bfd.h"
2f4950cd 44#include "exec.h"
8d4e36ba 45#include "auxv.h"
695c3173 46#include "gdb_bfd.h"
f9e14852 47#include "probe.h"
2f4950cd 48
e5e2b9ff 49static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
d5a921c9 50static int svr4_have_link_map_offsets (void);
9f2982ff 51static void svr4_relocate_main_executable (void);
f9e14852 52static void svr4_free_library_list (void *p_list);
1c4dcb57 53
c378eb4e 54/* Link map info to include in an allocated so_list entry. */
13437d4b
KB
55
56struct lm_info
57 {
cc10cae3 58 /* Amount by which addresses in the binary should be relocated to
3957565a
JK
59 match the inferior. The direct inferior value is L_ADDR_INFERIOR.
60 When prelinking is involved and the prelink base address changes,
61 we may need a different offset - the recomputed offset is in L_ADDR.
62 It is commonly the same value. It is cached as we want to warn about
63 the difference and compute it only once. L_ADDR is valid
64 iff L_ADDR_P. */
65 CORE_ADDR l_addr, l_addr_inferior;
66 unsigned int l_addr_p : 1;
93a57060
DJ
67
68 /* The target location of lm. */
69 CORE_ADDR lm_addr;
3957565a
JK
70
71 /* Values read in from inferior's fields of the same name. */
72 CORE_ADDR l_ld, l_next, l_prev, l_name;
13437d4b
KB
73 };
74
75/* On SVR4 systems, a list of symbols in the dynamic linker where
76 GDB can try to place a breakpoint to monitor shared library
77 events.
78
79 If none of these symbols are found, or other errors occur, then
80 SVR4 systems will fall back to using a symbol as the "startup
81 mapping complete" breakpoint address. */
82
bc043ef3 83static const char * const solib_break_names[] =
13437d4b
KB
84{
85 "r_debug_state",
86 "_r_debug_state",
87 "_dl_debug_state",
88 "rtld_db_dlactivity",
4c7dcb84 89 "__dl_rtld_db_dlactivity",
1f72e589 90 "_rtld_debug_state",
4c0122c8 91
13437d4b
KB
92 NULL
93};
13437d4b 94
bc043ef3 95static const char * const bkpt_names[] =
13437d4b 96{
13437d4b 97 "_start",
ad3dcc5c 98 "__start",
13437d4b
KB
99 "main",
100 NULL
101};
13437d4b 102
bc043ef3 103static const char * const main_name_list[] =
13437d4b
KB
104{
105 "main_$main",
106 NULL
107};
108
f9e14852
GB
109/* What to do when a probe stop occurs. */
110
111enum probe_action
112{
113 /* Something went seriously wrong. Stop using probes and
114 revert to using the older interface. */
115 PROBES_INTERFACE_FAILED,
116
117 /* No action is required. The shared object list is still
118 valid. */
119 DO_NOTHING,
120
121 /* The shared object list should be reloaded entirely. */
122 FULL_RELOAD,
123
124 /* Attempt to incrementally update the shared object list. If
125 the update fails or is not possible, fall back to reloading
126 the list in full. */
127 UPDATE_OR_RELOAD,
128};
129
130/* A probe's name and its associated action. */
131
132struct probe_info
133{
134 /* The name of the probe. */
135 const char *name;
136
137 /* What to do when a probe stop occurs. */
138 enum probe_action action;
139};
140
141/* A list of named probes and their associated actions. If all
142 probes are present in the dynamic linker then the probes-based
143 interface will be used. */
144
145static const struct probe_info probe_info[] =
146{
147 { "init_start", DO_NOTHING },
148 { "init_complete", FULL_RELOAD },
149 { "map_start", DO_NOTHING },
150 { "map_failed", DO_NOTHING },
151 { "reloc_complete", UPDATE_OR_RELOAD },
152 { "unmap_start", DO_NOTHING },
153 { "unmap_complete", FULL_RELOAD },
154};
155
156#define NUM_PROBES ARRAY_SIZE (probe_info)
157
4d7b2d5b
JB
158/* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
159 the same shared library. */
160
161static int
162svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
163{
164 if (strcmp (gdb_so_name, inferior_so_name) == 0)
165 return 1;
166
167 /* On Solaris, when starting inferior we think that dynamic linker is
d989b283
PP
168 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
169 contains /lib/ld.so.1. Sometimes one file is a link to another, but
4d7b2d5b
JB
170 sometimes they have identical content, but are not linked to each
171 other. We don't restrict this check for Solaris, but the chances
172 of running into this situation elsewhere are very low. */
173 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
174 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
175 return 1;
176
177 /* Similarly, we observed the same issue with sparc64, but with
178 different locations. */
179 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
180 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
181 return 1;
182
183 return 0;
184}
185
186static int
187svr4_same (struct so_list *gdb, struct so_list *inferior)
188{
189 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
190}
191
3957565a
JK
192static struct lm_info *
193lm_info_read (CORE_ADDR lm_addr)
13437d4b 194{
4b188b9f 195 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
3957565a
JK
196 gdb_byte *lm;
197 struct lm_info *lm_info;
198 struct cleanup *back_to;
199
224c3ddb 200 lm = (gdb_byte *) xmalloc (lmo->link_map_size);
3957565a
JK
201 back_to = make_cleanup (xfree, lm);
202
203 if (target_read_memory (lm_addr, lm, lmo->link_map_size) != 0)
204 {
205 warning (_("Error reading shared library list entry at %s"),
f5656ead 206 paddress (target_gdbarch (), lm_addr)),
3957565a
JK
207 lm_info = NULL;
208 }
209 else
210 {
f5656ead 211 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
13437d4b 212
8d749320 213 lm_info = XCNEW (struct lm_info);
3957565a
JK
214 lm_info->lm_addr = lm_addr;
215
216 lm_info->l_addr_inferior = extract_typed_address (&lm[lmo->l_addr_offset],
217 ptr_type);
218 lm_info->l_ld = extract_typed_address (&lm[lmo->l_ld_offset], ptr_type);
219 lm_info->l_next = extract_typed_address (&lm[lmo->l_next_offset],
220 ptr_type);
221 lm_info->l_prev = extract_typed_address (&lm[lmo->l_prev_offset],
222 ptr_type);
223 lm_info->l_name = extract_typed_address (&lm[lmo->l_name_offset],
224 ptr_type);
225 }
226
227 do_cleanups (back_to);
228
229 return lm_info;
13437d4b
KB
230}
231
cc10cae3 232static int
b23518f0 233has_lm_dynamic_from_link_map (void)
cc10cae3
AO
234{
235 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
236
cfaefc65 237 return lmo->l_ld_offset >= 0;
cc10cae3
AO
238}
239
cc10cae3 240static CORE_ADDR
f65ce5fb 241lm_addr_check (const struct so_list *so, bfd *abfd)
cc10cae3 242{
3957565a 243 if (!so->lm_info->l_addr_p)
cc10cae3
AO
244 {
245 struct bfd_section *dyninfo_sect;
28f34a8f 246 CORE_ADDR l_addr, l_dynaddr, dynaddr;
cc10cae3 247
3957565a 248 l_addr = so->lm_info->l_addr_inferior;
cc10cae3 249
b23518f0 250 if (! abfd || ! has_lm_dynamic_from_link_map ())
cc10cae3
AO
251 goto set_addr;
252
3957565a 253 l_dynaddr = so->lm_info->l_ld;
cc10cae3
AO
254
255 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
256 if (dyninfo_sect == NULL)
257 goto set_addr;
258
259 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
260
261 if (dynaddr + l_addr != l_dynaddr)
262 {
28f34a8f 263 CORE_ADDR align = 0x1000;
4e1fc9c9 264 CORE_ADDR minpagesize = align;
28f34a8f 265
cc10cae3
AO
266 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
267 {
268 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
269 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
270 int i;
271
272 align = 1;
273
274 for (i = 0; i < ehdr->e_phnum; i++)
275 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
276 align = phdr[i].p_align;
4e1fc9c9
JK
277
278 minpagesize = get_elf_backend_data (abfd)->minpagesize;
cc10cae3
AO
279 }
280
281 /* Turn it into a mask. */
282 align--;
283
284 /* If the changes match the alignment requirements, we
285 assume we're using a core file that was generated by the
286 same binary, just prelinked with a different base offset.
287 If it doesn't match, we may have a different binary, the
288 same binary with the dynamic table loaded at an unrelated
289 location, or anything, really. To avoid regressions,
290 don't adjust the base offset in the latter case, although
291 odds are that, if things really changed, debugging won't
5c0d192f
JK
292 quite work.
293
294 One could expect more the condition
295 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
296 but the one below is relaxed for PPC. The PPC kernel supports
297 either 4k or 64k page sizes. To be prepared for 64k pages,
298 PPC ELF files are built using an alignment requirement of 64k.
299 However, when running on a kernel supporting 4k pages, the memory
300 mapping of the library may not actually happen on a 64k boundary!
301
302 (In the usual case where (l_addr & align) == 0, this check is
4e1fc9c9
JK
303 equivalent to the possibly expected check above.)
304
305 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
5c0d192f 306
02835898
JK
307 l_addr = l_dynaddr - dynaddr;
308
4e1fc9c9
JK
309 if ((l_addr & (minpagesize - 1)) == 0
310 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
cc10cae3 311 {
701ed6dc 312 if (info_verbose)
ccf26247
JK
313 printf_unfiltered (_("Using PIC (Position Independent Code) "
314 "prelink displacement %s for \"%s\".\n"),
f5656ead 315 paddress (target_gdbarch (), l_addr),
ccf26247 316 so->so_name);
cc10cae3 317 }
79d4c408 318 else
02835898
JK
319 {
320 /* There is no way to verify the library file matches. prelink
321 can during prelinking of an unprelinked file (or unprelinking
322 of a prelinked file) shift the DYNAMIC segment by arbitrary
323 offset without any page size alignment. There is no way to
324 find out the ELF header and/or Program Headers for a limited
325 verification if it they match. One could do a verification
326 of the DYNAMIC segment. Still the found address is the best
327 one GDB could find. */
328
329 warning (_(".dynamic section for \"%s\" "
330 "is not at the expected address "
331 "(wrong library or version mismatch?)"), so->so_name);
332 }
cc10cae3
AO
333 }
334
335 set_addr:
336 so->lm_info->l_addr = l_addr;
3957565a 337 so->lm_info->l_addr_p = 1;
cc10cae3
AO
338 }
339
340 return so->lm_info->l_addr;
341}
342
6c95b8df 343/* Per pspace SVR4 specific data. */
13437d4b 344
1a816a87
PA
345struct svr4_info
346{
c378eb4e 347 CORE_ADDR debug_base; /* Base of dynamic linker structures. */
1a816a87
PA
348
349 /* Validity flag for debug_loader_offset. */
350 int debug_loader_offset_p;
351
352 /* Load address for the dynamic linker, inferred. */
353 CORE_ADDR debug_loader_offset;
354
355 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
356 char *debug_loader_name;
357
358 /* Load map address for the main executable. */
359 CORE_ADDR main_lm_addr;
1a816a87 360
6c95b8df
PA
361 CORE_ADDR interp_text_sect_low;
362 CORE_ADDR interp_text_sect_high;
363 CORE_ADDR interp_plt_sect_low;
364 CORE_ADDR interp_plt_sect_high;
f9e14852
GB
365
366 /* Nonzero if the list of objects was last obtained from the target
367 via qXfer:libraries-svr4:read. */
368 int using_xfer;
369
370 /* Table of struct probe_and_action instances, used by the
371 probes-based interface to map breakpoint addresses to probes
372 and their associated actions. Lookup is performed using
373 probe_and_action->probe->address. */
374 htab_t probes_table;
375
376 /* List of objects loaded into the inferior, used by the probes-
377 based interface. */
378 struct so_list *solib_list;
6c95b8df 379};
1a816a87 380
6c95b8df
PA
381/* Per-program-space data key. */
382static const struct program_space_data *solib_svr4_pspace_data;
1a816a87 383
f9e14852
GB
384/* Free the probes table. */
385
386static void
387free_probes_table (struct svr4_info *info)
388{
389 if (info->probes_table == NULL)
390 return;
391
392 htab_delete (info->probes_table);
393 info->probes_table = NULL;
394}
395
396/* Free the solib list. */
397
398static void
399free_solib_list (struct svr4_info *info)
400{
401 svr4_free_library_list (&info->solib_list);
402 info->solib_list = NULL;
403}
404
6c95b8df
PA
405static void
406svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
1a816a87 407{
19ba03f4 408 struct svr4_info *info = (struct svr4_info *) arg;
f9e14852
GB
409
410 free_probes_table (info);
411 free_solib_list (info);
412
6c95b8df 413 xfree (info);
1a816a87
PA
414}
415
6c95b8df
PA
416/* Get the current svr4 data. If none is found yet, add it now. This
417 function always returns a valid object. */
34439770 418
6c95b8df
PA
419static struct svr4_info *
420get_svr4_info (void)
1a816a87 421{
6c95b8df 422 struct svr4_info *info;
1a816a87 423
19ba03f4
SM
424 info = (struct svr4_info *) program_space_data (current_program_space,
425 solib_svr4_pspace_data);
6c95b8df
PA
426 if (info != NULL)
427 return info;
34439770 428
41bf6aca 429 info = XCNEW (struct svr4_info);
6c95b8df
PA
430 set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
431 return info;
1a816a87 432}
93a57060 433
13437d4b
KB
434/* Local function prototypes */
435
bc043ef3 436static int match_main (const char *);
13437d4b 437
97ec2c2f
UW
438/* Read program header TYPE from inferior memory. The header is found
439 by scanning the OS auxillary vector.
440
09919ac2
JK
441 If TYPE == -1, return the program headers instead of the contents of
442 one program header.
443
97ec2c2f
UW
444 Return a pointer to allocated memory holding the program header contents,
445 or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the
446 size of those contents is returned to P_SECT_SIZE. Likewise, the target
a738da3a
MF
447 architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE and
448 the base address of the section is returned in BASE_ADDR. */
97ec2c2f
UW
449
450static gdb_byte *
a738da3a
MF
451read_program_header (int type, int *p_sect_size, int *p_arch_size,
452 CORE_ADDR *base_addr)
97ec2c2f 453{
f5656ead 454 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
43136979 455 CORE_ADDR at_phdr, at_phent, at_phnum, pt_phdr = 0;
97ec2c2f
UW
456 int arch_size, sect_size;
457 CORE_ADDR sect_addr;
458 gdb_byte *buf;
43136979 459 int pt_phdr_p = 0;
97ec2c2f
UW
460
461 /* Get required auxv elements from target. */
462 if (target_auxv_search (&current_target, AT_PHDR, &at_phdr) <= 0)
463 return 0;
464 if (target_auxv_search (&current_target, AT_PHENT, &at_phent) <= 0)
465 return 0;
466 if (target_auxv_search (&current_target, AT_PHNUM, &at_phnum) <= 0)
467 return 0;
468 if (!at_phdr || !at_phnum)
469 return 0;
470
471 /* Determine ELF architecture type. */
472 if (at_phent == sizeof (Elf32_External_Phdr))
473 arch_size = 32;
474 else if (at_phent == sizeof (Elf64_External_Phdr))
475 arch_size = 64;
476 else
477 return 0;
478
09919ac2
JK
479 /* Find the requested segment. */
480 if (type == -1)
481 {
482 sect_addr = at_phdr;
483 sect_size = at_phent * at_phnum;
484 }
485 else if (arch_size == 32)
97ec2c2f
UW
486 {
487 Elf32_External_Phdr phdr;
488 int i;
489
490 /* Search for requested PHDR. */
491 for (i = 0; i < at_phnum; i++)
492 {
43136979
AR
493 int p_type;
494
97ec2c2f
UW
495 if (target_read_memory (at_phdr + i * sizeof (phdr),
496 (gdb_byte *)&phdr, sizeof (phdr)))
497 return 0;
498
43136979
AR
499 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
500 4, byte_order);
501
502 if (p_type == PT_PHDR)
503 {
504 pt_phdr_p = 1;
505 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
506 4, byte_order);
507 }
508
509 if (p_type == type)
97ec2c2f
UW
510 break;
511 }
512
513 if (i == at_phnum)
514 return 0;
515
516 /* Retrieve address and size. */
e17a4113
UW
517 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
518 4, byte_order);
519 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
520 4, byte_order);
97ec2c2f
UW
521 }
522 else
523 {
524 Elf64_External_Phdr phdr;
525 int i;
526
527 /* Search for requested PHDR. */
528 for (i = 0; i < at_phnum; i++)
529 {
43136979
AR
530 int p_type;
531
97ec2c2f
UW
532 if (target_read_memory (at_phdr + i * sizeof (phdr),
533 (gdb_byte *)&phdr, sizeof (phdr)))
534 return 0;
535
43136979
AR
536 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
537 4, byte_order);
538
539 if (p_type == PT_PHDR)
540 {
541 pt_phdr_p = 1;
542 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
543 8, byte_order);
544 }
545
546 if (p_type == type)
97ec2c2f
UW
547 break;
548 }
549
550 if (i == at_phnum)
551 return 0;
552
553 /* Retrieve address and size. */
e17a4113
UW
554 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
555 8, byte_order);
556 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
557 8, byte_order);
97ec2c2f
UW
558 }
559
43136979
AR
560 /* PT_PHDR is optional, but we really need it
561 for PIE to make this work in general. */
562
563 if (pt_phdr_p)
564 {
565 /* at_phdr is real address in memory. pt_phdr is what pheader says it is.
566 Relocation offset is the difference between the two. */
567 sect_addr = sect_addr + (at_phdr - pt_phdr);
568 }
569
97ec2c2f 570 /* Read in requested program header. */
224c3ddb 571 buf = (gdb_byte *) xmalloc (sect_size);
97ec2c2f
UW
572 if (target_read_memory (sect_addr, buf, sect_size))
573 {
574 xfree (buf);
575 return NULL;
576 }
577
578 if (p_arch_size)
579 *p_arch_size = arch_size;
580 if (p_sect_size)
581 *p_sect_size = sect_size;
a738da3a
MF
582 if (base_addr)
583 *base_addr = sect_addr;
97ec2c2f
UW
584
585 return buf;
586}
587
588
589/* Return program interpreter string. */
001f13d8 590static char *
97ec2c2f
UW
591find_program_interpreter (void)
592{
593 gdb_byte *buf = NULL;
594
595 /* If we have an exec_bfd, use its section table. */
596 if (exec_bfd
597 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
598 {
599 struct bfd_section *interp_sect;
600
601 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
602 if (interp_sect != NULL)
603 {
97ec2c2f
UW
604 int sect_size = bfd_section_size (exec_bfd, interp_sect);
605
224c3ddb 606 buf = (gdb_byte *) xmalloc (sect_size);
97ec2c2f
UW
607 bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size);
608 }
609 }
610
611 /* If we didn't find it, use the target auxillary vector. */
612 if (!buf)
a738da3a 613 buf = read_program_header (PT_INTERP, NULL, NULL, NULL);
97ec2c2f 614
001f13d8 615 return (char *) buf;
97ec2c2f
UW
616}
617
618
b6d7a4bf
SM
619/* Scan for DESIRED_DYNTAG in .dynamic section of ABFD. If DESIRED_DYNTAG is
620 found, 1 is returned and the corresponding PTR is set. */
3a40aaa0
UW
621
622static int
a738da3a
MF
623scan_dyntag (const int desired_dyntag, bfd *abfd, CORE_ADDR *ptr,
624 CORE_ADDR *ptr_addr)
3a40aaa0
UW
625{
626 int arch_size, step, sect_size;
b6d7a4bf 627 long current_dyntag;
b381ea14 628 CORE_ADDR dyn_ptr, dyn_addr;
65728c26 629 gdb_byte *bufend, *bufstart, *buf;
3a40aaa0
UW
630 Elf32_External_Dyn *x_dynp_32;
631 Elf64_External_Dyn *x_dynp_64;
632 struct bfd_section *sect;
61f0d762 633 struct target_section *target_section;
3a40aaa0
UW
634
635 if (abfd == NULL)
636 return 0;
0763ab81
PA
637
638 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
639 return 0;
640
3a40aaa0
UW
641 arch_size = bfd_get_arch_size (abfd);
642 if (arch_size == -1)
0763ab81 643 return 0;
3a40aaa0
UW
644
645 /* Find the start address of the .dynamic section. */
646 sect = bfd_get_section_by_name (abfd, ".dynamic");
647 if (sect == NULL)
648 return 0;
61f0d762
JK
649
650 for (target_section = current_target_sections->sections;
651 target_section < current_target_sections->sections_end;
652 target_section++)
653 if (sect == target_section->the_bfd_section)
654 break;
b381ea14
JK
655 if (target_section < current_target_sections->sections_end)
656 dyn_addr = target_section->addr;
657 else
658 {
659 /* ABFD may come from OBJFILE acting only as a symbol file without being
660 loaded into the target (see add_symbol_file_command). This case is
661 such fallback to the file VMA address without the possibility of
662 having the section relocated to its actual in-memory address. */
663
664 dyn_addr = bfd_section_vma (abfd, sect);
665 }
3a40aaa0 666
65728c26
DJ
667 /* Read in .dynamic from the BFD. We will get the actual value
668 from memory later. */
3a40aaa0 669 sect_size = bfd_section_size (abfd, sect);
224c3ddb 670 buf = bufstart = (gdb_byte *) alloca (sect_size);
65728c26
DJ
671 if (!bfd_get_section_contents (abfd, sect,
672 buf, 0, sect_size))
673 return 0;
3a40aaa0
UW
674
675 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
676 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
677 : sizeof (Elf64_External_Dyn);
678 for (bufend = buf + sect_size;
679 buf < bufend;
680 buf += step)
681 {
682 if (arch_size == 32)
683 {
684 x_dynp_32 = (Elf32_External_Dyn *) buf;
b6d7a4bf 685 current_dyntag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
3a40aaa0
UW
686 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
687 }
65728c26 688 else
3a40aaa0
UW
689 {
690 x_dynp_64 = (Elf64_External_Dyn *) buf;
b6d7a4bf 691 current_dyntag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
3a40aaa0
UW
692 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
693 }
b6d7a4bf 694 if (current_dyntag == DT_NULL)
3a40aaa0 695 return 0;
b6d7a4bf 696 if (current_dyntag == desired_dyntag)
3a40aaa0 697 {
65728c26
DJ
698 /* If requested, try to read the runtime value of this .dynamic
699 entry. */
3a40aaa0 700 if (ptr)
65728c26 701 {
b6da22b0 702 struct type *ptr_type;
65728c26 703 gdb_byte ptr_buf[8];
a738da3a 704 CORE_ADDR ptr_addr_1;
65728c26 705
f5656ead 706 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
a738da3a
MF
707 ptr_addr_1 = dyn_addr + (buf - bufstart) + arch_size / 8;
708 if (target_read_memory (ptr_addr_1, ptr_buf, arch_size / 8) == 0)
b6da22b0 709 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
65728c26 710 *ptr = dyn_ptr;
a738da3a
MF
711 if (ptr_addr)
712 *ptr_addr = dyn_addr + (buf - bufstart);
65728c26
DJ
713 }
714 return 1;
3a40aaa0
UW
715 }
716 }
717
718 return 0;
719}
720
b6d7a4bf
SM
721/* Scan for DESIRED_DYNTAG in .dynamic section of the target's main executable,
722 found by consulting the OS auxillary vector. If DESIRED_DYNTAG is found, 1
723 is returned and the corresponding PTR is set. */
97ec2c2f
UW
724
725static int
a738da3a
MF
726scan_dyntag_auxv (const int desired_dyntag, CORE_ADDR *ptr,
727 CORE_ADDR *ptr_addr)
97ec2c2f 728{
f5656ead 729 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
97ec2c2f 730 int sect_size, arch_size, step;
b6d7a4bf 731 long current_dyntag;
97ec2c2f 732 CORE_ADDR dyn_ptr;
a738da3a 733 CORE_ADDR base_addr;
97ec2c2f
UW
734 gdb_byte *bufend, *bufstart, *buf;
735
736 /* Read in .dynamic section. */
a738da3a
MF
737 buf = bufstart = read_program_header (PT_DYNAMIC, &sect_size, &arch_size,
738 &base_addr);
97ec2c2f
UW
739 if (!buf)
740 return 0;
741
742 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
743 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
744 : sizeof (Elf64_External_Dyn);
745 for (bufend = buf + sect_size;
746 buf < bufend;
747 buf += step)
748 {
749 if (arch_size == 32)
750 {
751 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
433759f7 752
b6d7a4bf 753 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
e17a4113
UW
754 4, byte_order);
755 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
756 4, byte_order);
97ec2c2f
UW
757 }
758 else
759 {
760 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
433759f7 761
b6d7a4bf 762 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
e17a4113
UW
763 8, byte_order);
764 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
765 8, byte_order);
97ec2c2f 766 }
b6d7a4bf 767 if (current_dyntag == DT_NULL)
97ec2c2f
UW
768 break;
769
b6d7a4bf 770 if (current_dyntag == desired_dyntag)
97ec2c2f
UW
771 {
772 if (ptr)
773 *ptr = dyn_ptr;
774
a738da3a
MF
775 if (ptr_addr)
776 *ptr_addr = base_addr + buf - bufstart;
777
97ec2c2f
UW
778 xfree (bufstart);
779 return 1;
780 }
781 }
782
783 xfree (bufstart);
784 return 0;
785}
786
7f86f058
PA
787/* Locate the base address of dynamic linker structs for SVR4 elf
788 targets.
13437d4b
KB
789
790 For SVR4 elf targets the address of the dynamic linker's runtime
791 structure is contained within the dynamic info section in the
792 executable file. The dynamic section is also mapped into the
793 inferior address space. Because the runtime loader fills in the
794 real address before starting the inferior, we have to read in the
795 dynamic info section from the inferior address space.
796 If there are any errors while trying to find the address, we
7f86f058 797 silently return 0, otherwise the found address is returned. */
13437d4b
KB
798
799static CORE_ADDR
800elf_locate_base (void)
801{
3b7344d5 802 struct bound_minimal_symbol msymbol;
a738da3a 803 CORE_ADDR dyn_ptr, dyn_ptr_addr;
13437d4b 804
65728c26
DJ
805 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
806 instead of DT_DEBUG, although they sometimes contain an unused
807 DT_DEBUG. */
a738da3a
MF
808 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr, NULL)
809 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr, NULL))
3a40aaa0 810 {
f5656ead 811 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
3a40aaa0 812 gdb_byte *pbuf;
b6da22b0 813 int pbuf_size = TYPE_LENGTH (ptr_type);
433759f7 814
224c3ddb 815 pbuf = (gdb_byte *) alloca (pbuf_size);
3a40aaa0
UW
816 /* DT_MIPS_RLD_MAP contains a pointer to the address
817 of the dynamic link structure. */
818 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
e499d0f1 819 return 0;
b6da22b0 820 return extract_typed_address (pbuf, ptr_type);
e499d0f1
DJ
821 }
822
a738da3a
MF
823 /* Then check DT_MIPS_RLD_MAP_REL. MIPS executables now use this form
824 because of needing to support PIE. DT_MIPS_RLD_MAP will also exist
825 in non-PIE. */
826 if (scan_dyntag (DT_MIPS_RLD_MAP_REL, exec_bfd, &dyn_ptr, &dyn_ptr_addr)
827 || scan_dyntag_auxv (DT_MIPS_RLD_MAP_REL, &dyn_ptr, &dyn_ptr_addr))
828 {
829 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
830 gdb_byte *pbuf;
831 int pbuf_size = TYPE_LENGTH (ptr_type);
832
224c3ddb 833 pbuf = (gdb_byte *) alloca (pbuf_size);
a738da3a
MF
834 /* DT_MIPS_RLD_MAP_REL contains an offset from the address of the
835 DT slot to the address of the dynamic link structure. */
836 if (target_read_memory (dyn_ptr + dyn_ptr_addr, pbuf, pbuf_size))
837 return 0;
838 return extract_typed_address (pbuf, ptr_type);
839 }
840
65728c26 841 /* Find DT_DEBUG. */
a738da3a
MF
842 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr, NULL)
843 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr, NULL))
65728c26
DJ
844 return dyn_ptr;
845
3a40aaa0
UW
846 /* This may be a static executable. Look for the symbol
847 conventionally named _r_debug, as a last resort. */
848 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
3b7344d5 849 if (msymbol.minsym != NULL)
77e371c0 850 return BMSYMBOL_VALUE_ADDRESS (msymbol);
13437d4b
KB
851
852 /* DT_DEBUG entry not found. */
853 return 0;
854}
855
7f86f058 856/* Locate the base address of dynamic linker structs.
13437d4b
KB
857
858 For both the SunOS and SVR4 shared library implementations, if the
859 inferior executable has been linked dynamically, there is a single
860 address somewhere in the inferior's data space which is the key to
861 locating all of the dynamic linker's runtime structures. This
862 address is the value of the debug base symbol. The job of this
863 function is to find and return that address, or to return 0 if there
864 is no such address (the executable is statically linked for example).
865
866 For SunOS, the job is almost trivial, since the dynamic linker and
867 all of it's structures are statically linked to the executable at
868 link time. Thus the symbol for the address we are looking for has
869 already been added to the minimal symbol table for the executable's
870 objfile at the time the symbol file's symbols were read, and all we
871 have to do is look it up there. Note that we explicitly do NOT want
872 to find the copies in the shared library.
873
874 The SVR4 version is a bit more complicated because the address
875 is contained somewhere in the dynamic info section. We have to go
876 to a lot more work to discover the address of the debug base symbol.
877 Because of this complexity, we cache the value we find and return that
878 value on subsequent invocations. Note there is no copy in the
7f86f058 879 executable symbol tables. */
13437d4b
KB
880
881static CORE_ADDR
1a816a87 882locate_base (struct svr4_info *info)
13437d4b 883{
13437d4b
KB
884 /* Check to see if we have a currently valid address, and if so, avoid
885 doing all this work again and just return the cached address. If
886 we have no cached address, try to locate it in the dynamic info
d5a921c9
KB
887 section for ELF executables. There's no point in doing any of this
888 though if we don't have some link map offsets to work with. */
13437d4b 889
1a816a87 890 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
0763ab81 891 info->debug_base = elf_locate_base ();
1a816a87 892 return info->debug_base;
13437d4b
KB
893}
894
e4cd0d6a 895/* Find the first element in the inferior's dynamic link map, and
6f992fbf
JB
896 return its address in the inferior. Return zero if the address
897 could not be determined.
13437d4b 898
e4cd0d6a
MK
899 FIXME: Perhaps we should validate the info somehow, perhaps by
900 checking r_version for a known version number, or r_state for
901 RT_CONSISTENT. */
13437d4b
KB
902
903static CORE_ADDR
1a816a87 904solib_svr4_r_map (struct svr4_info *info)
13437d4b 905{
4b188b9f 906 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 907 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
08597104 908 CORE_ADDR addr = 0;
13437d4b 909
492d29ea 910 TRY
08597104
JB
911 {
912 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
913 ptr_type);
914 }
492d29ea
PA
915 CATCH (ex, RETURN_MASK_ERROR)
916 {
917 exception_print (gdb_stderr, ex);
918 }
919 END_CATCH
920
08597104 921 return addr;
e4cd0d6a 922}
13437d4b 923
7cd25cfc
DJ
924/* Find r_brk from the inferior's debug base. */
925
926static CORE_ADDR
1a816a87 927solib_svr4_r_brk (struct svr4_info *info)
7cd25cfc
DJ
928{
929 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 930 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
7cd25cfc 931
1a816a87
PA
932 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
933 ptr_type);
7cd25cfc
DJ
934}
935
e4cd0d6a
MK
936/* Find the link map for the dynamic linker (if it is not in the
937 normal list of loaded shared objects). */
13437d4b 938
e4cd0d6a 939static CORE_ADDR
1a816a87 940solib_svr4_r_ldsomap (struct svr4_info *info)
e4cd0d6a
MK
941{
942 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead
TT
943 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
944 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
416f679e
SDJ
945 ULONGEST version = 0;
946
947 TRY
948 {
949 /* Check version, and return zero if `struct r_debug' doesn't have
950 the r_ldsomap member. */
951 version
952 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
953 lmo->r_version_size, byte_order);
954 }
955 CATCH (ex, RETURN_MASK_ERROR)
956 {
957 exception_print (gdb_stderr, ex);
958 }
959 END_CATCH
13437d4b 960
e4cd0d6a
MK
961 if (version < 2 || lmo->r_ldsomap_offset == -1)
962 return 0;
13437d4b 963
1a816a87 964 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
b6da22b0 965 ptr_type);
13437d4b
KB
966}
967
de18c1d8
JM
968/* On Solaris systems with some versions of the dynamic linker,
969 ld.so's l_name pointer points to the SONAME in the string table
970 rather than into writable memory. So that GDB can find shared
971 libraries when loading a core file generated by gcore, ensure that
972 memory areas containing the l_name string are saved in the core
973 file. */
974
975static int
976svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
977{
978 struct svr4_info *info;
979 CORE_ADDR ldsomap;
fe978cb0 980 struct so_list *newobj;
de18c1d8 981 struct cleanup *old_chain;
74de0234 982 CORE_ADDR name_lm;
de18c1d8
JM
983
984 info = get_svr4_info ();
985
986 info->debug_base = 0;
987 locate_base (info);
988 if (!info->debug_base)
989 return 0;
990
991 ldsomap = solib_svr4_r_ldsomap (info);
992 if (!ldsomap)
993 return 0;
994
fe978cb0
PA
995 newobj = XCNEW (struct so_list);
996 old_chain = make_cleanup (xfree, newobj);
997 newobj->lm_info = lm_info_read (ldsomap);
998 make_cleanup (xfree, newobj->lm_info);
999 name_lm = newobj->lm_info ? newobj->lm_info->l_name : 0;
de18c1d8
JM
1000 do_cleanups (old_chain);
1001
74de0234 1002 return (name_lm >= vaddr && name_lm < vaddr + size);
de18c1d8
JM
1003}
1004
7f86f058 1005/* Implement the "open_symbol_file_object" target_so_ops method.
13437d4b 1006
7f86f058
PA
1007 If no open symbol file, attempt to locate and open the main symbol
1008 file. On SVR4 systems, this is the first link map entry. If its
1009 name is here, we can open it. Useful when attaching to a process
1010 without first loading its symbol file. */
13437d4b
KB
1011
1012static int
1013open_symbol_file_object (void *from_ttyp)
1014{
1015 CORE_ADDR lm, l_name;
1016 char *filename;
1017 int errcode;
1018 int from_tty = *(int *)from_ttyp;
4b188b9f 1019 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 1020 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
b6da22b0 1021 int l_name_size = TYPE_LENGTH (ptr_type);
224c3ddb 1022 gdb_byte *l_name_buf = (gdb_byte *) xmalloc (l_name_size);
b8c9b27d 1023 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
6c95b8df 1024 struct svr4_info *info = get_svr4_info ();
13437d4b
KB
1025
1026 if (symfile_objfile)
9e2f0ad4 1027 if (!query (_("Attempt to reload symbols from process? ")))
3bb47e8b
TT
1028 {
1029 do_cleanups (cleanups);
1030 return 0;
1031 }
13437d4b 1032
7cd25cfc 1033 /* Always locate the debug struct, in case it has moved. */
1a816a87
PA
1034 info->debug_base = 0;
1035 if (locate_base (info) == 0)
3bb47e8b
TT
1036 {
1037 do_cleanups (cleanups);
1038 return 0; /* failed somehow... */
1039 }
13437d4b
KB
1040
1041 /* First link map member should be the executable. */
1a816a87 1042 lm = solib_svr4_r_map (info);
e4cd0d6a 1043 if (lm == 0)
3bb47e8b
TT
1044 {
1045 do_cleanups (cleanups);
1046 return 0; /* failed somehow... */
1047 }
13437d4b
KB
1048
1049 /* Read address of name from target memory to GDB. */
cfaefc65 1050 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
13437d4b 1051
cfaefc65 1052 /* Convert the address to host format. */
b6da22b0 1053 l_name = extract_typed_address (l_name_buf, ptr_type);
13437d4b 1054
13437d4b 1055 if (l_name == 0)
3bb47e8b
TT
1056 {
1057 do_cleanups (cleanups);
1058 return 0; /* No filename. */
1059 }
13437d4b
KB
1060
1061 /* Now fetch the filename from target memory. */
1062 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
ea5bf0a1 1063 make_cleanup (xfree, filename);
13437d4b
KB
1064
1065 if (errcode)
1066 {
8a3fe4f8 1067 warning (_("failed to read exec filename from attached file: %s"),
13437d4b 1068 safe_strerror (errcode));
3bb47e8b 1069 do_cleanups (cleanups);
13437d4b
KB
1070 return 0;
1071 }
1072
13437d4b 1073 /* Have a pathname: read the symbol file. */
1adeb98a 1074 symbol_file_add_main (filename, from_tty);
13437d4b 1075
3bb47e8b 1076 do_cleanups (cleanups);
13437d4b
KB
1077 return 1;
1078}
13437d4b 1079
2268b414
JK
1080/* Data exchange structure for the XML parser as returned by
1081 svr4_current_sos_via_xfer_libraries. */
1082
1083struct svr4_library_list
1084{
1085 struct so_list *head, **tailp;
1086
1087 /* Inferior address of struct link_map used for the main executable. It is
1088 NULL if not known. */
1089 CORE_ADDR main_lm;
1090};
1091
93f2a35e
JK
1092/* Implementation for target_so_ops.free_so. */
1093
1094static void
1095svr4_free_so (struct so_list *so)
1096{
1097 xfree (so->lm_info);
1098}
1099
0892cb63
DE
1100/* Implement target_so_ops.clear_so. */
1101
1102static void
1103svr4_clear_so (struct so_list *so)
1104{
6dcc1893
PP
1105 if (so->lm_info != NULL)
1106 so->lm_info->l_addr_p = 0;
0892cb63
DE
1107}
1108
93f2a35e
JK
1109/* Free so_list built so far (called via cleanup). */
1110
1111static void
1112svr4_free_library_list (void *p_list)
1113{
1114 struct so_list *list = *(struct so_list **) p_list;
1115
1116 while (list != NULL)
1117 {
1118 struct so_list *next = list->next;
1119
3756ef7e 1120 free_so (list);
93f2a35e
JK
1121 list = next;
1122 }
1123}
1124
f9e14852
GB
1125/* Copy library list. */
1126
1127static struct so_list *
1128svr4_copy_library_list (struct so_list *src)
1129{
1130 struct so_list *dst = NULL;
1131 struct so_list **link = &dst;
1132
1133 while (src != NULL)
1134 {
fe978cb0 1135 struct so_list *newobj;
f9e14852 1136
8d749320 1137 newobj = XNEW (struct so_list);
fe978cb0 1138 memcpy (newobj, src, sizeof (struct so_list));
f9e14852 1139
8d749320 1140 newobj->lm_info = XNEW (struct lm_info);
fe978cb0 1141 memcpy (newobj->lm_info, src->lm_info, sizeof (struct lm_info));
f9e14852 1142
fe978cb0
PA
1143 newobj->next = NULL;
1144 *link = newobj;
1145 link = &newobj->next;
f9e14852
GB
1146
1147 src = src->next;
1148 }
1149
1150 return dst;
1151}
1152
2268b414
JK
1153#ifdef HAVE_LIBEXPAT
1154
1155#include "xml-support.h"
1156
1157/* Handle the start of a <library> element. Note: new elements are added
1158 at the tail of the list, keeping the list in order. */
1159
1160static void
1161library_list_start_library (struct gdb_xml_parser *parser,
1162 const struct gdb_xml_element *element,
1163 void *user_data, VEC(gdb_xml_value_s) *attributes)
1164{
19ba03f4
SM
1165 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1166 const char *name
1167 = (const char *) xml_find_attribute (attributes, "name")->value;
1168 ULONGEST *lmp
bc84451b 1169 = (ULONGEST *) xml_find_attribute (attributes, "lm")->value;
19ba03f4 1170 ULONGEST *l_addrp
bc84451b 1171 = (ULONGEST *) xml_find_attribute (attributes, "l_addr")->value;
19ba03f4 1172 ULONGEST *l_ldp
bc84451b 1173 = (ULONGEST *) xml_find_attribute (attributes, "l_ld")->value;
2268b414
JK
1174 struct so_list *new_elem;
1175
41bf6aca
TT
1176 new_elem = XCNEW (struct so_list);
1177 new_elem->lm_info = XCNEW (struct lm_info);
2268b414
JK
1178 new_elem->lm_info->lm_addr = *lmp;
1179 new_elem->lm_info->l_addr_inferior = *l_addrp;
1180 new_elem->lm_info->l_ld = *l_ldp;
1181
1182 strncpy (new_elem->so_name, name, sizeof (new_elem->so_name) - 1);
1183 new_elem->so_name[sizeof (new_elem->so_name) - 1] = 0;
1184 strcpy (new_elem->so_original_name, new_elem->so_name);
1185
1186 *list->tailp = new_elem;
1187 list->tailp = &new_elem->next;
1188}
1189
1190/* Handle the start of a <library-list-svr4> element. */
1191
1192static void
1193svr4_library_list_start_list (struct gdb_xml_parser *parser,
1194 const struct gdb_xml_element *element,
1195 void *user_data, VEC(gdb_xml_value_s) *attributes)
1196{
19ba03f4
SM
1197 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1198 const char *version
1199 = (const char *) xml_find_attribute (attributes, "version")->value;
2268b414
JK
1200 struct gdb_xml_value *main_lm = xml_find_attribute (attributes, "main-lm");
1201
1202 if (strcmp (version, "1.0") != 0)
1203 gdb_xml_error (parser,
1204 _("SVR4 Library list has unsupported version \"%s\""),
1205 version);
1206
1207 if (main_lm)
1208 list->main_lm = *(ULONGEST *) main_lm->value;
1209}
1210
1211/* The allowed elements and attributes for an XML library list.
1212 The root element is a <library-list>. */
1213
1214static const struct gdb_xml_attribute svr4_library_attributes[] =
1215{
1216 { "name", GDB_XML_AF_NONE, NULL, NULL },
1217 { "lm", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1218 { "l_addr", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1219 { "l_ld", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1220 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1221};
1222
1223static const struct gdb_xml_element svr4_library_list_children[] =
1224{
1225 {
1226 "library", svr4_library_attributes, NULL,
1227 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
1228 library_list_start_library, NULL
1229 },
1230 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1231};
1232
1233static const struct gdb_xml_attribute svr4_library_list_attributes[] =
1234{
1235 { "version", GDB_XML_AF_NONE, NULL, NULL },
1236 { "main-lm", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
1237 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1238};
1239
1240static const struct gdb_xml_element svr4_library_list_elements[] =
1241{
1242 { "library-list-svr4", svr4_library_list_attributes, svr4_library_list_children,
1243 GDB_XML_EF_NONE, svr4_library_list_start_list, NULL },
1244 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1245};
1246
2268b414
JK
1247/* Parse qXfer:libraries:read packet into *SO_LIST_RETURN. Return 1 if
1248
1249 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1250 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1251 empty, caller is responsible for freeing all its entries. */
1252
1253static int
1254svr4_parse_libraries (const char *document, struct svr4_library_list *list)
1255{
1256 struct cleanup *back_to = make_cleanup (svr4_free_library_list,
1257 &list->head);
1258
1259 memset (list, 0, sizeof (*list));
1260 list->tailp = &list->head;
2eca4a8d 1261 if (gdb_xml_parse_quick (_("target library list"), "library-list-svr4.dtd",
2268b414
JK
1262 svr4_library_list_elements, document, list) == 0)
1263 {
1264 /* Parsed successfully, keep the result. */
1265 discard_cleanups (back_to);
1266 return 1;
1267 }
1268
1269 do_cleanups (back_to);
1270 return 0;
1271}
1272
f9e14852 1273/* Attempt to get so_list from target via qXfer:libraries-svr4:read packet.
2268b414
JK
1274
1275 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1276 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
f9e14852
GB
1277 empty, caller is responsible for freeing all its entries.
1278
1279 Note that ANNEX must be NULL if the remote does not explicitly allow
1280 qXfer:libraries-svr4:read packets with non-empty annexes. Support for
1281 this can be checked using target_augmented_libraries_svr4_read (). */
2268b414
JK
1282
1283static int
f9e14852
GB
1284svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1285 const char *annex)
2268b414
JK
1286{
1287 char *svr4_library_document;
1288 int result;
1289 struct cleanup *back_to;
1290
f9e14852
GB
1291 gdb_assert (annex == NULL || target_augmented_libraries_svr4_read ());
1292
2268b414
JK
1293 /* Fetch the list of shared libraries. */
1294 svr4_library_document = target_read_stralloc (&current_target,
1295 TARGET_OBJECT_LIBRARIES_SVR4,
f9e14852 1296 annex);
2268b414
JK
1297 if (svr4_library_document == NULL)
1298 return 0;
1299
1300 back_to = make_cleanup (xfree, svr4_library_document);
1301 result = svr4_parse_libraries (svr4_library_document, list);
1302 do_cleanups (back_to);
1303
1304 return result;
1305}
1306
1307#else
1308
1309static int
f9e14852
GB
1310svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1311 const char *annex)
2268b414
JK
1312{
1313 return 0;
1314}
1315
1316#endif
1317
34439770
DJ
1318/* If no shared library information is available from the dynamic
1319 linker, build a fallback list from other sources. */
1320
1321static struct so_list *
1322svr4_default_sos (void)
1323{
6c95b8df 1324 struct svr4_info *info = get_svr4_info ();
fe978cb0 1325 struct so_list *newobj;
1a816a87 1326
8e5c319d
JK
1327 if (!info->debug_loader_offset_p)
1328 return NULL;
34439770 1329
fe978cb0 1330 newobj = XCNEW (struct so_list);
34439770 1331
8d749320 1332 newobj->lm_info = XCNEW (struct lm_info);
34439770 1333
3957565a 1334 /* Nothing will ever check the other fields if we set l_addr_p. */
fe978cb0
PA
1335 newobj->lm_info->l_addr = info->debug_loader_offset;
1336 newobj->lm_info->l_addr_p = 1;
34439770 1337
fe978cb0
PA
1338 strncpy (newobj->so_name, info->debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
1339 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1340 strcpy (newobj->so_original_name, newobj->so_name);
34439770 1341
fe978cb0 1342 return newobj;
34439770
DJ
1343}
1344
f9e14852
GB
1345/* Read the whole inferior libraries chain starting at address LM.
1346 Expect the first entry in the chain's previous entry to be PREV_LM.
1347 Add the entries to the tail referenced by LINK_PTR_PTR. Ignore the
1348 first entry if IGNORE_FIRST and set global MAIN_LM_ADDR according
1349 to it. Returns nonzero upon success. If zero is returned the
1350 entries stored to LINK_PTR_PTR are still valid although they may
1351 represent only part of the inferior library list. */
13437d4b 1352
f9e14852
GB
1353static int
1354svr4_read_so_list (CORE_ADDR lm, CORE_ADDR prev_lm,
1355 struct so_list ***link_ptr_ptr, int ignore_first)
13437d4b 1356{
c725e7b6 1357 CORE_ADDR first_l_name = 0;
f9e14852 1358 CORE_ADDR next_lm;
13437d4b 1359
cb08cc53 1360 for (; lm != 0; prev_lm = lm, lm = next_lm)
13437d4b 1361 {
fe978cb0 1362 struct so_list *newobj;
cb08cc53
JK
1363 struct cleanup *old_chain;
1364 int errcode;
1365 char *buffer;
13437d4b 1366
fe978cb0
PA
1367 newobj = XCNEW (struct so_list);
1368 old_chain = make_cleanup_free_so (newobj);
13437d4b 1369
fe978cb0
PA
1370 newobj->lm_info = lm_info_read (lm);
1371 if (newobj->lm_info == NULL)
3957565a
JK
1372 {
1373 do_cleanups (old_chain);
f9e14852 1374 return 0;
3957565a 1375 }
13437d4b 1376
fe978cb0 1377 next_lm = newobj->lm_info->l_next;
492928e4 1378
fe978cb0 1379 if (newobj->lm_info->l_prev != prev_lm)
492928e4 1380 {
2268b414 1381 warning (_("Corrupted shared library list: %s != %s"),
f5656ead 1382 paddress (target_gdbarch (), prev_lm),
fe978cb0 1383 paddress (target_gdbarch (), newobj->lm_info->l_prev));
cb08cc53 1384 do_cleanups (old_chain);
f9e14852 1385 return 0;
492928e4 1386 }
13437d4b
KB
1387
1388 /* For SVR4 versions, the first entry in the link map is for the
1389 inferior executable, so we must ignore it. For some versions of
1390 SVR4, it has no name. For others (Solaris 2.3 for example), it
1391 does have a name, so we can no longer use a missing name to
c378eb4e 1392 decide when to ignore it. */
fe978cb0 1393 if (ignore_first && newobj->lm_info->l_prev == 0)
93a57060 1394 {
cb08cc53
JK
1395 struct svr4_info *info = get_svr4_info ();
1396
fe978cb0
PA
1397 first_l_name = newobj->lm_info->l_name;
1398 info->main_lm_addr = newobj->lm_info->lm_addr;
cb08cc53
JK
1399 do_cleanups (old_chain);
1400 continue;
93a57060 1401 }
13437d4b 1402
cb08cc53 1403 /* Extract this shared object's name. */
fe978cb0 1404 target_read_string (newobj->lm_info->l_name, &buffer,
cb08cc53
JK
1405 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1406 if (errcode != 0)
1407 {
7d760051
UW
1408 /* If this entry's l_name address matches that of the
1409 inferior executable, then this is not a normal shared
1410 object, but (most likely) a vDSO. In this case, silently
1411 skip it; otherwise emit a warning. */
fe978cb0 1412 if (first_l_name == 0 || newobj->lm_info->l_name != first_l_name)
7d760051
UW
1413 warning (_("Can't read pathname for load map: %s."),
1414 safe_strerror (errcode));
cb08cc53
JK
1415 do_cleanups (old_chain);
1416 continue;
13437d4b
KB
1417 }
1418
fe978cb0
PA
1419 strncpy (newobj->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
1420 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1421 strcpy (newobj->so_original_name, newobj->so_name);
cb08cc53 1422 xfree (buffer);
492928e4 1423
cb08cc53
JK
1424 /* If this entry has no name, or its name matches the name
1425 for the main executable, don't include it in the list. */
fe978cb0 1426 if (! newobj->so_name[0] || match_main (newobj->so_name))
492928e4 1427 {
cb08cc53
JK
1428 do_cleanups (old_chain);
1429 continue;
492928e4 1430 }
e4cd0d6a 1431
13437d4b 1432 discard_cleanups (old_chain);
fe978cb0
PA
1433 newobj->next = 0;
1434 **link_ptr_ptr = newobj;
1435 *link_ptr_ptr = &newobj->next;
13437d4b 1436 }
f9e14852
GB
1437
1438 return 1;
cb08cc53
JK
1439}
1440
f9e14852
GB
1441/* Read the full list of currently loaded shared objects directly
1442 from the inferior, without referring to any libraries read and
1443 stored by the probes interface. Handle special cases relating
1444 to the first elements of the list. */
cb08cc53
JK
1445
1446static struct so_list *
f9e14852 1447svr4_current_sos_direct (struct svr4_info *info)
cb08cc53
JK
1448{
1449 CORE_ADDR lm;
1450 struct so_list *head = NULL;
1451 struct so_list **link_ptr = &head;
cb08cc53
JK
1452 struct cleanup *back_to;
1453 int ignore_first;
2268b414
JK
1454 struct svr4_library_list library_list;
1455
0c5bf5a9
JK
1456 /* Fall back to manual examination of the target if the packet is not
1457 supported or gdbserver failed to find DT_DEBUG. gdb.server/solib-list.exp
1458 tests a case where gdbserver cannot find the shared libraries list while
1459 GDB itself is able to find it via SYMFILE_OBJFILE.
1460
1461 Unfortunately statically linked inferiors will also fall back through this
1462 suboptimal code path. */
1463
f9e14852
GB
1464 info->using_xfer = svr4_current_sos_via_xfer_libraries (&library_list,
1465 NULL);
1466 if (info->using_xfer)
2268b414
JK
1467 {
1468 if (library_list.main_lm)
f9e14852 1469 info->main_lm_addr = library_list.main_lm;
2268b414
JK
1470
1471 return library_list.head ? library_list.head : svr4_default_sos ();
1472 }
cb08cc53 1473
cb08cc53
JK
1474 /* Always locate the debug struct, in case it has moved. */
1475 info->debug_base = 0;
1476 locate_base (info);
1477
1478 /* If we can't find the dynamic linker's base structure, this
1479 must not be a dynamically linked executable. Hmm. */
1480 if (! info->debug_base)
1481 return svr4_default_sos ();
1482
1483 /* Assume that everything is a library if the dynamic loader was loaded
1484 late by a static executable. */
1485 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
1486 ignore_first = 0;
1487 else
1488 ignore_first = 1;
1489
1490 back_to = make_cleanup (svr4_free_library_list, &head);
1491
1492 /* Walk the inferior's link map list, and build our list of
1493 `struct so_list' nodes. */
1494 lm = solib_svr4_r_map (info);
1495 if (lm)
f9e14852 1496 svr4_read_so_list (lm, 0, &link_ptr, ignore_first);
cb08cc53
JK
1497
1498 /* On Solaris, the dynamic linker is not in the normal list of
1499 shared objects, so make sure we pick it up too. Having
1500 symbol information for the dynamic linker is quite crucial
1501 for skipping dynamic linker resolver code. */
1502 lm = solib_svr4_r_ldsomap (info);
1503 if (lm)
f9e14852 1504 svr4_read_so_list (lm, 0, &link_ptr, 0);
cb08cc53
JK
1505
1506 discard_cleanups (back_to);
13437d4b 1507
34439770
DJ
1508 if (head == NULL)
1509 return svr4_default_sos ();
1510
13437d4b
KB
1511 return head;
1512}
1513
8b9a549d
PA
1514/* Implement the main part of the "current_sos" target_so_ops
1515 method. */
f9e14852
GB
1516
1517static struct so_list *
8b9a549d 1518svr4_current_sos_1 (void)
f9e14852
GB
1519{
1520 struct svr4_info *info = get_svr4_info ();
1521
1522 /* If the solib list has been read and stored by the probes
1523 interface then we return a copy of the stored list. */
1524 if (info->solib_list != NULL)
1525 return svr4_copy_library_list (info->solib_list);
1526
1527 /* Otherwise obtain the solib list directly from the inferior. */
1528 return svr4_current_sos_direct (info);
1529}
1530
8b9a549d
PA
1531/* Implement the "current_sos" target_so_ops method. */
1532
1533static struct so_list *
1534svr4_current_sos (void)
1535{
1536 struct so_list *so_head = svr4_current_sos_1 ();
1537 struct mem_range vsyscall_range;
1538
1539 /* Filter out the vDSO module, if present. Its symbol file would
1540 not be found on disk. The vDSO/vsyscall's OBJFILE is instead
1541 managed by symfile-mem.c:add_vsyscall_page. */
1542 if (gdbarch_vsyscall_range (target_gdbarch (), &vsyscall_range)
1543 && vsyscall_range.length != 0)
1544 {
1545 struct so_list **sop;
1546
1547 sop = &so_head;
1548 while (*sop != NULL)
1549 {
1550 struct so_list *so = *sop;
1551
1552 /* We can't simply match the vDSO by starting address alone,
1553 because lm_info->l_addr_inferior (and also l_addr) do not
1554 necessarily represent the real starting address of the
1555 ELF if the vDSO's ELF itself is "prelinked". The l_ld
1556 field (the ".dynamic" section of the shared object)
1557 always points at the absolute/resolved address though.
1558 So check whether that address is inside the vDSO's
1559 mapping instead.
1560
1561 E.g., on Linux 3.16 (x86_64) the vDSO is a regular
1562 0-based ELF, and we see:
1563
1564 (gdb) info auxv
1565 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffb000
1566 (gdb) p/x *_r_debug.r_map.l_next
1567 $1 = {l_addr = 0x7ffff7ffb000, ..., l_ld = 0x7ffff7ffb318, ...}
1568
1569 And on Linux 2.6.32 (x86_64) we see:
1570
1571 (gdb) info auxv
1572 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffe000
1573 (gdb) p/x *_r_debug.r_map.l_next
1574 $5 = {l_addr = 0x7ffff88fe000, ..., l_ld = 0x7ffff7ffe580, ... }
1575
1576 Dumping that vDSO shows:
1577
1578 (gdb) info proc mappings
1579 0x7ffff7ffe000 0x7ffff7fff000 0x1000 0 [vdso]
1580 (gdb) dump memory vdso.bin 0x7ffff7ffe000 0x7ffff7fff000
1581 # readelf -Wa vdso.bin
1582 [...]
1583 Entry point address: 0xffffffffff700700
1584 [...]
1585 Section Headers:
1586 [Nr] Name Type Address Off Size
1587 [ 0] NULL 0000000000000000 000000 000000
1588 [ 1] .hash HASH ffffffffff700120 000120 000038
1589 [ 2] .dynsym DYNSYM ffffffffff700158 000158 0000d8
1590 [...]
1591 [ 9] .dynamic DYNAMIC ffffffffff700580 000580 0000f0
1592 */
1593 if (address_in_mem_range (so->lm_info->l_ld, &vsyscall_range))
1594 {
1595 *sop = so->next;
1596 free_so (so);
1597 break;
1598 }
1599
1600 sop = &so->next;
1601 }
1602 }
1603
1604 return so_head;
1605}
1606
93a57060 1607/* Get the address of the link_map for a given OBJFILE. */
bc4a16ae
EZ
1608
1609CORE_ADDR
1610svr4_fetch_objfile_link_map (struct objfile *objfile)
1611{
93a57060 1612 struct so_list *so;
6c95b8df 1613 struct svr4_info *info = get_svr4_info ();
bc4a16ae 1614
93a57060 1615 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1a816a87 1616 if (info->main_lm_addr == 0)
93a57060 1617 solib_add (NULL, 0, &current_target, auto_solib_add);
bc4a16ae 1618
93a57060
DJ
1619 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1620 if (objfile == symfile_objfile)
1a816a87 1621 return info->main_lm_addr;
93a57060
DJ
1622
1623 /* The other link map addresses may be found by examining the list
1624 of shared libraries. */
1625 for (so = master_so_list (); so; so = so->next)
1626 if (so->objfile == objfile)
1627 return so->lm_info->lm_addr;
1628
1629 /* Not found! */
bc4a16ae
EZ
1630 return 0;
1631}
13437d4b
KB
1632
1633/* On some systems, the only way to recognize the link map entry for
1634 the main executable file is by looking at its name. Return
1635 non-zero iff SONAME matches one of the known main executable names. */
1636
1637static int
bc043ef3 1638match_main (const char *soname)
13437d4b 1639{
bc043ef3 1640 const char * const *mainp;
13437d4b
KB
1641
1642 for (mainp = main_name_list; *mainp != NULL; mainp++)
1643 {
1644 if (strcmp (soname, *mainp) == 0)
1645 return (1);
1646 }
1647
1648 return (0);
1649}
1650
13437d4b
KB
1651/* Return 1 if PC lies in the dynamic symbol resolution code of the
1652 SVR4 run time loader. */
13437d4b 1653
7d522c90 1654int
d7fa2ae2 1655svr4_in_dynsym_resolve_code (CORE_ADDR pc)
13437d4b 1656{
6c95b8df
PA
1657 struct svr4_info *info = get_svr4_info ();
1658
1659 return ((pc >= info->interp_text_sect_low
1660 && pc < info->interp_text_sect_high)
1661 || (pc >= info->interp_plt_sect_low
1662 && pc < info->interp_plt_sect_high)
3e5d3a5a 1663 || in_plt_section (pc)
0875794a 1664 || in_gnu_ifunc_stub (pc));
13437d4b 1665}
13437d4b 1666
2f4950cd
AC
1667/* Given an executable's ABFD and target, compute the entry-point
1668 address. */
1669
1670static CORE_ADDR
1671exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1672{
8c2b9656
YQ
1673 CORE_ADDR addr;
1674
2f4950cd
AC
1675 /* KevinB wrote ... for most targets, the address returned by
1676 bfd_get_start_address() is the entry point for the start
1677 function. But, for some targets, bfd_get_start_address() returns
1678 the address of a function descriptor from which the entry point
1679 address may be extracted. This address is extracted by
1680 gdbarch_convert_from_func_ptr_addr(). The method
1681 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1682 function for targets which don't use function descriptors. */
8c2b9656 1683 addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2f4950cd
AC
1684 bfd_get_start_address (abfd),
1685 targ);
8c2b9656 1686 return gdbarch_addr_bits_remove (target_gdbarch (), addr);
2f4950cd 1687}
13437d4b 1688
f9e14852
GB
1689/* A probe and its associated action. */
1690
1691struct probe_and_action
1692{
1693 /* The probe. */
1694 struct probe *probe;
1695
729662a5
TT
1696 /* The relocated address of the probe. */
1697 CORE_ADDR address;
1698
f9e14852
GB
1699 /* The action. */
1700 enum probe_action action;
1701};
1702
1703/* Returns a hash code for the probe_and_action referenced by p. */
1704
1705static hashval_t
1706hash_probe_and_action (const void *p)
1707{
19ba03f4 1708 const struct probe_and_action *pa = (const struct probe_and_action *) p;
f9e14852 1709
729662a5 1710 return (hashval_t) pa->address;
f9e14852
GB
1711}
1712
1713/* Returns non-zero if the probe_and_actions referenced by p1 and p2
1714 are equal. */
1715
1716static int
1717equal_probe_and_action (const void *p1, const void *p2)
1718{
19ba03f4
SM
1719 const struct probe_and_action *pa1 = (const struct probe_and_action *) p1;
1720 const struct probe_and_action *pa2 = (const struct probe_and_action *) p2;
f9e14852 1721
729662a5 1722 return pa1->address == pa2->address;
f9e14852
GB
1723}
1724
1725/* Register a solib event probe and its associated action in the
1726 probes table. */
1727
1728static void
729662a5
TT
1729register_solib_event_probe (struct probe *probe, CORE_ADDR address,
1730 enum probe_action action)
f9e14852
GB
1731{
1732 struct svr4_info *info = get_svr4_info ();
1733 struct probe_and_action lookup, *pa;
1734 void **slot;
1735
1736 /* Create the probes table, if necessary. */
1737 if (info->probes_table == NULL)
1738 info->probes_table = htab_create_alloc (1, hash_probe_and_action,
1739 equal_probe_and_action,
1740 xfree, xcalloc, xfree);
1741
1742 lookup.probe = probe;
729662a5 1743 lookup.address = address;
f9e14852
GB
1744 slot = htab_find_slot (info->probes_table, &lookup, INSERT);
1745 gdb_assert (*slot == HTAB_EMPTY_ENTRY);
1746
1747 pa = XCNEW (struct probe_and_action);
1748 pa->probe = probe;
729662a5 1749 pa->address = address;
f9e14852
GB
1750 pa->action = action;
1751
1752 *slot = pa;
1753}
1754
1755/* Get the solib event probe at the specified location, and the
1756 action associated with it. Returns NULL if no solib event probe
1757 was found. */
1758
1759static struct probe_and_action *
1760solib_event_probe_at (struct svr4_info *info, CORE_ADDR address)
1761{
f9e14852
GB
1762 struct probe_and_action lookup;
1763 void **slot;
1764
729662a5 1765 lookup.address = address;
f9e14852
GB
1766 slot = htab_find_slot (info->probes_table, &lookup, NO_INSERT);
1767
1768 if (slot == NULL)
1769 return NULL;
1770
1771 return (struct probe_and_action *) *slot;
1772}
1773
1774/* Decide what action to take when the specified solib event probe is
1775 hit. */
1776
1777static enum probe_action
1778solib_event_probe_action (struct probe_and_action *pa)
1779{
1780 enum probe_action action;
73c6b475 1781 unsigned probe_argc = 0;
08a6411c 1782 struct frame_info *frame = get_current_frame ();
f9e14852
GB
1783
1784 action = pa->action;
1785 if (action == DO_NOTHING || action == PROBES_INTERFACE_FAILED)
1786 return action;
1787
1788 gdb_assert (action == FULL_RELOAD || action == UPDATE_OR_RELOAD);
1789
1790 /* Check that an appropriate number of arguments has been supplied.
1791 We expect:
1792 arg0: Lmid_t lmid (mandatory)
1793 arg1: struct r_debug *debug_base (mandatory)
1794 arg2: struct link_map *new (optional, for incremental updates) */
3bd7e5b7
SDJ
1795 TRY
1796 {
1797 probe_argc = get_probe_argument_count (pa->probe, frame);
1798 }
1799 CATCH (ex, RETURN_MASK_ERROR)
1800 {
1801 exception_print (gdb_stderr, ex);
1802 probe_argc = 0;
1803 }
1804 END_CATCH
1805
1806 /* If get_probe_argument_count throws an exception, probe_argc will
1807 be set to zero. However, if pa->probe does not have arguments,
1808 then get_probe_argument_count will succeed but probe_argc will
1809 also be zero. Both cases happen because of different things, but
1810 they are treated equally here: action will be set to
1811 PROBES_INTERFACE_FAILED. */
f9e14852
GB
1812 if (probe_argc == 2)
1813 action = FULL_RELOAD;
1814 else if (probe_argc < 2)
1815 action = PROBES_INTERFACE_FAILED;
1816
1817 return action;
1818}
1819
1820/* Populate the shared object list by reading the entire list of
1821 shared objects from the inferior. Handle special cases relating
1822 to the first elements of the list. Returns nonzero on success. */
1823
1824static int
1825solist_update_full (struct svr4_info *info)
1826{
1827 free_solib_list (info);
1828 info->solib_list = svr4_current_sos_direct (info);
1829
1830 return 1;
1831}
1832
1833/* Update the shared object list starting from the link-map entry
1834 passed by the linker in the probe's third argument. Returns
1835 nonzero if the list was successfully updated, or zero to indicate
1836 failure. */
1837
1838static int
1839solist_update_incremental (struct svr4_info *info, CORE_ADDR lm)
1840{
1841 struct so_list *tail;
1842 CORE_ADDR prev_lm;
1843
1844 /* svr4_current_sos_direct contains logic to handle a number of
1845 special cases relating to the first elements of the list. To
1846 avoid duplicating this logic we defer to solist_update_full
1847 if the list is empty. */
1848 if (info->solib_list == NULL)
1849 return 0;
1850
1851 /* Fall back to a full update if we are using a remote target
1852 that does not support incremental transfers. */
1853 if (info->using_xfer && !target_augmented_libraries_svr4_read ())
1854 return 0;
1855
1856 /* Walk to the end of the list. */
1857 for (tail = info->solib_list; tail->next != NULL; tail = tail->next)
1858 /* Nothing. */;
1859 prev_lm = tail->lm_info->lm_addr;
1860
1861 /* Read the new objects. */
1862 if (info->using_xfer)
1863 {
1864 struct svr4_library_list library_list;
1865 char annex[64];
1866
1867 xsnprintf (annex, sizeof (annex), "start=%s;prev=%s",
1868 phex_nz (lm, sizeof (lm)),
1869 phex_nz (prev_lm, sizeof (prev_lm)));
1870 if (!svr4_current_sos_via_xfer_libraries (&library_list, annex))
1871 return 0;
1872
1873 tail->next = library_list.head;
1874 }
1875 else
1876 {
1877 struct so_list **link = &tail->next;
1878
1879 /* IGNORE_FIRST may safely be set to zero here because the
1880 above check and deferral to solist_update_full ensures
1881 that this call to svr4_read_so_list will never see the
1882 first element. */
1883 if (!svr4_read_so_list (lm, prev_lm, &link, 0))
1884 return 0;
1885 }
1886
1887 return 1;
1888}
1889
1890/* Disable the probes-based linker interface and revert to the
1891 original interface. We don't reset the breakpoints as the
1892 ones set up for the probes-based interface are adequate. */
1893
1894static void
1895disable_probes_interface_cleanup (void *arg)
1896{
1897 struct svr4_info *info = get_svr4_info ();
1898
1899 warning (_("Probes-based dynamic linker interface failed.\n"
1900 "Reverting to original interface.\n"));
1901
1902 free_probes_table (info);
1903 free_solib_list (info);
1904}
1905
1906/* Update the solib list as appropriate when using the
1907 probes-based linker interface. Do nothing if using the
1908 standard interface. */
1909
1910static void
1911svr4_handle_solib_event (void)
1912{
1913 struct svr4_info *info = get_svr4_info ();
1914 struct probe_and_action *pa;
1915 enum probe_action action;
1916 struct cleanup *old_chain, *usm_chain;
ad1c917a 1917 struct value *val = NULL;
f9e14852 1918 CORE_ADDR pc, debug_base, lm = 0;
08a6411c 1919 struct frame_info *frame = get_current_frame ();
f9e14852
GB
1920
1921 /* Do nothing if not using the probes interface. */
1922 if (info->probes_table == NULL)
1923 return;
1924
1925 /* If anything goes wrong we revert to the original linker
1926 interface. */
1927 old_chain = make_cleanup (disable_probes_interface_cleanup, NULL);
1928
1929 pc = regcache_read_pc (get_current_regcache ());
1930 pa = solib_event_probe_at (info, pc);
1931 if (pa == NULL)
1932 {
1933 do_cleanups (old_chain);
1934 return;
1935 }
1936
1937 action = solib_event_probe_action (pa);
1938 if (action == PROBES_INTERFACE_FAILED)
1939 {
1940 do_cleanups (old_chain);
1941 return;
1942 }
1943
1944 if (action == DO_NOTHING)
1945 {
1946 discard_cleanups (old_chain);
1947 return;
1948 }
1949
1950 /* evaluate_probe_argument looks up symbols in the dynamic linker
1951 using find_pc_section. find_pc_section is accelerated by a cache
1952 called the section map. The section map is invalidated every
1953 time a shared library is loaded or unloaded, and if the inferior
1954 is generating a lot of shared library events then the section map
1955 will be updated every time svr4_handle_solib_event is called.
1956 We called find_pc_section in svr4_create_solib_event_breakpoints,
1957 so we can guarantee that the dynamic linker's sections are in the
1958 section map. We can therefore inhibit section map updates across
1959 these calls to evaluate_probe_argument and save a lot of time. */
1960 inhibit_section_map_updates (current_program_space);
1961 usm_chain = make_cleanup (resume_section_map_updates_cleanup,
1962 current_program_space);
1963
3bd7e5b7
SDJ
1964 TRY
1965 {
1966 val = evaluate_probe_argument (pa->probe, 1, frame);
1967 }
1968 CATCH (ex, RETURN_MASK_ERROR)
1969 {
1970 exception_print (gdb_stderr, ex);
1971 val = NULL;
1972 }
1973 END_CATCH
1974
f9e14852
GB
1975 if (val == NULL)
1976 {
1977 do_cleanups (old_chain);
1978 return;
1979 }
1980
1981 debug_base = value_as_address (val);
1982 if (debug_base == 0)
1983 {
1984 do_cleanups (old_chain);
1985 return;
1986 }
1987
1988 /* Always locate the debug struct, in case it moved. */
1989 info->debug_base = 0;
1990 if (locate_base (info) == 0)
1991 {
1992 do_cleanups (old_chain);
1993 return;
1994 }
1995
1996 /* GDB does not currently support libraries loaded via dlmopen
1997 into namespaces other than the initial one. We must ignore
1998 any namespace other than the initial namespace here until
1999 support for this is added to GDB. */
2000 if (debug_base != info->debug_base)
2001 action = DO_NOTHING;
2002
2003 if (action == UPDATE_OR_RELOAD)
2004 {
3bd7e5b7
SDJ
2005 TRY
2006 {
2007 val = evaluate_probe_argument (pa->probe, 2, frame);
2008 }
2009 CATCH (ex, RETURN_MASK_ERROR)
2010 {
2011 exception_print (gdb_stderr, ex);
2012 do_cleanups (old_chain);
2013 return;
2014 }
2015 END_CATCH
2016
f9e14852
GB
2017 if (val != NULL)
2018 lm = value_as_address (val);
2019
2020 if (lm == 0)
2021 action = FULL_RELOAD;
2022 }
2023
2024 /* Resume section map updates. */
2025 do_cleanups (usm_chain);
2026
2027 if (action == UPDATE_OR_RELOAD)
2028 {
2029 if (!solist_update_incremental (info, lm))
2030 action = FULL_RELOAD;
2031 }
2032
2033 if (action == FULL_RELOAD)
2034 {
2035 if (!solist_update_full (info))
2036 {
2037 do_cleanups (old_chain);
2038 return;
2039 }
2040 }
2041
2042 discard_cleanups (old_chain);
2043}
2044
2045/* Helper function for svr4_update_solib_event_breakpoints. */
2046
2047static int
2048svr4_update_solib_event_breakpoint (struct breakpoint *b, void *arg)
2049{
2050 struct bp_location *loc;
2051
2052 if (b->type != bp_shlib_event)
2053 {
2054 /* Continue iterating. */
2055 return 0;
2056 }
2057
2058 for (loc = b->loc; loc != NULL; loc = loc->next)
2059 {
2060 struct svr4_info *info;
2061 struct probe_and_action *pa;
2062
19ba03f4
SM
2063 info = ((struct svr4_info *)
2064 program_space_data (loc->pspace, solib_svr4_pspace_data));
f9e14852
GB
2065 if (info == NULL || info->probes_table == NULL)
2066 continue;
2067
2068 pa = solib_event_probe_at (info, loc->address);
2069 if (pa == NULL)
2070 continue;
2071
2072 if (pa->action == DO_NOTHING)
2073 {
2074 if (b->enable_state == bp_disabled && stop_on_solib_events)
2075 enable_breakpoint (b);
2076 else if (b->enable_state == bp_enabled && !stop_on_solib_events)
2077 disable_breakpoint (b);
2078 }
2079
2080 break;
2081 }
2082
2083 /* Continue iterating. */
2084 return 0;
2085}
2086
2087/* Enable or disable optional solib event breakpoints as appropriate.
2088 Called whenever stop_on_solib_events is changed. */
2089
2090static void
2091svr4_update_solib_event_breakpoints (void)
2092{
2093 iterate_over_breakpoints (svr4_update_solib_event_breakpoint, NULL);
2094}
2095
2096/* Create and register solib event breakpoints. PROBES is an array
2097 of NUM_PROBES elements, each of which is vector of probes. A
2098 solib event breakpoint will be created and registered for each
2099 probe. */
2100
2101static void
2102svr4_create_probe_breakpoints (struct gdbarch *gdbarch,
729662a5
TT
2103 VEC (probe_p) **probes,
2104 struct objfile *objfile)
f9e14852
GB
2105{
2106 int i;
2107
2108 for (i = 0; i < NUM_PROBES; i++)
2109 {
2110 enum probe_action action = probe_info[i].action;
2111 struct probe *probe;
2112 int ix;
2113
2114 for (ix = 0;
2115 VEC_iterate (probe_p, probes[i], ix, probe);
2116 ++ix)
2117 {
729662a5
TT
2118 CORE_ADDR address = get_probe_address (probe, objfile);
2119
2120 create_solib_event_breakpoint (gdbarch, address);
2121 register_solib_event_probe (probe, address, action);
f9e14852
GB
2122 }
2123 }
2124
2125 svr4_update_solib_event_breakpoints ();
2126}
2127
2128/* Both the SunOS and the SVR4 dynamic linkers call a marker function
2129 before and after mapping and unmapping shared libraries. The sole
2130 purpose of this method is to allow debuggers to set a breakpoint so
2131 they can track these changes.
2132
2133 Some versions of the glibc dynamic linker contain named probes
2134 to allow more fine grained stopping. Given the address of the
2135 original marker function, this function attempts to find these
2136 probes, and if found, sets breakpoints on those instead. If the
2137 probes aren't found, a single breakpoint is set on the original
2138 marker function. */
2139
2140static void
2141svr4_create_solib_event_breakpoints (struct gdbarch *gdbarch,
2142 CORE_ADDR address)
2143{
2144 struct obj_section *os;
2145
2146 os = find_pc_section (address);
2147 if (os != NULL)
2148 {
2149 int with_prefix;
2150
2151 for (with_prefix = 0; with_prefix <= 1; with_prefix++)
2152 {
2153 VEC (probe_p) *probes[NUM_PROBES];
2154 int all_probes_found = 1;
25f9533e 2155 int checked_can_use_probe_arguments = 0;
f9e14852
GB
2156 int i;
2157
2158 memset (probes, 0, sizeof (probes));
2159 for (i = 0; i < NUM_PROBES; i++)
2160 {
2161 const char *name = probe_info[i].name;
25f9533e 2162 struct probe *p;
f9e14852
GB
2163 char buf[32];
2164
2165 /* Fedora 17 and Red Hat Enterprise Linux 6.2-6.4
2166 shipped with an early version of the probes code in
2167 which the probes' names were prefixed with "rtld_"
2168 and the "map_failed" probe did not exist. The
2169 locations of the probes are otherwise the same, so
2170 we check for probes with prefixed names if probes
2171 with unprefixed names are not present. */
2172 if (with_prefix)
2173 {
2174 xsnprintf (buf, sizeof (buf), "rtld_%s", name);
2175 name = buf;
2176 }
2177
2178 probes[i] = find_probes_in_objfile (os->objfile, "rtld", name);
2179
2180 /* The "map_failed" probe did not exist in early
2181 versions of the probes code in which the probes'
2182 names were prefixed with "rtld_". */
2183 if (strcmp (name, "rtld_map_failed") == 0)
2184 continue;
2185
2186 if (VEC_empty (probe_p, probes[i]))
2187 {
2188 all_probes_found = 0;
2189 break;
2190 }
25f9533e
SDJ
2191
2192 /* Ensure probe arguments can be evaluated. */
2193 if (!checked_can_use_probe_arguments)
2194 {
2195 p = VEC_index (probe_p, probes[i], 0);
2196 if (!can_evaluate_probe_arguments (p))
2197 {
2198 all_probes_found = 0;
2199 break;
2200 }
2201 checked_can_use_probe_arguments = 1;
2202 }
f9e14852
GB
2203 }
2204
2205 if (all_probes_found)
729662a5 2206 svr4_create_probe_breakpoints (gdbarch, probes, os->objfile);
f9e14852
GB
2207
2208 for (i = 0; i < NUM_PROBES; i++)
2209 VEC_free (probe_p, probes[i]);
2210
2211 if (all_probes_found)
2212 return;
2213 }
2214 }
2215
2216 create_solib_event_breakpoint (gdbarch, address);
2217}
2218
cb457ae2
YQ
2219/* Helper function for gdb_bfd_lookup_symbol. */
2220
2221static int
3953f15c 2222cmp_name_and_sec_flags (const asymbol *sym, const void *data)
cb457ae2
YQ
2223{
2224 return (strcmp (sym->name, (const char *) data) == 0
2225 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0);
2226}
7f86f058 2227/* Arrange for dynamic linker to hit breakpoint.
13437d4b
KB
2228
2229 Both the SunOS and the SVR4 dynamic linkers have, as part of their
2230 debugger interface, support for arranging for the inferior to hit
2231 a breakpoint after mapping in the shared libraries. This function
2232 enables that breakpoint.
2233
2234 For SunOS, there is a special flag location (in_debugger) which we
2235 set to 1. When the dynamic linker sees this flag set, it will set
2236 a breakpoint at a location known only to itself, after saving the
2237 original contents of that place and the breakpoint address itself,
2238 in it's own internal structures. When we resume the inferior, it
2239 will eventually take a SIGTRAP when it runs into the breakpoint.
2240 We handle this (in a different place) by restoring the contents of
2241 the breakpointed location (which is only known after it stops),
2242 chasing around to locate the shared libraries that have been
2243 loaded, then resuming.
2244
2245 For SVR4, the debugger interface structure contains a member (r_brk)
2246 which is statically initialized at the time the shared library is
2247 built, to the offset of a function (_r_debug_state) which is guaran-
2248 teed to be called once before mapping in a library, and again when
2249 the mapping is complete. At the time we are examining this member,
2250 it contains only the unrelocated offset of the function, so we have
2251 to do our own relocation. Later, when the dynamic linker actually
2252 runs, it relocates r_brk to be the actual address of _r_debug_state().
2253
2254 The debugger interface structure also contains an enumeration which
2255 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
2256 depending upon whether or not the library is being mapped or unmapped,
7f86f058 2257 and then set to RT_CONSISTENT after the library is mapped/unmapped. */
13437d4b
KB
2258
2259static int
268a4a75 2260enable_break (struct svr4_info *info, int from_tty)
13437d4b 2261{
3b7344d5 2262 struct bound_minimal_symbol msymbol;
bc043ef3 2263 const char * const *bkpt_namep;
13437d4b 2264 asection *interp_sect;
001f13d8 2265 char *interp_name;
7cd25cfc 2266 CORE_ADDR sym_addr;
13437d4b 2267
6c95b8df
PA
2268 info->interp_text_sect_low = info->interp_text_sect_high = 0;
2269 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
13437d4b 2270
7cd25cfc
DJ
2271 /* If we already have a shared library list in the target, and
2272 r_debug contains r_brk, set the breakpoint there - this should
2273 mean r_brk has already been relocated. Assume the dynamic linker
2274 is the object containing r_brk. */
2275
268a4a75 2276 solib_add (NULL, from_tty, &current_target, auto_solib_add);
7cd25cfc 2277 sym_addr = 0;
1a816a87
PA
2278 if (info->debug_base && solib_svr4_r_map (info) != 0)
2279 sym_addr = solib_svr4_r_brk (info);
7cd25cfc
DJ
2280
2281 if (sym_addr != 0)
2282 {
2283 struct obj_section *os;
2284
b36ec657 2285 sym_addr = gdbarch_addr_bits_remove
f5656ead 2286 (target_gdbarch (), gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
3e43a32a
MS
2287 sym_addr,
2288 &current_target));
b36ec657 2289
48379de6
DE
2290 /* On at least some versions of Solaris there's a dynamic relocation
2291 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
2292 we get control before the dynamic linker has self-relocated.
2293 Check if SYM_ADDR is in a known section, if it is assume we can
2294 trust its value. This is just a heuristic though, it could go away
2295 or be replaced if it's getting in the way.
2296
2297 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
2298 however it's spelled in your particular system) is ARM or Thumb.
2299 That knowledge is encoded in the address, if it's Thumb the low bit
2300 is 1. However, we've stripped that info above and it's not clear
2301 what all the consequences are of passing a non-addr_bits_remove'd
f9e14852 2302 address to svr4_create_solib_event_breakpoints. The call to
48379de6
DE
2303 find_pc_section verifies we know about the address and have some
2304 hope of computing the right kind of breakpoint to use (via
2305 symbol info). It does mean that GDB needs to be pointed at a
2306 non-stripped version of the dynamic linker in order to obtain
2307 information it already knows about. Sigh. */
2308
7cd25cfc
DJ
2309 os = find_pc_section (sym_addr);
2310 if (os != NULL)
2311 {
2312 /* Record the relocated start and end address of the dynamic linker
2313 text and plt section for svr4_in_dynsym_resolve_code. */
2314 bfd *tmp_bfd;
2315 CORE_ADDR load_addr;
2316
2317 tmp_bfd = os->objfile->obfd;
2318 load_addr = ANOFFSET (os->objfile->section_offsets,
e03e6279 2319 SECT_OFF_TEXT (os->objfile));
7cd25cfc
DJ
2320
2321 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
2322 if (interp_sect)
2323 {
6c95b8df 2324 info->interp_text_sect_low =
7cd25cfc 2325 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
2326 info->interp_text_sect_high =
2327 info->interp_text_sect_low
2328 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
2329 }
2330 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
2331 if (interp_sect)
2332 {
6c95b8df 2333 info->interp_plt_sect_low =
7cd25cfc 2334 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
2335 info->interp_plt_sect_high =
2336 info->interp_plt_sect_low
2337 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
2338 }
2339
f9e14852 2340 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
7cd25cfc
DJ
2341 return 1;
2342 }
2343 }
2344
97ec2c2f 2345 /* Find the program interpreter; if not found, warn the user and drop
13437d4b 2346 into the old breakpoint at symbol code. */
97ec2c2f
UW
2347 interp_name = find_program_interpreter ();
2348 if (interp_name)
13437d4b 2349 {
8ad2fcde
KB
2350 CORE_ADDR load_addr = 0;
2351 int load_addr_found = 0;
2ec9a4f8 2352 int loader_found_in_list = 0;
f8766ec1 2353 struct so_list *so;
e4f7b8c8 2354 bfd *tmp_bfd = NULL;
2f4950cd 2355 struct target_ops *tmp_bfd_target;
13437d4b 2356
7cd25cfc 2357 sym_addr = 0;
13437d4b
KB
2358
2359 /* Now we need to figure out where the dynamic linker was
2360 loaded so that we can load its symbols and place a breakpoint
2361 in the dynamic linker itself.
2362
2363 This address is stored on the stack. However, I've been unable
2364 to find any magic formula to find it for Solaris (appears to
2365 be trivial on GNU/Linux). Therefore, we have to try an alternate
2366 mechanism to find the dynamic linker's base address. */
e4f7b8c8 2367
492d29ea 2368 TRY
f1838a98 2369 {
97ec2c2f 2370 tmp_bfd = solib_bfd_open (interp_name);
f1838a98 2371 }
492d29ea
PA
2372 CATCH (ex, RETURN_MASK_ALL)
2373 {
2374 }
2375 END_CATCH
2376
13437d4b
KB
2377 if (tmp_bfd == NULL)
2378 goto bkpt_at_symbol;
2379
2f4950cd 2380 /* Now convert the TMP_BFD into a target. That way target, as
695c3173 2381 well as BFD operations can be used. */
2f4950cd 2382 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
695c3173
TT
2383 /* target_bfd_reopen acquired its own reference, so we can
2384 release ours now. */
2385 gdb_bfd_unref (tmp_bfd);
2f4950cd 2386
f8766ec1
KB
2387 /* On a running target, we can get the dynamic linker's base
2388 address from the shared library table. */
f8766ec1
KB
2389 so = master_so_list ();
2390 while (so)
8ad2fcde 2391 {
97ec2c2f 2392 if (svr4_same_1 (interp_name, so->so_original_name))
8ad2fcde
KB
2393 {
2394 load_addr_found = 1;
2ec9a4f8 2395 loader_found_in_list = 1;
b23518f0 2396 load_addr = lm_addr_check (so, tmp_bfd);
8ad2fcde
KB
2397 break;
2398 }
f8766ec1 2399 so = so->next;
8ad2fcde
KB
2400 }
2401
8d4e36ba
JB
2402 /* If we were not able to find the base address of the loader
2403 from our so_list, then try using the AT_BASE auxilliary entry. */
2404 if (!load_addr_found)
2405 if (target_auxv_search (&current_target, AT_BASE, &load_addr) > 0)
ad3a0e5b 2406 {
f5656ead 2407 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
ad3a0e5b
JK
2408
2409 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
2410 that `+ load_addr' will overflow CORE_ADDR width not creating
2411 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
2412 GDB. */
2413
d182d057 2414 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
ad3a0e5b 2415 {
d182d057 2416 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
ad3a0e5b
JK
2417 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd,
2418 tmp_bfd_target);
2419
2420 gdb_assert (load_addr < space_size);
2421
2422 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
2423 64bit ld.so with 32bit executable, it should not happen. */
2424
2425 if (tmp_entry_point < space_size
2426 && tmp_entry_point + load_addr >= space_size)
2427 load_addr -= space_size;
2428 }
2429
2430 load_addr_found = 1;
2431 }
8d4e36ba 2432
8ad2fcde
KB
2433 /* Otherwise we find the dynamic linker's base address by examining
2434 the current pc (which should point at the entry point for the
8d4e36ba
JB
2435 dynamic linker) and subtracting the offset of the entry point.
2436
2437 This is more fragile than the previous approaches, but is a good
2438 fallback method because it has actually been working well in
2439 most cases. */
8ad2fcde 2440 if (!load_addr_found)
fb14de7b 2441 {
c2250ad1 2442 struct regcache *regcache
f5656ead 2443 = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
433759f7 2444
fb14de7b
UW
2445 load_addr = (regcache_read_pc (regcache)
2446 - exec_entry_point (tmp_bfd, tmp_bfd_target));
2447 }
2ec9a4f8
DJ
2448
2449 if (!loader_found_in_list)
34439770 2450 {
1a816a87
PA
2451 info->debug_loader_name = xstrdup (interp_name);
2452 info->debug_loader_offset_p = 1;
2453 info->debug_loader_offset = load_addr;
268a4a75 2454 solib_add (NULL, from_tty, &current_target, auto_solib_add);
34439770 2455 }
13437d4b
KB
2456
2457 /* Record the relocated start and end address of the dynamic linker
d7fa2ae2 2458 text and plt section for svr4_in_dynsym_resolve_code. */
13437d4b
KB
2459 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
2460 if (interp_sect)
2461 {
6c95b8df 2462 info->interp_text_sect_low =
13437d4b 2463 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
2464 info->interp_text_sect_high =
2465 info->interp_text_sect_low
2466 + bfd_section_size (tmp_bfd, interp_sect);
13437d4b
KB
2467 }
2468 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
2469 if (interp_sect)
2470 {
6c95b8df 2471 info->interp_plt_sect_low =
13437d4b 2472 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
2473 info->interp_plt_sect_high =
2474 info->interp_plt_sect_low
2475 + bfd_section_size (tmp_bfd, interp_sect);
13437d4b
KB
2476 }
2477
2478 /* Now try to set a breakpoint in the dynamic linker. */
2479 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2480 {
cb457ae2 2481 sym_addr = gdb_bfd_lookup_symbol (tmp_bfd, cmp_name_and_sec_flags,
3953f15c 2482 *bkpt_namep);
13437d4b
KB
2483 if (sym_addr != 0)
2484 break;
2485 }
2486
2bbe3cc1
DJ
2487 if (sym_addr != 0)
2488 /* Convert 'sym_addr' from a function pointer to an address.
2489 Because we pass tmp_bfd_target instead of the current
2490 target, this will always produce an unrelocated value. */
f5656ead 2491 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2bbe3cc1
DJ
2492 sym_addr,
2493 tmp_bfd_target);
2494
695c3173
TT
2495 /* We're done with both the temporary bfd and target. Closing
2496 the target closes the underlying bfd, because it holds the
2497 only remaining reference. */
460014f5 2498 target_close (tmp_bfd_target);
13437d4b
KB
2499
2500 if (sym_addr != 0)
2501 {
f9e14852
GB
2502 svr4_create_solib_event_breakpoints (target_gdbarch (),
2503 load_addr + sym_addr);
97ec2c2f 2504 xfree (interp_name);
13437d4b
KB
2505 return 1;
2506 }
2507
2508 /* For whatever reason we couldn't set a breakpoint in the dynamic
2509 linker. Warn and drop into the old code. */
2510 bkpt_at_symbol:
97ec2c2f 2511 xfree (interp_name);
82d03102
PG
2512 warning (_("Unable to find dynamic linker breakpoint function.\n"
2513 "GDB will be unable to debug shared library initializers\n"
2514 "and track explicitly loaded dynamic code."));
13437d4b 2515 }
13437d4b 2516
e499d0f1
DJ
2517 /* Scan through the lists of symbols, trying to look up the symbol and
2518 set a breakpoint there. Terminate loop when we/if we succeed. */
2519
2520 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2521 {
2522 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
3b7344d5 2523 if ((msymbol.minsym != NULL)
77e371c0 2524 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
e499d0f1 2525 {
77e371c0 2526 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
f5656ead 2527 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
de64a9ac
JM
2528 sym_addr,
2529 &current_target);
f9e14852 2530 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
e499d0f1
DJ
2531 return 1;
2532 }
2533 }
13437d4b 2534
fb139f32 2535 if (interp_name != NULL && !current_inferior ()->attach_flag)
13437d4b 2536 {
c6490bf2 2537 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
13437d4b 2538 {
c6490bf2 2539 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
3b7344d5 2540 if ((msymbol.minsym != NULL)
77e371c0 2541 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
c6490bf2 2542 {
77e371c0 2543 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
f5656ead 2544 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
c6490bf2
KB
2545 sym_addr,
2546 &current_target);
f9e14852 2547 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
c6490bf2
KB
2548 return 1;
2549 }
13437d4b
KB
2550 }
2551 }
542c95c2 2552 return 0;
13437d4b
KB
2553}
2554
09919ac2
JK
2555/* Read the ELF program headers from ABFD. Return the contents and
2556 set *PHDRS_SIZE to the size of the program headers. */
e2a44558 2557
09919ac2
JK
2558static gdb_byte *
2559read_program_headers_from_bfd (bfd *abfd, int *phdrs_size)
e2a44558 2560{
09919ac2
JK
2561 Elf_Internal_Ehdr *ehdr;
2562 gdb_byte *buf;
e2a44558 2563
09919ac2 2564 ehdr = elf_elfheader (abfd);
b8040f19 2565
09919ac2
JK
2566 *phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
2567 if (*phdrs_size == 0)
2568 return NULL;
2569
224c3ddb 2570 buf = (gdb_byte *) xmalloc (*phdrs_size);
09919ac2
JK
2571 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
2572 || bfd_bread (buf, *phdrs_size, abfd) != *phdrs_size)
2573 {
2574 xfree (buf);
2575 return NULL;
2576 }
2577
2578 return buf;
b8040f19
JK
2579}
2580
01c30d6e
JK
2581/* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
2582 exec_bfd. Otherwise return 0.
2583
2584 We relocate all of the sections by the same amount. This
c378eb4e 2585 behavior is mandated by recent editions of the System V ABI.
b8040f19
JK
2586 According to the System V Application Binary Interface,
2587 Edition 4.1, page 5-5:
2588
2589 ... Though the system chooses virtual addresses for
2590 individual processes, it maintains the segments' relative
2591 positions. Because position-independent code uses relative
2592 addressesing between segments, the difference between
2593 virtual addresses in memory must match the difference
2594 between virtual addresses in the file. The difference
2595 between the virtual address of any segment in memory and
2596 the corresponding virtual address in the file is thus a
2597 single constant value for any one executable or shared
2598 object in a given process. This difference is the base
2599 address. One use of the base address is to relocate the
2600 memory image of the program during dynamic linking.
2601
2602 The same language also appears in Edition 4.0 of the System V
09919ac2
JK
2603 ABI and is left unspecified in some of the earlier editions.
2604
2605 Decide if the objfile needs to be relocated. As indicated above, we will
2606 only be here when execution is stopped. But during attachment PC can be at
2607 arbitrary address therefore regcache_read_pc can be misleading (contrary to
2608 the auxv AT_ENTRY value). Moreover for executable with interpreter section
2609 regcache_read_pc would point to the interpreter and not the main executable.
2610
2611 So, to summarize, relocations are necessary when the start address obtained
2612 from the executable is different from the address in auxv AT_ENTRY entry.
d989b283 2613
09919ac2
JK
2614 [ The astute reader will note that we also test to make sure that
2615 the executable in question has the DYNAMIC flag set. It is my
2616 opinion that this test is unnecessary (undesirable even). It
2617 was added to avoid inadvertent relocation of an executable
2618 whose e_type member in the ELF header is not ET_DYN. There may
2619 be a time in the future when it is desirable to do relocations
2620 on other types of files as well in which case this condition
2621 should either be removed or modified to accomodate the new file
2622 type. - Kevin, Nov 2000. ] */
b8040f19 2623
01c30d6e
JK
2624static int
2625svr4_exec_displacement (CORE_ADDR *displacementp)
b8040f19 2626{
41752192
JK
2627 /* ENTRY_POINT is a possible function descriptor - before
2628 a call to gdbarch_convert_from_func_ptr_addr. */
8f61baf8 2629 CORE_ADDR entry_point, exec_displacement;
b8040f19
JK
2630
2631 if (exec_bfd == NULL)
2632 return 0;
2633
09919ac2
JK
2634 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
2635 being executed themselves and PIE (Position Independent Executable)
2636 executables are ET_DYN. */
2637
2638 if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0)
2639 return 0;
2640
2641 if (target_auxv_search (&current_target, AT_ENTRY, &entry_point) <= 0)
2642 return 0;
2643
8f61baf8 2644 exec_displacement = entry_point - bfd_get_start_address (exec_bfd);
09919ac2 2645
8f61baf8 2646 /* Verify the EXEC_DISPLACEMENT candidate complies with the required page
09919ac2
JK
2647 alignment. It is cheaper than the program headers comparison below. */
2648
2649 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2650 {
2651 const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd);
2652
2653 /* p_align of PT_LOAD segments does not specify any alignment but
2654 only congruency of addresses:
2655 p_offset % p_align == p_vaddr % p_align
2656 Kernel is free to load the executable with lower alignment. */
2657
8f61baf8 2658 if ((exec_displacement & (elf->minpagesize - 1)) != 0)
09919ac2
JK
2659 return 0;
2660 }
2661
2662 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
2663 comparing their program headers. If the program headers in the auxilliary
2664 vector do not match the program headers in the executable, then we are
2665 looking at a different file than the one used by the kernel - for
2666 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
2667
2668 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2669 {
2670 /* Be optimistic and clear OK only if GDB was able to verify the headers
2671 really do not match. */
2672 int phdrs_size, phdrs2_size, ok = 1;
2673 gdb_byte *buf, *buf2;
0a1e94c7 2674 int arch_size;
09919ac2 2675
a738da3a 2676 buf = read_program_header (-1, &phdrs_size, &arch_size, NULL);
09919ac2 2677 buf2 = read_program_headers_from_bfd (exec_bfd, &phdrs2_size);
0a1e94c7
JK
2678 if (buf != NULL && buf2 != NULL)
2679 {
f5656ead 2680 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
0a1e94c7
JK
2681
2682 /* We are dealing with three different addresses. EXEC_BFD
2683 represents current address in on-disk file. target memory content
2684 may be different from EXEC_BFD as the file may have been prelinked
2685 to a different address after the executable has been loaded.
2686 Moreover the address of placement in target memory can be
3e43a32a
MS
2687 different from what the program headers in target memory say -
2688 this is the goal of PIE.
0a1e94c7
JK
2689
2690 Detected DISPLACEMENT covers both the offsets of PIE placement and
2691 possible new prelink performed after start of the program. Here
2692 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
2693 content offset for the verification purpose. */
2694
2695 if (phdrs_size != phdrs2_size
2696 || bfd_get_arch_size (exec_bfd) != arch_size)
2697 ok = 0;
3e43a32a
MS
2698 else if (arch_size == 32
2699 && phdrs_size >= sizeof (Elf32_External_Phdr)
0a1e94c7
JK
2700 && phdrs_size % sizeof (Elf32_External_Phdr) == 0)
2701 {
2702 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2703 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2704 CORE_ADDR displacement = 0;
2705 int i;
2706
2707 /* DISPLACEMENT could be found more easily by the difference of
2708 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2709 already have enough information to compute that displacement
2710 with what we've read. */
2711
2712 for (i = 0; i < ehdr2->e_phnum; i++)
2713 if (phdr2[i].p_type == PT_LOAD)
2714 {
2715 Elf32_External_Phdr *phdrp;
2716 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2717 CORE_ADDR vaddr, paddr;
2718 CORE_ADDR displacement_vaddr = 0;
2719 CORE_ADDR displacement_paddr = 0;
2720
2721 phdrp = &((Elf32_External_Phdr *) buf)[i];
2722 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2723 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2724
2725 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2726 byte_order);
2727 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2728
2729 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2730 byte_order);
2731 displacement_paddr = paddr - phdr2[i].p_paddr;
2732
2733 if (displacement_vaddr == displacement_paddr)
2734 displacement = displacement_vaddr;
2735
2736 break;
2737 }
2738
2739 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2740
2741 for (i = 0; i < phdrs_size / sizeof (Elf32_External_Phdr); i++)
2742 {
2743 Elf32_External_Phdr *phdrp;
2744 Elf32_External_Phdr *phdr2p;
2745 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2746 CORE_ADDR vaddr, paddr;
43b8e241 2747 asection *plt2_asect;
0a1e94c7
JK
2748
2749 phdrp = &((Elf32_External_Phdr *) buf)[i];
2750 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2751 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2752 phdr2p = &((Elf32_External_Phdr *) buf2)[i];
2753
2754 /* PT_GNU_STACK is an exception by being never relocated by
2755 prelink as its addresses are always zero. */
2756
2757 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2758 continue;
2759
2760 /* Check also other adjustment combinations - PR 11786. */
2761
3e43a32a
MS
2762 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2763 byte_order);
0a1e94c7
JK
2764 vaddr -= displacement;
2765 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
2766
3e43a32a
MS
2767 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2768 byte_order);
0a1e94c7
JK
2769 paddr -= displacement;
2770 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
2771
2772 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2773 continue;
2774
204b5331
DE
2775 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2776 CentOS-5 has problems with filesz, memsz as well.
2777 See PR 11786. */
2778 if (phdr2[i].p_type == PT_GNU_RELRO)
2779 {
2780 Elf32_External_Phdr tmp_phdr = *phdrp;
2781 Elf32_External_Phdr tmp_phdr2 = *phdr2p;
2782
2783 memset (tmp_phdr.p_filesz, 0, 4);
2784 memset (tmp_phdr.p_memsz, 0, 4);
2785 memset (tmp_phdr.p_flags, 0, 4);
2786 memset (tmp_phdr.p_align, 0, 4);
2787 memset (tmp_phdr2.p_filesz, 0, 4);
2788 memset (tmp_phdr2.p_memsz, 0, 4);
2789 memset (tmp_phdr2.p_flags, 0, 4);
2790 memset (tmp_phdr2.p_align, 0, 4);
2791
2792 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2793 == 0)
2794 continue;
2795 }
2796
43b8e241
JK
2797 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2798 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2799 if (plt2_asect)
2800 {
2801 int content2;
2802 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2803 CORE_ADDR filesz;
2804
2805 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2806 & SEC_HAS_CONTENTS) != 0;
2807
2808 filesz = extract_unsigned_integer (buf_filesz_p, 4,
2809 byte_order);
2810
2811 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2812 FILESZ is from the in-memory image. */
2813 if (content2)
2814 filesz += bfd_get_section_size (plt2_asect);
2815 else
2816 filesz -= bfd_get_section_size (plt2_asect);
2817
2818 store_unsigned_integer (buf_filesz_p, 4, byte_order,
2819 filesz);
2820
2821 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2822 continue;
2823 }
2824
0a1e94c7
JK
2825 ok = 0;
2826 break;
2827 }
2828 }
3e43a32a
MS
2829 else if (arch_size == 64
2830 && phdrs_size >= sizeof (Elf64_External_Phdr)
0a1e94c7
JK
2831 && phdrs_size % sizeof (Elf64_External_Phdr) == 0)
2832 {
2833 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2834 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2835 CORE_ADDR displacement = 0;
2836 int i;
2837
2838 /* DISPLACEMENT could be found more easily by the difference of
2839 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2840 already have enough information to compute that displacement
2841 with what we've read. */
2842
2843 for (i = 0; i < ehdr2->e_phnum; i++)
2844 if (phdr2[i].p_type == PT_LOAD)
2845 {
2846 Elf64_External_Phdr *phdrp;
2847 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2848 CORE_ADDR vaddr, paddr;
2849 CORE_ADDR displacement_vaddr = 0;
2850 CORE_ADDR displacement_paddr = 0;
2851
2852 phdrp = &((Elf64_External_Phdr *) buf)[i];
2853 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2854 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2855
2856 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2857 byte_order);
2858 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2859
2860 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2861 byte_order);
2862 displacement_paddr = paddr - phdr2[i].p_paddr;
2863
2864 if (displacement_vaddr == displacement_paddr)
2865 displacement = displacement_vaddr;
2866
2867 break;
2868 }
2869
2870 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2871
2872 for (i = 0; i < phdrs_size / sizeof (Elf64_External_Phdr); i++)
2873 {
2874 Elf64_External_Phdr *phdrp;
2875 Elf64_External_Phdr *phdr2p;
2876 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2877 CORE_ADDR vaddr, paddr;
43b8e241 2878 asection *plt2_asect;
0a1e94c7
JK
2879
2880 phdrp = &((Elf64_External_Phdr *) buf)[i];
2881 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2882 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2883 phdr2p = &((Elf64_External_Phdr *) buf2)[i];
2884
2885 /* PT_GNU_STACK is an exception by being never relocated by
2886 prelink as its addresses are always zero. */
2887
2888 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2889 continue;
2890
2891 /* Check also other adjustment combinations - PR 11786. */
2892
3e43a32a
MS
2893 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2894 byte_order);
0a1e94c7
JK
2895 vaddr -= displacement;
2896 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
2897
3e43a32a
MS
2898 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2899 byte_order);
0a1e94c7
JK
2900 paddr -= displacement;
2901 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
2902
2903 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2904 continue;
2905
204b5331
DE
2906 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2907 CentOS-5 has problems with filesz, memsz as well.
2908 See PR 11786. */
2909 if (phdr2[i].p_type == PT_GNU_RELRO)
2910 {
2911 Elf64_External_Phdr tmp_phdr = *phdrp;
2912 Elf64_External_Phdr tmp_phdr2 = *phdr2p;
2913
2914 memset (tmp_phdr.p_filesz, 0, 8);
2915 memset (tmp_phdr.p_memsz, 0, 8);
2916 memset (tmp_phdr.p_flags, 0, 4);
2917 memset (tmp_phdr.p_align, 0, 8);
2918 memset (tmp_phdr2.p_filesz, 0, 8);
2919 memset (tmp_phdr2.p_memsz, 0, 8);
2920 memset (tmp_phdr2.p_flags, 0, 4);
2921 memset (tmp_phdr2.p_align, 0, 8);
2922
2923 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2924 == 0)
2925 continue;
2926 }
2927
43b8e241
JK
2928 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2929 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2930 if (plt2_asect)
2931 {
2932 int content2;
2933 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2934 CORE_ADDR filesz;
2935
2936 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2937 & SEC_HAS_CONTENTS) != 0;
2938
2939 filesz = extract_unsigned_integer (buf_filesz_p, 8,
2940 byte_order);
2941
2942 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2943 FILESZ is from the in-memory image. */
2944 if (content2)
2945 filesz += bfd_get_section_size (plt2_asect);
2946 else
2947 filesz -= bfd_get_section_size (plt2_asect);
2948
2949 store_unsigned_integer (buf_filesz_p, 8, byte_order,
2950 filesz);
2951
2952 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2953 continue;
2954 }
2955
0a1e94c7
JK
2956 ok = 0;
2957 break;
2958 }
2959 }
2960 else
2961 ok = 0;
2962 }
09919ac2
JK
2963
2964 xfree (buf);
2965 xfree (buf2);
2966
2967 if (!ok)
2968 return 0;
2969 }
b8040f19 2970
ccf26247
JK
2971 if (info_verbose)
2972 {
2973 /* It can be printed repeatedly as there is no easy way to check
2974 the executable symbols/file has been already relocated to
2975 displacement. */
2976
2977 printf_unfiltered (_("Using PIE (Position Independent Executable) "
2978 "displacement %s for \"%s\".\n"),
8f61baf8 2979 paddress (target_gdbarch (), exec_displacement),
ccf26247
JK
2980 bfd_get_filename (exec_bfd));
2981 }
2982
8f61baf8 2983 *displacementp = exec_displacement;
01c30d6e 2984 return 1;
b8040f19
JK
2985}
2986
2987/* Relocate the main executable. This function should be called upon
c378eb4e 2988 stopping the inferior process at the entry point to the program.
b8040f19
JK
2989 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
2990 different, the main executable is relocated by the proper amount. */
2991
2992static void
2993svr4_relocate_main_executable (void)
2994{
01c30d6e
JK
2995 CORE_ADDR displacement;
2996
4e5799b6
JK
2997 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
2998 probably contains the offsets computed using the PIE displacement
2999 from the previous run, which of course are irrelevant for this run.
3000 So we need to determine the new PIE displacement and recompute the
3001 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
3002 already contains pre-computed offsets.
01c30d6e 3003
4e5799b6 3004 If we cannot compute the PIE displacement, either:
01c30d6e 3005
4e5799b6
JK
3006 - The executable is not PIE.
3007
3008 - SYMFILE_OBJFILE does not match the executable started in the target.
3009 This can happen for main executable symbols loaded at the host while
3010 `ld.so --ld-args main-executable' is loaded in the target.
3011
3012 Then we leave the section offsets untouched and use them as is for
3013 this run. Either:
3014
3015 - These section offsets were properly reset earlier, and thus
3016 already contain the correct values. This can happen for instance
3017 when reconnecting via the remote protocol to a target that supports
3018 the `qOffsets' packet.
3019
3020 - The section offsets were not reset earlier, and the best we can
c378eb4e 3021 hope is that the old offsets are still applicable to the new run. */
01c30d6e
JK
3022
3023 if (! svr4_exec_displacement (&displacement))
3024 return;
b8040f19 3025
01c30d6e
JK
3026 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
3027 addresses. */
b8040f19
JK
3028
3029 if (symfile_objfile)
e2a44558 3030 {
e2a44558 3031 struct section_offsets *new_offsets;
b8040f19 3032 int i;
e2a44558 3033
224c3ddb
SM
3034 new_offsets = XALLOCAVEC (struct section_offsets,
3035 symfile_objfile->num_sections);
e2a44558 3036
b8040f19
JK
3037 for (i = 0; i < symfile_objfile->num_sections; i++)
3038 new_offsets->offsets[i] = displacement;
e2a44558 3039
b8040f19 3040 objfile_relocate (symfile_objfile, new_offsets);
e2a44558 3041 }
51bee8e9
JK
3042 else if (exec_bfd)
3043 {
3044 asection *asect;
3045
3046 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
3047 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
3048 (bfd_section_vma (exec_bfd, asect)
3049 + displacement));
3050 }
e2a44558
KB
3051}
3052
7f86f058 3053/* Implement the "create_inferior_hook" target_solib_ops method.
13437d4b
KB
3054
3055 For SVR4 executables, this first instruction is either the first
3056 instruction in the dynamic linker (for dynamically linked
3057 executables) or the instruction at "start" for statically linked
3058 executables. For dynamically linked executables, the system
3059 first exec's /lib/libc.so.N, which contains the dynamic linker,
3060 and starts it running. The dynamic linker maps in any needed
3061 shared libraries, maps in the actual user executable, and then
3062 jumps to "start" in the user executable.
3063
7f86f058
PA
3064 We can arrange to cooperate with the dynamic linker to discover the
3065 names of shared libraries that are dynamically linked, and the base
3066 addresses to which they are linked.
13437d4b
KB
3067
3068 This function is responsible for discovering those names and
3069 addresses, and saving sufficient information about them to allow
d2e5c99a 3070 their symbols to be read at a later time. */
13437d4b 3071
e2a44558 3072static void
268a4a75 3073svr4_solib_create_inferior_hook (int from_tty)
13437d4b 3074{
1a816a87
PA
3075 struct svr4_info *info;
3076
6c95b8df 3077 info = get_svr4_info ();
2020b7ab 3078
f9e14852
GB
3079 /* Clear the probes-based interface's state. */
3080 free_probes_table (info);
3081 free_solib_list (info);
3082
e2a44558 3083 /* Relocate the main executable if necessary. */
86e4bafc 3084 svr4_relocate_main_executable ();
e2a44558 3085
c91c8c16
PA
3086 /* No point setting a breakpoint in the dynamic linker if we can't
3087 hit it (e.g., a core file, or a trace file). */
3088 if (!target_has_execution)
3089 return;
3090
d5a921c9 3091 if (!svr4_have_link_map_offsets ())
513f5903 3092 return;
d5a921c9 3093
268a4a75 3094 if (!enable_break (info, from_tty))
542c95c2 3095 return;
13437d4b
KB
3096}
3097
3098static void
3099svr4_clear_solib (void)
3100{
6c95b8df
PA
3101 struct svr4_info *info;
3102
3103 info = get_svr4_info ();
3104 info->debug_base = 0;
3105 info->debug_loader_offset_p = 0;
3106 info->debug_loader_offset = 0;
3107 xfree (info->debug_loader_name);
3108 info->debug_loader_name = NULL;
13437d4b
KB
3109}
3110
6bb7be43
JB
3111/* Clear any bits of ADDR that wouldn't fit in a target-format
3112 data pointer. "Data pointer" here refers to whatever sort of
3113 address the dynamic linker uses to manage its sections. At the
3114 moment, we don't support shared libraries on any processors where
3115 code and data pointers are different sizes.
3116
3117 This isn't really the right solution. What we really need here is
3118 a way to do arithmetic on CORE_ADDR values that respects the
3119 natural pointer/address correspondence. (For example, on the MIPS,
3120 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
3121 sign-extend the value. There, simply truncating the bits above
819844ad 3122 gdbarch_ptr_bit, as we do below, is no good.) This should probably
6bb7be43
JB
3123 be a new gdbarch method or something. */
3124static CORE_ADDR
3125svr4_truncate_ptr (CORE_ADDR addr)
3126{
f5656ead 3127 if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8)
6bb7be43
JB
3128 /* We don't need to truncate anything, and the bit twiddling below
3129 will fail due to overflow problems. */
3130 return addr;
3131 else
f5656ead 3132 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1);
6bb7be43
JB
3133}
3134
3135
749499cb
KB
3136static void
3137svr4_relocate_section_addresses (struct so_list *so,
0542c86d 3138 struct target_section *sec)
749499cb 3139{
2b2848e2
DE
3140 bfd *abfd = sec->the_bfd_section->owner;
3141
3142 sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so, abfd));
3143 sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so, abfd));
749499cb 3144}
4b188b9f 3145\f
749499cb 3146
4b188b9f 3147/* Architecture-specific operations. */
6bb7be43 3148
4b188b9f
MK
3149/* Per-architecture data key. */
3150static struct gdbarch_data *solib_svr4_data;
e5e2b9ff 3151
4b188b9f 3152struct solib_svr4_ops
e5e2b9ff 3153{
4b188b9f
MK
3154 /* Return a description of the layout of `struct link_map'. */
3155 struct link_map_offsets *(*fetch_link_map_offsets)(void);
3156};
e5e2b9ff 3157
4b188b9f 3158/* Return a default for the architecture-specific operations. */
e5e2b9ff 3159
4b188b9f
MK
3160static void *
3161solib_svr4_init (struct obstack *obstack)
e5e2b9ff 3162{
4b188b9f 3163 struct solib_svr4_ops *ops;
e5e2b9ff 3164
4b188b9f 3165 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
8d005789 3166 ops->fetch_link_map_offsets = NULL;
4b188b9f 3167 return ops;
e5e2b9ff
KB
3168}
3169
4b188b9f 3170/* Set the architecture-specific `struct link_map_offsets' fetcher for
7e3cb44c 3171 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
1c4dcb57 3172
21479ded 3173void
e5e2b9ff
KB
3174set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
3175 struct link_map_offsets *(*flmo) (void))
21479ded 3176{
19ba03f4
SM
3177 struct solib_svr4_ops *ops
3178 = (struct solib_svr4_ops *) gdbarch_data (gdbarch, solib_svr4_data);
4b188b9f
MK
3179
3180 ops->fetch_link_map_offsets = flmo;
7e3cb44c
UW
3181
3182 set_solib_ops (gdbarch, &svr4_so_ops);
21479ded
KB
3183}
3184
4b188b9f
MK
3185/* Fetch a link_map_offsets structure using the architecture-specific
3186 `struct link_map_offsets' fetcher. */
1c4dcb57 3187
4b188b9f
MK
3188static struct link_map_offsets *
3189svr4_fetch_link_map_offsets (void)
21479ded 3190{
19ba03f4
SM
3191 struct solib_svr4_ops *ops
3192 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3193 solib_svr4_data);
4b188b9f
MK
3194
3195 gdb_assert (ops->fetch_link_map_offsets);
3196 return ops->fetch_link_map_offsets ();
21479ded
KB
3197}
3198
4b188b9f
MK
3199/* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
3200
3201static int
3202svr4_have_link_map_offsets (void)
3203{
19ba03f4
SM
3204 struct solib_svr4_ops *ops
3205 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3206 solib_svr4_data);
433759f7 3207
4b188b9f
MK
3208 return (ops->fetch_link_map_offsets != NULL);
3209}
3210\f
3211
e4bbbda8
MK
3212/* Most OS'es that have SVR4-style ELF dynamic libraries define a
3213 `struct r_debug' and a `struct link_map' that are binary compatible
3214 with the origional SVR4 implementation. */
3215
3216/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3217 for an ILP32 SVR4 system. */
d989b283 3218
e4bbbda8
MK
3219struct link_map_offsets *
3220svr4_ilp32_fetch_link_map_offsets (void)
3221{
3222 static struct link_map_offsets lmo;
3223 static struct link_map_offsets *lmp = NULL;
3224
3225 if (lmp == NULL)
3226 {
3227 lmp = &lmo;
3228
e4cd0d6a
MK
3229 lmo.r_version_offset = 0;
3230 lmo.r_version_size = 4;
e4bbbda8 3231 lmo.r_map_offset = 4;
7cd25cfc 3232 lmo.r_brk_offset = 8;
e4cd0d6a 3233 lmo.r_ldsomap_offset = 20;
e4bbbda8
MK
3234
3235 /* Everything we need is in the first 20 bytes. */
3236 lmo.link_map_size = 20;
3237 lmo.l_addr_offset = 0;
e4bbbda8 3238 lmo.l_name_offset = 4;
cc10cae3 3239 lmo.l_ld_offset = 8;
e4bbbda8 3240 lmo.l_next_offset = 12;
e4bbbda8 3241 lmo.l_prev_offset = 16;
e4bbbda8
MK
3242 }
3243
3244 return lmp;
3245}
3246
3247/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3248 for an LP64 SVR4 system. */
d989b283 3249
e4bbbda8
MK
3250struct link_map_offsets *
3251svr4_lp64_fetch_link_map_offsets (void)
3252{
3253 static struct link_map_offsets lmo;
3254 static struct link_map_offsets *lmp = NULL;
3255
3256 if (lmp == NULL)
3257 {
3258 lmp = &lmo;
3259
e4cd0d6a
MK
3260 lmo.r_version_offset = 0;
3261 lmo.r_version_size = 4;
e4bbbda8 3262 lmo.r_map_offset = 8;
7cd25cfc 3263 lmo.r_brk_offset = 16;
e4cd0d6a 3264 lmo.r_ldsomap_offset = 40;
e4bbbda8
MK
3265
3266 /* Everything we need is in the first 40 bytes. */
3267 lmo.link_map_size = 40;
3268 lmo.l_addr_offset = 0;
e4bbbda8 3269 lmo.l_name_offset = 8;
cc10cae3 3270 lmo.l_ld_offset = 16;
e4bbbda8 3271 lmo.l_next_offset = 24;
e4bbbda8 3272 lmo.l_prev_offset = 32;
e4bbbda8
MK
3273 }
3274
3275 return lmp;
3276}
3277\f
3278
7d522c90 3279struct target_so_ops svr4_so_ops;
13437d4b 3280
c378eb4e 3281/* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
3a40aaa0
UW
3282 different rule for symbol lookup. The lookup begins here in the DSO, not in
3283 the main executable. */
3284
d12307c1 3285static struct block_symbol
efad9b6a 3286elf_lookup_lib_symbol (struct objfile *objfile,
3a40aaa0 3287 const char *name,
21b556f4 3288 const domain_enum domain)
3a40aaa0 3289{
61f0d762
JK
3290 bfd *abfd;
3291
3292 if (objfile == symfile_objfile)
3293 abfd = exec_bfd;
3294 else
3295 {
3296 /* OBJFILE should have been passed as the non-debug one. */
3297 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
3298
3299 abfd = objfile->obfd;
3300 }
3301
a738da3a 3302 if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL, NULL) != 1)
d12307c1 3303 return (struct block_symbol) {NULL, NULL};
3a40aaa0 3304
94af9270 3305 return lookup_global_symbol_from_objfile (objfile, name, domain);
3a40aaa0
UW
3306}
3307
a78f21af
AC
3308extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
3309
13437d4b
KB
3310void
3311_initialize_svr4_solib (void)
3312{
4b188b9f 3313 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
6c95b8df 3314 solib_svr4_pspace_data
8e260fc0 3315 = register_program_space_data_with_cleanup (NULL, svr4_pspace_data_cleanup);
4b188b9f 3316
749499cb 3317 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
13437d4b 3318 svr4_so_ops.free_so = svr4_free_so;
0892cb63 3319 svr4_so_ops.clear_so = svr4_clear_so;
13437d4b
KB
3320 svr4_so_ops.clear_solib = svr4_clear_solib;
3321 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
13437d4b
KB
3322 svr4_so_ops.current_sos = svr4_current_sos;
3323 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
d7fa2ae2 3324 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
831a0c44 3325 svr4_so_ops.bfd_open = solib_bfd_open;
3a40aaa0 3326 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
a7c02bc8 3327 svr4_so_ops.same = svr4_same;
de18c1d8 3328 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
f9e14852
GB
3329 svr4_so_ops.update_breakpoints = svr4_update_solib_event_breakpoints;
3330 svr4_so_ops.handle_event = svr4_handle_solib_event;
13437d4b 3331}
This page took 2.245231 seconds and 4 git commands to generate.