Add some more casts (1/2)
[deliverable/binutils-gdb.git] / gdb / sparc-tdep.c
CommitLineData
386c036b 1/* Target-dependent code for SPARC.
cda5a58a 2
32d0add0 3 Copyright (C) 2003-2015 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 19
c906108c 20#include "defs.h"
5af923b0 21#include "arch-utils.h"
386c036b 22#include "dis-asm.h"
f5a9b87d 23#include "dwarf2-frame.h"
386c036b 24#include "floatformat.h"
c906108c 25#include "frame.h"
386c036b
MK
26#include "frame-base.h"
27#include "frame-unwind.h"
28#include "gdbcore.h"
29#include "gdbtypes.h"
c906108c 30#include "inferior.h"
386c036b
MK
31#include "symtab.h"
32#include "objfiles.h"
33#include "osabi.h"
34#include "regcache.h"
c906108c
SS
35#include "target.h"
36#include "value.h"
c906108c 37
386c036b 38#include "sparc-tdep.h"
e6f9c00b 39#include "sparc-ravenscar-thread.h"
c906108c 40
a54124c5
MK
41struct regset;
42
9eb42ed1
MK
43/* This file implements the SPARC 32-bit ABI as defined by the section
44 "Low-Level System Information" of the SPARC Compliance Definition
45 (SCD) 2.4.1, which is the 32-bit System V psABI for SPARC. The SCD
f2e7c15d 46 lists changes with respect to the original 32-bit psABI as defined
9eb42ed1 47 in the "System V ABI, SPARC Processor Supplement".
386c036b
MK
48
49 Note that if we talk about SunOS, we mean SunOS 4.x, which was
50 BSD-based, which is sometimes (retroactively?) referred to as
51 Solaris 1.x. If we talk about Solaris we mean Solaris 2.x and
52 above (Solaris 7, 8 and 9 are nothing but Solaris 2.7, 2.8 and 2.9
53 suffering from severe version number inflation). Solaris 2.x is
54 also known as SunOS 5.x, since that's what uname(1) says. Solaris
55 2.x is SVR4-based. */
56
57/* Please use the sparc32_-prefix for 32-bit specific code, the
58 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
59 code that can handle both. The 64-bit specific code lives in
60 sparc64-tdep.c; don't add any here. */
61
62/* The SPARC Floating-Point Quad-Precision format is similar to
7a58cce8 63 big-endian IA-64 Quad-Precision format. */
8da61cc4 64#define floatformats_sparc_quad floatformats_ia64_quad
386c036b
MK
65
66/* The stack pointer is offset from the stack frame by a BIAS of 2047
67 (0x7ff) for 64-bit code. BIAS is likely to be defined on SPARC
68 hosts, so undefine it first. */
69#undef BIAS
70#define BIAS 2047
71
72/* Macros to extract fields from SPARC instructions. */
c906108c
SS
73#define X_OP(i) (((i) >> 30) & 0x3)
74#define X_RD(i) (((i) >> 25) & 0x1f)
75#define X_A(i) (((i) >> 29) & 1)
76#define X_COND(i) (((i) >> 25) & 0xf)
77#define X_OP2(i) (((i) >> 22) & 0x7)
78#define X_IMM22(i) ((i) & 0x3fffff)
79#define X_OP3(i) (((i) >> 19) & 0x3f)
075ccec8 80#define X_RS1(i) (((i) >> 14) & 0x1f)
b0b92586 81#define X_RS2(i) ((i) & 0x1f)
c906108c 82#define X_I(i) (((i) >> 13) & 1)
c906108c 83/* Sign extension macros. */
c906108c 84#define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
c906108c 85#define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
8d1b3521 86#define X_DISP10(i) ((((((i) >> 11) && 0x300) | (((i) >> 5) & 0xff)) ^ 0x200) - 0x200)
075ccec8 87#define X_SIMM13(i) ((((i) & 0x1fff) ^ 0x1000) - 0x1000)
961842b2
JM
88/* Macros to identify some instructions. */
89/* RETURN (RETT in V8) */
90#define X_RETTURN(i) ((X_OP (i) == 0x2) && (X_OP3 (i) == 0x39))
c906108c 91
386c036b
MK
92/* Fetch the instruction at PC. Instructions are always big-endian
93 even if the processor operates in little-endian mode. */
94
95unsigned long
96sparc_fetch_instruction (CORE_ADDR pc)
c906108c 97{
e1613aba 98 gdb_byte buf[4];
386c036b
MK
99 unsigned long insn;
100 int i;
101
690668cc 102 /* If we can't read the instruction at PC, return zero. */
8defab1a 103 if (target_read_memory (pc, buf, sizeof (buf)))
690668cc 104 return 0;
c906108c 105
386c036b
MK
106 insn = 0;
107 for (i = 0; i < sizeof (buf); i++)
108 insn = (insn << 8) | buf[i];
109 return insn;
110}
42cdca6c
MK
111\f
112
5465445a
JB
113/* Return non-zero if the instruction corresponding to PC is an "unimp"
114 instruction. */
115
116static int
117sparc_is_unimp_insn (CORE_ADDR pc)
118{
119 const unsigned long insn = sparc_fetch_instruction (pc);
120
121 return ((insn & 0xc1c00000) == 0);
122}
123
d0b5971a
JM
124/* Return non-zero if the instruction corresponding to PC is an
125 "annulled" branch, i.e. the annul bit is set. */
126
127int
128sparc_is_annulled_branch_insn (CORE_ADDR pc)
129{
130 /* The branch instructions featuring an annul bit can be identified
131 by the following bit patterns:
132
133 OP=0
134 OP2=1: Branch on Integer Condition Codes with Prediction (BPcc).
135 OP2=2: Branch on Integer Condition Codes (Bcc).
136 OP2=5: Branch on FP Condition Codes with Prediction (FBfcc).
137 OP2=6: Branch on FP Condition Codes (FBcc).
138 OP2=3 && Bit28=0:
139 Branch on Integer Register with Prediction (BPr).
140
141 This leaves out ILLTRAP (OP2=0), SETHI/NOP (OP2=4) and the V8
142 coprocessor branch instructions (Op2=7). */
143
144 const unsigned long insn = sparc_fetch_instruction (pc);
145 const unsigned op2 = X_OP2 (insn);
146
147 if ((X_OP (insn) == 0)
148 && ((op2 == 1) || (op2 == 2) || (op2 == 5) || (op2 == 6)
149 || ((op2 == 3) && ((insn & 0x10000000) == 0))))
150 return X_A (insn);
151 else
152 return 0;
153}
154
42cdca6c
MK
155/* OpenBSD/sparc includes StackGhost, which according to the author's
156 website http://stackghost.cerias.purdue.edu "... transparently and
157 automatically protects applications' stack frames; more
158 specifically, it guards the return pointers. The protection
159 mechanisms require no application source or binary modification and
160 imposes only a negligible performance penalty."
161
162 The same website provides the following description of how
163 StackGhost works:
164
165 "StackGhost interfaces with the kernel trap handler that would
166 normally write out registers to the stack and the handler that
167 would read them back in. By XORing a cookie into the
168 return-address saved in the user stack when it is actually written
169 to the stack, and then XOR it out when the return-address is pulled
170 from the stack, StackGhost can cause attacker corrupted return
171 pointers to behave in a manner the attacker cannot predict.
172 StackGhost can also use several unused bits in the return pointer
173 to detect a smashed return pointer and abort the process."
174
175 For GDB this means that whenever we're reading %i7 from a stack
176 frame's window save area, we'll have to XOR the cookie.
177
178 More information on StackGuard can be found on in:
179
c378eb4e 180 Mike Frantzen and Mike Shuey. "StackGhost: Hardware Facilitated
42cdca6c
MK
181 Stack Protection." 2001. Published in USENIX Security Symposium
182 '01. */
183
184/* Fetch StackGhost Per-Process XOR cookie. */
185
186ULONGEST
e17a4113 187sparc_fetch_wcookie (struct gdbarch *gdbarch)
42cdca6c 188{
e17a4113 189 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
baf92889 190 struct target_ops *ops = &current_target;
e1613aba 191 gdb_byte buf[8];
baf92889
MK
192 int len;
193
13547ab6 194 len = target_read (ops, TARGET_OBJECT_WCOOKIE, NULL, buf, 0, 8);
baf92889
MK
195 if (len == -1)
196 return 0;
42cdca6c 197
baf92889
MK
198 /* We should have either an 32-bit or an 64-bit cookie. */
199 gdb_assert (len == 4 || len == 8);
200
e17a4113 201 return extract_unsigned_integer (buf, len, byte_order);
baf92889 202}
386c036b 203\f
baf92889 204
386c036b
MK
205/* The functions on this page are intended to be used to classify
206 function arguments. */
c906108c 207
386c036b 208/* Check whether TYPE is "Integral or Pointer". */
c906108c 209
386c036b
MK
210static int
211sparc_integral_or_pointer_p (const struct type *type)
c906108c 212{
80ad1639
MK
213 int len = TYPE_LENGTH (type);
214
386c036b 215 switch (TYPE_CODE (type))
c906108c 216 {
386c036b
MK
217 case TYPE_CODE_INT:
218 case TYPE_CODE_BOOL:
219 case TYPE_CODE_CHAR:
220 case TYPE_CODE_ENUM:
221 case TYPE_CODE_RANGE:
80ad1639
MK
222 /* We have byte, half-word, word and extended-word/doubleword
223 integral types. The doubleword is an extension to the
224 original 32-bit ABI by the SCD 2.4.x. */
225 return (len == 1 || len == 2 || len == 4 || len == 8);
386c036b
MK
226 case TYPE_CODE_PTR:
227 case TYPE_CODE_REF:
80ad1639
MK
228 /* Allow either 32-bit or 64-bit pointers. */
229 return (len == 4 || len == 8);
386c036b
MK
230 default:
231 break;
232 }
c906108c 233
386c036b
MK
234 return 0;
235}
c906108c 236
386c036b 237/* Check whether TYPE is "Floating". */
c906108c 238
386c036b
MK
239static int
240sparc_floating_p (const struct type *type)
241{
242 switch (TYPE_CODE (type))
c906108c 243 {
386c036b
MK
244 case TYPE_CODE_FLT:
245 {
246 int len = TYPE_LENGTH (type);
247 return (len == 4 || len == 8 || len == 16);
248 }
249 default:
250 break;
251 }
252
253 return 0;
254}
c906108c 255
fe10a582
DM
256/* Check whether TYPE is "Complex Floating". */
257
258static int
259sparc_complex_floating_p (const struct type *type)
260{
261 switch (TYPE_CODE (type))
262 {
263 case TYPE_CODE_COMPLEX:
264 {
265 int len = TYPE_LENGTH (type);
266 return (len == 8 || len == 16 || len == 32);
267 }
268 default:
269 break;
270 }
271
272 return 0;
273}
274
0497f5b0
JB
275/* Check whether TYPE is "Structure or Union".
276
277 In terms of Ada subprogram calls, arrays are treated the same as
278 struct and union types. So this function also returns non-zero
279 for array types. */
c906108c 280
386c036b
MK
281static int
282sparc_structure_or_union_p (const struct type *type)
283{
284 switch (TYPE_CODE (type))
285 {
286 case TYPE_CODE_STRUCT:
287 case TYPE_CODE_UNION:
0497f5b0 288 case TYPE_CODE_ARRAY:
386c036b
MK
289 return 1;
290 default:
291 break;
c906108c 292 }
386c036b
MK
293
294 return 0;
c906108c 295}
386c036b
MK
296
297/* Register information. */
298
299static const char *sparc32_register_names[] =
5af923b0 300{
386c036b
MK
301 "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
302 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
303 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
304 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
305
306 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
307 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
308 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
309 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
310
311 "y", "psr", "wim", "tbr", "pc", "npc", "fsr", "csr"
5af923b0
MS
312};
313
386c036b
MK
314/* Total number of registers. */
315#define SPARC32_NUM_REGS ARRAY_SIZE (sparc32_register_names)
c906108c 316
386c036b
MK
317/* We provide the aliases %d0..%d30 for the floating registers as
318 "psuedo" registers. */
319
320static const char *sparc32_pseudo_register_names[] =
321{
322 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
323 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30"
324};
325
326/* Total number of pseudo registers. */
327#define SPARC32_NUM_PSEUDO_REGS ARRAY_SIZE (sparc32_pseudo_register_names)
328
329/* Return the name of register REGNUM. */
330
331static const char *
d93859e2 332sparc32_register_name (struct gdbarch *gdbarch, int regnum)
386c036b
MK
333{
334 if (regnum >= 0 && regnum < SPARC32_NUM_REGS)
335 return sparc32_register_names[regnum];
336
337 if (regnum < SPARC32_NUM_REGS + SPARC32_NUM_PSEUDO_REGS)
338 return sparc32_pseudo_register_names[regnum - SPARC32_NUM_REGS];
339
340 return NULL;
341}
2d457077 342\f
209bd28e 343/* Construct types for ISA-specific registers. */
2d457077 344
209bd28e
UW
345static struct type *
346sparc_psr_type (struct gdbarch *gdbarch)
347{
348 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2d457077 349
209bd28e
UW
350 if (!tdep->sparc_psr_type)
351 {
352 struct type *type;
2d457077 353
e9bb382b 354 type = arch_flags_type (gdbarch, "builtin_type_sparc_psr", 4);
209bd28e
UW
355 append_flags_type_flag (type, 5, "ET");
356 append_flags_type_flag (type, 6, "PS");
357 append_flags_type_flag (type, 7, "S");
358 append_flags_type_flag (type, 12, "EF");
359 append_flags_type_flag (type, 13, "EC");
2d457077 360
209bd28e
UW
361 tdep->sparc_psr_type = type;
362 }
363
364 return tdep->sparc_psr_type;
365}
366
367static struct type *
368sparc_fsr_type (struct gdbarch *gdbarch)
2d457077 369{
209bd28e
UW
370 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
371
372 if (!tdep->sparc_fsr_type)
373 {
374 struct type *type;
375
e9bb382b 376 type = arch_flags_type (gdbarch, "builtin_type_sparc_fsr", 4);
209bd28e
UW
377 append_flags_type_flag (type, 0, "NXA");
378 append_flags_type_flag (type, 1, "DZA");
379 append_flags_type_flag (type, 2, "UFA");
380 append_flags_type_flag (type, 3, "OFA");
381 append_flags_type_flag (type, 4, "NVA");
382 append_flags_type_flag (type, 5, "NXC");
383 append_flags_type_flag (type, 6, "DZC");
384 append_flags_type_flag (type, 7, "UFC");
385 append_flags_type_flag (type, 8, "OFC");
386 append_flags_type_flag (type, 9, "NVC");
387 append_flags_type_flag (type, 22, "NS");
388 append_flags_type_flag (type, 23, "NXM");
389 append_flags_type_flag (type, 24, "DZM");
390 append_flags_type_flag (type, 25, "UFM");
391 append_flags_type_flag (type, 26, "OFM");
392 append_flags_type_flag (type, 27, "NVM");
393
394 tdep->sparc_fsr_type = type;
395 }
396
397 return tdep->sparc_fsr_type;
2d457077 398}
386c036b
MK
399
400/* Return the GDB type object for the "standard" data type of data in
c378eb4e 401 register REGNUM. */
386c036b
MK
402
403static struct type *
404sparc32_register_type (struct gdbarch *gdbarch, int regnum)
405{
406 if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
0dfff4cb 407 return builtin_type (gdbarch)->builtin_float;
386c036b
MK
408
409 if (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM)
0dfff4cb 410 return builtin_type (gdbarch)->builtin_double;
386c036b
MK
411
412 if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
0dfff4cb 413 return builtin_type (gdbarch)->builtin_data_ptr;
386c036b
MK
414
415 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
0dfff4cb 416 return builtin_type (gdbarch)->builtin_func_ptr;
386c036b 417
2d457077 418 if (regnum == SPARC32_PSR_REGNUM)
209bd28e 419 return sparc_psr_type (gdbarch);
2d457077
MK
420
421 if (regnum == SPARC32_FSR_REGNUM)
209bd28e 422 return sparc_fsr_type (gdbarch);
2d457077 423
df4df182 424 return builtin_type (gdbarch)->builtin_int32;
386c036b
MK
425}
426
05d1431c 427static enum register_status
386c036b
MK
428sparc32_pseudo_register_read (struct gdbarch *gdbarch,
429 struct regcache *regcache,
e1613aba 430 int regnum, gdb_byte *buf)
386c036b 431{
05d1431c
PA
432 enum register_status status;
433
386c036b
MK
434 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
435
436 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
05d1431c
PA
437 status = regcache_raw_read (regcache, regnum, buf);
438 if (status == REG_VALID)
439 status = regcache_raw_read (regcache, regnum + 1, buf + 4);
440 return status;
386c036b
MK
441}
442
443static void
444sparc32_pseudo_register_write (struct gdbarch *gdbarch,
445 struct regcache *regcache,
e1613aba 446 int regnum, const gdb_byte *buf)
386c036b
MK
447{
448 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
449
450 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
451 regcache_raw_write (regcache, regnum, buf);
e1613aba 452 regcache_raw_write (regcache, regnum + 1, buf + 4);
386c036b
MK
453}
454\f
c9cf6e20 455/* Implement the stack_frame_destroyed_p gdbarch method. */
961842b2
JM
456
457int
c9cf6e20 458sparc_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
961842b2
JM
459{
460 /* This function must return true if we are one instruction after an
461 instruction that destroyed the stack frame of the current
462 function. The SPARC instructions used to restore the callers
463 stack frame are RESTORE and RETURN/RETT.
464
465 Of these RETURN/RETT is a branch instruction and thus we return
466 true if we are in its delay slot.
467
468 RESTORE is almost always found in the delay slot of a branch
469 instruction that transfers control to the caller, such as JMPL.
470 Thus the next instruction is in the caller frame and we don't
471 need to do anything about it. */
472
473 unsigned int insn = sparc_fetch_instruction (pc - 4);
474
475 return X_RETTURN (insn);
476}
477\f
386c036b 478
49a45ecf
JB
479static CORE_ADDR
480sparc32_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
481{
482 /* The ABI requires double-word alignment. */
483 return address & ~0x7;
484}
485
386c036b
MK
486static CORE_ADDR
487sparc32_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
82585c72 488 CORE_ADDR funcaddr,
386c036b
MK
489 struct value **args, int nargs,
490 struct type *value_type,
e4fd649a
UW
491 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
492 struct regcache *regcache)
c906108c 493{
e17a4113
UW
494 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
495
386c036b
MK
496 *bp_addr = sp - 4;
497 *real_pc = funcaddr;
498
d80b854b 499 if (using_struct_return (gdbarch, NULL, value_type))
c906108c 500 {
e1613aba 501 gdb_byte buf[4];
386c036b
MK
502
503 /* This is an UNIMP instruction. */
e17a4113
UW
504 store_unsigned_integer (buf, 4, byte_order,
505 TYPE_LENGTH (value_type) & 0x1fff);
386c036b
MK
506 write_memory (sp - 8, buf, 4);
507 return sp - 8;
c906108c
SS
508 }
509
386c036b
MK
510 return sp - 4;
511}
512
513static CORE_ADDR
514sparc32_store_arguments (struct regcache *regcache, int nargs,
515 struct value **args, CORE_ADDR sp,
516 int struct_return, CORE_ADDR struct_addr)
517{
df4df182 518 struct gdbarch *gdbarch = get_regcache_arch (regcache);
e17a4113 519 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
386c036b
MK
520 /* Number of words in the "parameter array". */
521 int num_elements = 0;
522 int element = 0;
523 int i;
524
525 for (i = 0; i < nargs; i++)
c906108c 526 {
4991999e 527 struct type *type = value_type (args[i]);
386c036b
MK
528 int len = TYPE_LENGTH (type);
529
530 if (sparc_structure_or_union_p (type)
fe10a582
DM
531 || (sparc_floating_p (type) && len == 16)
532 || sparc_complex_floating_p (type))
c906108c 533 {
386c036b
MK
534 /* Structure, Union and Quad-Precision Arguments. */
535 sp -= len;
536
537 /* Use doubleword alignment for these values. That's always
538 correct, and wasting a few bytes shouldn't be a problem. */
539 sp &= ~0x7;
540
0fd88904 541 write_memory (sp, value_contents (args[i]), len);
386c036b
MK
542 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
543 num_elements++;
544 }
545 else if (sparc_floating_p (type))
546 {
547 /* Floating arguments. */
548 gdb_assert (len == 4 || len == 8);
549 num_elements += (len / 4);
c906108c 550 }
c5aa993b
JM
551 else
552 {
386c036b
MK
553 /* Integral and pointer arguments. */
554 gdb_assert (sparc_integral_or_pointer_p (type));
555
556 if (len < 4)
df4df182
UW
557 args[i] = value_cast (builtin_type (gdbarch)->builtin_int32,
558 args[i]);
386c036b 559 num_elements += ((len + 3) / 4);
c5aa993b 560 }
c906108c 561 }
c906108c 562
386c036b
MK
563 /* Always allocate at least six words. */
564 sp -= max (6, num_elements) * 4;
c906108c 565
386c036b
MK
566 /* The psABI says that "Software convention requires space for the
567 struct/union return value pointer, even if the word is unused." */
568 sp -= 4;
c906108c 569
386c036b
MK
570 /* The psABI says that "Although software convention and the
571 operating system require every stack frame to be doubleword
572 aligned." */
573 sp &= ~0x7;
c906108c 574
386c036b 575 for (i = 0; i < nargs; i++)
c906108c 576 {
0fd88904 577 const bfd_byte *valbuf = value_contents (args[i]);
4991999e 578 struct type *type = value_type (args[i]);
386c036b 579 int len = TYPE_LENGTH (type);
c906108c 580
386c036b 581 gdb_assert (len == 4 || len == 8);
c906108c 582
386c036b
MK
583 if (element < 6)
584 {
585 int regnum = SPARC_O0_REGNUM + element;
c906108c 586
386c036b
MK
587 regcache_cooked_write (regcache, regnum, valbuf);
588 if (len > 4 && element < 5)
589 regcache_cooked_write (regcache, regnum + 1, valbuf + 4);
590 }
5af923b0 591
386c036b
MK
592 /* Always store the argument in memory. */
593 write_memory (sp + 4 + element * 4, valbuf, len);
594 element += len / 4;
595 }
c906108c 596
386c036b 597 gdb_assert (element == num_elements);
c906108c 598
386c036b 599 if (struct_return)
c906108c 600 {
e1613aba 601 gdb_byte buf[4];
c906108c 602
e17a4113 603 store_unsigned_integer (buf, 4, byte_order, struct_addr);
386c036b
MK
604 write_memory (sp, buf, 4);
605 }
c906108c 606
386c036b 607 return sp;
c906108c
SS
608}
609
386c036b 610static CORE_ADDR
7d9b040b 611sparc32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
386c036b
MK
612 struct regcache *regcache, CORE_ADDR bp_addr,
613 int nargs, struct value **args, CORE_ADDR sp,
614 int struct_return, CORE_ADDR struct_addr)
c906108c 615{
386c036b
MK
616 CORE_ADDR call_pc = (struct_return ? (bp_addr - 12) : (bp_addr - 8));
617
618 /* Set return address. */
619 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, call_pc);
620
621 /* Set up function arguments. */
622 sp = sparc32_store_arguments (regcache, nargs, args, sp,
623 struct_return, struct_addr);
624
625 /* Allocate the 16-word window save area. */
626 sp -= 16 * 4;
c906108c 627
386c036b
MK
628 /* Stack should be doubleword aligned at this point. */
629 gdb_assert (sp % 8 == 0);
c906108c 630
386c036b
MK
631 /* Finally, update the stack pointer. */
632 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
633
634 return sp;
635}
636\f
c906108c 637
386c036b
MK
638/* Use the program counter to determine the contents and size of a
639 breakpoint instruction. Return a pointer to a string of bytes that
640 encode a breakpoint instruction, store the length of the string in
641 *LEN and optionally adjust *PC to point to the correct memory
642 location for inserting the breakpoint. */
643
e1613aba 644static const gdb_byte *
67d57894 645sparc_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
386c036b 646{
864a1a37 647 static const gdb_byte break_insn[] = { 0x91, 0xd0, 0x20, 0x01 };
c5aa993b 648
386c036b
MK
649 *len = sizeof (break_insn);
650 return break_insn;
c906108c 651}
386c036b 652\f
c906108c 653
386c036b 654/* Allocate and initialize a frame cache. */
c906108c 655
386c036b
MK
656static struct sparc_frame_cache *
657sparc_alloc_frame_cache (void)
658{
659 struct sparc_frame_cache *cache;
c906108c 660
386c036b 661 cache = FRAME_OBSTACK_ZALLOC (struct sparc_frame_cache);
c906108c 662
386c036b
MK
663 /* Base address. */
664 cache->base = 0;
665 cache->pc = 0;
c906108c 666
386c036b
MK
667 /* Frameless until proven otherwise. */
668 cache->frameless_p = 1;
369c397b
JB
669 cache->frame_offset = 0;
670 cache->saved_regs_mask = 0;
671 cache->copied_regs_mask = 0;
386c036b
MK
672 cache->struct_return_p = 0;
673
674 return cache;
675}
676
b0b92586
JB
677/* GCC generates several well-known sequences of instructions at the begining
678 of each function prologue when compiling with -fstack-check. If one of
679 such sequences starts at START_PC, then return the address of the
680 instruction immediately past this sequence. Otherwise, return START_PC. */
681
682static CORE_ADDR
683sparc_skip_stack_check (const CORE_ADDR start_pc)
684{
685 CORE_ADDR pc = start_pc;
686 unsigned long insn;
687 int offset_stack_checking_sequence = 0;
2067c8d4 688 int probing_loop = 0;
b0b92586
JB
689
690 /* With GCC, all stack checking sequences begin with the same two
2067c8d4 691 instructions, plus an optional one in the case of a probing loop:
b0b92586 692
2067c8d4
JG
693 sethi <some immediate>, %g1
694 sub %sp, %g1, %g1
695
696 or:
697
698 sethi <some immediate>, %g1
699 sethi <some immediate>, %g4
700 sub %sp, %g1, %g1
701
702 or:
703
704 sethi <some immediate>, %g1
705 sub %sp, %g1, %g1
706 sethi <some immediate>, %g4
707
708 If the optional instruction is found (setting g4), assume that a
709 probing loop will follow. */
710
711 /* sethi <some immediate>, %g1 */
b0b92586
JB
712 insn = sparc_fetch_instruction (pc);
713 pc = pc + 4;
714 if (!(X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 1))
715 return start_pc;
716
2067c8d4 717 /* optional: sethi <some immediate>, %g4 */
b0b92586
JB
718 insn = sparc_fetch_instruction (pc);
719 pc = pc + 4;
2067c8d4
JG
720 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
721 {
722 probing_loop = 1;
723 insn = sparc_fetch_instruction (pc);
724 pc = pc + 4;
725 }
726
727 /* sub %sp, %g1, %g1 */
b0b92586
JB
728 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
729 && X_RD (insn) == 1 && X_RS1 (insn) == 14 && X_RS2 (insn) == 1))
730 return start_pc;
731
732 insn = sparc_fetch_instruction (pc);
733 pc = pc + 4;
734
2067c8d4
JG
735 /* optional: sethi <some immediate>, %g4 */
736 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
737 {
738 probing_loop = 1;
739 insn = sparc_fetch_instruction (pc);
740 pc = pc + 4;
741 }
742
b0b92586
JB
743 /* First possible sequence:
744 [first two instructions above]
745 clr [%g1 - some immediate] */
746
747 /* clr [%g1 - some immediate] */
748 if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
749 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
750 {
751 /* Valid stack-check sequence, return the new PC. */
752 return pc;
753 }
754
755 /* Second possible sequence: A small number of probes.
756 [first two instructions above]
757 clr [%g1]
758 add %g1, -<some immediate>, %g1
759 clr [%g1]
760 [repeat the two instructions above any (small) number of times]
761 clr [%g1 - some immediate] */
762
763 /* clr [%g1] */
764 else if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
765 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
766 {
767 while (1)
768 {
769 /* add %g1, -<some immediate>, %g1 */
770 insn = sparc_fetch_instruction (pc);
771 pc = pc + 4;
772 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
773 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
774 break;
775
776 /* clr [%g1] */
777 insn = sparc_fetch_instruction (pc);
778 pc = pc + 4;
779 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
780 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
781 return start_pc;
782 }
783
784 /* clr [%g1 - some immediate] */
785 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
786 && X_RS1 (insn) == 1 && X_RD (insn) == 0))
787 return start_pc;
788
789 /* We found a valid stack-check sequence, return the new PC. */
790 return pc;
791 }
792
793 /* Third sequence: A probing loop.
2067c8d4 794 [first three instructions above]
b0b92586
JB
795 sub %g1, %g4, %g4
796 cmp %g1, %g4
797 be <disp>
798 add %g1, -<some immediate>, %g1
799 ba <disp>
800 clr [%g1]
2067c8d4
JG
801
802 And an optional last probe for the remainder:
803
b0b92586
JB
804 clr [%g4 - some immediate] */
805
2067c8d4 806 if (probing_loop)
b0b92586
JB
807 {
808 /* sub %g1, %g4, %g4 */
b0b92586
JB
809 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
810 && X_RD (insn) == 4 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
811 return start_pc;
812
813 /* cmp %g1, %g4 */
814 insn = sparc_fetch_instruction (pc);
815 pc = pc + 4;
816 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x14 && !X_I(insn)
817 && X_RD (insn) == 0 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
818 return start_pc;
819
820 /* be <disp> */
821 insn = sparc_fetch_instruction (pc);
822 pc = pc + 4;
823 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x1))
824 return start_pc;
825
826 /* add %g1, -<some immediate>, %g1 */
827 insn = sparc_fetch_instruction (pc);
828 pc = pc + 4;
829 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
830 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
831 return start_pc;
832
833 /* ba <disp> */
834 insn = sparc_fetch_instruction (pc);
835 pc = pc + 4;
836 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x8))
837 return start_pc;
838
2067c8d4 839 /* clr [%g1] (st %g0, [%g1] or st %g0, [%g1+0]) */
b0b92586
JB
840 insn = sparc_fetch_instruction (pc);
841 pc = pc + 4;
2067c8d4
JG
842 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4
843 && X_RD (insn) == 0 && X_RS1 (insn) == 1
844 && (!X_I(insn) || X_SIMM13 (insn) == 0)))
b0b92586
JB
845 return start_pc;
846
2067c8d4
JG
847 /* We found a valid stack-check sequence, return the new PC. */
848
849 /* optional: clr [%g4 - some immediate] */
b0b92586
JB
850 insn = sparc_fetch_instruction (pc);
851 pc = pc + 4;
852 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
853 && X_RS1 (insn) == 4 && X_RD (insn) == 0))
2067c8d4
JG
854 return pc - 4;
855 else
856 return pc;
b0b92586
JB
857 }
858
859 /* No stack check code in our prologue, return the start_pc. */
860 return start_pc;
861}
862
369c397b
JB
863/* Record the effect of a SAVE instruction on CACHE. */
864
865void
866sparc_record_save_insn (struct sparc_frame_cache *cache)
867{
868 /* The frame is set up. */
869 cache->frameless_p = 0;
870
871 /* The frame pointer contains the CFA. */
872 cache->frame_offset = 0;
873
874 /* The `local' and `in' registers are all saved. */
875 cache->saved_regs_mask = 0xffff;
876
877 /* The `out' registers are all renamed. */
878 cache->copied_regs_mask = 0xff;
879}
880
881/* Do a full analysis of the prologue at PC and update CACHE accordingly.
882 Bail out early if CURRENT_PC is reached. Return the address where
883 the analysis stopped.
884
885 We handle both the traditional register window model and the single
886 register window (aka flat) model. */
887
386c036b 888CORE_ADDR
be8626e0
MD
889sparc_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
890 CORE_ADDR current_pc, struct sparc_frame_cache *cache)
c906108c 891{
be8626e0 892 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
386c036b
MK
893 unsigned long insn;
894 int offset = 0;
c906108c 895 int dest = -1;
c906108c 896
b0b92586
JB
897 pc = sparc_skip_stack_check (pc);
898
386c036b
MK
899 if (current_pc <= pc)
900 return current_pc;
901
902 /* We have to handle to "Procedure Linkage Table" (PLT) special. On
903 SPARC the linker usually defines a symbol (typically
904 _PROCEDURE_LINKAGE_TABLE_) at the start of the .plt section.
905 This symbol makes us end up here with PC pointing at the start of
906 the PLT and CURRENT_PC probably pointing at a PLT entry. If we
907 would do our normal prologue analysis, we would probably conclude
908 that we've got a frame when in reality we don't, since the
909 dynamic linker patches up the first PLT with some code that
910 starts with a SAVE instruction. Patch up PC such that it points
911 at the start of our PLT entry. */
3e5d3a5a 912 if (tdep->plt_entry_size > 0 && in_plt_section (current_pc))
386c036b 913 pc = current_pc - ((current_pc - pc) % tdep->plt_entry_size);
c906108c 914
386c036b
MK
915 insn = sparc_fetch_instruction (pc);
916
369c397b
JB
917 /* Recognize store insns and record their sources. */
918 while (X_OP (insn) == 3
919 && (X_OP3 (insn) == 0x4 /* stw */
920 || X_OP3 (insn) == 0x7 /* std */
921 || X_OP3 (insn) == 0xe) /* stx */
922 && X_RS1 (insn) == SPARC_SP_REGNUM)
923 {
924 int regnum = X_RD (insn);
925
926 /* Recognize stores into the corresponding stack slots. */
927 if (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM
928 && ((X_I (insn)
929 && X_SIMM13 (insn) == (X_OP3 (insn) == 0xe
930 ? (regnum - SPARC_L0_REGNUM) * 8 + BIAS
931 : (regnum - SPARC_L0_REGNUM) * 4))
932 || (!X_I (insn) && regnum == SPARC_L0_REGNUM)))
933 {
934 cache->saved_regs_mask |= (1 << (regnum - SPARC_L0_REGNUM));
935 if (X_OP3 (insn) == 0x7)
936 cache->saved_regs_mask |= (1 << (regnum + 1 - SPARC_L0_REGNUM));
937 }
938
939 offset += 4;
940
941 insn = sparc_fetch_instruction (pc + offset);
942 }
943
386c036b
MK
944 /* Recognize a SETHI insn and record its destination. */
945 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x04)
c906108c
SS
946 {
947 dest = X_RD (insn);
386c036b
MK
948 offset += 4;
949
369c397b 950 insn = sparc_fetch_instruction (pc + offset);
c906108c
SS
951 }
952
386c036b
MK
953 /* Allow for an arithmetic operation on DEST or %g1. */
954 if (X_OP (insn) == 2 && X_I (insn)
c906108c
SS
955 && (X_RD (insn) == 1 || X_RD (insn) == dest))
956 {
386c036b 957 offset += 4;
c906108c 958
369c397b 959 insn = sparc_fetch_instruction (pc + offset);
c906108c 960 }
c906108c 961
386c036b
MK
962 /* Check for the SAVE instruction that sets up the frame. */
963 if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
c906108c 964 {
369c397b
JB
965 sparc_record_save_insn (cache);
966 offset += 4;
967 return pc + offset;
968 }
969
970 /* Check for an arithmetic operation on %sp. */
971 if (X_OP (insn) == 2
972 && (X_OP3 (insn) == 0 || X_OP3 (insn) == 0x4)
973 && X_RS1 (insn) == SPARC_SP_REGNUM
974 && X_RD (insn) == SPARC_SP_REGNUM)
975 {
976 if (X_I (insn))
977 {
978 cache->frame_offset = X_SIMM13 (insn);
979 if (X_OP3 (insn) == 0)
980 cache->frame_offset = -cache->frame_offset;
981 }
982 offset += 4;
983
984 insn = sparc_fetch_instruction (pc + offset);
985
986 /* Check for an arithmetic operation that sets up the frame. */
987 if (X_OP (insn) == 2
988 && (X_OP3 (insn) == 0 || X_OP3 (insn) == 0x4)
989 && X_RS1 (insn) == SPARC_SP_REGNUM
990 && X_RD (insn) == SPARC_FP_REGNUM)
991 {
992 cache->frameless_p = 0;
993 cache->frame_offset = 0;
994 /* We could check that the amount subtracted to %sp above is the
995 same as the one added here, but this seems superfluous. */
996 cache->copied_regs_mask |= 0x40;
997 offset += 4;
998
999 insn = sparc_fetch_instruction (pc + offset);
1000 }
1001
1002 /* Check for a move (or) operation that copies the return register. */
1003 if (X_OP (insn) == 2
1004 && X_OP3 (insn) == 0x2
1005 && !X_I (insn)
1006 && X_RS1 (insn) == SPARC_G0_REGNUM
1007 && X_RS2 (insn) == SPARC_O7_REGNUM
1008 && X_RD (insn) == SPARC_I7_REGNUM)
1009 {
1010 cache->copied_regs_mask |= 0x80;
1011 offset += 4;
1012 }
1013
1014 return pc + offset;
c906108c
SS
1015 }
1016
1017 return pc;
1018}
1019
386c036b 1020static CORE_ADDR
236369e7 1021sparc_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
386c036b
MK
1022{
1023 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
236369e7 1024 return frame_unwind_register_unsigned (this_frame, tdep->pc_regnum);
386c036b
MK
1025}
1026
1027/* Return PC of first real instruction of the function starting at
1028 START_PC. */
f510d44e 1029
386c036b 1030static CORE_ADDR
6093d2eb 1031sparc32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
c906108c 1032{
f510d44e
DM
1033 struct symtab_and_line sal;
1034 CORE_ADDR func_start, func_end;
386c036b 1035 struct sparc_frame_cache cache;
f510d44e
DM
1036
1037 /* This is the preferred method, find the end of the prologue by
1038 using the debugging information. */
1039 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
1040 {
1041 sal = find_pc_line (func_start, 0);
1042
1043 if (sal.end < func_end
1044 && start_pc <= sal.end)
1045 return sal.end;
1046 }
1047
be8626e0 1048 start_pc = sparc_analyze_prologue (gdbarch, start_pc, 0xffffffffUL, &cache);
075ccec8
MK
1049
1050 /* The psABI says that "Although the first 6 words of arguments
1051 reside in registers, the standard stack frame reserves space for
1052 them.". It also suggests that a function may use that space to
1053 "write incoming arguments 0 to 5" into that space, and that's
1054 indeed what GCC seems to be doing. In that case GCC will
1055 generate debug information that points to the stack slots instead
1056 of the registers, so we should consider the instructions that
369c397b 1057 write out these incoming arguments onto the stack. */
075ccec8 1058
369c397b 1059 while (1)
075ccec8
MK
1060 {
1061 unsigned long insn = sparc_fetch_instruction (start_pc);
1062
369c397b
JB
1063 /* Recognize instructions that store incoming arguments into the
1064 corresponding stack slots. */
1065 if (X_OP (insn) == 3 && (X_OP3 (insn) & 0x3c) == 0x04
1066 && X_I (insn) && X_RS1 (insn) == SPARC_FP_REGNUM)
075ccec8 1067 {
369c397b
JB
1068 int regnum = X_RD (insn);
1069
1070 /* Case of arguments still in %o[0..5]. */
1071 if (regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O5_REGNUM
1072 && !(cache.copied_regs_mask & (1 << (regnum - SPARC_O0_REGNUM)))
1073 && X_SIMM13 (insn) == 68 + (regnum - SPARC_O0_REGNUM) * 4)
1074 {
1075 start_pc += 4;
1076 continue;
1077 }
1078
1079 /* Case of arguments copied into %i[0..5]. */
1080 if (regnum >= SPARC_I0_REGNUM && regnum <= SPARC_I5_REGNUM
1081 && (cache.copied_regs_mask & (1 << (regnum - SPARC_I0_REGNUM)))
1082 && X_SIMM13 (insn) == 68 + (regnum - SPARC_I0_REGNUM) * 4)
1083 {
1084 start_pc += 4;
1085 continue;
1086 }
075ccec8
MK
1087 }
1088
1089 break;
1090 }
1091
1092 return start_pc;
c906108c
SS
1093}
1094
386c036b 1095/* Normal frames. */
9319a2fe 1096
386c036b 1097struct sparc_frame_cache *
236369e7 1098sparc_frame_cache (struct frame_info *this_frame, void **this_cache)
9319a2fe 1099{
386c036b 1100 struct sparc_frame_cache *cache;
9319a2fe 1101
386c036b
MK
1102 if (*this_cache)
1103 return *this_cache;
c906108c 1104
386c036b
MK
1105 cache = sparc_alloc_frame_cache ();
1106 *this_cache = cache;
c906108c 1107
236369e7 1108 cache->pc = get_frame_func (this_frame);
386c036b 1109 if (cache->pc != 0)
236369e7
JB
1110 sparc_analyze_prologue (get_frame_arch (this_frame), cache->pc,
1111 get_frame_pc (this_frame), cache);
386c036b
MK
1112
1113 if (cache->frameless_p)
c906108c 1114 {
cbeae229
MK
1115 /* This function is frameless, so %fp (%i6) holds the frame
1116 pointer for our calling frame. Use %sp (%o6) as this frame's
1117 base address. */
1118 cache->base =
236369e7 1119 get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
cbeae229
MK
1120 }
1121 else
1122 {
1123 /* For normal frames, %fp (%i6) holds the frame pointer, the
1124 base address for the current stack frame. */
1125 cache->base =
236369e7 1126 get_frame_register_unsigned (this_frame, SPARC_FP_REGNUM);
c906108c 1127 }
c906108c 1128
369c397b
JB
1129 cache->base += cache->frame_offset;
1130
5b2d44a0
MK
1131 if (cache->base & 1)
1132 cache->base += BIAS;
1133
386c036b 1134 return cache;
c906108c 1135}
c906108c 1136
aff37fc1
DM
1137static int
1138sparc32_struct_return_from_sym (struct symbol *sym)
1139{
1140 struct type *type = check_typedef (SYMBOL_TYPE (sym));
1141 enum type_code code = TYPE_CODE (type);
1142
1143 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1144 {
1145 type = check_typedef (TYPE_TARGET_TYPE (type));
1146 if (sparc_structure_or_union_p (type)
1147 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
1148 return 1;
1149 }
1150
1151 return 0;
1152}
1153
386c036b 1154struct sparc_frame_cache *
236369e7 1155sparc32_frame_cache (struct frame_info *this_frame, void **this_cache)
c906108c 1156{
386c036b
MK
1157 struct sparc_frame_cache *cache;
1158 struct symbol *sym;
c906108c 1159
386c036b
MK
1160 if (*this_cache)
1161 return *this_cache;
c906108c 1162
236369e7 1163 cache = sparc_frame_cache (this_frame, this_cache);
c906108c 1164
386c036b
MK
1165 sym = find_pc_function (cache->pc);
1166 if (sym)
c906108c 1167 {
aff37fc1 1168 cache->struct_return_p = sparc32_struct_return_from_sym (sym);
c906108c 1169 }
5465445a
JB
1170 else
1171 {
1172 /* There is no debugging information for this function to
1173 help us determine whether this function returns a struct
1174 or not. So we rely on another heuristic which is to check
1175 the instruction at the return address and see if this is
1176 an "unimp" instruction. If it is, then it is a struct-return
1177 function. */
1178 CORE_ADDR pc;
369c397b
JB
1179 int regnum =
1180 (cache->copied_regs_mask & 0x80) ? SPARC_I7_REGNUM : SPARC_O7_REGNUM;
5465445a 1181
236369e7 1182 pc = get_frame_register_unsigned (this_frame, regnum) + 8;
5465445a
JB
1183 if (sparc_is_unimp_insn (pc))
1184 cache->struct_return_p = 1;
1185 }
c906108c 1186
386c036b
MK
1187 return cache;
1188}
1189
1190static void
236369e7 1191sparc32_frame_this_id (struct frame_info *this_frame, void **this_cache,
386c036b
MK
1192 struct frame_id *this_id)
1193{
1194 struct sparc_frame_cache *cache =
236369e7 1195 sparc32_frame_cache (this_frame, this_cache);
386c036b
MK
1196
1197 /* This marks the outermost frame. */
1198 if (cache->base == 0)
1199 return;
1200
1201 (*this_id) = frame_id_build (cache->base, cache->pc);
1202}
c906108c 1203
236369e7
JB
1204static struct value *
1205sparc32_frame_prev_register (struct frame_info *this_frame,
1206 void **this_cache, int regnum)
386c036b 1207{
e17a4113 1208 struct gdbarch *gdbarch = get_frame_arch (this_frame);
386c036b 1209 struct sparc_frame_cache *cache =
236369e7 1210 sparc32_frame_cache (this_frame, this_cache);
c906108c 1211
386c036b 1212 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
c906108c 1213 {
236369e7 1214 CORE_ADDR pc = (regnum == SPARC32_NPC_REGNUM) ? 4 : 0;
386c036b 1215
236369e7
JB
1216 /* If this functions has a Structure, Union or Quad-Precision
1217 return value, we have to skip the UNIMP instruction that encodes
1218 the size of the structure. */
1219 if (cache->struct_return_p)
1220 pc += 4;
386c036b 1221
369c397b
JB
1222 regnum =
1223 (cache->copied_regs_mask & 0x80) ? SPARC_I7_REGNUM : SPARC_O7_REGNUM;
236369e7
JB
1224 pc += get_frame_register_unsigned (this_frame, regnum) + 8;
1225 return frame_unwind_got_constant (this_frame, regnum, pc);
c906108c
SS
1226 }
1227
42cdca6c
MK
1228 /* Handle StackGhost. */
1229 {
e17a4113 1230 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
42cdca6c
MK
1231
1232 if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
1233 {
236369e7
JB
1234 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
1235 ULONGEST i7;
1236
1237 /* Read the value in from memory. */
1238 i7 = get_frame_memory_unsigned (this_frame, addr, 4);
1239 return frame_unwind_got_constant (this_frame, regnum, i7 ^ wcookie);
42cdca6c
MK
1240 }
1241 }
1242
369c397b 1243 /* The previous frame's `local' and `in' registers may have been saved
386c036b 1244 in the register save area. */
369c397b
JB
1245 if (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM
1246 && (cache->saved_regs_mask & (1 << (regnum - SPARC_L0_REGNUM))))
c906108c 1247 {
236369e7 1248 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
386c036b 1249
236369e7 1250 return frame_unwind_got_memory (this_frame, regnum, addr);
386c036b 1251 }
c906108c 1252
369c397b
JB
1253 /* The previous frame's `out' registers may be accessible as the current
1254 frame's `in' registers. */
1255 if (regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM
1256 && (cache->copied_regs_mask & (1 << (regnum - SPARC_O0_REGNUM))))
386c036b 1257 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
5af923b0 1258
236369e7 1259 return frame_unwind_got_register (this_frame, regnum, regnum);
386c036b 1260}
c906108c 1261
386c036b
MK
1262static const struct frame_unwind sparc32_frame_unwind =
1263{
1264 NORMAL_FRAME,
8fbca658 1265 default_frame_unwind_stop_reason,
386c036b 1266 sparc32_frame_this_id,
236369e7
JB
1267 sparc32_frame_prev_register,
1268 NULL,
1269 default_frame_sniffer
386c036b 1270};
386c036b 1271\f
c906108c 1272
386c036b 1273static CORE_ADDR
236369e7 1274sparc32_frame_base_address (struct frame_info *this_frame, void **this_cache)
386c036b
MK
1275{
1276 struct sparc_frame_cache *cache =
236369e7 1277 sparc32_frame_cache (this_frame, this_cache);
c906108c 1278
386c036b
MK
1279 return cache->base;
1280}
c906108c 1281
386c036b
MK
1282static const struct frame_base sparc32_frame_base =
1283{
1284 &sparc32_frame_unwind,
1285 sparc32_frame_base_address,
1286 sparc32_frame_base_address,
1287 sparc32_frame_base_address
1288};
c906108c 1289
386c036b 1290static struct frame_id
236369e7 1291sparc_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
386c036b
MK
1292{
1293 CORE_ADDR sp;
5af923b0 1294
236369e7 1295 sp = get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
5b2d44a0
MK
1296 if (sp & 1)
1297 sp += BIAS;
236369e7 1298 return frame_id_build (sp, get_frame_pc (this_frame));
386c036b
MK
1299}
1300\f
c906108c 1301
3923a2b2
MK
1302/* Extract a function return value of TYPE from REGCACHE, and copy
1303 that into VALBUF. */
5af923b0 1304
386c036b
MK
1305static void
1306sparc32_extract_return_value (struct type *type, struct regcache *regcache,
e1613aba 1307 gdb_byte *valbuf)
386c036b
MK
1308{
1309 int len = TYPE_LENGTH (type);
fe10a582 1310 gdb_byte buf[32];
c906108c 1311
386c036b
MK
1312 gdb_assert (!sparc_structure_or_union_p (type));
1313 gdb_assert (!(sparc_floating_p (type) && len == 16));
c906108c 1314
fe10a582 1315 if (sparc_floating_p (type) || sparc_complex_floating_p (type))
5af923b0 1316 {
386c036b
MK
1317 /* Floating return values. */
1318 regcache_cooked_read (regcache, SPARC_F0_REGNUM, buf);
1319 if (len > 4)
1320 regcache_cooked_read (regcache, SPARC_F1_REGNUM, buf + 4);
fe10a582
DM
1321 if (len > 8)
1322 {
1323 regcache_cooked_read (regcache, SPARC_F2_REGNUM, buf + 8);
1324 regcache_cooked_read (regcache, SPARC_F3_REGNUM, buf + 12);
1325 }
1326 if (len > 16)
1327 {
1328 regcache_cooked_read (regcache, SPARC_F4_REGNUM, buf + 16);
1329 regcache_cooked_read (regcache, SPARC_F5_REGNUM, buf + 20);
1330 regcache_cooked_read (regcache, SPARC_F6_REGNUM, buf + 24);
1331 regcache_cooked_read (regcache, SPARC_F7_REGNUM, buf + 28);
1332 }
386c036b 1333 memcpy (valbuf, buf, len);
5af923b0
MS
1334 }
1335 else
1336 {
386c036b
MK
1337 /* Integral and pointer return values. */
1338 gdb_assert (sparc_integral_or_pointer_p (type));
c906108c 1339
386c036b
MK
1340 regcache_cooked_read (regcache, SPARC_O0_REGNUM, buf);
1341 if (len > 4)
1342 {
1343 regcache_cooked_read (regcache, SPARC_O1_REGNUM, buf + 4);
1344 gdb_assert (len == 8);
1345 memcpy (valbuf, buf, 8);
1346 }
1347 else
1348 {
1349 /* Just stripping off any unused bytes should preserve the
1350 signed-ness just fine. */
1351 memcpy (valbuf, buf + 4 - len, len);
1352 }
1353 }
1354}
c906108c 1355
3923a2b2
MK
1356/* Store the function return value of type TYPE from VALBUF into
1357 REGCACHE. */
c906108c 1358
386c036b
MK
1359static void
1360sparc32_store_return_value (struct type *type, struct regcache *regcache,
e1613aba 1361 const gdb_byte *valbuf)
386c036b
MK
1362{
1363 int len = TYPE_LENGTH (type);
e1613aba 1364 gdb_byte buf[8];
c906108c 1365
386c036b
MK
1366 gdb_assert (!sparc_structure_or_union_p (type));
1367 gdb_assert (!(sparc_floating_p (type) && len == 16));
a9789a6b 1368 gdb_assert (len <= 8);
c906108c 1369
fe10a582 1370 if (sparc_floating_p (type) || sparc_complex_floating_p (type))
386c036b
MK
1371 {
1372 /* Floating return values. */
1373 memcpy (buf, valbuf, len);
1374 regcache_cooked_write (regcache, SPARC_F0_REGNUM, buf);
1375 if (len > 4)
1376 regcache_cooked_write (regcache, SPARC_F1_REGNUM, buf + 4);
fe10a582
DM
1377 if (len > 8)
1378 {
1379 regcache_cooked_write (regcache, SPARC_F2_REGNUM, buf + 8);
1380 regcache_cooked_write (regcache, SPARC_F3_REGNUM, buf + 12);
1381 }
1382 if (len > 16)
1383 {
1384 regcache_cooked_write (regcache, SPARC_F4_REGNUM, buf + 16);
1385 regcache_cooked_write (regcache, SPARC_F5_REGNUM, buf + 20);
1386 regcache_cooked_write (regcache, SPARC_F6_REGNUM, buf + 24);
1387 regcache_cooked_write (regcache, SPARC_F7_REGNUM, buf + 28);
1388 }
386c036b
MK
1389 }
1390 else
c906108c 1391 {
386c036b
MK
1392 /* Integral and pointer return values. */
1393 gdb_assert (sparc_integral_or_pointer_p (type));
1394
1395 if (len > 4)
2757dd86 1396 {
386c036b
MK
1397 gdb_assert (len == 8);
1398 memcpy (buf, valbuf, 8);
1399 regcache_cooked_write (regcache, SPARC_O1_REGNUM, buf + 4);
2757dd86
AC
1400 }
1401 else
1402 {
386c036b
MK
1403 /* ??? Do we need to do any sign-extension here? */
1404 memcpy (buf + 4 - len, valbuf, len);
2757dd86 1405 }
386c036b 1406 regcache_cooked_write (regcache, SPARC_O0_REGNUM, buf);
c906108c
SS
1407 }
1408}
1409
b9d4c5ed 1410static enum return_value_convention
6a3a010b 1411sparc32_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
1412 struct type *type, struct regcache *regcache,
1413 gdb_byte *readbuf, const gdb_byte *writebuf)
b9d4c5ed 1414{
e17a4113
UW
1415 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1416
0a8f48b9
MK
1417 /* The psABI says that "...every stack frame reserves the word at
1418 %fp+64. If a function returns a structure, union, or
1419 quad-precision value, this word should hold the address of the
1420 object into which the return value should be copied." This
1421 guarantees that we can always find the return value, not just
1422 before the function returns. */
1423
b9d4c5ed
MK
1424 if (sparc_structure_or_union_p (type)
1425 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
0a8f48b9 1426 {
bbfdfe1c
DM
1427 ULONGEST sp;
1428 CORE_ADDR addr;
1429
0a8f48b9
MK
1430 if (readbuf)
1431 {
0a8f48b9 1432 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
e17a4113 1433 addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
0a8f48b9
MK
1434 read_memory (addr, readbuf, TYPE_LENGTH (type));
1435 }
bbfdfe1c
DM
1436 if (writebuf)
1437 {
1438 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1439 addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
1440 write_memory (addr, writebuf, TYPE_LENGTH (type));
1441 }
0a8f48b9
MK
1442
1443 return RETURN_VALUE_ABI_PRESERVES_ADDRESS;
1444 }
b9d4c5ed
MK
1445
1446 if (readbuf)
1447 sparc32_extract_return_value (type, regcache, readbuf);
1448 if (writebuf)
1449 sparc32_store_return_value (type, regcache, writebuf);
1450
1451 return RETURN_VALUE_REGISTER_CONVENTION;
1452}
1453
386c036b
MK
1454static int
1455sparc32_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
c906108c 1456{
386c036b 1457 return (sparc_structure_or_union_p (type)
fe10a582
DM
1458 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16)
1459 || sparc_complex_floating_p (type));
386c036b 1460}
c906108c 1461
aff37fc1 1462static int
4a4e5149 1463sparc32_dwarf2_struct_return_p (struct frame_info *this_frame)
aff37fc1 1464{
236369e7 1465 CORE_ADDR pc = get_frame_address_in_block (this_frame);
aff37fc1
DM
1466 struct symbol *sym = find_pc_function (pc);
1467
1468 if (sym)
1469 return sparc32_struct_return_from_sym (sym);
1470 return 0;
1471}
1472
f5a9b87d
DM
1473static void
1474sparc32_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 1475 struct dwarf2_frame_state_reg *reg,
4a4e5149 1476 struct frame_info *this_frame)
f5a9b87d 1477{
aff37fc1
DM
1478 int off;
1479
f5a9b87d
DM
1480 switch (regnum)
1481 {
1482 case SPARC_G0_REGNUM:
1483 /* Since %g0 is always zero, there is no point in saving it, and
1484 people will be inclined omit it from the CFI. Make sure we
1485 don't warn about that. */
1486 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1487 break;
1488 case SPARC_SP_REGNUM:
1489 reg->how = DWARF2_FRAME_REG_CFA;
1490 break;
1491 case SPARC32_PC_REGNUM:
f5a9b87d
DM
1492 case SPARC32_NPC_REGNUM:
1493 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
aff37fc1 1494 off = 8;
4a4e5149 1495 if (sparc32_dwarf2_struct_return_p (this_frame))
aff37fc1
DM
1496 off += 4;
1497 if (regnum == SPARC32_NPC_REGNUM)
1498 off += 4;
1499 reg->loc.offset = off;
f5a9b87d
DM
1500 break;
1501 }
1502}
1503
386c036b
MK
1504\f
1505/* The SPARC Architecture doesn't have hardware single-step support,
1506 and most operating systems don't implement it either, so we provide
1507 software single-step mechanism. */
c906108c 1508
386c036b 1509static CORE_ADDR
0b1b3e42 1510sparc_analyze_control_transfer (struct frame_info *frame,
c893be75 1511 CORE_ADDR pc, CORE_ADDR *npc)
386c036b
MK
1512{
1513 unsigned long insn = sparc_fetch_instruction (pc);
1514 int conditional_p = X_COND (insn) & 0x7;
8d1b3521 1515 int branch_p = 0, fused_p = 0;
386c036b 1516 long offset = 0; /* Must be signed for sign-extend. */
c906108c 1517
8d1b3521 1518 if (X_OP (insn) == 0 && X_OP2 (insn) == 3)
c906108c 1519 {
8d1b3521
DM
1520 if ((insn & 0x10000000) == 0)
1521 {
1522 /* Branch on Integer Register with Prediction (BPr). */
1523 branch_p = 1;
1524 conditional_p = 1;
1525 }
1526 else
1527 {
1528 /* Compare and Branch */
1529 branch_p = 1;
1530 fused_p = 1;
1531 offset = 4 * X_DISP10 (insn);
1532 }
c906108c 1533 }
386c036b 1534 else if (X_OP (insn) == 0 && X_OP2 (insn) == 6)
c906108c 1535 {
386c036b
MK
1536 /* Branch on Floating-Point Condition Codes (FBfcc). */
1537 branch_p = 1;
1538 offset = 4 * X_DISP22 (insn);
c906108c 1539 }
386c036b
MK
1540 else if (X_OP (insn) == 0 && X_OP2 (insn) == 5)
1541 {
1542 /* Branch on Floating-Point Condition Codes with Prediction
1543 (FBPfcc). */
1544 branch_p = 1;
1545 offset = 4 * X_DISP19 (insn);
1546 }
1547 else if (X_OP (insn) == 0 && X_OP2 (insn) == 2)
1548 {
1549 /* Branch on Integer Condition Codes (Bicc). */
1550 branch_p = 1;
1551 offset = 4 * X_DISP22 (insn);
1552 }
1553 else if (X_OP (insn) == 0 && X_OP2 (insn) == 1)
c906108c 1554 {
386c036b
MK
1555 /* Branch on Integer Condition Codes with Prediction (BPcc). */
1556 branch_p = 1;
1557 offset = 4 * X_DISP19 (insn);
c906108c 1558 }
c893be75
MK
1559 else if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3a)
1560 {
1561 /* Trap instruction (TRAP). */
0b1b3e42 1562 return gdbarch_tdep (get_frame_arch (frame))->step_trap (frame, insn);
c893be75 1563 }
386c036b
MK
1564
1565 /* FIXME: Handle DONE and RETRY instructions. */
1566
386c036b 1567 if (branch_p)
c906108c 1568 {
8d1b3521
DM
1569 if (fused_p)
1570 {
1571 /* Fused compare-and-branch instructions are non-delayed,
1572 and do not have an annuling capability. So we need to
1573 always set a breakpoint on both the NPC and the branch
1574 target address. */
1575 gdb_assert (offset != 0);
1576 return pc + offset;
1577 }
1578 else if (conditional_p)
c906108c 1579 {
386c036b
MK
1580 /* For conditional branches, return nPC + 4 iff the annul
1581 bit is 1. */
1582 return (X_A (insn) ? *npc + 4 : 0);
c906108c
SS
1583 }
1584 else
1585 {
386c036b
MK
1586 /* For unconditional branches, return the target if its
1587 specified condition is "always" and return nPC + 4 if the
1588 condition is "never". If the annul bit is 1, set *NPC to
1589 zero. */
1590 if (X_COND (insn) == 0x0)
1591 pc = *npc, offset = 4;
1592 if (X_A (insn))
1593 *npc = 0;
1594
386c036b 1595 return pc + offset;
c906108c
SS
1596 }
1597 }
386c036b
MK
1598
1599 return 0;
c906108c
SS
1600}
1601
c893be75 1602static CORE_ADDR
0b1b3e42 1603sparc_step_trap (struct frame_info *frame, unsigned long insn)
c893be75
MK
1604{
1605 return 0;
1606}
1607
e6590a1b 1608int
0b1b3e42 1609sparc_software_single_step (struct frame_info *frame)
386c036b 1610{
0b1b3e42 1611 struct gdbarch *arch = get_frame_arch (frame);
c893be75 1612 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
6c95b8df 1613 struct address_space *aspace = get_frame_address_space (frame);
8181d85f 1614 CORE_ADDR npc, nnpc;
c906108c 1615
e0cd558a 1616 CORE_ADDR pc, orig_npc;
c906108c 1617
0b1b3e42
UW
1618 pc = get_frame_register_unsigned (frame, tdep->pc_regnum);
1619 orig_npc = npc = get_frame_register_unsigned (frame, tdep->npc_regnum);
c906108c 1620
e0cd558a 1621 /* Analyze the instruction at PC. */
0b1b3e42 1622 nnpc = sparc_analyze_control_transfer (frame, pc, &npc);
e0cd558a 1623 if (npc != 0)
6c95b8df 1624 insert_single_step_breakpoint (arch, aspace, npc);
8181d85f 1625
e0cd558a 1626 if (nnpc != 0)
6c95b8df 1627 insert_single_step_breakpoint (arch, aspace, nnpc);
c906108c 1628
e0cd558a
UW
1629 /* Assert that we have set at least one breakpoint, and that
1630 they're not set at the same spot - unless we're going
1631 from here straight to NULL, i.e. a call or jump to 0. */
1632 gdb_assert (npc != 0 || nnpc != 0 || orig_npc == 0);
1633 gdb_assert (nnpc != npc || orig_npc == 0);
e6590a1b
UW
1634
1635 return 1;
386c036b
MK
1636}
1637
1638static void
61a1198a 1639sparc_write_pc (struct regcache *regcache, CORE_ADDR pc)
386c036b 1640{
61a1198a 1641 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
386c036b 1642
61a1198a
UW
1643 regcache_cooked_write_unsigned (regcache, tdep->pc_regnum, pc);
1644 regcache_cooked_write_unsigned (regcache, tdep->npc_regnum, pc + 4);
386c036b
MK
1645}
1646\f
5af923b0 1647
e5139de8 1648/* Iterate over core file register note sections. */
a54124c5 1649
e5139de8
AA
1650static void
1651sparc_iterate_over_regset_sections (struct gdbarch *gdbarch,
1652 iterate_over_regset_sections_cb *cb,
1653 void *cb_data,
1654 const struct regcache *regcache)
a54124c5
MK
1655{
1656 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1657
e5139de8
AA
1658 cb (".reg", tdep->sizeof_gregset, tdep->gregset, NULL, cb_data);
1659 cb (".reg2", tdep->sizeof_fpregset, tdep->fpregset, NULL, cb_data);
a54124c5
MK
1660}
1661\f
1662
386c036b
MK
1663static struct gdbarch *
1664sparc32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1665{
1666 struct gdbarch_tdep *tdep;
1667 struct gdbarch *gdbarch;
c906108c 1668
386c036b
MK
1669 /* If there is already a candidate, use it. */
1670 arches = gdbarch_list_lookup_by_info (arches, &info);
1671 if (arches != NULL)
1672 return arches->gdbarch;
c906108c 1673
386c036b 1674 /* Allocate space for the new architecture. */
41bf6aca 1675 tdep = XCNEW (struct gdbarch_tdep);
386c036b 1676 gdbarch = gdbarch_alloc (&info, tdep);
5af923b0 1677
386c036b
MK
1678 tdep->pc_regnum = SPARC32_PC_REGNUM;
1679 tdep->npc_regnum = SPARC32_NPC_REGNUM;
c893be75 1680 tdep->step_trap = sparc_step_trap;
386c036b
MK
1681
1682 set_gdbarch_long_double_bit (gdbarch, 128);
8da61cc4 1683 set_gdbarch_long_double_format (gdbarch, floatformats_sparc_quad);
386c036b
MK
1684
1685 set_gdbarch_num_regs (gdbarch, SPARC32_NUM_REGS);
1686 set_gdbarch_register_name (gdbarch, sparc32_register_name);
1687 set_gdbarch_register_type (gdbarch, sparc32_register_type);
1688 set_gdbarch_num_pseudo_regs (gdbarch, SPARC32_NUM_PSEUDO_REGS);
1689 set_gdbarch_pseudo_register_read (gdbarch, sparc32_pseudo_register_read);
1690 set_gdbarch_pseudo_register_write (gdbarch, sparc32_pseudo_register_write);
1691
1692 /* Register numbers of various important registers. */
1693 set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); /* %sp */
1694 set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); /* %pc */
1695 set_gdbarch_fp0_regnum (gdbarch, SPARC_F0_REGNUM); /* %f0 */
1696
1697 /* Call dummy code. */
49a45ecf 1698 set_gdbarch_frame_align (gdbarch, sparc32_frame_align);
386c036b
MK
1699 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1700 set_gdbarch_push_dummy_code (gdbarch, sparc32_push_dummy_code);
1701 set_gdbarch_push_dummy_call (gdbarch, sparc32_push_dummy_call);
1702
b9d4c5ed 1703 set_gdbarch_return_value (gdbarch, sparc32_return_value);
386c036b
MK
1704 set_gdbarch_stabs_argument_has_addr
1705 (gdbarch, sparc32_stabs_argument_has_addr);
1706
1707 set_gdbarch_skip_prologue (gdbarch, sparc32_skip_prologue);
1708
1709 /* Stack grows downward. */
1710 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
c906108c 1711
386c036b 1712 set_gdbarch_breakpoint_from_pc (gdbarch, sparc_breakpoint_from_pc);
c906108c 1713
386c036b 1714 set_gdbarch_frame_args_skip (gdbarch, 8);
5af923b0 1715
386c036b 1716 set_gdbarch_print_insn (gdbarch, print_insn_sparc);
c906108c 1717
386c036b
MK
1718 set_gdbarch_software_single_step (gdbarch, sparc_software_single_step);
1719 set_gdbarch_write_pc (gdbarch, sparc_write_pc);
c906108c 1720
236369e7 1721 set_gdbarch_dummy_id (gdbarch, sparc_dummy_id);
c906108c 1722
386c036b 1723 set_gdbarch_unwind_pc (gdbarch, sparc_unwind_pc);
c906108c 1724
386c036b
MK
1725 frame_base_set_default (gdbarch, &sparc32_frame_base);
1726
f5a9b87d
DM
1727 /* Hook in the DWARF CFI frame unwinder. */
1728 dwarf2_frame_set_init_reg (gdbarch, sparc32_dwarf2_frame_init_reg);
1729 /* FIXME: kettenis/20050423: Don't enable the unwinder until the
1730 StackGhost issues have been resolved. */
1731
b2a0b9b2
DM
1732 /* Hook in ABI-specific overrides, if they have been registered. */
1733 gdbarch_init_osabi (info, gdbarch);
1734
236369e7 1735 frame_unwind_append_unwinder (gdbarch, &sparc32_frame_unwind);
c906108c 1736
a54124c5 1737 /* If we have register sets, enable the generic core file support. */
4c72d57a 1738 if (tdep->gregset)
e5139de8
AA
1739 set_gdbarch_iterate_over_regset_sections
1740 (gdbarch, sparc_iterate_over_regset_sections);
a54124c5 1741
7e35103a
JB
1742 register_sparc_ravenscar_ops (gdbarch);
1743
386c036b
MK
1744 return gdbarch;
1745}
1746\f
1747/* Helper functions for dealing with register windows. */
1748
1749void
1750sparc_supply_rwindow (struct regcache *regcache, CORE_ADDR sp, int regnum)
c906108c 1751{
e17a4113
UW
1752 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1753 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
386c036b 1754 int offset = 0;
e1613aba 1755 gdb_byte buf[8];
386c036b
MK
1756 int i;
1757
1758 if (sp & 1)
1759 {
1760 /* Registers are 64-bit. */
1761 sp += BIAS;
c906108c 1762
386c036b
MK
1763 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1764 {
1765 if (regnum == i || regnum == -1)
1766 {
1767 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
f700a364
MK
1768
1769 /* Handle StackGhost. */
1770 if (i == SPARC_I7_REGNUM)
1771 {
e17a4113
UW
1772 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1773 ULONGEST i7;
f700a364 1774
e17a4113
UW
1775 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1776 store_unsigned_integer (buf + offset, 8, byte_order,
1777 i7 ^ wcookie);
f700a364
MK
1778 }
1779
386c036b
MK
1780 regcache_raw_supply (regcache, i, buf);
1781 }
1782 }
1783 }
1784 else
c906108c 1785 {
386c036b
MK
1786 /* Registers are 32-bit. Toss any sign-extension of the stack
1787 pointer. */
1788 sp &= 0xffffffffUL;
c906108c 1789
386c036b
MK
1790 /* Clear out the top half of the temporary buffer, and put the
1791 register value in the bottom half if we're in 64-bit mode. */
e6d4f032 1792 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
c906108c 1793 {
386c036b
MK
1794 memset (buf, 0, 4);
1795 offset = 4;
1796 }
c906108c 1797
386c036b
MK
1798 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1799 {
1800 if (regnum == i || regnum == -1)
1801 {
1802 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1803 buf + offset, 4);
42cdca6c
MK
1804
1805 /* Handle StackGhost. */
1806 if (i == SPARC_I7_REGNUM)
1807 {
e17a4113
UW
1808 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1809 ULONGEST i7;
42cdca6c 1810
e17a4113
UW
1811 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
1812 store_unsigned_integer (buf + offset, 4, byte_order,
1813 i7 ^ wcookie);
42cdca6c
MK
1814 }
1815
386c036b
MK
1816 regcache_raw_supply (regcache, i, buf);
1817 }
c906108c
SS
1818 }
1819 }
c906108c 1820}
c906108c
SS
1821
1822void
386c036b
MK
1823sparc_collect_rwindow (const struct regcache *regcache,
1824 CORE_ADDR sp, int regnum)
c906108c 1825{
e17a4113
UW
1826 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1827 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
386c036b 1828 int offset = 0;
e1613aba 1829 gdb_byte buf[8];
386c036b 1830 int i;
5af923b0 1831
386c036b 1832 if (sp & 1)
5af923b0 1833 {
386c036b
MK
1834 /* Registers are 64-bit. */
1835 sp += BIAS;
c906108c 1836
386c036b
MK
1837 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1838 {
1839 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1840 {
1841 regcache_raw_collect (regcache, i, buf);
f700a364
MK
1842
1843 /* Handle StackGhost. */
1844 if (i == SPARC_I7_REGNUM)
1845 {
e17a4113
UW
1846 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1847 ULONGEST i7;
f700a364 1848
e17a4113
UW
1849 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1850 store_unsigned_integer (buf, 8, byte_order, i7 ^ wcookie);
f700a364
MK
1851 }
1852
386c036b
MK
1853 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1854 }
1855 }
5af923b0
MS
1856 }
1857 else
1858 {
386c036b
MK
1859 /* Registers are 32-bit. Toss any sign-extension of the stack
1860 pointer. */
1861 sp &= 0xffffffffUL;
1862
1863 /* Only use the bottom half if we're in 64-bit mode. */
e6d4f032 1864 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
386c036b
MK
1865 offset = 4;
1866
1867 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1868 {
1869 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1870 {
1871 regcache_raw_collect (regcache, i, buf);
42cdca6c
MK
1872
1873 /* Handle StackGhost. */
1874 if (i == SPARC_I7_REGNUM)
1875 {
e17a4113
UW
1876 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1877 ULONGEST i7;
42cdca6c 1878
e17a4113
UW
1879 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
1880 store_unsigned_integer (buf + offset, 4, byte_order,
1881 i7 ^ wcookie);
42cdca6c
MK
1882 }
1883
386c036b
MK
1884 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1885 buf + offset, 4);
1886 }
1887 }
5af923b0 1888 }
c906108c
SS
1889}
1890
386c036b
MK
1891/* Helper functions for dealing with register sets. */
1892
c906108c 1893void
b4fd25c9 1894sparc32_supply_gregset (const struct sparc_gregmap *gregmap,
386c036b
MK
1895 struct regcache *regcache,
1896 int regnum, const void *gregs)
c906108c 1897{
e1613aba 1898 const gdb_byte *regs = gregs;
22e74ef9 1899 gdb_byte zero[4] = { 0 };
386c036b 1900 int i;
5af923b0 1901
386c036b
MK
1902 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1903 regcache_raw_supply (regcache, SPARC32_PSR_REGNUM,
b4fd25c9 1904 regs + gregmap->r_psr_offset);
c906108c 1905
386c036b
MK
1906 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1907 regcache_raw_supply (regcache, SPARC32_PC_REGNUM,
b4fd25c9 1908 regs + gregmap->r_pc_offset);
5af923b0 1909
386c036b
MK
1910 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1911 regcache_raw_supply (regcache, SPARC32_NPC_REGNUM,
b4fd25c9 1912 regs + gregmap->r_npc_offset);
5af923b0 1913
386c036b
MK
1914 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1915 regcache_raw_supply (regcache, SPARC32_Y_REGNUM,
b4fd25c9 1916 regs + gregmap->r_y_offset);
5af923b0 1917
386c036b 1918 if (regnum == SPARC_G0_REGNUM || regnum == -1)
22e74ef9 1919 regcache_raw_supply (regcache, SPARC_G0_REGNUM, &zero);
5af923b0 1920
386c036b 1921 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
c906108c 1922 {
b4fd25c9 1923 int offset = gregmap->r_g1_offset;
386c036b
MK
1924
1925 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1926 {
1927 if (regnum == i || regnum == -1)
1928 regcache_raw_supply (regcache, i, regs + offset);
1929 offset += 4;
1930 }
c906108c 1931 }
386c036b
MK
1932
1933 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
c906108c 1934 {
386c036b
MK
1935 /* Not all of the register set variants include Locals and
1936 Inputs. For those that don't, we read them off the stack. */
b4fd25c9 1937 if (gregmap->r_l0_offset == -1)
386c036b
MK
1938 {
1939 ULONGEST sp;
1940
1941 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1942 sparc_supply_rwindow (regcache, sp, regnum);
1943 }
1944 else
1945 {
b4fd25c9 1946 int offset = gregmap->r_l0_offset;
386c036b
MK
1947
1948 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1949 {
1950 if (regnum == i || regnum == -1)
1951 regcache_raw_supply (regcache, i, regs + offset);
1952 offset += 4;
1953 }
1954 }
c906108c
SS
1955 }
1956}
1957
c5aa993b 1958void
b4fd25c9 1959sparc32_collect_gregset (const struct sparc_gregmap *gregmap,
386c036b
MK
1960 const struct regcache *regcache,
1961 int regnum, void *gregs)
c906108c 1962{
e1613aba 1963 gdb_byte *regs = gregs;
386c036b 1964 int i;
c5aa993b 1965
386c036b
MK
1966 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1967 regcache_raw_collect (regcache, SPARC32_PSR_REGNUM,
b4fd25c9 1968 regs + gregmap->r_psr_offset);
60054393 1969
386c036b
MK
1970 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1971 regcache_raw_collect (regcache, SPARC32_PC_REGNUM,
b4fd25c9 1972 regs + gregmap->r_pc_offset);
386c036b
MK
1973
1974 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1975 regcache_raw_collect (regcache, SPARC32_NPC_REGNUM,
b4fd25c9 1976 regs + gregmap->r_npc_offset);
5af923b0 1977
386c036b
MK
1978 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1979 regcache_raw_collect (regcache, SPARC32_Y_REGNUM,
b4fd25c9 1980 regs + gregmap->r_y_offset);
386c036b
MK
1981
1982 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
5af923b0 1983 {
b4fd25c9 1984 int offset = gregmap->r_g1_offset;
386c036b
MK
1985
1986 /* %g0 is always zero. */
1987 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1988 {
1989 if (regnum == i || regnum == -1)
1990 regcache_raw_collect (regcache, i, regs + offset);
1991 offset += 4;
1992 }
5af923b0 1993 }
386c036b
MK
1994
1995 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
5af923b0 1996 {
386c036b
MK
1997 /* Not all of the register set variants include Locals and
1998 Inputs. For those that don't, we read them off the stack. */
b4fd25c9 1999 if (gregmap->r_l0_offset != -1)
386c036b 2000 {
b4fd25c9 2001 int offset = gregmap->r_l0_offset;
386c036b
MK
2002
2003 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
2004 {
2005 if (regnum == i || regnum == -1)
2006 regcache_raw_collect (regcache, i, regs + offset);
2007 offset += 4;
2008 }
2009 }
5af923b0 2010 }
c906108c
SS
2011}
2012
c906108c 2013void
b4fd25c9 2014sparc32_supply_fpregset (const struct sparc_fpregmap *fpregmap,
db75c717 2015 struct regcache *regcache,
386c036b 2016 int regnum, const void *fpregs)
c906108c 2017{
e1613aba 2018 const gdb_byte *regs = fpregs;
386c036b 2019 int i;
60054393 2020
386c036b 2021 for (i = 0; i < 32; i++)
c906108c 2022 {
386c036b 2023 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
db75c717 2024 regcache_raw_supply (regcache, SPARC_F0_REGNUM + i,
b4fd25c9 2025 regs + fpregmap->r_f0_offset + (i * 4));
c906108c 2026 }
5af923b0 2027
386c036b 2028 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
db75c717 2029 regcache_raw_supply (regcache, SPARC32_FSR_REGNUM,
b4fd25c9 2030 regs + fpregmap->r_fsr_offset);
c906108c
SS
2031}
2032
386c036b 2033void
b4fd25c9 2034sparc32_collect_fpregset (const struct sparc_fpregmap *fpregmap,
db75c717 2035 const struct regcache *regcache,
386c036b 2036 int regnum, void *fpregs)
c906108c 2037{
e1613aba 2038 gdb_byte *regs = fpregs;
386c036b 2039 int i;
c906108c 2040
386c036b
MK
2041 for (i = 0; i < 32; i++)
2042 {
2043 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
db75c717 2044 regcache_raw_collect (regcache, SPARC_F0_REGNUM + i,
b4fd25c9 2045 regs + fpregmap->r_f0_offset + (i * 4));
386c036b 2046 }
c906108c 2047
386c036b 2048 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
db75c717 2049 regcache_raw_collect (regcache, SPARC32_FSR_REGNUM,
b4fd25c9 2050 regs + fpregmap->r_fsr_offset);
c906108c 2051}
c906108c 2052\f
c906108c 2053
386c036b 2054/* SunOS 4. */
c906108c 2055
386c036b 2056/* From <machine/reg.h>. */
b4fd25c9 2057const struct sparc_gregmap sparc32_sunos4_gregmap =
c906108c 2058{
386c036b
MK
2059 0 * 4, /* %psr */
2060 1 * 4, /* %pc */
2061 2 * 4, /* %npc */
2062 3 * 4, /* %y */
2063 -1, /* %wim */
2064 -1, /* %tbr */
2065 4 * 4, /* %g1 */
2066 -1 /* %l0 */
2067};
db75c717 2068
b4fd25c9 2069const struct sparc_fpregmap sparc32_sunos4_fpregmap =
db75c717
DM
2070{
2071 0 * 4, /* %f0 */
2072 33 * 4, /* %fsr */
2073};
2074
b4fd25c9 2075const struct sparc_fpregmap sparc32_bsd_fpregmap =
db75c717
DM
2076{
2077 0 * 4, /* %f0 */
2078 32 * 4, /* %fsr */
2079};
386c036b 2080\f
c906108c 2081
386c036b
MK
2082/* Provide a prototype to silence -Wmissing-prototypes. */
2083void _initialize_sparc_tdep (void);
c906108c
SS
2084
2085void
386c036b 2086_initialize_sparc_tdep (void)
c906108c 2087{
386c036b 2088 register_gdbarch_init (bfd_arch_sparc, sparc32_gdbarch_init);
ef3cf062 2089}
This page took 1.77933 seconds and 4 git commands to generate.