[D] Fix regression in py-lookup-type.exp
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
CommitLineData
ab31aa69 1/* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2f4950cd 2
32d0add0 3 Copyright (C) 1990-2015 Free Software Foundation, Inc.
13437d4b
KB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
13437d4b
KB
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
13437d4b 19
13437d4b
KB
20#include "defs.h"
21
13437d4b 22#include "elf/external.h"
21479ded 23#include "elf/common.h"
f7856c8f 24#include "elf/mips.h"
13437d4b
KB
25
26#include "symtab.h"
27#include "bfd.h"
28#include "symfile.h"
29#include "objfiles.h"
30#include "gdbcore.h"
13437d4b 31#include "target.h"
13437d4b 32#include "inferior.h"
45741a9c 33#include "infrun.h"
fb14de7b 34#include "regcache.h"
2020b7ab 35#include "gdbthread.h"
1a816a87 36#include "observer.h"
13437d4b
KB
37
38#include "solist.h"
bba93f6c 39#include "solib.h"
13437d4b
KB
40#include "solib-svr4.h"
41
2f4950cd 42#include "bfd-target.h"
cc10cae3 43#include "elf-bfd.h"
2f4950cd 44#include "exec.h"
8d4e36ba 45#include "auxv.h"
695c3173 46#include "gdb_bfd.h"
f9e14852 47#include "probe.h"
2f4950cd 48
e5e2b9ff 49static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
d5a921c9 50static int svr4_have_link_map_offsets (void);
9f2982ff 51static void svr4_relocate_main_executable (void);
f9e14852 52static void svr4_free_library_list (void *p_list);
1c4dcb57 53
c378eb4e 54/* Link map info to include in an allocated so_list entry. */
13437d4b
KB
55
56struct lm_info
57 {
cc10cae3 58 /* Amount by which addresses in the binary should be relocated to
3957565a
JK
59 match the inferior. The direct inferior value is L_ADDR_INFERIOR.
60 When prelinking is involved and the prelink base address changes,
61 we may need a different offset - the recomputed offset is in L_ADDR.
62 It is commonly the same value. It is cached as we want to warn about
63 the difference and compute it only once. L_ADDR is valid
64 iff L_ADDR_P. */
65 CORE_ADDR l_addr, l_addr_inferior;
66 unsigned int l_addr_p : 1;
93a57060
DJ
67
68 /* The target location of lm. */
69 CORE_ADDR lm_addr;
3957565a
JK
70
71 /* Values read in from inferior's fields of the same name. */
72 CORE_ADDR l_ld, l_next, l_prev, l_name;
13437d4b
KB
73 };
74
75/* On SVR4 systems, a list of symbols in the dynamic linker where
76 GDB can try to place a breakpoint to monitor shared library
77 events.
78
79 If none of these symbols are found, or other errors occur, then
80 SVR4 systems will fall back to using a symbol as the "startup
81 mapping complete" breakpoint address. */
82
bc043ef3 83static const char * const solib_break_names[] =
13437d4b
KB
84{
85 "r_debug_state",
86 "_r_debug_state",
87 "_dl_debug_state",
88 "rtld_db_dlactivity",
4c7dcb84 89 "__dl_rtld_db_dlactivity",
1f72e589 90 "_rtld_debug_state",
4c0122c8 91
13437d4b
KB
92 NULL
93};
13437d4b 94
bc043ef3 95static const char * const bkpt_names[] =
13437d4b 96{
13437d4b 97 "_start",
ad3dcc5c 98 "__start",
13437d4b
KB
99 "main",
100 NULL
101};
13437d4b 102
bc043ef3 103static const char * const main_name_list[] =
13437d4b
KB
104{
105 "main_$main",
106 NULL
107};
108
f9e14852
GB
109/* What to do when a probe stop occurs. */
110
111enum probe_action
112{
113 /* Something went seriously wrong. Stop using probes and
114 revert to using the older interface. */
115 PROBES_INTERFACE_FAILED,
116
117 /* No action is required. The shared object list is still
118 valid. */
119 DO_NOTHING,
120
121 /* The shared object list should be reloaded entirely. */
122 FULL_RELOAD,
123
124 /* Attempt to incrementally update the shared object list. If
125 the update fails or is not possible, fall back to reloading
126 the list in full. */
127 UPDATE_OR_RELOAD,
128};
129
130/* A probe's name and its associated action. */
131
132struct probe_info
133{
134 /* The name of the probe. */
135 const char *name;
136
137 /* What to do when a probe stop occurs. */
138 enum probe_action action;
139};
140
141/* A list of named probes and their associated actions. If all
142 probes are present in the dynamic linker then the probes-based
143 interface will be used. */
144
145static const struct probe_info probe_info[] =
146{
147 { "init_start", DO_NOTHING },
148 { "init_complete", FULL_RELOAD },
149 { "map_start", DO_NOTHING },
150 { "map_failed", DO_NOTHING },
151 { "reloc_complete", UPDATE_OR_RELOAD },
152 { "unmap_start", DO_NOTHING },
153 { "unmap_complete", FULL_RELOAD },
154};
155
156#define NUM_PROBES ARRAY_SIZE (probe_info)
157
4d7b2d5b
JB
158/* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
159 the same shared library. */
160
161static int
162svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
163{
164 if (strcmp (gdb_so_name, inferior_so_name) == 0)
165 return 1;
166
167 /* On Solaris, when starting inferior we think that dynamic linker is
d989b283
PP
168 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
169 contains /lib/ld.so.1. Sometimes one file is a link to another, but
4d7b2d5b
JB
170 sometimes they have identical content, but are not linked to each
171 other. We don't restrict this check for Solaris, but the chances
172 of running into this situation elsewhere are very low. */
173 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
174 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
175 return 1;
176
177 /* Similarly, we observed the same issue with sparc64, but with
178 different locations. */
179 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
180 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
181 return 1;
182
183 return 0;
184}
185
186static int
187svr4_same (struct so_list *gdb, struct so_list *inferior)
188{
189 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
190}
191
3957565a
JK
192static struct lm_info *
193lm_info_read (CORE_ADDR lm_addr)
13437d4b 194{
4b188b9f 195 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
3957565a
JK
196 gdb_byte *lm;
197 struct lm_info *lm_info;
198 struct cleanup *back_to;
199
224c3ddb 200 lm = (gdb_byte *) xmalloc (lmo->link_map_size);
3957565a
JK
201 back_to = make_cleanup (xfree, lm);
202
203 if (target_read_memory (lm_addr, lm, lmo->link_map_size) != 0)
204 {
205 warning (_("Error reading shared library list entry at %s"),
f5656ead 206 paddress (target_gdbarch (), lm_addr)),
3957565a
JK
207 lm_info = NULL;
208 }
209 else
210 {
f5656ead 211 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
13437d4b 212
8d749320 213 lm_info = XCNEW (struct lm_info);
3957565a
JK
214 lm_info->lm_addr = lm_addr;
215
216 lm_info->l_addr_inferior = extract_typed_address (&lm[lmo->l_addr_offset],
217 ptr_type);
218 lm_info->l_ld = extract_typed_address (&lm[lmo->l_ld_offset], ptr_type);
219 lm_info->l_next = extract_typed_address (&lm[lmo->l_next_offset],
220 ptr_type);
221 lm_info->l_prev = extract_typed_address (&lm[lmo->l_prev_offset],
222 ptr_type);
223 lm_info->l_name = extract_typed_address (&lm[lmo->l_name_offset],
224 ptr_type);
225 }
226
227 do_cleanups (back_to);
228
229 return lm_info;
13437d4b
KB
230}
231
cc10cae3 232static int
b23518f0 233has_lm_dynamic_from_link_map (void)
cc10cae3
AO
234{
235 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
236
cfaefc65 237 return lmo->l_ld_offset >= 0;
cc10cae3
AO
238}
239
cc10cae3 240static CORE_ADDR
f65ce5fb 241lm_addr_check (const struct so_list *so, bfd *abfd)
cc10cae3 242{
3957565a 243 if (!so->lm_info->l_addr_p)
cc10cae3
AO
244 {
245 struct bfd_section *dyninfo_sect;
28f34a8f 246 CORE_ADDR l_addr, l_dynaddr, dynaddr;
cc10cae3 247
3957565a 248 l_addr = so->lm_info->l_addr_inferior;
cc10cae3 249
b23518f0 250 if (! abfd || ! has_lm_dynamic_from_link_map ())
cc10cae3
AO
251 goto set_addr;
252
3957565a 253 l_dynaddr = so->lm_info->l_ld;
cc10cae3
AO
254
255 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
256 if (dyninfo_sect == NULL)
257 goto set_addr;
258
259 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
260
261 if (dynaddr + l_addr != l_dynaddr)
262 {
28f34a8f 263 CORE_ADDR align = 0x1000;
4e1fc9c9 264 CORE_ADDR minpagesize = align;
28f34a8f 265
cc10cae3
AO
266 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
267 {
268 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
269 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
270 int i;
271
272 align = 1;
273
274 for (i = 0; i < ehdr->e_phnum; i++)
275 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
276 align = phdr[i].p_align;
4e1fc9c9
JK
277
278 minpagesize = get_elf_backend_data (abfd)->minpagesize;
cc10cae3
AO
279 }
280
281 /* Turn it into a mask. */
282 align--;
283
284 /* If the changes match the alignment requirements, we
285 assume we're using a core file that was generated by the
286 same binary, just prelinked with a different base offset.
287 If it doesn't match, we may have a different binary, the
288 same binary with the dynamic table loaded at an unrelated
289 location, or anything, really. To avoid regressions,
290 don't adjust the base offset in the latter case, although
291 odds are that, if things really changed, debugging won't
5c0d192f
JK
292 quite work.
293
294 One could expect more the condition
295 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
296 but the one below is relaxed for PPC. The PPC kernel supports
297 either 4k or 64k page sizes. To be prepared for 64k pages,
298 PPC ELF files are built using an alignment requirement of 64k.
299 However, when running on a kernel supporting 4k pages, the memory
300 mapping of the library may not actually happen on a 64k boundary!
301
302 (In the usual case where (l_addr & align) == 0, this check is
4e1fc9c9
JK
303 equivalent to the possibly expected check above.)
304
305 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
5c0d192f 306
02835898
JK
307 l_addr = l_dynaddr - dynaddr;
308
4e1fc9c9
JK
309 if ((l_addr & (minpagesize - 1)) == 0
310 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
cc10cae3 311 {
701ed6dc 312 if (info_verbose)
ccf26247
JK
313 printf_unfiltered (_("Using PIC (Position Independent Code) "
314 "prelink displacement %s for \"%s\".\n"),
f5656ead 315 paddress (target_gdbarch (), l_addr),
ccf26247 316 so->so_name);
cc10cae3 317 }
79d4c408 318 else
02835898
JK
319 {
320 /* There is no way to verify the library file matches. prelink
321 can during prelinking of an unprelinked file (or unprelinking
322 of a prelinked file) shift the DYNAMIC segment by arbitrary
323 offset without any page size alignment. There is no way to
324 find out the ELF header and/or Program Headers for a limited
325 verification if it they match. One could do a verification
326 of the DYNAMIC segment. Still the found address is the best
327 one GDB could find. */
328
329 warning (_(".dynamic section for \"%s\" "
330 "is not at the expected address "
331 "(wrong library or version mismatch?)"), so->so_name);
332 }
cc10cae3
AO
333 }
334
335 set_addr:
336 so->lm_info->l_addr = l_addr;
3957565a 337 so->lm_info->l_addr_p = 1;
cc10cae3
AO
338 }
339
340 return so->lm_info->l_addr;
341}
342
6c95b8df 343/* Per pspace SVR4 specific data. */
13437d4b 344
1a816a87
PA
345struct svr4_info
346{
c378eb4e 347 CORE_ADDR debug_base; /* Base of dynamic linker structures. */
1a816a87
PA
348
349 /* Validity flag for debug_loader_offset. */
350 int debug_loader_offset_p;
351
352 /* Load address for the dynamic linker, inferred. */
353 CORE_ADDR debug_loader_offset;
354
355 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
356 char *debug_loader_name;
357
358 /* Load map address for the main executable. */
359 CORE_ADDR main_lm_addr;
1a816a87 360
6c95b8df
PA
361 CORE_ADDR interp_text_sect_low;
362 CORE_ADDR interp_text_sect_high;
363 CORE_ADDR interp_plt_sect_low;
364 CORE_ADDR interp_plt_sect_high;
f9e14852
GB
365
366 /* Nonzero if the list of objects was last obtained from the target
367 via qXfer:libraries-svr4:read. */
368 int using_xfer;
369
370 /* Table of struct probe_and_action instances, used by the
371 probes-based interface to map breakpoint addresses to probes
372 and their associated actions. Lookup is performed using
373 probe_and_action->probe->address. */
374 htab_t probes_table;
375
376 /* List of objects loaded into the inferior, used by the probes-
377 based interface. */
378 struct so_list *solib_list;
6c95b8df 379};
1a816a87 380
6c95b8df
PA
381/* Per-program-space data key. */
382static const struct program_space_data *solib_svr4_pspace_data;
1a816a87 383
f9e14852
GB
384/* Free the probes table. */
385
386static void
387free_probes_table (struct svr4_info *info)
388{
389 if (info->probes_table == NULL)
390 return;
391
392 htab_delete (info->probes_table);
393 info->probes_table = NULL;
394}
395
396/* Free the solib list. */
397
398static void
399free_solib_list (struct svr4_info *info)
400{
401 svr4_free_library_list (&info->solib_list);
402 info->solib_list = NULL;
403}
404
6c95b8df
PA
405static void
406svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
1a816a87 407{
19ba03f4 408 struct svr4_info *info = (struct svr4_info *) arg;
f9e14852
GB
409
410 free_probes_table (info);
411 free_solib_list (info);
412
6c95b8df 413 xfree (info);
1a816a87
PA
414}
415
6c95b8df
PA
416/* Get the current svr4 data. If none is found yet, add it now. This
417 function always returns a valid object. */
34439770 418
6c95b8df
PA
419static struct svr4_info *
420get_svr4_info (void)
1a816a87 421{
6c95b8df 422 struct svr4_info *info;
1a816a87 423
19ba03f4
SM
424 info = (struct svr4_info *) program_space_data (current_program_space,
425 solib_svr4_pspace_data);
6c95b8df
PA
426 if (info != NULL)
427 return info;
34439770 428
41bf6aca 429 info = XCNEW (struct svr4_info);
6c95b8df
PA
430 set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
431 return info;
1a816a87 432}
93a57060 433
13437d4b
KB
434/* Local function prototypes */
435
bc043ef3 436static int match_main (const char *);
13437d4b 437
97ec2c2f
UW
438/* Read program header TYPE from inferior memory. The header is found
439 by scanning the OS auxillary vector.
440
09919ac2
JK
441 If TYPE == -1, return the program headers instead of the contents of
442 one program header.
443
97ec2c2f
UW
444 Return a pointer to allocated memory holding the program header contents,
445 or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the
446 size of those contents is returned to P_SECT_SIZE. Likewise, the target
a738da3a
MF
447 architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE and
448 the base address of the section is returned in BASE_ADDR. */
97ec2c2f
UW
449
450static gdb_byte *
a738da3a
MF
451read_program_header (int type, int *p_sect_size, int *p_arch_size,
452 CORE_ADDR *base_addr)
97ec2c2f 453{
f5656ead 454 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
43136979 455 CORE_ADDR at_phdr, at_phent, at_phnum, pt_phdr = 0;
97ec2c2f
UW
456 int arch_size, sect_size;
457 CORE_ADDR sect_addr;
458 gdb_byte *buf;
43136979 459 int pt_phdr_p = 0;
97ec2c2f
UW
460
461 /* Get required auxv elements from target. */
462 if (target_auxv_search (&current_target, AT_PHDR, &at_phdr) <= 0)
463 return 0;
464 if (target_auxv_search (&current_target, AT_PHENT, &at_phent) <= 0)
465 return 0;
466 if (target_auxv_search (&current_target, AT_PHNUM, &at_phnum) <= 0)
467 return 0;
468 if (!at_phdr || !at_phnum)
469 return 0;
470
471 /* Determine ELF architecture type. */
472 if (at_phent == sizeof (Elf32_External_Phdr))
473 arch_size = 32;
474 else if (at_phent == sizeof (Elf64_External_Phdr))
475 arch_size = 64;
476 else
477 return 0;
478
09919ac2
JK
479 /* Find the requested segment. */
480 if (type == -1)
481 {
482 sect_addr = at_phdr;
483 sect_size = at_phent * at_phnum;
484 }
485 else if (arch_size == 32)
97ec2c2f
UW
486 {
487 Elf32_External_Phdr phdr;
488 int i;
489
490 /* Search for requested PHDR. */
491 for (i = 0; i < at_phnum; i++)
492 {
43136979
AR
493 int p_type;
494
97ec2c2f
UW
495 if (target_read_memory (at_phdr + i * sizeof (phdr),
496 (gdb_byte *)&phdr, sizeof (phdr)))
497 return 0;
498
43136979
AR
499 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
500 4, byte_order);
501
502 if (p_type == PT_PHDR)
503 {
504 pt_phdr_p = 1;
505 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
506 4, byte_order);
507 }
508
509 if (p_type == type)
97ec2c2f
UW
510 break;
511 }
512
513 if (i == at_phnum)
514 return 0;
515
516 /* Retrieve address and size. */
e17a4113
UW
517 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
518 4, byte_order);
519 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
520 4, byte_order);
97ec2c2f
UW
521 }
522 else
523 {
524 Elf64_External_Phdr phdr;
525 int i;
526
527 /* Search for requested PHDR. */
528 for (i = 0; i < at_phnum; i++)
529 {
43136979
AR
530 int p_type;
531
97ec2c2f
UW
532 if (target_read_memory (at_phdr + i * sizeof (phdr),
533 (gdb_byte *)&phdr, sizeof (phdr)))
534 return 0;
535
43136979
AR
536 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
537 4, byte_order);
538
539 if (p_type == PT_PHDR)
540 {
541 pt_phdr_p = 1;
542 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
543 8, byte_order);
544 }
545
546 if (p_type == type)
97ec2c2f
UW
547 break;
548 }
549
550 if (i == at_phnum)
551 return 0;
552
553 /* Retrieve address and size. */
e17a4113
UW
554 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
555 8, byte_order);
556 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
557 8, byte_order);
97ec2c2f
UW
558 }
559
43136979
AR
560 /* PT_PHDR is optional, but we really need it
561 for PIE to make this work in general. */
562
563 if (pt_phdr_p)
564 {
565 /* at_phdr is real address in memory. pt_phdr is what pheader says it is.
566 Relocation offset is the difference between the two. */
567 sect_addr = sect_addr + (at_phdr - pt_phdr);
568 }
569
97ec2c2f 570 /* Read in requested program header. */
224c3ddb 571 buf = (gdb_byte *) xmalloc (sect_size);
97ec2c2f
UW
572 if (target_read_memory (sect_addr, buf, sect_size))
573 {
574 xfree (buf);
575 return NULL;
576 }
577
578 if (p_arch_size)
579 *p_arch_size = arch_size;
580 if (p_sect_size)
581 *p_sect_size = sect_size;
a738da3a
MF
582 if (base_addr)
583 *base_addr = sect_addr;
97ec2c2f
UW
584
585 return buf;
586}
587
588
589/* Return program interpreter string. */
001f13d8 590static char *
97ec2c2f
UW
591find_program_interpreter (void)
592{
593 gdb_byte *buf = NULL;
594
595 /* If we have an exec_bfd, use its section table. */
596 if (exec_bfd
597 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
598 {
599 struct bfd_section *interp_sect;
600
601 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
602 if (interp_sect != NULL)
603 {
97ec2c2f
UW
604 int sect_size = bfd_section_size (exec_bfd, interp_sect);
605
224c3ddb 606 buf = (gdb_byte *) xmalloc (sect_size);
97ec2c2f
UW
607 bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size);
608 }
609 }
610
611 /* If we didn't find it, use the target auxillary vector. */
612 if (!buf)
a738da3a 613 buf = read_program_header (PT_INTERP, NULL, NULL, NULL);
97ec2c2f 614
001f13d8 615 return (char *) buf;
97ec2c2f
UW
616}
617
618
b6d7a4bf
SM
619/* Scan for DESIRED_DYNTAG in .dynamic section of ABFD. If DESIRED_DYNTAG is
620 found, 1 is returned and the corresponding PTR is set. */
3a40aaa0
UW
621
622static int
a738da3a
MF
623scan_dyntag (const int desired_dyntag, bfd *abfd, CORE_ADDR *ptr,
624 CORE_ADDR *ptr_addr)
3a40aaa0
UW
625{
626 int arch_size, step, sect_size;
b6d7a4bf 627 long current_dyntag;
b381ea14 628 CORE_ADDR dyn_ptr, dyn_addr;
65728c26 629 gdb_byte *bufend, *bufstart, *buf;
3a40aaa0
UW
630 Elf32_External_Dyn *x_dynp_32;
631 Elf64_External_Dyn *x_dynp_64;
632 struct bfd_section *sect;
61f0d762 633 struct target_section *target_section;
3a40aaa0
UW
634
635 if (abfd == NULL)
636 return 0;
0763ab81
PA
637
638 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
639 return 0;
640
3a40aaa0
UW
641 arch_size = bfd_get_arch_size (abfd);
642 if (arch_size == -1)
0763ab81 643 return 0;
3a40aaa0
UW
644
645 /* Find the start address of the .dynamic section. */
646 sect = bfd_get_section_by_name (abfd, ".dynamic");
647 if (sect == NULL)
648 return 0;
61f0d762
JK
649
650 for (target_section = current_target_sections->sections;
651 target_section < current_target_sections->sections_end;
652 target_section++)
653 if (sect == target_section->the_bfd_section)
654 break;
b381ea14
JK
655 if (target_section < current_target_sections->sections_end)
656 dyn_addr = target_section->addr;
657 else
658 {
659 /* ABFD may come from OBJFILE acting only as a symbol file without being
660 loaded into the target (see add_symbol_file_command). This case is
661 such fallback to the file VMA address without the possibility of
662 having the section relocated to its actual in-memory address. */
663
664 dyn_addr = bfd_section_vma (abfd, sect);
665 }
3a40aaa0 666
65728c26
DJ
667 /* Read in .dynamic from the BFD. We will get the actual value
668 from memory later. */
3a40aaa0 669 sect_size = bfd_section_size (abfd, sect);
224c3ddb 670 buf = bufstart = (gdb_byte *) alloca (sect_size);
65728c26
DJ
671 if (!bfd_get_section_contents (abfd, sect,
672 buf, 0, sect_size))
673 return 0;
3a40aaa0
UW
674
675 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
676 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
677 : sizeof (Elf64_External_Dyn);
678 for (bufend = buf + sect_size;
679 buf < bufend;
680 buf += step)
681 {
682 if (arch_size == 32)
683 {
684 x_dynp_32 = (Elf32_External_Dyn *) buf;
b6d7a4bf 685 current_dyntag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
3a40aaa0
UW
686 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
687 }
65728c26 688 else
3a40aaa0
UW
689 {
690 x_dynp_64 = (Elf64_External_Dyn *) buf;
b6d7a4bf 691 current_dyntag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
3a40aaa0
UW
692 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
693 }
b6d7a4bf 694 if (current_dyntag == DT_NULL)
3a40aaa0 695 return 0;
b6d7a4bf 696 if (current_dyntag == desired_dyntag)
3a40aaa0 697 {
65728c26
DJ
698 /* If requested, try to read the runtime value of this .dynamic
699 entry. */
3a40aaa0 700 if (ptr)
65728c26 701 {
b6da22b0 702 struct type *ptr_type;
65728c26 703 gdb_byte ptr_buf[8];
a738da3a 704 CORE_ADDR ptr_addr_1;
65728c26 705
f5656ead 706 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
a738da3a
MF
707 ptr_addr_1 = dyn_addr + (buf - bufstart) + arch_size / 8;
708 if (target_read_memory (ptr_addr_1, ptr_buf, arch_size / 8) == 0)
b6da22b0 709 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
65728c26 710 *ptr = dyn_ptr;
a738da3a
MF
711 if (ptr_addr)
712 *ptr_addr = dyn_addr + (buf - bufstart);
65728c26
DJ
713 }
714 return 1;
3a40aaa0
UW
715 }
716 }
717
718 return 0;
719}
720
b6d7a4bf
SM
721/* Scan for DESIRED_DYNTAG in .dynamic section of the target's main executable,
722 found by consulting the OS auxillary vector. If DESIRED_DYNTAG is found, 1
723 is returned and the corresponding PTR is set. */
97ec2c2f
UW
724
725static int
a738da3a
MF
726scan_dyntag_auxv (const int desired_dyntag, CORE_ADDR *ptr,
727 CORE_ADDR *ptr_addr)
97ec2c2f 728{
f5656ead 729 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
97ec2c2f 730 int sect_size, arch_size, step;
b6d7a4bf 731 long current_dyntag;
97ec2c2f 732 CORE_ADDR dyn_ptr;
a738da3a 733 CORE_ADDR base_addr;
97ec2c2f
UW
734 gdb_byte *bufend, *bufstart, *buf;
735
736 /* Read in .dynamic section. */
a738da3a
MF
737 buf = bufstart = read_program_header (PT_DYNAMIC, &sect_size, &arch_size,
738 &base_addr);
97ec2c2f
UW
739 if (!buf)
740 return 0;
741
742 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
743 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
744 : sizeof (Elf64_External_Dyn);
745 for (bufend = buf + sect_size;
746 buf < bufend;
747 buf += step)
748 {
749 if (arch_size == 32)
750 {
751 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
433759f7 752
b6d7a4bf 753 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
e17a4113
UW
754 4, byte_order);
755 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
756 4, byte_order);
97ec2c2f
UW
757 }
758 else
759 {
760 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
433759f7 761
b6d7a4bf 762 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
e17a4113
UW
763 8, byte_order);
764 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
765 8, byte_order);
97ec2c2f 766 }
b6d7a4bf 767 if (current_dyntag == DT_NULL)
97ec2c2f
UW
768 break;
769
b6d7a4bf 770 if (current_dyntag == desired_dyntag)
97ec2c2f
UW
771 {
772 if (ptr)
773 *ptr = dyn_ptr;
774
a738da3a
MF
775 if (ptr_addr)
776 *ptr_addr = base_addr + buf - bufstart;
777
97ec2c2f
UW
778 xfree (bufstart);
779 return 1;
780 }
781 }
782
783 xfree (bufstart);
784 return 0;
785}
786
7f86f058
PA
787/* Locate the base address of dynamic linker structs for SVR4 elf
788 targets.
13437d4b
KB
789
790 For SVR4 elf targets the address of the dynamic linker's runtime
791 structure is contained within the dynamic info section in the
792 executable file. The dynamic section is also mapped into the
793 inferior address space. Because the runtime loader fills in the
794 real address before starting the inferior, we have to read in the
795 dynamic info section from the inferior address space.
796 If there are any errors while trying to find the address, we
7f86f058 797 silently return 0, otherwise the found address is returned. */
13437d4b
KB
798
799static CORE_ADDR
800elf_locate_base (void)
801{
3b7344d5 802 struct bound_minimal_symbol msymbol;
a738da3a 803 CORE_ADDR dyn_ptr, dyn_ptr_addr;
13437d4b 804
65728c26
DJ
805 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
806 instead of DT_DEBUG, although they sometimes contain an unused
807 DT_DEBUG. */
a738da3a
MF
808 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr, NULL)
809 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr, NULL))
3a40aaa0 810 {
f5656ead 811 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
3a40aaa0 812 gdb_byte *pbuf;
b6da22b0 813 int pbuf_size = TYPE_LENGTH (ptr_type);
433759f7 814
224c3ddb 815 pbuf = (gdb_byte *) alloca (pbuf_size);
3a40aaa0
UW
816 /* DT_MIPS_RLD_MAP contains a pointer to the address
817 of the dynamic link structure. */
818 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
e499d0f1 819 return 0;
b6da22b0 820 return extract_typed_address (pbuf, ptr_type);
e499d0f1
DJ
821 }
822
a738da3a
MF
823 /* Then check DT_MIPS_RLD_MAP_REL. MIPS executables now use this form
824 because of needing to support PIE. DT_MIPS_RLD_MAP will also exist
825 in non-PIE. */
826 if (scan_dyntag (DT_MIPS_RLD_MAP_REL, exec_bfd, &dyn_ptr, &dyn_ptr_addr)
827 || scan_dyntag_auxv (DT_MIPS_RLD_MAP_REL, &dyn_ptr, &dyn_ptr_addr))
828 {
829 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
830 gdb_byte *pbuf;
831 int pbuf_size = TYPE_LENGTH (ptr_type);
832
224c3ddb 833 pbuf = (gdb_byte *) alloca (pbuf_size);
a738da3a
MF
834 /* DT_MIPS_RLD_MAP_REL contains an offset from the address of the
835 DT slot to the address of the dynamic link structure. */
836 if (target_read_memory (dyn_ptr + dyn_ptr_addr, pbuf, pbuf_size))
837 return 0;
838 return extract_typed_address (pbuf, ptr_type);
839 }
840
65728c26 841 /* Find DT_DEBUG. */
a738da3a
MF
842 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr, NULL)
843 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr, NULL))
65728c26
DJ
844 return dyn_ptr;
845
3a40aaa0
UW
846 /* This may be a static executable. Look for the symbol
847 conventionally named _r_debug, as a last resort. */
848 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
3b7344d5 849 if (msymbol.minsym != NULL)
77e371c0 850 return BMSYMBOL_VALUE_ADDRESS (msymbol);
13437d4b
KB
851
852 /* DT_DEBUG entry not found. */
853 return 0;
854}
855
7f86f058 856/* Locate the base address of dynamic linker structs.
13437d4b
KB
857
858 For both the SunOS and SVR4 shared library implementations, if the
859 inferior executable has been linked dynamically, there is a single
860 address somewhere in the inferior's data space which is the key to
861 locating all of the dynamic linker's runtime structures. This
862 address is the value of the debug base symbol. The job of this
863 function is to find and return that address, or to return 0 if there
864 is no such address (the executable is statically linked for example).
865
866 For SunOS, the job is almost trivial, since the dynamic linker and
867 all of it's structures are statically linked to the executable at
868 link time. Thus the symbol for the address we are looking for has
869 already been added to the minimal symbol table for the executable's
870 objfile at the time the symbol file's symbols were read, and all we
871 have to do is look it up there. Note that we explicitly do NOT want
872 to find the copies in the shared library.
873
874 The SVR4 version is a bit more complicated because the address
875 is contained somewhere in the dynamic info section. We have to go
876 to a lot more work to discover the address of the debug base symbol.
877 Because of this complexity, we cache the value we find and return that
878 value on subsequent invocations. Note there is no copy in the
7f86f058 879 executable symbol tables. */
13437d4b
KB
880
881static CORE_ADDR
1a816a87 882locate_base (struct svr4_info *info)
13437d4b 883{
13437d4b
KB
884 /* Check to see if we have a currently valid address, and if so, avoid
885 doing all this work again and just return the cached address. If
886 we have no cached address, try to locate it in the dynamic info
d5a921c9
KB
887 section for ELF executables. There's no point in doing any of this
888 though if we don't have some link map offsets to work with. */
13437d4b 889
1a816a87 890 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
0763ab81 891 info->debug_base = elf_locate_base ();
1a816a87 892 return info->debug_base;
13437d4b
KB
893}
894
e4cd0d6a 895/* Find the first element in the inferior's dynamic link map, and
6f992fbf
JB
896 return its address in the inferior. Return zero if the address
897 could not be determined.
13437d4b 898
e4cd0d6a
MK
899 FIXME: Perhaps we should validate the info somehow, perhaps by
900 checking r_version for a known version number, or r_state for
901 RT_CONSISTENT. */
13437d4b
KB
902
903static CORE_ADDR
1a816a87 904solib_svr4_r_map (struct svr4_info *info)
13437d4b 905{
4b188b9f 906 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 907 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
08597104 908 CORE_ADDR addr = 0;
13437d4b 909
492d29ea 910 TRY
08597104
JB
911 {
912 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
913 ptr_type);
914 }
492d29ea
PA
915 CATCH (ex, RETURN_MASK_ERROR)
916 {
917 exception_print (gdb_stderr, ex);
918 }
919 END_CATCH
920
08597104 921 return addr;
e4cd0d6a 922}
13437d4b 923
7cd25cfc
DJ
924/* Find r_brk from the inferior's debug base. */
925
926static CORE_ADDR
1a816a87 927solib_svr4_r_brk (struct svr4_info *info)
7cd25cfc
DJ
928{
929 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 930 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
7cd25cfc 931
1a816a87
PA
932 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
933 ptr_type);
7cd25cfc
DJ
934}
935
e4cd0d6a
MK
936/* Find the link map for the dynamic linker (if it is not in the
937 normal list of loaded shared objects). */
13437d4b 938
e4cd0d6a 939static CORE_ADDR
1a816a87 940solib_svr4_r_ldsomap (struct svr4_info *info)
e4cd0d6a
MK
941{
942 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead
TT
943 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
944 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
416f679e
SDJ
945 ULONGEST version = 0;
946
947 TRY
948 {
949 /* Check version, and return zero if `struct r_debug' doesn't have
950 the r_ldsomap member. */
951 version
952 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
953 lmo->r_version_size, byte_order);
954 }
955 CATCH (ex, RETURN_MASK_ERROR)
956 {
957 exception_print (gdb_stderr, ex);
958 }
959 END_CATCH
13437d4b 960
e4cd0d6a
MK
961 if (version < 2 || lmo->r_ldsomap_offset == -1)
962 return 0;
13437d4b 963
1a816a87 964 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
b6da22b0 965 ptr_type);
13437d4b
KB
966}
967
de18c1d8
JM
968/* On Solaris systems with some versions of the dynamic linker,
969 ld.so's l_name pointer points to the SONAME in the string table
970 rather than into writable memory. So that GDB can find shared
971 libraries when loading a core file generated by gcore, ensure that
972 memory areas containing the l_name string are saved in the core
973 file. */
974
975static int
976svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
977{
978 struct svr4_info *info;
979 CORE_ADDR ldsomap;
fe978cb0 980 struct so_list *newobj;
de18c1d8 981 struct cleanup *old_chain;
74de0234 982 CORE_ADDR name_lm;
de18c1d8
JM
983
984 info = get_svr4_info ();
985
986 info->debug_base = 0;
987 locate_base (info);
988 if (!info->debug_base)
989 return 0;
990
991 ldsomap = solib_svr4_r_ldsomap (info);
992 if (!ldsomap)
993 return 0;
994
fe978cb0
PA
995 newobj = XCNEW (struct so_list);
996 old_chain = make_cleanup (xfree, newobj);
997 newobj->lm_info = lm_info_read (ldsomap);
998 make_cleanup (xfree, newobj->lm_info);
999 name_lm = newobj->lm_info ? newobj->lm_info->l_name : 0;
de18c1d8
JM
1000 do_cleanups (old_chain);
1001
74de0234 1002 return (name_lm >= vaddr && name_lm < vaddr + size);
de18c1d8
JM
1003}
1004
7f86f058 1005/* Implement the "open_symbol_file_object" target_so_ops method.
13437d4b 1006
7f86f058
PA
1007 If no open symbol file, attempt to locate and open the main symbol
1008 file. On SVR4 systems, this is the first link map entry. If its
1009 name is here, we can open it. Useful when attaching to a process
1010 without first loading its symbol file. */
13437d4b
KB
1011
1012static int
1013open_symbol_file_object (void *from_ttyp)
1014{
1015 CORE_ADDR lm, l_name;
1016 char *filename;
1017 int errcode;
1018 int from_tty = *(int *)from_ttyp;
4b188b9f 1019 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 1020 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
b6da22b0 1021 int l_name_size = TYPE_LENGTH (ptr_type);
224c3ddb 1022 gdb_byte *l_name_buf = (gdb_byte *) xmalloc (l_name_size);
b8c9b27d 1023 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
6c95b8df 1024 struct svr4_info *info = get_svr4_info ();
13437d4b
KB
1025
1026 if (symfile_objfile)
9e2f0ad4 1027 if (!query (_("Attempt to reload symbols from process? ")))
3bb47e8b
TT
1028 {
1029 do_cleanups (cleanups);
1030 return 0;
1031 }
13437d4b 1032
7cd25cfc 1033 /* Always locate the debug struct, in case it has moved. */
1a816a87
PA
1034 info->debug_base = 0;
1035 if (locate_base (info) == 0)
3bb47e8b
TT
1036 {
1037 do_cleanups (cleanups);
1038 return 0; /* failed somehow... */
1039 }
13437d4b
KB
1040
1041 /* First link map member should be the executable. */
1a816a87 1042 lm = solib_svr4_r_map (info);
e4cd0d6a 1043 if (lm == 0)
3bb47e8b
TT
1044 {
1045 do_cleanups (cleanups);
1046 return 0; /* failed somehow... */
1047 }
13437d4b
KB
1048
1049 /* Read address of name from target memory to GDB. */
cfaefc65 1050 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
13437d4b 1051
cfaefc65 1052 /* Convert the address to host format. */
b6da22b0 1053 l_name = extract_typed_address (l_name_buf, ptr_type);
13437d4b 1054
13437d4b 1055 if (l_name == 0)
3bb47e8b
TT
1056 {
1057 do_cleanups (cleanups);
1058 return 0; /* No filename. */
1059 }
13437d4b
KB
1060
1061 /* Now fetch the filename from target memory. */
1062 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
ea5bf0a1 1063 make_cleanup (xfree, filename);
13437d4b
KB
1064
1065 if (errcode)
1066 {
8a3fe4f8 1067 warning (_("failed to read exec filename from attached file: %s"),
13437d4b 1068 safe_strerror (errcode));
3bb47e8b 1069 do_cleanups (cleanups);
13437d4b
KB
1070 return 0;
1071 }
1072
13437d4b 1073 /* Have a pathname: read the symbol file. */
1adeb98a 1074 symbol_file_add_main (filename, from_tty);
13437d4b 1075
3bb47e8b 1076 do_cleanups (cleanups);
13437d4b
KB
1077 return 1;
1078}
13437d4b 1079
2268b414
JK
1080/* Data exchange structure for the XML parser as returned by
1081 svr4_current_sos_via_xfer_libraries. */
1082
1083struct svr4_library_list
1084{
1085 struct so_list *head, **tailp;
1086
1087 /* Inferior address of struct link_map used for the main executable. It is
1088 NULL if not known. */
1089 CORE_ADDR main_lm;
1090};
1091
93f2a35e
JK
1092/* Implementation for target_so_ops.free_so. */
1093
1094static void
1095svr4_free_so (struct so_list *so)
1096{
1097 xfree (so->lm_info);
1098}
1099
0892cb63
DE
1100/* Implement target_so_ops.clear_so. */
1101
1102static void
1103svr4_clear_so (struct so_list *so)
1104{
6dcc1893
PP
1105 if (so->lm_info != NULL)
1106 so->lm_info->l_addr_p = 0;
0892cb63
DE
1107}
1108
93f2a35e
JK
1109/* Free so_list built so far (called via cleanup). */
1110
1111static void
1112svr4_free_library_list (void *p_list)
1113{
1114 struct so_list *list = *(struct so_list **) p_list;
1115
1116 while (list != NULL)
1117 {
1118 struct so_list *next = list->next;
1119
3756ef7e 1120 free_so (list);
93f2a35e
JK
1121 list = next;
1122 }
1123}
1124
f9e14852
GB
1125/* Copy library list. */
1126
1127static struct so_list *
1128svr4_copy_library_list (struct so_list *src)
1129{
1130 struct so_list *dst = NULL;
1131 struct so_list **link = &dst;
1132
1133 while (src != NULL)
1134 {
fe978cb0 1135 struct so_list *newobj;
f9e14852 1136
8d749320 1137 newobj = XNEW (struct so_list);
fe978cb0 1138 memcpy (newobj, src, sizeof (struct so_list));
f9e14852 1139
8d749320 1140 newobj->lm_info = XNEW (struct lm_info);
fe978cb0 1141 memcpy (newobj->lm_info, src->lm_info, sizeof (struct lm_info));
f9e14852 1142
fe978cb0
PA
1143 newobj->next = NULL;
1144 *link = newobj;
1145 link = &newobj->next;
f9e14852
GB
1146
1147 src = src->next;
1148 }
1149
1150 return dst;
1151}
1152
2268b414
JK
1153#ifdef HAVE_LIBEXPAT
1154
1155#include "xml-support.h"
1156
1157/* Handle the start of a <library> element. Note: new elements are added
1158 at the tail of the list, keeping the list in order. */
1159
1160static void
1161library_list_start_library (struct gdb_xml_parser *parser,
1162 const struct gdb_xml_element *element,
1163 void *user_data, VEC(gdb_xml_value_s) *attributes)
1164{
19ba03f4
SM
1165 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1166 const char *name
1167 = (const char *) xml_find_attribute (attributes, "name")->value;
1168 ULONGEST *lmp
1169 = (long unsigned int *) xml_find_attribute (attributes, "lm")->value;
1170 ULONGEST *l_addrp
1171 = (long unsigned int *) xml_find_attribute (attributes, "l_addr")->value;
1172 ULONGEST *l_ldp
1173 = (long unsigned int *) xml_find_attribute (attributes, "l_ld")->value;
2268b414
JK
1174 struct so_list *new_elem;
1175
41bf6aca
TT
1176 new_elem = XCNEW (struct so_list);
1177 new_elem->lm_info = XCNEW (struct lm_info);
2268b414
JK
1178 new_elem->lm_info->lm_addr = *lmp;
1179 new_elem->lm_info->l_addr_inferior = *l_addrp;
1180 new_elem->lm_info->l_ld = *l_ldp;
1181
1182 strncpy (new_elem->so_name, name, sizeof (new_elem->so_name) - 1);
1183 new_elem->so_name[sizeof (new_elem->so_name) - 1] = 0;
1184 strcpy (new_elem->so_original_name, new_elem->so_name);
1185
1186 *list->tailp = new_elem;
1187 list->tailp = &new_elem->next;
1188}
1189
1190/* Handle the start of a <library-list-svr4> element. */
1191
1192static void
1193svr4_library_list_start_list (struct gdb_xml_parser *parser,
1194 const struct gdb_xml_element *element,
1195 void *user_data, VEC(gdb_xml_value_s) *attributes)
1196{
19ba03f4
SM
1197 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1198 const char *version
1199 = (const char *) xml_find_attribute (attributes, "version")->value;
2268b414
JK
1200 struct gdb_xml_value *main_lm = xml_find_attribute (attributes, "main-lm");
1201
1202 if (strcmp (version, "1.0") != 0)
1203 gdb_xml_error (parser,
1204 _("SVR4 Library list has unsupported version \"%s\""),
1205 version);
1206
1207 if (main_lm)
1208 list->main_lm = *(ULONGEST *) main_lm->value;
1209}
1210
1211/* The allowed elements and attributes for an XML library list.
1212 The root element is a <library-list>. */
1213
1214static const struct gdb_xml_attribute svr4_library_attributes[] =
1215{
1216 { "name", GDB_XML_AF_NONE, NULL, NULL },
1217 { "lm", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1218 { "l_addr", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1219 { "l_ld", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1220 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1221};
1222
1223static const struct gdb_xml_element svr4_library_list_children[] =
1224{
1225 {
1226 "library", svr4_library_attributes, NULL,
1227 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
1228 library_list_start_library, NULL
1229 },
1230 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1231};
1232
1233static const struct gdb_xml_attribute svr4_library_list_attributes[] =
1234{
1235 { "version", GDB_XML_AF_NONE, NULL, NULL },
1236 { "main-lm", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
1237 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1238};
1239
1240static const struct gdb_xml_element svr4_library_list_elements[] =
1241{
1242 { "library-list-svr4", svr4_library_list_attributes, svr4_library_list_children,
1243 GDB_XML_EF_NONE, svr4_library_list_start_list, NULL },
1244 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1245};
1246
2268b414
JK
1247/* Parse qXfer:libraries:read packet into *SO_LIST_RETURN. Return 1 if
1248
1249 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1250 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1251 empty, caller is responsible for freeing all its entries. */
1252
1253static int
1254svr4_parse_libraries (const char *document, struct svr4_library_list *list)
1255{
1256 struct cleanup *back_to = make_cleanup (svr4_free_library_list,
1257 &list->head);
1258
1259 memset (list, 0, sizeof (*list));
1260 list->tailp = &list->head;
2eca4a8d 1261 if (gdb_xml_parse_quick (_("target library list"), "library-list-svr4.dtd",
2268b414
JK
1262 svr4_library_list_elements, document, list) == 0)
1263 {
1264 /* Parsed successfully, keep the result. */
1265 discard_cleanups (back_to);
1266 return 1;
1267 }
1268
1269 do_cleanups (back_to);
1270 return 0;
1271}
1272
f9e14852 1273/* Attempt to get so_list from target via qXfer:libraries-svr4:read packet.
2268b414
JK
1274
1275 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1276 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
f9e14852
GB
1277 empty, caller is responsible for freeing all its entries.
1278
1279 Note that ANNEX must be NULL if the remote does not explicitly allow
1280 qXfer:libraries-svr4:read packets with non-empty annexes. Support for
1281 this can be checked using target_augmented_libraries_svr4_read (). */
2268b414
JK
1282
1283static int
f9e14852
GB
1284svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1285 const char *annex)
2268b414
JK
1286{
1287 char *svr4_library_document;
1288 int result;
1289 struct cleanup *back_to;
1290
f9e14852
GB
1291 gdb_assert (annex == NULL || target_augmented_libraries_svr4_read ());
1292
2268b414
JK
1293 /* Fetch the list of shared libraries. */
1294 svr4_library_document = target_read_stralloc (&current_target,
1295 TARGET_OBJECT_LIBRARIES_SVR4,
f9e14852 1296 annex);
2268b414
JK
1297 if (svr4_library_document == NULL)
1298 return 0;
1299
1300 back_to = make_cleanup (xfree, svr4_library_document);
1301 result = svr4_parse_libraries (svr4_library_document, list);
1302 do_cleanups (back_to);
1303
1304 return result;
1305}
1306
1307#else
1308
1309static int
f9e14852
GB
1310svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1311 const char *annex)
2268b414
JK
1312{
1313 return 0;
1314}
1315
1316#endif
1317
34439770
DJ
1318/* If no shared library information is available from the dynamic
1319 linker, build a fallback list from other sources. */
1320
1321static struct so_list *
1322svr4_default_sos (void)
1323{
6c95b8df 1324 struct svr4_info *info = get_svr4_info ();
fe978cb0 1325 struct so_list *newobj;
1a816a87 1326
8e5c319d
JK
1327 if (!info->debug_loader_offset_p)
1328 return NULL;
34439770 1329
fe978cb0 1330 newobj = XCNEW (struct so_list);
34439770 1331
8d749320 1332 newobj->lm_info = XCNEW (struct lm_info);
34439770 1333
3957565a 1334 /* Nothing will ever check the other fields if we set l_addr_p. */
fe978cb0
PA
1335 newobj->lm_info->l_addr = info->debug_loader_offset;
1336 newobj->lm_info->l_addr_p = 1;
34439770 1337
fe978cb0
PA
1338 strncpy (newobj->so_name, info->debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
1339 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1340 strcpy (newobj->so_original_name, newobj->so_name);
34439770 1341
fe978cb0 1342 return newobj;
34439770
DJ
1343}
1344
f9e14852
GB
1345/* Read the whole inferior libraries chain starting at address LM.
1346 Expect the first entry in the chain's previous entry to be PREV_LM.
1347 Add the entries to the tail referenced by LINK_PTR_PTR. Ignore the
1348 first entry if IGNORE_FIRST and set global MAIN_LM_ADDR according
1349 to it. Returns nonzero upon success. If zero is returned the
1350 entries stored to LINK_PTR_PTR are still valid although they may
1351 represent only part of the inferior library list. */
13437d4b 1352
f9e14852
GB
1353static int
1354svr4_read_so_list (CORE_ADDR lm, CORE_ADDR prev_lm,
1355 struct so_list ***link_ptr_ptr, int ignore_first)
13437d4b 1356{
c725e7b6 1357 CORE_ADDR first_l_name = 0;
f9e14852 1358 CORE_ADDR next_lm;
13437d4b 1359
cb08cc53 1360 for (; lm != 0; prev_lm = lm, lm = next_lm)
13437d4b 1361 {
fe978cb0 1362 struct so_list *newobj;
cb08cc53
JK
1363 struct cleanup *old_chain;
1364 int errcode;
1365 char *buffer;
13437d4b 1366
fe978cb0
PA
1367 newobj = XCNEW (struct so_list);
1368 old_chain = make_cleanup_free_so (newobj);
13437d4b 1369
fe978cb0
PA
1370 newobj->lm_info = lm_info_read (lm);
1371 if (newobj->lm_info == NULL)
3957565a
JK
1372 {
1373 do_cleanups (old_chain);
f9e14852 1374 return 0;
3957565a 1375 }
13437d4b 1376
fe978cb0 1377 next_lm = newobj->lm_info->l_next;
492928e4 1378
fe978cb0 1379 if (newobj->lm_info->l_prev != prev_lm)
492928e4 1380 {
2268b414 1381 warning (_("Corrupted shared library list: %s != %s"),
f5656ead 1382 paddress (target_gdbarch (), prev_lm),
fe978cb0 1383 paddress (target_gdbarch (), newobj->lm_info->l_prev));
cb08cc53 1384 do_cleanups (old_chain);
f9e14852 1385 return 0;
492928e4 1386 }
13437d4b
KB
1387
1388 /* For SVR4 versions, the first entry in the link map is for the
1389 inferior executable, so we must ignore it. For some versions of
1390 SVR4, it has no name. For others (Solaris 2.3 for example), it
1391 does have a name, so we can no longer use a missing name to
c378eb4e 1392 decide when to ignore it. */
fe978cb0 1393 if (ignore_first && newobj->lm_info->l_prev == 0)
93a57060 1394 {
cb08cc53
JK
1395 struct svr4_info *info = get_svr4_info ();
1396
fe978cb0
PA
1397 first_l_name = newobj->lm_info->l_name;
1398 info->main_lm_addr = newobj->lm_info->lm_addr;
cb08cc53
JK
1399 do_cleanups (old_chain);
1400 continue;
93a57060 1401 }
13437d4b 1402
cb08cc53 1403 /* Extract this shared object's name. */
fe978cb0 1404 target_read_string (newobj->lm_info->l_name, &buffer,
cb08cc53
JK
1405 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1406 if (errcode != 0)
1407 {
7d760051
UW
1408 /* If this entry's l_name address matches that of the
1409 inferior executable, then this is not a normal shared
1410 object, but (most likely) a vDSO. In this case, silently
1411 skip it; otherwise emit a warning. */
fe978cb0 1412 if (first_l_name == 0 || newobj->lm_info->l_name != first_l_name)
7d760051
UW
1413 warning (_("Can't read pathname for load map: %s."),
1414 safe_strerror (errcode));
cb08cc53
JK
1415 do_cleanups (old_chain);
1416 continue;
13437d4b
KB
1417 }
1418
fe978cb0
PA
1419 strncpy (newobj->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
1420 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1421 strcpy (newobj->so_original_name, newobj->so_name);
cb08cc53 1422 xfree (buffer);
492928e4 1423
cb08cc53
JK
1424 /* If this entry has no name, or its name matches the name
1425 for the main executable, don't include it in the list. */
fe978cb0 1426 if (! newobj->so_name[0] || match_main (newobj->so_name))
492928e4 1427 {
cb08cc53
JK
1428 do_cleanups (old_chain);
1429 continue;
492928e4 1430 }
e4cd0d6a 1431
13437d4b 1432 discard_cleanups (old_chain);
fe978cb0
PA
1433 newobj->next = 0;
1434 **link_ptr_ptr = newobj;
1435 *link_ptr_ptr = &newobj->next;
13437d4b 1436 }
f9e14852
GB
1437
1438 return 1;
cb08cc53
JK
1439}
1440
f9e14852
GB
1441/* Read the full list of currently loaded shared objects directly
1442 from the inferior, without referring to any libraries read and
1443 stored by the probes interface. Handle special cases relating
1444 to the first elements of the list. */
cb08cc53
JK
1445
1446static struct so_list *
f9e14852 1447svr4_current_sos_direct (struct svr4_info *info)
cb08cc53
JK
1448{
1449 CORE_ADDR lm;
1450 struct so_list *head = NULL;
1451 struct so_list **link_ptr = &head;
cb08cc53
JK
1452 struct cleanup *back_to;
1453 int ignore_first;
2268b414
JK
1454 struct svr4_library_list library_list;
1455
0c5bf5a9
JK
1456 /* Fall back to manual examination of the target if the packet is not
1457 supported or gdbserver failed to find DT_DEBUG. gdb.server/solib-list.exp
1458 tests a case where gdbserver cannot find the shared libraries list while
1459 GDB itself is able to find it via SYMFILE_OBJFILE.
1460
1461 Unfortunately statically linked inferiors will also fall back through this
1462 suboptimal code path. */
1463
f9e14852
GB
1464 info->using_xfer = svr4_current_sos_via_xfer_libraries (&library_list,
1465 NULL);
1466 if (info->using_xfer)
2268b414
JK
1467 {
1468 if (library_list.main_lm)
f9e14852 1469 info->main_lm_addr = library_list.main_lm;
2268b414
JK
1470
1471 return library_list.head ? library_list.head : svr4_default_sos ();
1472 }
cb08cc53 1473
cb08cc53
JK
1474 /* Always locate the debug struct, in case it has moved. */
1475 info->debug_base = 0;
1476 locate_base (info);
1477
1478 /* If we can't find the dynamic linker's base structure, this
1479 must not be a dynamically linked executable. Hmm. */
1480 if (! info->debug_base)
1481 return svr4_default_sos ();
1482
1483 /* Assume that everything is a library if the dynamic loader was loaded
1484 late by a static executable. */
1485 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
1486 ignore_first = 0;
1487 else
1488 ignore_first = 1;
1489
1490 back_to = make_cleanup (svr4_free_library_list, &head);
1491
1492 /* Walk the inferior's link map list, and build our list of
1493 `struct so_list' nodes. */
1494 lm = solib_svr4_r_map (info);
1495 if (lm)
f9e14852 1496 svr4_read_so_list (lm, 0, &link_ptr, ignore_first);
cb08cc53
JK
1497
1498 /* On Solaris, the dynamic linker is not in the normal list of
1499 shared objects, so make sure we pick it up too. Having
1500 symbol information for the dynamic linker is quite crucial
1501 for skipping dynamic linker resolver code. */
1502 lm = solib_svr4_r_ldsomap (info);
1503 if (lm)
f9e14852 1504 svr4_read_so_list (lm, 0, &link_ptr, 0);
cb08cc53
JK
1505
1506 discard_cleanups (back_to);
13437d4b 1507
34439770
DJ
1508 if (head == NULL)
1509 return svr4_default_sos ();
1510
13437d4b
KB
1511 return head;
1512}
1513
8b9a549d
PA
1514/* Implement the main part of the "current_sos" target_so_ops
1515 method. */
f9e14852
GB
1516
1517static struct so_list *
8b9a549d 1518svr4_current_sos_1 (void)
f9e14852
GB
1519{
1520 struct svr4_info *info = get_svr4_info ();
1521
1522 /* If the solib list has been read and stored by the probes
1523 interface then we return a copy of the stored list. */
1524 if (info->solib_list != NULL)
1525 return svr4_copy_library_list (info->solib_list);
1526
1527 /* Otherwise obtain the solib list directly from the inferior. */
1528 return svr4_current_sos_direct (info);
1529}
1530
8b9a549d
PA
1531/* Implement the "current_sos" target_so_ops method. */
1532
1533static struct so_list *
1534svr4_current_sos (void)
1535{
1536 struct so_list *so_head = svr4_current_sos_1 ();
1537 struct mem_range vsyscall_range;
1538
1539 /* Filter out the vDSO module, if present. Its symbol file would
1540 not be found on disk. The vDSO/vsyscall's OBJFILE is instead
1541 managed by symfile-mem.c:add_vsyscall_page. */
1542 if (gdbarch_vsyscall_range (target_gdbarch (), &vsyscall_range)
1543 && vsyscall_range.length != 0)
1544 {
1545 struct so_list **sop;
1546
1547 sop = &so_head;
1548 while (*sop != NULL)
1549 {
1550 struct so_list *so = *sop;
1551
1552 /* We can't simply match the vDSO by starting address alone,
1553 because lm_info->l_addr_inferior (and also l_addr) do not
1554 necessarily represent the real starting address of the
1555 ELF if the vDSO's ELF itself is "prelinked". The l_ld
1556 field (the ".dynamic" section of the shared object)
1557 always points at the absolute/resolved address though.
1558 So check whether that address is inside the vDSO's
1559 mapping instead.
1560
1561 E.g., on Linux 3.16 (x86_64) the vDSO is a regular
1562 0-based ELF, and we see:
1563
1564 (gdb) info auxv
1565 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffb000
1566 (gdb) p/x *_r_debug.r_map.l_next
1567 $1 = {l_addr = 0x7ffff7ffb000, ..., l_ld = 0x7ffff7ffb318, ...}
1568
1569 And on Linux 2.6.32 (x86_64) we see:
1570
1571 (gdb) info auxv
1572 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffe000
1573 (gdb) p/x *_r_debug.r_map.l_next
1574 $5 = {l_addr = 0x7ffff88fe000, ..., l_ld = 0x7ffff7ffe580, ... }
1575
1576 Dumping that vDSO shows:
1577
1578 (gdb) info proc mappings
1579 0x7ffff7ffe000 0x7ffff7fff000 0x1000 0 [vdso]
1580 (gdb) dump memory vdso.bin 0x7ffff7ffe000 0x7ffff7fff000
1581 # readelf -Wa vdso.bin
1582 [...]
1583 Entry point address: 0xffffffffff700700
1584 [...]
1585 Section Headers:
1586 [Nr] Name Type Address Off Size
1587 [ 0] NULL 0000000000000000 000000 000000
1588 [ 1] .hash HASH ffffffffff700120 000120 000038
1589 [ 2] .dynsym DYNSYM ffffffffff700158 000158 0000d8
1590 [...]
1591 [ 9] .dynamic DYNAMIC ffffffffff700580 000580 0000f0
1592 */
1593 if (address_in_mem_range (so->lm_info->l_ld, &vsyscall_range))
1594 {
1595 *sop = so->next;
1596 free_so (so);
1597 break;
1598 }
1599
1600 sop = &so->next;
1601 }
1602 }
1603
1604 return so_head;
1605}
1606
93a57060 1607/* Get the address of the link_map for a given OBJFILE. */
bc4a16ae
EZ
1608
1609CORE_ADDR
1610svr4_fetch_objfile_link_map (struct objfile *objfile)
1611{
93a57060 1612 struct so_list *so;
6c95b8df 1613 struct svr4_info *info = get_svr4_info ();
bc4a16ae 1614
93a57060 1615 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1a816a87 1616 if (info->main_lm_addr == 0)
93a57060 1617 solib_add (NULL, 0, &current_target, auto_solib_add);
bc4a16ae 1618
93a57060
DJ
1619 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1620 if (objfile == symfile_objfile)
1a816a87 1621 return info->main_lm_addr;
93a57060
DJ
1622
1623 /* The other link map addresses may be found by examining the list
1624 of shared libraries. */
1625 for (so = master_so_list (); so; so = so->next)
1626 if (so->objfile == objfile)
1627 return so->lm_info->lm_addr;
1628
1629 /* Not found! */
bc4a16ae
EZ
1630 return 0;
1631}
13437d4b
KB
1632
1633/* On some systems, the only way to recognize the link map entry for
1634 the main executable file is by looking at its name. Return
1635 non-zero iff SONAME matches one of the known main executable names. */
1636
1637static int
bc043ef3 1638match_main (const char *soname)
13437d4b 1639{
bc043ef3 1640 const char * const *mainp;
13437d4b
KB
1641
1642 for (mainp = main_name_list; *mainp != NULL; mainp++)
1643 {
1644 if (strcmp (soname, *mainp) == 0)
1645 return (1);
1646 }
1647
1648 return (0);
1649}
1650
13437d4b
KB
1651/* Return 1 if PC lies in the dynamic symbol resolution code of the
1652 SVR4 run time loader. */
13437d4b 1653
7d522c90 1654int
d7fa2ae2 1655svr4_in_dynsym_resolve_code (CORE_ADDR pc)
13437d4b 1656{
6c95b8df
PA
1657 struct svr4_info *info = get_svr4_info ();
1658
1659 return ((pc >= info->interp_text_sect_low
1660 && pc < info->interp_text_sect_high)
1661 || (pc >= info->interp_plt_sect_low
1662 && pc < info->interp_plt_sect_high)
3e5d3a5a 1663 || in_plt_section (pc)
0875794a 1664 || in_gnu_ifunc_stub (pc));
13437d4b 1665}
13437d4b 1666
2f4950cd
AC
1667/* Given an executable's ABFD and target, compute the entry-point
1668 address. */
1669
1670static CORE_ADDR
1671exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1672{
8c2b9656
YQ
1673 CORE_ADDR addr;
1674
2f4950cd
AC
1675 /* KevinB wrote ... for most targets, the address returned by
1676 bfd_get_start_address() is the entry point for the start
1677 function. But, for some targets, bfd_get_start_address() returns
1678 the address of a function descriptor from which the entry point
1679 address may be extracted. This address is extracted by
1680 gdbarch_convert_from_func_ptr_addr(). The method
1681 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1682 function for targets which don't use function descriptors. */
8c2b9656 1683 addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2f4950cd
AC
1684 bfd_get_start_address (abfd),
1685 targ);
8c2b9656 1686 return gdbarch_addr_bits_remove (target_gdbarch (), addr);
2f4950cd 1687}
13437d4b 1688
f9e14852
GB
1689/* A probe and its associated action. */
1690
1691struct probe_and_action
1692{
1693 /* The probe. */
1694 struct probe *probe;
1695
729662a5
TT
1696 /* The relocated address of the probe. */
1697 CORE_ADDR address;
1698
f9e14852
GB
1699 /* The action. */
1700 enum probe_action action;
1701};
1702
1703/* Returns a hash code for the probe_and_action referenced by p. */
1704
1705static hashval_t
1706hash_probe_and_action (const void *p)
1707{
19ba03f4 1708 const struct probe_and_action *pa = (const struct probe_and_action *) p;
f9e14852 1709
729662a5 1710 return (hashval_t) pa->address;
f9e14852
GB
1711}
1712
1713/* Returns non-zero if the probe_and_actions referenced by p1 and p2
1714 are equal. */
1715
1716static int
1717equal_probe_and_action (const void *p1, const void *p2)
1718{
19ba03f4
SM
1719 const struct probe_and_action *pa1 = (const struct probe_and_action *) p1;
1720 const struct probe_and_action *pa2 = (const struct probe_and_action *) p2;
f9e14852 1721
729662a5 1722 return pa1->address == pa2->address;
f9e14852
GB
1723}
1724
1725/* Register a solib event probe and its associated action in the
1726 probes table. */
1727
1728static void
729662a5
TT
1729register_solib_event_probe (struct probe *probe, CORE_ADDR address,
1730 enum probe_action action)
f9e14852
GB
1731{
1732 struct svr4_info *info = get_svr4_info ();
1733 struct probe_and_action lookup, *pa;
1734 void **slot;
1735
1736 /* Create the probes table, if necessary. */
1737 if (info->probes_table == NULL)
1738 info->probes_table = htab_create_alloc (1, hash_probe_and_action,
1739 equal_probe_and_action,
1740 xfree, xcalloc, xfree);
1741
1742 lookup.probe = probe;
729662a5 1743 lookup.address = address;
f9e14852
GB
1744 slot = htab_find_slot (info->probes_table, &lookup, INSERT);
1745 gdb_assert (*slot == HTAB_EMPTY_ENTRY);
1746
1747 pa = XCNEW (struct probe_and_action);
1748 pa->probe = probe;
729662a5 1749 pa->address = address;
f9e14852
GB
1750 pa->action = action;
1751
1752 *slot = pa;
1753}
1754
1755/* Get the solib event probe at the specified location, and the
1756 action associated with it. Returns NULL if no solib event probe
1757 was found. */
1758
1759static struct probe_and_action *
1760solib_event_probe_at (struct svr4_info *info, CORE_ADDR address)
1761{
f9e14852
GB
1762 struct probe_and_action lookup;
1763 void **slot;
1764
729662a5 1765 lookup.address = address;
f9e14852
GB
1766 slot = htab_find_slot (info->probes_table, &lookup, NO_INSERT);
1767
1768 if (slot == NULL)
1769 return NULL;
1770
1771 return (struct probe_and_action *) *slot;
1772}
1773
1774/* Decide what action to take when the specified solib event probe is
1775 hit. */
1776
1777static enum probe_action
1778solib_event_probe_action (struct probe_and_action *pa)
1779{
1780 enum probe_action action;
73c6b475 1781 unsigned probe_argc = 0;
08a6411c 1782 struct frame_info *frame = get_current_frame ();
f9e14852
GB
1783
1784 action = pa->action;
1785 if (action == DO_NOTHING || action == PROBES_INTERFACE_FAILED)
1786 return action;
1787
1788 gdb_assert (action == FULL_RELOAD || action == UPDATE_OR_RELOAD);
1789
1790 /* Check that an appropriate number of arguments has been supplied.
1791 We expect:
1792 arg0: Lmid_t lmid (mandatory)
1793 arg1: struct r_debug *debug_base (mandatory)
1794 arg2: struct link_map *new (optional, for incremental updates) */
3bd7e5b7
SDJ
1795 TRY
1796 {
1797 probe_argc = get_probe_argument_count (pa->probe, frame);
1798 }
1799 CATCH (ex, RETURN_MASK_ERROR)
1800 {
1801 exception_print (gdb_stderr, ex);
1802 probe_argc = 0;
1803 }
1804 END_CATCH
1805
1806 /* If get_probe_argument_count throws an exception, probe_argc will
1807 be set to zero. However, if pa->probe does not have arguments,
1808 then get_probe_argument_count will succeed but probe_argc will
1809 also be zero. Both cases happen because of different things, but
1810 they are treated equally here: action will be set to
1811 PROBES_INTERFACE_FAILED. */
f9e14852
GB
1812 if (probe_argc == 2)
1813 action = FULL_RELOAD;
1814 else if (probe_argc < 2)
1815 action = PROBES_INTERFACE_FAILED;
1816
1817 return action;
1818}
1819
1820/* Populate the shared object list by reading the entire list of
1821 shared objects from the inferior. Handle special cases relating
1822 to the first elements of the list. Returns nonzero on success. */
1823
1824static int
1825solist_update_full (struct svr4_info *info)
1826{
1827 free_solib_list (info);
1828 info->solib_list = svr4_current_sos_direct (info);
1829
1830 return 1;
1831}
1832
1833/* Update the shared object list starting from the link-map entry
1834 passed by the linker in the probe's third argument. Returns
1835 nonzero if the list was successfully updated, or zero to indicate
1836 failure. */
1837
1838static int
1839solist_update_incremental (struct svr4_info *info, CORE_ADDR lm)
1840{
1841 struct so_list *tail;
1842 CORE_ADDR prev_lm;
1843
1844 /* svr4_current_sos_direct contains logic to handle a number of
1845 special cases relating to the first elements of the list. To
1846 avoid duplicating this logic we defer to solist_update_full
1847 if the list is empty. */
1848 if (info->solib_list == NULL)
1849 return 0;
1850
1851 /* Fall back to a full update if we are using a remote target
1852 that does not support incremental transfers. */
1853 if (info->using_xfer && !target_augmented_libraries_svr4_read ())
1854 return 0;
1855
1856 /* Walk to the end of the list. */
1857 for (tail = info->solib_list; tail->next != NULL; tail = tail->next)
1858 /* Nothing. */;
1859 prev_lm = tail->lm_info->lm_addr;
1860
1861 /* Read the new objects. */
1862 if (info->using_xfer)
1863 {
1864 struct svr4_library_list library_list;
1865 char annex[64];
1866
1867 xsnprintf (annex, sizeof (annex), "start=%s;prev=%s",
1868 phex_nz (lm, sizeof (lm)),
1869 phex_nz (prev_lm, sizeof (prev_lm)));
1870 if (!svr4_current_sos_via_xfer_libraries (&library_list, annex))
1871 return 0;
1872
1873 tail->next = library_list.head;
1874 }
1875 else
1876 {
1877 struct so_list **link = &tail->next;
1878
1879 /* IGNORE_FIRST may safely be set to zero here because the
1880 above check and deferral to solist_update_full ensures
1881 that this call to svr4_read_so_list will never see the
1882 first element. */
1883 if (!svr4_read_so_list (lm, prev_lm, &link, 0))
1884 return 0;
1885 }
1886
1887 return 1;
1888}
1889
1890/* Disable the probes-based linker interface and revert to the
1891 original interface. We don't reset the breakpoints as the
1892 ones set up for the probes-based interface are adequate. */
1893
1894static void
1895disable_probes_interface_cleanup (void *arg)
1896{
1897 struct svr4_info *info = get_svr4_info ();
1898
1899 warning (_("Probes-based dynamic linker interface failed.\n"
1900 "Reverting to original interface.\n"));
1901
1902 free_probes_table (info);
1903 free_solib_list (info);
1904}
1905
1906/* Update the solib list as appropriate when using the
1907 probes-based linker interface. Do nothing if using the
1908 standard interface. */
1909
1910static void
1911svr4_handle_solib_event (void)
1912{
1913 struct svr4_info *info = get_svr4_info ();
1914 struct probe_and_action *pa;
1915 enum probe_action action;
1916 struct cleanup *old_chain, *usm_chain;
ad1c917a 1917 struct value *val = NULL;
f9e14852
GB
1918 CORE_ADDR pc, debug_base, lm = 0;
1919 int is_initial_ns;
08a6411c 1920 struct frame_info *frame = get_current_frame ();
f9e14852
GB
1921
1922 /* Do nothing if not using the probes interface. */
1923 if (info->probes_table == NULL)
1924 return;
1925
1926 /* If anything goes wrong we revert to the original linker
1927 interface. */
1928 old_chain = make_cleanup (disable_probes_interface_cleanup, NULL);
1929
1930 pc = regcache_read_pc (get_current_regcache ());
1931 pa = solib_event_probe_at (info, pc);
1932 if (pa == NULL)
1933 {
1934 do_cleanups (old_chain);
1935 return;
1936 }
1937
1938 action = solib_event_probe_action (pa);
1939 if (action == PROBES_INTERFACE_FAILED)
1940 {
1941 do_cleanups (old_chain);
1942 return;
1943 }
1944
1945 if (action == DO_NOTHING)
1946 {
1947 discard_cleanups (old_chain);
1948 return;
1949 }
1950
1951 /* evaluate_probe_argument looks up symbols in the dynamic linker
1952 using find_pc_section. find_pc_section is accelerated by a cache
1953 called the section map. The section map is invalidated every
1954 time a shared library is loaded or unloaded, and if the inferior
1955 is generating a lot of shared library events then the section map
1956 will be updated every time svr4_handle_solib_event is called.
1957 We called find_pc_section in svr4_create_solib_event_breakpoints,
1958 so we can guarantee that the dynamic linker's sections are in the
1959 section map. We can therefore inhibit section map updates across
1960 these calls to evaluate_probe_argument and save a lot of time. */
1961 inhibit_section_map_updates (current_program_space);
1962 usm_chain = make_cleanup (resume_section_map_updates_cleanup,
1963 current_program_space);
1964
3bd7e5b7
SDJ
1965 TRY
1966 {
1967 val = evaluate_probe_argument (pa->probe, 1, frame);
1968 }
1969 CATCH (ex, RETURN_MASK_ERROR)
1970 {
1971 exception_print (gdb_stderr, ex);
1972 val = NULL;
1973 }
1974 END_CATCH
1975
f9e14852
GB
1976 if (val == NULL)
1977 {
1978 do_cleanups (old_chain);
1979 return;
1980 }
1981
1982 debug_base = value_as_address (val);
1983 if (debug_base == 0)
1984 {
1985 do_cleanups (old_chain);
1986 return;
1987 }
1988
1989 /* Always locate the debug struct, in case it moved. */
1990 info->debug_base = 0;
1991 if (locate_base (info) == 0)
1992 {
1993 do_cleanups (old_chain);
1994 return;
1995 }
1996
1997 /* GDB does not currently support libraries loaded via dlmopen
1998 into namespaces other than the initial one. We must ignore
1999 any namespace other than the initial namespace here until
2000 support for this is added to GDB. */
2001 if (debug_base != info->debug_base)
2002 action = DO_NOTHING;
2003
2004 if (action == UPDATE_OR_RELOAD)
2005 {
3bd7e5b7
SDJ
2006 TRY
2007 {
2008 val = evaluate_probe_argument (pa->probe, 2, frame);
2009 }
2010 CATCH (ex, RETURN_MASK_ERROR)
2011 {
2012 exception_print (gdb_stderr, ex);
2013 do_cleanups (old_chain);
2014 return;
2015 }
2016 END_CATCH
2017
f9e14852
GB
2018 if (val != NULL)
2019 lm = value_as_address (val);
2020
2021 if (lm == 0)
2022 action = FULL_RELOAD;
2023 }
2024
2025 /* Resume section map updates. */
2026 do_cleanups (usm_chain);
2027
2028 if (action == UPDATE_OR_RELOAD)
2029 {
2030 if (!solist_update_incremental (info, lm))
2031 action = FULL_RELOAD;
2032 }
2033
2034 if (action == FULL_RELOAD)
2035 {
2036 if (!solist_update_full (info))
2037 {
2038 do_cleanups (old_chain);
2039 return;
2040 }
2041 }
2042
2043 discard_cleanups (old_chain);
2044}
2045
2046/* Helper function for svr4_update_solib_event_breakpoints. */
2047
2048static int
2049svr4_update_solib_event_breakpoint (struct breakpoint *b, void *arg)
2050{
2051 struct bp_location *loc;
2052
2053 if (b->type != bp_shlib_event)
2054 {
2055 /* Continue iterating. */
2056 return 0;
2057 }
2058
2059 for (loc = b->loc; loc != NULL; loc = loc->next)
2060 {
2061 struct svr4_info *info;
2062 struct probe_and_action *pa;
2063
19ba03f4
SM
2064 info = ((struct svr4_info *)
2065 program_space_data (loc->pspace, solib_svr4_pspace_data));
f9e14852
GB
2066 if (info == NULL || info->probes_table == NULL)
2067 continue;
2068
2069 pa = solib_event_probe_at (info, loc->address);
2070 if (pa == NULL)
2071 continue;
2072
2073 if (pa->action == DO_NOTHING)
2074 {
2075 if (b->enable_state == bp_disabled && stop_on_solib_events)
2076 enable_breakpoint (b);
2077 else if (b->enable_state == bp_enabled && !stop_on_solib_events)
2078 disable_breakpoint (b);
2079 }
2080
2081 break;
2082 }
2083
2084 /* Continue iterating. */
2085 return 0;
2086}
2087
2088/* Enable or disable optional solib event breakpoints as appropriate.
2089 Called whenever stop_on_solib_events is changed. */
2090
2091static void
2092svr4_update_solib_event_breakpoints (void)
2093{
2094 iterate_over_breakpoints (svr4_update_solib_event_breakpoint, NULL);
2095}
2096
2097/* Create and register solib event breakpoints. PROBES is an array
2098 of NUM_PROBES elements, each of which is vector of probes. A
2099 solib event breakpoint will be created and registered for each
2100 probe. */
2101
2102static void
2103svr4_create_probe_breakpoints (struct gdbarch *gdbarch,
729662a5
TT
2104 VEC (probe_p) **probes,
2105 struct objfile *objfile)
f9e14852
GB
2106{
2107 int i;
2108
2109 for (i = 0; i < NUM_PROBES; i++)
2110 {
2111 enum probe_action action = probe_info[i].action;
2112 struct probe *probe;
2113 int ix;
2114
2115 for (ix = 0;
2116 VEC_iterate (probe_p, probes[i], ix, probe);
2117 ++ix)
2118 {
729662a5
TT
2119 CORE_ADDR address = get_probe_address (probe, objfile);
2120
2121 create_solib_event_breakpoint (gdbarch, address);
2122 register_solib_event_probe (probe, address, action);
f9e14852
GB
2123 }
2124 }
2125
2126 svr4_update_solib_event_breakpoints ();
2127}
2128
2129/* Both the SunOS and the SVR4 dynamic linkers call a marker function
2130 before and after mapping and unmapping shared libraries. The sole
2131 purpose of this method is to allow debuggers to set a breakpoint so
2132 they can track these changes.
2133
2134 Some versions of the glibc dynamic linker contain named probes
2135 to allow more fine grained stopping. Given the address of the
2136 original marker function, this function attempts to find these
2137 probes, and if found, sets breakpoints on those instead. If the
2138 probes aren't found, a single breakpoint is set on the original
2139 marker function. */
2140
2141static void
2142svr4_create_solib_event_breakpoints (struct gdbarch *gdbarch,
2143 CORE_ADDR address)
2144{
2145 struct obj_section *os;
2146
2147 os = find_pc_section (address);
2148 if (os != NULL)
2149 {
2150 int with_prefix;
2151
2152 for (with_prefix = 0; with_prefix <= 1; with_prefix++)
2153 {
2154 VEC (probe_p) *probes[NUM_PROBES];
2155 int all_probes_found = 1;
25f9533e 2156 int checked_can_use_probe_arguments = 0;
f9e14852
GB
2157 int i;
2158
2159 memset (probes, 0, sizeof (probes));
2160 for (i = 0; i < NUM_PROBES; i++)
2161 {
2162 const char *name = probe_info[i].name;
25f9533e 2163 struct probe *p;
f9e14852
GB
2164 char buf[32];
2165
2166 /* Fedora 17 and Red Hat Enterprise Linux 6.2-6.4
2167 shipped with an early version of the probes code in
2168 which the probes' names were prefixed with "rtld_"
2169 and the "map_failed" probe did not exist. The
2170 locations of the probes are otherwise the same, so
2171 we check for probes with prefixed names if probes
2172 with unprefixed names are not present. */
2173 if (with_prefix)
2174 {
2175 xsnprintf (buf, sizeof (buf), "rtld_%s", name);
2176 name = buf;
2177 }
2178
2179 probes[i] = find_probes_in_objfile (os->objfile, "rtld", name);
2180
2181 /* The "map_failed" probe did not exist in early
2182 versions of the probes code in which the probes'
2183 names were prefixed with "rtld_". */
2184 if (strcmp (name, "rtld_map_failed") == 0)
2185 continue;
2186
2187 if (VEC_empty (probe_p, probes[i]))
2188 {
2189 all_probes_found = 0;
2190 break;
2191 }
25f9533e
SDJ
2192
2193 /* Ensure probe arguments can be evaluated. */
2194 if (!checked_can_use_probe_arguments)
2195 {
2196 p = VEC_index (probe_p, probes[i], 0);
2197 if (!can_evaluate_probe_arguments (p))
2198 {
2199 all_probes_found = 0;
2200 break;
2201 }
2202 checked_can_use_probe_arguments = 1;
2203 }
f9e14852
GB
2204 }
2205
2206 if (all_probes_found)
729662a5 2207 svr4_create_probe_breakpoints (gdbarch, probes, os->objfile);
f9e14852
GB
2208
2209 for (i = 0; i < NUM_PROBES; i++)
2210 VEC_free (probe_p, probes[i]);
2211
2212 if (all_probes_found)
2213 return;
2214 }
2215 }
2216
2217 create_solib_event_breakpoint (gdbarch, address);
2218}
2219
cb457ae2
YQ
2220/* Helper function for gdb_bfd_lookup_symbol. */
2221
2222static int
2223cmp_name_and_sec_flags (asymbol *sym, void *data)
2224{
2225 return (strcmp (sym->name, (const char *) data) == 0
2226 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0);
2227}
7f86f058 2228/* Arrange for dynamic linker to hit breakpoint.
13437d4b
KB
2229
2230 Both the SunOS and the SVR4 dynamic linkers have, as part of their
2231 debugger interface, support for arranging for the inferior to hit
2232 a breakpoint after mapping in the shared libraries. This function
2233 enables that breakpoint.
2234
2235 For SunOS, there is a special flag location (in_debugger) which we
2236 set to 1. When the dynamic linker sees this flag set, it will set
2237 a breakpoint at a location known only to itself, after saving the
2238 original contents of that place and the breakpoint address itself,
2239 in it's own internal structures. When we resume the inferior, it
2240 will eventually take a SIGTRAP when it runs into the breakpoint.
2241 We handle this (in a different place) by restoring the contents of
2242 the breakpointed location (which is only known after it stops),
2243 chasing around to locate the shared libraries that have been
2244 loaded, then resuming.
2245
2246 For SVR4, the debugger interface structure contains a member (r_brk)
2247 which is statically initialized at the time the shared library is
2248 built, to the offset of a function (_r_debug_state) which is guaran-
2249 teed to be called once before mapping in a library, and again when
2250 the mapping is complete. At the time we are examining this member,
2251 it contains only the unrelocated offset of the function, so we have
2252 to do our own relocation. Later, when the dynamic linker actually
2253 runs, it relocates r_brk to be the actual address of _r_debug_state().
2254
2255 The debugger interface structure also contains an enumeration which
2256 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
2257 depending upon whether or not the library is being mapped or unmapped,
7f86f058 2258 and then set to RT_CONSISTENT after the library is mapped/unmapped. */
13437d4b
KB
2259
2260static int
268a4a75 2261enable_break (struct svr4_info *info, int from_tty)
13437d4b 2262{
3b7344d5 2263 struct bound_minimal_symbol msymbol;
bc043ef3 2264 const char * const *bkpt_namep;
13437d4b 2265 asection *interp_sect;
001f13d8 2266 char *interp_name;
7cd25cfc 2267 CORE_ADDR sym_addr;
13437d4b 2268
6c95b8df
PA
2269 info->interp_text_sect_low = info->interp_text_sect_high = 0;
2270 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
13437d4b 2271
7cd25cfc
DJ
2272 /* If we already have a shared library list in the target, and
2273 r_debug contains r_brk, set the breakpoint there - this should
2274 mean r_brk has already been relocated. Assume the dynamic linker
2275 is the object containing r_brk. */
2276
268a4a75 2277 solib_add (NULL, from_tty, &current_target, auto_solib_add);
7cd25cfc 2278 sym_addr = 0;
1a816a87
PA
2279 if (info->debug_base && solib_svr4_r_map (info) != 0)
2280 sym_addr = solib_svr4_r_brk (info);
7cd25cfc
DJ
2281
2282 if (sym_addr != 0)
2283 {
2284 struct obj_section *os;
2285
b36ec657 2286 sym_addr = gdbarch_addr_bits_remove
f5656ead 2287 (target_gdbarch (), gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
3e43a32a
MS
2288 sym_addr,
2289 &current_target));
b36ec657 2290
48379de6
DE
2291 /* On at least some versions of Solaris there's a dynamic relocation
2292 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
2293 we get control before the dynamic linker has self-relocated.
2294 Check if SYM_ADDR is in a known section, if it is assume we can
2295 trust its value. This is just a heuristic though, it could go away
2296 or be replaced if it's getting in the way.
2297
2298 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
2299 however it's spelled in your particular system) is ARM or Thumb.
2300 That knowledge is encoded in the address, if it's Thumb the low bit
2301 is 1. However, we've stripped that info above and it's not clear
2302 what all the consequences are of passing a non-addr_bits_remove'd
f9e14852 2303 address to svr4_create_solib_event_breakpoints. The call to
48379de6
DE
2304 find_pc_section verifies we know about the address and have some
2305 hope of computing the right kind of breakpoint to use (via
2306 symbol info). It does mean that GDB needs to be pointed at a
2307 non-stripped version of the dynamic linker in order to obtain
2308 information it already knows about. Sigh. */
2309
7cd25cfc
DJ
2310 os = find_pc_section (sym_addr);
2311 if (os != NULL)
2312 {
2313 /* Record the relocated start and end address of the dynamic linker
2314 text and plt section for svr4_in_dynsym_resolve_code. */
2315 bfd *tmp_bfd;
2316 CORE_ADDR load_addr;
2317
2318 tmp_bfd = os->objfile->obfd;
2319 load_addr = ANOFFSET (os->objfile->section_offsets,
e03e6279 2320 SECT_OFF_TEXT (os->objfile));
7cd25cfc
DJ
2321
2322 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
2323 if (interp_sect)
2324 {
6c95b8df 2325 info->interp_text_sect_low =
7cd25cfc 2326 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
2327 info->interp_text_sect_high =
2328 info->interp_text_sect_low
2329 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
2330 }
2331 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
2332 if (interp_sect)
2333 {
6c95b8df 2334 info->interp_plt_sect_low =
7cd25cfc 2335 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
2336 info->interp_plt_sect_high =
2337 info->interp_plt_sect_low
2338 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
2339 }
2340
f9e14852 2341 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
7cd25cfc
DJ
2342 return 1;
2343 }
2344 }
2345
97ec2c2f 2346 /* Find the program interpreter; if not found, warn the user and drop
13437d4b 2347 into the old breakpoint at symbol code. */
97ec2c2f
UW
2348 interp_name = find_program_interpreter ();
2349 if (interp_name)
13437d4b 2350 {
8ad2fcde
KB
2351 CORE_ADDR load_addr = 0;
2352 int load_addr_found = 0;
2ec9a4f8 2353 int loader_found_in_list = 0;
f8766ec1 2354 struct so_list *so;
e4f7b8c8 2355 bfd *tmp_bfd = NULL;
2f4950cd 2356 struct target_ops *tmp_bfd_target;
13437d4b 2357
7cd25cfc 2358 sym_addr = 0;
13437d4b
KB
2359
2360 /* Now we need to figure out where the dynamic linker was
2361 loaded so that we can load its symbols and place a breakpoint
2362 in the dynamic linker itself.
2363
2364 This address is stored on the stack. However, I've been unable
2365 to find any magic formula to find it for Solaris (appears to
2366 be trivial on GNU/Linux). Therefore, we have to try an alternate
2367 mechanism to find the dynamic linker's base address. */
e4f7b8c8 2368
492d29ea 2369 TRY
f1838a98 2370 {
97ec2c2f 2371 tmp_bfd = solib_bfd_open (interp_name);
f1838a98 2372 }
492d29ea
PA
2373 CATCH (ex, RETURN_MASK_ALL)
2374 {
2375 }
2376 END_CATCH
2377
13437d4b
KB
2378 if (tmp_bfd == NULL)
2379 goto bkpt_at_symbol;
2380
2f4950cd 2381 /* Now convert the TMP_BFD into a target. That way target, as
695c3173 2382 well as BFD operations can be used. */
2f4950cd 2383 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
695c3173
TT
2384 /* target_bfd_reopen acquired its own reference, so we can
2385 release ours now. */
2386 gdb_bfd_unref (tmp_bfd);
2f4950cd 2387
f8766ec1
KB
2388 /* On a running target, we can get the dynamic linker's base
2389 address from the shared library table. */
f8766ec1
KB
2390 so = master_so_list ();
2391 while (so)
8ad2fcde 2392 {
97ec2c2f 2393 if (svr4_same_1 (interp_name, so->so_original_name))
8ad2fcde
KB
2394 {
2395 load_addr_found = 1;
2ec9a4f8 2396 loader_found_in_list = 1;
b23518f0 2397 load_addr = lm_addr_check (so, tmp_bfd);
8ad2fcde
KB
2398 break;
2399 }
f8766ec1 2400 so = so->next;
8ad2fcde
KB
2401 }
2402
8d4e36ba
JB
2403 /* If we were not able to find the base address of the loader
2404 from our so_list, then try using the AT_BASE auxilliary entry. */
2405 if (!load_addr_found)
2406 if (target_auxv_search (&current_target, AT_BASE, &load_addr) > 0)
ad3a0e5b 2407 {
f5656ead 2408 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
ad3a0e5b
JK
2409
2410 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
2411 that `+ load_addr' will overflow CORE_ADDR width not creating
2412 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
2413 GDB. */
2414
d182d057 2415 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
ad3a0e5b 2416 {
d182d057 2417 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
ad3a0e5b
JK
2418 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd,
2419 tmp_bfd_target);
2420
2421 gdb_assert (load_addr < space_size);
2422
2423 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
2424 64bit ld.so with 32bit executable, it should not happen. */
2425
2426 if (tmp_entry_point < space_size
2427 && tmp_entry_point + load_addr >= space_size)
2428 load_addr -= space_size;
2429 }
2430
2431 load_addr_found = 1;
2432 }
8d4e36ba 2433
8ad2fcde
KB
2434 /* Otherwise we find the dynamic linker's base address by examining
2435 the current pc (which should point at the entry point for the
8d4e36ba
JB
2436 dynamic linker) and subtracting the offset of the entry point.
2437
2438 This is more fragile than the previous approaches, but is a good
2439 fallback method because it has actually been working well in
2440 most cases. */
8ad2fcde 2441 if (!load_addr_found)
fb14de7b 2442 {
c2250ad1 2443 struct regcache *regcache
f5656ead 2444 = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
433759f7 2445
fb14de7b
UW
2446 load_addr = (regcache_read_pc (regcache)
2447 - exec_entry_point (tmp_bfd, tmp_bfd_target));
2448 }
2ec9a4f8
DJ
2449
2450 if (!loader_found_in_list)
34439770 2451 {
1a816a87
PA
2452 info->debug_loader_name = xstrdup (interp_name);
2453 info->debug_loader_offset_p = 1;
2454 info->debug_loader_offset = load_addr;
268a4a75 2455 solib_add (NULL, from_tty, &current_target, auto_solib_add);
34439770 2456 }
13437d4b
KB
2457
2458 /* Record the relocated start and end address of the dynamic linker
d7fa2ae2 2459 text and plt section for svr4_in_dynsym_resolve_code. */
13437d4b
KB
2460 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
2461 if (interp_sect)
2462 {
6c95b8df 2463 info->interp_text_sect_low =
13437d4b 2464 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
2465 info->interp_text_sect_high =
2466 info->interp_text_sect_low
2467 + bfd_section_size (tmp_bfd, interp_sect);
13437d4b
KB
2468 }
2469 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
2470 if (interp_sect)
2471 {
6c95b8df 2472 info->interp_plt_sect_low =
13437d4b 2473 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
2474 info->interp_plt_sect_high =
2475 info->interp_plt_sect_low
2476 + bfd_section_size (tmp_bfd, interp_sect);
13437d4b
KB
2477 }
2478
2479 /* Now try to set a breakpoint in the dynamic linker. */
2480 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2481 {
cb457ae2
YQ
2482 sym_addr = gdb_bfd_lookup_symbol (tmp_bfd, cmp_name_and_sec_flags,
2483 (void *) *bkpt_namep);
13437d4b
KB
2484 if (sym_addr != 0)
2485 break;
2486 }
2487
2bbe3cc1
DJ
2488 if (sym_addr != 0)
2489 /* Convert 'sym_addr' from a function pointer to an address.
2490 Because we pass tmp_bfd_target instead of the current
2491 target, this will always produce an unrelocated value. */
f5656ead 2492 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2bbe3cc1
DJ
2493 sym_addr,
2494 tmp_bfd_target);
2495
695c3173
TT
2496 /* We're done with both the temporary bfd and target. Closing
2497 the target closes the underlying bfd, because it holds the
2498 only remaining reference. */
460014f5 2499 target_close (tmp_bfd_target);
13437d4b
KB
2500
2501 if (sym_addr != 0)
2502 {
f9e14852
GB
2503 svr4_create_solib_event_breakpoints (target_gdbarch (),
2504 load_addr + sym_addr);
97ec2c2f 2505 xfree (interp_name);
13437d4b
KB
2506 return 1;
2507 }
2508
2509 /* For whatever reason we couldn't set a breakpoint in the dynamic
2510 linker. Warn and drop into the old code. */
2511 bkpt_at_symbol:
97ec2c2f 2512 xfree (interp_name);
82d03102
PG
2513 warning (_("Unable to find dynamic linker breakpoint function.\n"
2514 "GDB will be unable to debug shared library initializers\n"
2515 "and track explicitly loaded dynamic code."));
13437d4b 2516 }
13437d4b 2517
e499d0f1
DJ
2518 /* Scan through the lists of symbols, trying to look up the symbol and
2519 set a breakpoint there. Terminate loop when we/if we succeed. */
2520
2521 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2522 {
2523 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
3b7344d5 2524 if ((msymbol.minsym != NULL)
77e371c0 2525 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
e499d0f1 2526 {
77e371c0 2527 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
f5656ead 2528 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
de64a9ac
JM
2529 sym_addr,
2530 &current_target);
f9e14852 2531 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
e499d0f1
DJ
2532 return 1;
2533 }
2534 }
13437d4b 2535
fb139f32 2536 if (interp_name != NULL && !current_inferior ()->attach_flag)
13437d4b 2537 {
c6490bf2 2538 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
13437d4b 2539 {
c6490bf2 2540 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
3b7344d5 2541 if ((msymbol.minsym != NULL)
77e371c0 2542 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
c6490bf2 2543 {
77e371c0 2544 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
f5656ead 2545 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
c6490bf2
KB
2546 sym_addr,
2547 &current_target);
f9e14852 2548 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
c6490bf2
KB
2549 return 1;
2550 }
13437d4b
KB
2551 }
2552 }
542c95c2 2553 return 0;
13437d4b
KB
2554}
2555
7f86f058 2556/* Implement the "special_symbol_handling" target_so_ops method. */
13437d4b
KB
2557
2558static void
2559svr4_special_symbol_handling (void)
2560{
7f86f058 2561 /* Nothing to do. */
13437d4b
KB
2562}
2563
09919ac2
JK
2564/* Read the ELF program headers from ABFD. Return the contents and
2565 set *PHDRS_SIZE to the size of the program headers. */
e2a44558 2566
09919ac2
JK
2567static gdb_byte *
2568read_program_headers_from_bfd (bfd *abfd, int *phdrs_size)
e2a44558 2569{
09919ac2
JK
2570 Elf_Internal_Ehdr *ehdr;
2571 gdb_byte *buf;
e2a44558 2572
09919ac2 2573 ehdr = elf_elfheader (abfd);
b8040f19 2574
09919ac2
JK
2575 *phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
2576 if (*phdrs_size == 0)
2577 return NULL;
2578
224c3ddb 2579 buf = (gdb_byte *) xmalloc (*phdrs_size);
09919ac2
JK
2580 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
2581 || bfd_bread (buf, *phdrs_size, abfd) != *phdrs_size)
2582 {
2583 xfree (buf);
2584 return NULL;
2585 }
2586
2587 return buf;
b8040f19
JK
2588}
2589
01c30d6e
JK
2590/* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
2591 exec_bfd. Otherwise return 0.
2592
2593 We relocate all of the sections by the same amount. This
c378eb4e 2594 behavior is mandated by recent editions of the System V ABI.
b8040f19
JK
2595 According to the System V Application Binary Interface,
2596 Edition 4.1, page 5-5:
2597
2598 ... Though the system chooses virtual addresses for
2599 individual processes, it maintains the segments' relative
2600 positions. Because position-independent code uses relative
2601 addressesing between segments, the difference between
2602 virtual addresses in memory must match the difference
2603 between virtual addresses in the file. The difference
2604 between the virtual address of any segment in memory and
2605 the corresponding virtual address in the file is thus a
2606 single constant value for any one executable or shared
2607 object in a given process. This difference is the base
2608 address. One use of the base address is to relocate the
2609 memory image of the program during dynamic linking.
2610
2611 The same language also appears in Edition 4.0 of the System V
09919ac2
JK
2612 ABI and is left unspecified in some of the earlier editions.
2613
2614 Decide if the objfile needs to be relocated. As indicated above, we will
2615 only be here when execution is stopped. But during attachment PC can be at
2616 arbitrary address therefore regcache_read_pc can be misleading (contrary to
2617 the auxv AT_ENTRY value). Moreover for executable with interpreter section
2618 regcache_read_pc would point to the interpreter and not the main executable.
2619
2620 So, to summarize, relocations are necessary when the start address obtained
2621 from the executable is different from the address in auxv AT_ENTRY entry.
d989b283 2622
09919ac2
JK
2623 [ The astute reader will note that we also test to make sure that
2624 the executable in question has the DYNAMIC flag set. It is my
2625 opinion that this test is unnecessary (undesirable even). It
2626 was added to avoid inadvertent relocation of an executable
2627 whose e_type member in the ELF header is not ET_DYN. There may
2628 be a time in the future when it is desirable to do relocations
2629 on other types of files as well in which case this condition
2630 should either be removed or modified to accomodate the new file
2631 type. - Kevin, Nov 2000. ] */
b8040f19 2632
01c30d6e
JK
2633static int
2634svr4_exec_displacement (CORE_ADDR *displacementp)
b8040f19 2635{
41752192
JK
2636 /* ENTRY_POINT is a possible function descriptor - before
2637 a call to gdbarch_convert_from_func_ptr_addr. */
8f61baf8 2638 CORE_ADDR entry_point, exec_displacement;
b8040f19
JK
2639
2640 if (exec_bfd == NULL)
2641 return 0;
2642
09919ac2
JK
2643 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
2644 being executed themselves and PIE (Position Independent Executable)
2645 executables are ET_DYN. */
2646
2647 if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0)
2648 return 0;
2649
2650 if (target_auxv_search (&current_target, AT_ENTRY, &entry_point) <= 0)
2651 return 0;
2652
8f61baf8 2653 exec_displacement = entry_point - bfd_get_start_address (exec_bfd);
09919ac2 2654
8f61baf8 2655 /* Verify the EXEC_DISPLACEMENT candidate complies with the required page
09919ac2
JK
2656 alignment. It is cheaper than the program headers comparison below. */
2657
2658 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2659 {
2660 const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd);
2661
2662 /* p_align of PT_LOAD segments does not specify any alignment but
2663 only congruency of addresses:
2664 p_offset % p_align == p_vaddr % p_align
2665 Kernel is free to load the executable with lower alignment. */
2666
8f61baf8 2667 if ((exec_displacement & (elf->minpagesize - 1)) != 0)
09919ac2
JK
2668 return 0;
2669 }
2670
2671 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
2672 comparing their program headers. If the program headers in the auxilliary
2673 vector do not match the program headers in the executable, then we are
2674 looking at a different file than the one used by the kernel - for
2675 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
2676
2677 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2678 {
2679 /* Be optimistic and clear OK only if GDB was able to verify the headers
2680 really do not match. */
2681 int phdrs_size, phdrs2_size, ok = 1;
2682 gdb_byte *buf, *buf2;
0a1e94c7 2683 int arch_size;
09919ac2 2684
a738da3a 2685 buf = read_program_header (-1, &phdrs_size, &arch_size, NULL);
09919ac2 2686 buf2 = read_program_headers_from_bfd (exec_bfd, &phdrs2_size);
0a1e94c7
JK
2687 if (buf != NULL && buf2 != NULL)
2688 {
f5656ead 2689 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
0a1e94c7
JK
2690
2691 /* We are dealing with three different addresses. EXEC_BFD
2692 represents current address in on-disk file. target memory content
2693 may be different from EXEC_BFD as the file may have been prelinked
2694 to a different address after the executable has been loaded.
2695 Moreover the address of placement in target memory can be
3e43a32a
MS
2696 different from what the program headers in target memory say -
2697 this is the goal of PIE.
0a1e94c7
JK
2698
2699 Detected DISPLACEMENT covers both the offsets of PIE placement and
2700 possible new prelink performed after start of the program. Here
2701 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
2702 content offset for the verification purpose. */
2703
2704 if (phdrs_size != phdrs2_size
2705 || bfd_get_arch_size (exec_bfd) != arch_size)
2706 ok = 0;
3e43a32a
MS
2707 else if (arch_size == 32
2708 && phdrs_size >= sizeof (Elf32_External_Phdr)
0a1e94c7
JK
2709 && phdrs_size % sizeof (Elf32_External_Phdr) == 0)
2710 {
2711 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2712 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2713 CORE_ADDR displacement = 0;
2714 int i;
2715
2716 /* DISPLACEMENT could be found more easily by the difference of
2717 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2718 already have enough information to compute that displacement
2719 with what we've read. */
2720
2721 for (i = 0; i < ehdr2->e_phnum; i++)
2722 if (phdr2[i].p_type == PT_LOAD)
2723 {
2724 Elf32_External_Phdr *phdrp;
2725 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2726 CORE_ADDR vaddr, paddr;
2727 CORE_ADDR displacement_vaddr = 0;
2728 CORE_ADDR displacement_paddr = 0;
2729
2730 phdrp = &((Elf32_External_Phdr *) buf)[i];
2731 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2732 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2733
2734 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2735 byte_order);
2736 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2737
2738 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2739 byte_order);
2740 displacement_paddr = paddr - phdr2[i].p_paddr;
2741
2742 if (displacement_vaddr == displacement_paddr)
2743 displacement = displacement_vaddr;
2744
2745 break;
2746 }
2747
2748 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2749
2750 for (i = 0; i < phdrs_size / sizeof (Elf32_External_Phdr); i++)
2751 {
2752 Elf32_External_Phdr *phdrp;
2753 Elf32_External_Phdr *phdr2p;
2754 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2755 CORE_ADDR vaddr, paddr;
43b8e241 2756 asection *plt2_asect;
0a1e94c7
JK
2757
2758 phdrp = &((Elf32_External_Phdr *) buf)[i];
2759 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2760 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2761 phdr2p = &((Elf32_External_Phdr *) buf2)[i];
2762
2763 /* PT_GNU_STACK is an exception by being never relocated by
2764 prelink as its addresses are always zero. */
2765
2766 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2767 continue;
2768
2769 /* Check also other adjustment combinations - PR 11786. */
2770
3e43a32a
MS
2771 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2772 byte_order);
0a1e94c7
JK
2773 vaddr -= displacement;
2774 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
2775
3e43a32a
MS
2776 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2777 byte_order);
0a1e94c7
JK
2778 paddr -= displacement;
2779 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
2780
2781 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2782 continue;
2783
204b5331
DE
2784 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2785 CentOS-5 has problems with filesz, memsz as well.
2786 See PR 11786. */
2787 if (phdr2[i].p_type == PT_GNU_RELRO)
2788 {
2789 Elf32_External_Phdr tmp_phdr = *phdrp;
2790 Elf32_External_Phdr tmp_phdr2 = *phdr2p;
2791
2792 memset (tmp_phdr.p_filesz, 0, 4);
2793 memset (tmp_phdr.p_memsz, 0, 4);
2794 memset (tmp_phdr.p_flags, 0, 4);
2795 memset (tmp_phdr.p_align, 0, 4);
2796 memset (tmp_phdr2.p_filesz, 0, 4);
2797 memset (tmp_phdr2.p_memsz, 0, 4);
2798 memset (tmp_phdr2.p_flags, 0, 4);
2799 memset (tmp_phdr2.p_align, 0, 4);
2800
2801 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2802 == 0)
2803 continue;
2804 }
2805
43b8e241
JK
2806 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2807 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2808 if (plt2_asect)
2809 {
2810 int content2;
2811 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2812 CORE_ADDR filesz;
2813
2814 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2815 & SEC_HAS_CONTENTS) != 0;
2816
2817 filesz = extract_unsigned_integer (buf_filesz_p, 4,
2818 byte_order);
2819
2820 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2821 FILESZ is from the in-memory image. */
2822 if (content2)
2823 filesz += bfd_get_section_size (plt2_asect);
2824 else
2825 filesz -= bfd_get_section_size (plt2_asect);
2826
2827 store_unsigned_integer (buf_filesz_p, 4, byte_order,
2828 filesz);
2829
2830 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2831 continue;
2832 }
2833
0a1e94c7
JK
2834 ok = 0;
2835 break;
2836 }
2837 }
3e43a32a
MS
2838 else if (arch_size == 64
2839 && phdrs_size >= sizeof (Elf64_External_Phdr)
0a1e94c7
JK
2840 && phdrs_size % sizeof (Elf64_External_Phdr) == 0)
2841 {
2842 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2843 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2844 CORE_ADDR displacement = 0;
2845 int i;
2846
2847 /* DISPLACEMENT could be found more easily by the difference of
2848 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2849 already have enough information to compute that displacement
2850 with what we've read. */
2851
2852 for (i = 0; i < ehdr2->e_phnum; i++)
2853 if (phdr2[i].p_type == PT_LOAD)
2854 {
2855 Elf64_External_Phdr *phdrp;
2856 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2857 CORE_ADDR vaddr, paddr;
2858 CORE_ADDR displacement_vaddr = 0;
2859 CORE_ADDR displacement_paddr = 0;
2860
2861 phdrp = &((Elf64_External_Phdr *) buf)[i];
2862 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2863 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2864
2865 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2866 byte_order);
2867 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2868
2869 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2870 byte_order);
2871 displacement_paddr = paddr - phdr2[i].p_paddr;
2872
2873 if (displacement_vaddr == displacement_paddr)
2874 displacement = displacement_vaddr;
2875
2876 break;
2877 }
2878
2879 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2880
2881 for (i = 0; i < phdrs_size / sizeof (Elf64_External_Phdr); i++)
2882 {
2883 Elf64_External_Phdr *phdrp;
2884 Elf64_External_Phdr *phdr2p;
2885 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2886 CORE_ADDR vaddr, paddr;
43b8e241 2887 asection *plt2_asect;
0a1e94c7
JK
2888
2889 phdrp = &((Elf64_External_Phdr *) buf)[i];
2890 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2891 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2892 phdr2p = &((Elf64_External_Phdr *) buf2)[i];
2893
2894 /* PT_GNU_STACK is an exception by being never relocated by
2895 prelink as its addresses are always zero. */
2896
2897 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2898 continue;
2899
2900 /* Check also other adjustment combinations - PR 11786. */
2901
3e43a32a
MS
2902 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2903 byte_order);
0a1e94c7
JK
2904 vaddr -= displacement;
2905 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
2906
3e43a32a
MS
2907 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2908 byte_order);
0a1e94c7
JK
2909 paddr -= displacement;
2910 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
2911
2912 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2913 continue;
2914
204b5331
DE
2915 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2916 CentOS-5 has problems with filesz, memsz as well.
2917 See PR 11786. */
2918 if (phdr2[i].p_type == PT_GNU_RELRO)
2919 {
2920 Elf64_External_Phdr tmp_phdr = *phdrp;
2921 Elf64_External_Phdr tmp_phdr2 = *phdr2p;
2922
2923 memset (tmp_phdr.p_filesz, 0, 8);
2924 memset (tmp_phdr.p_memsz, 0, 8);
2925 memset (tmp_phdr.p_flags, 0, 4);
2926 memset (tmp_phdr.p_align, 0, 8);
2927 memset (tmp_phdr2.p_filesz, 0, 8);
2928 memset (tmp_phdr2.p_memsz, 0, 8);
2929 memset (tmp_phdr2.p_flags, 0, 4);
2930 memset (tmp_phdr2.p_align, 0, 8);
2931
2932 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2933 == 0)
2934 continue;
2935 }
2936
43b8e241
JK
2937 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2938 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2939 if (plt2_asect)
2940 {
2941 int content2;
2942 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2943 CORE_ADDR filesz;
2944
2945 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2946 & SEC_HAS_CONTENTS) != 0;
2947
2948 filesz = extract_unsigned_integer (buf_filesz_p, 8,
2949 byte_order);
2950
2951 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2952 FILESZ is from the in-memory image. */
2953 if (content2)
2954 filesz += bfd_get_section_size (plt2_asect);
2955 else
2956 filesz -= bfd_get_section_size (plt2_asect);
2957
2958 store_unsigned_integer (buf_filesz_p, 8, byte_order,
2959 filesz);
2960
2961 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2962 continue;
2963 }
2964
0a1e94c7
JK
2965 ok = 0;
2966 break;
2967 }
2968 }
2969 else
2970 ok = 0;
2971 }
09919ac2
JK
2972
2973 xfree (buf);
2974 xfree (buf2);
2975
2976 if (!ok)
2977 return 0;
2978 }
b8040f19 2979
ccf26247
JK
2980 if (info_verbose)
2981 {
2982 /* It can be printed repeatedly as there is no easy way to check
2983 the executable symbols/file has been already relocated to
2984 displacement. */
2985
2986 printf_unfiltered (_("Using PIE (Position Independent Executable) "
2987 "displacement %s for \"%s\".\n"),
8f61baf8 2988 paddress (target_gdbarch (), exec_displacement),
ccf26247
JK
2989 bfd_get_filename (exec_bfd));
2990 }
2991
8f61baf8 2992 *displacementp = exec_displacement;
01c30d6e 2993 return 1;
b8040f19
JK
2994}
2995
2996/* Relocate the main executable. This function should be called upon
c378eb4e 2997 stopping the inferior process at the entry point to the program.
b8040f19
JK
2998 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
2999 different, the main executable is relocated by the proper amount. */
3000
3001static void
3002svr4_relocate_main_executable (void)
3003{
01c30d6e
JK
3004 CORE_ADDR displacement;
3005
4e5799b6
JK
3006 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
3007 probably contains the offsets computed using the PIE displacement
3008 from the previous run, which of course are irrelevant for this run.
3009 So we need to determine the new PIE displacement and recompute the
3010 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
3011 already contains pre-computed offsets.
01c30d6e 3012
4e5799b6 3013 If we cannot compute the PIE displacement, either:
01c30d6e 3014
4e5799b6
JK
3015 - The executable is not PIE.
3016
3017 - SYMFILE_OBJFILE does not match the executable started in the target.
3018 This can happen for main executable symbols loaded at the host while
3019 `ld.so --ld-args main-executable' is loaded in the target.
3020
3021 Then we leave the section offsets untouched and use them as is for
3022 this run. Either:
3023
3024 - These section offsets were properly reset earlier, and thus
3025 already contain the correct values. This can happen for instance
3026 when reconnecting via the remote protocol to a target that supports
3027 the `qOffsets' packet.
3028
3029 - The section offsets were not reset earlier, and the best we can
c378eb4e 3030 hope is that the old offsets are still applicable to the new run. */
01c30d6e
JK
3031
3032 if (! svr4_exec_displacement (&displacement))
3033 return;
b8040f19 3034
01c30d6e
JK
3035 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
3036 addresses. */
b8040f19
JK
3037
3038 if (symfile_objfile)
e2a44558 3039 {
e2a44558 3040 struct section_offsets *new_offsets;
b8040f19 3041 int i;
e2a44558 3042
224c3ddb
SM
3043 new_offsets = XALLOCAVEC (struct section_offsets,
3044 symfile_objfile->num_sections);
e2a44558 3045
b8040f19
JK
3046 for (i = 0; i < symfile_objfile->num_sections; i++)
3047 new_offsets->offsets[i] = displacement;
e2a44558 3048
b8040f19 3049 objfile_relocate (symfile_objfile, new_offsets);
e2a44558 3050 }
51bee8e9
JK
3051 else if (exec_bfd)
3052 {
3053 asection *asect;
3054
3055 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
3056 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
3057 (bfd_section_vma (exec_bfd, asect)
3058 + displacement));
3059 }
e2a44558
KB
3060}
3061
7f86f058 3062/* Implement the "create_inferior_hook" target_solib_ops method.
13437d4b
KB
3063
3064 For SVR4 executables, this first instruction is either the first
3065 instruction in the dynamic linker (for dynamically linked
3066 executables) or the instruction at "start" for statically linked
3067 executables. For dynamically linked executables, the system
3068 first exec's /lib/libc.so.N, which contains the dynamic linker,
3069 and starts it running. The dynamic linker maps in any needed
3070 shared libraries, maps in the actual user executable, and then
3071 jumps to "start" in the user executable.
3072
7f86f058
PA
3073 We can arrange to cooperate with the dynamic linker to discover the
3074 names of shared libraries that are dynamically linked, and the base
3075 addresses to which they are linked.
13437d4b
KB
3076
3077 This function is responsible for discovering those names and
3078 addresses, and saving sufficient information about them to allow
d2e5c99a 3079 their symbols to be read at a later time. */
13437d4b 3080
e2a44558 3081static void
268a4a75 3082svr4_solib_create_inferior_hook (int from_tty)
13437d4b 3083{
1a816a87
PA
3084 struct svr4_info *info;
3085
6c95b8df 3086 info = get_svr4_info ();
2020b7ab 3087
f9e14852
GB
3088 /* Clear the probes-based interface's state. */
3089 free_probes_table (info);
3090 free_solib_list (info);
3091
e2a44558 3092 /* Relocate the main executable if necessary. */
86e4bafc 3093 svr4_relocate_main_executable ();
e2a44558 3094
c91c8c16
PA
3095 /* No point setting a breakpoint in the dynamic linker if we can't
3096 hit it (e.g., a core file, or a trace file). */
3097 if (!target_has_execution)
3098 return;
3099
d5a921c9 3100 if (!svr4_have_link_map_offsets ())
513f5903 3101 return;
d5a921c9 3102
268a4a75 3103 if (!enable_break (info, from_tty))
542c95c2 3104 return;
13437d4b
KB
3105}
3106
3107static void
3108svr4_clear_solib (void)
3109{
6c95b8df
PA
3110 struct svr4_info *info;
3111
3112 info = get_svr4_info ();
3113 info->debug_base = 0;
3114 info->debug_loader_offset_p = 0;
3115 info->debug_loader_offset = 0;
3116 xfree (info->debug_loader_name);
3117 info->debug_loader_name = NULL;
13437d4b
KB
3118}
3119
6bb7be43
JB
3120/* Clear any bits of ADDR that wouldn't fit in a target-format
3121 data pointer. "Data pointer" here refers to whatever sort of
3122 address the dynamic linker uses to manage its sections. At the
3123 moment, we don't support shared libraries on any processors where
3124 code and data pointers are different sizes.
3125
3126 This isn't really the right solution. What we really need here is
3127 a way to do arithmetic on CORE_ADDR values that respects the
3128 natural pointer/address correspondence. (For example, on the MIPS,
3129 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
3130 sign-extend the value. There, simply truncating the bits above
819844ad 3131 gdbarch_ptr_bit, as we do below, is no good.) This should probably
6bb7be43
JB
3132 be a new gdbarch method or something. */
3133static CORE_ADDR
3134svr4_truncate_ptr (CORE_ADDR addr)
3135{
f5656ead 3136 if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8)
6bb7be43
JB
3137 /* We don't need to truncate anything, and the bit twiddling below
3138 will fail due to overflow problems. */
3139 return addr;
3140 else
f5656ead 3141 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1);
6bb7be43
JB
3142}
3143
3144
749499cb
KB
3145static void
3146svr4_relocate_section_addresses (struct so_list *so,
0542c86d 3147 struct target_section *sec)
749499cb 3148{
2b2848e2
DE
3149 bfd *abfd = sec->the_bfd_section->owner;
3150
3151 sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so, abfd));
3152 sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so, abfd));
749499cb 3153}
4b188b9f 3154\f
749499cb 3155
4b188b9f 3156/* Architecture-specific operations. */
6bb7be43 3157
4b188b9f
MK
3158/* Per-architecture data key. */
3159static struct gdbarch_data *solib_svr4_data;
e5e2b9ff 3160
4b188b9f 3161struct solib_svr4_ops
e5e2b9ff 3162{
4b188b9f
MK
3163 /* Return a description of the layout of `struct link_map'. */
3164 struct link_map_offsets *(*fetch_link_map_offsets)(void);
3165};
e5e2b9ff 3166
4b188b9f 3167/* Return a default for the architecture-specific operations. */
e5e2b9ff 3168
4b188b9f
MK
3169static void *
3170solib_svr4_init (struct obstack *obstack)
e5e2b9ff 3171{
4b188b9f 3172 struct solib_svr4_ops *ops;
e5e2b9ff 3173
4b188b9f 3174 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
8d005789 3175 ops->fetch_link_map_offsets = NULL;
4b188b9f 3176 return ops;
e5e2b9ff
KB
3177}
3178
4b188b9f 3179/* Set the architecture-specific `struct link_map_offsets' fetcher for
7e3cb44c 3180 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
1c4dcb57 3181
21479ded 3182void
e5e2b9ff
KB
3183set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
3184 struct link_map_offsets *(*flmo) (void))
21479ded 3185{
19ba03f4
SM
3186 struct solib_svr4_ops *ops
3187 = (struct solib_svr4_ops *) gdbarch_data (gdbarch, solib_svr4_data);
4b188b9f
MK
3188
3189 ops->fetch_link_map_offsets = flmo;
7e3cb44c
UW
3190
3191 set_solib_ops (gdbarch, &svr4_so_ops);
21479ded
KB
3192}
3193
4b188b9f
MK
3194/* Fetch a link_map_offsets structure using the architecture-specific
3195 `struct link_map_offsets' fetcher. */
1c4dcb57 3196
4b188b9f
MK
3197static struct link_map_offsets *
3198svr4_fetch_link_map_offsets (void)
21479ded 3199{
19ba03f4
SM
3200 struct solib_svr4_ops *ops
3201 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3202 solib_svr4_data);
4b188b9f
MK
3203
3204 gdb_assert (ops->fetch_link_map_offsets);
3205 return ops->fetch_link_map_offsets ();
21479ded
KB
3206}
3207
4b188b9f
MK
3208/* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
3209
3210static int
3211svr4_have_link_map_offsets (void)
3212{
19ba03f4
SM
3213 struct solib_svr4_ops *ops
3214 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3215 solib_svr4_data);
433759f7 3216
4b188b9f
MK
3217 return (ops->fetch_link_map_offsets != NULL);
3218}
3219\f
3220
e4bbbda8
MK
3221/* Most OS'es that have SVR4-style ELF dynamic libraries define a
3222 `struct r_debug' and a `struct link_map' that are binary compatible
3223 with the origional SVR4 implementation. */
3224
3225/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3226 for an ILP32 SVR4 system. */
d989b283 3227
e4bbbda8
MK
3228struct link_map_offsets *
3229svr4_ilp32_fetch_link_map_offsets (void)
3230{
3231 static struct link_map_offsets lmo;
3232 static struct link_map_offsets *lmp = NULL;
3233
3234 if (lmp == NULL)
3235 {
3236 lmp = &lmo;
3237
e4cd0d6a
MK
3238 lmo.r_version_offset = 0;
3239 lmo.r_version_size = 4;
e4bbbda8 3240 lmo.r_map_offset = 4;
7cd25cfc 3241 lmo.r_brk_offset = 8;
e4cd0d6a 3242 lmo.r_ldsomap_offset = 20;
e4bbbda8
MK
3243
3244 /* Everything we need is in the first 20 bytes. */
3245 lmo.link_map_size = 20;
3246 lmo.l_addr_offset = 0;
e4bbbda8 3247 lmo.l_name_offset = 4;
cc10cae3 3248 lmo.l_ld_offset = 8;
e4bbbda8 3249 lmo.l_next_offset = 12;
e4bbbda8 3250 lmo.l_prev_offset = 16;
e4bbbda8
MK
3251 }
3252
3253 return lmp;
3254}
3255
3256/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3257 for an LP64 SVR4 system. */
d989b283 3258
e4bbbda8
MK
3259struct link_map_offsets *
3260svr4_lp64_fetch_link_map_offsets (void)
3261{
3262 static struct link_map_offsets lmo;
3263 static struct link_map_offsets *lmp = NULL;
3264
3265 if (lmp == NULL)
3266 {
3267 lmp = &lmo;
3268
e4cd0d6a
MK
3269 lmo.r_version_offset = 0;
3270 lmo.r_version_size = 4;
e4bbbda8 3271 lmo.r_map_offset = 8;
7cd25cfc 3272 lmo.r_brk_offset = 16;
e4cd0d6a 3273 lmo.r_ldsomap_offset = 40;
e4bbbda8
MK
3274
3275 /* Everything we need is in the first 40 bytes. */
3276 lmo.link_map_size = 40;
3277 lmo.l_addr_offset = 0;
e4bbbda8 3278 lmo.l_name_offset = 8;
cc10cae3 3279 lmo.l_ld_offset = 16;
e4bbbda8 3280 lmo.l_next_offset = 24;
e4bbbda8 3281 lmo.l_prev_offset = 32;
e4bbbda8
MK
3282 }
3283
3284 return lmp;
3285}
3286\f
3287
7d522c90 3288struct target_so_ops svr4_so_ops;
13437d4b 3289
c378eb4e 3290/* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
3a40aaa0
UW
3291 different rule for symbol lookup. The lookup begins here in the DSO, not in
3292 the main executable. */
3293
d12307c1 3294static struct block_symbol
efad9b6a 3295elf_lookup_lib_symbol (struct objfile *objfile,
3a40aaa0 3296 const char *name,
21b556f4 3297 const domain_enum domain)
3a40aaa0 3298{
61f0d762
JK
3299 bfd *abfd;
3300
3301 if (objfile == symfile_objfile)
3302 abfd = exec_bfd;
3303 else
3304 {
3305 /* OBJFILE should have been passed as the non-debug one. */
3306 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
3307
3308 abfd = objfile->obfd;
3309 }
3310
a738da3a 3311 if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL, NULL) != 1)
d12307c1 3312 return (struct block_symbol) {NULL, NULL};
3a40aaa0 3313
94af9270 3314 return lookup_global_symbol_from_objfile (objfile, name, domain);
3a40aaa0
UW
3315}
3316
a78f21af
AC
3317extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
3318
13437d4b
KB
3319void
3320_initialize_svr4_solib (void)
3321{
4b188b9f 3322 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
6c95b8df 3323 solib_svr4_pspace_data
8e260fc0 3324 = register_program_space_data_with_cleanup (NULL, svr4_pspace_data_cleanup);
4b188b9f 3325
749499cb 3326 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
13437d4b 3327 svr4_so_ops.free_so = svr4_free_so;
0892cb63 3328 svr4_so_ops.clear_so = svr4_clear_so;
13437d4b
KB
3329 svr4_so_ops.clear_solib = svr4_clear_solib;
3330 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
3331 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
3332 svr4_so_ops.current_sos = svr4_current_sos;
3333 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
d7fa2ae2 3334 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
831a0c44 3335 svr4_so_ops.bfd_open = solib_bfd_open;
3a40aaa0 3336 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
a7c02bc8 3337 svr4_so_ops.same = svr4_same;
de18c1d8 3338 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
f9e14852
GB
3339 svr4_so_ops.update_breakpoints = svr4_update_solib_event_breakpoints;
3340 svr4_so_ops.handle_event = svr4_handle_solib_event;
13437d4b 3341}
This page took 2.152999 seconds and 4 git commands to generate.