windows-nat: Don't change current_event.dwThreadId in handle_output_debug_string()
[deliverable/binutils-gdb.git] / gdb / spu-tdep.c
CommitLineData
771b4502 1/* SPU target-dependent code for GDB, the GNU debugger.
32d0add0 2 Copyright (C) 2006-2015 Free Software Foundation, Inc.
771b4502
UW
3
4 Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
5 Based on a port by Sid Manning <sid@us.ibm.com>.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
771b4502
UW
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
771b4502
UW
21
22#include "defs.h"
23#include "arch-utils.h"
24#include "gdbtypes.h"
25#include "gdbcmd.h"
26#include "gdbcore.h"
771b4502
UW
27#include "frame.h"
28#include "frame-unwind.h"
29#include "frame-base.h"
30#include "trad-frame.h"
31#include "symtab.h"
32#include "symfile.h"
33#include "value.h"
34#include "inferior.h"
35#include "dis-asm.h"
36#include "objfiles.h"
37#include "language.h"
38#include "regcache.h"
39#include "reggroups.h"
40#include "floatformat.h"
3285f3fe 41#include "block.h"
dcf52cd8 42#include "observer.h"
ff1a52c6 43#include "infcall.h"
54fcddd0 44#include "dwarf2.h"
7ce16bd4
UW
45#include "dwarf2-frame.h"
46#include "ax.h"
771b4502
UW
47#include "spu-tdep.h"
48
794ac428 49
3285f3fe
UW
50/* The list of available "set spu " and "show spu " commands. */
51static struct cmd_list_element *setspucmdlist = NULL;
52static struct cmd_list_element *showspucmdlist = NULL;
53
54/* Whether to stop for new SPE contexts. */
55static int spu_stop_on_load_p = 0;
ff1a52c6
UW
56/* Whether to automatically flush the SW-managed cache. */
57static int spu_auto_flush_cache_p = 1;
3285f3fe
UW
58
59
794ac428
UW
60/* The tdep structure. */
61struct gdbarch_tdep
62{
85e747d2
UW
63 /* The spufs ID identifying our address space. */
64 int id;
65
794ac428
UW
66 /* SPU-specific vector type. */
67 struct type *spu_builtin_type_vec128;
68};
69
70
f2d43c2c 71/* SPU-specific vector type. */
794ac428
UW
72static struct type *
73spu_builtin_type_vec128 (struct gdbarch *gdbarch)
74{
75 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
76
77 if (!tdep->spu_builtin_type_vec128)
78 {
df4df182 79 const struct builtin_type *bt = builtin_type (gdbarch);
794ac428
UW
80 struct type *t;
81
e9bb382b
UW
82 t = arch_composite_type (gdbarch,
83 "__spu_builtin_type_vec128", TYPE_CODE_UNION);
df4df182 84 append_composite_type_field (t, "uint128", bt->builtin_int128);
794ac428 85 append_composite_type_field (t, "v2_int64",
df4df182 86 init_vector_type (bt->builtin_int64, 2));
794ac428 87 append_composite_type_field (t, "v4_int32",
df4df182 88 init_vector_type (bt->builtin_int32, 4));
794ac428 89 append_composite_type_field (t, "v8_int16",
df4df182 90 init_vector_type (bt->builtin_int16, 8));
794ac428 91 append_composite_type_field (t, "v16_int8",
df4df182 92 init_vector_type (bt->builtin_int8, 16));
794ac428 93 append_composite_type_field (t, "v2_double",
df4df182 94 init_vector_type (bt->builtin_double, 2));
794ac428 95 append_composite_type_field (t, "v4_float",
df4df182 96 init_vector_type (bt->builtin_float, 4));
794ac428 97
876cecd0 98 TYPE_VECTOR (t) = 1;
794ac428
UW
99 TYPE_NAME (t) = "spu_builtin_type_vec128";
100
101 tdep->spu_builtin_type_vec128 = t;
102 }
103
104 return tdep->spu_builtin_type_vec128;
105}
106
771b4502 107
23d964e7
UW
108/* The list of available "info spu " commands. */
109static struct cmd_list_element *infospucmdlist = NULL;
110
771b4502
UW
111/* Registers. */
112
113static const char *
d93859e2 114spu_register_name (struct gdbarch *gdbarch, int reg_nr)
771b4502
UW
115{
116 static char *register_names[] =
117 {
118 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
119 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
120 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
121 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
122 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
123 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
124 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
125 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
126 "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
127 "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
128 "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
129 "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
130 "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103",
131 "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111",
132 "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119",
133 "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127",
23d964e7 134 "id", "pc", "sp", "fpscr", "srr0", "lslr", "decr", "decr_status"
771b4502
UW
135 };
136
137 if (reg_nr < 0)
138 return NULL;
139 if (reg_nr >= sizeof register_names / sizeof *register_names)
140 return NULL;
141
142 return register_names[reg_nr];
143}
144
145static struct type *
146spu_register_type (struct gdbarch *gdbarch, int reg_nr)
147{
148 if (reg_nr < SPU_NUM_GPRS)
794ac428 149 return spu_builtin_type_vec128 (gdbarch);
771b4502
UW
150
151 switch (reg_nr)
152 {
153 case SPU_ID_REGNUM:
df4df182 154 return builtin_type (gdbarch)->builtin_uint32;
771b4502
UW
155
156 case SPU_PC_REGNUM:
0dfff4cb 157 return builtin_type (gdbarch)->builtin_func_ptr;
771b4502
UW
158
159 case SPU_SP_REGNUM:
0dfff4cb 160 return builtin_type (gdbarch)->builtin_data_ptr;
771b4502 161
23d964e7 162 case SPU_FPSCR_REGNUM:
df4df182 163 return builtin_type (gdbarch)->builtin_uint128;
23d964e7
UW
164
165 case SPU_SRR0_REGNUM:
df4df182 166 return builtin_type (gdbarch)->builtin_uint32;
23d964e7
UW
167
168 case SPU_LSLR_REGNUM:
df4df182 169 return builtin_type (gdbarch)->builtin_uint32;
23d964e7
UW
170
171 case SPU_DECR_REGNUM:
df4df182 172 return builtin_type (gdbarch)->builtin_uint32;
23d964e7
UW
173
174 case SPU_DECR_STATUS_REGNUM:
df4df182 175 return builtin_type (gdbarch)->builtin_uint32;
23d964e7 176
771b4502 177 default:
a73c6dcd 178 internal_error (__FILE__, __LINE__, _("invalid regnum"));
771b4502
UW
179 }
180}
181
182/* Pseudo registers for preferred slots - stack pointer. */
183
05d1431c 184static enum register_status
23d964e7
UW
185spu_pseudo_register_read_spu (struct regcache *regcache, const char *regname,
186 gdb_byte *buf)
187{
e17a4113
UW
188 struct gdbarch *gdbarch = get_regcache_arch (regcache);
189 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
05d1431c 190 enum register_status status;
23d964e7
UW
191 gdb_byte reg[32];
192 char annex[32];
193 ULONGEST id;
001f13d8 194 ULONGEST ul;
23d964e7 195
05d1431c
PA
196 status = regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
197 if (status != REG_VALID)
198 return status;
23d964e7
UW
199 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
200 memset (reg, 0, sizeof reg);
201 target_read (&current_target, TARGET_OBJECT_SPU, annex,
202 reg, 0, sizeof reg);
203
001f13d8
PA
204 ul = strtoulst ((char *) reg, NULL, 16);
205 store_unsigned_integer (buf, 4, byte_order, ul);
05d1431c 206 return REG_VALID;
23d964e7
UW
207}
208
05d1431c 209static enum register_status
771b4502
UW
210spu_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
211 int regnum, gdb_byte *buf)
212{
213 gdb_byte reg[16];
23d964e7
UW
214 char annex[32];
215 ULONGEST id;
05d1431c 216 enum register_status status;
771b4502
UW
217
218 switch (regnum)
219 {
220 case SPU_SP_REGNUM:
05d1431c
PA
221 status = regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
222 if (status != REG_VALID)
223 return status;
771b4502 224 memcpy (buf, reg, 4);
05d1431c 225 return status;
771b4502 226
23d964e7 227 case SPU_FPSCR_REGNUM:
05d1431c
PA
228 status = regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
229 if (status != REG_VALID)
230 return status;
23d964e7
UW
231 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
232 target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
05d1431c 233 return status;
23d964e7
UW
234
235 case SPU_SRR0_REGNUM:
05d1431c 236 return spu_pseudo_register_read_spu (regcache, "srr0", buf);
23d964e7
UW
237
238 case SPU_LSLR_REGNUM:
05d1431c 239 return spu_pseudo_register_read_spu (regcache, "lslr", buf);
23d964e7
UW
240
241 case SPU_DECR_REGNUM:
05d1431c 242 return spu_pseudo_register_read_spu (regcache, "decr", buf);
23d964e7
UW
243
244 case SPU_DECR_STATUS_REGNUM:
05d1431c 245 return spu_pseudo_register_read_spu (regcache, "decr_status", buf);
23d964e7 246
771b4502
UW
247 default:
248 internal_error (__FILE__, __LINE__, _("invalid regnum"));
249 }
250}
251
23d964e7
UW
252static void
253spu_pseudo_register_write_spu (struct regcache *regcache, const char *regname,
254 const gdb_byte *buf)
255{
e17a4113
UW
256 struct gdbarch *gdbarch = get_regcache_arch (regcache);
257 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
001f13d8 258 char reg[32];
23d964e7
UW
259 char annex[32];
260 ULONGEST id;
261
262 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
263 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
264 xsnprintf (reg, sizeof reg, "0x%s",
e17a4113 265 phex_nz (extract_unsigned_integer (buf, 4, byte_order), 4));
23d964e7 266 target_write (&current_target, TARGET_OBJECT_SPU, annex,
001f13d8 267 (gdb_byte *) reg, 0, strlen (reg));
23d964e7
UW
268}
269
771b4502
UW
270static void
271spu_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
272 int regnum, const gdb_byte *buf)
273{
274 gdb_byte reg[16];
23d964e7
UW
275 char annex[32];
276 ULONGEST id;
771b4502
UW
277
278 switch (regnum)
279 {
280 case SPU_SP_REGNUM:
281 regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
282 memcpy (reg, buf, 4);
283 regcache_raw_write (regcache, SPU_RAW_SP_REGNUM, reg);
284 break;
285
23d964e7
UW
286 case SPU_FPSCR_REGNUM:
287 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
288 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
289 target_write (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
290 break;
291
292 case SPU_SRR0_REGNUM:
293 spu_pseudo_register_write_spu (regcache, "srr0", buf);
294 break;
295
296 case SPU_LSLR_REGNUM:
297 spu_pseudo_register_write_spu (regcache, "lslr", buf);
298 break;
299
300 case SPU_DECR_REGNUM:
301 spu_pseudo_register_write_spu (regcache, "decr", buf);
302 break;
303
304 case SPU_DECR_STATUS_REGNUM:
305 spu_pseudo_register_write_spu (regcache, "decr_status", buf);
306 break;
307
771b4502
UW
308 default:
309 internal_error (__FILE__, __LINE__, _("invalid regnum"));
310 }
311}
312
7ce16bd4
UW
313static int
314spu_ax_pseudo_register_collect (struct gdbarch *gdbarch,
315 struct agent_expr *ax, int regnum)
316{
317 switch (regnum)
318 {
319 case SPU_SP_REGNUM:
320 ax_reg_mask (ax, SPU_RAW_SP_REGNUM);
321 return 0;
322
323 case SPU_FPSCR_REGNUM:
324 case SPU_SRR0_REGNUM:
325 case SPU_LSLR_REGNUM:
326 case SPU_DECR_REGNUM:
327 case SPU_DECR_STATUS_REGNUM:
328 return -1;
329
330 default:
331 internal_error (__FILE__, __LINE__, _("invalid regnum"));
332 }
333}
334
335static int
336spu_ax_pseudo_register_push_stack (struct gdbarch *gdbarch,
337 struct agent_expr *ax, int regnum)
338{
339 switch (regnum)
340 {
341 case SPU_SP_REGNUM:
342 ax_reg (ax, SPU_RAW_SP_REGNUM);
343 return 0;
344
345 case SPU_FPSCR_REGNUM:
346 case SPU_SRR0_REGNUM:
347 case SPU_LSLR_REGNUM:
348 case SPU_DECR_REGNUM:
349 case SPU_DECR_STATUS_REGNUM:
350 return -1;
351
352 default:
353 internal_error (__FILE__, __LINE__, _("invalid regnum"));
354 }
355}
356
357
771b4502
UW
358/* Value conversion -- access scalar values at the preferred slot. */
359
9acbedc0 360static struct value *
2ed3c037
UW
361spu_value_from_register (struct gdbarch *gdbarch, struct type *type,
362 int regnum, struct frame_id frame_id)
771b4502 363{
2ed3c037
UW
364 struct value *value = default_value_from_register (gdbarch, type,
365 regnum, frame_id);
bad43aa5 366 int len = TYPE_LENGTH (type);
771b4502 367
bad43aa5 368 if (regnum < SPU_NUM_GPRS && len < 16)
9acbedc0 369 {
bad43aa5 370 int preferred_slot = len < 4 ? 4 - len : 0;
9acbedc0
UW
371 set_value_offset (value, preferred_slot);
372 }
771b4502 373
9acbedc0 374 return value;
771b4502
UW
375}
376
377/* Register groups. */
378
379static int
380spu_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
381 struct reggroup *group)
382{
383 /* Registers displayed via 'info regs'. */
384 if (group == general_reggroup)
385 return 1;
386
387 /* Registers displayed via 'info float'. */
388 if (group == float_reggroup)
389 return 0;
390
391 /* Registers that need to be saved/restored in order to
392 push or pop frames. */
393 if (group == save_reggroup || group == restore_reggroup)
394 return 1;
395
396 return default_register_reggroup_p (gdbarch, regnum, group);
397}
398
7ce16bd4
UW
399/* DWARF-2 register numbers. */
400
401static int
402spu_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
403{
404 /* Use cooked instead of raw SP. */
405 return (reg == SPU_RAW_SP_REGNUM)? SPU_SP_REGNUM : reg;
406}
407
ff1a52c6
UW
408
409/* Address handling. */
36acd84e 410
85e747d2
UW
411static int
412spu_gdbarch_id (struct gdbarch *gdbarch)
413{
414 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
415 int id = tdep->id;
416
417 /* The objfile architecture of a standalone SPU executable does not
b021a221 418 provide an SPU ID. Retrieve it from the objfile's relocated
85e747d2
UW
419 address range in this special case. */
420 if (id == -1
421 && symfile_objfile && symfile_objfile->obfd
422 && bfd_get_arch (symfile_objfile->obfd) == bfd_arch_spu
423 && symfile_objfile->sections != symfile_objfile->sections_end)
424 id = SPUADDR_SPU (obj_section_addr (symfile_objfile->sections));
425
426 return id;
427}
428
ff1a52c6
UW
429static int
430spu_address_class_type_flags (int byte_size, int dwarf2_addr_class)
431{
432 if (dwarf2_addr_class == 1)
433 return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
434 else
435 return 0;
436}
437
438static const char *
439spu_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
440{
441 if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
442 return "__ea";
443 else
444 return NULL;
445}
446
447static int
448spu_address_class_name_to_type_flags (struct gdbarch *gdbarch,
449 const char *name, int *type_flags_ptr)
450{
451 if (strcmp (name, "__ea") == 0)
452 {
453 *type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
454 return 1;
455 }
456 else
457 return 0;
458}
459
85e747d2
UW
460static void
461spu_address_to_pointer (struct gdbarch *gdbarch,
462 struct type *type, gdb_byte *buf, CORE_ADDR addr)
463{
464 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
465 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
466 SPUADDR_ADDR (addr));
467}
468
36acd84e 469static CORE_ADDR
9898f801
UW
470spu_pointer_to_address (struct gdbarch *gdbarch,
471 struct type *type, const gdb_byte *buf)
36acd84e 472{
85e747d2 473 int id = spu_gdbarch_id (gdbarch);
e17a4113
UW
474 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
475 ULONGEST addr
476 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
36acd84e 477
ff1a52c6
UW
478 /* Do not convert __ea pointers. */
479 if (TYPE_ADDRESS_CLASS_1 (type))
480 return addr;
481
d2ed6730 482 return addr? SPUADDR (id, addr) : 0;
36acd84e
UW
483}
484
485static CORE_ADDR
486spu_integer_to_address (struct gdbarch *gdbarch,
487 struct type *type, const gdb_byte *buf)
488{
85e747d2 489 int id = spu_gdbarch_id (gdbarch);
36acd84e 490 ULONGEST addr = unpack_long (type, buf);
36acd84e 491
d2ed6730 492 return SPUADDR (id, addr);
36acd84e
UW
493}
494
771b4502
UW
495
496/* Decoding SPU instructions. */
497
498enum
499 {
500 op_lqd = 0x34,
501 op_lqx = 0x3c4,
502 op_lqa = 0x61,
503 op_lqr = 0x67,
504 op_stqd = 0x24,
505 op_stqx = 0x144,
506 op_stqa = 0x41,
507 op_stqr = 0x47,
508
509 op_il = 0x081,
510 op_ila = 0x21,
511 op_a = 0x0c0,
512 op_ai = 0x1c,
513
a536c6d7 514 op_selb = 0x8,
771b4502
UW
515
516 op_br = 0x64,
517 op_bra = 0x60,
518 op_brsl = 0x66,
519 op_brasl = 0x62,
520 op_brnz = 0x42,
521 op_brz = 0x40,
522 op_brhnz = 0x46,
523 op_brhz = 0x44,
524 op_bi = 0x1a8,
525 op_bisl = 0x1a9,
526 op_biz = 0x128,
527 op_binz = 0x129,
528 op_bihz = 0x12a,
529 op_bihnz = 0x12b,
530 };
531
532static int
533is_rr (unsigned int insn, int op, int *rt, int *ra, int *rb)
534{
535 if ((insn >> 21) == op)
536 {
537 *rt = insn & 127;
538 *ra = (insn >> 7) & 127;
539 *rb = (insn >> 14) & 127;
540 return 1;
541 }
542
543 return 0;
544}
545
546static int
547is_rrr (unsigned int insn, int op, int *rt, int *ra, int *rb, int *rc)
548{
549 if ((insn >> 28) == op)
550 {
551 *rt = (insn >> 21) & 127;
552 *ra = (insn >> 7) & 127;
553 *rb = (insn >> 14) & 127;
554 *rc = insn & 127;
555 return 1;
556 }
557
558 return 0;
559}
560
561static int
562is_ri7 (unsigned int insn, int op, int *rt, int *ra, int *i7)
563{
564 if ((insn >> 21) == op)
565 {
566 *rt = insn & 127;
567 *ra = (insn >> 7) & 127;
568 *i7 = (((insn >> 14) & 127) ^ 0x40) - 0x40;
569 return 1;
570 }
571
572 return 0;
573}
574
575static int
576is_ri10 (unsigned int insn, int op, int *rt, int *ra, int *i10)
577{
578 if ((insn >> 24) == op)
579 {
580 *rt = insn & 127;
581 *ra = (insn >> 7) & 127;
582 *i10 = (((insn >> 14) & 0x3ff) ^ 0x200) - 0x200;
583 return 1;
584 }
585
586 return 0;
587}
588
589static int
590is_ri16 (unsigned int insn, int op, int *rt, int *i16)
591{
592 if ((insn >> 23) == op)
593 {
594 *rt = insn & 127;
595 *i16 = (((insn >> 7) & 0xffff) ^ 0x8000) - 0x8000;
596 return 1;
597 }
598
599 return 0;
600}
601
602static int
603is_ri18 (unsigned int insn, int op, int *rt, int *i18)
604{
605 if ((insn >> 25) == op)
606 {
607 *rt = insn & 127;
608 *i18 = (((insn >> 7) & 0x3ffff) ^ 0x20000) - 0x20000;
609 return 1;
610 }
611
612 return 0;
613}
614
615static int
616is_branch (unsigned int insn, int *offset, int *reg)
617{
618 int rt, i7, i16;
619
620 if (is_ri16 (insn, op_br, &rt, &i16)
621 || is_ri16 (insn, op_brsl, &rt, &i16)
622 || is_ri16 (insn, op_brnz, &rt, &i16)
623 || is_ri16 (insn, op_brz, &rt, &i16)
624 || is_ri16 (insn, op_brhnz, &rt, &i16)
625 || is_ri16 (insn, op_brhz, &rt, &i16))
626 {
627 *reg = SPU_PC_REGNUM;
628 *offset = i16 << 2;
629 return 1;
630 }
631
632 if (is_ri16 (insn, op_bra, &rt, &i16)
633 || is_ri16 (insn, op_brasl, &rt, &i16))
634 {
635 *reg = -1;
636 *offset = i16 << 2;
637 return 1;
638 }
639
640 if (is_ri7 (insn, op_bi, &rt, reg, &i7)
641 || is_ri7 (insn, op_bisl, &rt, reg, &i7)
642 || is_ri7 (insn, op_biz, &rt, reg, &i7)
643 || is_ri7 (insn, op_binz, &rt, reg, &i7)
644 || is_ri7 (insn, op_bihz, &rt, reg, &i7)
645 || is_ri7 (insn, op_bihnz, &rt, reg, &i7))
646 {
647 *offset = 0;
648 return 1;
649 }
650
651 return 0;
652}
653
654
655/* Prolog parsing. */
656
657struct spu_prologue_data
658 {
659 /* Stack frame size. -1 if analysis was unsuccessful. */
660 int size;
661
662 /* How to find the CFA. The CFA is equal to SP at function entry. */
663 int cfa_reg;
664 int cfa_offset;
665
666 /* Offset relative to CFA where a register is saved. -1 if invalid. */
667 int reg_offset[SPU_NUM_GPRS];
668 };
669
670static CORE_ADDR
e17a4113
UW
671spu_analyze_prologue (struct gdbarch *gdbarch,
672 CORE_ADDR start_pc, CORE_ADDR end_pc,
771b4502
UW
673 struct spu_prologue_data *data)
674{
e17a4113 675 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
771b4502
UW
676 int found_sp = 0;
677 int found_fp = 0;
678 int found_lr = 0;
ce50d78b 679 int found_bc = 0;
771b4502
UW
680 int reg_immed[SPU_NUM_GPRS];
681 gdb_byte buf[16];
682 CORE_ADDR prolog_pc = start_pc;
683 CORE_ADDR pc;
684 int i;
685
686
687 /* Initialize DATA to default values. */
688 data->size = -1;
689
690 data->cfa_reg = SPU_RAW_SP_REGNUM;
691 data->cfa_offset = 0;
692
693 for (i = 0; i < SPU_NUM_GPRS; i++)
694 data->reg_offset[i] = -1;
695
696 /* Set up REG_IMMED array. This is non-zero for a register if we know its
697 preferred slot currently holds this immediate value. */
698 for (i = 0; i < SPU_NUM_GPRS; i++)
699 reg_immed[i] = 0;
700
701 /* Scan instructions until the first branch.
702
703 The following instructions are important prolog components:
704
705 - The first instruction to set up the stack pointer.
706 - The first instruction to set up the frame pointer.
707 - The first instruction to save the link register.
ce50d78b 708 - The first instruction to save the backchain.
771b4502 709
ce50d78b 710 We return the instruction after the latest of these four,
771b4502
UW
711 or the incoming PC if none is found. The first instruction
712 to set up the stack pointer also defines the frame size.
713
714 Note that instructions saving incoming arguments to their stack
715 slots are not counted as important, because they are hard to
716 identify with certainty. This should not matter much, because
717 arguments are relevant only in code compiled with debug data,
718 and in such code the GDB core will advance until the first source
719 line anyway, using SAL data.
720
721 For purposes of stack unwinding, we analyze the following types
722 of instructions in addition:
723
724 - Any instruction adding to the current frame pointer.
725 - Any instruction loading an immediate constant into a register.
726 - Any instruction storing a register onto the stack.
727
728 These are used to compute the CFA and REG_OFFSET output. */
729
730 for (pc = start_pc; pc < end_pc; pc += 4)
731 {
732 unsigned int insn;
733 int rt, ra, rb, rc, immed;
734
735 if (target_read_memory (pc, buf, 4))
736 break;
e17a4113 737 insn = extract_unsigned_integer (buf, 4, byte_order);
771b4502
UW
738
739 /* AI is the typical instruction to set up a stack frame.
740 It is also used to initialize the frame pointer. */
741 if (is_ri10 (insn, op_ai, &rt, &ra, &immed))
742 {
743 if (rt == data->cfa_reg && ra == data->cfa_reg)
744 data->cfa_offset -= immed;
745
746 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
747 && !found_sp)
748 {
749 found_sp = 1;
750 prolog_pc = pc + 4;
751
752 data->size = -immed;
753 }
754 else if (rt == SPU_FP_REGNUM && ra == SPU_RAW_SP_REGNUM
755 && !found_fp)
756 {
757 found_fp = 1;
758 prolog_pc = pc + 4;
759
760 data->cfa_reg = SPU_FP_REGNUM;
761 data->cfa_offset -= immed;
762 }
763 }
764
765 /* A is used to set up stack frames of size >= 512 bytes.
766 If we have tracked the contents of the addend register,
767 we can handle this as well. */
768 else if (is_rr (insn, op_a, &rt, &ra, &rb))
769 {
770 if (rt == data->cfa_reg && ra == data->cfa_reg)
771 {
772 if (reg_immed[rb] != 0)
773 data->cfa_offset -= reg_immed[rb];
774 else
775 data->cfa_reg = -1; /* We don't know the CFA any more. */
776 }
777
778 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
779 && !found_sp)
780 {
781 found_sp = 1;
782 prolog_pc = pc + 4;
783
784 if (reg_immed[rb] != 0)
785 data->size = -reg_immed[rb];
786 }
787 }
788
789 /* We need to track IL and ILA used to load immediate constants
790 in case they are later used as input to an A instruction. */
791 else if (is_ri16 (insn, op_il, &rt, &immed))
792 {
793 reg_immed[rt] = immed;
12102450
UW
794
795 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
796 found_sp = 1;
771b4502
UW
797 }
798
799 else if (is_ri18 (insn, op_ila, &rt, &immed))
800 {
801 reg_immed[rt] = immed & 0x3ffff;
12102450
UW
802
803 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
804 found_sp = 1;
771b4502
UW
805 }
806
807 /* STQD is used to save registers to the stack. */
808 else if (is_ri10 (insn, op_stqd, &rt, &ra, &immed))
809 {
810 if (ra == data->cfa_reg)
811 data->reg_offset[rt] = data->cfa_offset - (immed << 4);
812
813 if (ra == data->cfa_reg && rt == SPU_LR_REGNUM
814 && !found_lr)
815 {
816 found_lr = 1;
817 prolog_pc = pc + 4;
818 }
ce50d78b
UW
819
820 if (ra == SPU_RAW_SP_REGNUM
821 && (found_sp? immed == 0 : rt == SPU_RAW_SP_REGNUM)
822 && !found_bc)
823 {
824 found_bc = 1;
825 prolog_pc = pc + 4;
826 }
771b4502
UW
827 }
828
829 /* _start uses SELB to set up the stack pointer. */
830 else if (is_rrr (insn, op_selb, &rt, &ra, &rb, &rc))
831 {
832 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
833 found_sp = 1;
834 }
835
836 /* We terminate if we find a branch. */
837 else if (is_branch (insn, &immed, &ra))
838 break;
839 }
840
841
842 /* If we successfully parsed until here, and didn't find any instruction
843 modifying SP, we assume we have a frameless function. */
844 if (!found_sp)
845 data->size = 0;
846
847 /* Return cooked instead of raw SP. */
848 if (data->cfa_reg == SPU_RAW_SP_REGNUM)
849 data->cfa_reg = SPU_SP_REGNUM;
850
851 return prolog_pc;
852}
853
854/* Return the first instruction after the prologue starting at PC. */
855static CORE_ADDR
6093d2eb 856spu_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
771b4502
UW
857{
858 struct spu_prologue_data data;
e17a4113 859 return spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
771b4502
UW
860}
861
862/* Return the frame pointer in use at address PC. */
863static void
a54fba4c
MD
864spu_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
865 int *reg, LONGEST *offset)
771b4502
UW
866{
867 struct spu_prologue_data data;
e17a4113 868 spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
771b4502
UW
869
870 if (data.size != -1 && data.cfa_reg != -1)
871 {
872 /* The 'frame pointer' address is CFA minus frame size. */
873 *reg = data.cfa_reg;
874 *offset = data.cfa_offset - data.size;
875 }
876 else
877 {
c378eb4e 878 /* ??? We don't really know ... */
771b4502
UW
879 *reg = SPU_SP_REGNUM;
880 *offset = 0;
881 }
882}
883
fe5febed
UW
884/* Return true if we are in the function's epilogue, i.e. after the
885 instruction that destroyed the function's stack frame.
886
887 1) scan forward from the point of execution:
888 a) If you find an instruction that modifies the stack pointer
889 or transfers control (except a return), execution is not in
890 an epilogue, return.
891 b) Stop scanning if you find a return instruction or reach the
892 end of the function or reach the hard limit for the size of
893 an epilogue.
894 2) scan backward from the point of execution:
895 a) If you find an instruction that modifies the stack pointer,
896 execution *is* in an epilogue, return.
897 b) Stop scanning if you reach an instruction that transfers
898 control or the beginning of the function or reach the hard
899 limit for the size of an epilogue. */
900
901static int
902spu_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
903{
e17a4113 904 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
fe5febed
UW
905 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
906 bfd_byte buf[4];
907 unsigned int insn;
22e048c9 908 int rt, ra, rb, immed;
fe5febed
UW
909
910 /* Find the search limits based on function boundaries and hard limit.
911 We assume the epilogue can be up to 64 instructions long. */
912
913 const int spu_max_epilogue_size = 64 * 4;
914
915 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
916 return 0;
917
918 if (pc - func_start < spu_max_epilogue_size)
919 epilogue_start = func_start;
920 else
921 epilogue_start = pc - spu_max_epilogue_size;
922
923 if (func_end - pc < spu_max_epilogue_size)
924 epilogue_end = func_end;
925 else
926 epilogue_end = pc + spu_max_epilogue_size;
927
928 /* Scan forward until next 'bi $0'. */
929
930 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += 4)
931 {
932 if (target_read_memory (scan_pc, buf, 4))
933 return 0;
e17a4113 934 insn = extract_unsigned_integer (buf, 4, byte_order);
fe5febed
UW
935
936 if (is_branch (insn, &immed, &ra))
937 {
938 if (immed == 0 && ra == SPU_LR_REGNUM)
939 break;
940
941 return 0;
942 }
943
944 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
945 || is_rr (insn, op_a, &rt, &ra, &rb)
946 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
947 {
948 if (rt == SPU_RAW_SP_REGNUM)
949 return 0;
950 }
951 }
952
953 if (scan_pc >= epilogue_end)
954 return 0;
955
956 /* Scan backward until adjustment to stack pointer (R1). */
957
958 for (scan_pc = pc - 4; scan_pc >= epilogue_start; scan_pc -= 4)
959 {
960 if (target_read_memory (scan_pc, buf, 4))
961 return 0;
e17a4113 962 insn = extract_unsigned_integer (buf, 4, byte_order);
fe5febed
UW
963
964 if (is_branch (insn, &immed, &ra))
965 return 0;
966
967 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
968 || is_rr (insn, op_a, &rt, &ra, &rb)
969 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
970 {
971 if (rt == SPU_RAW_SP_REGNUM)
972 return 1;
973 }
974 }
975
976 return 0;
977}
978
979
771b4502
UW
980/* Normal stack frames. */
981
982struct spu_unwind_cache
983{
984 CORE_ADDR func;
985 CORE_ADDR frame_base;
986 CORE_ADDR local_base;
987
988 struct trad_frame_saved_reg *saved_regs;
989};
990
991static struct spu_unwind_cache *
8d998b8f 992spu_frame_unwind_cache (struct frame_info *this_frame,
771b4502
UW
993 void **this_prologue_cache)
994{
e17a4113 995 struct gdbarch *gdbarch = get_frame_arch (this_frame);
85e747d2 996 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 997 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
771b4502
UW
998 struct spu_unwind_cache *info;
999 struct spu_prologue_data data;
85e747d2 1000 CORE_ADDR id = tdep->id;
dcf52cd8 1001 gdb_byte buf[16];
771b4502
UW
1002
1003 if (*this_prologue_cache)
1004 return *this_prologue_cache;
1005
1006 info = FRAME_OBSTACK_ZALLOC (struct spu_unwind_cache);
1007 *this_prologue_cache = info;
8d998b8f 1008 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
771b4502
UW
1009 info->frame_base = 0;
1010 info->local_base = 0;
1011
1012 /* Find the start of the current function, and analyze its prologue. */
8d998b8f 1013 info->func = get_frame_func (this_frame);
771b4502
UW
1014 if (info->func == 0)
1015 {
1016 /* Fall back to using the current PC as frame ID. */
8d998b8f 1017 info->func = get_frame_pc (this_frame);
771b4502
UW
1018 data.size = -1;
1019 }
1020 else
e17a4113
UW
1021 spu_analyze_prologue (gdbarch, info->func, get_frame_pc (this_frame),
1022 &data);
771b4502
UW
1023
1024 /* If successful, use prologue analysis data. */
1025 if (data.size != -1 && data.cfa_reg != -1)
1026 {
1027 CORE_ADDR cfa;
1028 int i;
771b4502
UW
1029
1030 /* Determine CFA via unwound CFA_REG plus CFA_OFFSET. */
8d998b8f 1031 get_frame_register (this_frame, data.cfa_reg, buf);
e17a4113 1032 cfa = extract_unsigned_integer (buf, 4, byte_order) + data.cfa_offset;
85e747d2 1033 cfa = SPUADDR (id, cfa);
771b4502
UW
1034
1035 /* Call-saved register slots. */
1036 for (i = 0; i < SPU_NUM_GPRS; i++)
1037 if (i == SPU_LR_REGNUM
1038 || (i >= SPU_SAVED1_REGNUM && i <= SPU_SAVEDN_REGNUM))
1039 if (data.reg_offset[i] != -1)
1040 info->saved_regs[i].addr = cfa - data.reg_offset[i];
1041
771b4502
UW
1042 /* Frame bases. */
1043 info->frame_base = cfa;
1044 info->local_base = cfa - data.size;
1045 }
1046
1047 /* Otherwise, fall back to reading the backchain link. */
1048 else
1049 {
cdc9523a
UW
1050 CORE_ADDR reg;
1051 LONGEST backchain;
13def385 1052 ULONGEST lslr;
cdc9523a 1053 int status;
771b4502 1054
13def385
UW
1055 /* Get local store limit. */
1056 lslr = get_frame_register_unsigned (this_frame, SPU_LSLR_REGNUM);
1057 if (!lslr)
1058 lslr = (ULONGEST) -1;
1059
771b4502 1060 /* Get the backchain. */
8d998b8f 1061 reg = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
85e747d2
UW
1062 status = safe_read_memory_integer (SPUADDR (id, reg), 4, byte_order,
1063 &backchain);
771b4502
UW
1064
1065 /* A zero backchain terminates the frame chain. Also, sanity
1066 check against the local store size limit. */
13def385 1067 if (status && backchain > 0 && backchain <= lslr)
771b4502
UW
1068 {
1069 /* Assume the link register is saved into its slot. */
13def385 1070 if (backchain + 16 <= lslr)
c378eb4e
MS
1071 info->saved_regs[SPU_LR_REGNUM].addr = SPUADDR (id,
1072 backchain + 16);
771b4502 1073
771b4502 1074 /* Frame bases. */
85e747d2
UW
1075 info->frame_base = SPUADDR (id, backchain);
1076 info->local_base = SPUADDR (id, reg);
771b4502
UW
1077 }
1078 }
dcf52cd8 1079
c4891da7
UW
1080 /* If we didn't find a frame, we cannot determine SP / return address. */
1081 if (info->frame_base == 0)
1082 return info;
1083
dcf52cd8 1084 /* The previous SP is equal to the CFA. */
85e747d2
UW
1085 trad_frame_set_value (info->saved_regs, SPU_SP_REGNUM,
1086 SPUADDR_ADDR (info->frame_base));
dcf52cd8 1087
0a44cb36
UW
1088 /* Read full contents of the unwound link register in order to
1089 be able to determine the return address. */
dcf52cd8
UW
1090 if (trad_frame_addr_p (info->saved_regs, SPU_LR_REGNUM))
1091 target_read_memory (info->saved_regs[SPU_LR_REGNUM].addr, buf, 16);
1092 else
8d998b8f 1093 get_frame_register (this_frame, SPU_LR_REGNUM, buf);
dcf52cd8 1094
0a44cb36
UW
1095 /* Normally, the return address is contained in the slot 0 of the
1096 link register, and slots 1-3 are zero. For an overlay return,
1097 slot 0 contains the address of the overlay manager return stub,
1098 slot 1 contains the partition number of the overlay section to
1099 be returned to, and slot 2 contains the return address within
1100 that section. Return the latter address in that case. */
e17a4113 1101 if (extract_unsigned_integer (buf + 8, 4, byte_order) != 0)
dcf52cd8 1102 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
e17a4113 1103 extract_unsigned_integer (buf + 8, 4, byte_order));
dcf52cd8
UW
1104 else
1105 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
e17a4113 1106 extract_unsigned_integer (buf, 4, byte_order));
771b4502
UW
1107
1108 return info;
1109}
1110
1111static void
8d998b8f 1112spu_frame_this_id (struct frame_info *this_frame,
771b4502
UW
1113 void **this_prologue_cache, struct frame_id *this_id)
1114{
1115 struct spu_unwind_cache *info =
8d998b8f 1116 spu_frame_unwind_cache (this_frame, this_prologue_cache);
771b4502
UW
1117
1118 if (info->frame_base == 0)
1119 return;
1120
1121 *this_id = frame_id_build (info->frame_base, info->func);
1122}
1123
8d998b8f
UW
1124static struct value *
1125spu_frame_prev_register (struct frame_info *this_frame,
1126 void **this_prologue_cache, int regnum)
771b4502
UW
1127{
1128 struct spu_unwind_cache *info
8d998b8f 1129 = spu_frame_unwind_cache (this_frame, this_prologue_cache);
771b4502
UW
1130
1131 /* Special-case the stack pointer. */
1132 if (regnum == SPU_RAW_SP_REGNUM)
1133 regnum = SPU_SP_REGNUM;
1134
8d998b8f 1135 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
771b4502
UW
1136}
1137
1138static const struct frame_unwind spu_frame_unwind = {
1139 NORMAL_FRAME,
8fbca658 1140 default_frame_unwind_stop_reason,
771b4502 1141 spu_frame_this_id,
8d998b8f
UW
1142 spu_frame_prev_register,
1143 NULL,
1144 default_frame_sniffer
771b4502
UW
1145};
1146
771b4502 1147static CORE_ADDR
8d998b8f 1148spu_frame_base_address (struct frame_info *this_frame, void **this_cache)
771b4502
UW
1149{
1150 struct spu_unwind_cache *info
8d998b8f 1151 = spu_frame_unwind_cache (this_frame, this_cache);
771b4502
UW
1152 return info->local_base;
1153}
1154
1155static const struct frame_base spu_frame_base = {
1156 &spu_frame_unwind,
1157 spu_frame_base_address,
1158 spu_frame_base_address,
1159 spu_frame_base_address
1160};
1161
1162static CORE_ADDR
1163spu_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1164{
85e747d2 1165 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
118dfbaf
UW
1166 CORE_ADDR pc = frame_unwind_register_unsigned (next_frame, SPU_PC_REGNUM);
1167 /* Mask off interrupt enable bit. */
85e747d2 1168 return SPUADDR (tdep->id, pc & -4);
771b4502
UW
1169}
1170
1171static CORE_ADDR
1172spu_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1173{
85e747d2
UW
1174 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1175 CORE_ADDR sp = frame_unwind_register_unsigned (next_frame, SPU_SP_REGNUM);
1176 return SPUADDR (tdep->id, sp);
771b4502
UW
1177}
1178
118dfbaf 1179static CORE_ADDR
61a1198a 1180spu_read_pc (struct regcache *regcache)
118dfbaf 1181{
85e747d2 1182 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
61a1198a
UW
1183 ULONGEST pc;
1184 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &pc);
118dfbaf 1185 /* Mask off interrupt enable bit. */
85e747d2 1186 return SPUADDR (tdep->id, pc & -4);
118dfbaf
UW
1187}
1188
1189static void
61a1198a 1190spu_write_pc (struct regcache *regcache, CORE_ADDR pc)
118dfbaf
UW
1191{
1192 /* Keep interrupt enabled state unchanged. */
61a1198a 1193 ULONGEST old_pc;
30bcb456 1194
61a1198a
UW
1195 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &old_pc);
1196 regcache_cooked_write_unsigned (regcache, SPU_PC_REGNUM,
85e747d2 1197 (SPUADDR_ADDR (pc) & -4) | (old_pc & 3));
118dfbaf
UW
1198}
1199
771b4502 1200
cc5f0d61
UW
1201/* Cell/B.E. cross-architecture unwinder support. */
1202
1203struct spu2ppu_cache
1204{
1205 struct frame_id frame_id;
1206 struct regcache *regcache;
1207};
1208
1209static struct gdbarch *
1210spu2ppu_prev_arch (struct frame_info *this_frame, void **this_cache)
1211{
1212 struct spu2ppu_cache *cache = *this_cache;
1213 return get_regcache_arch (cache->regcache);
1214}
1215
1216static void
1217spu2ppu_this_id (struct frame_info *this_frame,
1218 void **this_cache, struct frame_id *this_id)
1219{
1220 struct spu2ppu_cache *cache = *this_cache;
1221 *this_id = cache->frame_id;
1222}
1223
1224static struct value *
1225spu2ppu_prev_register (struct frame_info *this_frame,
1226 void **this_cache, int regnum)
1227{
1228 struct spu2ppu_cache *cache = *this_cache;
1229 struct gdbarch *gdbarch = get_regcache_arch (cache->regcache);
1230 gdb_byte *buf;
1231
1232 buf = alloca (register_size (gdbarch, regnum));
1233 regcache_cooked_read (cache->regcache, regnum, buf);
1234 return frame_unwind_got_bytes (this_frame, regnum, buf);
1235}
1236
1237static int
1238spu2ppu_sniffer (const struct frame_unwind *self,
1239 struct frame_info *this_frame, void **this_prologue_cache)
1240{
1241 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1242 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1243 CORE_ADDR base, func, backchain;
1244 gdb_byte buf[4];
1245
f5656ead 1246 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch == bfd_arch_spu)
cc5f0d61
UW
1247 return 0;
1248
1249 base = get_frame_sp (this_frame);
1250 func = get_frame_pc (this_frame);
1251 if (target_read_memory (base, buf, 4))
1252 return 0;
1253 backchain = extract_unsigned_integer (buf, 4, byte_order);
1254
1255 if (!backchain)
1256 {
1257 struct frame_info *fi;
1258
1259 struct spu2ppu_cache *cache
1260 = FRAME_OBSTACK_CALLOC (1, struct spu2ppu_cache);
1261
1262 cache->frame_id = frame_id_build (base + 16, func);
1263
1264 for (fi = get_next_frame (this_frame); fi; fi = get_next_frame (fi))
1265 if (gdbarch_bfd_arch_info (get_frame_arch (fi))->arch != bfd_arch_spu)
1266 break;
1267
1268 if (fi)
1269 {
1270 cache->regcache = frame_save_as_regcache (fi);
1271 *this_prologue_cache = cache;
1272 return 1;
1273 }
1274 else
1275 {
1276 struct regcache *regcache;
f5656ead 1277 regcache = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
cc5f0d61
UW
1278 cache->regcache = regcache_dup (regcache);
1279 *this_prologue_cache = cache;
1280 return 1;
1281 }
1282 }
1283
1284 return 0;
1285}
1286
1287static void
1288spu2ppu_dealloc_cache (struct frame_info *self, void *this_cache)
1289{
1290 struct spu2ppu_cache *cache = this_cache;
1291 regcache_xfree (cache->regcache);
1292}
1293
1294static const struct frame_unwind spu2ppu_unwind = {
1295 ARCH_FRAME,
8fbca658 1296 default_frame_unwind_stop_reason,
cc5f0d61
UW
1297 spu2ppu_this_id,
1298 spu2ppu_prev_register,
1299 NULL,
1300 spu2ppu_sniffer,
1301 spu2ppu_dealloc_cache,
1302 spu2ppu_prev_arch,
1303};
1304
1305
771b4502
UW
1306/* Function calling convention. */
1307
7b3dc0b7
UW
1308static CORE_ADDR
1309spu_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1310{
1311 return sp & ~15;
1312}
1313
87805e63
UW
1314static CORE_ADDR
1315spu_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
1316 struct value **args, int nargs, struct type *value_type,
1317 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
1318 struct regcache *regcache)
1319{
1320 /* Allocate space sufficient for a breakpoint, keeping the stack aligned. */
1321 sp = (sp - 4) & ~15;
1322 /* Store the address of that breakpoint */
1323 *bp_addr = sp;
1324 /* The call starts at the callee's entry point. */
1325 *real_pc = funaddr;
1326
1327 return sp;
1328}
1329
771b4502
UW
1330static int
1331spu_scalar_value_p (struct type *type)
1332{
1333 switch (TYPE_CODE (type))
1334 {
1335 case TYPE_CODE_INT:
1336 case TYPE_CODE_ENUM:
1337 case TYPE_CODE_RANGE:
1338 case TYPE_CODE_CHAR:
1339 case TYPE_CODE_BOOL:
1340 case TYPE_CODE_PTR:
1341 case TYPE_CODE_REF:
1342 return TYPE_LENGTH (type) <= 16;
1343
1344 default:
1345 return 0;
1346 }
1347}
1348
1349static void
1350spu_value_to_regcache (struct regcache *regcache, int regnum,
1351 struct type *type, const gdb_byte *in)
1352{
1353 int len = TYPE_LENGTH (type);
1354
1355 if (spu_scalar_value_p (type))
1356 {
1357 int preferred_slot = len < 4 ? 4 - len : 0;
1358 regcache_cooked_write_part (regcache, regnum, preferred_slot, len, in);
1359 }
1360 else
1361 {
1362 while (len >= 16)
1363 {
1364 regcache_cooked_write (regcache, regnum++, in);
1365 in += 16;
1366 len -= 16;
1367 }
1368
1369 if (len > 0)
1370 regcache_cooked_write_part (regcache, regnum, 0, len, in);
1371 }
1372}
1373
1374static void
1375spu_regcache_to_value (struct regcache *regcache, int regnum,
1376 struct type *type, gdb_byte *out)
1377{
1378 int len = TYPE_LENGTH (type);
1379
1380 if (spu_scalar_value_p (type))
1381 {
1382 int preferred_slot = len < 4 ? 4 - len : 0;
1383 regcache_cooked_read_part (regcache, regnum, preferred_slot, len, out);
1384 }
1385 else
1386 {
1387 while (len >= 16)
1388 {
1389 regcache_cooked_read (regcache, regnum++, out);
1390 out += 16;
1391 len -= 16;
1392 }
1393
1394 if (len > 0)
1395 regcache_cooked_read_part (regcache, regnum, 0, len, out);
1396 }
1397}
1398
1399static CORE_ADDR
1400spu_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1401 struct regcache *regcache, CORE_ADDR bp_addr,
1402 int nargs, struct value **args, CORE_ADDR sp,
1403 int struct_return, CORE_ADDR struct_addr)
1404{
e17a4113 1405 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
9ff3afda 1406 CORE_ADDR sp_delta;
771b4502
UW
1407 int i;
1408 int regnum = SPU_ARG1_REGNUM;
1409 int stack_arg = -1;
1410 gdb_byte buf[16];
1411
1412 /* Set the return address. */
1413 memset (buf, 0, sizeof buf);
85e747d2 1414 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (bp_addr));
771b4502
UW
1415 regcache_cooked_write (regcache, SPU_LR_REGNUM, buf);
1416
1417 /* If STRUCT_RETURN is true, then the struct return address (in
1418 STRUCT_ADDR) will consume the first argument-passing register.
1419 Both adjust the register count and store that value. */
1420 if (struct_return)
1421 {
1422 memset (buf, 0, sizeof buf);
85e747d2 1423 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (struct_addr));
771b4502
UW
1424 regcache_cooked_write (regcache, regnum++, buf);
1425 }
1426
1427 /* Fill in argument registers. */
1428 for (i = 0; i < nargs; i++)
1429 {
1430 struct value *arg = args[i];
1431 struct type *type = check_typedef (value_type (arg));
1432 const gdb_byte *contents = value_contents (arg);
354ecfd5 1433 int n_regs = align_up (TYPE_LENGTH (type), 16) / 16;
771b4502
UW
1434
1435 /* If the argument doesn't wholly fit into registers, it and
1436 all subsequent arguments go to the stack. */
1437 if (regnum + n_regs - 1 > SPU_ARGN_REGNUM)
1438 {
1439 stack_arg = i;
1440 break;
1441 }
1442
1443 spu_value_to_regcache (regcache, regnum, type, contents);
1444 regnum += n_regs;
1445 }
1446
1447 /* Overflow arguments go to the stack. */
1448 if (stack_arg != -1)
1449 {
1450 CORE_ADDR ap;
1451
1452 /* Allocate all required stack size. */
1453 for (i = stack_arg; i < nargs; i++)
1454 {
1455 struct type *type = check_typedef (value_type (args[i]));
1456 sp -= align_up (TYPE_LENGTH (type), 16);
1457 }
1458
1459 /* Fill in stack arguments. */
1460 ap = sp;
1461 for (i = stack_arg; i < nargs; i++)
1462 {
1463 struct value *arg = args[i];
1464 struct type *type = check_typedef (value_type (arg));
1465 int len = TYPE_LENGTH (type);
1466 int preferred_slot;
1467
1468 if (spu_scalar_value_p (type))
1469 preferred_slot = len < 4 ? 4 - len : 0;
1470 else
1471 preferred_slot = 0;
1472
1473 target_write_memory (ap + preferred_slot, value_contents (arg), len);
1474 ap += align_up (TYPE_LENGTH (type), 16);
1475 }
1476 }
1477
1478 /* Allocate stack frame header. */
1479 sp -= 32;
1480
ee82e879
UW
1481 /* Store stack back chain. */
1482 regcache_cooked_read (regcache, SPU_RAW_SP_REGNUM, buf);
1483 target_write_memory (sp, buf, 16);
1484
9ff3afda 1485 /* Finally, update all slots of the SP register. */
e17a4113 1486 sp_delta = sp - extract_unsigned_integer (buf, 4, byte_order);
9ff3afda
UW
1487 for (i = 0; i < 4; i++)
1488 {
e17a4113
UW
1489 CORE_ADDR sp_slot = extract_unsigned_integer (buf + 4*i, 4, byte_order);
1490 store_unsigned_integer (buf + 4*i, 4, byte_order, sp_slot + sp_delta);
9ff3afda
UW
1491 }
1492 regcache_cooked_write (regcache, SPU_RAW_SP_REGNUM, buf);
771b4502
UW
1493
1494 return sp;
1495}
1496
1497static struct frame_id
8d998b8f 1498spu_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
771b4502 1499{
85e747d2 1500 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8d998b8f
UW
1501 CORE_ADDR pc = get_frame_register_unsigned (this_frame, SPU_PC_REGNUM);
1502 CORE_ADDR sp = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
85e747d2 1503 return frame_id_build (SPUADDR (tdep->id, sp), SPUADDR (tdep->id, pc & -4));
771b4502
UW
1504}
1505
1506/* Function return value access. */
1507
1508static enum return_value_convention
6a3a010b 1509spu_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
1510 struct type *type, struct regcache *regcache,
1511 gdb_byte *out, const gdb_byte *in)
771b4502 1512{
6a3a010b 1513 struct type *func_type = function ? value_type (function) : NULL;
771b4502 1514 enum return_value_convention rvc;
54fcddd0
UW
1515 int opencl_vector = 0;
1516
598cfb71
UW
1517 if (func_type)
1518 {
1519 func_type = check_typedef (func_type);
1520
1521 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
1522 func_type = check_typedef (TYPE_TARGET_TYPE (func_type));
1523
1524 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC
1525 && TYPE_CALLING_CONVENTION (func_type) == DW_CC_GDB_IBM_OpenCL
1526 && TYPE_CODE (type) == TYPE_CODE_ARRAY
1527 && TYPE_VECTOR (type))
1528 opencl_vector = 1;
1529 }
771b4502
UW
1530
1531 if (TYPE_LENGTH (type) <= (SPU_ARGN_REGNUM - SPU_ARG1_REGNUM + 1) * 16)
1532 rvc = RETURN_VALUE_REGISTER_CONVENTION;
1533 else
1534 rvc = RETURN_VALUE_STRUCT_CONVENTION;
1535
1536 if (in)
1537 {
1538 switch (rvc)
1539 {
1540 case RETURN_VALUE_REGISTER_CONVENTION:
54fcddd0
UW
1541 if (opencl_vector && TYPE_LENGTH (type) == 2)
1542 regcache_cooked_write_part (regcache, SPU_ARG1_REGNUM, 2, 2, in);
1543 else
1544 spu_value_to_regcache (regcache, SPU_ARG1_REGNUM, type, in);
771b4502
UW
1545 break;
1546
1547 case RETURN_VALUE_STRUCT_CONVENTION:
a73c6dcd 1548 error (_("Cannot set function return value."));
771b4502
UW
1549 break;
1550 }
1551 }
1552 else if (out)
1553 {
1554 switch (rvc)
1555 {
1556 case RETURN_VALUE_REGISTER_CONVENTION:
54fcddd0
UW
1557 if (opencl_vector && TYPE_LENGTH (type) == 2)
1558 regcache_cooked_read_part (regcache, SPU_ARG1_REGNUM, 2, 2, out);
1559 else
1560 spu_regcache_to_value (regcache, SPU_ARG1_REGNUM, type, out);
771b4502
UW
1561 break;
1562
1563 case RETURN_VALUE_STRUCT_CONVENTION:
a73c6dcd 1564 error (_("Function return value unknown."));
771b4502
UW
1565 break;
1566 }
1567 }
1568
1569 return rvc;
1570}
1571
1572
1573/* Breakpoints. */
1574
1575static const gdb_byte *
c378eb4e
MS
1576spu_breakpoint_from_pc (struct gdbarch *gdbarch,
1577 CORE_ADDR * pcptr, int *lenptr)
771b4502
UW
1578{
1579 static const gdb_byte breakpoint[] = { 0x00, 0x00, 0x3f, 0xff };
1580
1581 *lenptr = sizeof breakpoint;
1582 return breakpoint;
1583}
1584
d03285ec
UW
1585static int
1586spu_memory_remove_breakpoint (struct gdbarch *gdbarch,
1587 struct bp_target_info *bp_tgt)
1588{
1589 /* We work around a problem in combined Cell/B.E. debugging here. Consider
1590 that in a combined application, we have some breakpoints inserted in SPU
1591 code, and now the application forks (on the PPU side). GDB common code
1592 will assume that the fork system call copied all breakpoints into the new
1593 process' address space, and that all those copies now need to be removed
1594 (see breakpoint.c:detach_breakpoints).
1595
1596 While this is certainly true for PPU side breakpoints, it is not true
1597 for SPU side breakpoints. fork will clone the SPU context file
1598 descriptors, so that all the existing SPU contexts are in accessible
1599 in the new process. However, the contents of the SPU contexts themselves
1600 are *not* cloned. Therefore the effect of detach_breakpoints is to
1601 remove SPU breakpoints from the *original* SPU context's local store
1602 -- this is not the correct behaviour.
1603
1604 The workaround is to check whether the PID we are asked to remove this
1605 breakpoint from (i.e. ptid_get_pid (inferior_ptid)) is different from the
1606 PID of the current inferior (i.e. current_inferior ()->pid). This is only
1607 true in the context of detach_breakpoints. If so, we simply do nothing.
1608 [ Note that for the fork child process, it does not matter if breakpoints
1609 remain inserted, because those SPU contexts are not runnable anyway --
1610 the Linux kernel allows only the original process to invoke spu_run. */
1611
1612 if (ptid_get_pid (inferior_ptid) != current_inferior ()->pid)
1613 return 0;
1614
1615 return default_memory_remove_breakpoint (gdbarch, bp_tgt);
1616}
1617
771b4502
UW
1618
1619/* Software single-stepping support. */
1620
63807e1d 1621static int
0b1b3e42 1622spu_software_single_step (struct frame_info *frame)
771b4502 1623{
a6d9a66e 1624 struct gdbarch *gdbarch = get_frame_arch (frame);
6c95b8df 1625 struct address_space *aspace = get_frame_address_space (frame);
e17a4113 1626 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
e0cd558a
UW
1627 CORE_ADDR pc, next_pc;
1628 unsigned int insn;
1629 int offset, reg;
1630 gdb_byte buf[4];
13def385 1631 ULONGEST lslr;
771b4502 1632
0b1b3e42 1633 pc = get_frame_pc (frame);
771b4502 1634
e0cd558a
UW
1635 if (target_read_memory (pc, buf, 4))
1636 return 1;
e17a4113 1637 insn = extract_unsigned_integer (buf, 4, byte_order);
771b4502 1638
13def385
UW
1639 /* Get local store limit. */
1640 lslr = get_frame_register_unsigned (frame, SPU_LSLR_REGNUM);
1641 if (!lslr)
1642 lslr = (ULONGEST) -1;
1643
e0cd558a
UW
1644 /* Next sequential instruction is at PC + 4, except if the current
1645 instruction is a PPE-assisted call, in which case it is at PC + 8.
1646 Wrap around LS limit to be on the safe side. */
1647 if ((insn & 0xffffff00) == 0x00002100)
13def385 1648 next_pc = (SPUADDR_ADDR (pc) + 8) & lslr;
e0cd558a 1649 else
13def385 1650 next_pc = (SPUADDR_ADDR (pc) + 4) & lslr;
771b4502 1651
6c95b8df
PA
1652 insert_single_step_breakpoint (gdbarch,
1653 aspace, SPUADDR (SPUADDR_SPU (pc), next_pc));
771b4502 1654
e0cd558a
UW
1655 if (is_branch (insn, &offset, &reg))
1656 {
1657 CORE_ADDR target = offset;
771b4502 1658
e0cd558a 1659 if (reg == SPU_PC_REGNUM)
85e747d2 1660 target += SPUADDR_ADDR (pc);
e0cd558a
UW
1661 else if (reg != -1)
1662 {
8dccd430
PA
1663 int optim, unavail;
1664
1665 if (get_frame_register_bytes (frame, reg, 0, 4, buf,
1666 &optim, &unavail))
1667 target += extract_unsigned_integer (buf, 4, byte_order) & -4;
1668 else
1669 {
1670 if (optim)
710409a2
PA
1671 throw_error (OPTIMIZED_OUT_ERROR,
1672 _("Could not determine address of "
1673 "single-step breakpoint."));
8dccd430
PA
1674 if (unavail)
1675 throw_error (NOT_AVAILABLE_ERROR,
1676 _("Could not determine address of "
1677 "single-step breakpoint."));
1678 }
771b4502 1679 }
e0cd558a 1680
13def385 1681 target = target & lslr;
e0cd558a 1682 if (target != next_pc)
6c95b8df 1683 insert_single_step_breakpoint (gdbarch, aspace,
85e747d2 1684 SPUADDR (SPUADDR_SPU (pc), target));
771b4502 1685 }
e6590a1b
UW
1686
1687 return 1;
771b4502
UW
1688}
1689
6e3f70d7
UW
1690
1691/* Longjmp support. */
1692
1693static int
1694spu_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1695{
e17a4113 1696 struct gdbarch *gdbarch = get_frame_arch (frame);
85e747d2 1697 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 1698 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
6e3f70d7
UW
1699 gdb_byte buf[4];
1700 CORE_ADDR jb_addr;
8dccd430 1701 int optim, unavail;
6e3f70d7
UW
1702
1703 /* Jump buffer is pointed to by the argument register $r3. */
8dccd430
PA
1704 if (!get_frame_register_bytes (frame, SPU_ARG1_REGNUM, 0, 4, buf,
1705 &optim, &unavail))
1706 return 0;
1707
e17a4113 1708 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
85e747d2 1709 if (target_read_memory (SPUADDR (tdep->id, jb_addr), buf, 4))
6e3f70d7
UW
1710 return 0;
1711
e17a4113 1712 *pc = extract_unsigned_integer (buf, 4, byte_order);
85e747d2 1713 *pc = SPUADDR (tdep->id, *pc);
6e3f70d7
UW
1714 return 1;
1715}
1716
1717
85e747d2
UW
1718/* Disassembler. */
1719
1720struct spu_dis_asm_data
1721{
1722 struct gdbarch *gdbarch;
1723 int id;
1724};
1725
1726static void
1727spu_dis_asm_print_address (bfd_vma addr, struct disassemble_info *info)
1728{
1729 struct spu_dis_asm_data *data = info->application_data;
1730 print_address (data->gdbarch, SPUADDR (data->id, addr), info->stream);
1731}
1732
1733static int
1734gdb_print_insn_spu (bfd_vma memaddr, struct disassemble_info *info)
1735{
c378eb4e
MS
1736 /* The opcodes disassembler does 18-bit address arithmetic. Make
1737 sure the SPU ID encoded in the high bits is added back when we
1738 call print_address. */
85e747d2
UW
1739 struct disassemble_info spu_info = *info;
1740 struct spu_dis_asm_data data;
1741 data.gdbarch = info->application_data;
1742 data.id = SPUADDR_SPU (memaddr);
1743
1744 spu_info.application_data = &data;
1745 spu_info.print_address_func = spu_dis_asm_print_address;
1746 return print_insn_spu (memaddr, &spu_info);
1747}
1748
1749
dcf52cd8
UW
1750/* Target overlays for the SPU overlay manager.
1751
1752 See the documentation of simple_overlay_update for how the
1753 interface is supposed to work.
1754
1755 Data structures used by the overlay manager:
1756
1757 struct ovly_table
1758 {
1759 u32 vma;
1760 u32 size;
1761 u32 pos;
1762 u32 buf;
1763 } _ovly_table[]; -- one entry per overlay section
1764
1765 struct ovly_buf_table
1766 {
1767 u32 mapped;
1768 } _ovly_buf_table[]; -- one entry per overlay buffer
1769
1770 _ovly_table should never change.
1771
c378eb4e
MS
1772 Both tables are aligned to a 16-byte boundary, the symbols
1773 _ovly_table and _ovly_buf_table are of type STT_OBJECT and their
1774 size set to the size of the respective array. buf in _ovly_table is
1775 an index into _ovly_buf_table.
dcf52cd8 1776
c378eb4e 1777 mapped is an index into _ovly_table. Both the mapped and buf indices start
dcf52cd8
UW
1778 from one to reference the first entry in their respective tables. */
1779
1780/* Using the per-objfile private data mechanism, we store for each
1781 objfile an array of "struct spu_overlay_table" structures, one
1782 for each obj_section of the objfile. This structure holds two
1783 fields, MAPPED_PTR and MAPPED_VAL. If MAPPED_PTR is zero, this
1784 is *not* an overlay section. If it is non-zero, it represents
1785 a target address. The overlay section is mapped iff the target
1786 integer at this location equals MAPPED_VAL. */
1787
1788static const struct objfile_data *spu_overlay_data;
1789
1790struct spu_overlay_table
1791 {
1792 CORE_ADDR mapped_ptr;
1793 CORE_ADDR mapped_val;
1794 };
1795
1796/* Retrieve the overlay table for OBJFILE. If not already cached, read
1797 the _ovly_table data structure from the target and initialize the
1798 spu_overlay_table data structure from it. */
1799static struct spu_overlay_table *
1800spu_get_overlay_table (struct objfile *objfile)
1801{
e17a4113
UW
1802 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd)?
1803 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
3b7344d5 1804 struct bound_minimal_symbol ovly_table_msym, ovly_buf_table_msym;
dcf52cd8
UW
1805 CORE_ADDR ovly_table_base, ovly_buf_table_base;
1806 unsigned ovly_table_size, ovly_buf_table_size;
1807 struct spu_overlay_table *tbl;
1808 struct obj_section *osect;
948f8e3d 1809 gdb_byte *ovly_table;
dcf52cd8
UW
1810 int i;
1811
1812 tbl = objfile_data (objfile, spu_overlay_data);
1813 if (tbl)
1814 return tbl;
1815
1816 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, objfile);
3b7344d5 1817 if (!ovly_table_msym.minsym)
dcf52cd8
UW
1818 return NULL;
1819
c378eb4e
MS
1820 ovly_buf_table_msym = lookup_minimal_symbol ("_ovly_buf_table",
1821 NULL, objfile);
3b7344d5 1822 if (!ovly_buf_table_msym.minsym)
dcf52cd8
UW
1823 return NULL;
1824
77e371c0 1825 ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3b7344d5 1826 ovly_table_size = MSYMBOL_SIZE (ovly_table_msym.minsym);
dcf52cd8 1827
77e371c0 1828 ovly_buf_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_buf_table_msym);
3b7344d5 1829 ovly_buf_table_size = MSYMBOL_SIZE (ovly_buf_table_msym.minsym);
dcf52cd8
UW
1830
1831 ovly_table = xmalloc (ovly_table_size);
1832 read_memory (ovly_table_base, ovly_table, ovly_table_size);
1833
1834 tbl = OBSTACK_CALLOC (&objfile->objfile_obstack,
1835 objfile->sections_end - objfile->sections,
1836 struct spu_overlay_table);
1837
1838 for (i = 0; i < ovly_table_size / 16; i++)
1839 {
e17a4113
UW
1840 CORE_ADDR vma = extract_unsigned_integer (ovly_table + 16*i + 0,
1841 4, byte_order);
1842 CORE_ADDR size = extract_unsigned_integer (ovly_table + 16*i + 4,
1843 4, byte_order);
1844 CORE_ADDR pos = extract_unsigned_integer (ovly_table + 16*i + 8,
1845 4, byte_order);
1846 CORE_ADDR buf = extract_unsigned_integer (ovly_table + 16*i + 12,
1847 4, byte_order);
dcf52cd8
UW
1848
1849 if (buf == 0 || (buf - 1) * 4 >= ovly_buf_table_size)
1850 continue;
1851
1852 ALL_OBJFILE_OSECTIONS (objfile, osect)
1853 if (vma == bfd_section_vma (objfile->obfd, osect->the_bfd_section)
1854 && pos == osect->the_bfd_section->filepos)
1855 {
1856 int ndx = osect - objfile->sections;
1857 tbl[ndx].mapped_ptr = ovly_buf_table_base + (buf - 1) * 4;
1858 tbl[ndx].mapped_val = i + 1;
1859 break;
1860 }
1861 }
1862
1863 xfree (ovly_table);
1864 set_objfile_data (objfile, spu_overlay_data, tbl);
1865 return tbl;
1866}
1867
1868/* Read _ovly_buf_table entry from the target to dermine whether
1869 OSECT is currently mapped, and update the mapped state. */
1870static void
1871spu_overlay_update_osect (struct obj_section *osect)
1872{
e17a4113
UW
1873 enum bfd_endian byte_order = bfd_big_endian (osect->objfile->obfd)?
1874 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
dcf52cd8 1875 struct spu_overlay_table *ovly_table;
85e747d2 1876 CORE_ADDR id, val;
dcf52cd8
UW
1877
1878 ovly_table = spu_get_overlay_table (osect->objfile);
1879 if (!ovly_table)
1880 return;
1881
1882 ovly_table += osect - osect->objfile->sections;
1883 if (ovly_table->mapped_ptr == 0)
1884 return;
1885
85e747d2
UW
1886 id = SPUADDR_SPU (obj_section_addr (osect));
1887 val = read_memory_unsigned_integer (SPUADDR (id, ovly_table->mapped_ptr),
1888 4, byte_order);
dcf52cd8
UW
1889 osect->ovly_mapped = (val == ovly_table->mapped_val);
1890}
1891
1892/* If OSECT is NULL, then update all sections' mapped state.
1893 If OSECT is non-NULL, then update only OSECT's mapped state. */
1894static void
1895spu_overlay_update (struct obj_section *osect)
1896{
1897 /* Just one section. */
1898 if (osect)
1899 spu_overlay_update_osect (osect);
1900
1901 /* All sections. */
1902 else
1903 {
1904 struct objfile *objfile;
1905
1906 ALL_OBJSECTIONS (objfile, osect)
714835d5 1907 if (section_is_overlay (osect))
dcf52cd8
UW
1908 spu_overlay_update_osect (osect);
1909 }
1910}
1911
1912/* Whenever a new objfile is loaded, read the target's _ovly_table.
1913 If there is one, go through all sections and make sure for non-
1914 overlay sections LMA equals VMA, while for overlay sections LMA
d2ed6730 1915 is larger than SPU_OVERLAY_LMA. */
dcf52cd8
UW
1916static void
1917spu_overlay_new_objfile (struct objfile *objfile)
1918{
1919 struct spu_overlay_table *ovly_table;
1920 struct obj_section *osect;
1921
1922 /* If we've already touched this file, do nothing. */
1923 if (!objfile || objfile_data (objfile, spu_overlay_data) != NULL)
1924 return;
1925
0391f248
UW
1926 /* Consider only SPU objfiles. */
1927 if (bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1928 return;
1929
dcf52cd8
UW
1930 /* Check if this objfile has overlays. */
1931 ovly_table = spu_get_overlay_table (objfile);
1932 if (!ovly_table)
1933 return;
1934
1935 /* Now go and fiddle with all the LMAs. */
1936 ALL_OBJFILE_OSECTIONS (objfile, osect)
1937 {
1938 bfd *obfd = objfile->obfd;
1939 asection *bsect = osect->the_bfd_section;
1940 int ndx = osect - objfile->sections;
1941
1942 if (ovly_table[ndx].mapped_ptr == 0)
1943 bfd_section_lma (obfd, bsect) = bfd_section_vma (obfd, bsect);
1944 else
d2ed6730 1945 bfd_section_lma (obfd, bsect) = SPU_OVERLAY_LMA + bsect->filepos;
dcf52cd8
UW
1946 }
1947}
1948
771b4502 1949
3285f3fe
UW
1950/* Insert temporary breakpoint on "main" function of newly loaded
1951 SPE context OBJFILE. */
1952static void
1953spu_catch_start (struct objfile *objfile)
1954{
3b7344d5 1955 struct bound_minimal_symbol minsym;
43f3e411 1956 struct compunit_symtab *cust;
3285f3fe
UW
1957 CORE_ADDR pc;
1958 char buf[32];
1959
1960 /* Do this only if requested by "set spu stop-on-load on". */
1961 if (!spu_stop_on_load_p)
1962 return;
1963
1964 /* Consider only SPU objfiles. */
1965 if (!objfile || bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1966 return;
1967
1968 /* The main objfile is handled differently. */
1969 if (objfile == symfile_objfile)
1970 return;
1971
1972 /* There can be multiple symbols named "main". Search for the
1973 "main" in *this* objfile. */
1974 minsym = lookup_minimal_symbol ("main", NULL, objfile);
3b7344d5 1975 if (!minsym.minsym)
3285f3fe
UW
1976 return;
1977
1978 /* If we have debugging information, try to use it -- this
1979 will allow us to properly skip the prologue. */
77e371c0 1980 pc = BMSYMBOL_VALUE_ADDRESS (minsym);
43f3e411
DE
1981 cust
1982 = find_pc_sect_compunit_symtab (pc, MSYMBOL_OBJ_SECTION (minsym.objfile,
1983 minsym.minsym));
1984 if (cust != NULL)
3285f3fe 1985 {
43f3e411 1986 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
3285f3fe
UW
1987 struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1988 struct symbol *sym;
1989 struct symtab_and_line sal;
1990
16b2eaa1 1991 sym = block_lookup_symbol (block, "main", VAR_DOMAIN);
3285f3fe
UW
1992 if (sym)
1993 {
1994 fixup_symbol_section (sym, objfile);
1995 sal = find_function_start_sal (sym, 1);
1996 pc = sal.pc;
1997 }
1998 }
1999
2000 /* Use a numerical address for the set_breakpoint command to avoid having
2001 the breakpoint re-set incorrectly. */
2002 xsnprintf (buf, sizeof buf, "*%s", core_addr_to_string (pc));
d8c09fb5
JK
2003 create_breakpoint (get_objfile_arch (objfile), buf /* arg */,
2004 NULL /* cond_string */, -1 /* thread */,
6a609e58 2005 NULL /* extra_string */,
d8c09fb5 2006 0 /* parse_condition_and_thread */, 1 /* tempflag */,
bddaafad 2007 bp_breakpoint /* type_wanted */,
d8c09fb5
JK
2008 0 /* ignore_count */,
2009 AUTO_BOOLEAN_FALSE /* pending_break_support */,
931bb47f 2010 &bkpt_breakpoint_ops /* ops */, 0 /* from_tty */,
44f238bb 2011 1 /* enabled */, 0 /* internal */, 0);
3285f3fe
UW
2012}
2013
2014
ff1a52c6
UW
2015/* Look up OBJFILE loaded into FRAME's SPU context. */
2016static struct objfile *
2017spu_objfile_from_frame (struct frame_info *frame)
2018{
2019 struct gdbarch *gdbarch = get_frame_arch (frame);
2020 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2021 struct objfile *obj;
2022
2023 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2024 return NULL;
2025
2026 ALL_OBJFILES (obj)
2027 {
2028 if (obj->sections != obj->sections_end
2029 && SPUADDR_SPU (obj_section_addr (obj->sections)) == tdep->id)
2030 return obj;
2031 }
2032
2033 return NULL;
2034}
2035
2036/* Flush cache for ea pointer access if available. */
2037static void
2038flush_ea_cache (void)
2039{
3b7344d5 2040 struct bound_minimal_symbol msymbol;
ff1a52c6
UW
2041 struct objfile *obj;
2042
2043 if (!has_stack_frames ())
2044 return;
2045
2046 obj = spu_objfile_from_frame (get_current_frame ());
2047 if (obj == NULL)
2048 return;
2049
2050 /* Lookup inferior function __cache_flush. */
2051 msymbol = lookup_minimal_symbol ("__cache_flush", NULL, obj);
3b7344d5 2052 if (msymbol.minsym != NULL)
ff1a52c6
UW
2053 {
2054 struct type *type;
2055 CORE_ADDR addr;
2056
2057 type = objfile_type (obj)->builtin_void;
2058 type = lookup_function_type (type);
2059 type = lookup_pointer_type (type);
77e371c0 2060 addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
ff1a52c6
UW
2061
2062 call_function_by_hand (value_from_pointer (type, addr), 0, NULL);
2063 }
2064}
2065
2066/* This handler is called when the inferior has stopped. If it is stopped in
2067 SPU architecture then flush the ea cache if used. */
2068static void
2069spu_attach_normal_stop (struct bpstats *bs, int print_frame)
2070{
2071 if (!spu_auto_flush_cache_p)
2072 return;
2073
2074 /* Temporarily reset spu_auto_flush_cache_p to avoid recursively
2075 re-entering this function when __cache_flush stops. */
2076 spu_auto_flush_cache_p = 0;
2077 flush_ea_cache ();
2078 spu_auto_flush_cache_p = 1;
2079}
2080
2081
23d964e7
UW
2082/* "info spu" commands. */
2083
2084static void
2085info_spu_event_command (char *args, int from_tty)
2086{
2087 struct frame_info *frame = get_selected_frame (NULL);
2088 ULONGEST event_status = 0;
2089 ULONGEST event_mask = 0;
2090 struct cleanup *chain;
2091 gdb_byte buf[100];
2092 char annex[32];
2093 LONGEST len;
22e048c9 2094 int id;
23d964e7 2095
0391f248
UW
2096 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
2097 error (_("\"info spu\" is only supported on the SPU architecture."));
2098
23d964e7
UW
2099 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2100
2101 xsnprintf (annex, sizeof annex, "%d/event_status", id);
2102 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
9971ac47 2103 buf, 0, (sizeof (buf) - 1));
23d964e7
UW
2104 if (len <= 0)
2105 error (_("Could not read event_status."));
9971ac47 2106 buf[len] = '\0';
001f13d8 2107 event_status = strtoulst ((char *) buf, NULL, 16);
23d964e7
UW
2108
2109 xsnprintf (annex, sizeof annex, "%d/event_mask", id);
2110 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
9971ac47 2111 buf, 0, (sizeof (buf) - 1));
23d964e7
UW
2112 if (len <= 0)
2113 error (_("Could not read event_mask."));
9971ac47 2114 buf[len] = '\0';
001f13d8 2115 event_mask = strtoulst ((char *) buf, NULL, 16);
23d964e7 2116
31a0ae49 2117 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoEvent");
23d964e7 2118
31a0ae49 2119 if (ui_out_is_mi_like_p (current_uiout))
23d964e7 2120 {
31a0ae49 2121 ui_out_field_fmt (current_uiout, "event_status",
23d964e7 2122 "0x%s", phex_nz (event_status, 4));
31a0ae49 2123 ui_out_field_fmt (current_uiout, "event_mask",
23d964e7
UW
2124 "0x%s", phex_nz (event_mask, 4));
2125 }
2126 else
2127 {
2128 printf_filtered (_("Event Status 0x%s\n"), phex (event_status, 4));
2129 printf_filtered (_("Event Mask 0x%s\n"), phex (event_mask, 4));
2130 }
2131
2132 do_cleanups (chain);
2133}
2134
2135static void
2136info_spu_signal_command (char *args, int from_tty)
2137{
2138 struct frame_info *frame = get_selected_frame (NULL);
e17a4113
UW
2139 struct gdbarch *gdbarch = get_frame_arch (frame);
2140 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
23d964e7
UW
2141 ULONGEST signal1 = 0;
2142 ULONGEST signal1_type = 0;
2143 int signal1_pending = 0;
2144 ULONGEST signal2 = 0;
2145 ULONGEST signal2_type = 0;
2146 int signal2_pending = 0;
2147 struct cleanup *chain;
2148 char annex[32];
2149 gdb_byte buf[100];
2150 LONGEST len;
22e048c9 2151 int id;
23d964e7 2152
e17a4113 2153 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
0391f248
UW
2154 error (_("\"info spu\" is only supported on the SPU architecture."));
2155
23d964e7
UW
2156 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2157
2158 xsnprintf (annex, sizeof annex, "%d/signal1", id);
2159 len = target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
2160 if (len < 0)
2161 error (_("Could not read signal1."));
2162 else if (len == 4)
2163 {
e17a4113 2164 signal1 = extract_unsigned_integer (buf, 4, byte_order);
23d964e7
UW
2165 signal1_pending = 1;
2166 }
2167
2168 xsnprintf (annex, sizeof annex, "%d/signal1_type", id);
2169 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
9971ac47 2170 buf, 0, (sizeof (buf) - 1));
23d964e7
UW
2171 if (len <= 0)
2172 error (_("Could not read signal1_type."));
9971ac47 2173 buf[len] = '\0';
001f13d8 2174 signal1_type = strtoulst ((char *) buf, NULL, 16);
23d964e7
UW
2175
2176 xsnprintf (annex, sizeof annex, "%d/signal2", id);
2177 len = target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
2178 if (len < 0)
2179 error (_("Could not read signal2."));
2180 else if (len == 4)
2181 {
e17a4113 2182 signal2 = extract_unsigned_integer (buf, 4, byte_order);
23d964e7
UW
2183 signal2_pending = 1;
2184 }
2185
2186 xsnprintf (annex, sizeof annex, "%d/signal2_type", id);
2187 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
9971ac47 2188 buf, 0, (sizeof (buf) - 1));
23d964e7
UW
2189 if (len <= 0)
2190 error (_("Could not read signal2_type."));
9971ac47 2191 buf[len] = '\0';
001f13d8 2192 signal2_type = strtoulst ((char *) buf, NULL, 16);
23d964e7 2193
31a0ae49 2194 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoSignal");
23d964e7 2195
31a0ae49 2196 if (ui_out_is_mi_like_p (current_uiout))
23d964e7 2197 {
31a0ae49
JK
2198 ui_out_field_int (current_uiout, "signal1_pending", signal1_pending);
2199 ui_out_field_fmt (current_uiout, "signal1", "0x%s", phex_nz (signal1, 4));
2200 ui_out_field_int (current_uiout, "signal1_type", signal1_type);
2201 ui_out_field_int (current_uiout, "signal2_pending", signal2_pending);
2202 ui_out_field_fmt (current_uiout, "signal2", "0x%s", phex_nz (signal2, 4));
2203 ui_out_field_int (current_uiout, "signal2_type", signal2_type);
23d964e7
UW
2204 }
2205 else
2206 {
2207 if (signal1_pending)
2208 printf_filtered (_("Signal 1 control word 0x%s "), phex (signal1, 4));
2209 else
2210 printf_filtered (_("Signal 1 not pending "));
2211
2212 if (signal1_type)
23d964e7 2213 printf_filtered (_("(Type Or)\n"));
b94c4f7d
UW
2214 else
2215 printf_filtered (_("(Type Overwrite)\n"));
23d964e7
UW
2216
2217 if (signal2_pending)
2218 printf_filtered (_("Signal 2 control word 0x%s "), phex (signal2, 4));
2219 else
2220 printf_filtered (_("Signal 2 not pending "));
2221
2222 if (signal2_type)
23d964e7 2223 printf_filtered (_("(Type Or)\n"));
b94c4f7d
UW
2224 else
2225 printf_filtered (_("(Type Overwrite)\n"));
23d964e7
UW
2226 }
2227
2228 do_cleanups (chain);
2229}
2230
2231static void
e17a4113 2232info_spu_mailbox_list (gdb_byte *buf, int nr, enum bfd_endian byte_order,
23d964e7
UW
2233 const char *field, const char *msg)
2234{
2235 struct cleanup *chain;
2236 int i;
2237
2238 if (nr <= 0)
2239 return;
2240
31a0ae49 2241 chain = make_cleanup_ui_out_table_begin_end (current_uiout, 1, nr, "mbox");
23d964e7 2242
31a0ae49
JK
2243 ui_out_table_header (current_uiout, 32, ui_left, field, msg);
2244 ui_out_table_body (current_uiout);
23d964e7
UW
2245
2246 for (i = 0; i < nr; i++)
2247 {
2248 struct cleanup *val_chain;
2249 ULONGEST val;
31a0ae49 2250 val_chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "mbox");
e17a4113 2251 val = extract_unsigned_integer (buf + 4*i, 4, byte_order);
31a0ae49 2252 ui_out_field_fmt (current_uiout, field, "0x%s", phex (val, 4));
23d964e7
UW
2253 do_cleanups (val_chain);
2254
31a0ae49 2255 if (!ui_out_is_mi_like_p (current_uiout))
23d964e7
UW
2256 printf_filtered ("\n");
2257 }
2258
2259 do_cleanups (chain);
2260}
2261
2262static void
2263info_spu_mailbox_command (char *args, int from_tty)
2264{
2265 struct frame_info *frame = get_selected_frame (NULL);
e17a4113
UW
2266 struct gdbarch *gdbarch = get_frame_arch (frame);
2267 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
23d964e7
UW
2268 struct cleanup *chain;
2269 char annex[32];
2270 gdb_byte buf[1024];
2271 LONGEST len;
22e048c9 2272 int id;
23d964e7 2273
e17a4113 2274 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
0391f248
UW
2275 error (_("\"info spu\" is only supported on the SPU architecture."));
2276
23d964e7
UW
2277 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2278
31a0ae49 2279 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoMailbox");
23d964e7
UW
2280
2281 xsnprintf (annex, sizeof annex, "%d/mbox_info", id);
2282 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2283 buf, 0, sizeof buf);
2284 if (len < 0)
2285 error (_("Could not read mbox_info."));
2286
e17a4113
UW
2287 info_spu_mailbox_list (buf, len / 4, byte_order,
2288 "mbox", "SPU Outbound Mailbox");
23d964e7
UW
2289
2290 xsnprintf (annex, sizeof annex, "%d/ibox_info", id);
2291 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2292 buf, 0, sizeof buf);
2293 if (len < 0)
2294 error (_("Could not read ibox_info."));
2295
e17a4113
UW
2296 info_spu_mailbox_list (buf, len / 4, byte_order,
2297 "ibox", "SPU Outbound Interrupt Mailbox");
23d964e7
UW
2298
2299 xsnprintf (annex, sizeof annex, "%d/wbox_info", id);
2300 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2301 buf, 0, sizeof buf);
2302 if (len < 0)
2303 error (_("Could not read wbox_info."));
2304
e17a4113
UW
2305 info_spu_mailbox_list (buf, len / 4, byte_order,
2306 "wbox", "SPU Inbound Mailbox");
23d964e7
UW
2307
2308 do_cleanups (chain);
2309}
2310
2311static ULONGEST
2312spu_mfc_get_bitfield (ULONGEST word, int first, int last)
2313{
2314 ULONGEST mask = ~(~(ULONGEST)0 << (last - first + 1));
2315 return (word >> (63 - last)) & mask;
2316}
2317
2318static void
e17a4113 2319info_spu_dma_cmdlist (gdb_byte *buf, int nr, enum bfd_endian byte_order)
23d964e7
UW
2320{
2321 static char *spu_mfc_opcode[256] =
2322 {
2323 /* 00 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2324 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2325 /* 10 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2326 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2327 /* 20 */ "put", "putb", "putf", NULL, "putl", "putlb", "putlf", NULL,
2328 "puts", "putbs", "putfs", NULL, NULL, NULL, NULL, NULL,
2329 /* 30 */ "putr", "putrb", "putrf", NULL, "putrl", "putrlb", "putrlf", NULL,
2330 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2331 /* 40 */ "get", "getb", "getf", NULL, "getl", "getlb", "getlf", NULL,
2332 "gets", "getbs", "getfs", NULL, NULL, NULL, NULL, NULL,
2333 /* 50 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2334 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2335 /* 60 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2336 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2337 /* 70 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2338 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2339 /* 80 */ "sdcrt", "sdcrtst", NULL, NULL, NULL, NULL, NULL, NULL,
2340 NULL, "sdcrz", NULL, NULL, NULL, "sdcrst", NULL, "sdcrf",
2341 /* 90 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2342 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2343 /* a0 */ "sndsig", "sndsigb", "sndsigf", NULL, NULL, NULL, NULL, NULL,
2344 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2345 /* b0 */ "putlluc", NULL, NULL, NULL, "putllc", NULL, NULL, NULL,
2346 "putqlluc", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2347 /* c0 */ "barrier", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2348 "mfceieio", NULL, NULL, NULL, "mfcsync", NULL, NULL, NULL,
2349 /* d0 */ "getllar", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2350 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2351 /* e0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2352 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2353 /* f0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2354 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2355 };
2356
12ab8a60
UW
2357 int *seq = alloca (nr * sizeof (int));
2358 int done = 0;
23d964e7 2359 struct cleanup *chain;
12ab8a60
UW
2360 int i, j;
2361
2362
2363 /* Determine sequence in which to display (valid) entries. */
2364 for (i = 0; i < nr; i++)
2365 {
2366 /* Search for the first valid entry all of whose
2367 dependencies are met. */
2368 for (j = 0; j < nr; j++)
2369 {
2370 ULONGEST mfc_cq_dw3;
2371 ULONGEST dependencies;
2372
2373 if (done & (1 << (nr - 1 - j)))
2374 continue;
2375
e17a4113
UW
2376 mfc_cq_dw3
2377 = extract_unsigned_integer (buf + 32*j + 24,8, byte_order);
12ab8a60
UW
2378 if (!spu_mfc_get_bitfield (mfc_cq_dw3, 16, 16))
2379 continue;
2380
2381 dependencies = spu_mfc_get_bitfield (mfc_cq_dw3, 0, nr - 1);
2382 if ((dependencies & done) != dependencies)
2383 continue;
2384
2385 seq[i] = j;
2386 done |= 1 << (nr - 1 - j);
2387 break;
2388 }
2389
2390 if (j == nr)
2391 break;
2392 }
2393
2394 nr = i;
2395
23d964e7 2396
31a0ae49
JK
2397 chain = make_cleanup_ui_out_table_begin_end (current_uiout, 10, nr,
2398 "dma_cmd");
23d964e7 2399
31a0ae49
JK
2400 ui_out_table_header (current_uiout, 7, ui_left, "opcode", "Opcode");
2401 ui_out_table_header (current_uiout, 3, ui_left, "tag", "Tag");
2402 ui_out_table_header (current_uiout, 3, ui_left, "tid", "TId");
2403 ui_out_table_header (current_uiout, 3, ui_left, "rid", "RId");
2404 ui_out_table_header (current_uiout, 18, ui_left, "ea", "EA");
2405 ui_out_table_header (current_uiout, 7, ui_left, "lsa", "LSA");
2406 ui_out_table_header (current_uiout, 7, ui_left, "size", "Size");
2407 ui_out_table_header (current_uiout, 7, ui_left, "lstaddr", "LstAddr");
2408 ui_out_table_header (current_uiout, 7, ui_left, "lstsize", "LstSize");
2409 ui_out_table_header (current_uiout, 1, ui_left, "error_p", "E");
23d964e7 2410
31a0ae49 2411 ui_out_table_body (current_uiout);
23d964e7
UW
2412
2413 for (i = 0; i < nr; i++)
2414 {
2415 struct cleanup *cmd_chain;
2416 ULONGEST mfc_cq_dw0;
2417 ULONGEST mfc_cq_dw1;
2418 ULONGEST mfc_cq_dw2;
23d964e7 2419 int mfc_cmd_opcode, mfc_cmd_tag, rclass_id, tclass_id;
22e048c9 2420 int list_lsa, list_size, mfc_lsa, mfc_size;
23d964e7
UW
2421 ULONGEST mfc_ea;
2422 int list_valid_p, noop_valid_p, qw_valid_p, ea_valid_p, cmd_error_p;
2423
2424 /* Decode contents of MFC Command Queue Context Save/Restore Registers.
2425 See "Cell Broadband Engine Registers V1.3", section 3.3.2.1. */
2426
e17a4113
UW
2427 mfc_cq_dw0
2428 = extract_unsigned_integer (buf + 32*seq[i], 8, byte_order);
2429 mfc_cq_dw1
2430 = extract_unsigned_integer (buf + 32*seq[i] + 8, 8, byte_order);
2431 mfc_cq_dw2
2432 = extract_unsigned_integer (buf + 32*seq[i] + 16, 8, byte_order);
23d964e7
UW
2433
2434 list_lsa = spu_mfc_get_bitfield (mfc_cq_dw0, 0, 14);
2435 list_size = spu_mfc_get_bitfield (mfc_cq_dw0, 15, 26);
2436 mfc_cmd_opcode = spu_mfc_get_bitfield (mfc_cq_dw0, 27, 34);
2437 mfc_cmd_tag = spu_mfc_get_bitfield (mfc_cq_dw0, 35, 39);
2438 list_valid_p = spu_mfc_get_bitfield (mfc_cq_dw0, 40, 40);
2439 rclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 41, 43);
2440 tclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 44, 46);
2441
2442 mfc_ea = spu_mfc_get_bitfield (mfc_cq_dw1, 0, 51) << 12
2443 | spu_mfc_get_bitfield (mfc_cq_dw2, 25, 36);
2444
2445 mfc_lsa = spu_mfc_get_bitfield (mfc_cq_dw2, 0, 13);
2446 mfc_size = spu_mfc_get_bitfield (mfc_cq_dw2, 14, 24);
2447 noop_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 37, 37);
2448 qw_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 38, 38);
2449 ea_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 39, 39);
2450 cmd_error_p = spu_mfc_get_bitfield (mfc_cq_dw2, 40, 40);
2451
31a0ae49 2452 cmd_chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "cmd");
23d964e7
UW
2453
2454 if (spu_mfc_opcode[mfc_cmd_opcode])
31a0ae49 2455 ui_out_field_string (current_uiout, "opcode", spu_mfc_opcode[mfc_cmd_opcode]);
23d964e7 2456 else
31a0ae49 2457 ui_out_field_int (current_uiout, "opcode", mfc_cmd_opcode);
23d964e7 2458
31a0ae49
JK
2459 ui_out_field_int (current_uiout, "tag", mfc_cmd_tag);
2460 ui_out_field_int (current_uiout, "tid", tclass_id);
2461 ui_out_field_int (current_uiout, "rid", rclass_id);
23d964e7
UW
2462
2463 if (ea_valid_p)
31a0ae49 2464 ui_out_field_fmt (current_uiout, "ea", "0x%s", phex (mfc_ea, 8));
23d964e7 2465 else
31a0ae49 2466 ui_out_field_skip (current_uiout, "ea");
23d964e7 2467
31a0ae49 2468 ui_out_field_fmt (current_uiout, "lsa", "0x%05x", mfc_lsa << 4);
23d964e7 2469 if (qw_valid_p)
31a0ae49 2470 ui_out_field_fmt (current_uiout, "size", "0x%05x", mfc_size << 4);
23d964e7 2471 else
31a0ae49 2472 ui_out_field_fmt (current_uiout, "size", "0x%05x", mfc_size);
23d964e7
UW
2473
2474 if (list_valid_p)
2475 {
31a0ae49
JK
2476 ui_out_field_fmt (current_uiout, "lstaddr", "0x%05x", list_lsa << 3);
2477 ui_out_field_fmt (current_uiout, "lstsize", "0x%05x", list_size << 3);
23d964e7
UW
2478 }
2479 else
2480 {
31a0ae49
JK
2481 ui_out_field_skip (current_uiout, "lstaddr");
2482 ui_out_field_skip (current_uiout, "lstsize");
23d964e7
UW
2483 }
2484
2485 if (cmd_error_p)
31a0ae49 2486 ui_out_field_string (current_uiout, "error_p", "*");
23d964e7 2487 else
31a0ae49 2488 ui_out_field_skip (current_uiout, "error_p");
23d964e7
UW
2489
2490 do_cleanups (cmd_chain);
2491
31a0ae49 2492 if (!ui_out_is_mi_like_p (current_uiout))
23d964e7
UW
2493 printf_filtered ("\n");
2494 }
2495
2496 do_cleanups (chain);
2497}
2498
2499static void
2500info_spu_dma_command (char *args, int from_tty)
2501{
2502 struct frame_info *frame = get_selected_frame (NULL);
e17a4113
UW
2503 struct gdbarch *gdbarch = get_frame_arch (frame);
2504 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
23d964e7
UW
2505 ULONGEST dma_info_type;
2506 ULONGEST dma_info_mask;
2507 ULONGEST dma_info_status;
2508 ULONGEST dma_info_stall_and_notify;
2509 ULONGEST dma_info_atomic_command_status;
2510 struct cleanup *chain;
2511 char annex[32];
2512 gdb_byte buf[1024];
2513 LONGEST len;
22e048c9 2514 int id;
23d964e7 2515
0391f248
UW
2516 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
2517 error (_("\"info spu\" is only supported on the SPU architecture."));
2518
23d964e7
UW
2519 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2520
2521 xsnprintf (annex, sizeof annex, "%d/dma_info", id);
2522 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2523 buf, 0, 40 + 16 * 32);
2524 if (len <= 0)
2525 error (_("Could not read dma_info."));
2526
e17a4113
UW
2527 dma_info_type
2528 = extract_unsigned_integer (buf, 8, byte_order);
2529 dma_info_mask
2530 = extract_unsigned_integer (buf + 8, 8, byte_order);
2531 dma_info_status
2532 = extract_unsigned_integer (buf + 16, 8, byte_order);
2533 dma_info_stall_and_notify
2534 = extract_unsigned_integer (buf + 24, 8, byte_order);
2535 dma_info_atomic_command_status
2536 = extract_unsigned_integer (buf + 32, 8, byte_order);
23d964e7 2537
31a0ae49 2538 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoDMA");
23d964e7 2539
31a0ae49 2540 if (ui_out_is_mi_like_p (current_uiout))
23d964e7 2541 {
31a0ae49 2542 ui_out_field_fmt (current_uiout, "dma_info_type", "0x%s",
23d964e7 2543 phex_nz (dma_info_type, 4));
31a0ae49 2544 ui_out_field_fmt (current_uiout, "dma_info_mask", "0x%s",
23d964e7 2545 phex_nz (dma_info_mask, 4));
31a0ae49 2546 ui_out_field_fmt (current_uiout, "dma_info_status", "0x%s",
23d964e7 2547 phex_nz (dma_info_status, 4));
31a0ae49 2548 ui_out_field_fmt (current_uiout, "dma_info_stall_and_notify", "0x%s",
23d964e7 2549 phex_nz (dma_info_stall_and_notify, 4));
31a0ae49 2550 ui_out_field_fmt (current_uiout, "dma_info_atomic_command_status", "0x%s",
23d964e7
UW
2551 phex_nz (dma_info_atomic_command_status, 4));
2552 }
2553 else
2554 {
8fbde58b 2555 const char *query_msg = _("no query pending");
23d964e7 2556
8fbde58b
UW
2557 if (dma_info_type & 4)
2558 switch (dma_info_type & 3)
2559 {
2560 case 1: query_msg = _("'any' query pending"); break;
2561 case 2: query_msg = _("'all' query pending"); break;
2562 default: query_msg = _("undefined query type"); break;
2563 }
23d964e7
UW
2564
2565 printf_filtered (_("Tag-Group Status 0x%s\n"),
2566 phex (dma_info_status, 4));
2567 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2568 phex (dma_info_mask, 4), query_msg);
2569 printf_filtered (_("Stall-and-Notify 0x%s\n"),
2570 phex (dma_info_stall_and_notify, 4));
2571 printf_filtered (_("Atomic Cmd Status 0x%s\n"),
2572 phex (dma_info_atomic_command_status, 4));
2573 printf_filtered ("\n");
2574 }
2575
e17a4113 2576 info_spu_dma_cmdlist (buf + 40, 16, byte_order);
23d964e7
UW
2577 do_cleanups (chain);
2578}
2579
2580static void
2581info_spu_proxydma_command (char *args, int from_tty)
2582{
2583 struct frame_info *frame = get_selected_frame (NULL);
e17a4113
UW
2584 struct gdbarch *gdbarch = get_frame_arch (frame);
2585 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
23d964e7
UW
2586 ULONGEST dma_info_type;
2587 ULONGEST dma_info_mask;
2588 ULONGEST dma_info_status;
2589 struct cleanup *chain;
2590 char annex[32];
2591 gdb_byte buf[1024];
2592 LONGEST len;
22e048c9 2593 int id;
23d964e7 2594
e17a4113 2595 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
0391f248
UW
2596 error (_("\"info spu\" is only supported on the SPU architecture."));
2597
23d964e7
UW
2598 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2599
2600 xsnprintf (annex, sizeof annex, "%d/proxydma_info", id);
2601 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2602 buf, 0, 24 + 8 * 32);
2603 if (len <= 0)
2604 error (_("Could not read proxydma_info."));
2605
e17a4113
UW
2606 dma_info_type = extract_unsigned_integer (buf, 8, byte_order);
2607 dma_info_mask = extract_unsigned_integer (buf + 8, 8, byte_order);
2608 dma_info_status = extract_unsigned_integer (buf + 16, 8, byte_order);
23d964e7 2609
31a0ae49
JK
2610 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout,
2611 "SPUInfoProxyDMA");
23d964e7 2612
31a0ae49 2613 if (ui_out_is_mi_like_p (current_uiout))
23d964e7 2614 {
31a0ae49 2615 ui_out_field_fmt (current_uiout, "proxydma_info_type", "0x%s",
23d964e7 2616 phex_nz (dma_info_type, 4));
31a0ae49 2617 ui_out_field_fmt (current_uiout, "proxydma_info_mask", "0x%s",
23d964e7 2618 phex_nz (dma_info_mask, 4));
31a0ae49 2619 ui_out_field_fmt (current_uiout, "proxydma_info_status", "0x%s",
23d964e7
UW
2620 phex_nz (dma_info_status, 4));
2621 }
2622 else
2623 {
2624 const char *query_msg;
2625
8fbde58b 2626 switch (dma_info_type & 3)
23d964e7
UW
2627 {
2628 case 0: query_msg = _("no query pending"); break;
2629 case 1: query_msg = _("'any' query pending"); break;
2630 case 2: query_msg = _("'all' query pending"); break;
2631 default: query_msg = _("undefined query type"); break;
2632 }
2633
2634 printf_filtered (_("Tag-Group Status 0x%s\n"),
2635 phex (dma_info_status, 4));
2636 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2637 phex (dma_info_mask, 4), query_msg);
2638 printf_filtered ("\n");
2639 }
2640
e17a4113 2641 info_spu_dma_cmdlist (buf + 24, 8, byte_order);
23d964e7
UW
2642 do_cleanups (chain);
2643}
2644
2645static void
2646info_spu_command (char *args, int from_tty)
2647{
c378eb4e
MS
2648 printf_unfiltered (_("\"info spu\" must be followed by "
2649 "the name of an SPU facility.\n"));
635c7e8a 2650 help_list (infospucmdlist, "info spu ", all_commands, gdb_stdout);
23d964e7
UW
2651}
2652
2653
3285f3fe
UW
2654/* Root of all "set spu "/"show spu " commands. */
2655
2656static void
2657show_spu_command (char *args, int from_tty)
2658{
2659 help_list (showspucmdlist, "show spu ", all_commands, gdb_stdout);
2660}
2661
2662static void
2663set_spu_command (char *args, int from_tty)
2664{
2665 help_list (setspucmdlist, "set spu ", all_commands, gdb_stdout);
2666}
2667
2668static void
2669show_spu_stop_on_load (struct ui_file *file, int from_tty,
2670 struct cmd_list_element *c, const char *value)
2671{
2672 fprintf_filtered (file, _("Stopping for new SPE threads is %s.\n"),
2673 value);
2674}
2675
ff1a52c6
UW
2676static void
2677show_spu_auto_flush_cache (struct ui_file *file, int from_tty,
2678 struct cmd_list_element *c, const char *value)
2679{
2680 fprintf_filtered (file, _("Automatic software-cache flush is %s.\n"),
2681 value);
2682}
2683
3285f3fe 2684
771b4502
UW
2685/* Set up gdbarch struct. */
2686
2687static struct gdbarch *
2688spu_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2689{
2690 struct gdbarch *gdbarch;
794ac428 2691 struct gdbarch_tdep *tdep;
85e747d2
UW
2692 int id = -1;
2693
2694 /* Which spufs ID was requested as address space? */
2695 if (info.tdep_info)
2696 id = *(int *)info.tdep_info;
2697 /* For objfile architectures of SPU solibs, decode the ID from the name.
2698 This assumes the filename convention employed by solib-spu.c. */
2699 else if (info.abfd)
2700 {
53e78085 2701 const char *name = strrchr (info.abfd->filename, '@');
85e747d2
UW
2702 if (name)
2703 sscanf (name, "@0x%*x <%d>", &id);
2704 }
771b4502 2705
85e747d2
UW
2706 /* Find a candidate among extant architectures. */
2707 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2708 arches != NULL;
2709 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2710 {
2711 tdep = gdbarch_tdep (arches->gdbarch);
2712 if (tdep && tdep->id == id)
2713 return arches->gdbarch;
2714 }
771b4502 2715
85e747d2 2716 /* None found, so create a new architecture. */
fc270c35 2717 tdep = XCNEW (struct gdbarch_tdep);
85e747d2 2718 tdep->id = id;
794ac428 2719 gdbarch = gdbarch_alloc (&info, tdep);
771b4502
UW
2720
2721 /* Disassembler. */
85e747d2 2722 set_gdbarch_print_insn (gdbarch, gdb_print_insn_spu);
771b4502
UW
2723
2724 /* Registers. */
2725 set_gdbarch_num_regs (gdbarch, SPU_NUM_REGS);
2726 set_gdbarch_num_pseudo_regs (gdbarch, SPU_NUM_PSEUDO_REGS);
2727 set_gdbarch_sp_regnum (gdbarch, SPU_SP_REGNUM);
2728 set_gdbarch_pc_regnum (gdbarch, SPU_PC_REGNUM);
118dfbaf
UW
2729 set_gdbarch_read_pc (gdbarch, spu_read_pc);
2730 set_gdbarch_write_pc (gdbarch, spu_write_pc);
771b4502
UW
2731 set_gdbarch_register_name (gdbarch, spu_register_name);
2732 set_gdbarch_register_type (gdbarch, spu_register_type);
2733 set_gdbarch_pseudo_register_read (gdbarch, spu_pseudo_register_read);
2734 set_gdbarch_pseudo_register_write (gdbarch, spu_pseudo_register_write);
9acbedc0 2735 set_gdbarch_value_from_register (gdbarch, spu_value_from_register);
771b4502 2736 set_gdbarch_register_reggroup_p (gdbarch, spu_register_reggroup_p);
7ce16bd4
UW
2737 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, spu_dwarf_reg_to_regnum);
2738 set_gdbarch_ax_pseudo_register_collect
2739 (gdbarch, spu_ax_pseudo_register_collect);
2740 set_gdbarch_ax_pseudo_register_push_stack
2741 (gdbarch, spu_ax_pseudo_register_push_stack);
771b4502
UW
2742
2743 /* Data types. */
2744 set_gdbarch_char_signed (gdbarch, 0);
2745 set_gdbarch_ptr_bit (gdbarch, 32);
2746 set_gdbarch_addr_bit (gdbarch, 32);
2747 set_gdbarch_short_bit (gdbarch, 16);
2748 set_gdbarch_int_bit (gdbarch, 32);
2749 set_gdbarch_long_bit (gdbarch, 32);
2750 set_gdbarch_long_long_bit (gdbarch, 64);
2751 set_gdbarch_float_bit (gdbarch, 32);
2752 set_gdbarch_double_bit (gdbarch, 64);
2753 set_gdbarch_long_double_bit (gdbarch, 64);
8da61cc4
DJ
2754 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
2755 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
2756 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
771b4502 2757
ff1a52c6 2758 /* Address handling. */
85e747d2 2759 set_gdbarch_address_to_pointer (gdbarch, spu_address_to_pointer);
36acd84e
UW
2760 set_gdbarch_pointer_to_address (gdbarch, spu_pointer_to_address);
2761 set_gdbarch_integer_to_address (gdbarch, spu_integer_to_address);
ff1a52c6
UW
2762 set_gdbarch_address_class_type_flags (gdbarch, spu_address_class_type_flags);
2763 set_gdbarch_address_class_type_flags_to_name
2764 (gdbarch, spu_address_class_type_flags_to_name);
2765 set_gdbarch_address_class_name_to_type_flags
2766 (gdbarch, spu_address_class_name_to_type_flags);
2767
36acd84e 2768
771b4502 2769 /* Inferior function calls. */
7b3dc0b7
UW
2770 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
2771 set_gdbarch_frame_align (gdbarch, spu_frame_align);
5141027d 2772 set_gdbarch_frame_red_zone_size (gdbarch, 2000);
87805e63 2773 set_gdbarch_push_dummy_code (gdbarch, spu_push_dummy_code);
771b4502 2774 set_gdbarch_push_dummy_call (gdbarch, spu_push_dummy_call);
8d998b8f 2775 set_gdbarch_dummy_id (gdbarch, spu_dummy_id);
771b4502
UW
2776 set_gdbarch_return_value (gdbarch, spu_return_value);
2777
2778 /* Frame handling. */
2779 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7ce16bd4 2780 dwarf2_append_unwinders (gdbarch);
8d998b8f 2781 frame_unwind_append_unwinder (gdbarch, &spu_frame_unwind);
771b4502
UW
2782 frame_base_set_default (gdbarch, &spu_frame_base);
2783 set_gdbarch_unwind_pc (gdbarch, spu_unwind_pc);
2784 set_gdbarch_unwind_sp (gdbarch, spu_unwind_sp);
2785 set_gdbarch_virtual_frame_pointer (gdbarch, spu_virtual_frame_pointer);
2786 set_gdbarch_frame_args_skip (gdbarch, 0);
2787 set_gdbarch_skip_prologue (gdbarch, spu_skip_prologue);
fe5febed 2788 set_gdbarch_in_function_epilogue_p (gdbarch, spu_in_function_epilogue_p);
771b4502 2789
cc5f0d61
UW
2790 /* Cell/B.E. cross-architecture unwinder support. */
2791 frame_unwind_prepend_unwinder (gdbarch, &spu2ppu_unwind);
2792
771b4502
UW
2793 /* Breakpoints. */
2794 set_gdbarch_decr_pc_after_break (gdbarch, 4);
2795 set_gdbarch_breakpoint_from_pc (gdbarch, spu_breakpoint_from_pc);
d03285ec 2796 set_gdbarch_memory_remove_breakpoint (gdbarch, spu_memory_remove_breakpoint);
771b4502 2797 set_gdbarch_software_single_step (gdbarch, spu_software_single_step);
6e3f70d7 2798 set_gdbarch_get_longjmp_target (gdbarch, spu_get_longjmp_target);
771b4502 2799
dcf52cd8
UW
2800 /* Overlays. */
2801 set_gdbarch_overlay_update (gdbarch, spu_overlay_update);
2802
771b4502
UW
2803 return gdbarch;
2804}
2805
63807e1d
PA
2806/* Provide a prototype to silence -Wmissing-prototypes. */
2807extern initialize_file_ftype _initialize_spu_tdep;
2808
771b4502
UW
2809void
2810_initialize_spu_tdep (void)
2811{
2812 register_gdbarch_init (bfd_arch_spu, spu_gdbarch_init);
f2d43c2c 2813
dcf52cd8
UW
2814 /* Add ourselves to objfile event chain. */
2815 observer_attach_new_objfile (spu_overlay_new_objfile);
2816 spu_overlay_data = register_objfile_data ();
23d964e7 2817
3285f3fe
UW
2818 /* Install spu stop-on-load handler. */
2819 observer_attach_new_objfile (spu_catch_start);
2820
ff1a52c6
UW
2821 /* Add ourselves to normal_stop event chain. */
2822 observer_attach_normal_stop (spu_attach_normal_stop);
2823
3285f3fe
UW
2824 /* Add root prefix command for all "set spu"/"show spu" commands. */
2825 add_prefix_cmd ("spu", no_class, set_spu_command,
2826 _("Various SPU specific commands."),
2827 &setspucmdlist, "set spu ", 0, &setlist);
2828 add_prefix_cmd ("spu", no_class, show_spu_command,
2829 _("Various SPU specific commands."),
2830 &showspucmdlist, "show spu ", 0, &showlist);
2831
2832 /* Toggle whether or not to add a temporary breakpoint at the "main"
2833 function of new SPE contexts. */
2834 add_setshow_boolean_cmd ("stop-on-load", class_support,
2835 &spu_stop_on_load_p, _("\
2836Set whether to stop for new SPE threads."),
2837 _("\
2838Show whether to stop for new SPE threads."),
2839 _("\
2840Use \"on\" to give control to the user when a new SPE thread\n\
2841enters its \"main\" function.\n\
2842Use \"off\" to disable stopping for new SPE threads."),
2843 NULL,
2844 show_spu_stop_on_load,
2845 &setspucmdlist, &showspucmdlist);
2846
ff1a52c6
UW
2847 /* Toggle whether or not to automatically flush the software-managed
2848 cache whenever SPE execution stops. */
2849 add_setshow_boolean_cmd ("auto-flush-cache", class_support,
2850 &spu_auto_flush_cache_p, _("\
2851Set whether to automatically flush the software-managed cache."),
2852 _("\
2853Show whether to automatically flush the software-managed cache."),
2854 _("\
2855Use \"on\" to automatically flush the software-managed cache\n\
2856whenever SPE execution stops.\n\
2857Use \"off\" to never automatically flush the software-managed cache."),
2858 NULL,
2859 show_spu_auto_flush_cache,
2860 &setspucmdlist, &showspucmdlist);
2861
23d964e7
UW
2862 /* Add root prefix command for all "info spu" commands. */
2863 add_prefix_cmd ("spu", class_info, info_spu_command,
2864 _("Various SPU specific commands."),
2865 &infospucmdlist, "info spu ", 0, &infolist);
2866
2867 /* Add various "info spu" commands. */
2868 add_cmd ("event", class_info, info_spu_event_command,
2869 _("Display SPU event facility status.\n"),
2870 &infospucmdlist);
2871 add_cmd ("signal", class_info, info_spu_signal_command,
2872 _("Display SPU signal notification facility status.\n"),
2873 &infospucmdlist);
2874 add_cmd ("mailbox", class_info, info_spu_mailbox_command,
2875 _("Display SPU mailbox facility status.\n"),
2876 &infospucmdlist);
2877 add_cmd ("dma", class_info, info_spu_dma_command,
2878 _("Display MFC DMA status.\n"),
2879 &infospucmdlist);
2880 add_cmd ("proxydma", class_info, info_spu_proxydma_command,
2881 _("Display MFC Proxy-DMA status.\n"),
2882 &infospucmdlist);
771b4502 2883}
This page took 1.155092 seconds and 4 git commands to generate.