*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
CommitLineData
ab31aa69 1/* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2f4950cd 2
197e01b6 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999,
e4cd0d6a 4 2000, 2001, 2003, 2004, 2005, 2006
e4bbbda8 5 Free Software Foundation, Inc.
13437d4b
KB
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
197e01b6
EZ
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
13437d4b 23
13437d4b
KB
24#include "defs.h"
25
13437d4b 26#include "elf/external.h"
21479ded 27#include "elf/common.h"
f7856c8f 28#include "elf/mips.h"
13437d4b
KB
29
30#include "symtab.h"
31#include "bfd.h"
32#include "symfile.h"
33#include "objfiles.h"
34#include "gdbcore.h"
13437d4b 35#include "target.h"
13437d4b 36#include "inferior.h"
13437d4b 37
4b188b9f
MK
38#include "gdb_assert.h"
39
13437d4b 40#include "solist.h"
bba93f6c 41#include "solib.h"
13437d4b
KB
42#include "solib-svr4.h"
43
2f4950cd 44#include "bfd-target.h"
cc10cae3 45#include "elf-bfd.h"
2f4950cd
AC
46#include "exec.h"
47
e5e2b9ff 48static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
d5a921c9 49static int svr4_have_link_map_offsets (void);
1c4dcb57 50
4b188b9f
MK
51/* This hook is set to a function that provides native link map
52 offsets if the code in solib-legacy.c is linked in. */
53struct link_map_offsets *(*legacy_svr4_fetch_link_map_offsets_hook) (void);
21479ded 54
13437d4b
KB
55/* Link map info to include in an allocated so_list entry */
56
57struct lm_info
58 {
59 /* Pointer to copy of link map from inferior. The type is char *
60 rather than void *, so that we may use byte offsets to find the
61 various fields without the need for a cast. */
4066fc10 62 gdb_byte *lm;
cc10cae3
AO
63
64 /* Amount by which addresses in the binary should be relocated to
65 match the inferior. This could most often be taken directly
66 from lm, but when prelinking is involved and the prelink base
67 address changes, we may need a different offset, we want to
68 warn about the difference and compute it only once. */
69 CORE_ADDR l_addr;
13437d4b
KB
70 };
71
72/* On SVR4 systems, a list of symbols in the dynamic linker where
73 GDB can try to place a breakpoint to monitor shared library
74 events.
75
76 If none of these symbols are found, or other errors occur, then
77 SVR4 systems will fall back to using a symbol as the "startup
78 mapping complete" breakpoint address. */
79
13437d4b
KB
80static char *solib_break_names[] =
81{
82 "r_debug_state",
83 "_r_debug_state",
84 "_dl_debug_state",
85 "rtld_db_dlactivity",
1f72e589 86 "_rtld_debug_state",
4c0122c8
JB
87
88 /* On the 64-bit PowerPC, the linker symbol with the same name as
89 the C function points to a function descriptor, not to the entry
90 point. The linker symbol whose name is the C function name
91 prefixed with a '.' points to the function's entry point. So
92 when we look through this table, we ignore symbols that point
93 into the data section (thus skipping the descriptor's symbol),
94 and eventually try this one, giving us the real entry point
95 address. */
96 "._dl_debug_state",
97
13437d4b
KB
98 NULL
99};
13437d4b
KB
100
101#define BKPT_AT_SYMBOL 1
102
ab31aa69 103#if defined (BKPT_AT_SYMBOL)
13437d4b
KB
104static char *bkpt_names[] =
105{
106#ifdef SOLIB_BKPT_NAME
107 SOLIB_BKPT_NAME, /* Prefer configured name if it exists. */
108#endif
109 "_start",
ad3dcc5c 110 "__start",
13437d4b
KB
111 "main",
112 NULL
113};
114#endif
115
13437d4b
KB
116static char *main_name_list[] =
117{
118 "main_$main",
119 NULL
120};
121
ae0167b9
AC
122/* Macro to extract an address from a solib structure. When GDB is
123 configured for some 32-bit targets (e.g. Solaris 2.7 sparc), BFD is
124 configured to handle 64-bit targets, so CORE_ADDR is 64 bits. We
125 have to extract only the significant bits of addresses to get the
126 right address when accessing the core file BFD.
127
128 Assume that the address is unsigned. */
13437d4b
KB
129
130#define SOLIB_EXTRACT_ADDRESS(MEMBER) \
ae0167b9 131 extract_unsigned_integer (&(MEMBER), sizeof (MEMBER))
13437d4b
KB
132
133/* local data declarations */
134
13437d4b
KB
135/* link map access functions */
136
137static CORE_ADDR
cc10cae3 138LM_ADDR_FROM_LINK_MAP (struct so_list *so)
13437d4b 139{
4b188b9f 140 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
13437d4b 141
cc10cae3
AO
142 return (CORE_ADDR) extract_signed_integer (so->lm_info->lm
143 + lmo->l_addr_offset,
58bc91c9 144 lmo->l_addr_size);
13437d4b
KB
145}
146
cc10cae3
AO
147static int
148HAS_LM_DYNAMIC_FROM_LINK_MAP ()
149{
150 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
151
152 return (lmo->l_ld_size != 0);
153}
154
155static CORE_ADDR
156LM_DYNAMIC_FROM_LINK_MAP (struct so_list *so)
157{
158 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
159
160 gdb_assert (lmo->l_ld_size != 0);
161
162 return (CORE_ADDR) extract_signed_integer (so->lm_info->lm
163 + lmo->l_ld_offset,
164 lmo->l_ld_size);
165}
166
167static CORE_ADDR
168LM_ADDR_CHECK (struct so_list *so, bfd *abfd)
169{
170 if (so->lm_info->l_addr == (CORE_ADDR)-1)
171 {
172 struct bfd_section *dyninfo_sect;
173 CORE_ADDR l_addr, l_dynaddr, dynaddr, align = 0x1000;
174
175 l_addr = LM_ADDR_FROM_LINK_MAP (so);
176
177 if (! abfd || ! HAS_LM_DYNAMIC_FROM_LINK_MAP ())
178 goto set_addr;
179
180 l_dynaddr = LM_DYNAMIC_FROM_LINK_MAP (so);
181
182 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
183 if (dyninfo_sect == NULL)
184 goto set_addr;
185
186 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
187
188 if (dynaddr + l_addr != l_dynaddr)
189 {
190 warning (_(".dynamic section for \"%s\" "
191 "is not at the expected address"), so->so_name);
192
193 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
194 {
195 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
196 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
197 int i;
198
199 align = 1;
200
201 for (i = 0; i < ehdr->e_phnum; i++)
202 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
203 align = phdr[i].p_align;
204 }
205
206 /* Turn it into a mask. */
207 align--;
208
209 /* If the changes match the alignment requirements, we
210 assume we're using a core file that was generated by the
211 same binary, just prelinked with a different base offset.
212 If it doesn't match, we may have a different binary, the
213 same binary with the dynamic table loaded at an unrelated
214 location, or anything, really. To avoid regressions,
215 don't adjust the base offset in the latter case, although
216 odds are that, if things really changed, debugging won't
217 quite work. */
218 if ((l_addr & align) == 0 && ((dynaddr - l_dynaddr) & align) == 0)
219 {
220 l_addr = l_dynaddr - dynaddr;
221 warning (_("difference appears to be caused by prelink, "
222 "adjusting expectations"));
223 }
224 }
225
226 set_addr:
227 so->lm_info->l_addr = l_addr;
228 }
229
230 return so->lm_info->l_addr;
231}
232
13437d4b
KB
233static CORE_ADDR
234LM_NEXT (struct so_list *so)
235{
4b188b9f 236 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
13437d4b 237
ae0167b9
AC
238 /* Assume that the address is unsigned. */
239 return extract_unsigned_integer (so->lm_info->lm + lmo->l_next_offset,
240 lmo->l_next_size);
13437d4b
KB
241}
242
243static CORE_ADDR
244LM_NAME (struct so_list *so)
245{
4b188b9f 246 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
13437d4b 247
ae0167b9
AC
248 /* Assume that the address is unsigned. */
249 return extract_unsigned_integer (so->lm_info->lm + lmo->l_name_offset,
250 lmo->l_name_size);
13437d4b
KB
251}
252
13437d4b
KB
253static int
254IGNORE_FIRST_LINK_MAP_ENTRY (struct so_list *so)
255{
4b188b9f 256 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
13437d4b 257
ae0167b9
AC
258 /* Assume that the address is unsigned. */
259 return extract_unsigned_integer (so->lm_info->lm + lmo->l_prev_offset,
260 lmo->l_prev_size) == 0;
13437d4b
KB
261}
262
13437d4b
KB
263static CORE_ADDR debug_base; /* Base of dynamic linker structures */
264static CORE_ADDR breakpoint_addr; /* Address where end bkpt is set */
265
266/* Local function prototypes */
267
268static int match_main (char *);
269
87f84c9d 270static CORE_ADDR bfd_lookup_symbol (bfd *, char *, flagword);
13437d4b
KB
271
272/*
273
274 LOCAL FUNCTION
275
276 bfd_lookup_symbol -- lookup the value for a specific symbol
277
278 SYNOPSIS
279
87f84c9d 280 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname, flagword sect_flags)
13437d4b
KB
281
282 DESCRIPTION
283
284 An expensive way to lookup the value of a single symbol for
285 bfd's that are only temporary anyway. This is used by the
286 shared library support to find the address of the debugger
287 interface structures in the shared library.
288
87f84c9d
JB
289 If SECT_FLAGS is non-zero, only match symbols in sections whose
290 flags include all those in SECT_FLAGS.
291
13437d4b
KB
292 Note that 0 is specifically allowed as an error return (no
293 such symbol).
294 */
295
296static CORE_ADDR
87f84c9d 297bfd_lookup_symbol (bfd *abfd, char *symname, flagword sect_flags)
13437d4b 298{
435b259c 299 long storage_needed;
13437d4b
KB
300 asymbol *sym;
301 asymbol **symbol_table;
302 unsigned int number_of_symbols;
303 unsigned int i;
304 struct cleanup *back_to;
305 CORE_ADDR symaddr = 0;
306
307 storage_needed = bfd_get_symtab_upper_bound (abfd);
308
309 if (storage_needed > 0)
310 {
311 symbol_table = (asymbol **) xmalloc (storage_needed);
4efb68b1 312 back_to = make_cleanup (xfree, symbol_table);
13437d4b
KB
313 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
314
315 for (i = 0; i < number_of_symbols; i++)
316 {
317 sym = *symbol_table++;
6314a349 318 if (strcmp (sym->name, symname) == 0
87f84c9d 319 && (sym->section->flags & sect_flags) == sect_flags)
13437d4b
KB
320 {
321 /* Bfd symbols are section relative. */
322 symaddr = sym->value + sym->section->vma;
323 break;
324 }
325 }
326 do_cleanups (back_to);
327 }
328
329 if (symaddr)
330 return symaddr;
331
332 /* On FreeBSD, the dynamic linker is stripped by default. So we'll
333 have to check the dynamic string table too. */
334
335 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
336
337 if (storage_needed > 0)
338 {
339 symbol_table = (asymbol **) xmalloc (storage_needed);
4efb68b1 340 back_to = make_cleanup (xfree, symbol_table);
13437d4b
KB
341 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
342
343 for (i = 0; i < number_of_symbols; i++)
344 {
345 sym = *symbol_table++;
87f84c9d 346
6314a349 347 if (strcmp (sym->name, symname) == 0
87f84c9d 348 && (sym->section->flags & sect_flags) == sect_flags)
13437d4b
KB
349 {
350 /* Bfd symbols are section relative. */
351 symaddr = sym->value + sym->section->vma;
352 break;
353 }
354 }
355 do_cleanups (back_to);
356 }
357
358 return symaddr;
359}
360
13437d4b
KB
361/*
362
363 LOCAL FUNCTION
364
365 elf_locate_base -- locate the base address of dynamic linker structs
366 for SVR4 elf targets.
367
368 SYNOPSIS
369
370 CORE_ADDR elf_locate_base (void)
371
372 DESCRIPTION
373
374 For SVR4 elf targets the address of the dynamic linker's runtime
375 structure is contained within the dynamic info section in the
376 executable file. The dynamic section is also mapped into the
377 inferior address space. Because the runtime loader fills in the
378 real address before starting the inferior, we have to read in the
379 dynamic info section from the inferior address space.
380 If there are any errors while trying to find the address, we
381 silently return 0, otherwise the found address is returned.
382
383 */
384
385static CORE_ADDR
386elf_locate_base (void)
387{
7be0c536 388 struct bfd_section *dyninfo_sect;
13437d4b
KB
389 int dyninfo_sect_size;
390 CORE_ADDR dyninfo_addr;
4066fc10
MI
391 gdb_byte *buf;
392 gdb_byte *bufend;
13437d4b
KB
393 int arch_size;
394
395 /* Find the start address of the .dynamic section. */
396 dyninfo_sect = bfd_get_section_by_name (exec_bfd, ".dynamic");
397 if (dyninfo_sect == NULL)
398 return 0;
399 dyninfo_addr = bfd_section_vma (exec_bfd, dyninfo_sect);
400
401 /* Read in .dynamic section, silently ignore errors. */
402 dyninfo_sect_size = bfd_section_size (exec_bfd, dyninfo_sect);
403 buf = alloca (dyninfo_sect_size);
404 if (target_read_memory (dyninfo_addr, buf, dyninfo_sect_size))
405 return 0;
406
407 /* Find the DT_DEBUG entry in the the .dynamic section.
408 For mips elf we look for DT_MIPS_RLD_MAP, mips elf apparently has
409 no DT_DEBUG entries. */
410
411 arch_size = bfd_get_arch_size (exec_bfd);
412 if (arch_size == -1) /* failure */
413 return 0;
414
415 if (arch_size == 32)
416 { /* 32-bit elf */
417 for (bufend = buf + dyninfo_sect_size;
418 buf < bufend;
419 buf += sizeof (Elf32_External_Dyn))
420 {
421 Elf32_External_Dyn *x_dynp = (Elf32_External_Dyn *) buf;
422 long dyn_tag;
423 CORE_ADDR dyn_ptr;
424
425 dyn_tag = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_tag);
426 if (dyn_tag == DT_NULL)
427 break;
428 else if (dyn_tag == DT_DEBUG)
429 {
430 dyn_ptr = bfd_h_get_32 (exec_bfd,
431 (bfd_byte *) x_dynp->d_un.d_ptr);
432 return dyn_ptr;
433 }
13437d4b
KB
434 else if (dyn_tag == DT_MIPS_RLD_MAP)
435 {
4066fc10 436 gdb_byte *pbuf;
743b930b 437 int pbuf_size = TARGET_PTR_BIT / HOST_CHAR_BIT;
13437d4b 438
743b930b 439 pbuf = alloca (pbuf_size);
13437d4b
KB
440 /* DT_MIPS_RLD_MAP contains a pointer to the address
441 of the dynamic link structure. */
442 dyn_ptr = bfd_h_get_32 (exec_bfd,
443 (bfd_byte *) x_dynp->d_un.d_ptr);
743b930b 444 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
13437d4b 445 return 0;
743b930b 446 return extract_unsigned_integer (pbuf, pbuf_size);
13437d4b 447 }
13437d4b
KB
448 }
449 }
450 else /* 64-bit elf */
451 {
452 for (bufend = buf + dyninfo_sect_size;
453 buf < bufend;
454 buf += sizeof (Elf64_External_Dyn))
455 {
456 Elf64_External_Dyn *x_dynp = (Elf64_External_Dyn *) buf;
457 long dyn_tag;
458 CORE_ADDR dyn_ptr;
459
460 dyn_tag = bfd_h_get_64 (exec_bfd, (bfd_byte *) x_dynp->d_tag);
461 if (dyn_tag == DT_NULL)
462 break;
463 else if (dyn_tag == DT_DEBUG)
464 {
465 dyn_ptr = bfd_h_get_64 (exec_bfd,
466 (bfd_byte *) x_dynp->d_un.d_ptr);
467 return dyn_ptr;
468 }
743b930b
KB
469 else if (dyn_tag == DT_MIPS_RLD_MAP)
470 {
4066fc10 471 gdb_byte *pbuf;
743b930b
KB
472 int pbuf_size = TARGET_PTR_BIT / HOST_CHAR_BIT;
473
474 pbuf = alloca (pbuf_size);
475 /* DT_MIPS_RLD_MAP contains a pointer to the address
476 of the dynamic link structure. */
477 dyn_ptr = bfd_h_get_64 (exec_bfd,
478 (bfd_byte *) x_dynp->d_un.d_ptr);
479 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
480 return 0;
481 return extract_unsigned_integer (pbuf, pbuf_size);
482 }
13437d4b
KB
483 }
484 }
485
486 /* DT_DEBUG entry not found. */
487 return 0;
488}
489
13437d4b
KB
490/*
491
492 LOCAL FUNCTION
493
494 locate_base -- locate the base address of dynamic linker structs
495
496 SYNOPSIS
497
498 CORE_ADDR locate_base (void)
499
500 DESCRIPTION
501
502 For both the SunOS and SVR4 shared library implementations, if the
503 inferior executable has been linked dynamically, there is a single
504 address somewhere in the inferior's data space which is the key to
505 locating all of the dynamic linker's runtime structures. This
506 address is the value of the debug base symbol. The job of this
507 function is to find and return that address, or to return 0 if there
508 is no such address (the executable is statically linked for example).
509
510 For SunOS, the job is almost trivial, since the dynamic linker and
511 all of it's structures are statically linked to the executable at
512 link time. Thus the symbol for the address we are looking for has
513 already been added to the minimal symbol table for the executable's
514 objfile at the time the symbol file's symbols were read, and all we
515 have to do is look it up there. Note that we explicitly do NOT want
516 to find the copies in the shared library.
517
518 The SVR4 version is a bit more complicated because the address
519 is contained somewhere in the dynamic info section. We have to go
520 to a lot more work to discover the address of the debug base symbol.
521 Because of this complexity, we cache the value we find and return that
522 value on subsequent invocations. Note there is no copy in the
523 executable symbol tables.
524
525 */
526
527static CORE_ADDR
528locate_base (void)
529{
13437d4b
KB
530 /* Check to see if we have a currently valid address, and if so, avoid
531 doing all this work again and just return the cached address. If
532 we have no cached address, try to locate it in the dynamic info
d5a921c9
KB
533 section for ELF executables. There's no point in doing any of this
534 though if we don't have some link map offsets to work with. */
13437d4b 535
d5a921c9 536 if (debug_base == 0 && svr4_have_link_map_offsets ())
13437d4b
KB
537 {
538 if (exec_bfd != NULL
539 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
540 debug_base = elf_locate_base ();
13437d4b
KB
541 }
542 return (debug_base);
13437d4b
KB
543}
544
e4cd0d6a
MK
545/* Find the first element in the inferior's dynamic link map, and
546 return its address in the inferior.
13437d4b 547
e4cd0d6a
MK
548 FIXME: Perhaps we should validate the info somehow, perhaps by
549 checking r_version for a known version number, or r_state for
550 RT_CONSISTENT. */
13437d4b
KB
551
552static CORE_ADDR
e4cd0d6a 553solib_svr4_r_map (void)
13437d4b 554{
4b188b9f 555 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
13437d4b 556
e4cd0d6a
MK
557 return read_memory_typed_address (debug_base + lmo->r_map_offset,
558 builtin_type_void_data_ptr);
559}
13437d4b 560
e4cd0d6a
MK
561/* Find the link map for the dynamic linker (if it is not in the
562 normal list of loaded shared objects). */
13437d4b 563
e4cd0d6a
MK
564static CORE_ADDR
565solib_svr4_r_ldsomap (void)
566{
567 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
568 ULONGEST version;
13437d4b 569
e4cd0d6a
MK
570 /* Check version, and return zero if `struct r_debug' doesn't have
571 the r_ldsomap member. */
572 version = read_memory_unsigned_integer (debug_base + lmo->r_version_offset,
573 lmo->r_version_size);
574 if (version < 2 || lmo->r_ldsomap_offset == -1)
575 return 0;
13437d4b 576
e4cd0d6a
MK
577 return read_memory_typed_address (debug_base + lmo->r_ldsomap_offset,
578 builtin_type_void_data_ptr);
13437d4b
KB
579}
580
13437d4b
KB
581/*
582
583 LOCAL FUNCTION
584
585 open_symbol_file_object
586
587 SYNOPSIS
588
589 void open_symbol_file_object (void *from_tty)
590
591 DESCRIPTION
592
593 If no open symbol file, attempt to locate and open the main symbol
594 file. On SVR4 systems, this is the first link map entry. If its
595 name is here, we can open it. Useful when attaching to a process
596 without first loading its symbol file.
597
598 If FROM_TTYP dereferences to a non-zero integer, allow messages to
599 be printed. This parameter is a pointer rather than an int because
600 open_symbol_file_object() is called via catch_errors() and
601 catch_errors() requires a pointer argument. */
602
603static int
604open_symbol_file_object (void *from_ttyp)
605{
606 CORE_ADDR lm, l_name;
607 char *filename;
608 int errcode;
609 int from_tty = *(int *)from_ttyp;
4b188b9f 610 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
4066fc10 611 gdb_byte *l_name_buf = xmalloc (lmo->l_name_size);
b8c9b27d 612 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
13437d4b
KB
613
614 if (symfile_objfile)
615 if (!query ("Attempt to reload symbols from process? "))
616 return 0;
617
618 if ((debug_base = locate_base ()) == 0)
619 return 0; /* failed somehow... */
620
621 /* First link map member should be the executable. */
e4cd0d6a
MK
622 lm = solib_svr4_r_map ();
623 if (lm == 0)
13437d4b
KB
624 return 0; /* failed somehow... */
625
626 /* Read address of name from target memory to GDB. */
627 read_memory (lm + lmo->l_name_offset, l_name_buf, lmo->l_name_size);
628
ae0167b9
AC
629 /* Convert the address to host format. Assume that the address is
630 unsigned. */
631 l_name = extract_unsigned_integer (l_name_buf, lmo->l_name_size);
13437d4b
KB
632
633 /* Free l_name_buf. */
634 do_cleanups (cleanups);
635
636 if (l_name == 0)
637 return 0; /* No filename. */
638
639 /* Now fetch the filename from target memory. */
640 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
641
642 if (errcode)
643 {
8a3fe4f8 644 warning (_("failed to read exec filename from attached file: %s"),
13437d4b
KB
645 safe_strerror (errcode));
646 return 0;
647 }
648
b8c9b27d 649 make_cleanup (xfree, filename);
13437d4b 650 /* Have a pathname: read the symbol file. */
1adeb98a 651 symbol_file_add_main (filename, from_tty);
13437d4b
KB
652
653 return 1;
654}
13437d4b
KB
655
656/* LOCAL FUNCTION
657
658 current_sos -- build a list of currently loaded shared objects
659
660 SYNOPSIS
661
662 struct so_list *current_sos ()
663
664 DESCRIPTION
665
666 Build a list of `struct so_list' objects describing the shared
667 objects currently loaded in the inferior. This list does not
668 include an entry for the main executable file.
669
670 Note that we only gather information directly available from the
671 inferior --- we don't examine any of the shared library files
672 themselves. The declaration of `struct so_list' says which fields
673 we provide values for. */
674
675static struct so_list *
676svr4_current_sos (void)
677{
678 CORE_ADDR lm;
679 struct so_list *head = 0;
680 struct so_list **link_ptr = &head;
e4cd0d6a 681 CORE_ADDR ldsomap = 0;
13437d4b
KB
682
683 /* Make sure we've looked up the inferior's dynamic linker's base
684 structure. */
685 if (! debug_base)
686 {
687 debug_base = locate_base ();
688
689 /* If we can't find the dynamic linker's base structure, this
690 must not be a dynamically linked executable. Hmm. */
691 if (! debug_base)
692 return 0;
693 }
694
695 /* Walk the inferior's link map list, and build our list of
696 `struct so_list' nodes. */
e4cd0d6a 697 lm = solib_svr4_r_map ();
13437d4b
KB
698 while (lm)
699 {
4b188b9f 700 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f4456994 701 struct so_list *new = XZALLOC (struct so_list);
b8c9b27d 702 struct cleanup *old_chain = make_cleanup (xfree, new);
13437d4b 703
13437d4b 704 new->lm_info = xmalloc (sizeof (struct lm_info));
b8c9b27d 705 make_cleanup (xfree, new->lm_info);
13437d4b 706
f4456994 707 new->lm_info->lm = xzalloc (lmo->link_map_size);
b8c9b27d 708 make_cleanup (xfree, new->lm_info->lm);
13437d4b
KB
709
710 read_memory (lm, new->lm_info->lm, lmo->link_map_size);
711
712 lm = LM_NEXT (new);
713
714 /* For SVR4 versions, the first entry in the link map is for the
715 inferior executable, so we must ignore it. For some versions of
716 SVR4, it has no name. For others (Solaris 2.3 for example), it
717 does have a name, so we can no longer use a missing name to
718 decide when to ignore it. */
e4cd0d6a 719 if (IGNORE_FIRST_LINK_MAP_ENTRY (new) && ldsomap == 0)
13437d4b
KB
720 free_so (new);
721 else
722 {
723 int errcode;
724 char *buffer;
725
726 /* Extract this shared object's name. */
727 target_read_string (LM_NAME (new), &buffer,
728 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
729 if (errcode != 0)
8a3fe4f8
AC
730 warning (_("Can't read pathname for load map: %s."),
731 safe_strerror (errcode));
13437d4b
KB
732 else
733 {
734 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
735 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
b8c9b27d 736 xfree (buffer);
13437d4b
KB
737 strcpy (new->so_original_name, new->so_name);
738 }
739
740 /* If this entry has no name, or its name matches the name
741 for the main executable, don't include it in the list. */
742 if (! new->so_name[0]
743 || match_main (new->so_name))
744 free_so (new);
745 else
746 {
cc10cae3
AO
747 new->lm_info->l_addr = (CORE_ADDR)-1;
748
13437d4b
KB
749 new->next = 0;
750 *link_ptr = new;
751 link_ptr = &new->next;
752 }
753 }
754
e4cd0d6a
MK
755 /* On Solaris, the dynamic linker is not in the normal list of
756 shared objects, so make sure we pick it up too. Having
757 symbol information for the dynamic linker is quite crucial
758 for skipping dynamic linker resolver code. */
759 if (lm == 0 && ldsomap == 0)
760 lm = ldsomap = solib_svr4_r_ldsomap ();
761
13437d4b
KB
762 discard_cleanups (old_chain);
763 }
764
765 return head;
766}
767
bc4a16ae
EZ
768/* Get the address of the link_map for a given OBJFILE. Loop through
769 the link maps, and return the address of the one corresponding to
770 the given objfile. Note that this function takes into account that
771 objfile can be the main executable, not just a shared library. The
772 main executable has always an empty name field in the linkmap. */
773
774CORE_ADDR
775svr4_fetch_objfile_link_map (struct objfile *objfile)
776{
777 CORE_ADDR lm;
778
779 if ((debug_base = locate_base ()) == 0)
780 return 0; /* failed somehow... */
781
782 /* Position ourselves on the first link map. */
e4cd0d6a 783 lm = solib_svr4_r_map ();
bc4a16ae
EZ
784 while (lm)
785 {
786 /* Get info on the layout of the r_debug and link_map structures. */
4b188b9f 787 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
bc4a16ae
EZ
788 int errcode;
789 char *buffer;
790 struct lm_info objfile_lm_info;
791 struct cleanup *old_chain;
792 CORE_ADDR name_address;
4066fc10 793 gdb_byte *l_name_buf = xmalloc (lmo->l_name_size);
bc4a16ae
EZ
794 old_chain = make_cleanup (xfree, l_name_buf);
795
796 /* Set up the buffer to contain the portion of the link_map
797 structure that gdb cares about. Note that this is not the
798 whole link_map structure. */
f4456994 799 objfile_lm_info.lm = xzalloc (lmo->link_map_size);
bc4a16ae 800 make_cleanup (xfree, objfile_lm_info.lm);
bc4a16ae
EZ
801
802 /* Read the link map into our internal structure. */
803 read_memory (lm, objfile_lm_info.lm, lmo->link_map_size);
804
805 /* Read address of name from target memory to GDB. */
806 read_memory (lm + lmo->l_name_offset, l_name_buf, lmo->l_name_size);
807
ae0167b9
AC
808 /* Extract this object's name. Assume that the address is
809 unsigned. */
810 name_address = extract_unsigned_integer (l_name_buf, lmo->l_name_size);
bc4a16ae
EZ
811 target_read_string (name_address, &buffer,
812 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
813 make_cleanup (xfree, buffer);
814 if (errcode != 0)
8a3fe4f8
AC
815 warning (_("Can't read pathname for load map: %s."),
816 safe_strerror (errcode));
bc4a16ae
EZ
817 else
818 {
819 /* Is this the linkmap for the file we want? */
820 /* If the file is not a shared library and has no name,
821 we are sure it is the main executable, so we return that. */
822 if ((buffer && strcmp (buffer, objfile->name) == 0)
823 || (!(objfile->flags & OBJF_SHARED) && (strcmp (buffer, "") == 0)))
824 {
825 do_cleanups (old_chain);
826 return lm;
827 }
828 }
ae0167b9
AC
829 /* Not the file we wanted, continue checking. Assume that the
830 address is unsigned. */
831 lm = extract_unsigned_integer (objfile_lm_info.lm + lmo->l_next_offset,
832 lmo->l_next_size);
bc4a16ae
EZ
833 do_cleanups (old_chain);
834 }
835 return 0;
836}
13437d4b
KB
837
838/* On some systems, the only way to recognize the link map entry for
839 the main executable file is by looking at its name. Return
840 non-zero iff SONAME matches one of the known main executable names. */
841
842static int
843match_main (char *soname)
844{
845 char **mainp;
846
847 for (mainp = main_name_list; *mainp != NULL; mainp++)
848 {
849 if (strcmp (soname, *mainp) == 0)
850 return (1);
851 }
852
853 return (0);
854}
855
13437d4b
KB
856/* Return 1 if PC lies in the dynamic symbol resolution code of the
857 SVR4 run time loader. */
13437d4b
KB
858static CORE_ADDR interp_text_sect_low;
859static CORE_ADDR interp_text_sect_high;
860static CORE_ADDR interp_plt_sect_low;
861static CORE_ADDR interp_plt_sect_high;
862
d7fa2ae2
KB
863static int
864svr4_in_dynsym_resolve_code (CORE_ADDR pc)
13437d4b
KB
865{
866 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
867 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
868 || in_plt_section (pc, NULL));
869}
13437d4b 870
2f4950cd
AC
871/* Given an executable's ABFD and target, compute the entry-point
872 address. */
873
874static CORE_ADDR
875exec_entry_point (struct bfd *abfd, struct target_ops *targ)
876{
877 /* KevinB wrote ... for most targets, the address returned by
878 bfd_get_start_address() is the entry point for the start
879 function. But, for some targets, bfd_get_start_address() returns
880 the address of a function descriptor from which the entry point
881 address may be extracted. This address is extracted by
882 gdbarch_convert_from_func_ptr_addr(). The method
883 gdbarch_convert_from_func_ptr_addr() is the merely the identify
884 function for targets which don't use function descriptors. */
885 return gdbarch_convert_from_func_ptr_addr (current_gdbarch,
886 bfd_get_start_address (abfd),
887 targ);
888}
13437d4b
KB
889
890/*
891
892 LOCAL FUNCTION
893
894 enable_break -- arrange for dynamic linker to hit breakpoint
895
896 SYNOPSIS
897
898 int enable_break (void)
899
900 DESCRIPTION
901
902 Both the SunOS and the SVR4 dynamic linkers have, as part of their
903 debugger interface, support for arranging for the inferior to hit
904 a breakpoint after mapping in the shared libraries. This function
905 enables that breakpoint.
906
907 For SunOS, there is a special flag location (in_debugger) which we
908 set to 1. When the dynamic linker sees this flag set, it will set
909 a breakpoint at a location known only to itself, after saving the
910 original contents of that place and the breakpoint address itself,
911 in it's own internal structures. When we resume the inferior, it
912 will eventually take a SIGTRAP when it runs into the breakpoint.
913 We handle this (in a different place) by restoring the contents of
914 the breakpointed location (which is only known after it stops),
915 chasing around to locate the shared libraries that have been
916 loaded, then resuming.
917
918 For SVR4, the debugger interface structure contains a member (r_brk)
919 which is statically initialized at the time the shared library is
920 built, to the offset of a function (_r_debug_state) which is guaran-
921 teed to be called once before mapping in a library, and again when
922 the mapping is complete. At the time we are examining this member,
923 it contains only the unrelocated offset of the function, so we have
924 to do our own relocation. Later, when the dynamic linker actually
925 runs, it relocates r_brk to be the actual address of _r_debug_state().
926
927 The debugger interface structure also contains an enumeration which
928 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
929 depending upon whether or not the library is being mapped or unmapped,
930 and then set to RT_CONSISTENT after the library is mapped/unmapped.
931 */
932
933static int
934enable_break (void)
935{
936 int success = 0;
937
13437d4b
KB
938#ifdef BKPT_AT_SYMBOL
939
940 struct minimal_symbol *msymbol;
941 char **bkpt_namep;
942 asection *interp_sect;
943
944 /* First, remove all the solib event breakpoints. Their addresses
945 may have changed since the last time we ran the program. */
946 remove_solib_event_breakpoints ();
947
13437d4b
KB
948 interp_text_sect_low = interp_text_sect_high = 0;
949 interp_plt_sect_low = interp_plt_sect_high = 0;
950
951 /* Find the .interp section; if not found, warn the user and drop
952 into the old breakpoint at symbol code. */
953 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
954 if (interp_sect)
955 {
956 unsigned int interp_sect_size;
957 char *buf;
8ad2fcde
KB
958 CORE_ADDR load_addr = 0;
959 int load_addr_found = 0;
f8766ec1 960 struct so_list *so;
e4f7b8c8 961 bfd *tmp_bfd = NULL;
2f4950cd 962 struct target_ops *tmp_bfd_target;
e4f7b8c8
MS
963 int tmp_fd = -1;
964 char *tmp_pathname = NULL;
13437d4b
KB
965 CORE_ADDR sym_addr = 0;
966
967 /* Read the contents of the .interp section into a local buffer;
968 the contents specify the dynamic linker this program uses. */
969 interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
970 buf = alloca (interp_sect_size);
971 bfd_get_section_contents (exec_bfd, interp_sect,
972 buf, 0, interp_sect_size);
973
974 /* Now we need to figure out where the dynamic linker was
975 loaded so that we can load its symbols and place a breakpoint
976 in the dynamic linker itself.
977
978 This address is stored on the stack. However, I've been unable
979 to find any magic formula to find it for Solaris (appears to
980 be trivial on GNU/Linux). Therefore, we have to try an alternate
981 mechanism to find the dynamic linker's base address. */
e4f7b8c8
MS
982
983 tmp_fd = solib_open (buf, &tmp_pathname);
984 if (tmp_fd >= 0)
9f76c2cd 985 tmp_bfd = bfd_fopen (tmp_pathname, gnutarget, FOPEN_RB, tmp_fd);
e4f7b8c8 986
13437d4b
KB
987 if (tmp_bfd == NULL)
988 goto bkpt_at_symbol;
989
990 /* Make sure the dynamic linker's really a useful object. */
991 if (!bfd_check_format (tmp_bfd, bfd_object))
992 {
8a3fe4f8 993 warning (_("Unable to grok dynamic linker %s as an object file"), buf);
13437d4b
KB
994 bfd_close (tmp_bfd);
995 goto bkpt_at_symbol;
996 }
997
2f4950cd
AC
998 /* Now convert the TMP_BFD into a target. That way target, as
999 well as BFD operations can be used. Note that closing the
1000 target will also close the underlying bfd. */
1001 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
1002
f8766ec1
KB
1003 /* On a running target, we can get the dynamic linker's base
1004 address from the shared library table. */
1005 solib_add (NULL, 0, NULL, auto_solib_add);
1006 so = master_so_list ();
1007 while (so)
8ad2fcde 1008 {
f8766ec1 1009 if (strcmp (buf, so->so_original_name) == 0)
8ad2fcde
KB
1010 {
1011 load_addr_found = 1;
cc10cae3 1012 load_addr = LM_ADDR_CHECK (so, tmp_bfd);
8ad2fcde
KB
1013 break;
1014 }
f8766ec1 1015 so = so->next;
8ad2fcde
KB
1016 }
1017
1018 /* Otherwise we find the dynamic linker's base address by examining
1019 the current pc (which should point at the entry point for the
1020 dynamic linker) and subtracting the offset of the entry point. */
1021 if (!load_addr_found)
2f4950cd
AC
1022 load_addr = (read_pc ()
1023 - exec_entry_point (tmp_bfd, tmp_bfd_target));
13437d4b
KB
1024
1025 /* Record the relocated start and end address of the dynamic linker
d7fa2ae2 1026 text and plt section for svr4_in_dynsym_resolve_code. */
13437d4b
KB
1027 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1028 if (interp_sect)
1029 {
1030 interp_text_sect_low =
1031 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1032 interp_text_sect_high =
1033 interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1034 }
1035 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1036 if (interp_sect)
1037 {
1038 interp_plt_sect_low =
1039 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1040 interp_plt_sect_high =
1041 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1042 }
1043
1044 /* Now try to set a breakpoint in the dynamic linker. */
1045 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1046 {
87f84c9d
JB
1047 /* On ABI's that use function descriptors, there are usually
1048 two linker symbols associated with each C function: one
1049 pointing at the actual entry point of the machine code,
1050 and one pointing at the function's descriptor. The
1051 latter symbol has the same name as the C function.
1052
1053 What we're looking for here is the machine code entry
1054 point, so we are only interested in symbols in code
1055 sections. */
1056 sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep, SEC_CODE);
13437d4b
KB
1057 if (sym_addr != 0)
1058 break;
1059 }
1060
2f4950cd
AC
1061 /* We're done with both the temporary bfd and target. Remember,
1062 closing the target closes the underlying bfd. */
1063 target_close (tmp_bfd_target, 0);
13437d4b
KB
1064
1065 if (sym_addr != 0)
1066 {
1067 create_solib_event_breakpoint (load_addr + sym_addr);
1068 return 1;
1069 }
1070
1071 /* For whatever reason we couldn't set a breakpoint in the dynamic
1072 linker. Warn and drop into the old code. */
1073 bkpt_at_symbol:
8a3fe4f8 1074 warning (_("Unable to find dynamic linker breakpoint function.\nGDB will be unable to debug shared library initializers\nand track explicitly loaded dynamic code."));
13437d4b 1075 }
13437d4b
KB
1076
1077 /* Scan through the list of symbols, trying to look up the symbol and
1078 set a breakpoint there. Terminate loop when we/if we succeed. */
1079
1080 breakpoint_addr = 0;
1081 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
1082 {
1083 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1084 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1085 {
1086 create_solib_event_breakpoint (SYMBOL_VALUE_ADDRESS (msymbol));
1087 return 1;
1088 }
1089 }
1090
1091 /* Nothing good happened. */
1092 success = 0;
1093
1094#endif /* BKPT_AT_SYMBOL */
1095
13437d4b
KB
1096 return (success);
1097}
1098
1099/*
1100
1101 LOCAL FUNCTION
1102
1103 special_symbol_handling -- additional shared library symbol handling
1104
1105 SYNOPSIS
1106
1107 void special_symbol_handling ()
1108
1109 DESCRIPTION
1110
1111 Once the symbols from a shared object have been loaded in the usual
1112 way, we are called to do any system specific symbol handling that
1113 is needed.
1114
ab31aa69 1115 For SunOS4, this consisted of grunging around in the dynamic
13437d4b
KB
1116 linkers structures to find symbol definitions for "common" symbols
1117 and adding them to the minimal symbol table for the runtime common
1118 objfile.
1119
ab31aa69
KB
1120 However, for SVR4, there's nothing to do.
1121
13437d4b
KB
1122 */
1123
1124static void
1125svr4_special_symbol_handling (void)
1126{
13437d4b
KB
1127}
1128
e2a44558
KB
1129/* Relocate the main executable. This function should be called upon
1130 stopping the inferior process at the entry point to the program.
1131 The entry point from BFD is compared to the PC and if they are
1132 different, the main executable is relocated by the proper amount.
1133
1134 As written it will only attempt to relocate executables which
1135 lack interpreter sections. It seems likely that only dynamic
1136 linker executables will get relocated, though it should work
1137 properly for a position-independent static executable as well. */
1138
1139static void
1140svr4_relocate_main_executable (void)
1141{
1142 asection *interp_sect;
1143 CORE_ADDR pc = read_pc ();
1144
1145 /* Decide if the objfile needs to be relocated. As indicated above,
1146 we will only be here when execution is stopped at the beginning
1147 of the program. Relocation is necessary if the address at which
1148 we are presently stopped differs from the start address stored in
1149 the executable AND there's no interpreter section. The condition
1150 regarding the interpreter section is very important because if
1151 there *is* an interpreter section, execution will begin there
1152 instead. When there is an interpreter section, the start address
1153 is (presumably) used by the interpreter at some point to start
1154 execution of the program.
1155
1156 If there is an interpreter, it is normal for it to be set to an
1157 arbitrary address at the outset. The job of finding it is
1158 handled in enable_break().
1159
1160 So, to summarize, relocations are necessary when there is no
1161 interpreter section and the start address obtained from the
1162 executable is different from the address at which GDB is
1163 currently stopped.
1164
1165 [ The astute reader will note that we also test to make sure that
1166 the executable in question has the DYNAMIC flag set. It is my
1167 opinion that this test is unnecessary (undesirable even). It
1168 was added to avoid inadvertent relocation of an executable
1169 whose e_type member in the ELF header is not ET_DYN. There may
1170 be a time in the future when it is desirable to do relocations
1171 on other types of files as well in which case this condition
1172 should either be removed or modified to accomodate the new file
1173 type. (E.g, an ET_EXEC executable which has been built to be
1174 position-independent could safely be relocated by the OS if
1175 desired. It is true that this violates the ABI, but the ABI
1176 has been known to be bent from time to time.) - Kevin, Nov 2000. ]
1177 */
1178
1179 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
1180 if (interp_sect == NULL
1181 && (bfd_get_file_flags (exec_bfd) & DYNAMIC) != 0
2f4950cd 1182 && (exec_entry_point (exec_bfd, &exec_ops) != pc))
e2a44558
KB
1183 {
1184 struct cleanup *old_chain;
1185 struct section_offsets *new_offsets;
1186 int i, changed;
1187 CORE_ADDR displacement;
1188
1189 /* It is necessary to relocate the objfile. The amount to
1190 relocate by is simply the address at which we are stopped
1191 minus the starting address from the executable.
1192
1193 We relocate all of the sections by the same amount. This
1194 behavior is mandated by recent editions of the System V ABI.
1195 According to the System V Application Binary Interface,
1196 Edition 4.1, page 5-5:
1197
1198 ... Though the system chooses virtual addresses for
1199 individual processes, it maintains the segments' relative
1200 positions. Because position-independent code uses relative
1201 addressesing between segments, the difference between
1202 virtual addresses in memory must match the difference
1203 between virtual addresses in the file. The difference
1204 between the virtual address of any segment in memory and
1205 the corresponding virtual address in the file is thus a
1206 single constant value for any one executable or shared
1207 object in a given process. This difference is the base
1208 address. One use of the base address is to relocate the
1209 memory image of the program during dynamic linking.
1210
1211 The same language also appears in Edition 4.0 of the System V
1212 ABI and is left unspecified in some of the earlier editions. */
1213
2f4950cd 1214 displacement = pc - exec_entry_point (exec_bfd, &exec_ops);
e2a44558
KB
1215 changed = 0;
1216
13fc0c2f
KB
1217 new_offsets = xcalloc (symfile_objfile->num_sections,
1218 sizeof (struct section_offsets));
b8c9b27d 1219 old_chain = make_cleanup (xfree, new_offsets);
e2a44558
KB
1220
1221 for (i = 0; i < symfile_objfile->num_sections; i++)
1222 {
1223 if (displacement != ANOFFSET (symfile_objfile->section_offsets, i))
1224 changed = 1;
1225 new_offsets->offsets[i] = displacement;
1226 }
1227
1228 if (changed)
1229 objfile_relocate (symfile_objfile, new_offsets);
1230
1231 do_cleanups (old_chain);
1232 }
1233}
1234
13437d4b
KB
1235/*
1236
1237 GLOBAL FUNCTION
1238
1239 svr4_solib_create_inferior_hook -- shared library startup support
1240
1241 SYNOPSIS
1242
7095b863 1243 void svr4_solib_create_inferior_hook ()
13437d4b
KB
1244
1245 DESCRIPTION
1246
1247 When gdb starts up the inferior, it nurses it along (through the
1248 shell) until it is ready to execute it's first instruction. At this
1249 point, this function gets called via expansion of the macro
1250 SOLIB_CREATE_INFERIOR_HOOK.
1251
1252 For SunOS executables, this first instruction is typically the
1253 one at "_start", or a similar text label, regardless of whether
1254 the executable is statically or dynamically linked. The runtime
1255 startup code takes care of dynamically linking in any shared
1256 libraries, once gdb allows the inferior to continue.
1257
1258 For SVR4 executables, this first instruction is either the first
1259 instruction in the dynamic linker (for dynamically linked
1260 executables) or the instruction at "start" for statically linked
1261 executables. For dynamically linked executables, the system
1262 first exec's /lib/libc.so.N, which contains the dynamic linker,
1263 and starts it running. The dynamic linker maps in any needed
1264 shared libraries, maps in the actual user executable, and then
1265 jumps to "start" in the user executable.
1266
1267 For both SunOS shared libraries, and SVR4 shared libraries, we
1268 can arrange to cooperate with the dynamic linker to discover the
1269 names of shared libraries that are dynamically linked, and the
1270 base addresses to which they are linked.
1271
1272 This function is responsible for discovering those names and
1273 addresses, and saving sufficient information about them to allow
1274 their symbols to be read at a later time.
1275
1276 FIXME
1277
1278 Between enable_break() and disable_break(), this code does not
1279 properly handle hitting breakpoints which the user might have
1280 set in the startup code or in the dynamic linker itself. Proper
1281 handling will probably have to wait until the implementation is
1282 changed to use the "breakpoint handler function" method.
1283
1284 Also, what if child has exit()ed? Must exit loop somehow.
1285 */
1286
e2a44558 1287static void
13437d4b
KB
1288svr4_solib_create_inferior_hook (void)
1289{
e2a44558
KB
1290 /* Relocate the main executable if necessary. */
1291 svr4_relocate_main_executable ();
1292
d5a921c9
KB
1293 if (!svr4_have_link_map_offsets ())
1294 {
8a3fe4f8 1295 warning (_("no shared library support for this OS / ABI"));
d5a921c9
KB
1296 return;
1297
1298 }
1299
13437d4b
KB
1300 if (!enable_break ())
1301 {
8a3fe4f8 1302 warning (_("shared library handler failed to enable breakpoint"));
13437d4b
KB
1303 return;
1304 }
1305
ab31aa69
KB
1306#if defined(_SCO_DS)
1307 /* SCO needs the loop below, other systems should be using the
13437d4b
KB
1308 special shared library breakpoints and the shared library breakpoint
1309 service routine.
1310
1311 Now run the target. It will eventually hit the breakpoint, at
1312 which point all of the libraries will have been mapped in and we
1313 can go groveling around in the dynamic linker structures to find
1314 out what we need to know about them. */
1315
1316 clear_proceed_status ();
c0236d92 1317 stop_soon = STOP_QUIETLY;
13437d4b
KB
1318 stop_signal = TARGET_SIGNAL_0;
1319 do
1320 {
39f77062 1321 target_resume (pid_to_ptid (-1), 0, stop_signal);
13437d4b
KB
1322 wait_for_inferior ();
1323 }
1324 while (stop_signal != TARGET_SIGNAL_TRAP);
c0236d92 1325 stop_soon = NO_STOP_QUIETLY;
ab31aa69 1326#endif /* defined(_SCO_DS) */
13437d4b
KB
1327}
1328
1329static void
1330svr4_clear_solib (void)
1331{
1332 debug_base = 0;
1333}
1334
1335static void
1336svr4_free_so (struct so_list *so)
1337{
b8c9b27d
KB
1338 xfree (so->lm_info->lm);
1339 xfree (so->lm_info);
13437d4b
KB
1340}
1341
6bb7be43
JB
1342
1343/* Clear any bits of ADDR that wouldn't fit in a target-format
1344 data pointer. "Data pointer" here refers to whatever sort of
1345 address the dynamic linker uses to manage its sections. At the
1346 moment, we don't support shared libraries on any processors where
1347 code and data pointers are different sizes.
1348
1349 This isn't really the right solution. What we really need here is
1350 a way to do arithmetic on CORE_ADDR values that respects the
1351 natural pointer/address correspondence. (For example, on the MIPS,
1352 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
1353 sign-extend the value. There, simply truncating the bits above
1354 TARGET_PTR_BIT, as we do below, is no good.) This should probably
1355 be a new gdbarch method or something. */
1356static CORE_ADDR
1357svr4_truncate_ptr (CORE_ADDR addr)
1358{
1359 if (TARGET_PTR_BIT == sizeof (CORE_ADDR) * 8)
1360 /* We don't need to truncate anything, and the bit twiddling below
1361 will fail due to overflow problems. */
1362 return addr;
1363 else
1364 return addr & (((CORE_ADDR) 1 << TARGET_PTR_BIT) - 1);
1365}
1366
1367
749499cb
KB
1368static void
1369svr4_relocate_section_addresses (struct so_list *so,
1370 struct section_table *sec)
1371{
cc10cae3
AO
1372 sec->addr = svr4_truncate_ptr (sec->addr + LM_ADDR_CHECK (so,
1373 sec->bfd));
1374 sec->endaddr = svr4_truncate_ptr (sec->endaddr + LM_ADDR_CHECK (so,
1375 sec->bfd));
749499cb 1376}
4b188b9f 1377\f
749499cb 1378
4b188b9f 1379/* Architecture-specific operations. */
6bb7be43 1380
4b188b9f
MK
1381/* Per-architecture data key. */
1382static struct gdbarch_data *solib_svr4_data;
e5e2b9ff 1383
4b188b9f 1384struct solib_svr4_ops
e5e2b9ff 1385{
4b188b9f
MK
1386 /* Return a description of the layout of `struct link_map'. */
1387 struct link_map_offsets *(*fetch_link_map_offsets)(void);
1388};
e5e2b9ff 1389
4b188b9f 1390/* Return a default for the architecture-specific operations. */
e5e2b9ff 1391
4b188b9f
MK
1392static void *
1393solib_svr4_init (struct obstack *obstack)
e5e2b9ff 1394{
4b188b9f 1395 struct solib_svr4_ops *ops;
e5e2b9ff 1396
4b188b9f
MK
1397 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
1398 ops->fetch_link_map_offsets = legacy_svr4_fetch_link_map_offsets_hook;
1399 return ops;
e5e2b9ff
KB
1400}
1401
4b188b9f
MK
1402/* Set the architecture-specific `struct link_map_offsets' fetcher for
1403 GDBARCH to FLMO. */
1c4dcb57 1404
21479ded 1405void
e5e2b9ff
KB
1406set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
1407 struct link_map_offsets *(*flmo) (void))
21479ded 1408{
4b188b9f
MK
1409 struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data);
1410
1411 ops->fetch_link_map_offsets = flmo;
21479ded
KB
1412}
1413
4b188b9f
MK
1414/* Fetch a link_map_offsets structure using the architecture-specific
1415 `struct link_map_offsets' fetcher. */
1c4dcb57 1416
4b188b9f
MK
1417static struct link_map_offsets *
1418svr4_fetch_link_map_offsets (void)
21479ded 1419{
4b188b9f
MK
1420 struct solib_svr4_ops *ops = gdbarch_data (current_gdbarch, solib_svr4_data);
1421
1422 gdb_assert (ops->fetch_link_map_offsets);
1423 return ops->fetch_link_map_offsets ();
21479ded
KB
1424}
1425
4b188b9f
MK
1426/* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
1427
1428static int
1429svr4_have_link_map_offsets (void)
1430{
1431 struct solib_svr4_ops *ops = gdbarch_data (current_gdbarch, solib_svr4_data);
1432 return (ops->fetch_link_map_offsets != NULL);
1433}
1434\f
1435
e4bbbda8
MK
1436/* Most OS'es that have SVR4-style ELF dynamic libraries define a
1437 `struct r_debug' and a `struct link_map' that are binary compatible
1438 with the origional SVR4 implementation. */
1439
1440/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
1441 for an ILP32 SVR4 system. */
1442
1443struct link_map_offsets *
1444svr4_ilp32_fetch_link_map_offsets (void)
1445{
1446 static struct link_map_offsets lmo;
1447 static struct link_map_offsets *lmp = NULL;
1448
1449 if (lmp == NULL)
1450 {
1451 lmp = &lmo;
1452
e4cd0d6a
MK
1453 lmo.r_version_offset = 0;
1454 lmo.r_version_size = 4;
e4bbbda8 1455 lmo.r_map_offset = 4;
e4cd0d6a 1456 lmo.r_ldsomap_offset = 20;
e4bbbda8
MK
1457
1458 /* Everything we need is in the first 20 bytes. */
1459 lmo.link_map_size = 20;
1460 lmo.l_addr_offset = 0;
e4cd0d6a 1461 lmo.l_addr_size = 4;
e4bbbda8 1462 lmo.l_name_offset = 4;
e4cd0d6a 1463 lmo.l_name_size = 4;
cc10cae3
AO
1464 lmo.l_ld_offset = 8;
1465 lmo.l_ld_size = 4;
e4bbbda8 1466 lmo.l_next_offset = 12;
e4cd0d6a 1467 lmo.l_next_size = 4;
e4bbbda8 1468 lmo.l_prev_offset = 16;
e4cd0d6a 1469 lmo.l_prev_size = 4;
e4bbbda8
MK
1470 }
1471
1472 return lmp;
1473}
1474
1475/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
1476 for an LP64 SVR4 system. */
1477
1478struct link_map_offsets *
1479svr4_lp64_fetch_link_map_offsets (void)
1480{
1481 static struct link_map_offsets lmo;
1482 static struct link_map_offsets *lmp = NULL;
1483
1484 if (lmp == NULL)
1485 {
1486 lmp = &lmo;
1487
e4cd0d6a
MK
1488 lmo.r_version_offset = 0;
1489 lmo.r_version_size = 4;
e4bbbda8 1490 lmo.r_map_offset = 8;
e4cd0d6a 1491 lmo.r_ldsomap_offset = 40;
e4bbbda8
MK
1492
1493 /* Everything we need is in the first 40 bytes. */
1494 lmo.link_map_size = 40;
1495 lmo.l_addr_offset = 0;
e4cd0d6a 1496 lmo.l_addr_size = 8;
e4bbbda8 1497 lmo.l_name_offset = 8;
e4cd0d6a 1498 lmo.l_name_size = 8;
cc10cae3
AO
1499 lmo.l_ld_offset = 16;
1500 lmo.l_ld_size = 8;
e4bbbda8 1501 lmo.l_next_offset = 24;
e4cd0d6a 1502 lmo.l_next_size = 8;
e4bbbda8 1503 lmo.l_prev_offset = 32;
e4cd0d6a 1504 lmo.l_prev_size = 8;
e4bbbda8
MK
1505 }
1506
1507 return lmp;
1508}
1509\f
1510
13437d4b
KB
1511static struct target_so_ops svr4_so_ops;
1512
a78f21af
AC
1513extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
1514
13437d4b
KB
1515void
1516_initialize_svr4_solib (void)
1517{
4b188b9f
MK
1518 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
1519
749499cb 1520 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
13437d4b
KB
1521 svr4_so_ops.free_so = svr4_free_so;
1522 svr4_so_ops.clear_solib = svr4_clear_solib;
1523 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
1524 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
1525 svr4_so_ops.current_sos = svr4_current_sos;
1526 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
d7fa2ae2 1527 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
13437d4b
KB
1528
1529 /* FIXME: Don't do this here. *_gdbarch_init() should set so_ops. */
1530 current_target_so_ops = &svr4_so_ops;
1531}
This page took 0.605046 seconds and 4 git commands to generate.