gdb/mi: add new --group-by-objfile flag for -file-list-exec-source-files
[deliverable/binutils-gdb.git] / gdb / sparc-tdep.c
CommitLineData
386c036b 1/* Target-dependent code for SPARC.
cda5a58a 2
3666a048 3 Copyright (C) 2003-2021 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 19
c906108c 20#include "defs.h"
5af923b0 21#include "arch-utils.h"
386c036b 22#include "dis-asm.h"
b41c5a85 23#include "dwarf2.h"
82ca8957 24#include "dwarf2/frame.h"
c906108c 25#include "frame.h"
386c036b
MK
26#include "frame-base.h"
27#include "frame-unwind.h"
28#include "gdbcore.h"
29#include "gdbtypes.h"
c906108c 30#include "inferior.h"
386c036b
MK
31#include "symtab.h"
32#include "objfiles.h"
33#include "osabi.h"
34#include "regcache.h"
c906108c 35#include "target.h"
3f7b46f2 36#include "target-descriptions.h"
c906108c 37#include "value.h"
c906108c 38
386c036b 39#include "sparc-tdep.h"
e6f9c00b 40#include "sparc-ravenscar-thread.h"
325fac50 41#include <algorithm>
c906108c 42
a54124c5
MK
43struct regset;
44
9eb42ed1
MK
45/* This file implements the SPARC 32-bit ABI as defined by the section
46 "Low-Level System Information" of the SPARC Compliance Definition
47 (SCD) 2.4.1, which is the 32-bit System V psABI for SPARC. The SCD
f2e7c15d 48 lists changes with respect to the original 32-bit psABI as defined
9eb42ed1 49 in the "System V ABI, SPARC Processor Supplement".
386c036b
MK
50
51 Note that if we talk about SunOS, we mean SunOS 4.x, which was
52 BSD-based, which is sometimes (retroactively?) referred to as
53 Solaris 1.x. If we talk about Solaris we mean Solaris 2.x and
54 above (Solaris 7, 8 and 9 are nothing but Solaris 2.7, 2.8 and 2.9
55 suffering from severe version number inflation). Solaris 2.x is
56 also known as SunOS 5.x, since that's what uname(1) says. Solaris
57 2.x is SVR4-based. */
58
59/* Please use the sparc32_-prefix for 32-bit specific code, the
60 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
61 code that can handle both. The 64-bit specific code lives in
62 sparc64-tdep.c; don't add any here. */
63
64/* The SPARC Floating-Point Quad-Precision format is similar to
7a58cce8 65 big-endian IA-64 Quad-Precision format. */
8da61cc4 66#define floatformats_sparc_quad floatformats_ia64_quad
386c036b
MK
67
68/* The stack pointer is offset from the stack frame by a BIAS of 2047
69 (0x7ff) for 64-bit code. BIAS is likely to be defined on SPARC
70 hosts, so undefine it first. */
71#undef BIAS
72#define BIAS 2047
73
74/* Macros to extract fields from SPARC instructions. */
c906108c
SS
75#define X_OP(i) (((i) >> 30) & 0x3)
76#define X_RD(i) (((i) >> 25) & 0x1f)
77#define X_A(i) (((i) >> 29) & 1)
78#define X_COND(i) (((i) >> 25) & 0xf)
79#define X_OP2(i) (((i) >> 22) & 0x7)
80#define X_IMM22(i) ((i) & 0x3fffff)
81#define X_OP3(i) (((i) >> 19) & 0x3f)
075ccec8 82#define X_RS1(i) (((i) >> 14) & 0x1f)
b0b92586 83#define X_RS2(i) ((i) & 0x1f)
c906108c 84#define X_I(i) (((i) >> 13) & 1)
c906108c 85/* Sign extension macros. */
c906108c 86#define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
c906108c 87#define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
8d1b3521 88#define X_DISP10(i) ((((((i) >> 11) && 0x300) | (((i) >> 5) & 0xff)) ^ 0x200) - 0x200)
075ccec8 89#define X_SIMM13(i) ((((i) & 0x1fff) ^ 0x1000) - 0x1000)
961842b2
JM
90/* Macros to identify some instructions. */
91/* RETURN (RETT in V8) */
92#define X_RETTURN(i) ((X_OP (i) == 0x2) && (X_OP3 (i) == 0x39))
c906108c 93
386c036b
MK
94/* Fetch the instruction at PC. Instructions are always big-endian
95 even if the processor operates in little-endian mode. */
96
97unsigned long
98sparc_fetch_instruction (CORE_ADDR pc)
c906108c 99{
e1613aba 100 gdb_byte buf[4];
386c036b
MK
101 unsigned long insn;
102 int i;
103
690668cc 104 /* If we can't read the instruction at PC, return zero. */
8defab1a 105 if (target_read_memory (pc, buf, sizeof (buf)))
690668cc 106 return 0;
c906108c 107
386c036b
MK
108 insn = 0;
109 for (i = 0; i < sizeof (buf); i++)
110 insn = (insn << 8) | buf[i];
111 return insn;
112}
42cdca6c
MK
113\f
114
5465445a
JB
115/* Return non-zero if the instruction corresponding to PC is an "unimp"
116 instruction. */
117
118static int
119sparc_is_unimp_insn (CORE_ADDR pc)
120{
121 const unsigned long insn = sparc_fetch_instruction (pc);
122
123 return ((insn & 0xc1c00000) == 0);
124}
125
d0b5971a
JM
126/* Return non-zero if the instruction corresponding to PC is an
127 "annulled" branch, i.e. the annul bit is set. */
128
129int
130sparc_is_annulled_branch_insn (CORE_ADDR pc)
131{
132 /* The branch instructions featuring an annul bit can be identified
133 by the following bit patterns:
134
135 OP=0
136 OP2=1: Branch on Integer Condition Codes with Prediction (BPcc).
137 OP2=2: Branch on Integer Condition Codes (Bcc).
138 OP2=5: Branch on FP Condition Codes with Prediction (FBfcc).
139 OP2=6: Branch on FP Condition Codes (FBcc).
140 OP2=3 && Bit28=0:
dda83cd7 141 Branch on Integer Register with Prediction (BPr).
d0b5971a
JM
142
143 This leaves out ILLTRAP (OP2=0), SETHI/NOP (OP2=4) and the V8
144 coprocessor branch instructions (Op2=7). */
145
146 const unsigned long insn = sparc_fetch_instruction (pc);
147 const unsigned op2 = X_OP2 (insn);
148
149 if ((X_OP (insn) == 0)
150 && ((op2 == 1) || (op2 == 2) || (op2 == 5) || (op2 == 6)
151 || ((op2 == 3) && ((insn & 0x10000000) == 0))))
152 return X_A (insn);
153 else
154 return 0;
155}
156
42cdca6c
MK
157/* OpenBSD/sparc includes StackGhost, which according to the author's
158 website http://stackghost.cerias.purdue.edu "... transparently and
159 automatically protects applications' stack frames; more
160 specifically, it guards the return pointers. The protection
161 mechanisms require no application source or binary modification and
162 imposes only a negligible performance penalty."
163
164 The same website provides the following description of how
165 StackGhost works:
166
167 "StackGhost interfaces with the kernel trap handler that would
168 normally write out registers to the stack and the handler that
169 would read them back in. By XORing a cookie into the
170 return-address saved in the user stack when it is actually written
171 to the stack, and then XOR it out when the return-address is pulled
172 from the stack, StackGhost can cause attacker corrupted return
173 pointers to behave in a manner the attacker cannot predict.
174 StackGhost can also use several unused bits in the return pointer
175 to detect a smashed return pointer and abort the process."
176
177 For GDB this means that whenever we're reading %i7 from a stack
178 frame's window save area, we'll have to XOR the cookie.
179
180 More information on StackGuard can be found on in:
181
c378eb4e 182 Mike Frantzen and Mike Shuey. "StackGhost: Hardware Facilitated
42cdca6c
MK
183 Stack Protection." 2001. Published in USENIX Security Symposium
184 '01. */
185
186/* Fetch StackGhost Per-Process XOR cookie. */
187
188ULONGEST
e17a4113 189sparc_fetch_wcookie (struct gdbarch *gdbarch)
42cdca6c 190{
e17a4113 191 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
328d42d8 192 struct target_ops *ops = current_inferior ()->top_target ();
e1613aba 193 gdb_byte buf[8];
baf92889
MK
194 int len;
195
13547ab6 196 len = target_read (ops, TARGET_OBJECT_WCOOKIE, NULL, buf, 0, 8);
baf92889
MK
197 if (len == -1)
198 return 0;
42cdca6c 199
baf92889
MK
200 /* We should have either an 32-bit or an 64-bit cookie. */
201 gdb_assert (len == 4 || len == 8);
202
e17a4113 203 return extract_unsigned_integer (buf, len, byte_order);
baf92889 204}
386c036b 205\f
baf92889 206
386c036b
MK
207/* The functions on this page are intended to be used to classify
208 function arguments. */
c906108c 209
386c036b 210/* Check whether TYPE is "Integral or Pointer". */
c906108c 211
386c036b
MK
212static int
213sparc_integral_or_pointer_p (const struct type *type)
c906108c 214{
80ad1639
MK
215 int len = TYPE_LENGTH (type);
216
78134374 217 switch (type->code ())
c906108c 218 {
386c036b
MK
219 case TYPE_CODE_INT:
220 case TYPE_CODE_BOOL:
221 case TYPE_CODE_CHAR:
222 case TYPE_CODE_ENUM:
223 case TYPE_CODE_RANGE:
80ad1639
MK
224 /* We have byte, half-word, word and extended-word/doubleword
225 integral types. The doubleword is an extension to the
226 original 32-bit ABI by the SCD 2.4.x. */
227 return (len == 1 || len == 2 || len == 4 || len == 8);
386c036b
MK
228 case TYPE_CODE_PTR:
229 case TYPE_CODE_REF:
aa006118 230 case TYPE_CODE_RVALUE_REF:
80ad1639
MK
231 /* Allow either 32-bit or 64-bit pointers. */
232 return (len == 4 || len == 8);
386c036b
MK
233 default:
234 break;
235 }
c906108c 236
386c036b
MK
237 return 0;
238}
c906108c 239
386c036b 240/* Check whether TYPE is "Floating". */
c906108c 241
386c036b
MK
242static int
243sparc_floating_p (const struct type *type)
244{
78134374 245 switch (type->code ())
c906108c 246 {
386c036b
MK
247 case TYPE_CODE_FLT:
248 {
249 int len = TYPE_LENGTH (type);
250 return (len == 4 || len == 8 || len == 16);
251 }
252 default:
253 break;
254 }
255
256 return 0;
257}
c906108c 258
fe10a582
DM
259/* Check whether TYPE is "Complex Floating". */
260
261static int
262sparc_complex_floating_p (const struct type *type)
263{
78134374 264 switch (type->code ())
fe10a582
DM
265 {
266 case TYPE_CODE_COMPLEX:
267 {
268 int len = TYPE_LENGTH (type);
269 return (len == 8 || len == 16 || len == 32);
270 }
271 default:
272 break;
273 }
274
275 return 0;
276}
277
0497f5b0
JB
278/* Check whether TYPE is "Structure or Union".
279
280 In terms of Ada subprogram calls, arrays are treated the same as
281 struct and union types. So this function also returns non-zero
282 for array types. */
c906108c 283
386c036b
MK
284static int
285sparc_structure_or_union_p (const struct type *type)
286{
78134374 287 switch (type->code ())
386c036b
MK
288 {
289 case TYPE_CODE_STRUCT:
290 case TYPE_CODE_UNION:
0497f5b0 291 case TYPE_CODE_ARRAY:
386c036b
MK
292 return 1;
293 default:
294 break;
c906108c 295 }
386c036b
MK
296
297 return 0;
c906108c 298}
386c036b 299
05bc7456
JB
300/* Return true if TYPE is returned by memory, false if returned by
301 register. */
1933fd8e
VM
302
303static bool
304sparc_structure_return_p (const struct type *type)
305{
bd63c870 306 if (type->code () == TYPE_CODE_ARRAY && type->is_vector ())
1933fd8e 307 {
05bc7456
JB
308 /* Float vectors are always returned by memory. */
309 if (sparc_floating_p (check_typedef (TYPE_TARGET_TYPE (type))))
310 return true;
311 /* Integer vectors are returned by memory if the vector size
312 is greater than 8 bytes long. */
313 return (TYPE_LENGTH (type) > 8);
314 }
1933fd8e 315
05bc7456
JB
316 if (sparc_floating_p (type))
317 {
318 /* Floating point types are passed by register for size 4 and
319 8 bytes, and by memory for size 16 bytes. */
320 return (TYPE_LENGTH (type) == 16);
1933fd8e 321 }
05bc7456
JB
322
323 /* Other than that, only aggregates of all sizes get returned by
324 memory. */
1933fd8e
VM
325 return sparc_structure_or_union_p (type);
326}
327
05bc7456
JB
328/* Return true if arguments of the given TYPE are passed by
329 memory; false if returned by register. */
1933fd8e
VM
330
331static bool
05bc7456 332sparc_arg_by_memory_p (const struct type *type)
1933fd8e 333{
bd63c870 334 if (type->code () == TYPE_CODE_ARRAY && type->is_vector ())
1933fd8e 335 {
05bc7456
JB
336 /* Float vectors are always passed by memory. */
337 if (sparc_floating_p (check_typedef (TYPE_TARGET_TYPE (type))))
338 return true;
339 /* Integer vectors are passed by memory if the vector size
340 is greater than 8 bytes long. */
341 return (TYPE_LENGTH (type) > 8);
1933fd8e 342 }
05bc7456
JB
343
344 /* Floats are passed by register for size 4 and 8 bytes, and by memory
345 for size 16 bytes. */
346 if (sparc_floating_p (type))
347 return (TYPE_LENGTH (type) == 16);
348
349 /* Complex floats and aggregates of all sizes are passed by memory. */
350 if (sparc_complex_floating_p (type) || sparc_structure_or_union_p (type))
351 return true;
352
353 /* Everything else gets passed by register. */
354 return false;
1933fd8e
VM
355}
356
386c036b 357/* Register information. */
7a36499a
IR
358#define SPARC32_FPU_REGISTERS \
359 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
360 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
361 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", \
362 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
363#define SPARC32_CP0_REGISTERS \
364 "y", "psr", "wim", "tbr", "pc", "npc", "fsr", "csr"
386c036b 365
27087b7f
TT
366static const char * const sparc_core_register_names[] = {
367 SPARC_CORE_REGISTERS
368};
369static const char * const sparc32_fpu_register_names[] = {
370 SPARC32_FPU_REGISTERS
371};
372static const char * const sparc32_cp0_register_names[] = {
373 SPARC32_CP0_REGISTERS
374};
3f7b46f2 375
27087b7f 376static const char * const sparc32_register_names[] =
5af923b0 377{
7a36499a
IR
378 SPARC_CORE_REGISTERS,
379 SPARC32_FPU_REGISTERS,
380 SPARC32_CP0_REGISTERS
5af923b0
MS
381};
382
386c036b
MK
383/* Total number of registers. */
384#define SPARC32_NUM_REGS ARRAY_SIZE (sparc32_register_names)
c906108c 385
386c036b
MK
386/* We provide the aliases %d0..%d30 for the floating registers as
387 "psuedo" registers. */
388
27087b7f 389static const char * const sparc32_pseudo_register_names[] =
386c036b
MK
390{
391 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
392 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30"
393};
394
395/* Total number of pseudo registers. */
396#define SPARC32_NUM_PSEUDO_REGS ARRAY_SIZE (sparc32_pseudo_register_names)
397
7a36499a
IR
398/* Return the name of pseudo register REGNUM. */
399
400static const char *
401sparc32_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
402{
403 regnum -= gdbarch_num_regs (gdbarch);
404
405 if (regnum < SPARC32_NUM_PSEUDO_REGS)
406 return sparc32_pseudo_register_names[regnum];
407
408 internal_error (__FILE__, __LINE__,
dda83cd7
SM
409 _("sparc32_pseudo_register_name: bad register number %d"),
410 regnum);
7a36499a
IR
411}
412
386c036b
MK
413/* Return the name of register REGNUM. */
414
415static const char *
d93859e2 416sparc32_register_name (struct gdbarch *gdbarch, int regnum)
386c036b 417{
3f7b46f2
IR
418 if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
419 return tdesc_register_name (gdbarch, regnum);
420
7a36499a 421 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
386c036b
MK
422 return sparc32_register_names[regnum];
423
7a36499a 424 return sparc32_pseudo_register_name (gdbarch, regnum);
386c036b 425}
2d457077 426\f
209bd28e 427/* Construct types for ISA-specific registers. */
2d457077 428
209bd28e
UW
429static struct type *
430sparc_psr_type (struct gdbarch *gdbarch)
431{
432 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2d457077 433
209bd28e
UW
434 if (!tdep->sparc_psr_type)
435 {
436 struct type *type;
2d457077 437
77b7c781 438 type = arch_flags_type (gdbarch, "builtin_type_sparc_psr", 32);
209bd28e
UW
439 append_flags_type_flag (type, 5, "ET");
440 append_flags_type_flag (type, 6, "PS");
441 append_flags_type_flag (type, 7, "S");
442 append_flags_type_flag (type, 12, "EF");
443 append_flags_type_flag (type, 13, "EC");
2d457077 444
209bd28e
UW
445 tdep->sparc_psr_type = type;
446 }
447
448 return tdep->sparc_psr_type;
449}
450
451static struct type *
452sparc_fsr_type (struct gdbarch *gdbarch)
2d457077 453{
209bd28e
UW
454 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
455
456 if (!tdep->sparc_fsr_type)
457 {
458 struct type *type;
459
77b7c781 460 type = arch_flags_type (gdbarch, "builtin_type_sparc_fsr", 32);
209bd28e
UW
461 append_flags_type_flag (type, 0, "NXA");
462 append_flags_type_flag (type, 1, "DZA");
463 append_flags_type_flag (type, 2, "UFA");
464 append_flags_type_flag (type, 3, "OFA");
465 append_flags_type_flag (type, 4, "NVA");
466 append_flags_type_flag (type, 5, "NXC");
467 append_flags_type_flag (type, 6, "DZC");
468 append_flags_type_flag (type, 7, "UFC");
469 append_flags_type_flag (type, 8, "OFC");
470 append_flags_type_flag (type, 9, "NVC");
471 append_flags_type_flag (type, 22, "NS");
472 append_flags_type_flag (type, 23, "NXM");
473 append_flags_type_flag (type, 24, "DZM");
474 append_flags_type_flag (type, 25, "UFM");
475 append_flags_type_flag (type, 26, "OFM");
476 append_flags_type_flag (type, 27, "NVM");
477
478 tdep->sparc_fsr_type = type;
479 }
480
481 return tdep->sparc_fsr_type;
2d457077 482}
386c036b 483
7a36499a
IR
484/* Return the GDB type object for the "standard" data type of data in
485 pseudo register REGNUM. */
486
487static struct type *
488sparc32_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
489{
490 regnum -= gdbarch_num_regs (gdbarch);
491
492 if (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM)
493 return builtin_type (gdbarch)->builtin_double;
494
495 internal_error (__FILE__, __LINE__,
dda83cd7
SM
496 _("sparc32_pseudo_register_type: bad register number %d"),
497 regnum);
7a36499a
IR
498}
499
386c036b 500/* Return the GDB type object for the "standard" data type of data in
c378eb4e 501 register REGNUM. */
386c036b
MK
502
503static struct type *
504sparc32_register_type (struct gdbarch *gdbarch, int regnum)
505{
3f7b46f2
IR
506 if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
507 return tdesc_register_type (gdbarch, regnum);
508
386c036b 509 if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
0dfff4cb 510 return builtin_type (gdbarch)->builtin_float;
386c036b 511
386c036b 512 if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
0dfff4cb 513 return builtin_type (gdbarch)->builtin_data_ptr;
386c036b
MK
514
515 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
0dfff4cb 516 return builtin_type (gdbarch)->builtin_func_ptr;
386c036b 517
2d457077 518 if (regnum == SPARC32_PSR_REGNUM)
209bd28e 519 return sparc_psr_type (gdbarch);
2d457077
MK
520
521 if (regnum == SPARC32_FSR_REGNUM)
209bd28e 522 return sparc_fsr_type (gdbarch);
2d457077 523
7a36499a
IR
524 if (regnum >= gdbarch_num_regs (gdbarch))
525 return sparc32_pseudo_register_type (gdbarch, regnum);
526
df4df182 527 return builtin_type (gdbarch)->builtin_int32;
386c036b
MK
528}
529
05d1431c 530static enum register_status
386c036b 531sparc32_pseudo_register_read (struct gdbarch *gdbarch,
849d0ba8 532 readable_regcache *regcache,
e1613aba 533 int regnum, gdb_byte *buf)
386c036b 534{
05d1431c
PA
535 enum register_status status;
536
7a36499a 537 regnum -= gdbarch_num_regs (gdbarch);
386c036b
MK
538 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
539
540 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
03f50fc8 541 status = regcache->raw_read (regnum, buf);
05d1431c 542 if (status == REG_VALID)
03f50fc8 543 status = regcache->raw_read (regnum + 1, buf + 4);
05d1431c 544 return status;
386c036b
MK
545}
546
547static void
548sparc32_pseudo_register_write (struct gdbarch *gdbarch,
549 struct regcache *regcache,
e1613aba 550 int regnum, const gdb_byte *buf)
386c036b 551{
7a36499a 552 regnum -= gdbarch_num_regs (gdbarch);
386c036b
MK
553 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
554
555 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
10eaee5f
SM
556 regcache->raw_write (regnum, buf);
557 regcache->raw_write (regnum + 1, buf + 4);
386c036b
MK
558}
559\f
c9cf6e20 560/* Implement the stack_frame_destroyed_p gdbarch method. */
961842b2
JM
561
562int
c9cf6e20 563sparc_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
961842b2
JM
564{
565 /* This function must return true if we are one instruction after an
566 instruction that destroyed the stack frame of the current
567 function. The SPARC instructions used to restore the callers
568 stack frame are RESTORE and RETURN/RETT.
569
570 Of these RETURN/RETT is a branch instruction and thus we return
571 true if we are in its delay slot.
572
573 RESTORE is almost always found in the delay slot of a branch
574 instruction that transfers control to the caller, such as JMPL.
575 Thus the next instruction is in the caller frame and we don't
576 need to do anything about it. */
577
578 unsigned int insn = sparc_fetch_instruction (pc - 4);
579
580 return X_RETTURN (insn);
581}
582\f
386c036b 583
49a45ecf
JB
584static CORE_ADDR
585sparc32_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
586{
587 /* The ABI requires double-word alignment. */
588 return address & ~0x7;
589}
590
386c036b
MK
591static CORE_ADDR
592sparc32_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
82585c72 593 CORE_ADDR funcaddr,
386c036b
MK
594 struct value **args, int nargs,
595 struct type *value_type,
e4fd649a
UW
596 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
597 struct regcache *regcache)
c906108c 598{
e17a4113
UW
599 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
600
386c036b
MK
601 *bp_addr = sp - 4;
602 *real_pc = funcaddr;
603
d80b854b 604 if (using_struct_return (gdbarch, NULL, value_type))
c906108c 605 {
e1613aba 606 gdb_byte buf[4];
386c036b
MK
607
608 /* This is an UNIMP instruction. */
e17a4113
UW
609 store_unsigned_integer (buf, 4, byte_order,
610 TYPE_LENGTH (value_type) & 0x1fff);
386c036b
MK
611 write_memory (sp - 8, buf, 4);
612 return sp - 8;
c906108c
SS
613 }
614
386c036b
MK
615 return sp - 4;
616}
617
618static CORE_ADDR
619sparc32_store_arguments (struct regcache *regcache, int nargs,
620 struct value **args, CORE_ADDR sp,
cf84fa6b
AH
621 function_call_return_method return_method,
622 CORE_ADDR struct_addr)
386c036b 623{
ac7936df 624 struct gdbarch *gdbarch = regcache->arch ();
e17a4113 625 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
386c036b
MK
626 /* Number of words in the "parameter array". */
627 int num_elements = 0;
628 int element = 0;
629 int i;
630
631 for (i = 0; i < nargs; i++)
c906108c 632 {
4991999e 633 struct type *type = value_type (args[i]);
386c036b
MK
634 int len = TYPE_LENGTH (type);
635
05bc7456 636 if (sparc_arg_by_memory_p (type))
c906108c 637 {
386c036b
MK
638 /* Structure, Union and Quad-Precision Arguments. */
639 sp -= len;
640
641 /* Use doubleword alignment for these values. That's always
dda83cd7 642 correct, and wasting a few bytes shouldn't be a problem. */
386c036b
MK
643 sp &= ~0x7;
644
0fd88904 645 write_memory (sp, value_contents (args[i]), len);
386c036b
MK
646 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
647 num_elements++;
648 }
649 else if (sparc_floating_p (type))
650 {
651 /* Floating arguments. */
652 gdb_assert (len == 4 || len == 8);
653 num_elements += (len / 4);
c906108c 654 }
c5aa993b
JM
655 else
656 {
05bc7456 657 /* Arguments passed via the General Purpose Registers. */
386c036b 658 num_elements += ((len + 3) / 4);
c5aa993b 659 }
c906108c 660 }
c906108c 661
386c036b 662 /* Always allocate at least six words. */
325fac50 663 sp -= std::max (6, num_elements) * 4;
c906108c 664
386c036b
MK
665 /* The psABI says that "Software convention requires space for the
666 struct/union return value pointer, even if the word is unused." */
667 sp -= 4;
c906108c 668
386c036b
MK
669 /* The psABI says that "Although software convention and the
670 operating system require every stack frame to be doubleword
671 aligned." */
672 sp &= ~0x7;
c906108c 673
386c036b 674 for (i = 0; i < nargs; i++)
c906108c 675 {
0fd88904 676 const bfd_byte *valbuf = value_contents (args[i]);
4991999e 677 struct type *type = value_type (args[i]);
386c036b 678 int len = TYPE_LENGTH (type);
1933fd8e
VM
679 gdb_byte buf[4];
680
681 if (len < 4)
dda83cd7
SM
682 {
683 memset (buf, 0, 4 - len);
684 memcpy (buf + 4 - len, valbuf, len);
685 valbuf = buf;
686 len = 4;
687 }
c906108c 688
386c036b 689 gdb_assert (len == 4 || len == 8);
c906108c 690
386c036b
MK
691 if (element < 6)
692 {
693 int regnum = SPARC_O0_REGNUM + element;
c906108c 694
b66f5587 695 regcache->cooked_write (regnum, valbuf);
386c036b 696 if (len > 4 && element < 5)
b66f5587 697 regcache->cooked_write (regnum + 1, valbuf + 4);
386c036b 698 }
5af923b0 699
386c036b
MK
700 /* Always store the argument in memory. */
701 write_memory (sp + 4 + element * 4, valbuf, len);
702 element += len / 4;
703 }
c906108c 704
386c036b 705 gdb_assert (element == num_elements);
c906108c 706
cf84fa6b 707 if (return_method == return_method_struct)
c906108c 708 {
e1613aba 709 gdb_byte buf[4];
c906108c 710
e17a4113 711 store_unsigned_integer (buf, 4, byte_order, struct_addr);
386c036b
MK
712 write_memory (sp, buf, 4);
713 }
c906108c 714
386c036b 715 return sp;
c906108c
SS
716}
717
386c036b 718static CORE_ADDR
7d9b040b 719sparc32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
386c036b
MK
720 struct regcache *regcache, CORE_ADDR bp_addr,
721 int nargs, struct value **args, CORE_ADDR sp,
cf84fa6b
AH
722 function_call_return_method return_method,
723 CORE_ADDR struct_addr)
c906108c 724{
cf84fa6b
AH
725 CORE_ADDR call_pc = (return_method == return_method_struct
726 ? (bp_addr - 12) : (bp_addr - 8));
386c036b
MK
727
728 /* Set return address. */
729 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, call_pc);
730
731 /* Set up function arguments. */
cf84fa6b
AH
732 sp = sparc32_store_arguments (regcache, nargs, args, sp, return_method,
733 struct_addr);
386c036b
MK
734
735 /* Allocate the 16-word window save area. */
736 sp -= 16 * 4;
c906108c 737
386c036b
MK
738 /* Stack should be doubleword aligned at this point. */
739 gdb_assert (sp % 8 == 0);
c906108c 740
386c036b
MK
741 /* Finally, update the stack pointer. */
742 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
743
744 return sp;
745}
746\f
c906108c 747
386c036b
MK
748/* Use the program counter to determine the contents and size of a
749 breakpoint instruction. Return a pointer to a string of bytes that
750 encode a breakpoint instruction, store the length of the string in
751 *LEN and optionally adjust *PC to point to the correct memory
752 location for inserting the breakpoint. */
04180708 753constexpr gdb_byte sparc_break_insn[] = { 0x91, 0xd0, 0x20, 0x01 };
c5aa993b 754
04180708 755typedef BP_MANIPULATION (sparc_break_insn) sparc_breakpoint;
386c036b 756\f
c906108c 757
386c036b 758/* Allocate and initialize a frame cache. */
c906108c 759
386c036b
MK
760static struct sparc_frame_cache *
761sparc_alloc_frame_cache (void)
762{
763 struct sparc_frame_cache *cache;
c906108c 764
386c036b 765 cache = FRAME_OBSTACK_ZALLOC (struct sparc_frame_cache);
c906108c 766
386c036b
MK
767 /* Base address. */
768 cache->base = 0;
769 cache->pc = 0;
c906108c 770
386c036b
MK
771 /* Frameless until proven otherwise. */
772 cache->frameless_p = 1;
369c397b
JB
773 cache->frame_offset = 0;
774 cache->saved_regs_mask = 0;
775 cache->copied_regs_mask = 0;
386c036b
MK
776 cache->struct_return_p = 0;
777
778 return cache;
779}
780
b0b92586
JB
781/* GCC generates several well-known sequences of instructions at the begining
782 of each function prologue when compiling with -fstack-check. If one of
783 such sequences starts at START_PC, then return the address of the
784 instruction immediately past this sequence. Otherwise, return START_PC. */
785
786static CORE_ADDR
787sparc_skip_stack_check (const CORE_ADDR start_pc)
788{
789 CORE_ADDR pc = start_pc;
790 unsigned long insn;
2067c8d4 791 int probing_loop = 0;
b0b92586
JB
792
793 /* With GCC, all stack checking sequences begin with the same two
2067c8d4 794 instructions, plus an optional one in the case of a probing loop:
b0b92586 795
dda83cd7
SM
796 sethi <some immediate>, %g1
797 sub %sp, %g1, %g1
2067c8d4
JG
798
799 or:
800
dda83cd7
SM
801 sethi <some immediate>, %g1
802 sethi <some immediate>, %g4
803 sub %sp, %g1, %g1
2067c8d4
JG
804
805 or:
806
dda83cd7
SM
807 sethi <some immediate>, %g1
808 sub %sp, %g1, %g1
809 sethi <some immediate>, %g4
2067c8d4
JG
810
811 If the optional instruction is found (setting g4), assume that a
812 probing loop will follow. */
813
814 /* sethi <some immediate>, %g1 */
b0b92586
JB
815 insn = sparc_fetch_instruction (pc);
816 pc = pc + 4;
817 if (!(X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 1))
818 return start_pc;
819
2067c8d4 820 /* optional: sethi <some immediate>, %g4 */
b0b92586
JB
821 insn = sparc_fetch_instruction (pc);
822 pc = pc + 4;
2067c8d4
JG
823 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
824 {
825 probing_loop = 1;
826 insn = sparc_fetch_instruction (pc);
827 pc = pc + 4;
828 }
829
830 /* sub %sp, %g1, %g1 */
b0b92586 831 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
dda83cd7 832 && X_RD (insn) == 1 && X_RS1 (insn) == 14 && X_RS2 (insn) == 1))
b0b92586
JB
833 return start_pc;
834
835 insn = sparc_fetch_instruction (pc);
836 pc = pc + 4;
837
2067c8d4
JG
838 /* optional: sethi <some immediate>, %g4 */
839 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
840 {
841 probing_loop = 1;
842 insn = sparc_fetch_instruction (pc);
843 pc = pc + 4;
844 }
845
b0b92586 846 /* First possible sequence:
dda83cd7
SM
847 [first two instructions above]
848 clr [%g1 - some immediate] */
b0b92586
JB
849
850 /* clr [%g1 - some immediate] */
851 if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
852 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
853 {
854 /* Valid stack-check sequence, return the new PC. */
855 return pc;
856 }
857
858 /* Second possible sequence: A small number of probes.
dda83cd7
SM
859 [first two instructions above]
860 clr [%g1]
861 add %g1, -<some immediate>, %g1
862 clr [%g1]
863 [repeat the two instructions above any (small) number of times]
864 clr [%g1 - some immediate] */
b0b92586
JB
865
866 /* clr [%g1] */
867 else if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
868 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
869 {
870 while (1)
dda83cd7
SM
871 {
872 /* add %g1, -<some immediate>, %g1 */
873 insn = sparc_fetch_instruction (pc);
874 pc = pc + 4;
875 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
876 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
877 break;
878
879 /* clr [%g1] */
880 insn = sparc_fetch_instruction (pc);
881 pc = pc + 4;
882 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
883 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
884 return start_pc;
885 }
b0b92586
JB
886
887 /* clr [%g1 - some immediate] */
888 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
dda83cd7
SM
889 && X_RS1 (insn) == 1 && X_RD (insn) == 0))
890 return start_pc;
b0b92586
JB
891
892 /* We found a valid stack-check sequence, return the new PC. */
893 return pc;
894 }
895
896 /* Third sequence: A probing loop.
dda83cd7
SM
897 [first three instructions above]
898 sub %g1, %g4, %g4
899 cmp %g1, %g4
900 be <disp>
901 add %g1, -<some immediate>, %g1
902 ba <disp>
903 clr [%g1]
2067c8d4
JG
904
905 And an optional last probe for the remainder:
906
dda83cd7 907 clr [%g4 - some immediate] */
b0b92586 908
2067c8d4 909 if (probing_loop)
b0b92586
JB
910 {
911 /* sub %g1, %g4, %g4 */
b0b92586 912 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
dda83cd7
SM
913 && X_RD (insn) == 4 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
914 return start_pc;
b0b92586
JB
915
916 /* cmp %g1, %g4 */
917 insn = sparc_fetch_instruction (pc);
918 pc = pc + 4;
919 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x14 && !X_I(insn)
dda83cd7
SM
920 && X_RD (insn) == 0 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
921 return start_pc;
b0b92586
JB
922
923 /* be <disp> */
924 insn = sparc_fetch_instruction (pc);
925 pc = pc + 4;
926 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x1))
dda83cd7 927 return start_pc;
b0b92586
JB
928
929 /* add %g1, -<some immediate>, %g1 */
930 insn = sparc_fetch_instruction (pc);
931 pc = pc + 4;
932 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
dda83cd7
SM
933 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
934 return start_pc;
b0b92586
JB
935
936 /* ba <disp> */
937 insn = sparc_fetch_instruction (pc);
938 pc = pc + 4;
939 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x8))
dda83cd7 940 return start_pc;
b0b92586 941
2067c8d4 942 /* clr [%g1] (st %g0, [%g1] or st %g0, [%g1+0]) */
b0b92586
JB
943 insn = sparc_fetch_instruction (pc);
944 pc = pc + 4;
2067c8d4 945 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4
dda83cd7 946 && X_RD (insn) == 0 && X_RS1 (insn) == 1
2067c8d4 947 && (!X_I(insn) || X_SIMM13 (insn) == 0)))
dda83cd7 948 return start_pc;
b0b92586 949
2067c8d4
JG
950 /* We found a valid stack-check sequence, return the new PC. */
951
952 /* optional: clr [%g4 - some immediate] */
b0b92586
JB
953 insn = sparc_fetch_instruction (pc);
954 pc = pc + 4;
955 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
dda83cd7
SM
956 && X_RS1 (insn) == 4 && X_RD (insn) == 0))
957 return pc - 4;
2067c8d4
JG
958 else
959 return pc;
b0b92586
JB
960 }
961
962 /* No stack check code in our prologue, return the start_pc. */
963 return start_pc;
964}
965
369c397b
JB
966/* Record the effect of a SAVE instruction on CACHE. */
967
968void
969sparc_record_save_insn (struct sparc_frame_cache *cache)
970{
971 /* The frame is set up. */
972 cache->frameless_p = 0;
973
974 /* The frame pointer contains the CFA. */
975 cache->frame_offset = 0;
976
977 /* The `local' and `in' registers are all saved. */
978 cache->saved_regs_mask = 0xffff;
979
980 /* The `out' registers are all renamed. */
981 cache->copied_regs_mask = 0xff;
982}
983
984/* Do a full analysis of the prologue at PC and update CACHE accordingly.
985 Bail out early if CURRENT_PC is reached. Return the address where
986 the analysis stopped.
987
988 We handle both the traditional register window model and the single
989 register window (aka flat) model. */
990
386c036b 991CORE_ADDR
be8626e0
MD
992sparc_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
993 CORE_ADDR current_pc, struct sparc_frame_cache *cache)
c906108c 994{
be8626e0 995 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
386c036b
MK
996 unsigned long insn;
997 int offset = 0;
c906108c 998 int dest = -1;
c906108c 999
b0b92586
JB
1000 pc = sparc_skip_stack_check (pc);
1001
386c036b
MK
1002 if (current_pc <= pc)
1003 return current_pc;
1004
1005 /* We have to handle to "Procedure Linkage Table" (PLT) special. On
1006 SPARC the linker usually defines a symbol (typically
1007 _PROCEDURE_LINKAGE_TABLE_) at the start of the .plt section.
1008 This symbol makes us end up here with PC pointing at the start of
1009 the PLT and CURRENT_PC probably pointing at a PLT entry. If we
1010 would do our normal prologue analysis, we would probably conclude
1011 that we've got a frame when in reality we don't, since the
1012 dynamic linker patches up the first PLT with some code that
1013 starts with a SAVE instruction. Patch up PC such that it points
1014 at the start of our PLT entry. */
3e5d3a5a 1015 if (tdep->plt_entry_size > 0 && in_plt_section (current_pc))
386c036b 1016 pc = current_pc - ((current_pc - pc) % tdep->plt_entry_size);
c906108c 1017
386c036b
MK
1018 insn = sparc_fetch_instruction (pc);
1019
369c397b
JB
1020 /* Recognize store insns and record their sources. */
1021 while (X_OP (insn) == 3
1022 && (X_OP3 (insn) == 0x4 /* stw */
1023 || X_OP3 (insn) == 0x7 /* std */
1024 || X_OP3 (insn) == 0xe) /* stx */
1025 && X_RS1 (insn) == SPARC_SP_REGNUM)
1026 {
1027 int regnum = X_RD (insn);
1028
1029 /* Recognize stores into the corresponding stack slots. */
1030 if (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM
1031 && ((X_I (insn)
1032 && X_SIMM13 (insn) == (X_OP3 (insn) == 0xe
1033 ? (regnum - SPARC_L0_REGNUM) * 8 + BIAS
1034 : (regnum - SPARC_L0_REGNUM) * 4))
1035 || (!X_I (insn) && regnum == SPARC_L0_REGNUM)))
1036 {
1037 cache->saved_regs_mask |= (1 << (regnum - SPARC_L0_REGNUM));
1038 if (X_OP3 (insn) == 0x7)
1039 cache->saved_regs_mask |= (1 << (regnum + 1 - SPARC_L0_REGNUM));
1040 }
1041
1042 offset += 4;
1043
1044 insn = sparc_fetch_instruction (pc + offset);
1045 }
1046
386c036b
MK
1047 /* Recognize a SETHI insn and record its destination. */
1048 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x04)
c906108c
SS
1049 {
1050 dest = X_RD (insn);
386c036b
MK
1051 offset += 4;
1052
369c397b 1053 insn = sparc_fetch_instruction (pc + offset);
c906108c
SS
1054 }
1055
386c036b
MK
1056 /* Allow for an arithmetic operation on DEST or %g1. */
1057 if (X_OP (insn) == 2 && X_I (insn)
c906108c
SS
1058 && (X_RD (insn) == 1 || X_RD (insn) == dest))
1059 {
386c036b 1060 offset += 4;
c906108c 1061
369c397b 1062 insn = sparc_fetch_instruction (pc + offset);
c906108c 1063 }
c906108c 1064
386c036b
MK
1065 /* Check for the SAVE instruction that sets up the frame. */
1066 if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
c906108c 1067 {
369c397b
JB
1068 sparc_record_save_insn (cache);
1069 offset += 4;
1070 return pc + offset;
1071 }
1072
1073 /* Check for an arithmetic operation on %sp. */
1074 if (X_OP (insn) == 2
1075 && (X_OP3 (insn) == 0 || X_OP3 (insn) == 0x4)
1076 && X_RS1 (insn) == SPARC_SP_REGNUM
1077 && X_RD (insn) == SPARC_SP_REGNUM)
1078 {
1079 if (X_I (insn))
1080 {
1081 cache->frame_offset = X_SIMM13 (insn);
1082 if (X_OP3 (insn) == 0)
1083 cache->frame_offset = -cache->frame_offset;
1084 }
1085 offset += 4;
1086
1087 insn = sparc_fetch_instruction (pc + offset);
1088
1089 /* Check for an arithmetic operation that sets up the frame. */
1090 if (X_OP (insn) == 2
1091 && (X_OP3 (insn) == 0 || X_OP3 (insn) == 0x4)
1092 && X_RS1 (insn) == SPARC_SP_REGNUM
1093 && X_RD (insn) == SPARC_FP_REGNUM)
1094 {
1095 cache->frameless_p = 0;
1096 cache->frame_offset = 0;
1097 /* We could check that the amount subtracted to %sp above is the
1098 same as the one added here, but this seems superfluous. */
1099 cache->copied_regs_mask |= 0x40;
1100 offset += 4;
1101
1102 insn = sparc_fetch_instruction (pc + offset);
1103 }
1104
1105 /* Check for a move (or) operation that copies the return register. */
1106 if (X_OP (insn) == 2
1107 && X_OP3 (insn) == 0x2
1108 && !X_I (insn)
1109 && X_RS1 (insn) == SPARC_G0_REGNUM
1110 && X_RS2 (insn) == SPARC_O7_REGNUM
1111 && X_RD (insn) == SPARC_I7_REGNUM)
1112 {
1113 cache->copied_regs_mask |= 0x80;
1114 offset += 4;
1115 }
1116
1117 return pc + offset;
c906108c
SS
1118 }
1119
1120 return pc;
1121}
1122
386c036b
MK
1123/* Return PC of first real instruction of the function starting at
1124 START_PC. */
f510d44e 1125
386c036b 1126static CORE_ADDR
6093d2eb 1127sparc32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
c906108c 1128{
f510d44e 1129 struct symtab_and_line sal;
5dd918d9 1130 CORE_ADDR func_addr;
386c036b 1131 struct sparc_frame_cache cache;
f510d44e
DM
1132
1133 /* This is the preferred method, find the end of the prologue by
1134 using the debugging information. */
5dd918d9
TT
1135
1136 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
f510d44e 1137 {
5dd918d9
TT
1138 CORE_ADDR post_prologue_pc
1139 = skip_prologue_using_sal (gdbarch, func_addr);
f510d44e 1140
5dd918d9
TT
1141 if (post_prologue_pc != 0)
1142 return std::max (start_pc, post_prologue_pc);
f510d44e
DM
1143 }
1144
be8626e0 1145 start_pc = sparc_analyze_prologue (gdbarch, start_pc, 0xffffffffUL, &cache);
075ccec8
MK
1146
1147 /* The psABI says that "Although the first 6 words of arguments
1148 reside in registers, the standard stack frame reserves space for
1149 them.". It also suggests that a function may use that space to
1150 "write incoming arguments 0 to 5" into that space, and that's
1151 indeed what GCC seems to be doing. In that case GCC will
1152 generate debug information that points to the stack slots instead
1153 of the registers, so we should consider the instructions that
369c397b 1154 write out these incoming arguments onto the stack. */
075ccec8 1155
369c397b 1156 while (1)
075ccec8
MK
1157 {
1158 unsigned long insn = sparc_fetch_instruction (start_pc);
1159
369c397b
JB
1160 /* Recognize instructions that store incoming arguments into the
1161 corresponding stack slots. */
1162 if (X_OP (insn) == 3 && (X_OP3 (insn) & 0x3c) == 0x04
1163 && X_I (insn) && X_RS1 (insn) == SPARC_FP_REGNUM)
075ccec8 1164 {
369c397b
JB
1165 int regnum = X_RD (insn);
1166
1167 /* Case of arguments still in %o[0..5]. */
1168 if (regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O5_REGNUM
1169 && !(cache.copied_regs_mask & (1 << (regnum - SPARC_O0_REGNUM)))
1170 && X_SIMM13 (insn) == 68 + (regnum - SPARC_O0_REGNUM) * 4)
1171 {
1172 start_pc += 4;
1173 continue;
1174 }
1175
1176 /* Case of arguments copied into %i[0..5]. */
1177 if (regnum >= SPARC_I0_REGNUM && regnum <= SPARC_I5_REGNUM
1178 && (cache.copied_regs_mask & (1 << (regnum - SPARC_I0_REGNUM)))
1179 && X_SIMM13 (insn) == 68 + (regnum - SPARC_I0_REGNUM) * 4)
1180 {
1181 start_pc += 4;
1182 continue;
1183 }
075ccec8
MK
1184 }
1185
1186 break;
1187 }
1188
1189 return start_pc;
c906108c
SS
1190}
1191
386c036b 1192/* Normal frames. */
9319a2fe 1193
386c036b 1194struct sparc_frame_cache *
236369e7 1195sparc_frame_cache (struct frame_info *this_frame, void **this_cache)
9319a2fe 1196{
386c036b 1197 struct sparc_frame_cache *cache;
9319a2fe 1198
386c036b 1199 if (*this_cache)
19ba03f4 1200 return (struct sparc_frame_cache *) *this_cache;
c906108c 1201
386c036b
MK
1202 cache = sparc_alloc_frame_cache ();
1203 *this_cache = cache;
c906108c 1204
236369e7 1205 cache->pc = get_frame_func (this_frame);
386c036b 1206 if (cache->pc != 0)
236369e7
JB
1207 sparc_analyze_prologue (get_frame_arch (this_frame), cache->pc,
1208 get_frame_pc (this_frame), cache);
386c036b
MK
1209
1210 if (cache->frameless_p)
c906108c 1211 {
cbeae229 1212 /* This function is frameless, so %fp (%i6) holds the frame
dda83cd7
SM
1213 pointer for our calling frame. Use %sp (%o6) as this frame's
1214 base address. */
cbeae229 1215 cache->base =
dda83cd7 1216 get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
cbeae229
MK
1217 }
1218 else
1219 {
1220 /* For normal frames, %fp (%i6) holds the frame pointer, the
dda83cd7 1221 base address for the current stack frame. */
cbeae229 1222 cache->base =
236369e7 1223 get_frame_register_unsigned (this_frame, SPARC_FP_REGNUM);
c906108c 1224 }
c906108c 1225
369c397b
JB
1226 cache->base += cache->frame_offset;
1227
5b2d44a0
MK
1228 if (cache->base & 1)
1229 cache->base += BIAS;
1230
386c036b 1231 return cache;
c906108c 1232}
c906108c 1233
aff37fc1
DM
1234static int
1235sparc32_struct_return_from_sym (struct symbol *sym)
1236{
1237 struct type *type = check_typedef (SYMBOL_TYPE (sym));
78134374 1238 enum type_code code = type->code ();
aff37fc1
DM
1239
1240 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1241 {
1242 type = check_typedef (TYPE_TARGET_TYPE (type));
1243 if (sparc_structure_or_union_p (type)
1244 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
1245 return 1;
1246 }
1247
1248 return 0;
1249}
1250
386c036b 1251struct sparc_frame_cache *
236369e7 1252sparc32_frame_cache (struct frame_info *this_frame, void **this_cache)
c906108c 1253{
386c036b
MK
1254 struct sparc_frame_cache *cache;
1255 struct symbol *sym;
c906108c 1256
386c036b 1257 if (*this_cache)
19ba03f4 1258 return (struct sparc_frame_cache *) *this_cache;
c906108c 1259
236369e7 1260 cache = sparc_frame_cache (this_frame, this_cache);
c906108c 1261
386c036b
MK
1262 sym = find_pc_function (cache->pc);
1263 if (sym)
c906108c 1264 {
aff37fc1 1265 cache->struct_return_p = sparc32_struct_return_from_sym (sym);
c906108c 1266 }
5465445a
JB
1267 else
1268 {
1269 /* There is no debugging information for this function to
dda83cd7
SM
1270 help us determine whether this function returns a struct
1271 or not. So we rely on another heuristic which is to check
1272 the instruction at the return address and see if this is
1273 an "unimp" instruction. If it is, then it is a struct-return
1274 function. */
5465445a 1275 CORE_ADDR pc;
369c397b
JB
1276 int regnum =
1277 (cache->copied_regs_mask & 0x80) ? SPARC_I7_REGNUM : SPARC_O7_REGNUM;
5465445a 1278
236369e7 1279 pc = get_frame_register_unsigned (this_frame, regnum) + 8;
5465445a 1280 if (sparc_is_unimp_insn (pc))
dda83cd7 1281 cache->struct_return_p = 1;
5465445a 1282 }
c906108c 1283
386c036b
MK
1284 return cache;
1285}
1286
1287static void
236369e7 1288sparc32_frame_this_id (struct frame_info *this_frame, void **this_cache,
386c036b
MK
1289 struct frame_id *this_id)
1290{
1291 struct sparc_frame_cache *cache =
236369e7 1292 sparc32_frame_cache (this_frame, this_cache);
386c036b
MK
1293
1294 /* This marks the outermost frame. */
1295 if (cache->base == 0)
1296 return;
1297
1298 (*this_id) = frame_id_build (cache->base, cache->pc);
1299}
c906108c 1300
236369e7
JB
1301static struct value *
1302sparc32_frame_prev_register (struct frame_info *this_frame,
1303 void **this_cache, int regnum)
386c036b 1304{
e17a4113 1305 struct gdbarch *gdbarch = get_frame_arch (this_frame);
386c036b 1306 struct sparc_frame_cache *cache =
236369e7 1307 sparc32_frame_cache (this_frame, this_cache);
c906108c 1308
386c036b 1309 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
c906108c 1310 {
236369e7 1311 CORE_ADDR pc = (regnum == SPARC32_NPC_REGNUM) ? 4 : 0;
386c036b 1312
236369e7
JB
1313 /* If this functions has a Structure, Union or Quad-Precision
1314 return value, we have to skip the UNIMP instruction that encodes
1315 the size of the structure. */
1316 if (cache->struct_return_p)
1317 pc += 4;
386c036b 1318
369c397b
JB
1319 regnum =
1320 (cache->copied_regs_mask & 0x80) ? SPARC_I7_REGNUM : SPARC_O7_REGNUM;
236369e7
JB
1321 pc += get_frame_register_unsigned (this_frame, regnum) + 8;
1322 return frame_unwind_got_constant (this_frame, regnum, pc);
c906108c
SS
1323 }
1324
42cdca6c
MK
1325 /* Handle StackGhost. */
1326 {
e17a4113 1327 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
42cdca6c
MK
1328
1329 if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
1330 {
dda83cd7
SM
1331 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
1332 ULONGEST i7;
236369e7 1333
dda83cd7
SM
1334 /* Read the value in from memory. */
1335 i7 = get_frame_memory_unsigned (this_frame, addr, 4);
1336 return frame_unwind_got_constant (this_frame, regnum, i7 ^ wcookie);
42cdca6c
MK
1337 }
1338 }
1339
369c397b 1340 /* The previous frame's `local' and `in' registers may have been saved
386c036b 1341 in the register save area. */
369c397b
JB
1342 if (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM
1343 && (cache->saved_regs_mask & (1 << (regnum - SPARC_L0_REGNUM))))
c906108c 1344 {
236369e7 1345 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
386c036b 1346
236369e7 1347 return frame_unwind_got_memory (this_frame, regnum, addr);
386c036b 1348 }
c906108c 1349
369c397b
JB
1350 /* The previous frame's `out' registers may be accessible as the current
1351 frame's `in' registers. */
1352 if (regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM
1353 && (cache->copied_regs_mask & (1 << (regnum - SPARC_O0_REGNUM))))
386c036b 1354 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
5af923b0 1355
236369e7 1356 return frame_unwind_got_register (this_frame, regnum, regnum);
386c036b 1357}
c906108c 1358
386c036b
MK
1359static const struct frame_unwind sparc32_frame_unwind =
1360{
1361 NORMAL_FRAME,
8fbca658 1362 default_frame_unwind_stop_reason,
386c036b 1363 sparc32_frame_this_id,
236369e7
JB
1364 sparc32_frame_prev_register,
1365 NULL,
1366 default_frame_sniffer
386c036b 1367};
386c036b 1368\f
c906108c 1369
386c036b 1370static CORE_ADDR
236369e7 1371sparc32_frame_base_address (struct frame_info *this_frame, void **this_cache)
386c036b
MK
1372{
1373 struct sparc_frame_cache *cache =
236369e7 1374 sparc32_frame_cache (this_frame, this_cache);
c906108c 1375
386c036b
MK
1376 return cache->base;
1377}
c906108c 1378
386c036b
MK
1379static const struct frame_base sparc32_frame_base =
1380{
1381 &sparc32_frame_unwind,
1382 sparc32_frame_base_address,
1383 sparc32_frame_base_address,
1384 sparc32_frame_base_address
1385};
c906108c 1386
386c036b 1387static struct frame_id
236369e7 1388sparc_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
386c036b
MK
1389{
1390 CORE_ADDR sp;
5af923b0 1391
236369e7 1392 sp = get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
5b2d44a0
MK
1393 if (sp & 1)
1394 sp += BIAS;
236369e7 1395 return frame_id_build (sp, get_frame_pc (this_frame));
386c036b
MK
1396}
1397\f
c906108c 1398
3923a2b2
MK
1399/* Extract a function return value of TYPE from REGCACHE, and copy
1400 that into VALBUF. */
5af923b0 1401
386c036b
MK
1402static void
1403sparc32_extract_return_value (struct type *type, struct regcache *regcache,
e1613aba 1404 gdb_byte *valbuf)
386c036b
MK
1405{
1406 int len = TYPE_LENGTH (type);
fe10a582 1407 gdb_byte buf[32];
c906108c 1408
1933fd8e 1409 gdb_assert (!sparc_structure_return_p (type));
c906108c 1410
1933fd8e 1411 if (sparc_floating_p (type) || sparc_complex_floating_p (type)
78134374 1412 || type->code () == TYPE_CODE_ARRAY)
5af923b0 1413 {
386c036b 1414 /* Floating return values. */
dca08e1f 1415 regcache->cooked_read (SPARC_F0_REGNUM, buf);
386c036b 1416 if (len > 4)
dca08e1f 1417 regcache->cooked_read (SPARC_F1_REGNUM, buf + 4);
fe10a582
DM
1418 if (len > 8)
1419 {
dca08e1f
SM
1420 regcache->cooked_read (SPARC_F2_REGNUM, buf + 8);
1421 regcache->cooked_read (SPARC_F3_REGNUM, buf + 12);
fe10a582
DM
1422 }
1423 if (len > 16)
1424 {
dca08e1f
SM
1425 regcache->cooked_read (SPARC_F4_REGNUM, buf + 16);
1426 regcache->cooked_read (SPARC_F5_REGNUM, buf + 20);
1427 regcache->cooked_read (SPARC_F6_REGNUM, buf + 24);
1428 regcache->cooked_read (SPARC_F7_REGNUM, buf + 28);
fe10a582 1429 }
386c036b 1430 memcpy (valbuf, buf, len);
5af923b0
MS
1431 }
1432 else
1433 {
386c036b
MK
1434 /* Integral and pointer return values. */
1435 gdb_assert (sparc_integral_or_pointer_p (type));
c906108c 1436
dca08e1f 1437 regcache->cooked_read (SPARC_O0_REGNUM, buf);
386c036b
MK
1438 if (len > 4)
1439 {
dca08e1f 1440 regcache->cooked_read (SPARC_O1_REGNUM, buf + 4);
386c036b
MK
1441 gdb_assert (len == 8);
1442 memcpy (valbuf, buf, 8);
1443 }
1444 else
1445 {
1446 /* Just stripping off any unused bytes should preserve the
1447 signed-ness just fine. */
1448 memcpy (valbuf, buf + 4 - len, len);
1449 }
1450 }
1451}
c906108c 1452
3923a2b2
MK
1453/* Store the function return value of type TYPE from VALBUF into
1454 REGCACHE. */
c906108c 1455
386c036b
MK
1456static void
1457sparc32_store_return_value (struct type *type, struct regcache *regcache,
e1613aba 1458 const gdb_byte *valbuf)
386c036b
MK
1459{
1460 int len = TYPE_LENGTH (type);
1933fd8e 1461 gdb_byte buf[32];
c906108c 1462
1933fd8e 1463 gdb_assert (!sparc_structure_return_p (type));
c906108c 1464
fe10a582 1465 if (sparc_floating_p (type) || sparc_complex_floating_p (type))
386c036b
MK
1466 {
1467 /* Floating return values. */
1468 memcpy (buf, valbuf, len);
b66f5587 1469 regcache->cooked_write (SPARC_F0_REGNUM, buf);
386c036b 1470 if (len > 4)
b66f5587 1471 regcache->cooked_write (SPARC_F1_REGNUM, buf + 4);
fe10a582
DM
1472 if (len > 8)
1473 {
b66f5587
SM
1474 regcache->cooked_write (SPARC_F2_REGNUM, buf + 8);
1475 regcache->cooked_write (SPARC_F3_REGNUM, buf + 12);
fe10a582
DM
1476 }
1477 if (len > 16)
1478 {
b66f5587
SM
1479 regcache->cooked_write (SPARC_F4_REGNUM, buf + 16);
1480 regcache->cooked_write (SPARC_F5_REGNUM, buf + 20);
1481 regcache->cooked_write (SPARC_F6_REGNUM, buf + 24);
1482 regcache->cooked_write (SPARC_F7_REGNUM, buf + 28);
fe10a582 1483 }
386c036b
MK
1484 }
1485 else
c906108c 1486 {
386c036b
MK
1487 /* Integral and pointer return values. */
1488 gdb_assert (sparc_integral_or_pointer_p (type));
1489
1490 if (len > 4)
2757dd86 1491 {
386c036b
MK
1492 gdb_assert (len == 8);
1493 memcpy (buf, valbuf, 8);
b66f5587 1494 regcache->cooked_write (SPARC_O1_REGNUM, buf + 4);
2757dd86
AC
1495 }
1496 else
1497 {
386c036b
MK
1498 /* ??? Do we need to do any sign-extension here? */
1499 memcpy (buf + 4 - len, valbuf, len);
2757dd86 1500 }
b66f5587 1501 regcache->cooked_write (SPARC_O0_REGNUM, buf);
c906108c
SS
1502 }
1503}
1504
b9d4c5ed 1505static enum return_value_convention
6a3a010b 1506sparc32_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
1507 struct type *type, struct regcache *regcache,
1508 gdb_byte *readbuf, const gdb_byte *writebuf)
b9d4c5ed 1509{
e17a4113
UW
1510 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1511
0a8f48b9
MK
1512 /* The psABI says that "...every stack frame reserves the word at
1513 %fp+64. If a function returns a structure, union, or
1514 quad-precision value, this word should hold the address of the
1515 object into which the return value should be copied." This
1516 guarantees that we can always find the return value, not just
1517 before the function returns. */
1518
1933fd8e 1519 if (sparc_structure_return_p (type))
0a8f48b9 1520 {
bbfdfe1c
DM
1521 ULONGEST sp;
1522 CORE_ADDR addr;
1523
0a8f48b9
MK
1524 if (readbuf)
1525 {
0a8f48b9 1526 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
e17a4113 1527 addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
0a8f48b9
MK
1528 read_memory (addr, readbuf, TYPE_LENGTH (type));
1529 }
bbfdfe1c
DM
1530 if (writebuf)
1531 {
1532 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1533 addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
1534 write_memory (addr, writebuf, TYPE_LENGTH (type));
1535 }
0a8f48b9
MK
1536
1537 return RETURN_VALUE_ABI_PRESERVES_ADDRESS;
1538 }
b9d4c5ed
MK
1539
1540 if (readbuf)
1541 sparc32_extract_return_value (type, regcache, readbuf);
1542 if (writebuf)
1543 sparc32_store_return_value (type, regcache, writebuf);
1544
1545 return RETURN_VALUE_REGISTER_CONVENTION;
1546}
1547
386c036b
MK
1548static int
1549sparc32_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
c906108c 1550{
386c036b 1551 return (sparc_structure_or_union_p (type)
fe10a582
DM
1552 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16)
1553 || sparc_complex_floating_p (type));
386c036b 1554}
c906108c 1555
aff37fc1 1556static int
4a4e5149 1557sparc32_dwarf2_struct_return_p (struct frame_info *this_frame)
aff37fc1 1558{
236369e7 1559 CORE_ADDR pc = get_frame_address_in_block (this_frame);
aff37fc1
DM
1560 struct symbol *sym = find_pc_function (pc);
1561
1562 if (sym)
1563 return sparc32_struct_return_from_sym (sym);
1564 return 0;
1565}
1566
f5a9b87d
DM
1567static void
1568sparc32_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 1569 struct dwarf2_frame_state_reg *reg,
4a4e5149 1570 struct frame_info *this_frame)
f5a9b87d 1571{
aff37fc1
DM
1572 int off;
1573
f5a9b87d
DM
1574 switch (regnum)
1575 {
1576 case SPARC_G0_REGNUM:
1577 /* Since %g0 is always zero, there is no point in saving it, and
1578 people will be inclined omit it from the CFI. Make sure we
1579 don't warn about that. */
1580 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1581 break;
1582 case SPARC_SP_REGNUM:
1583 reg->how = DWARF2_FRAME_REG_CFA;
1584 break;
1585 case SPARC32_PC_REGNUM:
f5a9b87d
DM
1586 case SPARC32_NPC_REGNUM:
1587 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
aff37fc1 1588 off = 8;
4a4e5149 1589 if (sparc32_dwarf2_struct_return_p (this_frame))
aff37fc1
DM
1590 off += 4;
1591 if (regnum == SPARC32_NPC_REGNUM)
1592 off += 4;
1593 reg->loc.offset = off;
f5a9b87d
DM
1594 break;
1595 }
1596}
1597
b41c5a85
JW
1598/* Implement the execute_dwarf_cfa_vendor_op method. */
1599
1600static bool
1601sparc_execute_dwarf_cfa_vendor_op (struct gdbarch *gdbarch, gdb_byte op,
1602 struct dwarf2_frame_state *fs)
1603{
1604 /* Only DW_CFA_GNU_window_save is expected on SPARC. */
1605 if (op != DW_CFA_GNU_window_save)
1606 return false;
1607
1608 uint64_t reg;
1609 int size = register_size (gdbarch, 0);
1610
1c90d9f0 1611 fs->regs.alloc_regs (32);
b41c5a85
JW
1612 for (reg = 8; reg < 16; reg++)
1613 {
1614 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
1615 fs->regs.reg[reg].loc.reg = reg + 16;
1616 }
1617 for (reg = 16; reg < 32; reg++)
1618 {
1619 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
1620 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
1621 }
1622
1623 return true;
1624}
1625
386c036b
MK
1626\f
1627/* The SPARC Architecture doesn't have hardware single-step support,
1628 and most operating systems don't implement it either, so we provide
1629 software single-step mechanism. */
c906108c 1630
386c036b 1631static CORE_ADDR
cd76b525 1632sparc_analyze_control_transfer (struct regcache *regcache,
c893be75 1633 CORE_ADDR pc, CORE_ADDR *npc)
386c036b
MK
1634{
1635 unsigned long insn = sparc_fetch_instruction (pc);
1636 int conditional_p = X_COND (insn) & 0x7;
8d1b3521 1637 int branch_p = 0, fused_p = 0;
386c036b 1638 long offset = 0; /* Must be signed for sign-extend. */
c906108c 1639
8d1b3521 1640 if (X_OP (insn) == 0 && X_OP2 (insn) == 3)
c906108c 1641 {
8d1b3521
DM
1642 if ((insn & 0x10000000) == 0)
1643 {
1644 /* Branch on Integer Register with Prediction (BPr). */
1645 branch_p = 1;
1646 conditional_p = 1;
1647 }
1648 else
1649 {
1650 /* Compare and Branch */
1651 branch_p = 1;
1652 fused_p = 1;
1653 offset = 4 * X_DISP10 (insn);
1654 }
c906108c 1655 }
386c036b 1656 else if (X_OP (insn) == 0 && X_OP2 (insn) == 6)
c906108c 1657 {
386c036b
MK
1658 /* Branch on Floating-Point Condition Codes (FBfcc). */
1659 branch_p = 1;
1660 offset = 4 * X_DISP22 (insn);
c906108c 1661 }
386c036b
MK
1662 else if (X_OP (insn) == 0 && X_OP2 (insn) == 5)
1663 {
1664 /* Branch on Floating-Point Condition Codes with Prediction
dda83cd7 1665 (FBPfcc). */
386c036b
MK
1666 branch_p = 1;
1667 offset = 4 * X_DISP19 (insn);
1668 }
1669 else if (X_OP (insn) == 0 && X_OP2 (insn) == 2)
1670 {
1671 /* Branch on Integer Condition Codes (Bicc). */
1672 branch_p = 1;
1673 offset = 4 * X_DISP22 (insn);
1674 }
1675 else if (X_OP (insn) == 0 && X_OP2 (insn) == 1)
c906108c 1676 {
386c036b
MK
1677 /* Branch on Integer Condition Codes with Prediction (BPcc). */
1678 branch_p = 1;
1679 offset = 4 * X_DISP19 (insn);
c906108c 1680 }
c893be75
MK
1681 else if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3a)
1682 {
cd76b525
YQ
1683 struct frame_info *frame = get_current_frame ();
1684
c893be75 1685 /* Trap instruction (TRAP). */
ac7936df 1686 return gdbarch_tdep (regcache->arch ())->step_trap (frame,
cd76b525 1687 insn);
c893be75 1688 }
386c036b
MK
1689
1690 /* FIXME: Handle DONE and RETRY instructions. */
1691
386c036b 1692 if (branch_p)
c906108c 1693 {
8d1b3521
DM
1694 if (fused_p)
1695 {
1696 /* Fused compare-and-branch instructions are non-delayed,
85102364 1697 and do not have an annulling capability. So we need to
8d1b3521
DM
1698 always set a breakpoint on both the NPC and the branch
1699 target address. */
1700 gdb_assert (offset != 0);
1701 return pc + offset;
1702 }
1703 else if (conditional_p)
c906108c 1704 {
386c036b
MK
1705 /* For conditional branches, return nPC + 4 iff the annul
1706 bit is 1. */
1707 return (X_A (insn) ? *npc + 4 : 0);
c906108c
SS
1708 }
1709 else
1710 {
386c036b
MK
1711 /* For unconditional branches, return the target if its
1712 specified condition is "always" and return nPC + 4 if the
1713 condition is "never". If the annul bit is 1, set *NPC to
1714 zero. */
1715 if (X_COND (insn) == 0x0)
1716 pc = *npc, offset = 4;
1717 if (X_A (insn))
1718 *npc = 0;
1719
386c036b 1720 return pc + offset;
c906108c
SS
1721 }
1722 }
386c036b
MK
1723
1724 return 0;
c906108c
SS
1725}
1726
c893be75 1727static CORE_ADDR
0b1b3e42 1728sparc_step_trap (struct frame_info *frame, unsigned long insn)
c893be75
MK
1729{
1730 return 0;
1731}
1732
a0ff9e1a 1733static std::vector<CORE_ADDR>
f5ea389a 1734sparc_software_single_step (struct regcache *regcache)
386c036b 1735{
ac7936df 1736 struct gdbarch *arch = regcache->arch ();
c893be75 1737 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
8181d85f 1738 CORE_ADDR npc, nnpc;
c906108c 1739
e0cd558a 1740 CORE_ADDR pc, orig_npc;
a0ff9e1a 1741 std::vector<CORE_ADDR> next_pcs;
c906108c 1742
cd76b525
YQ
1743 pc = regcache_raw_get_unsigned (regcache, tdep->pc_regnum);
1744 orig_npc = npc = regcache_raw_get_unsigned (regcache, tdep->npc_regnum);
c906108c 1745
e0cd558a 1746 /* Analyze the instruction at PC. */
cd76b525 1747 nnpc = sparc_analyze_control_transfer (regcache, pc, &npc);
e0cd558a 1748 if (npc != 0)
a0ff9e1a 1749 next_pcs.push_back (npc);
8181d85f 1750
e0cd558a 1751 if (nnpc != 0)
a0ff9e1a 1752 next_pcs.push_back (nnpc);
c906108c 1753
e0cd558a
UW
1754 /* Assert that we have set at least one breakpoint, and that
1755 they're not set at the same spot - unless we're going
1756 from here straight to NULL, i.e. a call or jump to 0. */
1757 gdb_assert (npc != 0 || nnpc != 0 || orig_npc == 0);
1758 gdb_assert (nnpc != npc || orig_npc == 0);
e6590a1b 1759
93f9a11f 1760 return next_pcs;
386c036b
MK
1761}
1762
1763static void
61a1198a 1764sparc_write_pc (struct regcache *regcache, CORE_ADDR pc)
386c036b 1765{
ac7936df 1766 struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());
386c036b 1767
61a1198a
UW
1768 regcache_cooked_write_unsigned (regcache, tdep->pc_regnum, pc);
1769 regcache_cooked_write_unsigned (regcache, tdep->npc_regnum, pc + 4);
386c036b
MK
1770}
1771\f
5af923b0 1772
e5139de8 1773/* Iterate over core file register note sections. */
a54124c5 1774
e5139de8
AA
1775static void
1776sparc_iterate_over_regset_sections (struct gdbarch *gdbarch,
1777 iterate_over_regset_sections_cb *cb,
1778 void *cb_data,
1779 const struct regcache *regcache)
a54124c5
MK
1780{
1781 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1782
a616bb94
AH
1783 cb (".reg", tdep->sizeof_gregset, tdep->sizeof_gregset, tdep->gregset, NULL,
1784 cb_data);
1785 cb (".reg2", tdep->sizeof_fpregset, tdep->sizeof_fpregset, tdep->fpregset,
1786 NULL, cb_data);
a54124c5
MK
1787}
1788\f
1789
3f7b46f2
IR
1790static int
1791validate_tdesc_registers (const struct target_desc *tdesc,
dda83cd7
SM
1792 struct tdesc_arch_data *tdesc_data,
1793 const char *feature_name,
1794 const char * const register_names[],
1795 unsigned int registers_num,
1796 unsigned int reg_start)
3f7b46f2
IR
1797{
1798 int valid_p = 1;
1799 const struct tdesc_feature *feature;
1800
1801 feature = tdesc_find_feature (tdesc, feature_name);
1802 if (feature == NULL)
1803 return 0;
1804
1805 for (unsigned int i = 0; i < registers_num; i++)
1806 valid_p &= tdesc_numbered_register (feature, tdesc_data,
dda83cd7
SM
1807 reg_start + i,
1808 register_names[i]);
3f7b46f2
IR
1809
1810 return valid_p;
1811}
1812
386c036b
MK
1813static struct gdbarch *
1814sparc32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1815{
1816 struct gdbarch_tdep *tdep;
3f7b46f2 1817 const struct target_desc *tdesc = info.target_desc;
386c036b 1818 struct gdbarch *gdbarch;
3f7b46f2 1819 int valid_p = 1;
c906108c 1820
386c036b
MK
1821 /* If there is already a candidate, use it. */
1822 arches = gdbarch_list_lookup_by_info (arches, &info);
1823 if (arches != NULL)
1824 return arches->gdbarch;
c906108c 1825
386c036b 1826 /* Allocate space for the new architecture. */
41bf6aca 1827 tdep = XCNEW (struct gdbarch_tdep);
386c036b 1828 gdbarch = gdbarch_alloc (&info, tdep);
5af923b0 1829
386c036b
MK
1830 tdep->pc_regnum = SPARC32_PC_REGNUM;
1831 tdep->npc_regnum = SPARC32_NPC_REGNUM;
c893be75 1832 tdep->step_trap = sparc_step_trap;
3f7b46f2
IR
1833 tdep->fpu_register_names = sparc32_fpu_register_names;
1834 tdep->fpu_registers_num = ARRAY_SIZE (sparc32_fpu_register_names);
1835 tdep->cp0_register_names = sparc32_cp0_register_names;
1836 tdep->cp0_registers_num = ARRAY_SIZE (sparc32_cp0_register_names);
386c036b
MK
1837
1838 set_gdbarch_long_double_bit (gdbarch, 128);
8da61cc4 1839 set_gdbarch_long_double_format (gdbarch, floatformats_sparc_quad);
386c036b 1840
53375380
PA
1841 set_gdbarch_wchar_bit (gdbarch, 16);
1842 set_gdbarch_wchar_signed (gdbarch, 1);
1843
386c036b
MK
1844 set_gdbarch_num_regs (gdbarch, SPARC32_NUM_REGS);
1845 set_gdbarch_register_name (gdbarch, sparc32_register_name);
1846 set_gdbarch_register_type (gdbarch, sparc32_register_type);
1847 set_gdbarch_num_pseudo_regs (gdbarch, SPARC32_NUM_PSEUDO_REGS);
3f7b46f2
IR
1848 set_tdesc_pseudo_register_name (gdbarch, sparc32_pseudo_register_name);
1849 set_tdesc_pseudo_register_type (gdbarch, sparc32_pseudo_register_type);
386c036b
MK
1850 set_gdbarch_pseudo_register_read (gdbarch, sparc32_pseudo_register_read);
1851 set_gdbarch_pseudo_register_write (gdbarch, sparc32_pseudo_register_write);
1852
1853 /* Register numbers of various important registers. */
1854 set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); /* %sp */
1855 set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); /* %pc */
1856 set_gdbarch_fp0_regnum (gdbarch, SPARC_F0_REGNUM); /* %f0 */
1857
1858 /* Call dummy code. */
49a45ecf 1859 set_gdbarch_frame_align (gdbarch, sparc32_frame_align);
386c036b
MK
1860 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1861 set_gdbarch_push_dummy_code (gdbarch, sparc32_push_dummy_code);
1862 set_gdbarch_push_dummy_call (gdbarch, sparc32_push_dummy_call);
1863
b9d4c5ed 1864 set_gdbarch_return_value (gdbarch, sparc32_return_value);
386c036b
MK
1865 set_gdbarch_stabs_argument_has_addr
1866 (gdbarch, sparc32_stabs_argument_has_addr);
1867
1868 set_gdbarch_skip_prologue (gdbarch, sparc32_skip_prologue);
1869
1870 /* Stack grows downward. */
1871 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
c906108c 1872
04180708
YQ
1873 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
1874 sparc_breakpoint::kind_from_pc);
1875 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
1876 sparc_breakpoint::bp_from_kind);
c906108c 1877
386c036b 1878 set_gdbarch_frame_args_skip (gdbarch, 8);
5af923b0 1879
386c036b
MK
1880 set_gdbarch_software_single_step (gdbarch, sparc_software_single_step);
1881 set_gdbarch_write_pc (gdbarch, sparc_write_pc);
c906108c 1882
236369e7 1883 set_gdbarch_dummy_id (gdbarch, sparc_dummy_id);
c906108c 1884
386c036b
MK
1885 frame_base_set_default (gdbarch, &sparc32_frame_base);
1886
f5a9b87d
DM
1887 /* Hook in the DWARF CFI frame unwinder. */
1888 dwarf2_frame_set_init_reg (gdbarch, sparc32_dwarf2_frame_init_reg);
b41c5a85
JW
1889 /* Register DWARF vendor CFI handler. */
1890 set_gdbarch_execute_dwarf_cfa_vendor_op (gdbarch,
1891 sparc_execute_dwarf_cfa_vendor_op);
f5a9b87d
DM
1892 /* FIXME: kettenis/20050423: Don't enable the unwinder until the
1893 StackGhost issues have been resolved. */
1894
b2a0b9b2
DM
1895 /* Hook in ABI-specific overrides, if they have been registered. */
1896 gdbarch_init_osabi (info, gdbarch);
1897
236369e7 1898 frame_unwind_append_unwinder (gdbarch, &sparc32_frame_unwind);
c906108c 1899
3f7b46f2
IR
1900 if (tdesc_has_registers (tdesc))
1901 {
c1e1314d 1902 tdesc_arch_data_up tdesc_data = tdesc_data_alloc ();
3f7b46f2
IR
1903
1904 /* Validate that the descriptor provides the mandatory registers
dda83cd7 1905 and allocate their numbers. */
c1e1314d 1906 valid_p &= validate_tdesc_registers (tdesc, tdesc_data.get (),
dda83cd7
SM
1907 "org.gnu.gdb.sparc.cpu",
1908 sparc_core_register_names,
1909 ARRAY_SIZE (sparc_core_register_names),
1910 SPARC_G0_REGNUM);
c1e1314d 1911 valid_p &= validate_tdesc_registers (tdesc, tdesc_data.get (),
dda83cd7
SM
1912 "org.gnu.gdb.sparc.fpu",
1913 tdep->fpu_register_names,
1914 tdep->fpu_registers_num,
1915 SPARC_F0_REGNUM);
c1e1314d 1916 valid_p &= validate_tdesc_registers (tdesc, tdesc_data.get (),
dda83cd7
SM
1917 "org.gnu.gdb.sparc.cp0",
1918 tdep->cp0_register_names,
1919 tdep->cp0_registers_num,
1920 SPARC_F0_REGNUM
1921 + tdep->fpu_registers_num);
3f7b46f2 1922 if (!valid_p)
c1e1314d 1923 return NULL;
3f7b46f2
IR
1924
1925 /* Target description may have changed. */
c1e1314d
TT
1926 info.tdesc_data = tdesc_data.get ();
1927 tdesc_use_registers (gdbarch, tdesc, std::move (tdesc_data));
3f7b46f2
IR
1928 }
1929
a54124c5 1930 /* If we have register sets, enable the generic core file support. */
4c72d57a 1931 if (tdep->gregset)
e5139de8
AA
1932 set_gdbarch_iterate_over_regset_sections
1933 (gdbarch, sparc_iterate_over_regset_sections);
a54124c5 1934
7e35103a
JB
1935 register_sparc_ravenscar_ops (gdbarch);
1936
386c036b
MK
1937 return gdbarch;
1938}
1939\f
1940/* Helper functions for dealing with register windows. */
1941
1942void
1943sparc_supply_rwindow (struct regcache *regcache, CORE_ADDR sp, int regnum)
c906108c 1944{
ac7936df 1945 struct gdbarch *gdbarch = regcache->arch ();
e17a4113 1946 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
386c036b 1947 int offset = 0;
e1613aba 1948 gdb_byte buf[8];
386c036b
MK
1949 int i;
1950
d1e93af6
SM
1951 /* This function calls functions that depend on the global current thread. */
1952 gdb_assert (regcache->ptid () == inferior_ptid);
1953
386c036b
MK
1954 if (sp & 1)
1955 {
1956 /* Registers are 64-bit. */
1957 sp += BIAS;
c906108c 1958
386c036b
MK
1959 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1960 {
1961 if (regnum == i || regnum == -1)
1962 {
1963 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
f700a364
MK
1964
1965 /* Handle StackGhost. */
1966 if (i == SPARC_I7_REGNUM)
1967 {
e17a4113
UW
1968 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1969 ULONGEST i7;
f700a364 1970
e17a4113
UW
1971 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1972 store_unsigned_integer (buf + offset, 8, byte_order,
1973 i7 ^ wcookie);
f700a364
MK
1974 }
1975
73e1c03f 1976 regcache->raw_supply (i, buf);
386c036b
MK
1977 }
1978 }
1979 }
1980 else
c906108c 1981 {
386c036b
MK
1982 /* Registers are 32-bit. Toss any sign-extension of the stack
1983 pointer. */
1984 sp &= 0xffffffffUL;
c906108c 1985
386c036b
MK
1986 /* Clear out the top half of the temporary buffer, and put the
1987 register value in the bottom half if we're in 64-bit mode. */
ac7936df 1988 if (gdbarch_ptr_bit (regcache->arch ()) == 64)
c906108c 1989 {
386c036b
MK
1990 memset (buf, 0, 4);
1991 offset = 4;
1992 }
c906108c 1993
386c036b
MK
1994 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1995 {
1996 if (regnum == i || regnum == -1)
1997 {
1998 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1999 buf + offset, 4);
42cdca6c
MK
2000
2001 /* Handle StackGhost. */
2002 if (i == SPARC_I7_REGNUM)
2003 {
e17a4113
UW
2004 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
2005 ULONGEST i7;
42cdca6c 2006
e17a4113
UW
2007 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
2008 store_unsigned_integer (buf + offset, 4, byte_order,
2009 i7 ^ wcookie);
42cdca6c
MK
2010 }
2011
73e1c03f 2012 regcache->raw_supply (i, buf);
386c036b 2013 }
c906108c
SS
2014 }
2015 }
c906108c 2016}
c906108c
SS
2017
2018void
386c036b
MK
2019sparc_collect_rwindow (const struct regcache *regcache,
2020 CORE_ADDR sp, int regnum)
c906108c 2021{
ac7936df 2022 struct gdbarch *gdbarch = regcache->arch ();
e17a4113 2023 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
386c036b 2024 int offset = 0;
e1613aba 2025 gdb_byte buf[8];
386c036b 2026 int i;
5af923b0 2027
d1e93af6
SM
2028 /* This function calls functions that depend on the global current thread. */
2029 gdb_assert (regcache->ptid () == inferior_ptid);
2030
386c036b 2031 if (sp & 1)
5af923b0 2032 {
386c036b
MK
2033 /* Registers are 64-bit. */
2034 sp += BIAS;
c906108c 2035
386c036b
MK
2036 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
2037 {
2038 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
2039 {
34a79281 2040 regcache->raw_collect (i, buf);
f700a364
MK
2041
2042 /* Handle StackGhost. */
2043 if (i == SPARC_I7_REGNUM)
2044 {
e17a4113
UW
2045 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
2046 ULONGEST i7;
f700a364 2047
e17a4113
UW
2048 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
2049 store_unsigned_integer (buf, 8, byte_order, i7 ^ wcookie);
f700a364
MK
2050 }
2051
386c036b
MK
2052 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
2053 }
2054 }
5af923b0
MS
2055 }
2056 else
2057 {
386c036b
MK
2058 /* Registers are 32-bit. Toss any sign-extension of the stack
2059 pointer. */
2060 sp &= 0xffffffffUL;
2061
2062 /* Only use the bottom half if we're in 64-bit mode. */
ac7936df 2063 if (gdbarch_ptr_bit (regcache->arch ()) == 64)
386c036b
MK
2064 offset = 4;
2065
2066 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
2067 {
2068 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
2069 {
34a79281 2070 regcache->raw_collect (i, buf);
42cdca6c
MK
2071
2072 /* Handle StackGhost. */
2073 if (i == SPARC_I7_REGNUM)
2074 {
e17a4113
UW
2075 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
2076 ULONGEST i7;
42cdca6c 2077
e17a4113
UW
2078 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
2079 store_unsigned_integer (buf + offset, 4, byte_order,
2080 i7 ^ wcookie);
42cdca6c
MK
2081 }
2082
386c036b
MK
2083 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
2084 buf + offset, 4);
2085 }
2086 }
5af923b0 2087 }
c906108c
SS
2088}
2089
386c036b
MK
2090/* Helper functions for dealing with register sets. */
2091
c906108c 2092void
b4fd25c9 2093sparc32_supply_gregset (const struct sparc_gregmap *gregmap,
386c036b
MK
2094 struct regcache *regcache,
2095 int regnum, const void *gregs)
c906108c 2096{
19ba03f4 2097 const gdb_byte *regs = (const gdb_byte *) gregs;
22e74ef9 2098 gdb_byte zero[4] = { 0 };
386c036b 2099 int i;
5af923b0 2100
386c036b 2101 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
73e1c03f 2102 regcache->raw_supply (SPARC32_PSR_REGNUM, regs + gregmap->r_psr_offset);
c906108c 2103
386c036b 2104 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
73e1c03f 2105 regcache->raw_supply (SPARC32_PC_REGNUM, regs + gregmap->r_pc_offset);
5af923b0 2106
386c036b 2107 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
73e1c03f 2108 regcache->raw_supply (SPARC32_NPC_REGNUM, regs + gregmap->r_npc_offset);
5af923b0 2109
386c036b 2110 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
73e1c03f 2111 regcache->raw_supply (SPARC32_Y_REGNUM, regs + gregmap->r_y_offset);
5af923b0 2112
386c036b 2113 if (regnum == SPARC_G0_REGNUM || regnum == -1)
73e1c03f 2114 regcache->raw_supply (SPARC_G0_REGNUM, &zero);
5af923b0 2115
386c036b 2116 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
c906108c 2117 {
b4fd25c9 2118 int offset = gregmap->r_g1_offset;
386c036b
MK
2119
2120 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
2121 {
2122 if (regnum == i || regnum == -1)
73e1c03f 2123 regcache->raw_supply (i, regs + offset);
386c036b
MK
2124 offset += 4;
2125 }
c906108c 2126 }
386c036b
MK
2127
2128 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
c906108c 2129 {
386c036b 2130 /* Not all of the register set variants include Locals and
dda83cd7 2131 Inputs. For those that don't, we read them off the stack. */
b4fd25c9 2132 if (gregmap->r_l0_offset == -1)
386c036b
MK
2133 {
2134 ULONGEST sp;
2135
2136 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
2137 sparc_supply_rwindow (regcache, sp, regnum);
2138 }
2139 else
2140 {
b4fd25c9 2141 int offset = gregmap->r_l0_offset;
386c036b
MK
2142
2143 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
2144 {
2145 if (regnum == i || regnum == -1)
73e1c03f 2146 regcache->raw_supply (i, regs + offset);
386c036b
MK
2147 offset += 4;
2148 }
2149 }
c906108c
SS
2150 }
2151}
2152
c5aa993b 2153void
b4fd25c9 2154sparc32_collect_gregset (const struct sparc_gregmap *gregmap,
386c036b
MK
2155 const struct regcache *regcache,
2156 int regnum, void *gregs)
c906108c 2157{
19ba03f4 2158 gdb_byte *regs = (gdb_byte *) gregs;
386c036b 2159 int i;
c5aa993b 2160
386c036b 2161 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
34a79281 2162 regcache->raw_collect (SPARC32_PSR_REGNUM, regs + gregmap->r_psr_offset);
60054393 2163
386c036b 2164 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
34a79281 2165 regcache->raw_collect (SPARC32_PC_REGNUM, regs + gregmap->r_pc_offset);
386c036b
MK
2166
2167 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
34a79281 2168 regcache->raw_collect (SPARC32_NPC_REGNUM, regs + gregmap->r_npc_offset);
5af923b0 2169
386c036b 2170 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
34a79281 2171 regcache->raw_collect (SPARC32_Y_REGNUM, regs + gregmap->r_y_offset);
386c036b
MK
2172
2173 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
5af923b0 2174 {
b4fd25c9 2175 int offset = gregmap->r_g1_offset;
386c036b
MK
2176
2177 /* %g0 is always zero. */
2178 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
2179 {
2180 if (regnum == i || regnum == -1)
34a79281 2181 regcache->raw_collect (i, regs + offset);
386c036b
MK
2182 offset += 4;
2183 }
5af923b0 2184 }
386c036b
MK
2185
2186 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
5af923b0 2187 {
386c036b 2188 /* Not all of the register set variants include Locals and
dda83cd7 2189 Inputs. For those that don't, we read them off the stack. */
b4fd25c9 2190 if (gregmap->r_l0_offset != -1)
386c036b 2191 {
b4fd25c9 2192 int offset = gregmap->r_l0_offset;
386c036b
MK
2193
2194 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
2195 {
2196 if (regnum == i || regnum == -1)
34a79281 2197 regcache->raw_collect (i, regs + offset);
386c036b
MK
2198 offset += 4;
2199 }
2200 }
5af923b0 2201 }
c906108c
SS
2202}
2203
c906108c 2204void
b4fd25c9 2205sparc32_supply_fpregset (const struct sparc_fpregmap *fpregmap,
db75c717 2206 struct regcache *regcache,
386c036b 2207 int regnum, const void *fpregs)
c906108c 2208{
19ba03f4 2209 const gdb_byte *regs = (const gdb_byte *) fpregs;
386c036b 2210 int i;
60054393 2211
386c036b 2212 for (i = 0; i < 32; i++)
c906108c 2213 {
386c036b 2214 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
73e1c03f
SM
2215 regcache->raw_supply (SPARC_F0_REGNUM + i,
2216 regs + fpregmap->r_f0_offset + (i * 4));
c906108c 2217 }
5af923b0 2218
386c036b 2219 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
73e1c03f 2220 regcache->raw_supply (SPARC32_FSR_REGNUM, regs + fpregmap->r_fsr_offset);
c906108c
SS
2221}
2222
386c036b 2223void
b4fd25c9 2224sparc32_collect_fpregset (const struct sparc_fpregmap *fpregmap,
db75c717 2225 const struct regcache *regcache,
386c036b 2226 int regnum, void *fpregs)
c906108c 2227{
19ba03f4 2228 gdb_byte *regs = (gdb_byte *) fpregs;
386c036b 2229 int i;
c906108c 2230
386c036b
MK
2231 for (i = 0; i < 32; i++)
2232 {
2233 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
34a79281
SM
2234 regcache->raw_collect (SPARC_F0_REGNUM + i,
2235 regs + fpregmap->r_f0_offset + (i * 4));
386c036b 2236 }
c906108c 2237
386c036b 2238 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
34a79281
SM
2239 regcache->raw_collect (SPARC32_FSR_REGNUM,
2240 regs + fpregmap->r_fsr_offset);
c906108c 2241}
c906108c 2242\f
c906108c 2243
386c036b 2244/* SunOS 4. */
c906108c 2245
386c036b 2246/* From <machine/reg.h>. */
b4fd25c9 2247const struct sparc_gregmap sparc32_sunos4_gregmap =
c906108c 2248{
386c036b
MK
2249 0 * 4, /* %psr */
2250 1 * 4, /* %pc */
2251 2 * 4, /* %npc */
2252 3 * 4, /* %y */
2253 -1, /* %wim */
2254 -1, /* %tbr */
2255 4 * 4, /* %g1 */
2256 -1 /* %l0 */
2257};
db75c717 2258
b4fd25c9 2259const struct sparc_fpregmap sparc32_sunos4_fpregmap =
db75c717
DM
2260{
2261 0 * 4, /* %f0 */
2262 33 * 4, /* %fsr */
2263};
2264
b4fd25c9 2265const struct sparc_fpregmap sparc32_bsd_fpregmap =
db75c717
DM
2266{
2267 0 * 4, /* %f0 */
2268 32 * 4, /* %fsr */
2269};
c906108c 2270
6c265988 2271void _initialize_sparc_tdep ();
c906108c 2272void
6c265988 2273_initialize_sparc_tdep ()
c906108c 2274{
386c036b 2275 register_gdbarch_init (bfd_arch_sparc, sparc32_gdbarch_init);
ef3cf062 2276}
This page took 2.883997 seconds and 4 git commands to generate.