2010-04-23 Sriraman Tallam <tmsriram@google.com>
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
CommitLineData
ab31aa69 1/* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2f4950cd 2
6aba47ca 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000,
4c38e0a4 4 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
0fb0cc75 5 Free Software Foundation, Inc.
13437d4b
KB
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
13437d4b
KB
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
13437d4b 21
13437d4b
KB
22#include "defs.h"
23
13437d4b 24#include "elf/external.h"
21479ded 25#include "elf/common.h"
f7856c8f 26#include "elf/mips.h"
13437d4b
KB
27
28#include "symtab.h"
29#include "bfd.h"
30#include "symfile.h"
31#include "objfiles.h"
32#include "gdbcore.h"
13437d4b 33#include "target.h"
13437d4b 34#include "inferior.h"
fb14de7b 35#include "regcache.h"
2020b7ab 36#include "gdbthread.h"
1a816a87 37#include "observer.h"
13437d4b 38
4b188b9f
MK
39#include "gdb_assert.h"
40
13437d4b 41#include "solist.h"
bba93f6c 42#include "solib.h"
13437d4b
KB
43#include "solib-svr4.h"
44
2f4950cd 45#include "bfd-target.h"
cc10cae3 46#include "elf-bfd.h"
2f4950cd 47#include "exec.h"
8d4e36ba 48#include "auxv.h"
f1838a98 49#include "exceptions.h"
2f4950cd 50
e5e2b9ff 51static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
d5a921c9 52static int svr4_have_link_map_offsets (void);
9f2982ff 53static void svr4_relocate_main_executable (void);
1c4dcb57 54
13437d4b
KB
55/* Link map info to include in an allocated so_list entry */
56
57struct lm_info
58 {
59 /* Pointer to copy of link map from inferior. The type is char *
60 rather than void *, so that we may use byte offsets to find the
61 various fields without the need for a cast. */
4066fc10 62 gdb_byte *lm;
cc10cae3
AO
63
64 /* Amount by which addresses in the binary should be relocated to
65 match the inferior. This could most often be taken directly
66 from lm, but when prelinking is involved and the prelink base
67 address changes, we may need a different offset, we want to
68 warn about the difference and compute it only once. */
69 CORE_ADDR l_addr;
93a57060
DJ
70
71 /* The target location of lm. */
72 CORE_ADDR lm_addr;
13437d4b
KB
73 };
74
75/* On SVR4 systems, a list of symbols in the dynamic linker where
76 GDB can try to place a breakpoint to monitor shared library
77 events.
78
79 If none of these symbols are found, or other errors occur, then
80 SVR4 systems will fall back to using a symbol as the "startup
81 mapping complete" breakpoint address. */
82
13437d4b
KB
83static char *solib_break_names[] =
84{
85 "r_debug_state",
86 "_r_debug_state",
87 "_dl_debug_state",
88 "rtld_db_dlactivity",
4c7dcb84 89 "__dl_rtld_db_dlactivity",
1f72e589 90 "_rtld_debug_state",
4c0122c8 91
13437d4b
KB
92 NULL
93};
13437d4b 94
13437d4b
KB
95static char *bkpt_names[] =
96{
13437d4b 97 "_start",
ad3dcc5c 98 "__start",
13437d4b
KB
99 "main",
100 NULL
101};
13437d4b 102
13437d4b
KB
103static char *main_name_list[] =
104{
105 "main_$main",
106 NULL
107};
108
4d7b2d5b
JB
109/* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
110 the same shared library. */
111
112static int
113svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
114{
115 if (strcmp (gdb_so_name, inferior_so_name) == 0)
116 return 1;
117
118 /* On Solaris, when starting inferior we think that dynamic linker is
119 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
120 contains /lib/ld.so.1. Sometimes one file is a link to another, but
121 sometimes they have identical content, but are not linked to each
122 other. We don't restrict this check for Solaris, but the chances
123 of running into this situation elsewhere are very low. */
124 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
125 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
126 return 1;
127
128 /* Similarly, we observed the same issue with sparc64, but with
129 different locations. */
130 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
131 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
132 return 1;
133
134 return 0;
135}
136
137static int
138svr4_same (struct so_list *gdb, struct so_list *inferior)
139{
140 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
141}
142
13437d4b
KB
143/* link map access functions */
144
145static CORE_ADDR
cc10cae3 146LM_ADDR_FROM_LINK_MAP (struct so_list *so)
13437d4b 147{
4b188b9f 148 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 149 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
13437d4b 150
cfaefc65 151 return extract_typed_address (so->lm_info->lm + lmo->l_addr_offset,
b6da22b0 152 ptr_type);
13437d4b
KB
153}
154
cc10cae3 155static int
2c0b251b 156HAS_LM_DYNAMIC_FROM_LINK_MAP (void)
cc10cae3
AO
157{
158 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
159
cfaefc65 160 return lmo->l_ld_offset >= 0;
cc10cae3
AO
161}
162
163static CORE_ADDR
164LM_DYNAMIC_FROM_LINK_MAP (struct so_list *so)
165{
166 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 167 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
cc10cae3 168
cfaefc65 169 return extract_typed_address (so->lm_info->lm + lmo->l_ld_offset,
b6da22b0 170 ptr_type);
cc10cae3
AO
171}
172
173static CORE_ADDR
174LM_ADDR_CHECK (struct so_list *so, bfd *abfd)
175{
176 if (so->lm_info->l_addr == (CORE_ADDR)-1)
177 {
178 struct bfd_section *dyninfo_sect;
28f34a8f 179 CORE_ADDR l_addr, l_dynaddr, dynaddr;
cc10cae3
AO
180
181 l_addr = LM_ADDR_FROM_LINK_MAP (so);
182
183 if (! abfd || ! HAS_LM_DYNAMIC_FROM_LINK_MAP ())
184 goto set_addr;
185
186 l_dynaddr = LM_DYNAMIC_FROM_LINK_MAP (so);
187
188 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
189 if (dyninfo_sect == NULL)
190 goto set_addr;
191
192 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
193
194 if (dynaddr + l_addr != l_dynaddr)
195 {
28f34a8f 196 CORE_ADDR align = 0x1000;
4e1fc9c9 197 CORE_ADDR minpagesize = align;
28f34a8f 198
cc10cae3
AO
199 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
200 {
201 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
202 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
203 int i;
204
205 align = 1;
206
207 for (i = 0; i < ehdr->e_phnum; i++)
208 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
209 align = phdr[i].p_align;
4e1fc9c9
JK
210
211 minpagesize = get_elf_backend_data (abfd)->minpagesize;
cc10cae3
AO
212 }
213
214 /* Turn it into a mask. */
215 align--;
216
217 /* If the changes match the alignment requirements, we
218 assume we're using a core file that was generated by the
219 same binary, just prelinked with a different base offset.
220 If it doesn't match, we may have a different binary, the
221 same binary with the dynamic table loaded at an unrelated
222 location, or anything, really. To avoid regressions,
223 don't adjust the base offset in the latter case, although
224 odds are that, if things really changed, debugging won't
5c0d192f
JK
225 quite work.
226
227 One could expect more the condition
228 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
229 but the one below is relaxed for PPC. The PPC kernel supports
230 either 4k or 64k page sizes. To be prepared for 64k pages,
231 PPC ELF files are built using an alignment requirement of 64k.
232 However, when running on a kernel supporting 4k pages, the memory
233 mapping of the library may not actually happen on a 64k boundary!
234
235 (In the usual case where (l_addr & align) == 0, this check is
4e1fc9c9
JK
236 equivalent to the possibly expected check above.)
237
238 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
5c0d192f 239
4e1fc9c9
JK
240 if ((l_addr & (minpagesize - 1)) == 0
241 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
cc10cae3
AO
242 {
243 l_addr = l_dynaddr - dynaddr;
79d4c408 244
701ed6dc 245 if (info_verbose)
ccf26247
JK
246 printf_unfiltered (_("Using PIC (Position Independent Code) "
247 "prelink displacement %s for \"%s\".\n"),
248 paddress (target_gdbarch, l_addr),
249 so->so_name);
cc10cae3 250 }
79d4c408
DJ
251 else
252 warning (_(".dynamic section for \"%s\" "
253 "is not at the expected address "
254 "(wrong library or version mismatch?)"), so->so_name);
cc10cae3
AO
255 }
256
257 set_addr:
258 so->lm_info->l_addr = l_addr;
259 }
260
261 return so->lm_info->l_addr;
262}
263
13437d4b
KB
264static CORE_ADDR
265LM_NEXT (struct so_list *so)
266{
4b188b9f 267 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 268 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
13437d4b 269
cfaefc65 270 return extract_typed_address (so->lm_info->lm + lmo->l_next_offset,
b6da22b0 271 ptr_type);
13437d4b
KB
272}
273
274static CORE_ADDR
275LM_NAME (struct so_list *so)
276{
4b188b9f 277 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 278 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
13437d4b 279
cfaefc65 280 return extract_typed_address (so->lm_info->lm + lmo->l_name_offset,
b6da22b0 281 ptr_type);
13437d4b
KB
282}
283
13437d4b
KB
284static int
285IGNORE_FIRST_LINK_MAP_ENTRY (struct so_list *so)
286{
4b188b9f 287 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 288 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
13437d4b 289
e499d0f1
DJ
290 /* Assume that everything is a library if the dynamic loader was loaded
291 late by a static executable. */
0763ab81 292 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
e499d0f1
DJ
293 return 0;
294
cfaefc65 295 return extract_typed_address (so->lm_info->lm + lmo->l_prev_offset,
b6da22b0 296 ptr_type) == 0;
13437d4b
KB
297}
298
6c95b8df 299/* Per pspace SVR4 specific data. */
13437d4b 300
1a816a87
PA
301struct svr4_info
302{
1a816a87
PA
303 CORE_ADDR debug_base; /* Base of dynamic linker structures */
304
305 /* Validity flag for debug_loader_offset. */
306 int debug_loader_offset_p;
307
308 /* Load address for the dynamic linker, inferred. */
309 CORE_ADDR debug_loader_offset;
310
311 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
312 char *debug_loader_name;
313
314 /* Load map address for the main executable. */
315 CORE_ADDR main_lm_addr;
1a816a87 316
6c95b8df
PA
317 CORE_ADDR interp_text_sect_low;
318 CORE_ADDR interp_text_sect_high;
319 CORE_ADDR interp_plt_sect_low;
320 CORE_ADDR interp_plt_sect_high;
321};
1a816a87 322
6c95b8df
PA
323/* Per-program-space data key. */
324static const struct program_space_data *solib_svr4_pspace_data;
1a816a87 325
6c95b8df
PA
326static void
327svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
1a816a87 328{
6c95b8df 329 struct svr4_info *info;
1a816a87 330
6c95b8df
PA
331 info = program_space_data (pspace, solib_svr4_pspace_data);
332 xfree (info);
1a816a87
PA
333}
334
6c95b8df
PA
335/* Get the current svr4 data. If none is found yet, add it now. This
336 function always returns a valid object. */
34439770 337
6c95b8df
PA
338static struct svr4_info *
339get_svr4_info (void)
1a816a87 340{
6c95b8df 341 struct svr4_info *info;
1a816a87 342
6c95b8df
PA
343 info = program_space_data (current_program_space, solib_svr4_pspace_data);
344 if (info != NULL)
345 return info;
34439770 346
6c95b8df
PA
347 info = XZALLOC (struct svr4_info);
348 set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
349 return info;
1a816a87 350}
93a57060 351
13437d4b
KB
352/* Local function prototypes */
353
354static int match_main (char *);
355
2bbe3cc1 356static CORE_ADDR bfd_lookup_symbol (bfd *, char *);
13437d4b
KB
357
358/*
359
360 LOCAL FUNCTION
361
362 bfd_lookup_symbol -- lookup the value for a specific symbol
363
364 SYNOPSIS
365
2bbe3cc1 366 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
13437d4b
KB
367
368 DESCRIPTION
369
370 An expensive way to lookup the value of a single symbol for
371 bfd's that are only temporary anyway. This is used by the
372 shared library support to find the address of the debugger
2bbe3cc1 373 notification routine in the shared library.
13437d4b 374
2bbe3cc1
DJ
375 The returned symbol may be in a code or data section; functions
376 will normally be in a code section, but may be in a data section
377 if this architecture uses function descriptors.
87f84c9d 378
13437d4b
KB
379 Note that 0 is specifically allowed as an error return (no
380 such symbol).
381 */
382
383static CORE_ADDR
2bbe3cc1 384bfd_lookup_symbol (bfd *abfd, char *symname)
13437d4b 385{
435b259c 386 long storage_needed;
13437d4b
KB
387 asymbol *sym;
388 asymbol **symbol_table;
389 unsigned int number_of_symbols;
390 unsigned int i;
391 struct cleanup *back_to;
392 CORE_ADDR symaddr = 0;
393
394 storage_needed = bfd_get_symtab_upper_bound (abfd);
395
396 if (storage_needed > 0)
397 {
398 symbol_table = (asymbol **) xmalloc (storage_needed);
4efb68b1 399 back_to = make_cleanup (xfree, symbol_table);
13437d4b
KB
400 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
401
402 for (i = 0; i < number_of_symbols; i++)
403 {
404 sym = *symbol_table++;
6314a349 405 if (strcmp (sym->name, symname) == 0
2bbe3cc1 406 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
13437d4b 407 {
2bbe3cc1 408 /* BFD symbols are section relative. */
13437d4b
KB
409 symaddr = sym->value + sym->section->vma;
410 break;
411 }
412 }
413 do_cleanups (back_to);
414 }
415
416 if (symaddr)
417 return symaddr;
418
419 /* On FreeBSD, the dynamic linker is stripped by default. So we'll
420 have to check the dynamic string table too. */
421
422 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
423
424 if (storage_needed > 0)
425 {
426 symbol_table = (asymbol **) xmalloc (storage_needed);
4efb68b1 427 back_to = make_cleanup (xfree, symbol_table);
13437d4b
KB
428 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
429
430 for (i = 0; i < number_of_symbols; i++)
431 {
432 sym = *symbol_table++;
87f84c9d 433
6314a349 434 if (strcmp (sym->name, symname) == 0
2bbe3cc1 435 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
13437d4b 436 {
2bbe3cc1 437 /* BFD symbols are section relative. */
13437d4b
KB
438 symaddr = sym->value + sym->section->vma;
439 break;
440 }
441 }
442 do_cleanups (back_to);
443 }
444
445 return symaddr;
446}
447
97ec2c2f
UW
448
449/* Read program header TYPE from inferior memory. The header is found
450 by scanning the OS auxillary vector.
451
09919ac2
JK
452 If TYPE == -1, return the program headers instead of the contents of
453 one program header.
454
97ec2c2f
UW
455 Return a pointer to allocated memory holding the program header contents,
456 or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the
457 size of those contents is returned to P_SECT_SIZE. Likewise, the target
458 architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE. */
459
460static gdb_byte *
461read_program_header (int type, int *p_sect_size, int *p_arch_size)
462{
e17a4113 463 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
97ec2c2f
UW
464 CORE_ADDR at_phdr, at_phent, at_phnum;
465 int arch_size, sect_size;
466 CORE_ADDR sect_addr;
467 gdb_byte *buf;
468
469 /* Get required auxv elements from target. */
470 if (target_auxv_search (&current_target, AT_PHDR, &at_phdr) <= 0)
471 return 0;
472 if (target_auxv_search (&current_target, AT_PHENT, &at_phent) <= 0)
473 return 0;
474 if (target_auxv_search (&current_target, AT_PHNUM, &at_phnum) <= 0)
475 return 0;
476 if (!at_phdr || !at_phnum)
477 return 0;
478
479 /* Determine ELF architecture type. */
480 if (at_phent == sizeof (Elf32_External_Phdr))
481 arch_size = 32;
482 else if (at_phent == sizeof (Elf64_External_Phdr))
483 arch_size = 64;
484 else
485 return 0;
486
09919ac2
JK
487 /* Find the requested segment. */
488 if (type == -1)
489 {
490 sect_addr = at_phdr;
491 sect_size = at_phent * at_phnum;
492 }
493 else if (arch_size == 32)
97ec2c2f
UW
494 {
495 Elf32_External_Phdr phdr;
496 int i;
497
498 /* Search for requested PHDR. */
499 for (i = 0; i < at_phnum; i++)
500 {
501 if (target_read_memory (at_phdr + i * sizeof (phdr),
502 (gdb_byte *)&phdr, sizeof (phdr)))
503 return 0;
504
e17a4113
UW
505 if (extract_unsigned_integer ((gdb_byte *)phdr.p_type,
506 4, byte_order) == type)
97ec2c2f
UW
507 break;
508 }
509
510 if (i == at_phnum)
511 return 0;
512
513 /* Retrieve address and size. */
e17a4113
UW
514 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
515 4, byte_order);
516 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
517 4, byte_order);
97ec2c2f
UW
518 }
519 else
520 {
521 Elf64_External_Phdr phdr;
522 int i;
523
524 /* Search for requested PHDR. */
525 for (i = 0; i < at_phnum; i++)
526 {
527 if (target_read_memory (at_phdr + i * sizeof (phdr),
528 (gdb_byte *)&phdr, sizeof (phdr)))
529 return 0;
530
e17a4113
UW
531 if (extract_unsigned_integer ((gdb_byte *)phdr.p_type,
532 4, byte_order) == type)
97ec2c2f
UW
533 break;
534 }
535
536 if (i == at_phnum)
537 return 0;
538
539 /* Retrieve address and size. */
e17a4113
UW
540 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
541 8, byte_order);
542 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
543 8, byte_order);
97ec2c2f
UW
544 }
545
546 /* Read in requested program header. */
547 buf = xmalloc (sect_size);
548 if (target_read_memory (sect_addr, buf, sect_size))
549 {
550 xfree (buf);
551 return NULL;
552 }
553
554 if (p_arch_size)
555 *p_arch_size = arch_size;
556 if (p_sect_size)
557 *p_sect_size = sect_size;
558
559 return buf;
560}
561
562
563/* Return program interpreter string. */
564static gdb_byte *
565find_program_interpreter (void)
566{
567 gdb_byte *buf = NULL;
568
569 /* If we have an exec_bfd, use its section table. */
570 if (exec_bfd
571 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
572 {
573 struct bfd_section *interp_sect;
574
575 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
576 if (interp_sect != NULL)
577 {
578 CORE_ADDR sect_addr = bfd_section_vma (exec_bfd, interp_sect);
579 int sect_size = bfd_section_size (exec_bfd, interp_sect);
580
581 buf = xmalloc (sect_size);
582 bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size);
583 }
584 }
585
586 /* If we didn't find it, use the target auxillary vector. */
587 if (!buf)
588 buf = read_program_header (PT_INTERP, NULL, NULL);
589
590 return buf;
591}
592
593
3a40aaa0
UW
594/* Scan for DYNTAG in .dynamic section of ABFD. If DYNTAG is found 1 is
595 returned and the corresponding PTR is set. */
596
597static int
598scan_dyntag (int dyntag, bfd *abfd, CORE_ADDR *ptr)
599{
600 int arch_size, step, sect_size;
601 long dyn_tag;
b381ea14 602 CORE_ADDR dyn_ptr, dyn_addr;
65728c26 603 gdb_byte *bufend, *bufstart, *buf;
3a40aaa0
UW
604 Elf32_External_Dyn *x_dynp_32;
605 Elf64_External_Dyn *x_dynp_64;
606 struct bfd_section *sect;
61f0d762 607 struct target_section *target_section;
3a40aaa0
UW
608
609 if (abfd == NULL)
610 return 0;
0763ab81
PA
611
612 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
613 return 0;
614
3a40aaa0
UW
615 arch_size = bfd_get_arch_size (abfd);
616 if (arch_size == -1)
0763ab81 617 return 0;
3a40aaa0
UW
618
619 /* Find the start address of the .dynamic section. */
620 sect = bfd_get_section_by_name (abfd, ".dynamic");
621 if (sect == NULL)
622 return 0;
61f0d762
JK
623
624 for (target_section = current_target_sections->sections;
625 target_section < current_target_sections->sections_end;
626 target_section++)
627 if (sect == target_section->the_bfd_section)
628 break;
b381ea14
JK
629 if (target_section < current_target_sections->sections_end)
630 dyn_addr = target_section->addr;
631 else
632 {
633 /* ABFD may come from OBJFILE acting only as a symbol file without being
634 loaded into the target (see add_symbol_file_command). This case is
635 such fallback to the file VMA address without the possibility of
636 having the section relocated to its actual in-memory address. */
637
638 dyn_addr = bfd_section_vma (abfd, sect);
639 }
3a40aaa0 640
65728c26
DJ
641 /* Read in .dynamic from the BFD. We will get the actual value
642 from memory later. */
3a40aaa0 643 sect_size = bfd_section_size (abfd, sect);
65728c26
DJ
644 buf = bufstart = alloca (sect_size);
645 if (!bfd_get_section_contents (abfd, sect,
646 buf, 0, sect_size))
647 return 0;
3a40aaa0
UW
648
649 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
650 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
651 : sizeof (Elf64_External_Dyn);
652 for (bufend = buf + sect_size;
653 buf < bufend;
654 buf += step)
655 {
656 if (arch_size == 32)
657 {
658 x_dynp_32 = (Elf32_External_Dyn *) buf;
659 dyn_tag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
660 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
661 }
65728c26 662 else
3a40aaa0
UW
663 {
664 x_dynp_64 = (Elf64_External_Dyn *) buf;
665 dyn_tag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
666 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
667 }
668 if (dyn_tag == DT_NULL)
669 return 0;
670 if (dyn_tag == dyntag)
671 {
65728c26
DJ
672 /* If requested, try to read the runtime value of this .dynamic
673 entry. */
3a40aaa0 674 if (ptr)
65728c26 675 {
b6da22b0 676 struct type *ptr_type;
65728c26
DJ
677 gdb_byte ptr_buf[8];
678 CORE_ADDR ptr_addr;
679
b6da22b0 680 ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
b381ea14 681 ptr_addr = dyn_addr + (buf - bufstart) + arch_size / 8;
65728c26 682 if (target_read_memory (ptr_addr, ptr_buf, arch_size / 8) == 0)
b6da22b0 683 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
65728c26
DJ
684 *ptr = dyn_ptr;
685 }
686 return 1;
3a40aaa0
UW
687 }
688 }
689
690 return 0;
691}
692
97ec2c2f
UW
693/* Scan for DYNTAG in .dynamic section of the target's main executable,
694 found by consulting the OS auxillary vector. If DYNTAG is found 1 is
695 returned and the corresponding PTR is set. */
696
697static int
698scan_dyntag_auxv (int dyntag, CORE_ADDR *ptr)
699{
e17a4113 700 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
97ec2c2f
UW
701 int sect_size, arch_size, step;
702 long dyn_tag;
703 CORE_ADDR dyn_ptr;
704 gdb_byte *bufend, *bufstart, *buf;
705
706 /* Read in .dynamic section. */
707 buf = bufstart = read_program_header (PT_DYNAMIC, &sect_size, &arch_size);
708 if (!buf)
709 return 0;
710
711 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
712 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
713 : sizeof (Elf64_External_Dyn);
714 for (bufend = buf + sect_size;
715 buf < bufend;
716 buf += step)
717 {
718 if (arch_size == 32)
719 {
720 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
e17a4113
UW
721 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
722 4, byte_order);
723 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
724 4, byte_order);
97ec2c2f
UW
725 }
726 else
727 {
728 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
e17a4113
UW
729 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
730 8, byte_order);
731 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
732 8, byte_order);
97ec2c2f
UW
733 }
734 if (dyn_tag == DT_NULL)
735 break;
736
737 if (dyn_tag == dyntag)
738 {
739 if (ptr)
740 *ptr = dyn_ptr;
741
742 xfree (bufstart);
743 return 1;
744 }
745 }
746
747 xfree (bufstart);
748 return 0;
749}
750
3a40aaa0 751
13437d4b
KB
752/*
753
754 LOCAL FUNCTION
755
756 elf_locate_base -- locate the base address of dynamic linker structs
757 for SVR4 elf targets.
758
759 SYNOPSIS
760
761 CORE_ADDR elf_locate_base (void)
762
763 DESCRIPTION
764
765 For SVR4 elf targets the address of the dynamic linker's runtime
766 structure is contained within the dynamic info section in the
767 executable file. The dynamic section is also mapped into the
768 inferior address space. Because the runtime loader fills in the
769 real address before starting the inferior, we have to read in the
770 dynamic info section from the inferior address space.
771 If there are any errors while trying to find the address, we
772 silently return 0, otherwise the found address is returned.
773
774 */
775
776static CORE_ADDR
777elf_locate_base (void)
778{
3a40aaa0
UW
779 struct minimal_symbol *msymbol;
780 CORE_ADDR dyn_ptr;
13437d4b 781
65728c26
DJ
782 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
783 instead of DT_DEBUG, although they sometimes contain an unused
784 DT_DEBUG. */
97ec2c2f
UW
785 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr)
786 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr))
3a40aaa0 787 {
b6da22b0 788 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
3a40aaa0 789 gdb_byte *pbuf;
b6da22b0 790 int pbuf_size = TYPE_LENGTH (ptr_type);
3a40aaa0
UW
791 pbuf = alloca (pbuf_size);
792 /* DT_MIPS_RLD_MAP contains a pointer to the address
793 of the dynamic link structure. */
794 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
e499d0f1 795 return 0;
b6da22b0 796 return extract_typed_address (pbuf, ptr_type);
e499d0f1
DJ
797 }
798
65728c26 799 /* Find DT_DEBUG. */
97ec2c2f
UW
800 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr)
801 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr))
65728c26
DJ
802 return dyn_ptr;
803
3a40aaa0
UW
804 /* This may be a static executable. Look for the symbol
805 conventionally named _r_debug, as a last resort. */
806 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
807 if (msymbol != NULL)
808 return SYMBOL_VALUE_ADDRESS (msymbol);
13437d4b
KB
809
810 /* DT_DEBUG entry not found. */
811 return 0;
812}
813
13437d4b
KB
814/*
815
816 LOCAL FUNCTION
817
818 locate_base -- locate the base address of dynamic linker structs
819
820 SYNOPSIS
821
1a816a87 822 CORE_ADDR locate_base (struct svr4_info *)
13437d4b
KB
823
824 DESCRIPTION
825
826 For both the SunOS and SVR4 shared library implementations, if the
827 inferior executable has been linked dynamically, there is a single
828 address somewhere in the inferior's data space which is the key to
829 locating all of the dynamic linker's runtime structures. This
830 address is the value of the debug base symbol. The job of this
831 function is to find and return that address, or to return 0 if there
832 is no such address (the executable is statically linked for example).
833
834 For SunOS, the job is almost trivial, since the dynamic linker and
835 all of it's structures are statically linked to the executable at
836 link time. Thus the symbol for the address we are looking for has
837 already been added to the minimal symbol table for the executable's
838 objfile at the time the symbol file's symbols were read, and all we
839 have to do is look it up there. Note that we explicitly do NOT want
840 to find the copies in the shared library.
841
842 The SVR4 version is a bit more complicated because the address
843 is contained somewhere in the dynamic info section. We have to go
844 to a lot more work to discover the address of the debug base symbol.
845 Because of this complexity, we cache the value we find and return that
846 value on subsequent invocations. Note there is no copy in the
847 executable symbol tables.
848
849 */
850
851static CORE_ADDR
1a816a87 852locate_base (struct svr4_info *info)
13437d4b 853{
13437d4b
KB
854 /* Check to see if we have a currently valid address, and if so, avoid
855 doing all this work again and just return the cached address. If
856 we have no cached address, try to locate it in the dynamic info
d5a921c9
KB
857 section for ELF executables. There's no point in doing any of this
858 though if we don't have some link map offsets to work with. */
13437d4b 859
1a816a87 860 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
0763ab81 861 info->debug_base = elf_locate_base ();
1a816a87 862 return info->debug_base;
13437d4b
KB
863}
864
e4cd0d6a
MK
865/* Find the first element in the inferior's dynamic link map, and
866 return its address in the inferior.
13437d4b 867
e4cd0d6a
MK
868 FIXME: Perhaps we should validate the info somehow, perhaps by
869 checking r_version for a known version number, or r_state for
870 RT_CONSISTENT. */
13437d4b
KB
871
872static CORE_ADDR
1a816a87 873solib_svr4_r_map (struct svr4_info *info)
13437d4b 874{
4b188b9f 875 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 876 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
08597104
JB
877 CORE_ADDR addr = 0;
878 volatile struct gdb_exception ex;
13437d4b 879
08597104
JB
880 TRY_CATCH (ex, RETURN_MASK_ERROR)
881 {
882 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
883 ptr_type);
884 }
885 exception_print (gdb_stderr, ex);
886 return addr;
e4cd0d6a 887}
13437d4b 888
7cd25cfc
DJ
889/* Find r_brk from the inferior's debug base. */
890
891static CORE_ADDR
1a816a87 892solib_svr4_r_brk (struct svr4_info *info)
7cd25cfc
DJ
893{
894 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 895 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
7cd25cfc 896
1a816a87
PA
897 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
898 ptr_type);
7cd25cfc
DJ
899}
900
e4cd0d6a
MK
901/* Find the link map for the dynamic linker (if it is not in the
902 normal list of loaded shared objects). */
13437d4b 903
e4cd0d6a 904static CORE_ADDR
1a816a87 905solib_svr4_r_ldsomap (struct svr4_info *info)
e4cd0d6a
MK
906{
907 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 908 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
e17a4113 909 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
e4cd0d6a 910 ULONGEST version;
13437d4b 911
e4cd0d6a
MK
912 /* Check version, and return zero if `struct r_debug' doesn't have
913 the r_ldsomap member. */
1a816a87
PA
914 version
915 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
e17a4113 916 lmo->r_version_size, byte_order);
e4cd0d6a
MK
917 if (version < 2 || lmo->r_ldsomap_offset == -1)
918 return 0;
13437d4b 919
1a816a87 920 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
b6da22b0 921 ptr_type);
13437d4b
KB
922}
923
de18c1d8
JM
924/* On Solaris systems with some versions of the dynamic linker,
925 ld.so's l_name pointer points to the SONAME in the string table
926 rather than into writable memory. So that GDB can find shared
927 libraries when loading a core file generated by gcore, ensure that
928 memory areas containing the l_name string are saved in the core
929 file. */
930
931static int
932svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
933{
934 struct svr4_info *info;
935 CORE_ADDR ldsomap;
936 struct so_list *new;
937 struct cleanup *old_chain;
938 struct link_map_offsets *lmo;
939 CORE_ADDR lm_name;
940
941 info = get_svr4_info ();
942
943 info->debug_base = 0;
944 locate_base (info);
945 if (!info->debug_base)
946 return 0;
947
948 ldsomap = solib_svr4_r_ldsomap (info);
949 if (!ldsomap)
950 return 0;
951
952 lmo = svr4_fetch_link_map_offsets ();
953 new = XZALLOC (struct so_list);
954 old_chain = make_cleanup (xfree, new);
955 new->lm_info = xmalloc (sizeof (struct lm_info));
956 make_cleanup (xfree, new->lm_info);
957 new->lm_info->l_addr = (CORE_ADDR)-1;
958 new->lm_info->lm_addr = ldsomap;
959 new->lm_info->lm = xzalloc (lmo->link_map_size);
960 make_cleanup (xfree, new->lm_info->lm);
961 read_memory (ldsomap, new->lm_info->lm, lmo->link_map_size);
962 lm_name = LM_NAME (new);
963 do_cleanups (old_chain);
964
965 return (lm_name >= vaddr && lm_name < vaddr + size);
966}
967
13437d4b
KB
968/*
969
970 LOCAL FUNCTION
971
972 open_symbol_file_object
973
974 SYNOPSIS
975
976 void open_symbol_file_object (void *from_tty)
977
978 DESCRIPTION
979
980 If no open symbol file, attempt to locate and open the main symbol
981 file. On SVR4 systems, this is the first link map entry. If its
982 name is here, we can open it. Useful when attaching to a process
983 without first loading its symbol file.
984
985 If FROM_TTYP dereferences to a non-zero integer, allow messages to
986 be printed. This parameter is a pointer rather than an int because
987 open_symbol_file_object() is called via catch_errors() and
988 catch_errors() requires a pointer argument. */
989
990static int
991open_symbol_file_object (void *from_ttyp)
992{
993 CORE_ADDR lm, l_name;
994 char *filename;
995 int errcode;
996 int from_tty = *(int *)from_ttyp;
4b188b9f 997 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0
UW
998 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
999 int l_name_size = TYPE_LENGTH (ptr_type);
cfaefc65 1000 gdb_byte *l_name_buf = xmalloc (l_name_size);
b8c9b27d 1001 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
6c95b8df 1002 struct svr4_info *info = get_svr4_info ();
13437d4b
KB
1003
1004 if (symfile_objfile)
9e2f0ad4 1005 if (!query (_("Attempt to reload symbols from process? ")))
13437d4b
KB
1006 return 0;
1007
7cd25cfc 1008 /* Always locate the debug struct, in case it has moved. */
1a816a87
PA
1009 info->debug_base = 0;
1010 if (locate_base (info) == 0)
13437d4b
KB
1011 return 0; /* failed somehow... */
1012
1013 /* First link map member should be the executable. */
1a816a87 1014 lm = solib_svr4_r_map (info);
e4cd0d6a 1015 if (lm == 0)
13437d4b
KB
1016 return 0; /* failed somehow... */
1017
1018 /* Read address of name from target memory to GDB. */
cfaefc65 1019 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
13437d4b 1020
cfaefc65 1021 /* Convert the address to host format. */
b6da22b0 1022 l_name = extract_typed_address (l_name_buf, ptr_type);
13437d4b
KB
1023
1024 /* Free l_name_buf. */
1025 do_cleanups (cleanups);
1026
1027 if (l_name == 0)
1028 return 0; /* No filename. */
1029
1030 /* Now fetch the filename from target memory. */
1031 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
ea5bf0a1 1032 make_cleanup (xfree, filename);
13437d4b
KB
1033
1034 if (errcode)
1035 {
8a3fe4f8 1036 warning (_("failed to read exec filename from attached file: %s"),
13437d4b
KB
1037 safe_strerror (errcode));
1038 return 0;
1039 }
1040
13437d4b 1041 /* Have a pathname: read the symbol file. */
1adeb98a 1042 symbol_file_add_main (filename, from_tty);
13437d4b
KB
1043
1044 return 1;
1045}
13437d4b 1046
34439770
DJ
1047/* If no shared library information is available from the dynamic
1048 linker, build a fallback list from other sources. */
1049
1050static struct so_list *
1051svr4_default_sos (void)
1052{
6c95b8df 1053 struct svr4_info *info = get_svr4_info ();
1a816a87 1054
34439770
DJ
1055 struct so_list *head = NULL;
1056 struct so_list **link_ptr = &head;
1057
1a816a87 1058 if (info->debug_loader_offset_p)
34439770
DJ
1059 {
1060 struct so_list *new = XZALLOC (struct so_list);
1061
1062 new->lm_info = xmalloc (sizeof (struct lm_info));
1063
1064 /* Nothing will ever check the cached copy of the link
1065 map if we set l_addr. */
1a816a87 1066 new->lm_info->l_addr = info->debug_loader_offset;
93a57060 1067 new->lm_info->lm_addr = 0;
34439770
DJ
1068 new->lm_info->lm = NULL;
1069
1a816a87
PA
1070 strncpy (new->so_name, info->debug_loader_name,
1071 SO_NAME_MAX_PATH_SIZE - 1);
34439770
DJ
1072 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1073 strcpy (new->so_original_name, new->so_name);
1074
1075 *link_ptr = new;
1076 link_ptr = &new->next;
1077 }
1078
1079 return head;
1080}
1081
13437d4b
KB
1082/* LOCAL FUNCTION
1083
1084 current_sos -- build a list of currently loaded shared objects
1085
1086 SYNOPSIS
1087
1088 struct so_list *current_sos ()
1089
1090 DESCRIPTION
1091
1092 Build a list of `struct so_list' objects describing the shared
1093 objects currently loaded in the inferior. This list does not
1094 include an entry for the main executable file.
1095
1096 Note that we only gather information directly available from the
1097 inferior --- we don't examine any of the shared library files
1098 themselves. The declaration of `struct so_list' says which fields
1099 we provide values for. */
1100
1101static struct so_list *
1102svr4_current_sos (void)
1103{
1104 CORE_ADDR lm;
1105 struct so_list *head = 0;
1106 struct so_list **link_ptr = &head;
e4cd0d6a 1107 CORE_ADDR ldsomap = 0;
1a816a87
PA
1108 struct svr4_info *info;
1109
6c95b8df 1110 info = get_svr4_info ();
13437d4b 1111
7cd25cfc 1112 /* Always locate the debug struct, in case it has moved. */
1a816a87
PA
1113 info->debug_base = 0;
1114 locate_base (info);
13437d4b 1115
7cd25cfc
DJ
1116 /* If we can't find the dynamic linker's base structure, this
1117 must not be a dynamically linked executable. Hmm. */
1a816a87 1118 if (! info->debug_base)
7cd25cfc 1119 return svr4_default_sos ();
13437d4b
KB
1120
1121 /* Walk the inferior's link map list, and build our list of
1122 `struct so_list' nodes. */
1a816a87 1123 lm = solib_svr4_r_map (info);
34439770 1124
13437d4b
KB
1125 while (lm)
1126 {
4b188b9f 1127 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f4456994 1128 struct so_list *new = XZALLOC (struct so_list);
b8c9b27d 1129 struct cleanup *old_chain = make_cleanup (xfree, new);
13437d4b 1130
13437d4b 1131 new->lm_info = xmalloc (sizeof (struct lm_info));
b8c9b27d 1132 make_cleanup (xfree, new->lm_info);
13437d4b 1133
831004b7 1134 new->lm_info->l_addr = (CORE_ADDR)-1;
93a57060 1135 new->lm_info->lm_addr = lm;
f4456994 1136 new->lm_info->lm = xzalloc (lmo->link_map_size);
b8c9b27d 1137 make_cleanup (xfree, new->lm_info->lm);
13437d4b
KB
1138
1139 read_memory (lm, new->lm_info->lm, lmo->link_map_size);
1140
1141 lm = LM_NEXT (new);
1142
1143 /* For SVR4 versions, the first entry in the link map is for the
1144 inferior executable, so we must ignore it. For some versions of
1145 SVR4, it has no name. For others (Solaris 2.3 for example), it
1146 does have a name, so we can no longer use a missing name to
1147 decide when to ignore it. */
e4cd0d6a 1148 if (IGNORE_FIRST_LINK_MAP_ENTRY (new) && ldsomap == 0)
93a57060 1149 {
1a816a87 1150 info->main_lm_addr = new->lm_info->lm_addr;
93a57060
DJ
1151 free_so (new);
1152 }
13437d4b
KB
1153 else
1154 {
1155 int errcode;
1156 char *buffer;
1157
1158 /* Extract this shared object's name. */
1159 target_read_string (LM_NAME (new), &buffer,
1160 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1161 if (errcode != 0)
8a3fe4f8
AC
1162 warning (_("Can't read pathname for load map: %s."),
1163 safe_strerror (errcode));
13437d4b
KB
1164 else
1165 {
1166 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
1167 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
13437d4b
KB
1168 strcpy (new->so_original_name, new->so_name);
1169 }
ea5bf0a1 1170 xfree (buffer);
13437d4b
KB
1171
1172 /* If this entry has no name, or its name matches the name
1173 for the main executable, don't include it in the list. */
1174 if (! new->so_name[0]
1175 || match_main (new->so_name))
1176 free_so (new);
1177 else
1178 {
1179 new->next = 0;
1180 *link_ptr = new;
1181 link_ptr = &new->next;
1182 }
1183 }
1184
e4cd0d6a
MK
1185 /* On Solaris, the dynamic linker is not in the normal list of
1186 shared objects, so make sure we pick it up too. Having
1187 symbol information for the dynamic linker is quite crucial
1188 for skipping dynamic linker resolver code. */
1189 if (lm == 0 && ldsomap == 0)
1a816a87 1190 lm = ldsomap = solib_svr4_r_ldsomap (info);
e4cd0d6a 1191
13437d4b
KB
1192 discard_cleanups (old_chain);
1193 }
1194
34439770
DJ
1195 if (head == NULL)
1196 return svr4_default_sos ();
1197
13437d4b
KB
1198 return head;
1199}
1200
93a57060 1201/* Get the address of the link_map for a given OBJFILE. */
bc4a16ae
EZ
1202
1203CORE_ADDR
1204svr4_fetch_objfile_link_map (struct objfile *objfile)
1205{
93a57060 1206 struct so_list *so;
6c95b8df 1207 struct svr4_info *info = get_svr4_info ();
bc4a16ae 1208
93a57060 1209 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1a816a87 1210 if (info->main_lm_addr == 0)
93a57060 1211 solib_add (NULL, 0, &current_target, auto_solib_add);
bc4a16ae 1212
93a57060
DJ
1213 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1214 if (objfile == symfile_objfile)
1a816a87 1215 return info->main_lm_addr;
93a57060
DJ
1216
1217 /* The other link map addresses may be found by examining the list
1218 of shared libraries. */
1219 for (so = master_so_list (); so; so = so->next)
1220 if (so->objfile == objfile)
1221 return so->lm_info->lm_addr;
1222
1223 /* Not found! */
bc4a16ae
EZ
1224 return 0;
1225}
13437d4b
KB
1226
1227/* On some systems, the only way to recognize the link map entry for
1228 the main executable file is by looking at its name. Return
1229 non-zero iff SONAME matches one of the known main executable names. */
1230
1231static int
1232match_main (char *soname)
1233{
1234 char **mainp;
1235
1236 for (mainp = main_name_list; *mainp != NULL; mainp++)
1237 {
1238 if (strcmp (soname, *mainp) == 0)
1239 return (1);
1240 }
1241
1242 return (0);
1243}
1244
13437d4b
KB
1245/* Return 1 if PC lies in the dynamic symbol resolution code of the
1246 SVR4 run time loader. */
13437d4b 1247
7d522c90 1248int
d7fa2ae2 1249svr4_in_dynsym_resolve_code (CORE_ADDR pc)
13437d4b 1250{
6c95b8df
PA
1251 struct svr4_info *info = get_svr4_info ();
1252
1253 return ((pc >= info->interp_text_sect_low
1254 && pc < info->interp_text_sect_high)
1255 || (pc >= info->interp_plt_sect_low
1256 && pc < info->interp_plt_sect_high)
13437d4b
KB
1257 || in_plt_section (pc, NULL));
1258}
13437d4b 1259
2f4950cd
AC
1260/* Given an executable's ABFD and target, compute the entry-point
1261 address. */
1262
1263static CORE_ADDR
1264exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1265{
1266 /* KevinB wrote ... for most targets, the address returned by
1267 bfd_get_start_address() is the entry point for the start
1268 function. But, for some targets, bfd_get_start_address() returns
1269 the address of a function descriptor from which the entry point
1270 address may be extracted. This address is extracted by
1271 gdbarch_convert_from_func_ptr_addr(). The method
1272 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1273 function for targets which don't use function descriptors. */
1cf3db46 1274 return gdbarch_convert_from_func_ptr_addr (target_gdbarch,
2f4950cd
AC
1275 bfd_get_start_address (abfd),
1276 targ);
1277}
13437d4b
KB
1278
1279/*
1280
1281 LOCAL FUNCTION
1282
1283 enable_break -- arrange for dynamic linker to hit breakpoint
1284
1285 SYNOPSIS
1286
1287 int enable_break (void)
1288
1289 DESCRIPTION
1290
1291 Both the SunOS and the SVR4 dynamic linkers have, as part of their
1292 debugger interface, support for arranging for the inferior to hit
1293 a breakpoint after mapping in the shared libraries. This function
1294 enables that breakpoint.
1295
1296 For SunOS, there is a special flag location (in_debugger) which we
1297 set to 1. When the dynamic linker sees this flag set, it will set
1298 a breakpoint at a location known only to itself, after saving the
1299 original contents of that place and the breakpoint address itself,
1300 in it's own internal structures. When we resume the inferior, it
1301 will eventually take a SIGTRAP when it runs into the breakpoint.
1302 We handle this (in a different place) by restoring the contents of
1303 the breakpointed location (which is only known after it stops),
1304 chasing around to locate the shared libraries that have been
1305 loaded, then resuming.
1306
1307 For SVR4, the debugger interface structure contains a member (r_brk)
1308 which is statically initialized at the time the shared library is
1309 built, to the offset of a function (_r_debug_state) which is guaran-
1310 teed to be called once before mapping in a library, and again when
1311 the mapping is complete. At the time we are examining this member,
1312 it contains only the unrelocated offset of the function, so we have
1313 to do our own relocation. Later, when the dynamic linker actually
1314 runs, it relocates r_brk to be the actual address of _r_debug_state().
1315
1316 The debugger interface structure also contains an enumeration which
1317 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
1318 depending upon whether or not the library is being mapped or unmapped,
1319 and then set to RT_CONSISTENT after the library is mapped/unmapped.
1320 */
1321
1322static int
268a4a75 1323enable_break (struct svr4_info *info, int from_tty)
13437d4b 1324{
13437d4b
KB
1325 struct minimal_symbol *msymbol;
1326 char **bkpt_namep;
1327 asection *interp_sect;
97ec2c2f 1328 gdb_byte *interp_name;
7cd25cfc 1329 CORE_ADDR sym_addr;
13437d4b 1330
6c95b8df
PA
1331 info->interp_text_sect_low = info->interp_text_sect_high = 0;
1332 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
13437d4b 1333
7cd25cfc
DJ
1334 /* If we already have a shared library list in the target, and
1335 r_debug contains r_brk, set the breakpoint there - this should
1336 mean r_brk has already been relocated. Assume the dynamic linker
1337 is the object containing r_brk. */
1338
268a4a75 1339 solib_add (NULL, from_tty, &current_target, auto_solib_add);
7cd25cfc 1340 sym_addr = 0;
1a816a87
PA
1341 if (info->debug_base && solib_svr4_r_map (info) != 0)
1342 sym_addr = solib_svr4_r_brk (info);
7cd25cfc
DJ
1343
1344 if (sym_addr != 0)
1345 {
1346 struct obj_section *os;
1347
b36ec657 1348 sym_addr = gdbarch_addr_bits_remove
1cf3db46 1349 (target_gdbarch, gdbarch_convert_from_func_ptr_addr (target_gdbarch,
b36ec657
DJ
1350 sym_addr,
1351 &current_target));
1352
48379de6
DE
1353 /* On at least some versions of Solaris there's a dynamic relocation
1354 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
1355 we get control before the dynamic linker has self-relocated.
1356 Check if SYM_ADDR is in a known section, if it is assume we can
1357 trust its value. This is just a heuristic though, it could go away
1358 or be replaced if it's getting in the way.
1359
1360 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
1361 however it's spelled in your particular system) is ARM or Thumb.
1362 That knowledge is encoded in the address, if it's Thumb the low bit
1363 is 1. However, we've stripped that info above and it's not clear
1364 what all the consequences are of passing a non-addr_bits_remove'd
1365 address to create_solib_event_breakpoint. The call to
1366 find_pc_section verifies we know about the address and have some
1367 hope of computing the right kind of breakpoint to use (via
1368 symbol info). It does mean that GDB needs to be pointed at a
1369 non-stripped version of the dynamic linker in order to obtain
1370 information it already knows about. Sigh. */
1371
7cd25cfc
DJ
1372 os = find_pc_section (sym_addr);
1373 if (os != NULL)
1374 {
1375 /* Record the relocated start and end address of the dynamic linker
1376 text and plt section for svr4_in_dynsym_resolve_code. */
1377 bfd *tmp_bfd;
1378 CORE_ADDR load_addr;
1379
1380 tmp_bfd = os->objfile->obfd;
1381 load_addr = ANOFFSET (os->objfile->section_offsets,
1382 os->objfile->sect_index_text);
1383
1384 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1385 if (interp_sect)
1386 {
6c95b8df 1387 info->interp_text_sect_low =
7cd25cfc 1388 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1389 info->interp_text_sect_high =
1390 info->interp_text_sect_low
1391 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
1392 }
1393 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1394 if (interp_sect)
1395 {
6c95b8df 1396 info->interp_plt_sect_low =
7cd25cfc 1397 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1398 info->interp_plt_sect_high =
1399 info->interp_plt_sect_low
1400 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
1401 }
1402
a6d9a66e 1403 create_solib_event_breakpoint (target_gdbarch, sym_addr);
7cd25cfc
DJ
1404 return 1;
1405 }
1406 }
1407
97ec2c2f 1408 /* Find the program interpreter; if not found, warn the user and drop
13437d4b 1409 into the old breakpoint at symbol code. */
97ec2c2f
UW
1410 interp_name = find_program_interpreter ();
1411 if (interp_name)
13437d4b 1412 {
8ad2fcde
KB
1413 CORE_ADDR load_addr = 0;
1414 int load_addr_found = 0;
2ec9a4f8 1415 int loader_found_in_list = 0;
f8766ec1 1416 struct so_list *so;
e4f7b8c8 1417 bfd *tmp_bfd = NULL;
2f4950cd 1418 struct target_ops *tmp_bfd_target;
f1838a98 1419 volatile struct gdb_exception ex;
13437d4b 1420
7cd25cfc 1421 sym_addr = 0;
13437d4b
KB
1422
1423 /* Now we need to figure out where the dynamic linker was
1424 loaded so that we can load its symbols and place a breakpoint
1425 in the dynamic linker itself.
1426
1427 This address is stored on the stack. However, I've been unable
1428 to find any magic formula to find it for Solaris (appears to
1429 be trivial on GNU/Linux). Therefore, we have to try an alternate
1430 mechanism to find the dynamic linker's base address. */
e4f7b8c8 1431
f1838a98
UW
1432 TRY_CATCH (ex, RETURN_MASK_ALL)
1433 {
97ec2c2f 1434 tmp_bfd = solib_bfd_open (interp_name);
f1838a98 1435 }
13437d4b
KB
1436 if (tmp_bfd == NULL)
1437 goto bkpt_at_symbol;
1438
2f4950cd
AC
1439 /* Now convert the TMP_BFD into a target. That way target, as
1440 well as BFD operations can be used. Note that closing the
1441 target will also close the underlying bfd. */
1442 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
1443
f8766ec1
KB
1444 /* On a running target, we can get the dynamic linker's base
1445 address from the shared library table. */
f8766ec1
KB
1446 so = master_so_list ();
1447 while (so)
8ad2fcde 1448 {
97ec2c2f 1449 if (svr4_same_1 (interp_name, so->so_original_name))
8ad2fcde
KB
1450 {
1451 load_addr_found = 1;
2ec9a4f8 1452 loader_found_in_list = 1;
cc10cae3 1453 load_addr = LM_ADDR_CHECK (so, tmp_bfd);
8ad2fcde
KB
1454 break;
1455 }
f8766ec1 1456 so = so->next;
8ad2fcde
KB
1457 }
1458
8d4e36ba
JB
1459 /* If we were not able to find the base address of the loader
1460 from our so_list, then try using the AT_BASE auxilliary entry. */
1461 if (!load_addr_found)
1462 if (target_auxv_search (&current_target, AT_BASE, &load_addr) > 0)
ad3a0e5b
JK
1463 {
1464 int addr_bit = gdbarch_addr_bit (target_gdbarch);
1465
1466 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
1467 that `+ load_addr' will overflow CORE_ADDR width not creating
1468 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
1469 GDB. */
1470
d182d057 1471 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
ad3a0e5b 1472 {
d182d057 1473 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
ad3a0e5b
JK
1474 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd,
1475 tmp_bfd_target);
1476
1477 gdb_assert (load_addr < space_size);
1478
1479 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
1480 64bit ld.so with 32bit executable, it should not happen. */
1481
1482 if (tmp_entry_point < space_size
1483 && tmp_entry_point + load_addr >= space_size)
1484 load_addr -= space_size;
1485 }
1486
1487 load_addr_found = 1;
1488 }
8d4e36ba 1489
8ad2fcde
KB
1490 /* Otherwise we find the dynamic linker's base address by examining
1491 the current pc (which should point at the entry point for the
8d4e36ba
JB
1492 dynamic linker) and subtracting the offset of the entry point.
1493
1494 This is more fragile than the previous approaches, but is a good
1495 fallback method because it has actually been working well in
1496 most cases. */
8ad2fcde 1497 if (!load_addr_found)
fb14de7b 1498 {
c2250ad1
UW
1499 struct regcache *regcache
1500 = get_thread_arch_regcache (inferior_ptid, target_gdbarch);
fb14de7b
UW
1501 load_addr = (regcache_read_pc (regcache)
1502 - exec_entry_point (tmp_bfd, tmp_bfd_target));
1503 }
2ec9a4f8
DJ
1504
1505 if (!loader_found_in_list)
34439770 1506 {
1a816a87
PA
1507 info->debug_loader_name = xstrdup (interp_name);
1508 info->debug_loader_offset_p = 1;
1509 info->debug_loader_offset = load_addr;
268a4a75 1510 solib_add (NULL, from_tty, &current_target, auto_solib_add);
34439770 1511 }
13437d4b
KB
1512
1513 /* Record the relocated start and end address of the dynamic linker
d7fa2ae2 1514 text and plt section for svr4_in_dynsym_resolve_code. */
13437d4b
KB
1515 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1516 if (interp_sect)
1517 {
6c95b8df 1518 info->interp_text_sect_low =
13437d4b 1519 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1520 info->interp_text_sect_high =
1521 info->interp_text_sect_low
1522 + bfd_section_size (tmp_bfd, interp_sect);
13437d4b
KB
1523 }
1524 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1525 if (interp_sect)
1526 {
6c95b8df 1527 info->interp_plt_sect_low =
13437d4b 1528 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1529 info->interp_plt_sect_high =
1530 info->interp_plt_sect_low
1531 + bfd_section_size (tmp_bfd, interp_sect);
13437d4b
KB
1532 }
1533
1534 /* Now try to set a breakpoint in the dynamic linker. */
1535 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1536 {
2bbe3cc1 1537 sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep);
13437d4b
KB
1538 if (sym_addr != 0)
1539 break;
1540 }
1541
2bbe3cc1
DJ
1542 if (sym_addr != 0)
1543 /* Convert 'sym_addr' from a function pointer to an address.
1544 Because we pass tmp_bfd_target instead of the current
1545 target, this will always produce an unrelocated value. */
1cf3db46 1546 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
2bbe3cc1
DJ
1547 sym_addr,
1548 tmp_bfd_target);
1549
2f4950cd
AC
1550 /* We're done with both the temporary bfd and target. Remember,
1551 closing the target closes the underlying bfd. */
1552 target_close (tmp_bfd_target, 0);
13437d4b
KB
1553
1554 if (sym_addr != 0)
1555 {
a6d9a66e 1556 create_solib_event_breakpoint (target_gdbarch, load_addr + sym_addr);
97ec2c2f 1557 xfree (interp_name);
13437d4b
KB
1558 return 1;
1559 }
1560
1561 /* For whatever reason we couldn't set a breakpoint in the dynamic
1562 linker. Warn and drop into the old code. */
1563 bkpt_at_symbol:
97ec2c2f 1564 xfree (interp_name);
82d03102
PG
1565 warning (_("Unable to find dynamic linker breakpoint function.\n"
1566 "GDB will be unable to debug shared library initializers\n"
1567 "and track explicitly loaded dynamic code."));
13437d4b 1568 }
13437d4b 1569
e499d0f1
DJ
1570 /* Scan through the lists of symbols, trying to look up the symbol and
1571 set a breakpoint there. Terminate loop when we/if we succeed. */
1572
1573 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1574 {
1575 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1576 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1577 {
de64a9ac
JM
1578 sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1579 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1580 sym_addr,
1581 &current_target);
1582 create_solib_event_breakpoint (target_gdbarch, sym_addr);
e499d0f1
DJ
1583 return 1;
1584 }
1585 }
13437d4b 1586
13437d4b
KB
1587 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
1588 {
1589 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1590 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1591 {
de64a9ac
JM
1592 sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1593 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1594 sym_addr,
1595 &current_target);
1596 create_solib_event_breakpoint (target_gdbarch, sym_addr);
13437d4b
KB
1597 return 1;
1598 }
1599 }
542c95c2 1600 return 0;
13437d4b
KB
1601}
1602
1603/*
1604
1605 LOCAL FUNCTION
1606
1607 special_symbol_handling -- additional shared library symbol handling
1608
1609 SYNOPSIS
1610
1611 void special_symbol_handling ()
1612
1613 DESCRIPTION
1614
1615 Once the symbols from a shared object have been loaded in the usual
1616 way, we are called to do any system specific symbol handling that
1617 is needed.
1618
ab31aa69 1619 For SunOS4, this consisted of grunging around in the dynamic
13437d4b
KB
1620 linkers structures to find symbol definitions for "common" symbols
1621 and adding them to the minimal symbol table for the runtime common
1622 objfile.
1623
ab31aa69
KB
1624 However, for SVR4, there's nothing to do.
1625
13437d4b
KB
1626 */
1627
1628static void
1629svr4_special_symbol_handling (void)
1630{
9f2982ff 1631 svr4_relocate_main_executable ();
13437d4b
KB
1632}
1633
09919ac2
JK
1634/* Read the ELF program headers from ABFD. Return the contents and
1635 set *PHDRS_SIZE to the size of the program headers. */
e2a44558 1636
09919ac2
JK
1637static gdb_byte *
1638read_program_headers_from_bfd (bfd *abfd, int *phdrs_size)
e2a44558 1639{
09919ac2
JK
1640 Elf_Internal_Ehdr *ehdr;
1641 gdb_byte *buf;
e2a44558 1642
09919ac2 1643 ehdr = elf_elfheader (abfd);
b8040f19 1644
09919ac2
JK
1645 *phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
1646 if (*phdrs_size == 0)
1647 return NULL;
1648
1649 buf = xmalloc (*phdrs_size);
1650 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
1651 || bfd_bread (buf, *phdrs_size, abfd) != *phdrs_size)
1652 {
1653 xfree (buf);
1654 return NULL;
1655 }
1656
1657 return buf;
b8040f19
JK
1658}
1659
01c30d6e
JK
1660/* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
1661 exec_bfd. Otherwise return 0.
1662
1663 We relocate all of the sections by the same amount. This
b8040f19
JK
1664 behavior is mandated by recent editions of the System V ABI.
1665 According to the System V Application Binary Interface,
1666 Edition 4.1, page 5-5:
1667
1668 ... Though the system chooses virtual addresses for
1669 individual processes, it maintains the segments' relative
1670 positions. Because position-independent code uses relative
1671 addressesing between segments, the difference between
1672 virtual addresses in memory must match the difference
1673 between virtual addresses in the file. The difference
1674 between the virtual address of any segment in memory and
1675 the corresponding virtual address in the file is thus a
1676 single constant value for any one executable or shared
1677 object in a given process. This difference is the base
1678 address. One use of the base address is to relocate the
1679 memory image of the program during dynamic linking.
1680
1681 The same language also appears in Edition 4.0 of the System V
09919ac2
JK
1682 ABI and is left unspecified in some of the earlier editions.
1683
1684 Decide if the objfile needs to be relocated. As indicated above, we will
1685 only be here when execution is stopped. But during attachment PC can be at
1686 arbitrary address therefore regcache_read_pc can be misleading (contrary to
1687 the auxv AT_ENTRY value). Moreover for executable with interpreter section
1688 regcache_read_pc would point to the interpreter and not the main executable.
1689
1690 So, to summarize, relocations are necessary when the start address obtained
1691 from the executable is different from the address in auxv AT_ENTRY entry.
1692
1693 [ The astute reader will note that we also test to make sure that
1694 the executable in question has the DYNAMIC flag set. It is my
1695 opinion that this test is unnecessary (undesirable even). It
1696 was added to avoid inadvertent relocation of an executable
1697 whose e_type member in the ELF header is not ET_DYN. There may
1698 be a time in the future when it is desirable to do relocations
1699 on other types of files as well in which case this condition
1700 should either be removed or modified to accomodate the new file
1701 type. - Kevin, Nov 2000. ] */
b8040f19 1702
01c30d6e
JK
1703static int
1704svr4_exec_displacement (CORE_ADDR *displacementp)
b8040f19 1705{
41752192
JK
1706 /* ENTRY_POINT is a possible function descriptor - before
1707 a call to gdbarch_convert_from_func_ptr_addr. */
09919ac2 1708 CORE_ADDR entry_point, displacement;
b8040f19
JK
1709
1710 if (exec_bfd == NULL)
1711 return 0;
1712
09919ac2
JK
1713 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
1714 being executed themselves and PIE (Position Independent Executable)
1715 executables are ET_DYN. */
1716
1717 if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0)
1718 return 0;
1719
1720 if (target_auxv_search (&current_target, AT_ENTRY, &entry_point) <= 0)
1721 return 0;
1722
1723 displacement = entry_point - bfd_get_start_address (exec_bfd);
1724
1725 /* Verify the DISPLACEMENT candidate complies with the required page
1726 alignment. It is cheaper than the program headers comparison below. */
1727
1728 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
1729 {
1730 const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd);
1731
1732 /* p_align of PT_LOAD segments does not specify any alignment but
1733 only congruency of addresses:
1734 p_offset % p_align == p_vaddr % p_align
1735 Kernel is free to load the executable with lower alignment. */
1736
1737 if ((displacement & (elf->minpagesize - 1)) != 0)
1738 return 0;
1739 }
1740
1741 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
1742 comparing their program headers. If the program headers in the auxilliary
1743 vector do not match the program headers in the executable, then we are
1744 looking at a different file than the one used by the kernel - for
1745 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
1746
1747 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
1748 {
1749 /* Be optimistic and clear OK only if GDB was able to verify the headers
1750 really do not match. */
1751 int phdrs_size, phdrs2_size, ok = 1;
1752 gdb_byte *buf, *buf2;
1753
1754 buf = read_program_header (-1, &phdrs_size, NULL);
1755 buf2 = read_program_headers_from_bfd (exec_bfd, &phdrs2_size);
1756 if (buf != NULL && buf2 != NULL
1757 && (phdrs_size != phdrs2_size
1758 || memcmp (buf, buf2, phdrs_size) != 0))
1759 ok = 0;
1760
1761 xfree (buf);
1762 xfree (buf2);
1763
1764 if (!ok)
1765 return 0;
1766 }
b8040f19 1767
ccf26247
JK
1768 if (info_verbose)
1769 {
1770 /* It can be printed repeatedly as there is no easy way to check
1771 the executable symbols/file has been already relocated to
1772 displacement. */
1773
1774 printf_unfiltered (_("Using PIE (Position Independent Executable) "
1775 "displacement %s for \"%s\".\n"),
1776 paddress (target_gdbarch, displacement),
1777 bfd_get_filename (exec_bfd));
1778 }
1779
01c30d6e
JK
1780 *displacementp = displacement;
1781 return 1;
b8040f19
JK
1782}
1783
1784/* Relocate the main executable. This function should be called upon
1785 stopping the inferior process at the entry point to the program.
1786 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
1787 different, the main executable is relocated by the proper amount. */
1788
1789static void
1790svr4_relocate_main_executable (void)
1791{
01c30d6e
JK
1792 CORE_ADDR displacement;
1793
1794 if (symfile_objfile)
1795 {
1796 int i;
1797
1798 /* Remote target may have already set specific offsets by `qOffsets'
1799 which should be preferred. */
1800
1801 for (i = 0; i < symfile_objfile->num_sections; i++)
1802 if (ANOFFSET (symfile_objfile->section_offsets, i) != 0)
1803 return;
1804 }
1805
1806 if (! svr4_exec_displacement (&displacement))
1807 return;
b8040f19 1808
01c30d6e
JK
1809 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
1810 addresses. */
b8040f19
JK
1811
1812 if (symfile_objfile)
e2a44558 1813 {
e2a44558 1814 struct section_offsets *new_offsets;
b8040f19 1815 int i;
e2a44558 1816
b8040f19
JK
1817 new_offsets = alloca (symfile_objfile->num_sections
1818 * sizeof (*new_offsets));
e2a44558 1819
b8040f19
JK
1820 for (i = 0; i < symfile_objfile->num_sections; i++)
1821 new_offsets->offsets[i] = displacement;
e2a44558 1822
b8040f19 1823 objfile_relocate (symfile_objfile, new_offsets);
e2a44558 1824 }
51bee8e9
JK
1825 else if (exec_bfd)
1826 {
1827 asection *asect;
1828
1829 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
1830 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
1831 (bfd_section_vma (exec_bfd, asect)
1832 + displacement));
1833 }
e2a44558
KB
1834}
1835
13437d4b
KB
1836/*
1837
1838 GLOBAL FUNCTION
1839
1840 svr4_solib_create_inferior_hook -- shared library startup support
1841
1842 SYNOPSIS
1843
268a4a75 1844 void svr4_solib_create_inferior_hook (int from_tty)
13437d4b
KB
1845
1846 DESCRIPTION
1847
1848 When gdb starts up the inferior, it nurses it along (through the
1849 shell) until it is ready to execute it's first instruction. At this
1850 point, this function gets called via expansion of the macro
1851 SOLIB_CREATE_INFERIOR_HOOK.
1852
1853 For SunOS executables, this first instruction is typically the
1854 one at "_start", or a similar text label, regardless of whether
1855 the executable is statically or dynamically linked. The runtime
1856 startup code takes care of dynamically linking in any shared
1857 libraries, once gdb allows the inferior to continue.
1858
1859 For SVR4 executables, this first instruction is either the first
1860 instruction in the dynamic linker (for dynamically linked
1861 executables) or the instruction at "start" for statically linked
1862 executables. For dynamically linked executables, the system
1863 first exec's /lib/libc.so.N, which contains the dynamic linker,
1864 and starts it running. The dynamic linker maps in any needed
1865 shared libraries, maps in the actual user executable, and then
1866 jumps to "start" in the user executable.
1867
1868 For both SunOS shared libraries, and SVR4 shared libraries, we
1869 can arrange to cooperate with the dynamic linker to discover the
1870 names of shared libraries that are dynamically linked, and the
1871 base addresses to which they are linked.
1872
1873 This function is responsible for discovering those names and
1874 addresses, and saving sufficient information about them to allow
1875 their symbols to be read at a later time.
1876
1877 FIXME
1878
1879 Between enable_break() and disable_break(), this code does not
1880 properly handle hitting breakpoints which the user might have
1881 set in the startup code or in the dynamic linker itself. Proper
1882 handling will probably have to wait until the implementation is
1883 changed to use the "breakpoint handler function" method.
1884
1885 Also, what if child has exit()ed? Must exit loop somehow.
1886 */
1887
e2a44558 1888static void
268a4a75 1889svr4_solib_create_inferior_hook (int from_tty)
13437d4b 1890{
d6b48e9c 1891 struct inferior *inf;
2020b7ab 1892 struct thread_info *tp;
1a816a87
PA
1893 struct svr4_info *info;
1894
6c95b8df 1895 info = get_svr4_info ();
2020b7ab 1896
e2a44558 1897 /* Relocate the main executable if necessary. */
9f2982ff
JK
1898 if (current_inferior ()->attach_flag == 0)
1899 svr4_relocate_main_executable ();
e2a44558 1900
d5a921c9 1901 if (!svr4_have_link_map_offsets ())
513f5903 1902 return;
d5a921c9 1903
268a4a75 1904 if (!enable_break (info, from_tty))
542c95c2 1905 return;
13437d4b 1906
ab31aa69
KB
1907#if defined(_SCO_DS)
1908 /* SCO needs the loop below, other systems should be using the
13437d4b
KB
1909 special shared library breakpoints and the shared library breakpoint
1910 service routine.
1911
1912 Now run the target. It will eventually hit the breakpoint, at
1913 which point all of the libraries will have been mapped in and we
1914 can go groveling around in the dynamic linker structures to find
1915 out what we need to know about them. */
1916
d6b48e9c 1917 inf = current_inferior ();
2020b7ab
PA
1918 tp = inferior_thread ();
1919
13437d4b 1920 clear_proceed_status ();
d6b48e9c 1921 inf->stop_soon = STOP_QUIETLY;
2020b7ab 1922 tp->stop_signal = TARGET_SIGNAL_0;
13437d4b
KB
1923 do
1924 {
2020b7ab 1925 target_resume (pid_to_ptid (-1), 0, tp->stop_signal);
ae123ec6 1926 wait_for_inferior (0);
13437d4b 1927 }
2020b7ab 1928 while (tp->stop_signal != TARGET_SIGNAL_TRAP);
d6b48e9c 1929 inf->stop_soon = NO_STOP_QUIETLY;
ab31aa69 1930#endif /* defined(_SCO_DS) */
13437d4b
KB
1931}
1932
1933static void
1934svr4_clear_solib (void)
1935{
6c95b8df
PA
1936 struct svr4_info *info;
1937
1938 info = get_svr4_info ();
1939 info->debug_base = 0;
1940 info->debug_loader_offset_p = 0;
1941 info->debug_loader_offset = 0;
1942 xfree (info->debug_loader_name);
1943 info->debug_loader_name = NULL;
13437d4b
KB
1944}
1945
1946static void
1947svr4_free_so (struct so_list *so)
1948{
b8c9b27d
KB
1949 xfree (so->lm_info->lm);
1950 xfree (so->lm_info);
13437d4b
KB
1951}
1952
6bb7be43
JB
1953
1954/* Clear any bits of ADDR that wouldn't fit in a target-format
1955 data pointer. "Data pointer" here refers to whatever sort of
1956 address the dynamic linker uses to manage its sections. At the
1957 moment, we don't support shared libraries on any processors where
1958 code and data pointers are different sizes.
1959
1960 This isn't really the right solution. What we really need here is
1961 a way to do arithmetic on CORE_ADDR values that respects the
1962 natural pointer/address correspondence. (For example, on the MIPS,
1963 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
1964 sign-extend the value. There, simply truncating the bits above
819844ad 1965 gdbarch_ptr_bit, as we do below, is no good.) This should probably
6bb7be43
JB
1966 be a new gdbarch method or something. */
1967static CORE_ADDR
1968svr4_truncate_ptr (CORE_ADDR addr)
1969{
1cf3db46 1970 if (gdbarch_ptr_bit (target_gdbarch) == sizeof (CORE_ADDR) * 8)
6bb7be43
JB
1971 /* We don't need to truncate anything, and the bit twiddling below
1972 will fail due to overflow problems. */
1973 return addr;
1974 else
1cf3db46 1975 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch)) - 1);
6bb7be43
JB
1976}
1977
1978
749499cb
KB
1979static void
1980svr4_relocate_section_addresses (struct so_list *so,
0542c86d 1981 struct target_section *sec)
749499cb 1982{
cc10cae3
AO
1983 sec->addr = svr4_truncate_ptr (sec->addr + LM_ADDR_CHECK (so,
1984 sec->bfd));
1985 sec->endaddr = svr4_truncate_ptr (sec->endaddr + LM_ADDR_CHECK (so,
1986 sec->bfd));
749499cb 1987}
4b188b9f 1988\f
749499cb 1989
4b188b9f 1990/* Architecture-specific operations. */
6bb7be43 1991
4b188b9f
MK
1992/* Per-architecture data key. */
1993static struct gdbarch_data *solib_svr4_data;
e5e2b9ff 1994
4b188b9f 1995struct solib_svr4_ops
e5e2b9ff 1996{
4b188b9f
MK
1997 /* Return a description of the layout of `struct link_map'. */
1998 struct link_map_offsets *(*fetch_link_map_offsets)(void);
1999};
e5e2b9ff 2000
4b188b9f 2001/* Return a default for the architecture-specific operations. */
e5e2b9ff 2002
4b188b9f
MK
2003static void *
2004solib_svr4_init (struct obstack *obstack)
e5e2b9ff 2005{
4b188b9f 2006 struct solib_svr4_ops *ops;
e5e2b9ff 2007
4b188b9f 2008 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
8d005789 2009 ops->fetch_link_map_offsets = NULL;
4b188b9f 2010 return ops;
e5e2b9ff
KB
2011}
2012
4b188b9f 2013/* Set the architecture-specific `struct link_map_offsets' fetcher for
7e3cb44c 2014 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
1c4dcb57 2015
21479ded 2016void
e5e2b9ff
KB
2017set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
2018 struct link_map_offsets *(*flmo) (void))
21479ded 2019{
4b188b9f
MK
2020 struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data);
2021
2022 ops->fetch_link_map_offsets = flmo;
7e3cb44c
UW
2023
2024 set_solib_ops (gdbarch, &svr4_so_ops);
21479ded
KB
2025}
2026
4b188b9f
MK
2027/* Fetch a link_map_offsets structure using the architecture-specific
2028 `struct link_map_offsets' fetcher. */
1c4dcb57 2029
4b188b9f
MK
2030static struct link_map_offsets *
2031svr4_fetch_link_map_offsets (void)
21479ded 2032{
1cf3db46 2033 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
4b188b9f
MK
2034
2035 gdb_assert (ops->fetch_link_map_offsets);
2036 return ops->fetch_link_map_offsets ();
21479ded
KB
2037}
2038
4b188b9f
MK
2039/* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
2040
2041static int
2042svr4_have_link_map_offsets (void)
2043{
1cf3db46 2044 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
4b188b9f
MK
2045 return (ops->fetch_link_map_offsets != NULL);
2046}
2047\f
2048
e4bbbda8
MK
2049/* Most OS'es that have SVR4-style ELF dynamic libraries define a
2050 `struct r_debug' and a `struct link_map' that are binary compatible
2051 with the origional SVR4 implementation. */
2052
2053/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
2054 for an ILP32 SVR4 system. */
2055
2056struct link_map_offsets *
2057svr4_ilp32_fetch_link_map_offsets (void)
2058{
2059 static struct link_map_offsets lmo;
2060 static struct link_map_offsets *lmp = NULL;
2061
2062 if (lmp == NULL)
2063 {
2064 lmp = &lmo;
2065
e4cd0d6a
MK
2066 lmo.r_version_offset = 0;
2067 lmo.r_version_size = 4;
e4bbbda8 2068 lmo.r_map_offset = 4;
7cd25cfc 2069 lmo.r_brk_offset = 8;
e4cd0d6a 2070 lmo.r_ldsomap_offset = 20;
e4bbbda8
MK
2071
2072 /* Everything we need is in the first 20 bytes. */
2073 lmo.link_map_size = 20;
2074 lmo.l_addr_offset = 0;
e4bbbda8 2075 lmo.l_name_offset = 4;
cc10cae3 2076 lmo.l_ld_offset = 8;
e4bbbda8 2077 lmo.l_next_offset = 12;
e4bbbda8 2078 lmo.l_prev_offset = 16;
e4bbbda8
MK
2079 }
2080
2081 return lmp;
2082}
2083
2084/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
2085 for an LP64 SVR4 system. */
2086
2087struct link_map_offsets *
2088svr4_lp64_fetch_link_map_offsets (void)
2089{
2090 static struct link_map_offsets lmo;
2091 static struct link_map_offsets *lmp = NULL;
2092
2093 if (lmp == NULL)
2094 {
2095 lmp = &lmo;
2096
e4cd0d6a
MK
2097 lmo.r_version_offset = 0;
2098 lmo.r_version_size = 4;
e4bbbda8 2099 lmo.r_map_offset = 8;
7cd25cfc 2100 lmo.r_brk_offset = 16;
e4cd0d6a 2101 lmo.r_ldsomap_offset = 40;
e4bbbda8
MK
2102
2103 /* Everything we need is in the first 40 bytes. */
2104 lmo.link_map_size = 40;
2105 lmo.l_addr_offset = 0;
e4bbbda8 2106 lmo.l_name_offset = 8;
cc10cae3 2107 lmo.l_ld_offset = 16;
e4bbbda8 2108 lmo.l_next_offset = 24;
e4bbbda8 2109 lmo.l_prev_offset = 32;
e4bbbda8
MK
2110 }
2111
2112 return lmp;
2113}
2114\f
2115
7d522c90 2116struct target_so_ops svr4_so_ops;
13437d4b 2117
3a40aaa0
UW
2118/* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
2119 different rule for symbol lookup. The lookup begins here in the DSO, not in
2120 the main executable. */
2121
2122static struct symbol *
2123elf_lookup_lib_symbol (const struct objfile *objfile,
2124 const char *name,
21b556f4 2125 const domain_enum domain)
3a40aaa0 2126{
61f0d762
JK
2127 bfd *abfd;
2128
2129 if (objfile == symfile_objfile)
2130 abfd = exec_bfd;
2131 else
2132 {
2133 /* OBJFILE should have been passed as the non-debug one. */
2134 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
2135
2136 abfd = objfile->obfd;
2137 }
2138
2139 if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL) != 1)
3a40aaa0
UW
2140 return NULL;
2141
94af9270 2142 return lookup_global_symbol_from_objfile (objfile, name, domain);
3a40aaa0
UW
2143}
2144
a78f21af
AC
2145extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
2146
13437d4b
KB
2147void
2148_initialize_svr4_solib (void)
2149{
4b188b9f 2150 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
6c95b8df
PA
2151 solib_svr4_pspace_data
2152 = register_program_space_data_with_cleanup (svr4_pspace_data_cleanup);
4b188b9f 2153
749499cb 2154 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
13437d4b
KB
2155 svr4_so_ops.free_so = svr4_free_so;
2156 svr4_so_ops.clear_solib = svr4_clear_solib;
2157 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
2158 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
2159 svr4_so_ops.current_sos = svr4_current_sos;
2160 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
d7fa2ae2 2161 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
831a0c44 2162 svr4_so_ops.bfd_open = solib_bfd_open;
3a40aaa0 2163 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
a7c02bc8 2164 svr4_so_ops.same = svr4_same;
de18c1d8 2165 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
13437d4b 2166}
This page took 1.211783 seconds and 4 git commands to generate.