* eval.c (evaluate_subexp_standard): Use value_subscripted_rvalue for
[deliverable/binutils-gdb.git] / gdb / sparc-tdep.c
CommitLineData
386c036b 1/* Target-dependent code for SPARC.
cda5a58a 2
9b254dd1
DJ
3 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 20
c906108c 21#include "defs.h"
5af923b0 22#include "arch-utils.h"
386c036b 23#include "dis-asm.h"
f5a9b87d 24#include "dwarf2-frame.h"
386c036b 25#include "floatformat.h"
c906108c 26#include "frame.h"
386c036b
MK
27#include "frame-base.h"
28#include "frame-unwind.h"
29#include "gdbcore.h"
30#include "gdbtypes.h"
c906108c 31#include "inferior.h"
386c036b
MK
32#include "symtab.h"
33#include "objfiles.h"
34#include "osabi.h"
35#include "regcache.h"
c906108c
SS
36#include "target.h"
37#include "value.h"
c906108c 38
43bd9a9e 39#include "gdb_assert.h"
386c036b 40#include "gdb_string.h"
c906108c 41
386c036b 42#include "sparc-tdep.h"
c906108c 43
a54124c5
MK
44struct regset;
45
9eb42ed1
MK
46/* This file implements the SPARC 32-bit ABI as defined by the section
47 "Low-Level System Information" of the SPARC Compliance Definition
48 (SCD) 2.4.1, which is the 32-bit System V psABI for SPARC. The SCD
f2e7c15d 49 lists changes with respect to the original 32-bit psABI as defined
9eb42ed1 50 in the "System V ABI, SPARC Processor Supplement".
386c036b
MK
51
52 Note that if we talk about SunOS, we mean SunOS 4.x, which was
53 BSD-based, which is sometimes (retroactively?) referred to as
54 Solaris 1.x. If we talk about Solaris we mean Solaris 2.x and
55 above (Solaris 7, 8 and 9 are nothing but Solaris 2.7, 2.8 and 2.9
56 suffering from severe version number inflation). Solaris 2.x is
57 also known as SunOS 5.x, since that's what uname(1) says. Solaris
58 2.x is SVR4-based. */
59
60/* Please use the sparc32_-prefix for 32-bit specific code, the
61 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
62 code that can handle both. The 64-bit specific code lives in
63 sparc64-tdep.c; don't add any here. */
64
65/* The SPARC Floating-Point Quad-Precision format is similar to
66 big-endian IA-64 Quad-recision format. */
8da61cc4 67#define floatformats_sparc_quad floatformats_ia64_quad
386c036b
MK
68
69/* The stack pointer is offset from the stack frame by a BIAS of 2047
70 (0x7ff) for 64-bit code. BIAS is likely to be defined on SPARC
71 hosts, so undefine it first. */
72#undef BIAS
73#define BIAS 2047
74
75/* Macros to extract fields from SPARC instructions. */
c906108c
SS
76#define X_OP(i) (((i) >> 30) & 0x3)
77#define X_RD(i) (((i) >> 25) & 0x1f)
78#define X_A(i) (((i) >> 29) & 1)
79#define X_COND(i) (((i) >> 25) & 0xf)
80#define X_OP2(i) (((i) >> 22) & 0x7)
81#define X_IMM22(i) ((i) & 0x3fffff)
82#define X_OP3(i) (((i) >> 19) & 0x3f)
075ccec8 83#define X_RS1(i) (((i) >> 14) & 0x1f)
b0b92586 84#define X_RS2(i) ((i) & 0x1f)
c906108c 85#define X_I(i) (((i) >> 13) & 1)
c906108c 86/* Sign extension macros. */
c906108c 87#define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
c906108c 88#define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
075ccec8 89#define X_SIMM13(i) ((((i) & 0x1fff) ^ 0x1000) - 0x1000)
c906108c 90
386c036b
MK
91/* Fetch the instruction at PC. Instructions are always big-endian
92 even if the processor operates in little-endian mode. */
93
94unsigned long
95sparc_fetch_instruction (CORE_ADDR pc)
c906108c 96{
e1613aba 97 gdb_byte buf[4];
386c036b
MK
98 unsigned long insn;
99 int i;
100
690668cc 101 /* If we can't read the instruction at PC, return zero. */
8defab1a 102 if (target_read_memory (pc, buf, sizeof (buf)))
690668cc 103 return 0;
c906108c 104
386c036b
MK
105 insn = 0;
106 for (i = 0; i < sizeof (buf); i++)
107 insn = (insn << 8) | buf[i];
108 return insn;
109}
42cdca6c
MK
110\f
111
5465445a
JB
112/* Return non-zero if the instruction corresponding to PC is an "unimp"
113 instruction. */
114
115static int
116sparc_is_unimp_insn (CORE_ADDR pc)
117{
118 const unsigned long insn = sparc_fetch_instruction (pc);
119
120 return ((insn & 0xc1c00000) == 0);
121}
122
42cdca6c
MK
123/* OpenBSD/sparc includes StackGhost, which according to the author's
124 website http://stackghost.cerias.purdue.edu "... transparently and
125 automatically protects applications' stack frames; more
126 specifically, it guards the return pointers. The protection
127 mechanisms require no application source or binary modification and
128 imposes only a negligible performance penalty."
129
130 The same website provides the following description of how
131 StackGhost works:
132
133 "StackGhost interfaces with the kernel trap handler that would
134 normally write out registers to the stack and the handler that
135 would read them back in. By XORing a cookie into the
136 return-address saved in the user stack when it is actually written
137 to the stack, and then XOR it out when the return-address is pulled
138 from the stack, StackGhost can cause attacker corrupted return
139 pointers to behave in a manner the attacker cannot predict.
140 StackGhost can also use several unused bits in the return pointer
141 to detect a smashed return pointer and abort the process."
142
143 For GDB this means that whenever we're reading %i7 from a stack
144 frame's window save area, we'll have to XOR the cookie.
145
146 More information on StackGuard can be found on in:
147
148 Mike Frantzen and Mike Shuey. "StackGhost: Hardware Facilitated
149 Stack Protection." 2001. Published in USENIX Security Symposium
150 '01. */
151
152/* Fetch StackGhost Per-Process XOR cookie. */
153
154ULONGEST
155sparc_fetch_wcookie (void)
156{
baf92889 157 struct target_ops *ops = &current_target;
e1613aba 158 gdb_byte buf[8];
baf92889
MK
159 int len;
160
13547ab6 161 len = target_read (ops, TARGET_OBJECT_WCOOKIE, NULL, buf, 0, 8);
baf92889
MK
162 if (len == -1)
163 return 0;
42cdca6c 164
baf92889
MK
165 /* We should have either an 32-bit or an 64-bit cookie. */
166 gdb_assert (len == 4 || len == 8);
167
168 return extract_unsigned_integer (buf, len);
169}
386c036b 170\f
baf92889 171
386c036b
MK
172/* The functions on this page are intended to be used to classify
173 function arguments. */
c906108c 174
386c036b 175/* Check whether TYPE is "Integral or Pointer". */
c906108c 176
386c036b
MK
177static int
178sparc_integral_or_pointer_p (const struct type *type)
c906108c 179{
80ad1639
MK
180 int len = TYPE_LENGTH (type);
181
386c036b 182 switch (TYPE_CODE (type))
c906108c 183 {
386c036b
MK
184 case TYPE_CODE_INT:
185 case TYPE_CODE_BOOL:
186 case TYPE_CODE_CHAR:
187 case TYPE_CODE_ENUM:
188 case TYPE_CODE_RANGE:
80ad1639
MK
189 /* We have byte, half-word, word and extended-word/doubleword
190 integral types. The doubleword is an extension to the
191 original 32-bit ABI by the SCD 2.4.x. */
192 return (len == 1 || len == 2 || len == 4 || len == 8);
386c036b
MK
193 case TYPE_CODE_PTR:
194 case TYPE_CODE_REF:
80ad1639
MK
195 /* Allow either 32-bit or 64-bit pointers. */
196 return (len == 4 || len == 8);
386c036b
MK
197 default:
198 break;
199 }
c906108c 200
386c036b
MK
201 return 0;
202}
c906108c 203
386c036b 204/* Check whether TYPE is "Floating". */
c906108c 205
386c036b
MK
206static int
207sparc_floating_p (const struct type *type)
208{
209 switch (TYPE_CODE (type))
c906108c 210 {
386c036b
MK
211 case TYPE_CODE_FLT:
212 {
213 int len = TYPE_LENGTH (type);
214 return (len == 4 || len == 8 || len == 16);
215 }
216 default:
217 break;
218 }
219
220 return 0;
221}
c906108c 222
386c036b 223/* Check whether TYPE is "Structure or Union". */
c906108c 224
386c036b
MK
225static int
226sparc_structure_or_union_p (const struct type *type)
227{
228 switch (TYPE_CODE (type))
229 {
230 case TYPE_CODE_STRUCT:
231 case TYPE_CODE_UNION:
232 return 1;
233 default:
234 break;
c906108c 235 }
386c036b
MK
236
237 return 0;
c906108c 238}
386c036b
MK
239
240/* Register information. */
241
242static const char *sparc32_register_names[] =
5af923b0 243{
386c036b
MK
244 "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
245 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
246 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
247 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
248
249 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
250 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
251 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
252 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
253
254 "y", "psr", "wim", "tbr", "pc", "npc", "fsr", "csr"
5af923b0
MS
255};
256
386c036b
MK
257/* Total number of registers. */
258#define SPARC32_NUM_REGS ARRAY_SIZE (sparc32_register_names)
c906108c 259
386c036b
MK
260/* We provide the aliases %d0..%d30 for the floating registers as
261 "psuedo" registers. */
262
263static const char *sparc32_pseudo_register_names[] =
264{
265 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
266 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30"
267};
268
269/* Total number of pseudo registers. */
270#define SPARC32_NUM_PSEUDO_REGS ARRAY_SIZE (sparc32_pseudo_register_names)
271
272/* Return the name of register REGNUM. */
273
274static const char *
d93859e2 275sparc32_register_name (struct gdbarch *gdbarch, int regnum)
386c036b
MK
276{
277 if (regnum >= 0 && regnum < SPARC32_NUM_REGS)
278 return sparc32_register_names[regnum];
279
280 if (regnum < SPARC32_NUM_REGS + SPARC32_NUM_PSEUDO_REGS)
281 return sparc32_pseudo_register_names[regnum - SPARC32_NUM_REGS];
282
283 return NULL;
284}
2d457077
MK
285\f
286
287/* Type for %psr. */
288struct type *sparc_psr_type;
289
290/* Type for %fsr. */
291struct type *sparc_fsr_type;
292
293/* Construct types for ISA-specific registers. */
294
295static void
296sparc_init_types (void)
297{
298 struct type *type;
299
300 type = init_flags_type ("builtin_type_sparc_psr", 4);
301 append_flags_type_flag (type, 5, "ET");
302 append_flags_type_flag (type, 6, "PS");
303 append_flags_type_flag (type, 7, "S");
304 append_flags_type_flag (type, 12, "EF");
305 append_flags_type_flag (type, 13, "EC");
306 sparc_psr_type = type;
307
308 type = init_flags_type ("builtin_type_sparc_fsr", 4);
309 append_flags_type_flag (type, 0, "NXA");
310 append_flags_type_flag (type, 1, "DZA");
311 append_flags_type_flag (type, 2, "UFA");
312 append_flags_type_flag (type, 3, "OFA");
313 append_flags_type_flag (type, 4, "NVA");
314 append_flags_type_flag (type, 5, "NXC");
315 append_flags_type_flag (type, 6, "DZC");
316 append_flags_type_flag (type, 7, "UFC");
317 append_flags_type_flag (type, 8, "OFC");
318 append_flags_type_flag (type, 9, "NVC");
319 append_flags_type_flag (type, 22, "NS");
320 append_flags_type_flag (type, 23, "NXM");
321 append_flags_type_flag (type, 24, "DZM");
322 append_flags_type_flag (type, 25, "UFM");
323 append_flags_type_flag (type, 26, "OFM");
324 append_flags_type_flag (type, 27, "NVM");
325 sparc_fsr_type = type;
326}
386c036b
MK
327
328/* Return the GDB type object for the "standard" data type of data in
329 register REGNUM. */
330
331static struct type *
332sparc32_register_type (struct gdbarch *gdbarch, int regnum)
333{
334 if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
335 return builtin_type_float;
336
337 if (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM)
338 return builtin_type_double;
339
340 if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
341 return builtin_type_void_data_ptr;
342
343 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
344 return builtin_type_void_func_ptr;
345
2d457077
MK
346 if (regnum == SPARC32_PSR_REGNUM)
347 return sparc_psr_type;
348
349 if (regnum == SPARC32_FSR_REGNUM)
350 return sparc_fsr_type;
351
386c036b
MK
352 return builtin_type_int32;
353}
354
355static void
356sparc32_pseudo_register_read (struct gdbarch *gdbarch,
357 struct regcache *regcache,
e1613aba 358 int regnum, gdb_byte *buf)
386c036b
MK
359{
360 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
361
362 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
363 regcache_raw_read (regcache, regnum, buf);
e1613aba 364 regcache_raw_read (regcache, regnum + 1, buf + 4);
386c036b
MK
365}
366
367static void
368sparc32_pseudo_register_write (struct gdbarch *gdbarch,
369 struct regcache *regcache,
e1613aba 370 int regnum, const gdb_byte *buf)
386c036b
MK
371{
372 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
373
374 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
375 regcache_raw_write (regcache, regnum, buf);
e1613aba 376 regcache_raw_write (regcache, regnum + 1, buf + 4);
386c036b
MK
377}
378\f
379
380static CORE_ADDR
381sparc32_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
82585c72 382 CORE_ADDR funcaddr,
386c036b
MK
383 struct value **args, int nargs,
384 struct type *value_type,
e4fd649a
UW
385 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
386 struct regcache *regcache)
c906108c 387{
386c036b
MK
388 *bp_addr = sp - 4;
389 *real_pc = funcaddr;
390
82585c72 391 if (using_struct_return (value_type))
c906108c 392 {
e1613aba 393 gdb_byte buf[4];
386c036b
MK
394
395 /* This is an UNIMP instruction. */
396 store_unsigned_integer (buf, 4, TYPE_LENGTH (value_type) & 0x1fff);
397 write_memory (sp - 8, buf, 4);
398 return sp - 8;
c906108c
SS
399 }
400
386c036b
MK
401 return sp - 4;
402}
403
404static CORE_ADDR
405sparc32_store_arguments (struct regcache *regcache, int nargs,
406 struct value **args, CORE_ADDR sp,
407 int struct_return, CORE_ADDR struct_addr)
408{
409 /* Number of words in the "parameter array". */
410 int num_elements = 0;
411 int element = 0;
412 int i;
413
414 for (i = 0; i < nargs; i++)
c906108c 415 {
4991999e 416 struct type *type = value_type (args[i]);
386c036b
MK
417 int len = TYPE_LENGTH (type);
418
419 if (sparc_structure_or_union_p (type)
420 || (sparc_floating_p (type) && len == 16))
c906108c 421 {
386c036b
MK
422 /* Structure, Union and Quad-Precision Arguments. */
423 sp -= len;
424
425 /* Use doubleword alignment for these values. That's always
426 correct, and wasting a few bytes shouldn't be a problem. */
427 sp &= ~0x7;
428
0fd88904 429 write_memory (sp, value_contents (args[i]), len);
386c036b
MK
430 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
431 num_elements++;
432 }
433 else if (sparc_floating_p (type))
434 {
435 /* Floating arguments. */
436 gdb_assert (len == 4 || len == 8);
437 num_elements += (len / 4);
c906108c 438 }
c5aa993b
JM
439 else
440 {
386c036b
MK
441 /* Integral and pointer arguments. */
442 gdb_assert (sparc_integral_or_pointer_p (type));
443
444 if (len < 4)
445 args[i] = value_cast (builtin_type_int32, args[i]);
446 num_elements += ((len + 3) / 4);
c5aa993b 447 }
c906108c 448 }
c906108c 449
386c036b
MK
450 /* Always allocate at least six words. */
451 sp -= max (6, num_elements) * 4;
c906108c 452
386c036b
MK
453 /* The psABI says that "Software convention requires space for the
454 struct/union return value pointer, even if the word is unused." */
455 sp -= 4;
c906108c 456
386c036b
MK
457 /* The psABI says that "Although software convention and the
458 operating system require every stack frame to be doubleword
459 aligned." */
460 sp &= ~0x7;
c906108c 461
386c036b 462 for (i = 0; i < nargs; i++)
c906108c 463 {
0fd88904 464 const bfd_byte *valbuf = value_contents (args[i]);
4991999e 465 struct type *type = value_type (args[i]);
386c036b 466 int len = TYPE_LENGTH (type);
c906108c 467
386c036b 468 gdb_assert (len == 4 || len == 8);
c906108c 469
386c036b
MK
470 if (element < 6)
471 {
472 int regnum = SPARC_O0_REGNUM + element;
c906108c 473
386c036b
MK
474 regcache_cooked_write (regcache, regnum, valbuf);
475 if (len > 4 && element < 5)
476 regcache_cooked_write (regcache, regnum + 1, valbuf + 4);
477 }
5af923b0 478
386c036b
MK
479 /* Always store the argument in memory. */
480 write_memory (sp + 4 + element * 4, valbuf, len);
481 element += len / 4;
482 }
c906108c 483
386c036b 484 gdb_assert (element == num_elements);
c906108c 485
386c036b 486 if (struct_return)
c906108c 487 {
e1613aba 488 gdb_byte buf[4];
c906108c 489
386c036b
MK
490 store_unsigned_integer (buf, 4, struct_addr);
491 write_memory (sp, buf, 4);
492 }
c906108c 493
386c036b 494 return sp;
c906108c
SS
495}
496
386c036b 497static CORE_ADDR
7d9b040b 498sparc32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
386c036b
MK
499 struct regcache *regcache, CORE_ADDR bp_addr,
500 int nargs, struct value **args, CORE_ADDR sp,
501 int struct_return, CORE_ADDR struct_addr)
c906108c 502{
386c036b
MK
503 CORE_ADDR call_pc = (struct_return ? (bp_addr - 12) : (bp_addr - 8));
504
505 /* Set return address. */
506 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, call_pc);
507
508 /* Set up function arguments. */
509 sp = sparc32_store_arguments (regcache, nargs, args, sp,
510 struct_return, struct_addr);
511
512 /* Allocate the 16-word window save area. */
513 sp -= 16 * 4;
c906108c 514
386c036b
MK
515 /* Stack should be doubleword aligned at this point. */
516 gdb_assert (sp % 8 == 0);
c906108c 517
386c036b
MK
518 /* Finally, update the stack pointer. */
519 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
520
521 return sp;
522}
523\f
c906108c 524
386c036b
MK
525/* Use the program counter to determine the contents and size of a
526 breakpoint instruction. Return a pointer to a string of bytes that
527 encode a breakpoint instruction, store the length of the string in
528 *LEN and optionally adjust *PC to point to the correct memory
529 location for inserting the breakpoint. */
530
e1613aba 531static const gdb_byte *
67d57894 532sparc_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
386c036b 533{
864a1a37 534 static const gdb_byte break_insn[] = { 0x91, 0xd0, 0x20, 0x01 };
c5aa993b 535
386c036b
MK
536 *len = sizeof (break_insn);
537 return break_insn;
c906108c 538}
386c036b 539\f
c906108c 540
386c036b 541/* Allocate and initialize a frame cache. */
c906108c 542
386c036b
MK
543static struct sparc_frame_cache *
544sparc_alloc_frame_cache (void)
545{
546 struct sparc_frame_cache *cache;
547 int i;
c906108c 548
386c036b 549 cache = FRAME_OBSTACK_ZALLOC (struct sparc_frame_cache);
c906108c 550
386c036b
MK
551 /* Base address. */
552 cache->base = 0;
553 cache->pc = 0;
c906108c 554
386c036b
MK
555 /* Frameless until proven otherwise. */
556 cache->frameless_p = 1;
557
558 cache->struct_return_p = 0;
559
560 return cache;
561}
562
b0b92586
JB
563/* GCC generates several well-known sequences of instructions at the begining
564 of each function prologue when compiling with -fstack-check. If one of
565 such sequences starts at START_PC, then return the address of the
566 instruction immediately past this sequence. Otherwise, return START_PC. */
567
568static CORE_ADDR
569sparc_skip_stack_check (const CORE_ADDR start_pc)
570{
571 CORE_ADDR pc = start_pc;
572 unsigned long insn;
573 int offset_stack_checking_sequence = 0;
574
575 /* With GCC, all stack checking sequences begin with the same two
576 instructions. */
577
578 /* sethi <some immediate>,%g1 */
579 insn = sparc_fetch_instruction (pc);
580 pc = pc + 4;
581 if (!(X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 1))
582 return start_pc;
583
584 /* sub %sp, %g1, %g1 */
585 insn = sparc_fetch_instruction (pc);
586 pc = pc + 4;
587 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
588 && X_RD (insn) == 1 && X_RS1 (insn) == 14 && X_RS2 (insn) == 1))
589 return start_pc;
590
591 insn = sparc_fetch_instruction (pc);
592 pc = pc + 4;
593
594 /* First possible sequence:
595 [first two instructions above]
596 clr [%g1 - some immediate] */
597
598 /* clr [%g1 - some immediate] */
599 if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
600 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
601 {
602 /* Valid stack-check sequence, return the new PC. */
603 return pc;
604 }
605
606 /* Second possible sequence: A small number of probes.
607 [first two instructions above]
608 clr [%g1]
609 add %g1, -<some immediate>, %g1
610 clr [%g1]
611 [repeat the two instructions above any (small) number of times]
612 clr [%g1 - some immediate] */
613
614 /* clr [%g1] */
615 else if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
616 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
617 {
618 while (1)
619 {
620 /* add %g1, -<some immediate>, %g1 */
621 insn = sparc_fetch_instruction (pc);
622 pc = pc + 4;
623 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
624 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
625 break;
626
627 /* clr [%g1] */
628 insn = sparc_fetch_instruction (pc);
629 pc = pc + 4;
630 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
631 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
632 return start_pc;
633 }
634
635 /* clr [%g1 - some immediate] */
636 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
637 && X_RS1 (insn) == 1 && X_RD (insn) == 0))
638 return start_pc;
639
640 /* We found a valid stack-check sequence, return the new PC. */
641 return pc;
642 }
643
644 /* Third sequence: A probing loop.
645 [first two instructions above]
646 sethi <some immediate>, %g4
647 sub %g1, %g4, %g4
648 cmp %g1, %g4
649 be <disp>
650 add %g1, -<some immediate>, %g1
651 ba <disp>
652 clr [%g1]
653 clr [%g4 - some immediate] */
654
655 /* sethi <some immediate>, %g4 */
656 else if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
657 {
658 /* sub %g1, %g4, %g4 */
659 insn = sparc_fetch_instruction (pc);
660 pc = pc + 4;
661 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
662 && X_RD (insn) == 4 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
663 return start_pc;
664
665 /* cmp %g1, %g4 */
666 insn = sparc_fetch_instruction (pc);
667 pc = pc + 4;
668 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x14 && !X_I(insn)
669 && X_RD (insn) == 0 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
670 return start_pc;
671
672 /* be <disp> */
673 insn = sparc_fetch_instruction (pc);
674 pc = pc + 4;
675 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x1))
676 return start_pc;
677
678 /* add %g1, -<some immediate>, %g1 */
679 insn = sparc_fetch_instruction (pc);
680 pc = pc + 4;
681 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
682 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
683 return start_pc;
684
685 /* ba <disp> */
686 insn = sparc_fetch_instruction (pc);
687 pc = pc + 4;
688 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x8))
689 return start_pc;
690
691 /* clr [%g1] */
692 insn = sparc_fetch_instruction (pc);
693 pc = pc + 4;
694 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
695 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
696 return start_pc;
697
698 /* clr [%g4 - some immediate] */
699 insn = sparc_fetch_instruction (pc);
700 pc = pc + 4;
701 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
702 && X_RS1 (insn) == 4 && X_RD (insn) == 0))
703 return start_pc;
704
705 /* We found a valid stack-check sequence, return the new PC. */
706 return pc;
707 }
708
709 /* No stack check code in our prologue, return the start_pc. */
710 return start_pc;
711}
712
386c036b 713CORE_ADDR
be8626e0
MD
714sparc_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
715 CORE_ADDR current_pc, struct sparc_frame_cache *cache)
c906108c 716{
be8626e0 717 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
386c036b
MK
718 unsigned long insn;
719 int offset = 0;
c906108c 720 int dest = -1;
c906108c 721
b0b92586
JB
722 pc = sparc_skip_stack_check (pc);
723
386c036b
MK
724 if (current_pc <= pc)
725 return current_pc;
726
727 /* We have to handle to "Procedure Linkage Table" (PLT) special. On
728 SPARC the linker usually defines a symbol (typically
729 _PROCEDURE_LINKAGE_TABLE_) at the start of the .plt section.
730 This symbol makes us end up here with PC pointing at the start of
731 the PLT and CURRENT_PC probably pointing at a PLT entry. If we
732 would do our normal prologue analysis, we would probably conclude
733 that we've got a frame when in reality we don't, since the
734 dynamic linker patches up the first PLT with some code that
735 starts with a SAVE instruction. Patch up PC such that it points
736 at the start of our PLT entry. */
737 if (tdep->plt_entry_size > 0 && in_plt_section (current_pc, NULL))
738 pc = current_pc - ((current_pc - pc) % tdep->plt_entry_size);
c906108c 739
386c036b
MK
740 insn = sparc_fetch_instruction (pc);
741
742 /* Recognize a SETHI insn and record its destination. */
743 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x04)
c906108c
SS
744 {
745 dest = X_RD (insn);
386c036b
MK
746 offset += 4;
747
748 insn = sparc_fetch_instruction (pc + 4);
c906108c
SS
749 }
750
386c036b
MK
751 /* Allow for an arithmetic operation on DEST or %g1. */
752 if (X_OP (insn) == 2 && X_I (insn)
c906108c
SS
753 && (X_RD (insn) == 1 || X_RD (insn) == dest))
754 {
386c036b 755 offset += 4;
c906108c 756
386c036b 757 insn = sparc_fetch_instruction (pc + 8);
c906108c 758 }
c906108c 759
386c036b
MK
760 /* Check for the SAVE instruction that sets up the frame. */
761 if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
c906108c 762 {
386c036b
MK
763 cache->frameless_p = 0;
764 return pc + offset + 4;
c906108c
SS
765 }
766
767 return pc;
768}
769
386c036b
MK
770static CORE_ADDR
771sparc_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
772{
773 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
774 return frame_unwind_register_unsigned (next_frame, tdep->pc_regnum);
775}
776
777/* Return PC of first real instruction of the function starting at
778 START_PC. */
f510d44e 779
386c036b 780static CORE_ADDR
6093d2eb 781sparc32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
c906108c 782{
f510d44e
DM
783 struct symtab_and_line sal;
784 CORE_ADDR func_start, func_end;
386c036b 785 struct sparc_frame_cache cache;
f510d44e
DM
786
787 /* This is the preferred method, find the end of the prologue by
788 using the debugging information. */
789 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
790 {
791 sal = find_pc_line (func_start, 0);
792
793 if (sal.end < func_end
794 && start_pc <= sal.end)
795 return sal.end;
796 }
797
be8626e0 798 start_pc = sparc_analyze_prologue (gdbarch, start_pc, 0xffffffffUL, &cache);
075ccec8
MK
799
800 /* The psABI says that "Although the first 6 words of arguments
801 reside in registers, the standard stack frame reserves space for
802 them.". It also suggests that a function may use that space to
803 "write incoming arguments 0 to 5" into that space, and that's
804 indeed what GCC seems to be doing. In that case GCC will
805 generate debug information that points to the stack slots instead
806 of the registers, so we should consider the instructions that
807 write out these incoming arguments onto the stack. Of course we
808 only need to do this if we have a stack frame. */
809
810 while (!cache.frameless_p)
811 {
812 unsigned long insn = sparc_fetch_instruction (start_pc);
813
814 /* Recognize instructions that store incoming arguments in
815 %i0...%i5 into the corresponding stack slot. */
816 if (X_OP (insn) == 3 && (X_OP3 (insn) & 0x3c) == 0x04 && X_I (insn)
817 && (X_RD (insn) >= 24 && X_RD (insn) <= 29) && X_RS1 (insn) == 30
818 && X_SIMM13 (insn) == 68 + (X_RD (insn) - 24) * 4)
819 {
820 start_pc += 4;
821 continue;
822 }
823
824 break;
825 }
826
827 return start_pc;
c906108c
SS
828}
829
386c036b 830/* Normal frames. */
9319a2fe 831
386c036b
MK
832struct sparc_frame_cache *
833sparc_frame_cache (struct frame_info *next_frame, void **this_cache)
9319a2fe 834{
386c036b 835 struct sparc_frame_cache *cache;
9319a2fe 836
386c036b
MK
837 if (*this_cache)
838 return *this_cache;
c906108c 839
386c036b
MK
840 cache = sparc_alloc_frame_cache ();
841 *this_cache = cache;
c906108c 842
93d42b30 843 cache->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
386c036b 844 if (cache->pc != 0)
be8626e0
MD
845 sparc_analyze_prologue (get_frame_arch (next_frame), cache->pc,
846 frame_pc_unwind (next_frame), cache);
386c036b
MK
847
848 if (cache->frameless_p)
c906108c 849 {
cbeae229
MK
850 /* This function is frameless, so %fp (%i6) holds the frame
851 pointer for our calling frame. Use %sp (%o6) as this frame's
852 base address. */
853 cache->base =
854 frame_unwind_register_unsigned (next_frame, SPARC_SP_REGNUM);
855 }
856 else
857 {
858 /* For normal frames, %fp (%i6) holds the frame pointer, the
859 base address for the current stack frame. */
860 cache->base =
861 frame_unwind_register_unsigned (next_frame, SPARC_FP_REGNUM);
c906108c 862 }
c906108c 863
5b2d44a0
MK
864 if (cache->base & 1)
865 cache->base += BIAS;
866
386c036b 867 return cache;
c906108c 868}
c906108c 869
aff37fc1
DM
870static int
871sparc32_struct_return_from_sym (struct symbol *sym)
872{
873 struct type *type = check_typedef (SYMBOL_TYPE (sym));
874 enum type_code code = TYPE_CODE (type);
875
876 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
877 {
878 type = check_typedef (TYPE_TARGET_TYPE (type));
879 if (sparc_structure_or_union_p (type)
880 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
881 return 1;
882 }
883
884 return 0;
885}
886
386c036b
MK
887struct sparc_frame_cache *
888sparc32_frame_cache (struct frame_info *next_frame, void **this_cache)
c906108c 889{
386c036b
MK
890 struct sparc_frame_cache *cache;
891 struct symbol *sym;
c906108c 892
386c036b
MK
893 if (*this_cache)
894 return *this_cache;
c906108c 895
386c036b 896 cache = sparc_frame_cache (next_frame, this_cache);
c906108c 897
386c036b
MK
898 sym = find_pc_function (cache->pc);
899 if (sym)
c906108c 900 {
aff37fc1 901 cache->struct_return_p = sparc32_struct_return_from_sym (sym);
c906108c 902 }
5465445a
JB
903 else
904 {
905 /* There is no debugging information for this function to
906 help us determine whether this function returns a struct
907 or not. So we rely on another heuristic which is to check
908 the instruction at the return address and see if this is
909 an "unimp" instruction. If it is, then it is a struct-return
910 function. */
911 CORE_ADDR pc;
912 int regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
913
914 pc = frame_unwind_register_unsigned (next_frame, regnum) + 8;
915 if (sparc_is_unimp_insn (pc))
916 cache->struct_return_p = 1;
917 }
c906108c 918
386c036b
MK
919 return cache;
920}
921
922static void
923sparc32_frame_this_id (struct frame_info *next_frame, void **this_cache,
924 struct frame_id *this_id)
925{
926 struct sparc_frame_cache *cache =
927 sparc32_frame_cache (next_frame, this_cache);
928
929 /* This marks the outermost frame. */
930 if (cache->base == 0)
931 return;
932
933 (*this_id) = frame_id_build (cache->base, cache->pc);
934}
c906108c 935
386c036b
MK
936static void
937sparc32_frame_prev_register (struct frame_info *next_frame, void **this_cache,
938 int regnum, int *optimizedp,
939 enum lval_type *lvalp, CORE_ADDR *addrp,
47ef841b 940 int *realnump, gdb_byte *valuep)
386c036b
MK
941{
942 struct sparc_frame_cache *cache =
943 sparc32_frame_cache (next_frame, this_cache);
c906108c 944
386c036b 945 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
c906108c 946 {
386c036b
MK
947 *optimizedp = 0;
948 *lvalp = not_lval;
949 *addrp = 0;
950 *realnump = -1;
951 if (valuep)
c906108c 952 {
386c036b
MK
953 CORE_ADDR pc = (regnum == SPARC32_NPC_REGNUM) ? 4 : 0;
954
955 /* If this functions has a Structure, Union or
956 Quad-Precision return value, we have to skip the UNIMP
957 instruction that encodes the size of the structure. */
958 if (cache->struct_return_p)
959 pc += 4;
960
961 regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
962 pc += frame_unwind_register_unsigned (next_frame, regnum) + 8;
963 store_unsigned_integer (valuep, 4, pc);
c906108c 964 }
c906108c
SS
965 return;
966 }
967
42cdca6c
MK
968 /* Handle StackGhost. */
969 {
970 ULONGEST wcookie = sparc_fetch_wcookie ();
971
972 if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
973 {
974 *optimizedp = 0;
975 *lvalp = not_lval;
976 *addrp = 0;
977 *realnump = -1;
978 if (valuep)
979 {
980 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
7d34766b 981 ULONGEST i7;
42cdca6c
MK
982
983 /* Read the value in from memory. */
7d34766b
MK
984 i7 = get_frame_memory_unsigned (next_frame, addr, 4);
985 store_unsigned_integer (valuep, 4, i7 ^ wcookie);
42cdca6c
MK
986 }
987 return;
988 }
989 }
990
386c036b
MK
991 /* The previous frame's `local' and `in' registers have been saved
992 in the register save area. */
993 if (!cache->frameless_p
994 && regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM)
c906108c 995 {
386c036b
MK
996 *optimizedp = 0;
997 *lvalp = lval_memory;
998 *addrp = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
999 *realnump = -1;
1000 if (valuep)
c906108c 1001 {
386c036b
MK
1002 struct gdbarch *gdbarch = get_frame_arch (next_frame);
1003
1004 /* Read the value in from memory. */
1005 read_memory (*addrp, valuep, register_size (gdbarch, regnum));
c906108c 1006 }
386c036b
MK
1007 return;
1008 }
c906108c 1009
386c036b
MK
1010 /* The previous frame's `out' registers are accessable as the
1011 current frame's `in' registers. */
1012 if (!cache->frameless_p
1013 && regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM)
1014 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
5af923b0 1015
00b25ff3
AC
1016 *optimizedp = 0;
1017 *lvalp = lval_register;
1018 *addrp = 0;
1019 *realnump = regnum;
1020 if (valuep)
1021 frame_unwind_register (next_frame, (*realnump), valuep);
386c036b 1022}
c906108c 1023
386c036b
MK
1024static const struct frame_unwind sparc32_frame_unwind =
1025{
1026 NORMAL_FRAME,
1027 sparc32_frame_this_id,
1028 sparc32_frame_prev_register
1029};
1030
1031static const struct frame_unwind *
1032sparc32_frame_sniffer (struct frame_info *next_frame)
1033{
1034 return &sparc32_frame_unwind;
c906108c 1035}
386c036b 1036\f
c906108c 1037
386c036b
MK
1038static CORE_ADDR
1039sparc32_frame_base_address (struct frame_info *next_frame, void **this_cache)
1040{
1041 struct sparc_frame_cache *cache =
1042 sparc32_frame_cache (next_frame, this_cache);
c906108c 1043
386c036b
MK
1044 return cache->base;
1045}
c906108c 1046
386c036b
MK
1047static const struct frame_base sparc32_frame_base =
1048{
1049 &sparc32_frame_unwind,
1050 sparc32_frame_base_address,
1051 sparc32_frame_base_address,
1052 sparc32_frame_base_address
1053};
c906108c 1054
386c036b
MK
1055static struct frame_id
1056sparc_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1057{
1058 CORE_ADDR sp;
5af923b0 1059
386c036b 1060 sp = frame_unwind_register_unsigned (next_frame, SPARC_SP_REGNUM);
5b2d44a0
MK
1061 if (sp & 1)
1062 sp += BIAS;
386c036b
MK
1063 return frame_id_build (sp, frame_pc_unwind (next_frame));
1064}
1065\f
c906108c 1066
386c036b
MK
1067/* Extract from an array REGBUF containing the (raw) register state, a
1068 function return value of TYPE, and copy that into VALBUF. */
5af923b0 1069
386c036b
MK
1070static void
1071sparc32_extract_return_value (struct type *type, struct regcache *regcache,
e1613aba 1072 gdb_byte *valbuf)
386c036b
MK
1073{
1074 int len = TYPE_LENGTH (type);
e1613aba 1075 gdb_byte buf[8];
c906108c 1076
386c036b
MK
1077 gdb_assert (!sparc_structure_or_union_p (type));
1078 gdb_assert (!(sparc_floating_p (type) && len == 16));
c906108c 1079
386c036b 1080 if (sparc_floating_p (type))
5af923b0 1081 {
386c036b
MK
1082 /* Floating return values. */
1083 regcache_cooked_read (regcache, SPARC_F0_REGNUM, buf);
1084 if (len > 4)
1085 regcache_cooked_read (regcache, SPARC_F1_REGNUM, buf + 4);
1086 memcpy (valbuf, buf, len);
5af923b0
MS
1087 }
1088 else
1089 {
386c036b
MK
1090 /* Integral and pointer return values. */
1091 gdb_assert (sparc_integral_or_pointer_p (type));
c906108c 1092
386c036b
MK
1093 regcache_cooked_read (regcache, SPARC_O0_REGNUM, buf);
1094 if (len > 4)
1095 {
1096 regcache_cooked_read (regcache, SPARC_O1_REGNUM, buf + 4);
1097 gdb_assert (len == 8);
1098 memcpy (valbuf, buf, 8);
1099 }
1100 else
1101 {
1102 /* Just stripping off any unused bytes should preserve the
1103 signed-ness just fine. */
1104 memcpy (valbuf, buf + 4 - len, len);
1105 }
1106 }
1107}
c906108c 1108
386c036b
MK
1109/* Write into the appropriate registers a function return value stored
1110 in VALBUF of type TYPE. */
c906108c 1111
386c036b
MK
1112static void
1113sparc32_store_return_value (struct type *type, struct regcache *regcache,
e1613aba 1114 const gdb_byte *valbuf)
386c036b
MK
1115{
1116 int len = TYPE_LENGTH (type);
e1613aba 1117 gdb_byte buf[8];
c906108c 1118
386c036b
MK
1119 gdb_assert (!sparc_structure_or_union_p (type));
1120 gdb_assert (!(sparc_floating_p (type) && len == 16));
c906108c 1121
386c036b
MK
1122 if (sparc_floating_p (type))
1123 {
1124 /* Floating return values. */
1125 memcpy (buf, valbuf, len);
1126 regcache_cooked_write (regcache, SPARC_F0_REGNUM, buf);
1127 if (len > 4)
1128 regcache_cooked_write (regcache, SPARC_F1_REGNUM, buf + 4);
1129 }
1130 else
c906108c 1131 {
386c036b
MK
1132 /* Integral and pointer return values. */
1133 gdb_assert (sparc_integral_or_pointer_p (type));
1134
1135 if (len > 4)
2757dd86 1136 {
386c036b
MK
1137 gdb_assert (len == 8);
1138 memcpy (buf, valbuf, 8);
1139 regcache_cooked_write (regcache, SPARC_O1_REGNUM, buf + 4);
2757dd86
AC
1140 }
1141 else
1142 {
386c036b
MK
1143 /* ??? Do we need to do any sign-extension here? */
1144 memcpy (buf + 4 - len, valbuf, len);
2757dd86 1145 }
386c036b 1146 regcache_cooked_write (regcache, SPARC_O0_REGNUM, buf);
c906108c
SS
1147 }
1148}
1149
b9d4c5ed
MK
1150static enum return_value_convention
1151sparc32_return_value (struct gdbarch *gdbarch, struct type *type,
e1613aba
MK
1152 struct regcache *regcache, gdb_byte *readbuf,
1153 const gdb_byte *writebuf)
b9d4c5ed 1154{
0a8f48b9
MK
1155 /* The psABI says that "...every stack frame reserves the word at
1156 %fp+64. If a function returns a structure, union, or
1157 quad-precision value, this word should hold the address of the
1158 object into which the return value should be copied." This
1159 guarantees that we can always find the return value, not just
1160 before the function returns. */
1161
b9d4c5ed
MK
1162 if (sparc_structure_or_union_p (type)
1163 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
0a8f48b9
MK
1164 {
1165 if (readbuf)
1166 {
1167 ULONGEST sp;
1168 CORE_ADDR addr;
1169
1170 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1171 addr = read_memory_unsigned_integer (sp + 64, 4);
1172 read_memory (addr, readbuf, TYPE_LENGTH (type));
1173 }
1174
1175 return RETURN_VALUE_ABI_PRESERVES_ADDRESS;
1176 }
b9d4c5ed
MK
1177
1178 if (readbuf)
1179 sparc32_extract_return_value (type, regcache, readbuf);
1180 if (writebuf)
1181 sparc32_store_return_value (type, regcache, writebuf);
1182
1183 return RETURN_VALUE_REGISTER_CONVENTION;
1184}
1185
386c036b
MK
1186static int
1187sparc32_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
c906108c 1188{
386c036b
MK
1189 return (sparc_structure_or_union_p (type)
1190 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16));
1191}
c906108c 1192
aff37fc1
DM
1193static int
1194sparc32_dwarf2_struct_return_p (struct frame_info *next_frame)
1195{
93d42b30 1196 CORE_ADDR pc = frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
aff37fc1
DM
1197 struct symbol *sym = find_pc_function (pc);
1198
1199 if (sym)
1200 return sparc32_struct_return_from_sym (sym);
1201 return 0;
1202}
1203
f5a9b87d
DM
1204static void
1205sparc32_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1
DM
1206 struct dwarf2_frame_state_reg *reg,
1207 struct frame_info *next_frame)
f5a9b87d 1208{
aff37fc1
DM
1209 int off;
1210
f5a9b87d
DM
1211 switch (regnum)
1212 {
1213 case SPARC_G0_REGNUM:
1214 /* Since %g0 is always zero, there is no point in saving it, and
1215 people will be inclined omit it from the CFI. Make sure we
1216 don't warn about that. */
1217 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1218 break;
1219 case SPARC_SP_REGNUM:
1220 reg->how = DWARF2_FRAME_REG_CFA;
1221 break;
1222 case SPARC32_PC_REGNUM:
f5a9b87d
DM
1223 case SPARC32_NPC_REGNUM:
1224 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
aff37fc1
DM
1225 off = 8;
1226 if (sparc32_dwarf2_struct_return_p (next_frame))
1227 off += 4;
1228 if (regnum == SPARC32_NPC_REGNUM)
1229 off += 4;
1230 reg->loc.offset = off;
f5a9b87d
DM
1231 break;
1232 }
1233}
1234
386c036b
MK
1235\f
1236/* The SPARC Architecture doesn't have hardware single-step support,
1237 and most operating systems don't implement it either, so we provide
1238 software single-step mechanism. */
c906108c 1239
386c036b 1240static CORE_ADDR
0b1b3e42 1241sparc_analyze_control_transfer (struct frame_info *frame,
c893be75 1242 CORE_ADDR pc, CORE_ADDR *npc)
386c036b
MK
1243{
1244 unsigned long insn = sparc_fetch_instruction (pc);
1245 int conditional_p = X_COND (insn) & 0x7;
1246 int branch_p = 0;
1247 long offset = 0; /* Must be signed for sign-extend. */
c906108c 1248
386c036b 1249 if (X_OP (insn) == 0 && X_OP2 (insn) == 3 && (insn & 0x1000000) == 0)
c906108c 1250 {
386c036b
MK
1251 /* Branch on Integer Register with Prediction (BPr). */
1252 branch_p = 1;
1253 conditional_p = 1;
c906108c 1254 }
386c036b 1255 else if (X_OP (insn) == 0 && X_OP2 (insn) == 6)
c906108c 1256 {
386c036b
MK
1257 /* Branch on Floating-Point Condition Codes (FBfcc). */
1258 branch_p = 1;
1259 offset = 4 * X_DISP22 (insn);
c906108c 1260 }
386c036b
MK
1261 else if (X_OP (insn) == 0 && X_OP2 (insn) == 5)
1262 {
1263 /* Branch on Floating-Point Condition Codes with Prediction
1264 (FBPfcc). */
1265 branch_p = 1;
1266 offset = 4 * X_DISP19 (insn);
1267 }
1268 else if (X_OP (insn) == 0 && X_OP2 (insn) == 2)
1269 {
1270 /* Branch on Integer Condition Codes (Bicc). */
1271 branch_p = 1;
1272 offset = 4 * X_DISP22 (insn);
1273 }
1274 else if (X_OP (insn) == 0 && X_OP2 (insn) == 1)
c906108c 1275 {
386c036b
MK
1276 /* Branch on Integer Condition Codes with Prediction (BPcc). */
1277 branch_p = 1;
1278 offset = 4 * X_DISP19 (insn);
c906108c 1279 }
c893be75
MK
1280 else if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3a)
1281 {
1282 /* Trap instruction (TRAP). */
0b1b3e42 1283 return gdbarch_tdep (get_frame_arch (frame))->step_trap (frame, insn);
c893be75 1284 }
386c036b
MK
1285
1286 /* FIXME: Handle DONE and RETRY instructions. */
1287
386c036b 1288 if (branch_p)
c906108c 1289 {
386c036b 1290 if (conditional_p)
c906108c 1291 {
386c036b
MK
1292 /* For conditional branches, return nPC + 4 iff the annul
1293 bit is 1. */
1294 return (X_A (insn) ? *npc + 4 : 0);
c906108c
SS
1295 }
1296 else
1297 {
386c036b
MK
1298 /* For unconditional branches, return the target if its
1299 specified condition is "always" and return nPC + 4 if the
1300 condition is "never". If the annul bit is 1, set *NPC to
1301 zero. */
1302 if (X_COND (insn) == 0x0)
1303 pc = *npc, offset = 4;
1304 if (X_A (insn))
1305 *npc = 0;
1306
1307 gdb_assert (offset != 0);
1308 return pc + offset;
c906108c
SS
1309 }
1310 }
386c036b
MK
1311
1312 return 0;
c906108c
SS
1313}
1314
c893be75 1315static CORE_ADDR
0b1b3e42 1316sparc_step_trap (struct frame_info *frame, unsigned long insn)
c893be75
MK
1317{
1318 return 0;
1319}
1320
e6590a1b 1321int
0b1b3e42 1322sparc_software_single_step (struct frame_info *frame)
386c036b 1323{
0b1b3e42 1324 struct gdbarch *arch = get_frame_arch (frame);
c893be75 1325 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
8181d85f 1326 CORE_ADDR npc, nnpc;
c906108c 1327
e0cd558a 1328 CORE_ADDR pc, orig_npc;
c906108c 1329
0b1b3e42
UW
1330 pc = get_frame_register_unsigned (frame, tdep->pc_regnum);
1331 orig_npc = npc = get_frame_register_unsigned (frame, tdep->npc_regnum);
c906108c 1332
e0cd558a 1333 /* Analyze the instruction at PC. */
0b1b3e42 1334 nnpc = sparc_analyze_control_transfer (frame, pc, &npc);
e0cd558a
UW
1335 if (npc != 0)
1336 insert_single_step_breakpoint (npc);
8181d85f 1337
e0cd558a
UW
1338 if (nnpc != 0)
1339 insert_single_step_breakpoint (nnpc);
c906108c 1340
e0cd558a
UW
1341 /* Assert that we have set at least one breakpoint, and that
1342 they're not set at the same spot - unless we're going
1343 from here straight to NULL, i.e. a call or jump to 0. */
1344 gdb_assert (npc != 0 || nnpc != 0 || orig_npc == 0);
1345 gdb_assert (nnpc != npc || orig_npc == 0);
e6590a1b
UW
1346
1347 return 1;
386c036b
MK
1348}
1349
1350static void
61a1198a 1351sparc_write_pc (struct regcache *regcache, CORE_ADDR pc)
386c036b 1352{
61a1198a 1353 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
386c036b 1354
61a1198a
UW
1355 regcache_cooked_write_unsigned (regcache, tdep->pc_regnum, pc);
1356 regcache_cooked_write_unsigned (regcache, tdep->npc_regnum, pc + 4);
386c036b
MK
1357}
1358\f
5af923b0 1359
a54124c5
MK
1360/* Return the appropriate register set for the core section identified
1361 by SECT_NAME and SECT_SIZE. */
1362
1363const struct regset *
1364sparc_regset_from_core_section (struct gdbarch *gdbarch,
1365 const char *sect_name, size_t sect_size)
1366{
1367 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1368
c558d81a 1369 if (strcmp (sect_name, ".reg") == 0 && sect_size >= tdep->sizeof_gregset)
a54124c5
MK
1370 return tdep->gregset;
1371
c558d81a 1372 if (strcmp (sect_name, ".reg2") == 0 && sect_size >= tdep->sizeof_fpregset)
a54124c5
MK
1373 return tdep->fpregset;
1374
1375 return NULL;
1376}
1377\f
1378
386c036b
MK
1379static struct gdbarch *
1380sparc32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1381{
1382 struct gdbarch_tdep *tdep;
1383 struct gdbarch *gdbarch;
c906108c 1384
386c036b
MK
1385 /* If there is already a candidate, use it. */
1386 arches = gdbarch_list_lookup_by_info (arches, &info);
1387 if (arches != NULL)
1388 return arches->gdbarch;
c906108c 1389
386c036b
MK
1390 /* Allocate space for the new architecture. */
1391 tdep = XMALLOC (struct gdbarch_tdep);
1392 gdbarch = gdbarch_alloc (&info, tdep);
5af923b0 1393
386c036b
MK
1394 tdep->pc_regnum = SPARC32_PC_REGNUM;
1395 tdep->npc_regnum = SPARC32_NPC_REGNUM;
a54124c5 1396 tdep->gregset = NULL;
c558d81a 1397 tdep->sizeof_gregset = 0;
a54124c5 1398 tdep->fpregset = NULL;
c558d81a 1399 tdep->sizeof_fpregset = 0;
386c036b 1400 tdep->plt_entry_size = 0;
c893be75 1401 tdep->step_trap = sparc_step_trap;
386c036b
MK
1402
1403 set_gdbarch_long_double_bit (gdbarch, 128);
8da61cc4 1404 set_gdbarch_long_double_format (gdbarch, floatformats_sparc_quad);
386c036b
MK
1405
1406 set_gdbarch_num_regs (gdbarch, SPARC32_NUM_REGS);
1407 set_gdbarch_register_name (gdbarch, sparc32_register_name);
1408 set_gdbarch_register_type (gdbarch, sparc32_register_type);
1409 set_gdbarch_num_pseudo_regs (gdbarch, SPARC32_NUM_PSEUDO_REGS);
1410 set_gdbarch_pseudo_register_read (gdbarch, sparc32_pseudo_register_read);
1411 set_gdbarch_pseudo_register_write (gdbarch, sparc32_pseudo_register_write);
1412
1413 /* Register numbers of various important registers. */
1414 set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); /* %sp */
1415 set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); /* %pc */
1416 set_gdbarch_fp0_regnum (gdbarch, SPARC_F0_REGNUM); /* %f0 */
1417
1418 /* Call dummy code. */
1419 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1420 set_gdbarch_push_dummy_code (gdbarch, sparc32_push_dummy_code);
1421 set_gdbarch_push_dummy_call (gdbarch, sparc32_push_dummy_call);
1422
b9d4c5ed 1423 set_gdbarch_return_value (gdbarch, sparc32_return_value);
386c036b
MK
1424 set_gdbarch_stabs_argument_has_addr
1425 (gdbarch, sparc32_stabs_argument_has_addr);
1426
1427 set_gdbarch_skip_prologue (gdbarch, sparc32_skip_prologue);
1428
1429 /* Stack grows downward. */
1430 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
c906108c 1431
386c036b 1432 set_gdbarch_breakpoint_from_pc (gdbarch, sparc_breakpoint_from_pc);
c906108c 1433
386c036b 1434 set_gdbarch_frame_args_skip (gdbarch, 8);
5af923b0 1435
386c036b 1436 set_gdbarch_print_insn (gdbarch, print_insn_sparc);
c906108c 1437
386c036b
MK
1438 set_gdbarch_software_single_step (gdbarch, sparc_software_single_step);
1439 set_gdbarch_write_pc (gdbarch, sparc_write_pc);
c906108c 1440
386c036b 1441 set_gdbarch_unwind_dummy_id (gdbarch, sparc_unwind_dummy_id);
c906108c 1442
386c036b 1443 set_gdbarch_unwind_pc (gdbarch, sparc_unwind_pc);
c906108c 1444
386c036b
MK
1445 frame_base_set_default (gdbarch, &sparc32_frame_base);
1446
f5a9b87d
DM
1447 /* Hook in the DWARF CFI frame unwinder. */
1448 dwarf2_frame_set_init_reg (gdbarch, sparc32_dwarf2_frame_init_reg);
1449 /* FIXME: kettenis/20050423: Don't enable the unwinder until the
1450 StackGhost issues have been resolved. */
1451
b2a0b9b2
DM
1452 /* Hook in ABI-specific overrides, if they have been registered. */
1453 gdbarch_init_osabi (info, gdbarch);
1454
386c036b 1455 frame_unwind_append_sniffer (gdbarch, sparc32_frame_sniffer);
c906108c 1456
a54124c5 1457 /* If we have register sets, enable the generic core file support. */
4c72d57a 1458 if (tdep->gregset)
a54124c5
MK
1459 set_gdbarch_regset_from_core_section (gdbarch,
1460 sparc_regset_from_core_section);
1461
386c036b
MK
1462 return gdbarch;
1463}
1464\f
1465/* Helper functions for dealing with register windows. */
1466
1467void
1468sparc_supply_rwindow (struct regcache *regcache, CORE_ADDR sp, int regnum)
c906108c 1469{
386c036b 1470 int offset = 0;
e1613aba 1471 gdb_byte buf[8];
386c036b
MK
1472 int i;
1473
1474 if (sp & 1)
1475 {
1476 /* Registers are 64-bit. */
1477 sp += BIAS;
c906108c 1478
386c036b
MK
1479 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1480 {
1481 if (regnum == i || regnum == -1)
1482 {
1483 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
f700a364
MK
1484
1485 /* Handle StackGhost. */
1486 if (i == SPARC_I7_REGNUM)
1487 {
1488 ULONGEST wcookie = sparc_fetch_wcookie ();
1489 ULONGEST i7 = extract_unsigned_integer (buf + offset, 8);
1490
1491 store_unsigned_integer (buf + offset, 8, i7 ^ wcookie);
1492 }
1493
386c036b
MK
1494 regcache_raw_supply (regcache, i, buf);
1495 }
1496 }
1497 }
1498 else
c906108c 1499 {
386c036b
MK
1500 /* Registers are 32-bit. Toss any sign-extension of the stack
1501 pointer. */
1502 sp &= 0xffffffffUL;
c906108c 1503
386c036b
MK
1504 /* Clear out the top half of the temporary buffer, and put the
1505 register value in the bottom half if we're in 64-bit mode. */
e6d4f032 1506 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
c906108c 1507 {
386c036b
MK
1508 memset (buf, 0, 4);
1509 offset = 4;
1510 }
c906108c 1511
386c036b
MK
1512 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1513 {
1514 if (regnum == i || regnum == -1)
1515 {
1516 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1517 buf + offset, 4);
42cdca6c
MK
1518
1519 /* Handle StackGhost. */
1520 if (i == SPARC_I7_REGNUM)
1521 {
1522 ULONGEST wcookie = sparc_fetch_wcookie ();
7d34766b 1523 ULONGEST i7 = extract_unsigned_integer (buf + offset, 4);
42cdca6c 1524
7d34766b 1525 store_unsigned_integer (buf + offset, 4, i7 ^ wcookie);
42cdca6c
MK
1526 }
1527
386c036b
MK
1528 regcache_raw_supply (regcache, i, buf);
1529 }
c906108c
SS
1530 }
1531 }
c906108c 1532}
c906108c
SS
1533
1534void
386c036b
MK
1535sparc_collect_rwindow (const struct regcache *regcache,
1536 CORE_ADDR sp, int regnum)
c906108c 1537{
386c036b 1538 int offset = 0;
e1613aba 1539 gdb_byte buf[8];
386c036b 1540 int i;
5af923b0 1541
386c036b 1542 if (sp & 1)
5af923b0 1543 {
386c036b
MK
1544 /* Registers are 64-bit. */
1545 sp += BIAS;
c906108c 1546
386c036b
MK
1547 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1548 {
1549 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1550 {
1551 regcache_raw_collect (regcache, i, buf);
f700a364
MK
1552
1553 /* Handle StackGhost. */
1554 if (i == SPARC_I7_REGNUM)
1555 {
1556 ULONGEST wcookie = sparc_fetch_wcookie ();
1557 ULONGEST i7 = extract_unsigned_integer (buf + offset, 8);
1558
1559 store_unsigned_integer (buf, 8, i7 ^ wcookie);
1560 }
1561
386c036b
MK
1562 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1563 }
1564 }
5af923b0
MS
1565 }
1566 else
1567 {
386c036b
MK
1568 /* Registers are 32-bit. Toss any sign-extension of the stack
1569 pointer. */
1570 sp &= 0xffffffffUL;
1571
1572 /* Only use the bottom half if we're in 64-bit mode. */
e6d4f032 1573 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
386c036b
MK
1574 offset = 4;
1575
1576 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1577 {
1578 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1579 {
1580 regcache_raw_collect (regcache, i, buf);
42cdca6c
MK
1581
1582 /* Handle StackGhost. */
1583 if (i == SPARC_I7_REGNUM)
1584 {
1585 ULONGEST wcookie = sparc_fetch_wcookie ();
7d34766b 1586 ULONGEST i7 = extract_unsigned_integer (buf + offset, 4);
42cdca6c 1587
7d34766b 1588 store_unsigned_integer (buf + offset, 4, i7 ^ wcookie);
42cdca6c
MK
1589 }
1590
386c036b
MK
1591 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1592 buf + offset, 4);
1593 }
1594 }
5af923b0 1595 }
c906108c
SS
1596}
1597
386c036b
MK
1598/* Helper functions for dealing with register sets. */
1599
c906108c 1600void
386c036b
MK
1601sparc32_supply_gregset (const struct sparc_gregset *gregset,
1602 struct regcache *regcache,
1603 int regnum, const void *gregs)
c906108c 1604{
e1613aba 1605 const gdb_byte *regs = gregs;
386c036b 1606 int i;
5af923b0 1607
386c036b
MK
1608 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1609 regcache_raw_supply (regcache, SPARC32_PSR_REGNUM,
1610 regs + gregset->r_psr_offset);
c906108c 1611
386c036b
MK
1612 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1613 regcache_raw_supply (regcache, SPARC32_PC_REGNUM,
1614 regs + gregset->r_pc_offset);
5af923b0 1615
386c036b
MK
1616 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1617 regcache_raw_supply (regcache, SPARC32_NPC_REGNUM,
1618 regs + gregset->r_npc_offset);
5af923b0 1619
386c036b
MK
1620 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1621 regcache_raw_supply (regcache, SPARC32_Y_REGNUM,
1622 regs + gregset->r_y_offset);
5af923b0 1623
386c036b
MK
1624 if (regnum == SPARC_G0_REGNUM || regnum == -1)
1625 regcache_raw_supply (regcache, SPARC_G0_REGNUM, NULL);
5af923b0 1626
386c036b 1627 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
c906108c 1628 {
386c036b
MK
1629 int offset = gregset->r_g1_offset;
1630
1631 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1632 {
1633 if (regnum == i || regnum == -1)
1634 regcache_raw_supply (regcache, i, regs + offset);
1635 offset += 4;
1636 }
c906108c 1637 }
386c036b
MK
1638
1639 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
c906108c 1640 {
386c036b
MK
1641 /* Not all of the register set variants include Locals and
1642 Inputs. For those that don't, we read them off the stack. */
1643 if (gregset->r_l0_offset == -1)
1644 {
1645 ULONGEST sp;
1646
1647 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1648 sparc_supply_rwindow (regcache, sp, regnum);
1649 }
1650 else
1651 {
1652 int offset = gregset->r_l0_offset;
1653
1654 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1655 {
1656 if (regnum == i || regnum == -1)
1657 regcache_raw_supply (regcache, i, regs + offset);
1658 offset += 4;
1659 }
1660 }
c906108c
SS
1661 }
1662}
1663
c5aa993b 1664void
386c036b
MK
1665sparc32_collect_gregset (const struct sparc_gregset *gregset,
1666 const struct regcache *regcache,
1667 int regnum, void *gregs)
c906108c 1668{
e1613aba 1669 gdb_byte *regs = gregs;
386c036b 1670 int i;
c5aa993b 1671
386c036b
MK
1672 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1673 regcache_raw_collect (regcache, SPARC32_PSR_REGNUM,
1674 regs + gregset->r_psr_offset);
60054393 1675
386c036b
MK
1676 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1677 regcache_raw_collect (regcache, SPARC32_PC_REGNUM,
1678 regs + gregset->r_pc_offset);
1679
1680 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1681 regcache_raw_collect (regcache, SPARC32_NPC_REGNUM,
1682 regs + gregset->r_npc_offset);
5af923b0 1683
386c036b
MK
1684 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1685 regcache_raw_collect (regcache, SPARC32_Y_REGNUM,
1686 regs + gregset->r_y_offset);
1687
1688 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
5af923b0 1689 {
386c036b
MK
1690 int offset = gregset->r_g1_offset;
1691
1692 /* %g0 is always zero. */
1693 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1694 {
1695 if (regnum == i || regnum == -1)
1696 regcache_raw_collect (regcache, i, regs + offset);
1697 offset += 4;
1698 }
5af923b0 1699 }
386c036b
MK
1700
1701 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
5af923b0 1702 {
386c036b
MK
1703 /* Not all of the register set variants include Locals and
1704 Inputs. For those that don't, we read them off the stack. */
1705 if (gregset->r_l0_offset != -1)
1706 {
1707 int offset = gregset->r_l0_offset;
1708
1709 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1710 {
1711 if (regnum == i || regnum == -1)
1712 regcache_raw_collect (regcache, i, regs + offset);
1713 offset += 4;
1714 }
1715 }
5af923b0 1716 }
c906108c
SS
1717}
1718
c906108c 1719void
386c036b
MK
1720sparc32_supply_fpregset (struct regcache *regcache,
1721 int regnum, const void *fpregs)
c906108c 1722{
e1613aba 1723 const gdb_byte *regs = fpregs;
386c036b 1724 int i;
60054393 1725
386c036b 1726 for (i = 0; i < 32; i++)
c906108c 1727 {
386c036b
MK
1728 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1729 regcache_raw_supply (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
c906108c 1730 }
5af923b0 1731
386c036b
MK
1732 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1733 regcache_raw_supply (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
c906108c
SS
1734}
1735
386c036b
MK
1736void
1737sparc32_collect_fpregset (const struct regcache *regcache,
1738 int regnum, void *fpregs)
c906108c 1739{
e1613aba 1740 gdb_byte *regs = fpregs;
386c036b 1741 int i;
c906108c 1742
386c036b
MK
1743 for (i = 0; i < 32; i++)
1744 {
1745 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1746 regcache_raw_collect (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
1747 }
c906108c 1748
386c036b
MK
1749 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1750 regcache_raw_collect (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
c906108c 1751}
c906108c 1752\f
c906108c 1753
386c036b 1754/* SunOS 4. */
c906108c 1755
386c036b
MK
1756/* From <machine/reg.h>. */
1757const struct sparc_gregset sparc32_sunos4_gregset =
c906108c 1758{
386c036b
MK
1759 0 * 4, /* %psr */
1760 1 * 4, /* %pc */
1761 2 * 4, /* %npc */
1762 3 * 4, /* %y */
1763 -1, /* %wim */
1764 -1, /* %tbr */
1765 4 * 4, /* %g1 */
1766 -1 /* %l0 */
1767};
1768\f
c906108c 1769
386c036b
MK
1770/* Provide a prototype to silence -Wmissing-prototypes. */
1771void _initialize_sparc_tdep (void);
c906108c
SS
1772
1773void
386c036b 1774_initialize_sparc_tdep (void)
c906108c 1775{
386c036b 1776 register_gdbarch_init (bfd_arch_sparc, sparc32_gdbarch_init);
2d457077
MK
1777
1778 /* Initialize the SPARC-specific register types. */
1779 sparc_init_types();
ef3cf062 1780}
This page took 0.902301 seconds and 4 git commands to generate.