2011-05-23 Pedro Alves <pedro@codesourcery.com>
[deliverable/binutils-gdb.git] / gdb / sparc-tdep.c
CommitLineData
386c036b 1/* Target-dependent code for SPARC.
cda5a58a 2
7b6bb8da 3 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
9b254dd1 4 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 20
c906108c 21#include "defs.h"
5af923b0 22#include "arch-utils.h"
386c036b 23#include "dis-asm.h"
f5a9b87d 24#include "dwarf2-frame.h"
386c036b 25#include "floatformat.h"
c906108c 26#include "frame.h"
386c036b
MK
27#include "frame-base.h"
28#include "frame-unwind.h"
29#include "gdbcore.h"
30#include "gdbtypes.h"
c906108c 31#include "inferior.h"
386c036b
MK
32#include "symtab.h"
33#include "objfiles.h"
34#include "osabi.h"
35#include "regcache.h"
c906108c
SS
36#include "target.h"
37#include "value.h"
c906108c 38
43bd9a9e 39#include "gdb_assert.h"
386c036b 40#include "gdb_string.h"
c906108c 41
386c036b 42#include "sparc-tdep.h"
c906108c 43
a54124c5
MK
44struct regset;
45
9eb42ed1
MK
46/* This file implements the SPARC 32-bit ABI as defined by the section
47 "Low-Level System Information" of the SPARC Compliance Definition
48 (SCD) 2.4.1, which is the 32-bit System V psABI for SPARC. The SCD
f2e7c15d 49 lists changes with respect to the original 32-bit psABI as defined
9eb42ed1 50 in the "System V ABI, SPARC Processor Supplement".
386c036b
MK
51
52 Note that if we talk about SunOS, we mean SunOS 4.x, which was
53 BSD-based, which is sometimes (retroactively?) referred to as
54 Solaris 1.x. If we talk about Solaris we mean Solaris 2.x and
55 above (Solaris 7, 8 and 9 are nothing but Solaris 2.7, 2.8 and 2.9
56 suffering from severe version number inflation). Solaris 2.x is
57 also known as SunOS 5.x, since that's what uname(1) says. Solaris
58 2.x is SVR4-based. */
59
60/* Please use the sparc32_-prefix for 32-bit specific code, the
61 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
62 code that can handle both. The 64-bit specific code lives in
63 sparc64-tdep.c; don't add any here. */
64
65/* The SPARC Floating-Point Quad-Precision format is similar to
7a58cce8 66 big-endian IA-64 Quad-Precision format. */
8da61cc4 67#define floatformats_sparc_quad floatformats_ia64_quad
386c036b
MK
68
69/* The stack pointer is offset from the stack frame by a BIAS of 2047
70 (0x7ff) for 64-bit code. BIAS is likely to be defined on SPARC
71 hosts, so undefine it first. */
72#undef BIAS
73#define BIAS 2047
74
75/* Macros to extract fields from SPARC instructions. */
c906108c
SS
76#define X_OP(i) (((i) >> 30) & 0x3)
77#define X_RD(i) (((i) >> 25) & 0x1f)
78#define X_A(i) (((i) >> 29) & 1)
79#define X_COND(i) (((i) >> 25) & 0xf)
80#define X_OP2(i) (((i) >> 22) & 0x7)
81#define X_IMM22(i) ((i) & 0x3fffff)
82#define X_OP3(i) (((i) >> 19) & 0x3f)
075ccec8 83#define X_RS1(i) (((i) >> 14) & 0x1f)
b0b92586 84#define X_RS2(i) ((i) & 0x1f)
c906108c 85#define X_I(i) (((i) >> 13) & 1)
c906108c 86/* Sign extension macros. */
c906108c 87#define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
c906108c 88#define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
075ccec8 89#define X_SIMM13(i) ((((i) & 0x1fff) ^ 0x1000) - 0x1000)
c906108c 90
386c036b
MK
91/* Fetch the instruction at PC. Instructions are always big-endian
92 even if the processor operates in little-endian mode. */
93
94unsigned long
95sparc_fetch_instruction (CORE_ADDR pc)
c906108c 96{
e1613aba 97 gdb_byte buf[4];
386c036b
MK
98 unsigned long insn;
99 int i;
100
690668cc 101 /* If we can't read the instruction at PC, return zero. */
8defab1a 102 if (target_read_memory (pc, buf, sizeof (buf)))
690668cc 103 return 0;
c906108c 104
386c036b
MK
105 insn = 0;
106 for (i = 0; i < sizeof (buf); i++)
107 insn = (insn << 8) | buf[i];
108 return insn;
109}
42cdca6c
MK
110\f
111
5465445a
JB
112/* Return non-zero if the instruction corresponding to PC is an "unimp"
113 instruction. */
114
115static int
116sparc_is_unimp_insn (CORE_ADDR pc)
117{
118 const unsigned long insn = sparc_fetch_instruction (pc);
119
120 return ((insn & 0xc1c00000) == 0);
121}
122
42cdca6c
MK
123/* OpenBSD/sparc includes StackGhost, which according to the author's
124 website http://stackghost.cerias.purdue.edu "... transparently and
125 automatically protects applications' stack frames; more
126 specifically, it guards the return pointers. The protection
127 mechanisms require no application source or binary modification and
128 imposes only a negligible performance penalty."
129
130 The same website provides the following description of how
131 StackGhost works:
132
133 "StackGhost interfaces with the kernel trap handler that would
134 normally write out registers to the stack and the handler that
135 would read them back in. By XORing a cookie into the
136 return-address saved in the user stack when it is actually written
137 to the stack, and then XOR it out when the return-address is pulled
138 from the stack, StackGhost can cause attacker corrupted return
139 pointers to behave in a manner the attacker cannot predict.
140 StackGhost can also use several unused bits in the return pointer
141 to detect a smashed return pointer and abort the process."
142
143 For GDB this means that whenever we're reading %i7 from a stack
144 frame's window save area, we'll have to XOR the cookie.
145
146 More information on StackGuard can be found on in:
147
c378eb4e 148 Mike Frantzen and Mike Shuey. "StackGhost: Hardware Facilitated
42cdca6c
MK
149 Stack Protection." 2001. Published in USENIX Security Symposium
150 '01. */
151
152/* Fetch StackGhost Per-Process XOR cookie. */
153
154ULONGEST
e17a4113 155sparc_fetch_wcookie (struct gdbarch *gdbarch)
42cdca6c 156{
e17a4113 157 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
baf92889 158 struct target_ops *ops = &current_target;
e1613aba 159 gdb_byte buf[8];
baf92889
MK
160 int len;
161
13547ab6 162 len = target_read (ops, TARGET_OBJECT_WCOOKIE, NULL, buf, 0, 8);
baf92889
MK
163 if (len == -1)
164 return 0;
42cdca6c 165
baf92889
MK
166 /* We should have either an 32-bit or an 64-bit cookie. */
167 gdb_assert (len == 4 || len == 8);
168
e17a4113 169 return extract_unsigned_integer (buf, len, byte_order);
baf92889 170}
386c036b 171\f
baf92889 172
386c036b
MK
173/* The functions on this page are intended to be used to classify
174 function arguments. */
c906108c 175
386c036b 176/* Check whether TYPE is "Integral or Pointer". */
c906108c 177
386c036b
MK
178static int
179sparc_integral_or_pointer_p (const struct type *type)
c906108c 180{
80ad1639
MK
181 int len = TYPE_LENGTH (type);
182
386c036b 183 switch (TYPE_CODE (type))
c906108c 184 {
386c036b
MK
185 case TYPE_CODE_INT:
186 case TYPE_CODE_BOOL:
187 case TYPE_CODE_CHAR:
188 case TYPE_CODE_ENUM:
189 case TYPE_CODE_RANGE:
80ad1639
MK
190 /* We have byte, half-word, word and extended-word/doubleword
191 integral types. The doubleword is an extension to the
192 original 32-bit ABI by the SCD 2.4.x. */
193 return (len == 1 || len == 2 || len == 4 || len == 8);
386c036b
MK
194 case TYPE_CODE_PTR:
195 case TYPE_CODE_REF:
80ad1639
MK
196 /* Allow either 32-bit or 64-bit pointers. */
197 return (len == 4 || len == 8);
386c036b
MK
198 default:
199 break;
200 }
c906108c 201
386c036b
MK
202 return 0;
203}
c906108c 204
386c036b 205/* Check whether TYPE is "Floating". */
c906108c 206
386c036b
MK
207static int
208sparc_floating_p (const struct type *type)
209{
210 switch (TYPE_CODE (type))
c906108c 211 {
386c036b
MK
212 case TYPE_CODE_FLT:
213 {
214 int len = TYPE_LENGTH (type);
215 return (len == 4 || len == 8 || len == 16);
216 }
217 default:
218 break;
219 }
220
221 return 0;
222}
c906108c 223
0497f5b0
JB
224/* Check whether TYPE is "Structure or Union".
225
226 In terms of Ada subprogram calls, arrays are treated the same as
227 struct and union types. So this function also returns non-zero
228 for array types. */
c906108c 229
386c036b
MK
230static int
231sparc_structure_or_union_p (const struct type *type)
232{
233 switch (TYPE_CODE (type))
234 {
235 case TYPE_CODE_STRUCT:
236 case TYPE_CODE_UNION:
0497f5b0 237 case TYPE_CODE_ARRAY:
386c036b
MK
238 return 1;
239 default:
240 break;
c906108c 241 }
386c036b
MK
242
243 return 0;
c906108c 244}
386c036b
MK
245
246/* Register information. */
247
248static const char *sparc32_register_names[] =
5af923b0 249{
386c036b
MK
250 "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
251 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
252 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
253 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
254
255 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
256 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
257 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
258 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
259
260 "y", "psr", "wim", "tbr", "pc", "npc", "fsr", "csr"
5af923b0
MS
261};
262
386c036b
MK
263/* Total number of registers. */
264#define SPARC32_NUM_REGS ARRAY_SIZE (sparc32_register_names)
c906108c 265
386c036b
MK
266/* We provide the aliases %d0..%d30 for the floating registers as
267 "psuedo" registers. */
268
269static const char *sparc32_pseudo_register_names[] =
270{
271 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
272 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30"
273};
274
275/* Total number of pseudo registers. */
276#define SPARC32_NUM_PSEUDO_REGS ARRAY_SIZE (sparc32_pseudo_register_names)
277
278/* Return the name of register REGNUM. */
279
280static const char *
d93859e2 281sparc32_register_name (struct gdbarch *gdbarch, int regnum)
386c036b
MK
282{
283 if (regnum >= 0 && regnum < SPARC32_NUM_REGS)
284 return sparc32_register_names[regnum];
285
286 if (regnum < SPARC32_NUM_REGS + SPARC32_NUM_PSEUDO_REGS)
287 return sparc32_pseudo_register_names[regnum - SPARC32_NUM_REGS];
288
289 return NULL;
290}
2d457077 291\f
209bd28e 292/* Construct types for ISA-specific registers. */
2d457077 293
209bd28e
UW
294static struct type *
295sparc_psr_type (struct gdbarch *gdbarch)
296{
297 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2d457077 298
209bd28e
UW
299 if (!tdep->sparc_psr_type)
300 {
301 struct type *type;
2d457077 302
e9bb382b 303 type = arch_flags_type (gdbarch, "builtin_type_sparc_psr", 4);
209bd28e
UW
304 append_flags_type_flag (type, 5, "ET");
305 append_flags_type_flag (type, 6, "PS");
306 append_flags_type_flag (type, 7, "S");
307 append_flags_type_flag (type, 12, "EF");
308 append_flags_type_flag (type, 13, "EC");
2d457077 309
209bd28e
UW
310 tdep->sparc_psr_type = type;
311 }
312
313 return tdep->sparc_psr_type;
314}
315
316static struct type *
317sparc_fsr_type (struct gdbarch *gdbarch)
2d457077 318{
209bd28e
UW
319 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
320
321 if (!tdep->sparc_fsr_type)
322 {
323 struct type *type;
324
e9bb382b 325 type = arch_flags_type (gdbarch, "builtin_type_sparc_fsr", 4);
209bd28e
UW
326 append_flags_type_flag (type, 0, "NXA");
327 append_flags_type_flag (type, 1, "DZA");
328 append_flags_type_flag (type, 2, "UFA");
329 append_flags_type_flag (type, 3, "OFA");
330 append_flags_type_flag (type, 4, "NVA");
331 append_flags_type_flag (type, 5, "NXC");
332 append_flags_type_flag (type, 6, "DZC");
333 append_flags_type_flag (type, 7, "UFC");
334 append_flags_type_flag (type, 8, "OFC");
335 append_flags_type_flag (type, 9, "NVC");
336 append_flags_type_flag (type, 22, "NS");
337 append_flags_type_flag (type, 23, "NXM");
338 append_flags_type_flag (type, 24, "DZM");
339 append_flags_type_flag (type, 25, "UFM");
340 append_flags_type_flag (type, 26, "OFM");
341 append_flags_type_flag (type, 27, "NVM");
342
343 tdep->sparc_fsr_type = type;
344 }
345
346 return tdep->sparc_fsr_type;
2d457077 347}
386c036b
MK
348
349/* Return the GDB type object for the "standard" data type of data in
c378eb4e 350 register REGNUM. */
386c036b
MK
351
352static struct type *
353sparc32_register_type (struct gdbarch *gdbarch, int regnum)
354{
355 if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
0dfff4cb 356 return builtin_type (gdbarch)->builtin_float;
386c036b
MK
357
358 if (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM)
0dfff4cb 359 return builtin_type (gdbarch)->builtin_double;
386c036b
MK
360
361 if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
0dfff4cb 362 return builtin_type (gdbarch)->builtin_data_ptr;
386c036b
MK
363
364 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
0dfff4cb 365 return builtin_type (gdbarch)->builtin_func_ptr;
386c036b 366
2d457077 367 if (regnum == SPARC32_PSR_REGNUM)
209bd28e 368 return sparc_psr_type (gdbarch);
2d457077
MK
369
370 if (regnum == SPARC32_FSR_REGNUM)
209bd28e 371 return sparc_fsr_type (gdbarch);
2d457077 372
df4df182 373 return builtin_type (gdbarch)->builtin_int32;
386c036b
MK
374}
375
05d1431c 376static enum register_status
386c036b
MK
377sparc32_pseudo_register_read (struct gdbarch *gdbarch,
378 struct regcache *regcache,
e1613aba 379 int regnum, gdb_byte *buf)
386c036b 380{
05d1431c
PA
381 enum register_status status;
382
386c036b
MK
383 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
384
385 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
05d1431c
PA
386 status = regcache_raw_read (regcache, regnum, buf);
387 if (status == REG_VALID)
388 status = regcache_raw_read (regcache, regnum + 1, buf + 4);
389 return status;
386c036b
MK
390}
391
392static void
393sparc32_pseudo_register_write (struct gdbarch *gdbarch,
394 struct regcache *regcache,
e1613aba 395 int regnum, const gdb_byte *buf)
386c036b
MK
396{
397 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
398
399 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
400 regcache_raw_write (regcache, regnum, buf);
e1613aba 401 regcache_raw_write (regcache, regnum + 1, buf + 4);
386c036b
MK
402}
403\f
404
49a45ecf
JB
405static CORE_ADDR
406sparc32_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
407{
408 /* The ABI requires double-word alignment. */
409 return address & ~0x7;
410}
411
386c036b
MK
412static CORE_ADDR
413sparc32_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
82585c72 414 CORE_ADDR funcaddr,
386c036b
MK
415 struct value **args, int nargs,
416 struct type *value_type,
e4fd649a
UW
417 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
418 struct regcache *regcache)
c906108c 419{
e17a4113
UW
420 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
421
386c036b
MK
422 *bp_addr = sp - 4;
423 *real_pc = funcaddr;
424
d80b854b 425 if (using_struct_return (gdbarch, NULL, value_type))
c906108c 426 {
e1613aba 427 gdb_byte buf[4];
386c036b
MK
428
429 /* This is an UNIMP instruction. */
e17a4113
UW
430 store_unsigned_integer (buf, 4, byte_order,
431 TYPE_LENGTH (value_type) & 0x1fff);
386c036b
MK
432 write_memory (sp - 8, buf, 4);
433 return sp - 8;
c906108c
SS
434 }
435
386c036b
MK
436 return sp - 4;
437}
438
439static CORE_ADDR
440sparc32_store_arguments (struct regcache *regcache, int nargs,
441 struct value **args, CORE_ADDR sp,
442 int struct_return, CORE_ADDR struct_addr)
443{
df4df182 444 struct gdbarch *gdbarch = get_regcache_arch (regcache);
e17a4113 445 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
386c036b
MK
446 /* Number of words in the "parameter array". */
447 int num_elements = 0;
448 int element = 0;
449 int i;
450
451 for (i = 0; i < nargs; i++)
c906108c 452 {
4991999e 453 struct type *type = value_type (args[i]);
386c036b
MK
454 int len = TYPE_LENGTH (type);
455
456 if (sparc_structure_or_union_p (type)
457 || (sparc_floating_p (type) && len == 16))
c906108c 458 {
386c036b
MK
459 /* Structure, Union and Quad-Precision Arguments. */
460 sp -= len;
461
462 /* Use doubleword alignment for these values. That's always
463 correct, and wasting a few bytes shouldn't be a problem. */
464 sp &= ~0x7;
465
0fd88904 466 write_memory (sp, value_contents (args[i]), len);
386c036b
MK
467 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
468 num_elements++;
469 }
470 else if (sparc_floating_p (type))
471 {
472 /* Floating arguments. */
473 gdb_assert (len == 4 || len == 8);
474 num_elements += (len / 4);
c906108c 475 }
c5aa993b
JM
476 else
477 {
386c036b
MK
478 /* Integral and pointer arguments. */
479 gdb_assert (sparc_integral_or_pointer_p (type));
480
481 if (len < 4)
df4df182
UW
482 args[i] = value_cast (builtin_type (gdbarch)->builtin_int32,
483 args[i]);
386c036b 484 num_elements += ((len + 3) / 4);
c5aa993b 485 }
c906108c 486 }
c906108c 487
386c036b
MK
488 /* Always allocate at least six words. */
489 sp -= max (6, num_elements) * 4;
c906108c 490
386c036b
MK
491 /* The psABI says that "Software convention requires space for the
492 struct/union return value pointer, even if the word is unused." */
493 sp -= 4;
c906108c 494
386c036b
MK
495 /* The psABI says that "Although software convention and the
496 operating system require every stack frame to be doubleword
497 aligned." */
498 sp &= ~0x7;
c906108c 499
386c036b 500 for (i = 0; i < nargs; i++)
c906108c 501 {
0fd88904 502 const bfd_byte *valbuf = value_contents (args[i]);
4991999e 503 struct type *type = value_type (args[i]);
386c036b 504 int len = TYPE_LENGTH (type);
c906108c 505
386c036b 506 gdb_assert (len == 4 || len == 8);
c906108c 507
386c036b
MK
508 if (element < 6)
509 {
510 int regnum = SPARC_O0_REGNUM + element;
c906108c 511
386c036b
MK
512 regcache_cooked_write (regcache, regnum, valbuf);
513 if (len > 4 && element < 5)
514 regcache_cooked_write (regcache, regnum + 1, valbuf + 4);
515 }
5af923b0 516
386c036b
MK
517 /* Always store the argument in memory. */
518 write_memory (sp + 4 + element * 4, valbuf, len);
519 element += len / 4;
520 }
c906108c 521
386c036b 522 gdb_assert (element == num_elements);
c906108c 523
386c036b 524 if (struct_return)
c906108c 525 {
e1613aba 526 gdb_byte buf[4];
c906108c 527
e17a4113 528 store_unsigned_integer (buf, 4, byte_order, struct_addr);
386c036b
MK
529 write_memory (sp, buf, 4);
530 }
c906108c 531
386c036b 532 return sp;
c906108c
SS
533}
534
386c036b 535static CORE_ADDR
7d9b040b 536sparc32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
386c036b
MK
537 struct regcache *regcache, CORE_ADDR bp_addr,
538 int nargs, struct value **args, CORE_ADDR sp,
539 int struct_return, CORE_ADDR struct_addr)
c906108c 540{
386c036b
MK
541 CORE_ADDR call_pc = (struct_return ? (bp_addr - 12) : (bp_addr - 8));
542
543 /* Set return address. */
544 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, call_pc);
545
546 /* Set up function arguments. */
547 sp = sparc32_store_arguments (regcache, nargs, args, sp,
548 struct_return, struct_addr);
549
550 /* Allocate the 16-word window save area. */
551 sp -= 16 * 4;
c906108c 552
386c036b
MK
553 /* Stack should be doubleword aligned at this point. */
554 gdb_assert (sp % 8 == 0);
c906108c 555
386c036b
MK
556 /* Finally, update the stack pointer. */
557 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
558
559 return sp;
560}
561\f
c906108c 562
386c036b
MK
563/* Use the program counter to determine the contents and size of a
564 breakpoint instruction. Return a pointer to a string of bytes that
565 encode a breakpoint instruction, store the length of the string in
566 *LEN and optionally adjust *PC to point to the correct memory
567 location for inserting the breakpoint. */
568
e1613aba 569static const gdb_byte *
67d57894 570sparc_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
386c036b 571{
864a1a37 572 static const gdb_byte break_insn[] = { 0x91, 0xd0, 0x20, 0x01 };
c5aa993b 573
386c036b
MK
574 *len = sizeof (break_insn);
575 return break_insn;
c906108c 576}
386c036b 577\f
c906108c 578
386c036b 579/* Allocate and initialize a frame cache. */
c906108c 580
386c036b
MK
581static struct sparc_frame_cache *
582sparc_alloc_frame_cache (void)
583{
584 struct sparc_frame_cache *cache;
585 int i;
c906108c 586
386c036b 587 cache = FRAME_OBSTACK_ZALLOC (struct sparc_frame_cache);
c906108c 588
386c036b
MK
589 /* Base address. */
590 cache->base = 0;
591 cache->pc = 0;
c906108c 592
386c036b
MK
593 /* Frameless until proven otherwise. */
594 cache->frameless_p = 1;
595
596 cache->struct_return_p = 0;
597
598 return cache;
599}
600
b0b92586
JB
601/* GCC generates several well-known sequences of instructions at the begining
602 of each function prologue when compiling with -fstack-check. If one of
603 such sequences starts at START_PC, then return the address of the
604 instruction immediately past this sequence. Otherwise, return START_PC. */
605
606static CORE_ADDR
607sparc_skip_stack_check (const CORE_ADDR start_pc)
608{
609 CORE_ADDR pc = start_pc;
610 unsigned long insn;
611 int offset_stack_checking_sequence = 0;
612
613 /* With GCC, all stack checking sequences begin with the same two
614 instructions. */
615
616 /* sethi <some immediate>,%g1 */
617 insn = sparc_fetch_instruction (pc);
618 pc = pc + 4;
619 if (!(X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 1))
620 return start_pc;
621
622 /* sub %sp, %g1, %g1 */
623 insn = sparc_fetch_instruction (pc);
624 pc = pc + 4;
625 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
626 && X_RD (insn) == 1 && X_RS1 (insn) == 14 && X_RS2 (insn) == 1))
627 return start_pc;
628
629 insn = sparc_fetch_instruction (pc);
630 pc = pc + 4;
631
632 /* First possible sequence:
633 [first two instructions above]
634 clr [%g1 - some immediate] */
635
636 /* clr [%g1 - some immediate] */
637 if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
638 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
639 {
640 /* Valid stack-check sequence, return the new PC. */
641 return pc;
642 }
643
644 /* Second possible sequence: A small number of probes.
645 [first two instructions above]
646 clr [%g1]
647 add %g1, -<some immediate>, %g1
648 clr [%g1]
649 [repeat the two instructions above any (small) number of times]
650 clr [%g1 - some immediate] */
651
652 /* clr [%g1] */
653 else if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
654 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
655 {
656 while (1)
657 {
658 /* add %g1, -<some immediate>, %g1 */
659 insn = sparc_fetch_instruction (pc);
660 pc = pc + 4;
661 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
662 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
663 break;
664
665 /* clr [%g1] */
666 insn = sparc_fetch_instruction (pc);
667 pc = pc + 4;
668 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
669 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
670 return start_pc;
671 }
672
673 /* clr [%g1 - some immediate] */
674 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
675 && X_RS1 (insn) == 1 && X_RD (insn) == 0))
676 return start_pc;
677
678 /* We found a valid stack-check sequence, return the new PC. */
679 return pc;
680 }
681
682 /* Third sequence: A probing loop.
683 [first two instructions above]
684 sethi <some immediate>, %g4
685 sub %g1, %g4, %g4
686 cmp %g1, %g4
687 be <disp>
688 add %g1, -<some immediate>, %g1
689 ba <disp>
690 clr [%g1]
691 clr [%g4 - some immediate] */
692
693 /* sethi <some immediate>, %g4 */
694 else if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
695 {
696 /* sub %g1, %g4, %g4 */
697 insn = sparc_fetch_instruction (pc);
698 pc = pc + 4;
699 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
700 && X_RD (insn) == 4 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
701 return start_pc;
702
703 /* cmp %g1, %g4 */
704 insn = sparc_fetch_instruction (pc);
705 pc = pc + 4;
706 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x14 && !X_I(insn)
707 && X_RD (insn) == 0 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
708 return start_pc;
709
710 /* be <disp> */
711 insn = sparc_fetch_instruction (pc);
712 pc = pc + 4;
713 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x1))
714 return start_pc;
715
716 /* add %g1, -<some immediate>, %g1 */
717 insn = sparc_fetch_instruction (pc);
718 pc = pc + 4;
719 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
720 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
721 return start_pc;
722
723 /* ba <disp> */
724 insn = sparc_fetch_instruction (pc);
725 pc = pc + 4;
726 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x8))
727 return start_pc;
728
729 /* clr [%g1] */
730 insn = sparc_fetch_instruction (pc);
731 pc = pc + 4;
732 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
733 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
734 return start_pc;
735
736 /* clr [%g4 - some immediate] */
737 insn = sparc_fetch_instruction (pc);
738 pc = pc + 4;
739 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
740 && X_RS1 (insn) == 4 && X_RD (insn) == 0))
741 return start_pc;
742
743 /* We found a valid stack-check sequence, return the new PC. */
744 return pc;
745 }
746
747 /* No stack check code in our prologue, return the start_pc. */
748 return start_pc;
749}
750
386c036b 751CORE_ADDR
be8626e0
MD
752sparc_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
753 CORE_ADDR current_pc, struct sparc_frame_cache *cache)
c906108c 754{
be8626e0 755 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
386c036b
MK
756 unsigned long insn;
757 int offset = 0;
c906108c 758 int dest = -1;
c906108c 759
b0b92586
JB
760 pc = sparc_skip_stack_check (pc);
761
386c036b
MK
762 if (current_pc <= pc)
763 return current_pc;
764
765 /* We have to handle to "Procedure Linkage Table" (PLT) special. On
766 SPARC the linker usually defines a symbol (typically
767 _PROCEDURE_LINKAGE_TABLE_) at the start of the .plt section.
768 This symbol makes us end up here with PC pointing at the start of
769 the PLT and CURRENT_PC probably pointing at a PLT entry. If we
770 would do our normal prologue analysis, we would probably conclude
771 that we've got a frame when in reality we don't, since the
772 dynamic linker patches up the first PLT with some code that
773 starts with a SAVE instruction. Patch up PC such that it points
774 at the start of our PLT entry. */
775 if (tdep->plt_entry_size > 0 && in_plt_section (current_pc, NULL))
776 pc = current_pc - ((current_pc - pc) % tdep->plt_entry_size);
c906108c 777
386c036b
MK
778 insn = sparc_fetch_instruction (pc);
779
780 /* Recognize a SETHI insn and record its destination. */
781 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x04)
c906108c
SS
782 {
783 dest = X_RD (insn);
386c036b
MK
784 offset += 4;
785
786 insn = sparc_fetch_instruction (pc + 4);
c906108c
SS
787 }
788
386c036b
MK
789 /* Allow for an arithmetic operation on DEST or %g1. */
790 if (X_OP (insn) == 2 && X_I (insn)
c906108c
SS
791 && (X_RD (insn) == 1 || X_RD (insn) == dest))
792 {
386c036b 793 offset += 4;
c906108c 794
386c036b 795 insn = sparc_fetch_instruction (pc + 8);
c906108c 796 }
c906108c 797
386c036b
MK
798 /* Check for the SAVE instruction that sets up the frame. */
799 if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
c906108c 800 {
386c036b
MK
801 cache->frameless_p = 0;
802 return pc + offset + 4;
c906108c
SS
803 }
804
805 return pc;
806}
807
386c036b 808static CORE_ADDR
236369e7 809sparc_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
386c036b
MK
810{
811 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
236369e7 812 return frame_unwind_register_unsigned (this_frame, tdep->pc_regnum);
386c036b
MK
813}
814
815/* Return PC of first real instruction of the function starting at
816 START_PC. */
f510d44e 817
386c036b 818static CORE_ADDR
6093d2eb 819sparc32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
c906108c 820{
f510d44e
DM
821 struct symtab_and_line sal;
822 CORE_ADDR func_start, func_end;
386c036b 823 struct sparc_frame_cache cache;
f510d44e
DM
824
825 /* This is the preferred method, find the end of the prologue by
826 using the debugging information. */
827 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
828 {
829 sal = find_pc_line (func_start, 0);
830
831 if (sal.end < func_end
832 && start_pc <= sal.end)
833 return sal.end;
834 }
835
be8626e0 836 start_pc = sparc_analyze_prologue (gdbarch, start_pc, 0xffffffffUL, &cache);
075ccec8
MK
837
838 /* The psABI says that "Although the first 6 words of arguments
839 reside in registers, the standard stack frame reserves space for
840 them.". It also suggests that a function may use that space to
841 "write incoming arguments 0 to 5" into that space, and that's
842 indeed what GCC seems to be doing. In that case GCC will
843 generate debug information that points to the stack slots instead
844 of the registers, so we should consider the instructions that
845 write out these incoming arguments onto the stack. Of course we
846 only need to do this if we have a stack frame. */
847
848 while (!cache.frameless_p)
849 {
850 unsigned long insn = sparc_fetch_instruction (start_pc);
851
852 /* Recognize instructions that store incoming arguments in
853 %i0...%i5 into the corresponding stack slot. */
854 if (X_OP (insn) == 3 && (X_OP3 (insn) & 0x3c) == 0x04 && X_I (insn)
855 && (X_RD (insn) >= 24 && X_RD (insn) <= 29) && X_RS1 (insn) == 30
856 && X_SIMM13 (insn) == 68 + (X_RD (insn) - 24) * 4)
857 {
858 start_pc += 4;
859 continue;
860 }
861
862 break;
863 }
864
865 return start_pc;
c906108c
SS
866}
867
386c036b 868/* Normal frames. */
9319a2fe 869
386c036b 870struct sparc_frame_cache *
236369e7 871sparc_frame_cache (struct frame_info *this_frame, void **this_cache)
9319a2fe 872{
386c036b 873 struct sparc_frame_cache *cache;
9319a2fe 874
386c036b
MK
875 if (*this_cache)
876 return *this_cache;
c906108c 877
386c036b
MK
878 cache = sparc_alloc_frame_cache ();
879 *this_cache = cache;
c906108c 880
236369e7 881 cache->pc = get_frame_func (this_frame);
386c036b 882 if (cache->pc != 0)
236369e7
JB
883 sparc_analyze_prologue (get_frame_arch (this_frame), cache->pc,
884 get_frame_pc (this_frame), cache);
386c036b
MK
885
886 if (cache->frameless_p)
c906108c 887 {
cbeae229
MK
888 /* This function is frameless, so %fp (%i6) holds the frame
889 pointer for our calling frame. Use %sp (%o6) as this frame's
890 base address. */
891 cache->base =
236369e7 892 get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
cbeae229
MK
893 }
894 else
895 {
896 /* For normal frames, %fp (%i6) holds the frame pointer, the
897 base address for the current stack frame. */
898 cache->base =
236369e7 899 get_frame_register_unsigned (this_frame, SPARC_FP_REGNUM);
c906108c 900 }
c906108c 901
5b2d44a0
MK
902 if (cache->base & 1)
903 cache->base += BIAS;
904
386c036b 905 return cache;
c906108c 906}
c906108c 907
aff37fc1
DM
908static int
909sparc32_struct_return_from_sym (struct symbol *sym)
910{
911 struct type *type = check_typedef (SYMBOL_TYPE (sym));
912 enum type_code code = TYPE_CODE (type);
913
914 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
915 {
916 type = check_typedef (TYPE_TARGET_TYPE (type));
917 if (sparc_structure_or_union_p (type)
918 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
919 return 1;
920 }
921
922 return 0;
923}
924
386c036b 925struct sparc_frame_cache *
236369e7 926sparc32_frame_cache (struct frame_info *this_frame, void **this_cache)
c906108c 927{
386c036b
MK
928 struct sparc_frame_cache *cache;
929 struct symbol *sym;
c906108c 930
386c036b
MK
931 if (*this_cache)
932 return *this_cache;
c906108c 933
236369e7 934 cache = sparc_frame_cache (this_frame, this_cache);
c906108c 935
386c036b
MK
936 sym = find_pc_function (cache->pc);
937 if (sym)
c906108c 938 {
aff37fc1 939 cache->struct_return_p = sparc32_struct_return_from_sym (sym);
c906108c 940 }
5465445a
JB
941 else
942 {
943 /* There is no debugging information for this function to
944 help us determine whether this function returns a struct
945 or not. So we rely on another heuristic which is to check
946 the instruction at the return address and see if this is
947 an "unimp" instruction. If it is, then it is a struct-return
948 function. */
949 CORE_ADDR pc;
950 int regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
951
236369e7 952 pc = get_frame_register_unsigned (this_frame, regnum) + 8;
5465445a
JB
953 if (sparc_is_unimp_insn (pc))
954 cache->struct_return_p = 1;
955 }
c906108c 956
386c036b
MK
957 return cache;
958}
959
960static void
236369e7 961sparc32_frame_this_id (struct frame_info *this_frame, void **this_cache,
386c036b
MK
962 struct frame_id *this_id)
963{
964 struct sparc_frame_cache *cache =
236369e7 965 sparc32_frame_cache (this_frame, this_cache);
386c036b
MK
966
967 /* This marks the outermost frame. */
968 if (cache->base == 0)
969 return;
970
971 (*this_id) = frame_id_build (cache->base, cache->pc);
972}
c906108c 973
236369e7
JB
974static struct value *
975sparc32_frame_prev_register (struct frame_info *this_frame,
976 void **this_cache, int regnum)
386c036b 977{
e17a4113 978 struct gdbarch *gdbarch = get_frame_arch (this_frame);
386c036b 979 struct sparc_frame_cache *cache =
236369e7 980 sparc32_frame_cache (this_frame, this_cache);
c906108c 981
386c036b 982 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
c906108c 983 {
236369e7 984 CORE_ADDR pc = (regnum == SPARC32_NPC_REGNUM) ? 4 : 0;
386c036b 985
236369e7
JB
986 /* If this functions has a Structure, Union or Quad-Precision
987 return value, we have to skip the UNIMP instruction that encodes
988 the size of the structure. */
989 if (cache->struct_return_p)
990 pc += 4;
386c036b 991
236369e7
JB
992 regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
993 pc += get_frame_register_unsigned (this_frame, regnum) + 8;
994 return frame_unwind_got_constant (this_frame, regnum, pc);
c906108c
SS
995 }
996
42cdca6c
MK
997 /* Handle StackGhost. */
998 {
e17a4113 999 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
42cdca6c
MK
1000
1001 if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
1002 {
236369e7
JB
1003 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
1004 ULONGEST i7;
1005
1006 /* Read the value in from memory. */
1007 i7 = get_frame_memory_unsigned (this_frame, addr, 4);
1008 return frame_unwind_got_constant (this_frame, regnum, i7 ^ wcookie);
42cdca6c
MK
1009 }
1010 }
1011
386c036b
MK
1012 /* The previous frame's `local' and `in' registers have been saved
1013 in the register save area. */
1014 if (!cache->frameless_p
1015 && regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM)
c906108c 1016 {
236369e7 1017 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
386c036b 1018
236369e7 1019 return frame_unwind_got_memory (this_frame, regnum, addr);
386c036b 1020 }
c906108c 1021
236369e7 1022 /* The previous frame's `out' registers are accessible as the
386c036b
MK
1023 current frame's `in' registers. */
1024 if (!cache->frameless_p
1025 && regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM)
1026 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
5af923b0 1027
236369e7 1028 return frame_unwind_got_register (this_frame, regnum, regnum);
386c036b 1029}
c906108c 1030
386c036b
MK
1031static const struct frame_unwind sparc32_frame_unwind =
1032{
1033 NORMAL_FRAME,
8fbca658 1034 default_frame_unwind_stop_reason,
386c036b 1035 sparc32_frame_this_id,
236369e7
JB
1036 sparc32_frame_prev_register,
1037 NULL,
1038 default_frame_sniffer
386c036b 1039};
386c036b 1040\f
c906108c 1041
386c036b 1042static CORE_ADDR
236369e7 1043sparc32_frame_base_address (struct frame_info *this_frame, void **this_cache)
386c036b
MK
1044{
1045 struct sparc_frame_cache *cache =
236369e7 1046 sparc32_frame_cache (this_frame, this_cache);
c906108c 1047
386c036b
MK
1048 return cache->base;
1049}
c906108c 1050
386c036b
MK
1051static const struct frame_base sparc32_frame_base =
1052{
1053 &sparc32_frame_unwind,
1054 sparc32_frame_base_address,
1055 sparc32_frame_base_address,
1056 sparc32_frame_base_address
1057};
c906108c 1058
386c036b 1059static struct frame_id
236369e7 1060sparc_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
386c036b
MK
1061{
1062 CORE_ADDR sp;
5af923b0 1063
236369e7 1064 sp = get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
5b2d44a0
MK
1065 if (sp & 1)
1066 sp += BIAS;
236369e7 1067 return frame_id_build (sp, get_frame_pc (this_frame));
386c036b
MK
1068}
1069\f
c906108c 1070
3923a2b2
MK
1071/* Extract a function return value of TYPE from REGCACHE, and copy
1072 that into VALBUF. */
5af923b0 1073
386c036b
MK
1074static void
1075sparc32_extract_return_value (struct type *type, struct regcache *regcache,
e1613aba 1076 gdb_byte *valbuf)
386c036b
MK
1077{
1078 int len = TYPE_LENGTH (type);
e1613aba 1079 gdb_byte buf[8];
c906108c 1080
386c036b
MK
1081 gdb_assert (!sparc_structure_or_union_p (type));
1082 gdb_assert (!(sparc_floating_p (type) && len == 16));
c906108c 1083
386c036b 1084 if (sparc_floating_p (type))
5af923b0 1085 {
386c036b
MK
1086 /* Floating return values. */
1087 regcache_cooked_read (regcache, SPARC_F0_REGNUM, buf);
1088 if (len > 4)
1089 regcache_cooked_read (regcache, SPARC_F1_REGNUM, buf + 4);
1090 memcpy (valbuf, buf, len);
5af923b0
MS
1091 }
1092 else
1093 {
386c036b
MK
1094 /* Integral and pointer return values. */
1095 gdb_assert (sparc_integral_or_pointer_p (type));
c906108c 1096
386c036b
MK
1097 regcache_cooked_read (regcache, SPARC_O0_REGNUM, buf);
1098 if (len > 4)
1099 {
1100 regcache_cooked_read (regcache, SPARC_O1_REGNUM, buf + 4);
1101 gdb_assert (len == 8);
1102 memcpy (valbuf, buf, 8);
1103 }
1104 else
1105 {
1106 /* Just stripping off any unused bytes should preserve the
1107 signed-ness just fine. */
1108 memcpy (valbuf, buf + 4 - len, len);
1109 }
1110 }
1111}
c906108c 1112
3923a2b2
MK
1113/* Store the function return value of type TYPE from VALBUF into
1114 REGCACHE. */
c906108c 1115
386c036b
MK
1116static void
1117sparc32_store_return_value (struct type *type, struct regcache *regcache,
e1613aba 1118 const gdb_byte *valbuf)
386c036b
MK
1119{
1120 int len = TYPE_LENGTH (type);
e1613aba 1121 gdb_byte buf[8];
c906108c 1122
386c036b
MK
1123 gdb_assert (!sparc_structure_or_union_p (type));
1124 gdb_assert (!(sparc_floating_p (type) && len == 16));
a9789a6b 1125 gdb_assert (len <= 8);
c906108c 1126
386c036b
MK
1127 if (sparc_floating_p (type))
1128 {
1129 /* Floating return values. */
1130 memcpy (buf, valbuf, len);
1131 regcache_cooked_write (regcache, SPARC_F0_REGNUM, buf);
1132 if (len > 4)
1133 regcache_cooked_write (regcache, SPARC_F1_REGNUM, buf + 4);
1134 }
1135 else
c906108c 1136 {
386c036b
MK
1137 /* Integral and pointer return values. */
1138 gdb_assert (sparc_integral_or_pointer_p (type));
1139
1140 if (len > 4)
2757dd86 1141 {
386c036b
MK
1142 gdb_assert (len == 8);
1143 memcpy (buf, valbuf, 8);
1144 regcache_cooked_write (regcache, SPARC_O1_REGNUM, buf + 4);
2757dd86
AC
1145 }
1146 else
1147 {
386c036b
MK
1148 /* ??? Do we need to do any sign-extension here? */
1149 memcpy (buf + 4 - len, valbuf, len);
2757dd86 1150 }
386c036b 1151 regcache_cooked_write (regcache, SPARC_O0_REGNUM, buf);
c906108c
SS
1152 }
1153}
1154
b9d4c5ed 1155static enum return_value_convention
c055b101
CV
1156sparc32_return_value (struct gdbarch *gdbarch, struct type *func_type,
1157 struct type *type, struct regcache *regcache,
1158 gdb_byte *readbuf, const gdb_byte *writebuf)
b9d4c5ed 1159{
e17a4113
UW
1160 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1161
0a8f48b9
MK
1162 /* The psABI says that "...every stack frame reserves the word at
1163 %fp+64. If a function returns a structure, union, or
1164 quad-precision value, this word should hold the address of the
1165 object into which the return value should be copied." This
1166 guarantees that we can always find the return value, not just
1167 before the function returns. */
1168
b9d4c5ed
MK
1169 if (sparc_structure_or_union_p (type)
1170 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
0a8f48b9
MK
1171 {
1172 if (readbuf)
1173 {
1174 ULONGEST sp;
1175 CORE_ADDR addr;
1176
1177 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
e17a4113 1178 addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
0a8f48b9
MK
1179 read_memory (addr, readbuf, TYPE_LENGTH (type));
1180 }
1181
1182 return RETURN_VALUE_ABI_PRESERVES_ADDRESS;
1183 }
b9d4c5ed
MK
1184
1185 if (readbuf)
1186 sparc32_extract_return_value (type, regcache, readbuf);
1187 if (writebuf)
1188 sparc32_store_return_value (type, regcache, writebuf);
1189
1190 return RETURN_VALUE_REGISTER_CONVENTION;
1191}
1192
386c036b
MK
1193static int
1194sparc32_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
c906108c 1195{
386c036b
MK
1196 return (sparc_structure_or_union_p (type)
1197 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16));
1198}
c906108c 1199
aff37fc1 1200static int
4a4e5149 1201sparc32_dwarf2_struct_return_p (struct frame_info *this_frame)
aff37fc1 1202{
236369e7 1203 CORE_ADDR pc = get_frame_address_in_block (this_frame);
aff37fc1
DM
1204 struct symbol *sym = find_pc_function (pc);
1205
1206 if (sym)
1207 return sparc32_struct_return_from_sym (sym);
1208 return 0;
1209}
1210
f5a9b87d
DM
1211static void
1212sparc32_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 1213 struct dwarf2_frame_state_reg *reg,
4a4e5149 1214 struct frame_info *this_frame)
f5a9b87d 1215{
aff37fc1
DM
1216 int off;
1217
f5a9b87d
DM
1218 switch (regnum)
1219 {
1220 case SPARC_G0_REGNUM:
1221 /* Since %g0 is always zero, there is no point in saving it, and
1222 people will be inclined omit it from the CFI. Make sure we
1223 don't warn about that. */
1224 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1225 break;
1226 case SPARC_SP_REGNUM:
1227 reg->how = DWARF2_FRAME_REG_CFA;
1228 break;
1229 case SPARC32_PC_REGNUM:
f5a9b87d
DM
1230 case SPARC32_NPC_REGNUM:
1231 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
aff37fc1 1232 off = 8;
4a4e5149 1233 if (sparc32_dwarf2_struct_return_p (this_frame))
aff37fc1
DM
1234 off += 4;
1235 if (regnum == SPARC32_NPC_REGNUM)
1236 off += 4;
1237 reg->loc.offset = off;
f5a9b87d
DM
1238 break;
1239 }
1240}
1241
386c036b
MK
1242\f
1243/* The SPARC Architecture doesn't have hardware single-step support,
1244 and most operating systems don't implement it either, so we provide
1245 software single-step mechanism. */
c906108c 1246
386c036b 1247static CORE_ADDR
0b1b3e42 1248sparc_analyze_control_transfer (struct frame_info *frame,
c893be75 1249 CORE_ADDR pc, CORE_ADDR *npc)
386c036b
MK
1250{
1251 unsigned long insn = sparc_fetch_instruction (pc);
1252 int conditional_p = X_COND (insn) & 0x7;
1253 int branch_p = 0;
1254 long offset = 0; /* Must be signed for sign-extend. */
c906108c 1255
386c036b 1256 if (X_OP (insn) == 0 && X_OP2 (insn) == 3 && (insn & 0x1000000) == 0)
c906108c 1257 {
386c036b
MK
1258 /* Branch on Integer Register with Prediction (BPr). */
1259 branch_p = 1;
1260 conditional_p = 1;
c906108c 1261 }
386c036b 1262 else if (X_OP (insn) == 0 && X_OP2 (insn) == 6)
c906108c 1263 {
386c036b
MK
1264 /* Branch on Floating-Point Condition Codes (FBfcc). */
1265 branch_p = 1;
1266 offset = 4 * X_DISP22 (insn);
c906108c 1267 }
386c036b
MK
1268 else if (X_OP (insn) == 0 && X_OP2 (insn) == 5)
1269 {
1270 /* Branch on Floating-Point Condition Codes with Prediction
1271 (FBPfcc). */
1272 branch_p = 1;
1273 offset = 4 * X_DISP19 (insn);
1274 }
1275 else if (X_OP (insn) == 0 && X_OP2 (insn) == 2)
1276 {
1277 /* Branch on Integer Condition Codes (Bicc). */
1278 branch_p = 1;
1279 offset = 4 * X_DISP22 (insn);
1280 }
1281 else if (X_OP (insn) == 0 && X_OP2 (insn) == 1)
c906108c 1282 {
386c036b
MK
1283 /* Branch on Integer Condition Codes with Prediction (BPcc). */
1284 branch_p = 1;
1285 offset = 4 * X_DISP19 (insn);
c906108c 1286 }
c893be75
MK
1287 else if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3a)
1288 {
1289 /* Trap instruction (TRAP). */
0b1b3e42 1290 return gdbarch_tdep (get_frame_arch (frame))->step_trap (frame, insn);
c893be75 1291 }
386c036b
MK
1292
1293 /* FIXME: Handle DONE and RETRY instructions. */
1294
386c036b 1295 if (branch_p)
c906108c 1296 {
386c036b 1297 if (conditional_p)
c906108c 1298 {
386c036b
MK
1299 /* For conditional branches, return nPC + 4 iff the annul
1300 bit is 1. */
1301 return (X_A (insn) ? *npc + 4 : 0);
c906108c
SS
1302 }
1303 else
1304 {
386c036b
MK
1305 /* For unconditional branches, return the target if its
1306 specified condition is "always" and return nPC + 4 if the
1307 condition is "never". If the annul bit is 1, set *NPC to
1308 zero. */
1309 if (X_COND (insn) == 0x0)
1310 pc = *npc, offset = 4;
1311 if (X_A (insn))
1312 *npc = 0;
1313
1314 gdb_assert (offset != 0);
1315 return pc + offset;
c906108c
SS
1316 }
1317 }
386c036b
MK
1318
1319 return 0;
c906108c
SS
1320}
1321
c893be75 1322static CORE_ADDR
0b1b3e42 1323sparc_step_trap (struct frame_info *frame, unsigned long insn)
c893be75
MK
1324{
1325 return 0;
1326}
1327
e6590a1b 1328int
0b1b3e42 1329sparc_software_single_step (struct frame_info *frame)
386c036b 1330{
0b1b3e42 1331 struct gdbarch *arch = get_frame_arch (frame);
c893be75 1332 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
6c95b8df 1333 struct address_space *aspace = get_frame_address_space (frame);
8181d85f 1334 CORE_ADDR npc, nnpc;
c906108c 1335
e0cd558a 1336 CORE_ADDR pc, orig_npc;
c906108c 1337
0b1b3e42
UW
1338 pc = get_frame_register_unsigned (frame, tdep->pc_regnum);
1339 orig_npc = npc = get_frame_register_unsigned (frame, tdep->npc_regnum);
c906108c 1340
e0cd558a 1341 /* Analyze the instruction at PC. */
0b1b3e42 1342 nnpc = sparc_analyze_control_transfer (frame, pc, &npc);
e0cd558a 1343 if (npc != 0)
6c95b8df 1344 insert_single_step_breakpoint (arch, aspace, npc);
8181d85f 1345
e0cd558a 1346 if (nnpc != 0)
6c95b8df 1347 insert_single_step_breakpoint (arch, aspace, nnpc);
c906108c 1348
e0cd558a
UW
1349 /* Assert that we have set at least one breakpoint, and that
1350 they're not set at the same spot - unless we're going
1351 from here straight to NULL, i.e. a call or jump to 0. */
1352 gdb_assert (npc != 0 || nnpc != 0 || orig_npc == 0);
1353 gdb_assert (nnpc != npc || orig_npc == 0);
e6590a1b
UW
1354
1355 return 1;
386c036b
MK
1356}
1357
1358static void
61a1198a 1359sparc_write_pc (struct regcache *regcache, CORE_ADDR pc)
386c036b 1360{
61a1198a 1361 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
386c036b 1362
61a1198a
UW
1363 regcache_cooked_write_unsigned (regcache, tdep->pc_regnum, pc);
1364 regcache_cooked_write_unsigned (regcache, tdep->npc_regnum, pc + 4);
386c036b
MK
1365}
1366\f
5af923b0 1367
a54124c5
MK
1368/* Return the appropriate register set for the core section identified
1369 by SECT_NAME and SECT_SIZE. */
1370
63807e1d 1371static const struct regset *
a54124c5
MK
1372sparc_regset_from_core_section (struct gdbarch *gdbarch,
1373 const char *sect_name, size_t sect_size)
1374{
1375 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1376
c558d81a 1377 if (strcmp (sect_name, ".reg") == 0 && sect_size >= tdep->sizeof_gregset)
a54124c5
MK
1378 return tdep->gregset;
1379
c558d81a 1380 if (strcmp (sect_name, ".reg2") == 0 && sect_size >= tdep->sizeof_fpregset)
a54124c5
MK
1381 return tdep->fpregset;
1382
1383 return NULL;
1384}
1385\f
1386
386c036b
MK
1387static struct gdbarch *
1388sparc32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1389{
1390 struct gdbarch_tdep *tdep;
1391 struct gdbarch *gdbarch;
c906108c 1392
386c036b
MK
1393 /* If there is already a candidate, use it. */
1394 arches = gdbarch_list_lookup_by_info (arches, &info);
1395 if (arches != NULL)
1396 return arches->gdbarch;
c906108c 1397
386c036b 1398 /* Allocate space for the new architecture. */
1390fcc2 1399 tdep = XZALLOC (struct gdbarch_tdep);
386c036b 1400 gdbarch = gdbarch_alloc (&info, tdep);
5af923b0 1401
386c036b
MK
1402 tdep->pc_regnum = SPARC32_PC_REGNUM;
1403 tdep->npc_regnum = SPARC32_NPC_REGNUM;
c893be75 1404 tdep->step_trap = sparc_step_trap;
386c036b
MK
1405
1406 set_gdbarch_long_double_bit (gdbarch, 128);
8da61cc4 1407 set_gdbarch_long_double_format (gdbarch, floatformats_sparc_quad);
386c036b
MK
1408
1409 set_gdbarch_num_regs (gdbarch, SPARC32_NUM_REGS);
1410 set_gdbarch_register_name (gdbarch, sparc32_register_name);
1411 set_gdbarch_register_type (gdbarch, sparc32_register_type);
1412 set_gdbarch_num_pseudo_regs (gdbarch, SPARC32_NUM_PSEUDO_REGS);
1413 set_gdbarch_pseudo_register_read (gdbarch, sparc32_pseudo_register_read);
1414 set_gdbarch_pseudo_register_write (gdbarch, sparc32_pseudo_register_write);
1415
1416 /* Register numbers of various important registers. */
1417 set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); /* %sp */
1418 set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); /* %pc */
1419 set_gdbarch_fp0_regnum (gdbarch, SPARC_F0_REGNUM); /* %f0 */
1420
1421 /* Call dummy code. */
49a45ecf 1422 set_gdbarch_frame_align (gdbarch, sparc32_frame_align);
386c036b
MK
1423 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1424 set_gdbarch_push_dummy_code (gdbarch, sparc32_push_dummy_code);
1425 set_gdbarch_push_dummy_call (gdbarch, sparc32_push_dummy_call);
1426
b9d4c5ed 1427 set_gdbarch_return_value (gdbarch, sparc32_return_value);
386c036b
MK
1428 set_gdbarch_stabs_argument_has_addr
1429 (gdbarch, sparc32_stabs_argument_has_addr);
1430
1431 set_gdbarch_skip_prologue (gdbarch, sparc32_skip_prologue);
1432
1433 /* Stack grows downward. */
1434 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
c906108c 1435
386c036b 1436 set_gdbarch_breakpoint_from_pc (gdbarch, sparc_breakpoint_from_pc);
c906108c 1437
386c036b 1438 set_gdbarch_frame_args_skip (gdbarch, 8);
5af923b0 1439
386c036b 1440 set_gdbarch_print_insn (gdbarch, print_insn_sparc);
c906108c 1441
386c036b
MK
1442 set_gdbarch_software_single_step (gdbarch, sparc_software_single_step);
1443 set_gdbarch_write_pc (gdbarch, sparc_write_pc);
c906108c 1444
236369e7 1445 set_gdbarch_dummy_id (gdbarch, sparc_dummy_id);
c906108c 1446
386c036b 1447 set_gdbarch_unwind_pc (gdbarch, sparc_unwind_pc);
c906108c 1448
386c036b
MK
1449 frame_base_set_default (gdbarch, &sparc32_frame_base);
1450
f5a9b87d
DM
1451 /* Hook in the DWARF CFI frame unwinder. */
1452 dwarf2_frame_set_init_reg (gdbarch, sparc32_dwarf2_frame_init_reg);
1453 /* FIXME: kettenis/20050423: Don't enable the unwinder until the
1454 StackGhost issues have been resolved. */
1455
b2a0b9b2
DM
1456 /* Hook in ABI-specific overrides, if they have been registered. */
1457 gdbarch_init_osabi (info, gdbarch);
1458
236369e7 1459 frame_unwind_append_unwinder (gdbarch, &sparc32_frame_unwind);
c906108c 1460
a54124c5 1461 /* If we have register sets, enable the generic core file support. */
4c72d57a 1462 if (tdep->gregset)
a54124c5
MK
1463 set_gdbarch_regset_from_core_section (gdbarch,
1464 sparc_regset_from_core_section);
1465
386c036b
MK
1466 return gdbarch;
1467}
1468\f
1469/* Helper functions for dealing with register windows. */
1470
1471void
1472sparc_supply_rwindow (struct regcache *regcache, CORE_ADDR sp, int regnum)
c906108c 1473{
e17a4113
UW
1474 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1475 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
386c036b 1476 int offset = 0;
e1613aba 1477 gdb_byte buf[8];
386c036b
MK
1478 int i;
1479
1480 if (sp & 1)
1481 {
1482 /* Registers are 64-bit. */
1483 sp += BIAS;
c906108c 1484
386c036b
MK
1485 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1486 {
1487 if (regnum == i || regnum == -1)
1488 {
1489 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
f700a364
MK
1490
1491 /* Handle StackGhost. */
1492 if (i == SPARC_I7_REGNUM)
1493 {
e17a4113
UW
1494 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1495 ULONGEST i7;
f700a364 1496
e17a4113
UW
1497 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1498 store_unsigned_integer (buf + offset, 8, byte_order,
1499 i7 ^ wcookie);
f700a364
MK
1500 }
1501
386c036b
MK
1502 regcache_raw_supply (regcache, i, buf);
1503 }
1504 }
1505 }
1506 else
c906108c 1507 {
386c036b
MK
1508 /* Registers are 32-bit. Toss any sign-extension of the stack
1509 pointer. */
1510 sp &= 0xffffffffUL;
c906108c 1511
386c036b
MK
1512 /* Clear out the top half of the temporary buffer, and put the
1513 register value in the bottom half if we're in 64-bit mode. */
e6d4f032 1514 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
c906108c 1515 {
386c036b
MK
1516 memset (buf, 0, 4);
1517 offset = 4;
1518 }
c906108c 1519
386c036b
MK
1520 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1521 {
1522 if (regnum == i || regnum == -1)
1523 {
1524 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1525 buf + offset, 4);
42cdca6c
MK
1526
1527 /* Handle StackGhost. */
1528 if (i == SPARC_I7_REGNUM)
1529 {
e17a4113
UW
1530 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1531 ULONGEST i7;
42cdca6c 1532
e17a4113
UW
1533 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
1534 store_unsigned_integer (buf + offset, 4, byte_order,
1535 i7 ^ wcookie);
42cdca6c
MK
1536 }
1537
386c036b
MK
1538 regcache_raw_supply (regcache, i, buf);
1539 }
c906108c
SS
1540 }
1541 }
c906108c 1542}
c906108c
SS
1543
1544void
386c036b
MK
1545sparc_collect_rwindow (const struct regcache *regcache,
1546 CORE_ADDR sp, int regnum)
c906108c 1547{
e17a4113
UW
1548 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1549 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
386c036b 1550 int offset = 0;
e1613aba 1551 gdb_byte buf[8];
386c036b 1552 int i;
5af923b0 1553
386c036b 1554 if (sp & 1)
5af923b0 1555 {
386c036b
MK
1556 /* Registers are 64-bit. */
1557 sp += BIAS;
c906108c 1558
386c036b
MK
1559 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1560 {
1561 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1562 {
1563 regcache_raw_collect (regcache, i, buf);
f700a364
MK
1564
1565 /* Handle StackGhost. */
1566 if (i == SPARC_I7_REGNUM)
1567 {
e17a4113
UW
1568 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1569 ULONGEST i7;
f700a364 1570
e17a4113
UW
1571 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1572 store_unsigned_integer (buf, 8, byte_order, i7 ^ wcookie);
f700a364
MK
1573 }
1574
386c036b
MK
1575 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1576 }
1577 }
5af923b0
MS
1578 }
1579 else
1580 {
386c036b
MK
1581 /* Registers are 32-bit. Toss any sign-extension of the stack
1582 pointer. */
1583 sp &= 0xffffffffUL;
1584
1585 /* Only use the bottom half if we're in 64-bit mode. */
e6d4f032 1586 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
386c036b
MK
1587 offset = 4;
1588
1589 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1590 {
1591 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1592 {
1593 regcache_raw_collect (regcache, i, buf);
42cdca6c
MK
1594
1595 /* Handle StackGhost. */
1596 if (i == SPARC_I7_REGNUM)
1597 {
e17a4113
UW
1598 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1599 ULONGEST i7;
42cdca6c 1600
e17a4113
UW
1601 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
1602 store_unsigned_integer (buf + offset, 4, byte_order,
1603 i7 ^ wcookie);
42cdca6c
MK
1604 }
1605
386c036b
MK
1606 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1607 buf + offset, 4);
1608 }
1609 }
5af923b0 1610 }
c906108c
SS
1611}
1612
386c036b
MK
1613/* Helper functions for dealing with register sets. */
1614
c906108c 1615void
386c036b
MK
1616sparc32_supply_gregset (const struct sparc_gregset *gregset,
1617 struct regcache *regcache,
1618 int regnum, const void *gregs)
c906108c 1619{
e1613aba 1620 const gdb_byte *regs = gregs;
22e74ef9 1621 gdb_byte zero[4] = { 0 };
386c036b 1622 int i;
5af923b0 1623
386c036b
MK
1624 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1625 regcache_raw_supply (regcache, SPARC32_PSR_REGNUM,
1626 regs + gregset->r_psr_offset);
c906108c 1627
386c036b
MK
1628 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1629 regcache_raw_supply (regcache, SPARC32_PC_REGNUM,
1630 regs + gregset->r_pc_offset);
5af923b0 1631
386c036b
MK
1632 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1633 regcache_raw_supply (regcache, SPARC32_NPC_REGNUM,
1634 regs + gregset->r_npc_offset);
5af923b0 1635
386c036b
MK
1636 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1637 regcache_raw_supply (regcache, SPARC32_Y_REGNUM,
1638 regs + gregset->r_y_offset);
5af923b0 1639
386c036b 1640 if (regnum == SPARC_G0_REGNUM || regnum == -1)
22e74ef9 1641 regcache_raw_supply (regcache, SPARC_G0_REGNUM, &zero);
5af923b0 1642
386c036b 1643 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
c906108c 1644 {
386c036b
MK
1645 int offset = gregset->r_g1_offset;
1646
1647 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1648 {
1649 if (regnum == i || regnum == -1)
1650 regcache_raw_supply (regcache, i, regs + offset);
1651 offset += 4;
1652 }
c906108c 1653 }
386c036b
MK
1654
1655 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
c906108c 1656 {
386c036b
MK
1657 /* Not all of the register set variants include Locals and
1658 Inputs. For those that don't, we read them off the stack. */
1659 if (gregset->r_l0_offset == -1)
1660 {
1661 ULONGEST sp;
1662
1663 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1664 sparc_supply_rwindow (regcache, sp, regnum);
1665 }
1666 else
1667 {
1668 int offset = gregset->r_l0_offset;
1669
1670 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1671 {
1672 if (regnum == i || regnum == -1)
1673 regcache_raw_supply (regcache, i, regs + offset);
1674 offset += 4;
1675 }
1676 }
c906108c
SS
1677 }
1678}
1679
c5aa993b 1680void
386c036b
MK
1681sparc32_collect_gregset (const struct sparc_gregset *gregset,
1682 const struct regcache *regcache,
1683 int regnum, void *gregs)
c906108c 1684{
e1613aba 1685 gdb_byte *regs = gregs;
386c036b 1686 int i;
c5aa993b 1687
386c036b
MK
1688 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1689 regcache_raw_collect (regcache, SPARC32_PSR_REGNUM,
1690 regs + gregset->r_psr_offset);
60054393 1691
386c036b
MK
1692 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1693 regcache_raw_collect (regcache, SPARC32_PC_REGNUM,
1694 regs + gregset->r_pc_offset);
1695
1696 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1697 regcache_raw_collect (regcache, SPARC32_NPC_REGNUM,
1698 regs + gregset->r_npc_offset);
5af923b0 1699
386c036b
MK
1700 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1701 regcache_raw_collect (regcache, SPARC32_Y_REGNUM,
1702 regs + gregset->r_y_offset);
1703
1704 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
5af923b0 1705 {
386c036b
MK
1706 int offset = gregset->r_g1_offset;
1707
1708 /* %g0 is always zero. */
1709 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1710 {
1711 if (regnum == i || regnum == -1)
1712 regcache_raw_collect (regcache, i, regs + offset);
1713 offset += 4;
1714 }
5af923b0 1715 }
386c036b
MK
1716
1717 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
5af923b0 1718 {
386c036b
MK
1719 /* Not all of the register set variants include Locals and
1720 Inputs. For those that don't, we read them off the stack. */
1721 if (gregset->r_l0_offset != -1)
1722 {
1723 int offset = gregset->r_l0_offset;
1724
1725 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1726 {
1727 if (regnum == i || regnum == -1)
1728 regcache_raw_collect (regcache, i, regs + offset);
1729 offset += 4;
1730 }
1731 }
5af923b0 1732 }
c906108c
SS
1733}
1734
c906108c 1735void
386c036b
MK
1736sparc32_supply_fpregset (struct regcache *regcache,
1737 int regnum, const void *fpregs)
c906108c 1738{
e1613aba 1739 const gdb_byte *regs = fpregs;
386c036b 1740 int i;
60054393 1741
386c036b 1742 for (i = 0; i < 32; i++)
c906108c 1743 {
386c036b
MK
1744 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1745 regcache_raw_supply (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
c906108c 1746 }
5af923b0 1747
386c036b
MK
1748 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1749 regcache_raw_supply (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
c906108c
SS
1750}
1751
386c036b
MK
1752void
1753sparc32_collect_fpregset (const struct regcache *regcache,
1754 int regnum, void *fpregs)
c906108c 1755{
e1613aba 1756 gdb_byte *regs = fpregs;
386c036b 1757 int i;
c906108c 1758
386c036b
MK
1759 for (i = 0; i < 32; i++)
1760 {
1761 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1762 regcache_raw_collect (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
1763 }
c906108c 1764
386c036b
MK
1765 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1766 regcache_raw_collect (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
c906108c 1767}
c906108c 1768\f
c906108c 1769
386c036b 1770/* SunOS 4. */
c906108c 1771
386c036b
MK
1772/* From <machine/reg.h>. */
1773const struct sparc_gregset sparc32_sunos4_gregset =
c906108c 1774{
386c036b
MK
1775 0 * 4, /* %psr */
1776 1 * 4, /* %pc */
1777 2 * 4, /* %npc */
1778 3 * 4, /* %y */
1779 -1, /* %wim */
1780 -1, /* %tbr */
1781 4 * 4, /* %g1 */
1782 -1 /* %l0 */
1783};
1784\f
c906108c 1785
386c036b
MK
1786/* Provide a prototype to silence -Wmissing-prototypes. */
1787void _initialize_sparc_tdep (void);
c906108c
SS
1788
1789void
386c036b 1790_initialize_sparc_tdep (void)
c906108c 1791{
386c036b 1792 register_gdbarch_init (bfd_arch_sparc, sparc32_gdbarch_init);
ef3cf062 1793}
This page took 1.243118 seconds and 4 git commands to generate.