windows-nat: Don't change current_event.dwThreadId in handle_output_debug_string()
[deliverable/binutils-gdb.git] / gdb / stabsread.c
CommitLineData
c906108c 1/* Support routines for decoding "stabs" debugging information format.
cf5b2f1b 2
32d0add0 3 Copyright (C) 1986-2015 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20/* Support routines for reading and decoding debugging information in
21 the "stabs" format. This format is used with many systems that use
22 the a.out object file format, as well as some systems that use
23 COFF or ELF where the stabs data is placed in a special section.
c378eb4e 24 Avoid placing any object file format specific code in this file. */
c906108c
SS
25
26#include "defs.h"
c906108c 27#include "bfd.h"
04ea0df1 28#include "gdb_obstack.h"
c906108c
SS
29#include "symtab.h"
30#include "gdbtypes.h"
31#include "expression.h"
32#include "symfile.h"
33#include "objfiles.h"
3e43a32a 34#include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
c906108c
SS
35#include "libaout.h"
36#include "aout/aout64.h"
37#include "gdb-stabs.h"
38#include "buildsym.h"
39#include "complaints.h"
40#include "demangle.h"
50f182aa 41#include "gdb-demangle.h"
c906108c 42#include "language.h"
d16aafd8 43#include "doublest.h"
de17c821
DJ
44#include "cp-abi.h"
45#include "cp-support.h"
c906108c
SS
46#include <ctype.h>
47
48/* Ask stabsread.h to define the vars it normally declares `extern'. */
c5aa993b
JM
49#define EXTERN
50/**/
c906108c
SS
51#include "stabsread.h" /* Our own declarations */
52#undef EXTERN
53
a14ed312 54extern void _initialize_stabsread (void);
392a587b 55
52059ffd
TT
56struct nextfield
57{
58 struct nextfield *next;
59
60 /* This is the raw visibility from the stab. It is not checked
61 for being one of the visibilities we recognize, so code which
62 examines this field better be able to deal. */
63 int visibility;
64
65 struct field field;
66};
67
68struct next_fnfieldlist
69{
70 struct next_fnfieldlist *next;
71 struct fn_fieldlist fn_fieldlist;
72};
73
c906108c
SS
74/* The routines that read and process a complete stabs for a C struct or
75 C++ class pass lists of data member fields and lists of member function
76 fields in an instance of a field_info structure, as defined below.
77 This is part of some reorganization of low level C++ support and is
c378eb4e 78 expected to eventually go away... (FIXME) */
c906108c
SS
79
80struct field_info
c5aa993b 81 {
52059ffd
TT
82 struct nextfield *list;
83 struct next_fnfieldlist *fnlist;
c5aa993b 84 };
c906108c
SS
85
86static void
a14ed312
KB
87read_one_struct_field (struct field_info *, char **, char *,
88 struct type *, struct objfile *);
c906108c 89
a14ed312 90static struct type *dbx_alloc_type (int[2], struct objfile *);
c906108c 91
94e10a22 92static long read_huge_number (char **, int, int *, int);
c906108c 93
a14ed312 94static struct type *error_type (char **, struct objfile *);
c906108c
SS
95
96static void
a14ed312
KB
97patch_block_stabs (struct pending *, struct pending_stabs *,
98 struct objfile *);
c906108c 99
46cb6474 100static void fix_common_block (struct symbol *, CORE_ADDR);
c906108c 101
a14ed312 102static int read_type_number (char **, int *);
c906108c 103
a7a48797
EZ
104static struct type *read_type (char **, struct objfile *);
105
94e10a22 106static struct type *read_range_type (char **, int[2], int, struct objfile *);
c906108c 107
a14ed312 108static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
c906108c 109
a14ed312
KB
110static struct type *read_sun_floating_type (char **, int[2],
111 struct objfile *);
c906108c 112
a14ed312 113static struct type *read_enum_type (char **, struct type *, struct objfile *);
c906108c 114
46bf5051 115static struct type *rs6000_builtin_type (int, struct objfile *);
c906108c
SS
116
117static int
a14ed312
KB
118read_member_functions (struct field_info *, char **, struct type *,
119 struct objfile *);
c906108c
SS
120
121static int
a14ed312
KB
122read_struct_fields (struct field_info *, char **, struct type *,
123 struct objfile *);
c906108c
SS
124
125static int
a14ed312
KB
126read_baseclasses (struct field_info *, char **, struct type *,
127 struct objfile *);
c906108c
SS
128
129static int
a14ed312
KB
130read_tilde_fields (struct field_info *, char **, struct type *,
131 struct objfile *);
c906108c 132
a14ed312 133static int attach_fn_fields_to_type (struct field_info *, struct type *);
c906108c 134
570b8f7c
AC
135static int attach_fields_to_type (struct field_info *, struct type *,
136 struct objfile *);
c906108c 137
a14ed312 138static struct type *read_struct_type (char **, struct type *,
2ae1c2d2 139 enum type_code,
a14ed312 140 struct objfile *);
c906108c 141
a14ed312
KB
142static struct type *read_array_type (char **, struct type *,
143 struct objfile *);
c906108c 144
ad2f7632 145static struct field *read_args (char **, int, struct objfile *, int *, int *);
c906108c 146
bf362611 147static void add_undefined_type (struct type *, int[2]);
a7a48797 148
c906108c 149static int
a14ed312
KB
150read_cpp_abbrev (struct field_info *, char **, struct type *,
151 struct objfile *);
c906108c 152
7e1d63ec
AF
153static char *find_name_end (char *name);
154
a14ed312 155static int process_reference (char **string);
c906108c 156
a14ed312 157void stabsread_clear_cache (void);
7be570e7 158
8343f86c
DJ
159static const char vptr_name[] = "_vptr$";
160static const char vb_name[] = "_vb$";
c906108c 161
23136709
KB
162static void
163invalid_cpp_abbrev_complaint (const char *arg1)
164{
e2e0b3e5 165 complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
23136709 166}
c906108c 167
23136709 168static void
49b0b195 169reg_value_complaint (int regnum, int num_regs, const char *sym)
23136709
KB
170{
171 complaint (&symfile_complaints,
e2e0b3e5 172 _("register number %d too large (max %d) in symbol %s"),
49b0b195 173 regnum, num_regs - 1, sym);
23136709 174}
c906108c 175
23136709
KB
176static void
177stabs_general_complaint (const char *arg1)
178{
179 complaint (&symfile_complaints, "%s", arg1);
180}
c906108c 181
c906108c
SS
182/* Make a list of forward references which haven't been defined. */
183
184static struct type **undef_types;
185static int undef_types_allocated;
186static int undef_types_length;
187static struct symbol *current_symbol = NULL;
188
bf362611
JB
189/* Make a list of nameless types that are undefined.
190 This happens when another type is referenced by its number
c378eb4e 191 before this type is actually defined. For instance "t(0,1)=k(0,2)"
bf362611
JB
192 and type (0,2) is defined only later. */
193
194struct nat
195{
196 int typenums[2];
197 struct type *type;
198};
199static struct nat *noname_undefs;
200static int noname_undefs_allocated;
201static int noname_undefs_length;
202
c906108c
SS
203/* Check for and handle cretinous stabs symbol name continuation! */
204#define STABS_CONTINUE(pp,objfile) \
205 do { \
206 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
207 *(pp) = next_symbol_text (objfile); \
208 } while (0)
fc474241
DE
209
210/* Vector of types defined so far, indexed by their type numbers.
211 (In newer sun systems, dbx uses a pair of numbers in parens,
212 as in "(SUBFILENUM,NUMWITHINSUBFILE)".
213 Then these numbers must be translated through the type_translations
214 hash table to get the index into the type vector.) */
215
216static struct type **type_vector;
217
218/* Number of elements allocated for type_vector currently. */
219
220static int type_vector_length;
221
222/* Initial size of type vector. Is realloc'd larger if needed, and
223 realloc'd down to the size actually used, when completed. */
224
225#define INITIAL_TYPE_VECTOR_LENGTH 160
c906108c 226\f
c906108c
SS
227
228/* Look up a dbx type-number pair. Return the address of the slot
229 where the type for that number-pair is stored.
230 The number-pair is in TYPENUMS.
231
232 This can be used for finding the type associated with that pair
233 or for associating a new type with the pair. */
234
a7a48797 235static struct type **
46bf5051 236dbx_lookup_type (int typenums[2], struct objfile *objfile)
c906108c 237{
52f0bd74
AC
238 int filenum = typenums[0];
239 int index = typenums[1];
c906108c 240 unsigned old_len;
52f0bd74
AC
241 int real_filenum;
242 struct header_file *f;
c906108c
SS
243 int f_orig_length;
244
245 if (filenum == -1) /* -1,-1 is for temporary types. */
246 return 0;
247
248 if (filenum < 0 || filenum >= n_this_object_header_files)
249 {
23136709 250 complaint (&symfile_complaints,
3e43a32a
MS
251 _("Invalid symbol data: type number "
252 "(%d,%d) out of range at symtab pos %d."),
23136709 253 filenum, index, symnum);
c906108c
SS
254 goto error_return;
255 }
256
257 if (filenum == 0)
258 {
259 if (index < 0)
260 {
261 /* Caller wants address of address of type. We think
262 that negative (rs6k builtin) types will never appear as
263 "lvalues", (nor should they), so we stuff the real type
264 pointer into a temp, and return its address. If referenced,
265 this will do the right thing. */
266 static struct type *temp_type;
267
46bf5051 268 temp_type = rs6000_builtin_type (index, objfile);
c906108c
SS
269 return &temp_type;
270 }
271
272 /* Type is defined outside of header files.
c5aa993b 273 Find it in this object file's type vector. */
c906108c
SS
274 if (index >= type_vector_length)
275 {
276 old_len = type_vector_length;
277 if (old_len == 0)
278 {
279 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
280 type_vector = (struct type **)
281 xmalloc (type_vector_length * sizeof (struct type *));
282 }
283 while (index >= type_vector_length)
284 {
285 type_vector_length *= 2;
286 }
287 type_vector = (struct type **)
288 xrealloc ((char *) type_vector,
289 (type_vector_length * sizeof (struct type *)));
290 memset (&type_vector[old_len], 0,
291 (type_vector_length - old_len) * sizeof (struct type *));
c906108c
SS
292 }
293 return (&type_vector[index]);
294 }
295 else
296 {
297 real_filenum = this_object_header_files[filenum];
298
46bf5051 299 if (real_filenum >= N_HEADER_FILES (objfile))
c906108c 300 {
46bf5051 301 static struct type *temp_type;
c906108c 302
8a3fe4f8 303 warning (_("GDB internal error: bad real_filenum"));
c906108c
SS
304
305 error_return:
46bf5051
UW
306 temp_type = objfile_type (objfile)->builtin_error;
307 return &temp_type;
c906108c
SS
308 }
309
46bf5051 310 f = HEADER_FILES (objfile) + real_filenum;
c906108c
SS
311
312 f_orig_length = f->length;
313 if (index >= f_orig_length)
314 {
315 while (index >= f->length)
316 {
317 f->length *= 2;
318 }
319 f->vector = (struct type **)
320 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
321 memset (&f->vector[f_orig_length], 0,
322 (f->length - f_orig_length) * sizeof (struct type *));
323 }
324 return (&f->vector[index]);
325 }
326}
327
328/* Make sure there is a type allocated for type numbers TYPENUMS
329 and return the type object.
330 This can create an empty (zeroed) type object.
331 TYPENUMS may be (-1, -1) to return a new type object that is not
c378eb4e 332 put into the type vector, and so may not be referred to by number. */
c906108c
SS
333
334static struct type *
35a2f538 335dbx_alloc_type (int typenums[2], struct objfile *objfile)
c906108c 336{
52f0bd74 337 struct type **type_addr;
c906108c
SS
338
339 if (typenums[0] == -1)
340 {
341 return (alloc_type (objfile));
342 }
343
46bf5051 344 type_addr = dbx_lookup_type (typenums, objfile);
c906108c
SS
345
346 /* If we are referring to a type not known at all yet,
347 allocate an empty type for it.
348 We will fill it in later if we find out how. */
349 if (*type_addr == 0)
350 {
351 *type_addr = alloc_type (objfile);
352 }
353
354 return (*type_addr);
355}
356
357/* for all the stabs in a given stab vector, build appropriate types
c378eb4e 358 and fix their symbols in given symbol vector. */
c906108c
SS
359
360static void
fba45db2
KB
361patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
362 struct objfile *objfile)
c906108c
SS
363{
364 int ii;
365 char *name;
366 char *pp;
367 struct symbol *sym;
368
369 if (stabs)
370 {
c906108c 371 /* for all the stab entries, find their corresponding symbols and
c378eb4e 372 patch their types! */
c5aa993b 373
c906108c
SS
374 for (ii = 0; ii < stabs->count; ++ii)
375 {
376 name = stabs->stab[ii];
c5aa993b 377 pp = (char *) strchr (name, ':');
8fb822e0 378 gdb_assert (pp); /* Must find a ':' or game's over. */
c906108c
SS
379 while (pp[1] == ':')
380 {
c5aa993b
JM
381 pp += 2;
382 pp = (char *) strchr (pp, ':');
c906108c 383 }
c5aa993b 384 sym = find_symbol_in_list (symbols, name, pp - name);
c906108c
SS
385 if (!sym)
386 {
387 /* FIXME-maybe: it would be nice if we noticed whether
c5aa993b
JM
388 the variable was defined *anywhere*, not just whether
389 it is defined in this compilation unit. But neither
390 xlc or GCC seem to need such a definition, and until
391 we do psymtabs (so that the minimal symbols from all
392 compilation units are available now), I'm not sure
393 how to get the information. */
c906108c
SS
394
395 /* On xcoff, if a global is defined and never referenced,
c5aa993b
JM
396 ld will remove it from the executable. There is then
397 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
e623cf5d 398 sym = allocate_symbol (objfile);
176620f1 399 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
f1e6e072 400 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
3567439c 401 SYMBOL_SET_LINKAGE_NAME
10f0c4bb
TT
402 (sym, obstack_copy0 (&objfile->objfile_obstack,
403 name, pp - name));
c906108c 404 pp += 2;
c5aa993b 405 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
c906108c
SS
406 {
407 /* I don't think the linker does this with functions,
408 so as far as I know this is never executed.
409 But it doesn't hurt to check. */
410 SYMBOL_TYPE (sym) =
411 lookup_function_type (read_type (&pp, objfile));
412 }
413 else
414 {
415 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
416 }
417 add_symbol_to_list (sym, &global_symbols);
418 }
419 else
420 {
421 pp += 2;
c5aa993b 422 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
c906108c
SS
423 {
424 SYMBOL_TYPE (sym) =
425 lookup_function_type (read_type (&pp, objfile));
426 }
427 else
428 {
429 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
430 }
431 }
432 }
433 }
434}
c906108c 435\f
c5aa993b 436
c906108c
SS
437/* Read a number by which a type is referred to in dbx data,
438 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
439 Just a single number N is equivalent to (0,N).
440 Return the two numbers by storing them in the vector TYPENUMS.
441 TYPENUMS will then be used as an argument to dbx_lookup_type.
442
443 Returns 0 for success, -1 for error. */
444
445static int
aa1ee363 446read_type_number (char **pp, int *typenums)
c906108c
SS
447{
448 int nbits;
433759f7 449
c906108c
SS
450 if (**pp == '(')
451 {
452 (*pp)++;
94e10a22 453 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
c5aa993b
JM
454 if (nbits != 0)
455 return -1;
94e10a22 456 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
c5aa993b
JM
457 if (nbits != 0)
458 return -1;
c906108c
SS
459 }
460 else
461 {
462 typenums[0] = 0;
94e10a22 463 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
c5aa993b
JM
464 if (nbits != 0)
465 return -1;
c906108c
SS
466 }
467 return 0;
468}
c906108c 469\f
c5aa993b 470
c906108c
SS
471#define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
472#define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
473#define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
474#define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
475
c906108c 476/* Structure for storing pointers to reference definitions for fast lookup
c378eb4e 477 during "process_later". */
c906108c
SS
478
479struct ref_map
480{
481 char *stabs;
482 CORE_ADDR value;
483 struct symbol *sym;
484};
485
486#define MAX_CHUNK_REFS 100
487#define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
488#define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
489
c5aa993b 490static struct ref_map *ref_map;
c906108c 491
c378eb4e 492/* Ptr to free cell in chunk's linked list. */
c5aa993b 493static int ref_count = 0;
c906108c 494
c378eb4e 495/* Number of chunks malloced. */
c906108c
SS
496static int ref_chunk = 0;
497
7be570e7 498/* This file maintains a cache of stabs aliases found in the symbol
c378eb4e
MS
499 table. If the symbol table changes, this cache must be cleared
500 or we are left holding onto data in invalid obstacks. */
7be570e7 501void
fba45db2 502stabsread_clear_cache (void)
7be570e7
JM
503{
504 ref_count = 0;
505 ref_chunk = 0;
506}
507
c906108c
SS
508/* Create array of pointers mapping refids to symbols and stab strings.
509 Add pointers to reference definition symbols and/or their values as we
c378eb4e
MS
510 find them, using their reference numbers as our index.
511 These will be used later when we resolve references. */
c906108c 512void
fba45db2 513ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
c906108c
SS
514{
515 if (ref_count == 0)
516 ref_chunk = 0;
517 if (refnum >= ref_count)
518 ref_count = refnum + 1;
519 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
520 {
c5aa993b 521 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
c906108c 522 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
433759f7 523
c906108c
SS
524 ref_map = (struct ref_map *)
525 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
433759f7
MS
526 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
527 new_chunks * REF_CHUNK_SIZE);
c906108c
SS
528 ref_chunk += new_chunks;
529 }
530 ref_map[refnum].stabs = stabs;
531 ref_map[refnum].sym = sym;
532 ref_map[refnum].value = value;
533}
534
535/* Return defined sym for the reference REFNUM. */
536struct symbol *
fba45db2 537ref_search (int refnum)
c906108c
SS
538{
539 if (refnum < 0 || refnum > ref_count)
540 return 0;
541 return ref_map[refnum].sym;
542}
543
c906108c
SS
544/* Parse a reference id in STRING and return the resulting
545 reference number. Move STRING beyond the reference id. */
546
c5aa993b 547static int
fba45db2 548process_reference (char **string)
c906108c
SS
549{
550 char *p;
551 int refnum = 0;
552
c5aa993b
JM
553 if (**string != '#')
554 return 0;
555
c906108c
SS
556 /* Advance beyond the initial '#'. */
557 p = *string + 1;
558
c378eb4e 559 /* Read number as reference id. */
c906108c
SS
560 while (*p && isdigit (*p))
561 {
562 refnum = refnum * 10 + *p - '0';
563 p++;
564 }
565 *string = p;
566 return refnum;
567}
568
569/* If STRING defines a reference, store away a pointer to the reference
570 definition for later use. Return the reference number. */
571
572int
fba45db2 573symbol_reference_defined (char **string)
c906108c
SS
574{
575 char *p = *string;
576 int refnum = 0;
577
578 refnum = process_reference (&p);
579
c378eb4e 580 /* Defining symbols end in '='. */
c5aa993b 581 if (*p == '=')
c906108c 582 {
c378eb4e 583 /* Symbol is being defined here. */
c906108c
SS
584 *string = p + 1;
585 return refnum;
586 }
587 else
588 {
c378eb4e 589 /* Must be a reference. Either the symbol has already been defined,
c906108c
SS
590 or this is a forward reference to it. */
591 *string = p;
592 return -1;
593 }
594}
595
768a979c
UW
596static int
597stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
598{
599 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
600
601 if (regno >= gdbarch_num_regs (gdbarch)
602 + gdbarch_num_pseudo_regs (gdbarch))
603 {
604 reg_value_complaint (regno,
605 gdbarch_num_regs (gdbarch)
606 + gdbarch_num_pseudo_regs (gdbarch),
607 SYMBOL_PRINT_NAME (sym));
608
c378eb4e 609 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
768a979c
UW
610 }
611
612 return regno;
613}
614
615static const struct symbol_register_ops stab_register_funcs = {
616 stab_reg_to_regnum
617};
618
f1e6e072
TT
619/* The "aclass" indices for computed symbols. */
620
621static int stab_register_index;
622static int stab_regparm_index;
623
c906108c 624struct symbol *
fba45db2
KB
625define_symbol (CORE_ADDR valu, char *string, int desc, int type,
626 struct objfile *objfile)
c906108c 627{
5e2b427d 628 struct gdbarch *gdbarch = get_objfile_arch (objfile);
52f0bd74 629 struct symbol *sym;
7e1d63ec 630 char *p = (char *) find_name_end (string);
c906108c
SS
631 int deftype;
632 int synonym = 0;
52f0bd74 633 int i;
71c25dea 634 char *new_name = NULL;
c906108c
SS
635
636 /* We would like to eliminate nameless symbols, but keep their types.
637 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
c378eb4e
MS
638 to type 2, but, should not create a symbol to address that type. Since
639 the symbol will be nameless, there is no way any user can refer to it. */
c906108c
SS
640
641 int nameless;
642
643 /* Ignore syms with empty names. */
644 if (string[0] == 0)
645 return 0;
646
c378eb4e 647 /* Ignore old-style symbols from cc -go. */
c906108c
SS
648 if (p == 0)
649 return 0;
650
651 while (p[1] == ':')
652 {
c5aa993b
JM
653 p += 2;
654 p = strchr (p, ':');
681c238c
MS
655 if (p == NULL)
656 {
657 complaint (&symfile_complaints,
658 _("Bad stabs string '%s'"), string);
659 return NULL;
660 }
c906108c
SS
661 }
662
663 /* If a nameless stab entry, all we need is the type, not the symbol.
664 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
665 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
666
e623cf5d 667 current_symbol = sym = allocate_symbol (objfile);
c906108c 668
c906108c
SS
669 if (processing_gcc_compilation)
670 {
671 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
c5aa993b
JM
672 number of bytes occupied by a type or object, which we ignore. */
673 SYMBOL_LINE (sym) = desc;
c906108c
SS
674 }
675 else
676 {
c5aa993b 677 SYMBOL_LINE (sym) = 0; /* unknown */
c906108c
SS
678 }
679
025ac414
PM
680 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
681 &objfile->objfile_obstack);
682
c906108c
SS
683 if (is_cplus_marker (string[0]))
684 {
685 /* Special GNU C++ names. */
686 switch (string[1])
687 {
c5aa993b 688 case 't':
1c9e8358 689 SYMBOL_SET_LINKAGE_NAME (sym, "this");
c5aa993b 690 break;
c906108c 691
c5aa993b 692 case 'v': /* $vtbl_ptr_type */
c5aa993b 693 goto normal;
c906108c 694
c5aa993b 695 case 'e':
1c9e8358 696 SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
c5aa993b 697 break;
c906108c 698
c5aa993b
JM
699 case '_':
700 /* This was an anonymous type that was never fixed up. */
701 goto normal;
c906108c 702
c5aa993b
JM
703 case 'X':
704 /* SunPRO (3.0 at least) static variable encoding. */
5e2b427d 705 if (gdbarch_static_transform_name_p (gdbarch))
149ad273 706 goto normal;
c378eb4e 707 /* ... fall through ... */
c906108c 708
c5aa993b 709 default:
e2e0b3e5 710 complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
23136709 711 string);
c378eb4e 712 goto normal; /* Do *something* with it. */
c906108c
SS
713 }
714 }
c906108c
SS
715 else
716 {
717 normal:
df8a16a1 718 if (SYMBOL_LANGUAGE (sym) == language_cplus)
71c25dea
TT
719 {
720 char *name = alloca (p - string + 1);
433759f7 721
71c25dea
TT
722 memcpy (name, string, p - string);
723 name[p - string] = '\0';
724 new_name = cp_canonicalize_string (name);
71c25dea
TT
725 }
726 if (new_name != NULL)
727 {
04a679b8 728 SYMBOL_SET_NAMES (sym, new_name, strlen (new_name), 1, objfile);
71c25dea
TT
729 xfree (new_name);
730 }
731 else
04a679b8 732 SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
45c58896
SW
733
734 if (SYMBOL_LANGUAGE (sym) == language_cplus)
a10964d1 735 cp_scan_for_anonymous_namespaces (sym, objfile);
45c58896 736
c906108c
SS
737 }
738 p++;
739
740 /* Determine the type of name being defined. */
741#if 0
742 /* Getting GDB to correctly skip the symbol on an undefined symbol
743 descriptor and not ever dump core is a very dodgy proposition if
744 we do things this way. I say the acorn RISC machine can just
745 fix their compiler. */
746 /* The Acorn RISC machine's compiler can put out locals that don't
747 start with "234=" or "(3,4)=", so assume anything other than the
748 deftypes we know how to handle is a local. */
749 if (!strchr ("cfFGpPrStTvVXCR", *p))
750#else
751 if (isdigit (*p) || *p == '(' || *p == '-')
752#endif
753 deftype = 'l';
754 else
755 deftype = *p++;
756
757 switch (deftype)
758 {
759 case 'c':
760 /* c is a special case, not followed by a type-number.
c5aa993b
JM
761 SYMBOL:c=iVALUE for an integer constant symbol.
762 SYMBOL:c=rVALUE for a floating constant symbol.
763 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
764 e.g. "b:c=e6,0" for "const b = blob1"
765 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
c906108c
SS
766 if (*p != '=')
767 {
f1e6e072 768 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
c906108c 769 SYMBOL_TYPE (sym) = error_type (&p, objfile);
176620f1 770 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
771 add_symbol_to_list (sym, &file_symbols);
772 return sym;
773 }
774 ++p;
775 switch (*p++)
776 {
777 case 'r':
778 {
779 double d = atof (p);
4e38b386 780 gdb_byte *dbl_valu;
6ccb9162 781 struct type *dbl_type;
c906108c
SS
782
783 /* FIXME-if-picky-about-floating-accuracy: Should be using
784 target arithmetic to get the value. real.c in GCC
785 probably has the necessary code. */
786
46bf5051 787 dbl_type = objfile_type (objfile)->builtin_double;
4e38b386 788 dbl_valu =
4a146b47 789 obstack_alloc (&objfile->objfile_obstack,
6ccb9162
UW
790 TYPE_LENGTH (dbl_type));
791 store_typed_floating (dbl_valu, dbl_type, d);
792
793 SYMBOL_TYPE (sym) = dbl_type;
c906108c 794 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
f1e6e072 795 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
c906108c
SS
796 }
797 break;
798 case 'i':
799 {
800 /* Defining integer constants this way is kind of silly,
801 since 'e' constants allows the compiler to give not
802 only the value, but the type as well. C has at least
803 int, long, unsigned int, and long long as constant
804 types; other languages probably should have at least
805 unsigned as well as signed constants. */
806
46bf5051 807 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
c906108c 808 SYMBOL_VALUE (sym) = atoi (p);
f1e6e072 809 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
c906108c
SS
810 }
811 break;
ec8a089a
PM
812
813 case 'c':
814 {
815 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
816 SYMBOL_VALUE (sym) = atoi (p);
f1e6e072 817 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
ec8a089a
PM
818 }
819 break;
820
821 case 's':
822 {
823 struct type *range_type;
824 int ind = 0;
825 char quote = *p++;
ec8a089a
PM
826 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
827 gdb_byte *string_value;
828
829 if (quote != '\'' && quote != '"')
830 {
f1e6e072 831 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
ec8a089a
PM
832 SYMBOL_TYPE (sym) = error_type (&p, objfile);
833 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
834 add_symbol_to_list (sym, &file_symbols);
835 return sym;
836 }
837
838 /* Find matching quote, rejecting escaped quotes. */
839 while (*p && *p != quote)
840 {
841 if (*p == '\\' && p[1] == quote)
842 {
843 string_local[ind] = (gdb_byte) quote;
844 ind++;
845 p += 2;
846 }
847 else if (*p)
848 {
849 string_local[ind] = (gdb_byte) (*p);
850 ind++;
851 p++;
852 }
853 }
854 if (*p != quote)
855 {
f1e6e072 856 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
ec8a089a
PM
857 SYMBOL_TYPE (sym) = error_type (&p, objfile);
858 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
859 add_symbol_to_list (sym, &file_symbols);
860 return sym;
861 }
862
863 /* NULL terminate the string. */
864 string_local[ind] = 0;
3e43a32a 865 range_type
0c9c3474
SA
866 = create_static_range_type (NULL,
867 objfile_type (objfile)->builtin_int,
868 0, ind);
ec8a089a
PM
869 SYMBOL_TYPE (sym) = create_array_type (NULL,
870 objfile_type (objfile)->builtin_char,
871 range_type);
872 string_value = obstack_alloc (&objfile->objfile_obstack, ind + 1);
873 memcpy (string_value, string_local, ind + 1);
874 p++;
875
876 SYMBOL_VALUE_BYTES (sym) = string_value;
f1e6e072 877 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
ec8a089a
PM
878 }
879 break;
880
c906108c
SS
881 case 'e':
882 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
883 can be represented as integral.
884 e.g. "b:c=e6,0" for "const b = blob1"
885 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
886 {
f1e6e072 887 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
c906108c
SS
888 SYMBOL_TYPE (sym) = read_type (&p, objfile);
889
890 if (*p != ',')
891 {
892 SYMBOL_TYPE (sym) = error_type (&p, objfile);
893 break;
894 }
895 ++p;
896
897 /* If the value is too big to fit in an int (perhaps because
898 it is unsigned), or something like that, we silently get
899 a bogus value. The type and everything else about it is
900 correct. Ideally, we should be using whatever we have
901 available for parsing unsigned and long long values,
902 however. */
903 SYMBOL_VALUE (sym) = atoi (p);
904 }
905 break;
906 default:
907 {
f1e6e072 908 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
c906108c
SS
909 SYMBOL_TYPE (sym) = error_type (&p, objfile);
910 }
911 }
176620f1 912 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
913 add_symbol_to_list (sym, &file_symbols);
914 return sym;
915
916 case 'C':
917 /* The name of a caught exception. */
918 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 919 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
176620f1 920 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
921 SYMBOL_VALUE_ADDRESS (sym) = valu;
922 add_symbol_to_list (sym, &local_symbols);
923 break;
924
925 case 'f':
926 /* A static function definition. */
927 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 928 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
176620f1 929 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
930 add_symbol_to_list (sym, &file_symbols);
931 /* fall into process_function_types. */
932
933 process_function_types:
934 /* Function result types are described as the result type in stabs.
c5aa993b
JM
935 We need to convert this to the function-returning-type-X type
936 in GDB. E.g. "int" is converted to "function returning int". */
c906108c
SS
937 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
938 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
939
1e698235
DJ
940 /* All functions in C++ have prototypes. Stabs does not offer an
941 explicit way to identify prototyped or unprototyped functions,
942 but both GCC and Sun CC emit stabs for the "call-as" type rather
943 than the "declared-as" type for unprototyped functions, so
944 we treat all functions as if they were prototyped. This is used
945 primarily for promotion when calling the function from GDB. */
876cecd0 946 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
c906108c 947
c378eb4e 948 /* fall into process_prototype_types. */
c906108c
SS
949
950 process_prototype_types:
951 /* Sun acc puts declared types of arguments here. */
952 if (*p == ';')
953 {
954 struct type *ftype = SYMBOL_TYPE (sym);
955 int nsemi = 0;
956 int nparams = 0;
957 char *p1 = p;
958
959 /* Obtain a worst case guess for the number of arguments
960 by counting the semicolons. */
961 while (*p1)
962 {
963 if (*p1++ == ';')
964 nsemi++;
965 }
966
c378eb4e 967 /* Allocate parameter information fields and fill them in. */
c906108c
SS
968 TYPE_FIELDS (ftype) = (struct field *)
969 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
970 while (*p++ == ';')
971 {
972 struct type *ptype;
973
974 /* A type number of zero indicates the start of varargs.
c5aa993b 975 FIXME: GDB currently ignores vararg functions. */
c906108c
SS
976 if (p[0] == '0' && p[1] == '\0')
977 break;
978 ptype = read_type (&p, objfile);
979
980 /* The Sun compilers mark integer arguments, which should
c5aa993b 981 be promoted to the width of the calling conventions, with
c378eb4e 982 a type which references itself. This type is turned into
c5aa993b 983 a TYPE_CODE_VOID type by read_type, and we have to turn
5e2b427d
UW
984 it back into builtin_int here.
985 FIXME: Do we need a new builtin_promoted_int_arg ? */
c906108c 986 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
46bf5051 987 ptype = objfile_type (objfile)->builtin_int;
8176bb6d
DJ
988 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
989 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
c906108c
SS
990 }
991 TYPE_NFIELDS (ftype) = nparams;
876cecd0 992 TYPE_PROTOTYPED (ftype) = 1;
c906108c
SS
993 }
994 break;
995
996 case 'F':
997 /* A global function definition. */
998 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 999 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
176620f1 1000 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1001 add_symbol_to_list (sym, &global_symbols);
1002 goto process_function_types;
1003
1004 case 'G':
1005 /* For a class G (global) symbol, it appears that the
c5aa993b
JM
1006 value is not correct. It is necessary to search for the
1007 corresponding linker definition to find the value.
1008 These definitions appear at the end of the namelist. */
c906108c 1009 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1010 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
176620f1 1011 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c 1012 /* Don't add symbol references to global_sym_chain.
c5aa993b
JM
1013 Symbol references don't have valid names and wont't match up with
1014 minimal symbols when the global_sym_chain is relocated.
1015 We'll fixup symbol references when we fixup the defining symbol. */
3567439c 1016 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
c906108c 1017 {
3567439c 1018 i = hashname (SYMBOL_LINKAGE_NAME (sym));
c5aa993b
JM
1019 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1020 global_sym_chain[i] = sym;
c906108c
SS
1021 }
1022 add_symbol_to_list (sym, &global_symbols);
1023 break;
1024
1025 /* This case is faked by a conditional above,
c5aa993b
JM
1026 when there is no code letter in the dbx data.
1027 Dbx data never actually contains 'l'. */
c906108c
SS
1028 case 's':
1029 case 'l':
1030 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1031 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
c906108c 1032 SYMBOL_VALUE (sym) = valu;
176620f1 1033 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1034 add_symbol_to_list (sym, &local_symbols);
1035 break;
1036
1037 case 'p':
1038 if (*p == 'F')
1039 /* pF is a two-letter code that means a function parameter in Fortran.
1040 The type-number specifies the type of the return value.
1041 Translate it into a pointer-to-function type. */
1042 {
1043 p++;
1044 SYMBOL_TYPE (sym)
1045 = lookup_pointer_type
c5aa993b 1046 (lookup_function_type (read_type (&p, objfile)));
c906108c
SS
1047 }
1048 else
1049 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1050
f1e6e072 1051 SYMBOL_ACLASS_INDEX (sym) = LOC_ARG;
c906108c 1052 SYMBOL_VALUE (sym) = valu;
176620f1 1053 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
2a2d4dc3 1054 SYMBOL_IS_ARGUMENT (sym) = 1;
c906108c
SS
1055 add_symbol_to_list (sym, &local_symbols);
1056
5e2b427d 1057 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
c906108c
SS
1058 {
1059 /* On little-endian machines, this crud is never necessary,
1060 and, if the extra bytes contain garbage, is harmful. */
1061 break;
1062 }
1063
1064 /* If it's gcc-compiled, if it says `short', believe it. */
f73e88f9 1065 if (processing_gcc_compilation
5e2b427d 1066 || gdbarch_believe_pcc_promotion (gdbarch))
c906108c
SS
1067 break;
1068
5e2b427d 1069 if (!gdbarch_believe_pcc_promotion (gdbarch))
7a292a7a 1070 {
8ee56bcf
AC
1071 /* If PCC says a parameter is a short or a char, it is
1072 really an int. */
5e2b427d
UW
1073 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1074 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
8ee56bcf 1075 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
7a292a7a 1076 {
8ee56bcf
AC
1077 SYMBOL_TYPE (sym) =
1078 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
46bf5051
UW
1079 ? objfile_type (objfile)->builtin_unsigned_int
1080 : objfile_type (objfile)->builtin_int;
7a292a7a 1081 }
8ee56bcf 1082 break;
7a292a7a 1083 }
c906108c
SS
1084
1085 case 'P':
1086 /* acc seems to use P to declare the prototypes of functions that
1087 are referenced by this file. gdb is not prepared to deal
1088 with this extra information. FIXME, it ought to. */
1089 if (type == N_FUN)
1090 {
1091 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1092 goto process_prototype_types;
1093 }
c5aa993b 1094 /*FALLTHROUGH */
c906108c
SS
1095
1096 case 'R':
1097 /* Parameter which is in a register. */
1098 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1099 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
2a2d4dc3 1100 SYMBOL_IS_ARGUMENT (sym) = 1;
768a979c 1101 SYMBOL_VALUE (sym) = valu;
176620f1 1102 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1103 add_symbol_to_list (sym, &local_symbols);
1104 break;
1105
1106 case 'r':
1107 /* Register variable (either global or local). */
1108 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1109 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
768a979c 1110 SYMBOL_VALUE (sym) = valu;
176620f1 1111 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1112 if (within_function)
1113 {
192cb3d4
MK
1114 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1115 the same name to represent an argument passed in a
1116 register. GCC uses 'P' for the same case. So if we find
1117 such a symbol pair we combine it into one 'P' symbol.
1118 For Sun cc we need to do this regardless of
1119 stabs_argument_has_addr, because the compiler puts out
1120 the 'p' symbol even if it never saves the argument onto
1121 the stack.
1122
1123 On most machines, we want to preserve both symbols, so
1124 that we can still get information about what is going on
1125 with the stack (VAX for computing args_printed, using
1126 stack slots instead of saved registers in backtraces,
1127 etc.).
c906108c
SS
1128
1129 Note that this code illegally combines
c5aa993b 1130 main(argc) struct foo argc; { register struct foo argc; }
c906108c
SS
1131 but this case is considered pathological and causes a warning
1132 from a decent compiler. */
1133
1134 if (local_symbols
1135 && local_symbols->nsyms > 0
5e2b427d 1136 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
c906108c
SS
1137 {
1138 struct symbol *prev_sym;
433759f7 1139
c906108c
SS
1140 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1141 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1142 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
3567439c
DJ
1143 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1144 SYMBOL_LINKAGE_NAME (sym)) == 0)
c906108c 1145 {
f1e6e072 1146 SYMBOL_ACLASS_INDEX (prev_sym) = stab_register_index;
c906108c
SS
1147 /* Use the type from the LOC_REGISTER; that is the type
1148 that is actually in that register. */
1149 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1150 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1151 sym = prev_sym;
1152 break;
1153 }
1154 }
c5aa993b 1155 add_symbol_to_list (sym, &local_symbols);
c906108c
SS
1156 }
1157 else
c5aa993b 1158 add_symbol_to_list (sym, &file_symbols);
c906108c
SS
1159 break;
1160
1161 case 'S':
c378eb4e 1162 /* Static symbol at top level of file. */
c906108c 1163 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1164 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
c906108c 1165 SYMBOL_VALUE_ADDRESS (sym) = valu;
5e2b427d
UW
1166 if (gdbarch_static_transform_name_p (gdbarch)
1167 && gdbarch_static_transform_name (gdbarch,
3567439c
DJ
1168 SYMBOL_LINKAGE_NAME (sym))
1169 != SYMBOL_LINKAGE_NAME (sym))
c5aa993b 1170 {
3b7344d5 1171 struct bound_minimal_symbol msym;
433759f7 1172
3e43a32a
MS
1173 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1174 NULL, objfile);
3b7344d5 1175 if (msym.minsym != NULL)
c5aa993b 1176 {
0d5cff50 1177 const char *new_name = gdbarch_static_transform_name
3567439c 1178 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
433759f7 1179
3567439c 1180 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
77e371c0 1181 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
c5aa993b
JM
1182 }
1183 }
176620f1 1184 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1185 add_symbol_to_list (sym, &file_symbols);
1186 break;
1187
1188 case 't':
52eea4ce
JB
1189 /* In Ada, there is no distinction between typedef and non-typedef;
1190 any type declaration implicitly has the equivalent of a typedef,
c378eb4e 1191 and thus 't' is in fact equivalent to 'Tt'.
52eea4ce
JB
1192
1193 Therefore, for Ada units, we check the character immediately
1194 before the 't', and if we do not find a 'T', then make sure to
1195 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1196 will be stored in the VAR_DOMAIN). If the symbol was indeed
1197 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1198 elsewhere, so we don't need to take care of that.
1199
1200 This is important to do, because of forward references:
1201 The cleanup of undefined types stored in undef_types only uses
1202 STRUCT_DOMAIN symbols to perform the replacement. */
1203 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1204
e2cd42dd 1205 /* Typedef */
c906108c
SS
1206 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1207
1208 /* For a nameless type, we don't want a create a symbol, thus we
c378eb4e 1209 did not use `sym'. Return without further processing. */
c5aa993b
JM
1210 if (nameless)
1211 return NULL;
c906108c 1212
f1e6e072 1213 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
c906108c 1214 SYMBOL_VALUE (sym) = valu;
176620f1 1215 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c 1216 /* C++ vagaries: we may have a type which is derived from
c5aa993b
JM
1217 a base type which did not have its name defined when the
1218 derived class was output. We fill in the derived class's
1219 base part member's name here in that case. */
c906108c
SS
1220 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1221 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1222 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1223 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1224 {
1225 int j;
433759f7 1226
c906108c
SS
1227 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1228 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1229 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1230 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1231 }
1232
1233 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1234 {
1235 /* gcc-2.6 or later (when using -fvtable-thunks)
1236 emits a unique named type for a vtable entry.
c378eb4e 1237 Some gdb code depends on that specific name. */
c906108c
SS
1238 extern const char vtbl_ptr_name[];
1239
1240 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
3567439c 1241 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
c906108c
SS
1242 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1243 {
1244 /* If we are giving a name to a type such as "pointer to
c5aa993b
JM
1245 foo" or "function returning foo", we better not set
1246 the TYPE_NAME. If the program contains "typedef char
1247 *caddr_t;", we don't want all variables of type char
1248 * to print as caddr_t. This is not just a
1249 consequence of GDB's type management; PCC and GCC (at
1250 least through version 2.4) both output variables of
1251 either type char * or caddr_t with the type number
1252 defined in the 't' symbol for caddr_t. If a future
1253 compiler cleans this up it GDB is not ready for it
1254 yet, but if it becomes ready we somehow need to
1255 disable this check (without breaking the PCC/GCC2.4
1256 case).
1257
1258 Sigh.
1259
1260 Fortunately, this check seems not to be necessary
1261 for anything except pointers or functions. */
c378eb4e
MS
1262 /* ezannoni: 2000-10-26. This seems to apply for
1263 versions of gcc older than 2.8. This was the original
49d97c60 1264 problem: with the following code gdb would tell that
c378eb4e
MS
1265 the type for name1 is caddr_t, and func is char().
1266
49d97c60
EZ
1267 typedef char *caddr_t;
1268 char *name2;
1269 struct x
1270 {
c378eb4e 1271 char *name1;
49d97c60
EZ
1272 } xx;
1273 char *func()
1274 {
1275 }
1276 main () {}
1277 */
1278
c378eb4e 1279 /* Pascal accepts names for pointer types. */
49d97c60
EZ
1280 if (current_subfile->language == language_pascal)
1281 {
3567439c 1282 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
49d97c60 1283 }
c906108c
SS
1284 }
1285 else
3567439c 1286 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
c906108c
SS
1287 }
1288
1289 add_symbol_to_list (sym, &file_symbols);
52eea4ce
JB
1290
1291 if (synonym)
1292 {
1293 /* Create the STRUCT_DOMAIN clone. */
e623cf5d 1294 struct symbol *struct_sym = allocate_symbol (objfile);
52eea4ce
JB
1295
1296 *struct_sym = *sym;
f1e6e072 1297 SYMBOL_ACLASS_INDEX (struct_sym) = LOC_TYPEDEF;
52eea4ce
JB
1298 SYMBOL_VALUE (struct_sym) = valu;
1299 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1300 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
3e43a32a
MS
1301 TYPE_NAME (SYMBOL_TYPE (sym))
1302 = obconcat (&objfile->objfile_obstack,
1303 SYMBOL_LINKAGE_NAME (sym),
1304 (char *) NULL);
52eea4ce
JB
1305 add_symbol_to_list (struct_sym, &file_symbols);
1306 }
1307
c906108c
SS
1308 break;
1309
1310 case 'T':
1311 /* Struct, union, or enum tag. For GNU C++, this can be be followed
c5aa993b 1312 by 't' which means we are typedef'ing it as well. */
c906108c
SS
1313 synonym = *p == 't';
1314
1315 if (synonym)
1316 p++;
c906108c
SS
1317
1318 SYMBOL_TYPE (sym) = read_type (&p, objfile);
25caa7a8 1319
c906108c 1320 /* For a nameless type, we don't want a create a symbol, thus we
c378eb4e 1321 did not use `sym'. Return without further processing. */
c5aa993b
JM
1322 if (nameless)
1323 return NULL;
c906108c 1324
f1e6e072 1325 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
c906108c 1326 SYMBOL_VALUE (sym) = valu;
176620f1 1327 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 1328 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
3e43a32a
MS
1329 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1330 = obconcat (&objfile->objfile_obstack,
1331 SYMBOL_LINKAGE_NAME (sym),
1332 (char *) NULL);
c906108c
SS
1333 add_symbol_to_list (sym, &file_symbols);
1334
1335 if (synonym)
1336 {
c378eb4e 1337 /* Clone the sym and then modify it. */
e623cf5d 1338 struct symbol *typedef_sym = allocate_symbol (objfile);
433759f7 1339
c906108c 1340 *typedef_sym = *sym;
f1e6e072 1341 SYMBOL_ACLASS_INDEX (typedef_sym) = LOC_TYPEDEF;
c906108c 1342 SYMBOL_VALUE (typedef_sym) = valu;
176620f1 1343 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
c906108c 1344 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
3e43a32a
MS
1345 TYPE_NAME (SYMBOL_TYPE (sym))
1346 = obconcat (&objfile->objfile_obstack,
1347 SYMBOL_LINKAGE_NAME (sym),
1348 (char *) NULL);
c906108c
SS
1349 add_symbol_to_list (typedef_sym, &file_symbols);
1350 }
1351 break;
1352
1353 case 'V':
c378eb4e 1354 /* Static symbol of local scope. */
c906108c 1355 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1356 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
c906108c 1357 SYMBOL_VALUE_ADDRESS (sym) = valu;
5e2b427d
UW
1358 if (gdbarch_static_transform_name_p (gdbarch)
1359 && gdbarch_static_transform_name (gdbarch,
3567439c
DJ
1360 SYMBOL_LINKAGE_NAME (sym))
1361 != SYMBOL_LINKAGE_NAME (sym))
c5aa993b 1362 {
3b7344d5 1363 struct bound_minimal_symbol msym;
433759f7
MS
1364
1365 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1366 NULL, objfile);
3b7344d5 1367 if (msym.minsym != NULL)
c5aa993b 1368 {
0d5cff50 1369 const char *new_name = gdbarch_static_transform_name
3567439c 1370 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
433759f7 1371
3567439c 1372 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
77e371c0 1373 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
c5aa993b
JM
1374 }
1375 }
176620f1 1376 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1377 add_symbol_to_list (sym, &local_symbols);
1378 break;
1379
1380 case 'v':
1381 /* Reference parameter */
1382 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1383 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
2a2d4dc3 1384 SYMBOL_IS_ARGUMENT (sym) = 1;
c906108c 1385 SYMBOL_VALUE (sym) = valu;
176620f1 1386 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1387 add_symbol_to_list (sym, &local_symbols);
1388 break;
1389
1390 case 'a':
1391 /* Reference parameter which is in a register. */
1392 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1393 SYMBOL_ACLASS_INDEX (sym) = stab_regparm_index;
2a2d4dc3 1394 SYMBOL_IS_ARGUMENT (sym) = 1;
768a979c 1395 SYMBOL_VALUE (sym) = valu;
176620f1 1396 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1397 add_symbol_to_list (sym, &local_symbols);
1398 break;
1399
1400 case 'X':
1401 /* This is used by Sun FORTRAN for "function result value".
c5aa993b
JM
1402 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1403 that Pascal uses it too, but when I tried it Pascal used
1404 "x:3" (local symbol) instead. */
c906108c 1405 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1406 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
c906108c 1407 SYMBOL_VALUE (sym) = valu;
176620f1 1408 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1409 add_symbol_to_list (sym, &local_symbols);
1410 break;
c906108c
SS
1411
1412 default:
1413 SYMBOL_TYPE (sym) = error_type (&p, objfile);
f1e6e072 1414 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
c906108c 1415 SYMBOL_VALUE (sym) = 0;
176620f1 1416 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1417 add_symbol_to_list (sym, &file_symbols);
1418 break;
1419 }
1420
192cb3d4
MK
1421 /* Some systems pass variables of certain types by reference instead
1422 of by value, i.e. they will pass the address of a structure (in a
1423 register or on the stack) instead of the structure itself. */
c906108c 1424
5e2b427d 1425 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
2a2d4dc3 1426 && SYMBOL_IS_ARGUMENT (sym))
c906108c 1427 {
2a2d4dc3 1428 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
192cb3d4 1429 variables passed in a register). */
2a2d4dc3 1430 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
f1e6e072 1431 SYMBOL_ACLASS_INDEX (sym) = LOC_REGPARM_ADDR;
192cb3d4
MK
1432 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1433 and subsequent arguments on SPARC, for example). */
1434 else if (SYMBOL_CLASS (sym) == LOC_ARG)
f1e6e072 1435 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
c906108c
SS
1436 }
1437
c906108c
SS
1438 return sym;
1439}
1440
c906108c
SS
1441/* Skip rest of this symbol and return an error type.
1442
1443 General notes on error recovery: error_type always skips to the
1444 end of the symbol (modulo cretinous dbx symbol name continuation).
1445 Thus code like this:
1446
1447 if (*(*pp)++ != ';')
c5aa993b 1448 return error_type (pp, objfile);
c906108c
SS
1449
1450 is wrong because if *pp starts out pointing at '\0' (typically as the
1451 result of an earlier error), it will be incremented to point to the
1452 start of the next symbol, which might produce strange results, at least
1453 if you run off the end of the string table. Instead use
1454
1455 if (**pp != ';')
c5aa993b 1456 return error_type (pp, objfile);
c906108c
SS
1457 ++*pp;
1458
1459 or
1460
1461 if (**pp != ';')
c5aa993b 1462 foo = error_type (pp, objfile);
c906108c 1463 else
c5aa993b 1464 ++*pp;
c906108c
SS
1465
1466 And in case it isn't obvious, the point of all this hair is so the compiler
1467 can define new types and new syntaxes, and old versions of the
1468 debugger will be able to read the new symbol tables. */
1469
1470static struct type *
fba45db2 1471error_type (char **pp, struct objfile *objfile)
c906108c 1472{
3e43a32a
MS
1473 complaint (&symfile_complaints,
1474 _("couldn't parse type; debugger out of date?"));
c906108c
SS
1475 while (1)
1476 {
1477 /* Skip to end of symbol. */
1478 while (**pp != '\0')
1479 {
1480 (*pp)++;
1481 }
1482
1483 /* Check for and handle cretinous dbx symbol name continuation! */
1484 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1485 {
1486 *pp = next_symbol_text (objfile);
1487 }
1488 else
1489 {
1490 break;
1491 }
1492 }
46bf5051 1493 return objfile_type (objfile)->builtin_error;
c906108c 1494}
c906108c 1495\f
c5aa993b 1496
c906108c
SS
1497/* Read type information or a type definition; return the type. Even
1498 though this routine accepts either type information or a type
1499 definition, the distinction is relevant--some parts of stabsread.c
1500 assume that type information starts with a digit, '-', or '(' in
1501 deciding whether to call read_type. */
1502
a7a48797 1503static struct type *
aa1ee363 1504read_type (char **pp, struct objfile *objfile)
c906108c 1505{
52f0bd74 1506 struct type *type = 0;
c906108c
SS
1507 struct type *type1;
1508 int typenums[2];
1509 char type_descriptor;
1510
1511 /* Size in bits of type if specified by a type attribute, or -1 if
1512 there is no size attribute. */
1513 int type_size = -1;
1514
c378eb4e 1515 /* Used to distinguish string and bitstring from char-array and set. */
c906108c
SS
1516 int is_string = 0;
1517
c378eb4e 1518 /* Used to distinguish vector from array. */
e2cd42dd
MS
1519 int is_vector = 0;
1520
c906108c
SS
1521 /* Read type number if present. The type number may be omitted.
1522 for instance in a two-dimensional array declared with type
1523 "ar1;1;10;ar1;1;10;4". */
1524 if ((**pp >= '0' && **pp <= '9')
1525 || **pp == '('
1526 || **pp == '-')
1527 {
1528 if (read_type_number (pp, typenums) != 0)
1529 return error_type (pp, objfile);
c5aa993b 1530
c906108c 1531 if (**pp != '=')
8cfe231d
JB
1532 {
1533 /* Type is not being defined here. Either it already
1534 exists, or this is a forward reference to it.
1535 dbx_alloc_type handles both cases. */
1536 type = dbx_alloc_type (typenums, objfile);
1537
1538 /* If this is a forward reference, arrange to complain if it
1539 doesn't get patched up by the time we're done
1540 reading. */
1541 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
bf362611 1542 add_undefined_type (type, typenums);
8cfe231d
JB
1543
1544 return type;
1545 }
c906108c
SS
1546
1547 /* Type is being defined here. */
1548 /* Skip the '='.
c5aa993b
JM
1549 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1550 (*pp) += 2;
c906108c
SS
1551 }
1552 else
1553 {
1554 /* 'typenums=' not present, type is anonymous. Read and return
c5aa993b 1555 the definition, but don't put it in the type vector. */
c906108c
SS
1556 typenums[0] = typenums[1] = -1;
1557 (*pp)++;
1558 }
1559
c5aa993b 1560again:
c906108c
SS
1561 type_descriptor = (*pp)[-1];
1562 switch (type_descriptor)
1563 {
1564 case 'x':
1565 {
1566 enum type_code code;
1567
1568 /* Used to index through file_symbols. */
1569 struct pending *ppt;
1570 int i;
c5aa993b 1571
c906108c
SS
1572 /* Name including "struct", etc. */
1573 char *type_name;
c5aa993b 1574
c906108c
SS
1575 {
1576 char *from, *to, *p, *q1, *q2;
c5aa993b 1577
c906108c
SS
1578 /* Set the type code according to the following letter. */
1579 switch ((*pp)[0])
1580 {
1581 case 's':
1582 code = TYPE_CODE_STRUCT;
1583 break;
1584 case 'u':
1585 code = TYPE_CODE_UNION;
1586 break;
1587 case 'e':
1588 code = TYPE_CODE_ENUM;
1589 break;
1590 default:
1591 {
1592 /* Complain and keep going, so compilers can invent new
1593 cross-reference types. */
23136709 1594 complaint (&symfile_complaints,
3e43a32a
MS
1595 _("Unrecognized cross-reference type `%c'"),
1596 (*pp)[0]);
c906108c
SS
1597 code = TYPE_CODE_STRUCT;
1598 break;
1599 }
1600 }
c5aa993b 1601
c906108c
SS
1602 q1 = strchr (*pp, '<');
1603 p = strchr (*pp, ':');
1604 if (p == NULL)
1605 return error_type (pp, objfile);
1606 if (q1 && p > q1 && p[1] == ':')
1607 {
1608 int nesting_level = 0;
433759f7 1609
c906108c
SS
1610 for (q2 = q1; *q2; q2++)
1611 {
1612 if (*q2 == '<')
1613 nesting_level++;
1614 else if (*q2 == '>')
1615 nesting_level--;
1616 else if (*q2 == ':' && nesting_level == 0)
1617 break;
1618 }
1619 p = q2;
1620 if (*p != ':')
1621 return error_type (pp, objfile);
1622 }
71c25dea
TT
1623 type_name = NULL;
1624 if (current_subfile->language == language_cplus)
1625 {
1626 char *new_name, *name = alloca (p - *pp + 1);
433759f7 1627
71c25dea
TT
1628 memcpy (name, *pp, p - *pp);
1629 name[p - *pp] = '\0';
1630 new_name = cp_canonicalize_string (name);
1631 if (new_name != NULL)
1632 {
10f0c4bb
TT
1633 type_name = obstack_copy0 (&objfile->objfile_obstack,
1634 new_name, strlen (new_name));
71c25dea
TT
1635 xfree (new_name);
1636 }
1637 }
1638 if (type_name == NULL)
1639 {
3e43a32a
MS
1640 to = type_name = (char *)
1641 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
71c25dea
TT
1642
1643 /* Copy the name. */
1644 from = *pp + 1;
1645 while (from < p)
1646 *to++ = *from++;
1647 *to = '\0';
1648 }
c5aa993b 1649
c906108c
SS
1650 /* Set the pointer ahead of the name which we just read, and
1651 the colon. */
71c25dea 1652 *pp = p + 1;
c906108c
SS
1653 }
1654
149d821b
JB
1655 /* If this type has already been declared, then reuse the same
1656 type, rather than allocating a new one. This saves some
1657 memory. */
c906108c
SS
1658
1659 for (ppt = file_symbols; ppt; ppt = ppt->next)
1660 for (i = 0; i < ppt->nsyms; i++)
1661 {
1662 struct symbol *sym = ppt->symbol[i];
1663
1664 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
176620f1 1665 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
c906108c 1666 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
3567439c 1667 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
c906108c 1668 {
b99607ea 1669 obstack_free (&objfile->objfile_obstack, type_name);
c906108c 1670 type = SYMBOL_TYPE (sym);
149d821b 1671 if (typenums[0] != -1)
46bf5051 1672 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
1673 return type;
1674 }
1675 }
1676
1677 /* Didn't find the type to which this refers, so we must
1678 be dealing with a forward reference. Allocate a type
1679 structure for it, and keep track of it so we can
1680 fill in the rest of the fields when we get the full
1681 type. */
1682 type = dbx_alloc_type (typenums, objfile);
1683 TYPE_CODE (type) = code;
1684 TYPE_TAG_NAME (type) = type_name;
c5aa993b 1685 INIT_CPLUS_SPECIFIC (type);
876cecd0 1686 TYPE_STUB (type) = 1;
c906108c 1687
bf362611 1688 add_undefined_type (type, typenums);
c906108c
SS
1689 return type;
1690 }
1691
c5aa993b 1692 case '-': /* RS/6000 built-in type */
c906108c
SS
1693 case '0':
1694 case '1':
1695 case '2':
1696 case '3':
1697 case '4':
1698 case '5':
1699 case '6':
1700 case '7':
1701 case '8':
1702 case '9':
1703 case '(':
1704 (*pp)--;
1705
1706 /* We deal with something like t(1,2)=(3,4)=... which
c378eb4e 1707 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
c906108c
SS
1708
1709 /* Allocate and enter the typedef type first.
c378eb4e 1710 This handles recursive types. */
c906108c
SS
1711 type = dbx_alloc_type (typenums, objfile);
1712 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
c5aa993b
JM
1713 {
1714 struct type *xtype = read_type (pp, objfile);
433759f7 1715
c906108c
SS
1716 if (type == xtype)
1717 {
1718 /* It's being defined as itself. That means it is "void". */
1719 TYPE_CODE (type) = TYPE_CODE_VOID;
1720 TYPE_LENGTH (type) = 1;
1721 }
1722 else if (type_size >= 0 || is_string)
1723 {
dd6bda65
DJ
1724 /* This is the absolute wrong way to construct types. Every
1725 other debug format has found a way around this problem and
1726 the related problems with unnecessarily stubbed types;
1727 someone motivated should attempt to clean up the issue
1728 here as well. Once a type pointed to has been created it
13a393b0
JB
1729 should not be modified.
1730
1731 Well, it's not *absolutely* wrong. Constructing recursive
1732 types (trees, linked lists) necessarily entails modifying
1733 types after creating them. Constructing any loop structure
1734 entails side effects. The Dwarf 2 reader does handle this
1735 more gracefully (it never constructs more than once
1736 instance of a type object, so it doesn't have to copy type
1737 objects wholesale), but it still mutates type objects after
1738 other folks have references to them.
1739
1740 Keep in mind that this circularity/mutation issue shows up
1741 at the source language level, too: C's "incomplete types",
1742 for example. So the proper cleanup, I think, would be to
1743 limit GDB's type smashing to match exactly those required
1744 by the source language. So GDB could have a
1745 "complete_this_type" function, but never create unnecessary
1746 copies of a type otherwise. */
dd6bda65 1747 replace_type (type, xtype);
c906108c
SS
1748 TYPE_NAME (type) = NULL;
1749 TYPE_TAG_NAME (type) = NULL;
1750 }
1751 else
1752 {
876cecd0 1753 TYPE_TARGET_STUB (type) = 1;
c906108c
SS
1754 TYPE_TARGET_TYPE (type) = xtype;
1755 }
1756 }
1757 break;
1758
c5aa993b
JM
1759 /* In the following types, we must be sure to overwrite any existing
1760 type that the typenums refer to, rather than allocating a new one
1761 and making the typenums point to the new one. This is because there
1762 may already be pointers to the existing type (if it had been
1763 forward-referenced), and we must change it to a pointer, function,
1764 reference, or whatever, *in-place*. */
c906108c 1765
e2cd42dd 1766 case '*': /* Pointer to another type */
c906108c 1767 type1 = read_type (pp, objfile);
46bf5051 1768 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
c906108c
SS
1769 break;
1770
c5aa993b 1771 case '&': /* Reference to another type */
c906108c 1772 type1 = read_type (pp, objfile);
46bf5051 1773 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile));
c906108c
SS
1774 break;
1775
c5aa993b 1776 case 'f': /* Function returning another type */
c906108c 1777 type1 = read_type (pp, objfile);
0c8b41f1 1778 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
c906108c
SS
1779 break;
1780
da966255
JB
1781 case 'g': /* Prototyped function. (Sun) */
1782 {
1783 /* Unresolved questions:
1784
1785 - According to Sun's ``STABS Interface Manual'', for 'f'
1786 and 'F' symbol descriptors, a `0' in the argument type list
1787 indicates a varargs function. But it doesn't say how 'g'
1788 type descriptors represent that info. Someone with access
1789 to Sun's toolchain should try it out.
1790
1791 - According to the comment in define_symbol (search for
1792 `process_prototype_types:'), Sun emits integer arguments as
1793 types which ref themselves --- like `void' types. Do we
1794 have to deal with that here, too? Again, someone with
1795 access to Sun's toolchain should try it out and let us
1796 know. */
1797
1798 const char *type_start = (*pp) - 1;
1799 struct type *return_type = read_type (pp, objfile);
1800 struct type *func_type
46bf5051 1801 = make_function_type (return_type,
0c8b41f1 1802 dbx_lookup_type (typenums, objfile));
da966255
JB
1803 struct type_list {
1804 struct type *type;
1805 struct type_list *next;
1806 } *arg_types = 0;
1807 int num_args = 0;
1808
1809 while (**pp && **pp != '#')
1810 {
1811 struct type *arg_type = read_type (pp, objfile);
fe978cb0
PA
1812 struct type_list *newobj = alloca (sizeof (*newobj));
1813 newobj->type = arg_type;
1814 newobj->next = arg_types;
1815 arg_types = newobj;
da966255
JB
1816 num_args++;
1817 }
1818 if (**pp == '#')
1819 ++*pp;
1820 else
1821 {
23136709 1822 complaint (&symfile_complaints,
3e43a32a
MS
1823 _("Prototyped function type didn't "
1824 "end arguments with `#':\n%s"),
23136709 1825 type_start);
da966255
JB
1826 }
1827
1828 /* If there is just one argument whose type is `void', then
1829 that's just an empty argument list. */
1830 if (arg_types
1831 && ! arg_types->next
1832 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1833 num_args = 0;
1834
1835 TYPE_FIELDS (func_type)
1836 = (struct field *) TYPE_ALLOC (func_type,
1837 num_args * sizeof (struct field));
1838 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1839 {
1840 int i;
1841 struct type_list *t;
1842
1843 /* We stuck each argument type onto the front of the list
1844 when we read it, so the list is reversed. Build the
1845 fields array right-to-left. */
1846 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1847 TYPE_FIELD_TYPE (func_type, i) = t->type;
1848 }
1849 TYPE_NFIELDS (func_type) = num_args;
876cecd0 1850 TYPE_PROTOTYPED (func_type) = 1;
da966255
JB
1851
1852 type = func_type;
1853 break;
1854 }
1855
c5aa993b 1856 case 'k': /* Const qualifier on some type (Sun) */
c906108c 1857 type = read_type (pp, objfile);
d7242108 1858 type = make_cv_type (1, TYPE_VOLATILE (type), type,
46bf5051 1859 dbx_lookup_type (typenums, objfile));
c906108c
SS
1860 break;
1861
c5aa993b 1862 case 'B': /* Volatile qual on some type (Sun) */
c906108c 1863 type = read_type (pp, objfile);
d7242108 1864 type = make_cv_type (TYPE_CONST (type), 1, type,
46bf5051 1865 dbx_lookup_type (typenums, objfile));
c906108c
SS
1866 break;
1867
1868 case '@':
c5aa993b
JM
1869 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1870 { /* Member (class & variable) type */
c906108c
SS
1871 /* FIXME -- we should be doing smash_to_XXX types here. */
1872
1873 struct type *domain = read_type (pp, objfile);
1874 struct type *memtype;
1875
1876 if (**pp != ',')
1877 /* Invalid member type data format. */
1878 return error_type (pp, objfile);
1879 ++*pp;
1880
1881 memtype = read_type (pp, objfile);
1882 type = dbx_alloc_type (typenums, objfile);
0d5de010 1883 smash_to_memberptr_type (type, domain, memtype);
c906108c 1884 }
c5aa993b
JM
1885 else
1886 /* type attribute */
c906108c
SS
1887 {
1888 char *attr = *pp;
433759f7 1889
c906108c
SS
1890 /* Skip to the semicolon. */
1891 while (**pp != ';' && **pp != '\0')
1892 ++(*pp);
1893 if (**pp == '\0')
1894 return error_type (pp, objfile);
1895 else
c5aa993b 1896 ++ * pp; /* Skip the semicolon. */
c906108c
SS
1897
1898 switch (*attr)
1899 {
e2cd42dd 1900 case 's': /* Size attribute */
c906108c
SS
1901 type_size = atoi (attr + 1);
1902 if (type_size <= 0)
1903 type_size = -1;
1904 break;
1905
e2cd42dd 1906 case 'S': /* String attribute */
c378eb4e 1907 /* FIXME: check to see if following type is array? */
c906108c
SS
1908 is_string = 1;
1909 break;
1910
e2cd42dd 1911 case 'V': /* Vector attribute */
c378eb4e 1912 /* FIXME: check to see if following type is array? */
e2cd42dd
MS
1913 is_vector = 1;
1914 break;
1915
c906108c
SS
1916 default:
1917 /* Ignore unrecognized type attributes, so future compilers
c5aa993b 1918 can invent new ones. */
c906108c
SS
1919 break;
1920 }
1921 ++*pp;
1922 goto again;
1923 }
1924 break;
1925
c5aa993b 1926 case '#': /* Method (class & fn) type */
c906108c
SS
1927 if ((*pp)[0] == '#')
1928 {
1929 /* We'll get the parameter types from the name. */
1930 struct type *return_type;
1931
1932 (*pp)++;
1933 return_type = read_type (pp, objfile);
1934 if (*(*pp)++ != ';')
23136709 1935 complaint (&symfile_complaints,
3e43a32a
MS
1936 _("invalid (minimal) member type "
1937 "data format at symtab pos %d."),
23136709 1938 symnum);
c906108c
SS
1939 type = allocate_stub_method (return_type);
1940 if (typenums[0] != -1)
46bf5051 1941 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
1942 }
1943 else
1944 {
1945 struct type *domain = read_type (pp, objfile);
1946 struct type *return_type;
ad2f7632
DJ
1947 struct field *args;
1948 int nargs, varargs;
c906108c
SS
1949
1950 if (**pp != ',')
1951 /* Invalid member type data format. */
1952 return error_type (pp, objfile);
1953 else
1954 ++(*pp);
1955
1956 return_type = read_type (pp, objfile);
ad2f7632 1957 args = read_args (pp, ';', objfile, &nargs, &varargs);
0a029df5
DJ
1958 if (args == NULL)
1959 return error_type (pp, objfile);
c906108c 1960 type = dbx_alloc_type (typenums, objfile);
ad2f7632
DJ
1961 smash_to_method_type (type, domain, return_type, args,
1962 nargs, varargs);
c906108c
SS
1963 }
1964 break;
1965
c5aa993b 1966 case 'r': /* Range type */
94e10a22 1967 type = read_range_type (pp, typenums, type_size, objfile);
c906108c 1968 if (typenums[0] != -1)
46bf5051 1969 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
1970 break;
1971
1972 case 'b':
c906108c
SS
1973 {
1974 /* Sun ACC builtin int type */
1975 type = read_sun_builtin_type (pp, typenums, objfile);
1976 if (typenums[0] != -1)
46bf5051 1977 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
1978 }
1979 break;
1980
c5aa993b 1981 case 'R': /* Sun ACC builtin float type */
c906108c
SS
1982 type = read_sun_floating_type (pp, typenums, objfile);
1983 if (typenums[0] != -1)
46bf5051 1984 *dbx_lookup_type (typenums, objfile) = type;
c906108c 1985 break;
c5aa993b
JM
1986
1987 case 'e': /* Enumeration type */
c906108c
SS
1988 type = dbx_alloc_type (typenums, objfile);
1989 type = read_enum_type (pp, type, objfile);
1990 if (typenums[0] != -1)
46bf5051 1991 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
1992 break;
1993
c5aa993b
JM
1994 case 's': /* Struct type */
1995 case 'u': /* Union type */
2ae1c2d2
JB
1996 {
1997 enum type_code type_code = TYPE_CODE_UNDEF;
1998 type = dbx_alloc_type (typenums, objfile);
1999 switch (type_descriptor)
2000 {
2001 case 's':
2002 type_code = TYPE_CODE_STRUCT;
2003 break;
2004 case 'u':
2005 type_code = TYPE_CODE_UNION;
2006 break;
2007 }
2008 type = read_struct_type (pp, type, type_code, objfile);
2009 break;
2010 }
c906108c 2011
c5aa993b 2012 case 'a': /* Array type */
c906108c
SS
2013 if (**pp != 'r')
2014 return error_type (pp, objfile);
2015 ++*pp;
c5aa993b 2016
c906108c
SS
2017 type = dbx_alloc_type (typenums, objfile);
2018 type = read_array_type (pp, type, objfile);
2019 if (is_string)
2020 TYPE_CODE (type) = TYPE_CODE_STRING;
e2cd42dd 2021 if (is_vector)
ea37ba09 2022 make_vector_type (type);
c906108c
SS
2023 break;
2024
6b1755ce 2025 case 'S': /* Set type */
c906108c 2026 type1 = read_type (pp, objfile);
c5aa993b 2027 type = create_set_type ((struct type *) NULL, type1);
c906108c 2028 if (typenums[0] != -1)
46bf5051 2029 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
2030 break;
2031
2032 default:
c378eb4e
MS
2033 --*pp; /* Go back to the symbol in error. */
2034 /* Particularly important if it was \0! */
c906108c
SS
2035 return error_type (pp, objfile);
2036 }
2037
2038 if (type == 0)
2039 {
8a3fe4f8 2040 warning (_("GDB internal error, type is NULL in stabsread.c."));
c906108c
SS
2041 return error_type (pp, objfile);
2042 }
2043
2044 /* Size specified in a type attribute overrides any other size. */
2045 if (type_size != -1)
2046 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2047
2048 return type;
2049}
2050\f
2051/* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
c378eb4e 2052 Return the proper type node for a given builtin type number. */
c906108c 2053
46bf5051
UW
2054static const struct objfile_data *rs6000_builtin_type_data;
2055
c906108c 2056static struct type *
46bf5051 2057rs6000_builtin_type (int typenum, struct objfile *objfile)
c906108c 2058{
3e43a32a
MS
2059 struct type **negative_types = objfile_data (objfile,
2060 rs6000_builtin_type_data);
46bf5051 2061
c906108c
SS
2062 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2063#define NUMBER_RECOGNIZED 34
c906108c
SS
2064 struct type *rettype = NULL;
2065
2066 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2067 {
e2e0b3e5 2068 complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
46bf5051 2069 return objfile_type (objfile)->builtin_error;
c906108c 2070 }
46bf5051
UW
2071
2072 if (!negative_types)
2073 {
2074 /* This includes an empty slot for type number -0. */
2075 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2076 NUMBER_RECOGNIZED + 1, struct type *);
2077 set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
2078 }
2079
c906108c
SS
2080 if (negative_types[-typenum] != NULL)
2081 return negative_types[-typenum];
2082
2083#if TARGET_CHAR_BIT != 8
c5aa993b 2084#error This code wrong for TARGET_CHAR_BIT not 8
c906108c
SS
2085 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2086 that if that ever becomes not true, the correct fix will be to
2087 make the size in the struct type to be in bits, not in units of
2088 TARGET_CHAR_BIT. */
2089#endif
2090
2091 switch (-typenum)
2092 {
2093 case 1:
2094 /* The size of this and all the other types are fixed, defined
c5aa993b
JM
2095 by the debugging format. If there is a type called "int" which
2096 is other than 32 bits, then it should use a new negative type
2097 number (or avoid negative type numbers for that case).
2098 See stabs.texinfo. */
46bf5051 2099 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", objfile);
c906108c
SS
2100 break;
2101 case 2:
46bf5051 2102 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", objfile);
c906108c
SS
2103 break;
2104 case 3:
46bf5051 2105 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", objfile);
c906108c
SS
2106 break;
2107 case 4:
46bf5051 2108 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", objfile);
c906108c
SS
2109 break;
2110 case 5:
2111 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
46bf5051 2112 "unsigned char", objfile);
c906108c
SS
2113 break;
2114 case 6:
46bf5051 2115 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", objfile);
c906108c
SS
2116 break;
2117 case 7:
2118 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
46bf5051 2119 "unsigned short", objfile);
c906108c
SS
2120 break;
2121 case 8:
2122 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
46bf5051 2123 "unsigned int", objfile);
c906108c
SS
2124 break;
2125 case 9:
2126 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
46bf5051 2127 "unsigned", objfile);
89acf84d 2128 break;
c906108c
SS
2129 case 10:
2130 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
46bf5051 2131 "unsigned long", objfile);
c906108c
SS
2132 break;
2133 case 11:
46bf5051 2134 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", objfile);
c906108c
SS
2135 break;
2136 case 12:
2137 /* IEEE single precision (32 bit). */
46bf5051 2138 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", objfile);
c906108c
SS
2139 break;
2140 case 13:
2141 /* IEEE double precision (64 bit). */
46bf5051 2142 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", objfile);
c906108c
SS
2143 break;
2144 case 14:
2145 /* This is an IEEE double on the RS/6000, and different machines with
c5aa993b
JM
2146 different sizes for "long double" should use different negative
2147 type numbers. See stabs.texinfo. */
46bf5051 2148 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", objfile);
c906108c
SS
2149 break;
2150 case 15:
46bf5051 2151 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", objfile);
c906108c
SS
2152 break;
2153 case 16:
2154 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
46bf5051 2155 "boolean", objfile);
c906108c
SS
2156 break;
2157 case 17:
46bf5051 2158 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", objfile);
c906108c
SS
2159 break;
2160 case 18:
46bf5051 2161 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", objfile);
c906108c
SS
2162 break;
2163 case 19:
46bf5051 2164 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", objfile);
c906108c
SS
2165 break;
2166 case 20:
2167 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
46bf5051 2168 "character", objfile);
c906108c
SS
2169 break;
2170 case 21:
2171 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
46bf5051 2172 "logical*1", objfile);
c906108c
SS
2173 break;
2174 case 22:
2175 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
46bf5051 2176 "logical*2", objfile);
c906108c
SS
2177 break;
2178 case 23:
2179 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
46bf5051 2180 "logical*4", objfile);
c906108c
SS
2181 break;
2182 case 24:
2183 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
46bf5051 2184 "logical", objfile);
c906108c
SS
2185 break;
2186 case 25:
2187 /* Complex type consisting of two IEEE single precision values. */
46bf5051 2188 rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", objfile);
f65ca430 2189 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 4, 0, "float",
46bf5051 2190 objfile);
c906108c
SS
2191 break;
2192 case 26:
2193 /* Complex type consisting of two IEEE double precision values. */
2194 rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
f65ca430 2195 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 8, 0, "double",
46bf5051 2196 objfile);
c906108c
SS
2197 break;
2198 case 27:
46bf5051 2199 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", objfile);
c906108c
SS
2200 break;
2201 case 28:
46bf5051 2202 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", objfile);
c906108c
SS
2203 break;
2204 case 29:
46bf5051 2205 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", objfile);
c906108c
SS
2206 break;
2207 case 30:
46bf5051 2208 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", objfile);
c906108c
SS
2209 break;
2210 case 31:
46bf5051 2211 rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", objfile);
c906108c
SS
2212 break;
2213 case 32:
2214 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
46bf5051 2215 "unsigned long long", objfile);
c906108c
SS
2216 break;
2217 case 33:
2218 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
46bf5051 2219 "logical*8", objfile);
c906108c
SS
2220 break;
2221 case 34:
46bf5051 2222 rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", objfile);
c906108c
SS
2223 break;
2224 }
2225 negative_types[-typenum] = rettype;
2226 return rettype;
2227}
2228\f
2229/* This page contains subroutines of read_type. */
2230
0d5cff50
DE
2231/* Wrapper around method_name_from_physname to flag a complaint
2232 if there is an error. */
de17c821 2233
0d5cff50
DE
2234static char *
2235stabs_method_name_from_physname (const char *physname)
de17c821
DJ
2236{
2237 char *method_name;
2238
2239 method_name = method_name_from_physname (physname);
2240
2241 if (method_name == NULL)
c263362b
DJ
2242 {
2243 complaint (&symfile_complaints,
e2e0b3e5 2244 _("Method has bad physname %s\n"), physname);
0d5cff50 2245 return NULL;
c263362b 2246 }
de17c821 2247
0d5cff50 2248 return method_name;
de17c821
DJ
2249}
2250
c906108c
SS
2251/* Read member function stabs info for C++ classes. The form of each member
2252 function data is:
2253
c5aa993b 2254 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
c906108c
SS
2255
2256 An example with two member functions is:
2257
c5aa993b 2258 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
c906108c
SS
2259
2260 For the case of overloaded operators, the format is op$::*.funcs, where
2261 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2262 name (such as `+=') and `.' marks the end of the operator name.
2263
2264 Returns 1 for success, 0 for failure. */
2265
2266static int
fba45db2
KB
2267read_member_functions (struct field_info *fip, char **pp, struct type *type,
2268 struct objfile *objfile)
c906108c
SS
2269{
2270 int nfn_fields = 0;
2271 int length = 0;
c906108c
SS
2272 int i;
2273 struct next_fnfield
2274 {
2275 struct next_fnfield *next;
2276 struct fn_field fn_field;
c5aa993b
JM
2277 }
2278 *sublist;
c906108c
SS
2279 struct type *look_ahead_type;
2280 struct next_fnfieldlist *new_fnlist;
2281 struct next_fnfield *new_sublist;
2282 char *main_fn_name;
52f0bd74 2283 char *p;
c5aa993b 2284
c906108c 2285 /* Process each list until we find something that is not a member function
c378eb4e 2286 or find the end of the functions. */
c906108c
SS
2287
2288 while (**pp != ';')
2289 {
2290 /* We should be positioned at the start of the function name.
c5aa993b 2291 Scan forward to find the first ':' and if it is not the
c378eb4e 2292 first of a "::" delimiter, then this is not a member function. */
c906108c
SS
2293 p = *pp;
2294 while (*p != ':')
2295 {
2296 p++;
2297 }
2298 if (p[1] != ':')
2299 {
2300 break;
2301 }
2302
2303 sublist = NULL;
2304 look_ahead_type = NULL;
2305 length = 0;
c5aa993b 2306
c906108c
SS
2307 new_fnlist = (struct next_fnfieldlist *)
2308 xmalloc (sizeof (struct next_fnfieldlist));
b8c9b27d 2309 make_cleanup (xfree, new_fnlist);
c906108c 2310 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
c5aa993b 2311
c906108c
SS
2312 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2313 {
2314 /* This is a completely wierd case. In order to stuff in the
2315 names that might contain colons (the usual name delimiter),
2316 Mike Tiemann defined a different name format which is
2317 signalled if the identifier is "op$". In that case, the
2318 format is "op$::XXXX." where XXXX is the name. This is
2319 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2320 /* This lets the user type "break operator+".
2321 We could just put in "+" as the name, but that wouldn't
2322 work for "*". */
8343f86c 2323 static char opname[32] = "op$";
c906108c 2324 char *o = opname + 3;
c5aa993b 2325
c906108c
SS
2326 /* Skip past '::'. */
2327 *pp = p + 2;
2328
2329 STABS_CONTINUE (pp, objfile);
2330 p = *pp;
2331 while (*p != '.')
2332 {
2333 *o++ = *p++;
2334 }
2335 main_fn_name = savestring (opname, o - opname);
2336 /* Skip past '.' */
2337 *pp = p + 1;
2338 }
2339 else
2340 {
2341 main_fn_name = savestring (*pp, p - *pp);
2342 /* Skip past '::'. */
2343 *pp = p + 2;
2344 }
c5aa993b
JM
2345 new_fnlist->fn_fieldlist.name = main_fn_name;
2346
c906108c
SS
2347 do
2348 {
2349 new_sublist =
2350 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
b8c9b27d 2351 make_cleanup (xfree, new_sublist);
c906108c 2352 memset (new_sublist, 0, sizeof (struct next_fnfield));
c5aa993b 2353
c906108c
SS
2354 /* Check for and handle cretinous dbx symbol name continuation! */
2355 if (look_ahead_type == NULL)
2356 {
c378eb4e 2357 /* Normal case. */
c906108c 2358 STABS_CONTINUE (pp, objfile);
c5aa993b
JM
2359
2360 new_sublist->fn_field.type = read_type (pp, objfile);
c906108c
SS
2361 if (**pp != ':')
2362 {
2363 /* Invalid symtab info for member function. */
2364 return 0;
2365 }
2366 }
2367 else
2368 {
2369 /* g++ version 1 kludge */
c5aa993b 2370 new_sublist->fn_field.type = look_ahead_type;
c906108c
SS
2371 look_ahead_type = NULL;
2372 }
c5aa993b 2373
c906108c
SS
2374 (*pp)++;
2375 p = *pp;
2376 while (*p != ';')
2377 {
2378 p++;
2379 }
c5aa993b 2380
09e2d7c7
DE
2381 /* These are methods, not functions. */
2382 if (TYPE_CODE (new_sublist->fn_field.type) == TYPE_CODE_FUNC)
2383 TYPE_CODE (new_sublist->fn_field.type) = TYPE_CODE_METHOD;
2384 else
2385 gdb_assert (TYPE_CODE (new_sublist->fn_field.type)
2386 == TYPE_CODE_METHOD);
c906108c 2387
09e2d7c7 2388 /* If this is just a stub, then we don't have the real name here. */
74a9bb82 2389 if (TYPE_STUB (new_sublist->fn_field.type))
c906108c 2390 {
4bfb94b8 2391 if (!TYPE_SELF_TYPE (new_sublist->fn_field.type))
09e2d7c7 2392 set_type_self_type (new_sublist->fn_field.type, type);
c5aa993b 2393 new_sublist->fn_field.is_stub = 1;
c906108c 2394 }
09e2d7c7 2395
c5aa993b 2396 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
c906108c 2397 *pp = p + 1;
c5aa993b 2398
c906108c
SS
2399 /* Set this member function's visibility fields. */
2400 switch (*(*pp)++)
2401 {
c5aa993b
JM
2402 case VISIBILITY_PRIVATE:
2403 new_sublist->fn_field.is_private = 1;
2404 break;
2405 case VISIBILITY_PROTECTED:
2406 new_sublist->fn_field.is_protected = 1;
2407 break;
c906108c 2408 }
c5aa993b 2409
c906108c
SS
2410 STABS_CONTINUE (pp, objfile);
2411 switch (**pp)
2412 {
c378eb4e 2413 case 'A': /* Normal functions. */
c5aa993b
JM
2414 new_sublist->fn_field.is_const = 0;
2415 new_sublist->fn_field.is_volatile = 0;
2416 (*pp)++;
2417 break;
c378eb4e 2418 case 'B': /* `const' member functions. */
c5aa993b
JM
2419 new_sublist->fn_field.is_const = 1;
2420 new_sublist->fn_field.is_volatile = 0;
2421 (*pp)++;
2422 break;
c378eb4e 2423 case 'C': /* `volatile' member function. */
c5aa993b
JM
2424 new_sublist->fn_field.is_const = 0;
2425 new_sublist->fn_field.is_volatile = 1;
2426 (*pp)++;
2427 break;
c378eb4e 2428 case 'D': /* `const volatile' member function. */
c5aa993b
JM
2429 new_sublist->fn_field.is_const = 1;
2430 new_sublist->fn_field.is_volatile = 1;
2431 (*pp)++;
2432 break;
3e43a32a 2433 case '*': /* File compiled with g++ version 1 --
c378eb4e 2434 no info. */
c5aa993b
JM
2435 case '?':
2436 case '.':
2437 break;
2438 default:
23136709 2439 complaint (&symfile_complaints,
3e43a32a
MS
2440 _("const/volatile indicator missing, got '%c'"),
2441 **pp);
c5aa993b 2442 break;
c906108c 2443 }
c5aa993b 2444
c906108c
SS
2445 switch (*(*pp)++)
2446 {
c5aa993b 2447 case '*':
c906108c
SS
2448 {
2449 int nbits;
c5aa993b 2450 /* virtual member function, followed by index.
c906108c
SS
2451 The sign bit is set to distinguish pointers-to-methods
2452 from virtual function indicies. Since the array is
2453 in words, the quantity must be shifted left by 1
2454 on 16 bit machine, and by 2 on 32 bit machine, forcing
2455 the sign bit out, and usable as a valid index into
2456 the array. Remove the sign bit here. */
c5aa993b 2457 new_sublist->fn_field.voffset =
94e10a22 2458 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
c906108c
SS
2459 if (nbits != 0)
2460 return 0;
c5aa993b 2461
c906108c
SS
2462 STABS_CONTINUE (pp, objfile);
2463 if (**pp == ';' || **pp == '\0')
2464 {
2465 /* Must be g++ version 1. */
c5aa993b 2466 new_sublist->fn_field.fcontext = 0;
c906108c
SS
2467 }
2468 else
2469 {
2470 /* Figure out from whence this virtual function came.
2471 It may belong to virtual function table of
2472 one of its baseclasses. */
2473 look_ahead_type = read_type (pp, objfile);
2474 if (**pp == ':')
2475 {
c378eb4e 2476 /* g++ version 1 overloaded methods. */
c906108c
SS
2477 }
2478 else
2479 {
c5aa993b 2480 new_sublist->fn_field.fcontext = look_ahead_type;
c906108c
SS
2481 if (**pp != ';')
2482 {
2483 return 0;
2484 }
2485 else
2486 {
2487 ++*pp;
2488 }
2489 look_ahead_type = NULL;
2490 }
2491 }
2492 break;
2493 }
c5aa993b
JM
2494 case '?':
2495 /* static member function. */
4ea09c10
PS
2496 {
2497 int slen = strlen (main_fn_name);
2498
2499 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2500
2501 /* For static member functions, we can't tell if they
2502 are stubbed, as they are put out as functions, and not as
2503 methods.
2504 GCC v2 emits the fully mangled name if
2505 dbxout.c:flag_minimal_debug is not set, so we have to
2506 detect a fully mangled physname here and set is_stub
2507 accordingly. Fully mangled physnames in v2 start with
2508 the member function name, followed by two underscores.
2509 GCC v3 currently always emits stubbed member functions,
2510 but with fully mangled physnames, which start with _Z. */
2511 if (!(strncmp (new_sublist->fn_field.physname,
2512 main_fn_name, slen) == 0
2513 && new_sublist->fn_field.physname[slen] == '_'
2514 && new_sublist->fn_field.physname[slen + 1] == '_'))
2515 {
2516 new_sublist->fn_field.is_stub = 1;
2517 }
2518 break;
2519 }
c5aa993b
JM
2520
2521 default:
2522 /* error */
23136709 2523 complaint (&symfile_complaints,
3e43a32a
MS
2524 _("member function type missing, got '%c'"),
2525 (*pp)[-1]);
c5aa993b
JM
2526 /* Fall through into normal member function. */
2527
2528 case '.':
2529 /* normal member function. */
2530 new_sublist->fn_field.voffset = 0;
2531 new_sublist->fn_field.fcontext = 0;
2532 break;
c906108c 2533 }
c5aa993b
JM
2534
2535 new_sublist->next = sublist;
c906108c
SS
2536 sublist = new_sublist;
2537 length++;
2538 STABS_CONTINUE (pp, objfile);
2539 }
2540 while (**pp != ';' && **pp != '\0');
c5aa993b 2541
c906108c 2542 (*pp)++;
0c867556 2543 STABS_CONTINUE (pp, objfile);
c5aa993b 2544
0c867556
PS
2545 /* Skip GCC 3.X member functions which are duplicates of the callable
2546 constructor/destructor. */
6cbbcdfe
KS
2547 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2548 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
0c867556 2549 || strcmp (main_fn_name, "__deleting_dtor") == 0)
c906108c 2550 {
0c867556 2551 xfree (main_fn_name);
c906108c 2552 }
0c867556
PS
2553 else
2554 {
de17c821
DJ
2555 int has_stub = 0;
2556 int has_destructor = 0, has_other = 0;
2557 int is_v3 = 0;
2558 struct next_fnfield *tmp_sublist;
2559
2560 /* Various versions of GCC emit various mostly-useless
2561 strings in the name field for special member functions.
2562
2563 For stub methods, we need to defer correcting the name
2564 until we are ready to unstub the method, because the current
2565 name string is used by gdb_mangle_name. The only stub methods
2566 of concern here are GNU v2 operators; other methods have their
2567 names correct (see caveat below).
2568
2569 For non-stub methods, in GNU v3, we have a complete physname.
2570 Therefore we can safely correct the name now. This primarily
2571 affects constructors and destructors, whose name will be
2572 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2573 operators will also have incorrect names; for instance,
2574 "operator int" will be named "operator i" (i.e. the type is
2575 mangled).
2576
2577 For non-stub methods in GNU v2, we have no easy way to
2578 know if we have a complete physname or not. For most
2579 methods the result depends on the platform (if CPLUS_MARKER
2580 can be `$' or `.', it will use minimal debug information, or
2581 otherwise the full physname will be included).
2582
2583 Rather than dealing with this, we take a different approach.
2584 For v3 mangled names, we can use the full physname; for v2,
2585 we use cplus_demangle_opname (which is actually v2 specific),
2586 because the only interesting names are all operators - once again
2587 barring the caveat below. Skip this process if any method in the
2588 group is a stub, to prevent our fouling up the workings of
2589 gdb_mangle_name.
2590
2591 The caveat: GCC 2.95.x (and earlier?) put constructors and
2592 destructors in the same method group. We need to split this
2593 into two groups, because they should have different names.
2594 So for each method group we check whether it contains both
2595 routines whose physname appears to be a destructor (the physnames
2596 for and destructors are always provided, due to quirks in v2
2597 mangling) and routines whose physname does not appear to be a
2598 destructor. If so then we break up the list into two halves.
2599 Even if the constructors and destructors aren't in the same group
2600 the destructor will still lack the leading tilde, so that also
2601 needs to be fixed.
2602
2603 So, to summarize what we expect and handle here:
2604
2605 Given Given Real Real Action
2606 method name physname physname method name
2607
2608 __opi [none] __opi__3Foo operator int opname
3e43a32a
MS
2609 [now or later]
2610 Foo _._3Foo _._3Foo ~Foo separate and
de17c821
DJ
2611 rename
2612 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2613 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2614 */
2615
2616 tmp_sublist = sublist;
2617 while (tmp_sublist != NULL)
2618 {
2619 if (tmp_sublist->fn_field.is_stub)
2620 has_stub = 1;
2621 if (tmp_sublist->fn_field.physname[0] == '_'
2622 && tmp_sublist->fn_field.physname[1] == 'Z')
2623 is_v3 = 1;
2624
2625 if (is_destructor_name (tmp_sublist->fn_field.physname))
2626 has_destructor++;
2627 else
2628 has_other++;
2629
2630 tmp_sublist = tmp_sublist->next;
2631 }
2632
2633 if (has_destructor && has_other)
2634 {
2635 struct next_fnfieldlist *destr_fnlist;
2636 struct next_fnfield *last_sublist;
2637
2638 /* Create a new fn_fieldlist for the destructors. */
2639
2640 destr_fnlist = (struct next_fnfieldlist *)
2641 xmalloc (sizeof (struct next_fnfieldlist));
2642 make_cleanup (xfree, destr_fnlist);
2643 memset (destr_fnlist, 0, sizeof (struct next_fnfieldlist));
2644 destr_fnlist->fn_fieldlist.name
48cb83fd
JK
2645 = obconcat (&objfile->objfile_obstack, "~",
2646 new_fnlist->fn_fieldlist.name, (char *) NULL);
de17c821
DJ
2647
2648 destr_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
b99607ea 2649 obstack_alloc (&objfile->objfile_obstack,
de17c821
DJ
2650 sizeof (struct fn_field) * has_destructor);
2651 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2652 sizeof (struct fn_field) * has_destructor);
2653 tmp_sublist = sublist;
2654 last_sublist = NULL;
2655 i = 0;
2656 while (tmp_sublist != NULL)
2657 {
2658 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2659 {
2660 tmp_sublist = tmp_sublist->next;
2661 continue;
2662 }
2663
2664 destr_fnlist->fn_fieldlist.fn_fields[i++]
2665 = tmp_sublist->fn_field;
2666 if (last_sublist)
2667 last_sublist->next = tmp_sublist->next;
2668 else
2669 sublist = tmp_sublist->next;
2670 last_sublist = tmp_sublist;
2671 tmp_sublist = tmp_sublist->next;
2672 }
2673
2674 destr_fnlist->fn_fieldlist.length = has_destructor;
2675 destr_fnlist->next = fip->fnlist;
2676 fip->fnlist = destr_fnlist;
2677 nfn_fields++;
de17c821
DJ
2678 length -= has_destructor;
2679 }
2680 else if (is_v3)
2681 {
2682 /* v3 mangling prevents the use of abbreviated physnames,
2683 so we can do this here. There are stubbed methods in v3
2684 only:
2685 - in -gstabs instead of -gstabs+
2686 - or for static methods, which are output as a function type
2687 instead of a method type. */
0d5cff50
DE
2688 char *new_method_name =
2689 stabs_method_name_from_physname (sublist->fn_field.physname);
de17c821 2690
0d5cff50
DE
2691 if (new_method_name != NULL
2692 && strcmp (new_method_name,
2693 new_fnlist->fn_fieldlist.name) != 0)
2694 {
2695 new_fnlist->fn_fieldlist.name = new_method_name;
2696 xfree (main_fn_name);
2697 }
2698 else
2699 xfree (new_method_name);
de17c821
DJ
2700 }
2701 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2702 {
1754f103 2703 new_fnlist->fn_fieldlist.name =
0d5cff50
DE
2704 obconcat (&objfile->objfile_obstack,
2705 "~", main_fn_name, (char *)NULL);
de17c821
DJ
2706 xfree (main_fn_name);
2707 }
2708 else if (!has_stub)
2709 {
2710 char dem_opname[256];
2711 int ret;
433759f7 2712
de17c821
DJ
2713 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2714 dem_opname, DMGL_ANSI);
2715 if (!ret)
2716 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2717 dem_opname, 0);
2718 if (ret)
2719 new_fnlist->fn_fieldlist.name
10f0c4bb
TT
2720 = obstack_copy0 (&objfile->objfile_obstack,
2721 dem_opname, strlen (dem_opname));
0d5cff50 2722 xfree (main_fn_name);
de17c821
DJ
2723 }
2724
0c867556 2725 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
b99607ea 2726 obstack_alloc (&objfile->objfile_obstack,
0c867556
PS
2727 sizeof (struct fn_field) * length);
2728 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2729 sizeof (struct fn_field) * length);
2730 for (i = length; (i--, sublist); sublist = sublist->next)
2731 {
2732 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2733 }
c5aa993b 2734
0c867556
PS
2735 new_fnlist->fn_fieldlist.length = length;
2736 new_fnlist->next = fip->fnlist;
2737 fip->fnlist = new_fnlist;
2738 nfn_fields++;
0c867556 2739 }
c906108c
SS
2740 }
2741
2742 if (nfn_fields)
2743 {
2744 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2745 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2746 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2747 memset (TYPE_FN_FIELDLISTS (type), 0,
2748 sizeof (struct fn_fieldlist) * nfn_fields);
2749 TYPE_NFN_FIELDS (type) = nfn_fields;
c906108c
SS
2750 }
2751
2752 return 1;
2753}
2754
2755/* Special GNU C++ name.
2756
2757 Returns 1 for success, 0 for failure. "failure" means that we can't
2758 keep parsing and it's time for error_type(). */
2759
2760static int
fba45db2
KB
2761read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
2762 struct objfile *objfile)
c906108c 2763{
52f0bd74 2764 char *p;
0d5cff50 2765 const char *name;
c906108c
SS
2766 char cpp_abbrev;
2767 struct type *context;
2768
2769 p = *pp;
2770 if (*++p == 'v')
2771 {
2772 name = NULL;
2773 cpp_abbrev = *++p;
2774
2775 *pp = p + 1;
2776
2777 /* At this point, *pp points to something like "22:23=*22...",
c5aa993b
JM
2778 where the type number before the ':' is the "context" and
2779 everything after is a regular type definition. Lookup the
c378eb4e 2780 type, find it's name, and construct the field name. */
c906108c
SS
2781
2782 context = read_type (pp, objfile);
2783
2784 switch (cpp_abbrev)
2785 {
c5aa993b 2786 case 'f': /* $vf -- a virtual function table pointer */
c2bd2ed9
JB
2787 name = type_name_no_tag (context);
2788 if (name == NULL)
433759f7
MS
2789 {
2790 name = "";
2791 }
48cb83fd
JK
2792 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2793 vptr_name, name, (char *) NULL);
c5aa993b 2794 break;
c906108c 2795
c5aa993b
JM
2796 case 'b': /* $vb -- a virtual bsomethingorother */
2797 name = type_name_no_tag (context);
2798 if (name == NULL)
2799 {
23136709 2800 complaint (&symfile_complaints,
3e43a32a
MS
2801 _("C++ abbreviated type name "
2802 "unknown at symtab pos %d"),
23136709 2803 symnum);
c5aa993b
JM
2804 name = "FOO";
2805 }
48cb83fd
JK
2806 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2807 name, (char *) NULL);
c5aa993b 2808 break;
c906108c 2809
c5aa993b 2810 default:
23136709 2811 invalid_cpp_abbrev_complaint (*pp);
48cb83fd
JK
2812 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2813 "INVALID_CPLUSPLUS_ABBREV",
2814 (char *) NULL);
c5aa993b 2815 break;
c906108c
SS
2816 }
2817
2818 /* At this point, *pp points to the ':'. Skip it and read the
c378eb4e 2819 field type. */
c906108c
SS
2820
2821 p = ++(*pp);
2822 if (p[-1] != ':')
2823 {
23136709 2824 invalid_cpp_abbrev_complaint (*pp);
c906108c
SS
2825 return 0;
2826 }
2827 fip->list->field.type = read_type (pp, objfile);
2828 if (**pp == ',')
c5aa993b 2829 (*pp)++; /* Skip the comma. */
c906108c
SS
2830 else
2831 return 0;
2832
2833 {
2834 int nbits;
433759f7 2835
f41f5e61
PA
2836 SET_FIELD_BITPOS (fip->list->field,
2837 read_huge_number (pp, ';', &nbits, 0));
c906108c
SS
2838 if (nbits != 0)
2839 return 0;
2840 }
2841 /* This field is unpacked. */
2842 FIELD_BITSIZE (fip->list->field) = 0;
2843 fip->list->visibility = VISIBILITY_PRIVATE;
2844 }
2845 else
2846 {
23136709 2847 invalid_cpp_abbrev_complaint (*pp);
c906108c 2848 /* We have no idea what syntax an unrecognized abbrev would have, so
c5aa993b
JM
2849 better return 0. If we returned 1, we would need to at least advance
2850 *pp to avoid an infinite loop. */
c906108c
SS
2851 return 0;
2852 }
2853 return 1;
2854}
2855
2856static void
fba45db2
KB
2857read_one_struct_field (struct field_info *fip, char **pp, char *p,
2858 struct type *type, struct objfile *objfile)
c906108c 2859{
5e2b427d
UW
2860 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2861
41989fcd 2862 fip->list->field.name =
10f0c4bb 2863 obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
c906108c
SS
2864 *pp = p + 1;
2865
c378eb4e 2866 /* This means we have a visibility for a field coming. */
c906108c
SS
2867 if (**pp == '/')
2868 {
2869 (*pp)++;
c5aa993b 2870 fip->list->visibility = *(*pp)++;
c906108c
SS
2871 }
2872 else
2873 {
2874 /* normal dbx-style format, no explicit visibility */
c5aa993b 2875 fip->list->visibility = VISIBILITY_PUBLIC;
c906108c
SS
2876 }
2877
c5aa993b 2878 fip->list->field.type = read_type (pp, objfile);
c906108c
SS
2879 if (**pp == ':')
2880 {
2881 p = ++(*pp);
2882#if 0
c378eb4e 2883 /* Possible future hook for nested types. */
c906108c
SS
2884 if (**pp == '!')
2885 {
c5aa993b 2886 fip->list->field.bitpos = (long) -2; /* nested type */
c906108c
SS
2887 p = ++(*pp);
2888 }
c5aa993b
JM
2889 else
2890 ...;
c906108c 2891#endif
c5aa993b 2892 while (*p != ';')
c906108c
SS
2893 {
2894 p++;
2895 }
2896 /* Static class member. */
2897 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2898 *pp = p + 1;
2899 return;
2900 }
2901 else if (**pp != ',')
2902 {
2903 /* Bad structure-type format. */
23136709 2904 stabs_general_complaint ("bad structure-type format");
c906108c
SS
2905 return;
2906 }
2907
2908 (*pp)++; /* Skip the comma. */
2909
2910 {
2911 int nbits;
433759f7 2912
f41f5e61
PA
2913 SET_FIELD_BITPOS (fip->list->field,
2914 read_huge_number (pp, ',', &nbits, 0));
c906108c
SS
2915 if (nbits != 0)
2916 {
23136709 2917 stabs_general_complaint ("bad structure-type format");
c906108c
SS
2918 return;
2919 }
94e10a22 2920 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
2921 if (nbits != 0)
2922 {
23136709 2923 stabs_general_complaint ("bad structure-type format");
c906108c
SS
2924 return;
2925 }
2926 }
2927
2928 if (FIELD_BITPOS (fip->list->field) == 0
2929 && FIELD_BITSIZE (fip->list->field) == 0)
2930 {
2931 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
c5aa993b
JM
2932 it is a field which has been optimized out. The correct stab for
2933 this case is to use VISIBILITY_IGNORE, but that is a recent
2934 invention. (2) It is a 0-size array. For example
e2e0b3e5 2935 union { int num; char str[0]; } foo. Printing _("<no value>" for
c5aa993b
JM
2936 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2937 will continue to work, and a 0-size array as a whole doesn't
2938 have any contents to print.
2939
2940 I suspect this probably could also happen with gcc -gstabs (not
2941 -gstabs+) for static fields, and perhaps other C++ extensions.
2942 Hopefully few people use -gstabs with gdb, since it is intended
2943 for dbx compatibility. */
c906108c
SS
2944
2945 /* Ignore this field. */
c5aa993b 2946 fip->list->visibility = VISIBILITY_IGNORE;
c906108c
SS
2947 }
2948 else
2949 {
2950 /* Detect an unpacked field and mark it as such.
c5aa993b
JM
2951 dbx gives a bit size for all fields.
2952 Note that forward refs cannot be packed,
2953 and treat enums as if they had the width of ints. */
c906108c
SS
2954
2955 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2956
2957 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2958 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2959 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2960 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2961 {
2962 FIELD_BITSIZE (fip->list->field) = 0;
2963 }
c5aa993b 2964 if ((FIELD_BITSIZE (fip->list->field)
c906108c
SS
2965 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2966 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
9a76efb6 2967 && FIELD_BITSIZE (fip->list->field)
5e2b427d 2968 == gdbarch_int_bit (gdbarch))
c5aa993b 2969 )
c906108c
SS
2970 &&
2971 FIELD_BITPOS (fip->list->field) % 8 == 0)
2972 {
2973 FIELD_BITSIZE (fip->list->field) = 0;
2974 }
2975 }
2976}
2977
2978
2979/* Read struct or class data fields. They have the form:
2980
c5aa993b 2981 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
c906108c
SS
2982
2983 At the end, we see a semicolon instead of a field.
2984
2985 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2986 a static field.
2987
2988 The optional VISIBILITY is one of:
2989
c5aa993b
JM
2990 '/0' (VISIBILITY_PRIVATE)
2991 '/1' (VISIBILITY_PROTECTED)
2992 '/2' (VISIBILITY_PUBLIC)
2993 '/9' (VISIBILITY_IGNORE)
c906108c
SS
2994
2995 or nothing, for C style fields with public visibility.
2996
2997 Returns 1 for success, 0 for failure. */
2998
2999static int
fba45db2
KB
3000read_struct_fields (struct field_info *fip, char **pp, struct type *type,
3001 struct objfile *objfile)
c906108c 3002{
52f0bd74 3003 char *p;
fe978cb0 3004 struct nextfield *newobj;
c906108c
SS
3005
3006 /* We better set p right now, in case there are no fields at all... */
3007
3008 p = *pp;
3009
3010 /* Read each data member type until we find the terminating ';' at the end of
3011 the data member list, or break for some other reason such as finding the
c378eb4e 3012 start of the member function list. */
fedbd091 3013 /* Stab string for structure/union does not end with two ';' in
c378eb4e 3014 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
c906108c 3015
fedbd091 3016 while (**pp != ';' && **pp != '\0')
c906108c 3017 {
c906108c
SS
3018 STABS_CONTINUE (pp, objfile);
3019 /* Get space to record the next field's data. */
fe978cb0
PA
3020 newobj = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3021 make_cleanup (xfree, newobj);
3022 memset (newobj, 0, sizeof (struct nextfield));
3023 newobj->next = fip->list;
3024 fip->list = newobj;
c906108c
SS
3025
3026 /* Get the field name. */
3027 p = *pp;
3028
3029 /* If is starts with CPLUS_MARKER it is a special abbreviation,
c5aa993b
JM
3030 unless the CPLUS_MARKER is followed by an underscore, in
3031 which case it is just the name of an anonymous type, which we
3032 should handle like any other type name. */
c906108c
SS
3033
3034 if (is_cplus_marker (p[0]) && p[1] != '_')
3035 {
3036 if (!read_cpp_abbrev (fip, pp, type, objfile))
3037 return 0;
3038 continue;
3039 }
3040
3041 /* Look for the ':' that separates the field name from the field
c5aa993b
JM
3042 values. Data members are delimited by a single ':', while member
3043 functions are delimited by a pair of ':'s. When we hit the member
c378eb4e 3044 functions (if any), terminate scan loop and return. */
c906108c 3045
c5aa993b 3046 while (*p != ':' && *p != '\0')
c906108c
SS
3047 {
3048 p++;
3049 }
3050 if (*p == '\0')
3051 return 0;
3052
3053 /* Check to see if we have hit the member functions yet. */
3054 if (p[1] == ':')
3055 {
3056 break;
3057 }
3058 read_one_struct_field (fip, pp, p, type, objfile);
3059 }
3060 if (p[0] == ':' && p[1] == ':')
3061 {
1b831c93
AC
3062 /* (the deleted) chill the list of fields: the last entry (at
3063 the head) is a partially constructed entry which we now
c378eb4e 3064 scrub. */
c5aa993b 3065 fip->list = fip->list->next;
c906108c
SS
3066 }
3067 return 1;
3068}
9846de1b 3069/* *INDENT-OFF* */
c906108c
SS
3070/* The stabs for C++ derived classes contain baseclass information which
3071 is marked by a '!' character after the total size. This function is
3072 called when we encounter the baseclass marker, and slurps up all the
3073 baseclass information.
3074
3075 Immediately following the '!' marker is the number of base classes that
3076 the class is derived from, followed by information for each base class.
3077 For each base class, there are two visibility specifiers, a bit offset
3078 to the base class information within the derived class, a reference to
3079 the type for the base class, and a terminating semicolon.
3080
3081 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3082 ^^ ^ ^ ^ ^ ^ ^
3083 Baseclass information marker __________________|| | | | | | |
3084 Number of baseclasses __________________________| | | | | | |
3085 Visibility specifiers (2) ________________________| | | | | |
3086 Offset in bits from start of class _________________| | | | |
3087 Type number for base class ___________________________| | | |
3088 Visibility specifiers (2) _______________________________| | |
3089 Offset in bits from start of class ________________________| |
3090 Type number of base class ____________________________________|
3091
3092 Return 1 for success, 0 for (error-type-inducing) failure. */
9846de1b 3093/* *INDENT-ON* */
c906108c 3094
c5aa993b
JM
3095
3096
c906108c 3097static int
fba45db2
KB
3098read_baseclasses (struct field_info *fip, char **pp, struct type *type,
3099 struct objfile *objfile)
c906108c
SS
3100{
3101 int i;
fe978cb0 3102 struct nextfield *newobj;
c906108c
SS
3103
3104 if (**pp != '!')
3105 {
3106 return 1;
3107 }
3108 else
3109 {
c378eb4e 3110 /* Skip the '!' baseclass information marker. */
c906108c
SS
3111 (*pp)++;
3112 }
3113
3114 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3115 {
3116 int nbits;
433759f7 3117
94e10a22 3118 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
c906108c
SS
3119 if (nbits != 0)
3120 return 0;
3121 }
3122
3123#if 0
3124 /* Some stupid compilers have trouble with the following, so break
3125 it up into simpler expressions. */
3126 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3127 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3128#else
3129 {
3130 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3131 char *pointer;
3132
3133 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3134 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3135 }
3136#endif /* 0 */
3137
3138 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3139
3140 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3141 {
fe978cb0
PA
3142 newobj = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3143 make_cleanup (xfree, newobj);
3144 memset (newobj, 0, sizeof (struct nextfield));
3145 newobj->next = fip->list;
3146 fip->list = newobj;
3147 FIELD_BITSIZE (newobj->field) = 0; /* This should be an unpacked
c378eb4e 3148 field! */
c906108c
SS
3149
3150 STABS_CONTINUE (pp, objfile);
3151 switch (**pp)
3152 {
c5aa993b 3153 case '0':
c378eb4e 3154 /* Nothing to do. */
c5aa993b
JM
3155 break;
3156 case '1':
3157 SET_TYPE_FIELD_VIRTUAL (type, i);
3158 break;
3159 default:
3160 /* Unknown character. Complain and treat it as non-virtual. */
3161 {
23136709 3162 complaint (&symfile_complaints,
3e43a32a
MS
3163 _("Unknown virtual character `%c' for baseclass"),
3164 **pp);
c5aa993b 3165 }
c906108c
SS
3166 }
3167 ++(*pp);
3168
fe978cb0
PA
3169 newobj->visibility = *(*pp)++;
3170 switch (newobj->visibility)
c906108c 3171 {
c5aa993b
JM
3172 case VISIBILITY_PRIVATE:
3173 case VISIBILITY_PROTECTED:
3174 case VISIBILITY_PUBLIC:
3175 break;
3176 default:
3177 /* Bad visibility format. Complain and treat it as
3178 public. */
3179 {
23136709 3180 complaint (&symfile_complaints,
e2e0b3e5 3181 _("Unknown visibility `%c' for baseclass"),
fe978cb0
PA
3182 newobj->visibility);
3183 newobj->visibility = VISIBILITY_PUBLIC;
c5aa993b 3184 }
c906108c
SS
3185 }
3186
3187 {
3188 int nbits;
c5aa993b 3189
c906108c
SS
3190 /* The remaining value is the bit offset of the portion of the object
3191 corresponding to this baseclass. Always zero in the absence of
3192 multiple inheritance. */
3193
fe978cb0 3194 SET_FIELD_BITPOS (newobj->field, read_huge_number (pp, ',', &nbits, 0));
c906108c
SS
3195 if (nbits != 0)
3196 return 0;
3197 }
3198
3199 /* The last piece of baseclass information is the type of the
c5aa993b 3200 base class. Read it, and remember it's type name as this
c378eb4e 3201 field's name. */
c906108c 3202
fe978cb0
PA
3203 newobj->field.type = read_type (pp, objfile);
3204 newobj->field.name = type_name_no_tag (newobj->field.type);
c906108c 3205
c378eb4e 3206 /* Skip trailing ';' and bump count of number of fields seen. */
c906108c
SS
3207 if (**pp == ';')
3208 (*pp)++;
3209 else
3210 return 0;
3211 }
3212 return 1;
3213}
3214
3215/* The tail end of stabs for C++ classes that contain a virtual function
3216 pointer contains a tilde, a %, and a type number.
3217 The type number refers to the base class (possibly this class itself) which
3218 contains the vtable pointer for the current class.
3219
3220 This function is called when we have parsed all the method declarations,
3221 so we can look for the vptr base class info. */
3222
3223static int
fba45db2
KB
3224read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3225 struct objfile *objfile)
c906108c 3226{
52f0bd74 3227 char *p;
c906108c
SS
3228
3229 STABS_CONTINUE (pp, objfile);
3230
c378eb4e 3231 /* If we are positioned at a ';', then skip it. */
c906108c
SS
3232 if (**pp == ';')
3233 {
3234 (*pp)++;
3235 }
3236
3237 if (**pp == '~')
3238 {
3239 (*pp)++;
3240
3241 if (**pp == '=' || **pp == '+' || **pp == '-')
3242 {
3243 /* Obsolete flags that used to indicate the presence
c378eb4e 3244 of constructors and/or destructors. */
c906108c
SS
3245 (*pp)++;
3246 }
3247
3248 /* Read either a '%' or the final ';'. */
3249 if (*(*pp)++ == '%')
3250 {
3251 /* The next number is the type number of the base class
3252 (possibly our own class) which supplies the vtable for
3253 this class. Parse it out, and search that class to find
3254 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3255 and TYPE_VPTR_FIELDNO. */
3256
3257 struct type *t;
3258 int i;
3259
3260 t = read_type (pp, objfile);
3261 p = (*pp)++;
3262 while (*p != '\0' && *p != ';')
3263 {
3264 p++;
3265 }
3266 if (*p == '\0')
3267 {
3268 /* Premature end of symbol. */
3269 return 0;
3270 }
c5aa993b 3271
ae6ae975 3272 set_type_vptr_basetype (type, t);
c378eb4e 3273 if (type == t) /* Our own class provides vtbl ptr. */
c906108c
SS
3274 {
3275 for (i = TYPE_NFIELDS (t) - 1;
3276 i >= TYPE_N_BASECLASSES (t);
3277 --i)
3278 {
0d5cff50 3279 const char *name = TYPE_FIELD_NAME (t, i);
433759f7 3280
8343f86c 3281 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
74451869 3282 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
c906108c 3283 {
ae6ae975 3284 set_type_vptr_fieldno (type, i);
c906108c
SS
3285 goto gotit;
3286 }
3287 }
3288 /* Virtual function table field not found. */
23136709 3289 complaint (&symfile_complaints,
3e43a32a
MS
3290 _("virtual function table pointer "
3291 "not found when defining class `%s'"),
23136709 3292 TYPE_NAME (type));
c906108c
SS
3293 return 0;
3294 }
3295 else
3296 {
ae6ae975 3297 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
c906108c
SS
3298 }
3299
c5aa993b 3300 gotit:
c906108c
SS
3301 *pp = p + 1;
3302 }
3303 }
3304 return 1;
3305}
3306
3307static int
aa1ee363 3308attach_fn_fields_to_type (struct field_info *fip, struct type *type)
c906108c 3309{
52f0bd74 3310 int n;
c906108c
SS
3311
3312 for (n = TYPE_NFN_FIELDS (type);
c5aa993b
JM
3313 fip->fnlist != NULL;
3314 fip->fnlist = fip->fnlist->next)
c906108c 3315 {
c378eb4e 3316 --n; /* Circumvent Sun3 compiler bug. */
c5aa993b 3317 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
c906108c
SS
3318 }
3319 return 1;
3320}
3321
c906108c
SS
3322/* Create the vector of fields, and record how big it is.
3323 We need this info to record proper virtual function table information
3324 for this class's virtual functions. */
3325
3326static int
aa1ee363 3327attach_fields_to_type (struct field_info *fip, struct type *type,
fba45db2 3328 struct objfile *objfile)
c906108c 3329{
52f0bd74
AC
3330 int nfields = 0;
3331 int non_public_fields = 0;
3332 struct nextfield *scan;
c906108c
SS
3333
3334 /* Count up the number of fields that we have, as well as taking note of
3335 whether or not there are any non-public fields, which requires us to
3336 allocate and build the private_field_bits and protected_field_bits
c378eb4e 3337 bitfields. */
c906108c 3338
c5aa993b 3339 for (scan = fip->list; scan != NULL; scan = scan->next)
c906108c
SS
3340 {
3341 nfields++;
c5aa993b 3342 if (scan->visibility != VISIBILITY_PUBLIC)
c906108c
SS
3343 {
3344 non_public_fields++;
3345 }
3346 }
3347
3348 /* Now we know how many fields there are, and whether or not there are any
3349 non-public fields. Record the field count, allocate space for the
c378eb4e 3350 array of fields, and create blank visibility bitfields if necessary. */
c906108c
SS
3351
3352 TYPE_NFIELDS (type) = nfields;
3353 TYPE_FIELDS (type) = (struct field *)
3354 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3355 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3356
3357 if (non_public_fields)
3358 {
3359 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3360
3361 TYPE_FIELD_PRIVATE_BITS (type) =
3362 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3363 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3364
3365 TYPE_FIELD_PROTECTED_BITS (type) =
3366 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3367 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3368
3369 TYPE_FIELD_IGNORE_BITS (type) =
3370 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3371 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3372 }
3373
c378eb4e
MS
3374 /* Copy the saved-up fields into the field vector. Start from the
3375 head of the list, adding to the tail of the field array, so that
3376 they end up in the same order in the array in which they were
3377 added to the list. */
c906108c
SS
3378
3379 while (nfields-- > 0)
3380 {
c5aa993b
JM
3381 TYPE_FIELD (type, nfields) = fip->list->field;
3382 switch (fip->list->visibility)
c906108c 3383 {
c5aa993b
JM
3384 case VISIBILITY_PRIVATE:
3385 SET_TYPE_FIELD_PRIVATE (type, nfields);
3386 break;
c906108c 3387
c5aa993b
JM
3388 case VISIBILITY_PROTECTED:
3389 SET_TYPE_FIELD_PROTECTED (type, nfields);
3390 break;
c906108c 3391
c5aa993b
JM
3392 case VISIBILITY_IGNORE:
3393 SET_TYPE_FIELD_IGNORE (type, nfields);
3394 break;
c906108c 3395
c5aa993b
JM
3396 case VISIBILITY_PUBLIC:
3397 break;
c906108c 3398
c5aa993b
JM
3399 default:
3400 /* Unknown visibility. Complain and treat it as public. */
3401 {
3e43a32a
MS
3402 complaint (&symfile_complaints,
3403 _("Unknown visibility `%c' for field"),
23136709 3404 fip->list->visibility);
c5aa993b
JM
3405 }
3406 break;
c906108c 3407 }
c5aa993b 3408 fip->list = fip->list->next;
c906108c
SS
3409 }
3410 return 1;
3411}
3412
2ae1c2d2 3413
2ae1c2d2
JB
3414/* Complain that the compiler has emitted more than one definition for the
3415 structure type TYPE. */
3416static void
3417complain_about_struct_wipeout (struct type *type)
3418{
0d5cff50
DE
3419 const char *name = "";
3420 const char *kind = "";
2ae1c2d2
JB
3421
3422 if (TYPE_TAG_NAME (type))
3423 {
3424 name = TYPE_TAG_NAME (type);
3425 switch (TYPE_CODE (type))
3426 {
3427 case TYPE_CODE_STRUCT: kind = "struct "; break;
3428 case TYPE_CODE_UNION: kind = "union "; break;
3429 case TYPE_CODE_ENUM: kind = "enum "; break;
3430 default: kind = "";
3431 }
3432 }
3433 else if (TYPE_NAME (type))
3434 {
3435 name = TYPE_NAME (type);
3436 kind = "";
3437 }
3438 else
3439 {
3440 name = "<unknown>";
3441 kind = "";
3442 }
3443
23136709 3444 complaint (&symfile_complaints,
e2e0b3e5 3445 _("struct/union type gets multiply defined: %s%s"), kind, name);
2ae1c2d2
JB
3446}
3447
621791b8
PM
3448/* Set the length for all variants of a same main_type, which are
3449 connected in the closed chain.
3450
3451 This is something that needs to be done when a type is defined *after*
3452 some cross references to this type have already been read. Consider
3453 for instance the following scenario where we have the following two
3454 stabs entries:
3455
3456 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3457 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3458
3459 A stubbed version of type dummy is created while processing the first
3460 stabs entry. The length of that type is initially set to zero, since
3461 it is unknown at this point. Also, a "constant" variation of type
3462 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3463 the stabs line).
3464
3465 The second stabs entry allows us to replace the stubbed definition
3466 with the real definition. However, we still need to adjust the length
3467 of the "constant" variation of that type, as its length was left
3468 untouched during the main type replacement... */
3469
3470static void
9e69f3b6 3471set_length_in_type_chain (struct type *type)
621791b8
PM
3472{
3473 struct type *ntype = TYPE_CHAIN (type);
3474
3475 while (ntype != type)
3476 {
3477 if (TYPE_LENGTH(ntype) == 0)
3478 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3479 else
3480 complain_about_struct_wipeout (ntype);
3481 ntype = TYPE_CHAIN (ntype);
3482 }
3483}
2ae1c2d2 3484
c906108c
SS
3485/* Read the description of a structure (or union type) and return an object
3486 describing the type.
3487
3488 PP points to a character pointer that points to the next unconsumed token
b021a221 3489 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
c906108c
SS
3490 *PP will point to "4a:1,0,32;;".
3491
3492 TYPE points to an incomplete type that needs to be filled in.
3493
3494 OBJFILE points to the current objfile from which the stabs information is
3495 being read. (Note that it is redundant in that TYPE also contains a pointer
3496 to this same objfile, so it might be a good idea to eliminate it. FIXME).
c5aa993b 3497 */
c906108c
SS
3498
3499static struct type *
2ae1c2d2
JB
3500read_struct_type (char **pp, struct type *type, enum type_code type_code,
3501 struct objfile *objfile)
c906108c
SS
3502{
3503 struct cleanup *back_to;
3504 struct field_info fi;
3505
3506 fi.list = NULL;
3507 fi.fnlist = NULL;
3508
2ae1c2d2
JB
3509 /* When describing struct/union/class types in stabs, G++ always drops
3510 all qualifications from the name. So if you've got:
3511 struct A { ... struct B { ... }; ... };
3512 then G++ will emit stabs for `struct A::B' that call it simply
3513 `struct B'. Obviously, if you've got a real top-level definition for
3514 `struct B', or other nested definitions, this is going to cause
3515 problems.
3516
3517 Obviously, GDB can't fix this by itself, but it can at least avoid
3518 scribbling on existing structure type objects when new definitions
3519 appear. */
3520 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3521 || TYPE_STUB (type)))
3522 {
3523 complain_about_struct_wipeout (type);
3524
3525 /* It's probably best to return the type unchanged. */
3526 return type;
3527 }
3528
c906108c
SS
3529 back_to = make_cleanup (null_cleanup, 0);
3530
3531 INIT_CPLUS_SPECIFIC (type);
2ae1c2d2 3532 TYPE_CODE (type) = type_code;
876cecd0 3533 TYPE_STUB (type) = 0;
c906108c
SS
3534
3535 /* First comes the total size in bytes. */
3536
3537 {
3538 int nbits;
433759f7 3539
94e10a22 3540 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
c906108c 3541 if (nbits != 0)
73b8d9da
TT
3542 {
3543 do_cleanups (back_to);
3544 return error_type (pp, objfile);
3545 }
621791b8 3546 set_length_in_type_chain (type);
c906108c
SS
3547 }
3548
3549 /* Now read the baseclasses, if any, read the regular C struct or C++
3550 class member fields, attach the fields to the type, read the C++
3551 member functions, attach them to the type, and then read any tilde
3e43a32a 3552 field (baseclass specifier for the class holding the main vtable). */
c906108c
SS
3553
3554 if (!read_baseclasses (&fi, pp, type, objfile)
3555 || !read_struct_fields (&fi, pp, type, objfile)
3556 || !attach_fields_to_type (&fi, type, objfile)
3557 || !read_member_functions (&fi, pp, type, objfile)
3558 || !attach_fn_fields_to_type (&fi, type)
3559 || !read_tilde_fields (&fi, pp, type, objfile))
3560 {
3561 type = error_type (pp, objfile);
3562 }
3563
3564 do_cleanups (back_to);
3565 return (type);
3566}
3567
3568/* Read a definition of an array type,
3569 and create and return a suitable type object.
3570 Also creates a range type which represents the bounds of that
3571 array. */
3572
3573static struct type *
aa1ee363 3574read_array_type (char **pp, struct type *type,
fba45db2 3575 struct objfile *objfile)
c906108c
SS
3576{
3577 struct type *index_type, *element_type, *range_type;
3578 int lower, upper;
3579 int adjustable = 0;
3580 int nbits;
3581
3582 /* Format of an array type:
3583 "ar<index type>;lower;upper;<array_contents_type>".
3584 OS9000: "arlower,upper;<array_contents_type>".
3585
3586 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3587 for these, produce a type like float[][]. */
3588
c906108c
SS
3589 {
3590 index_type = read_type (pp, objfile);
3591 if (**pp != ';')
3592 /* Improper format of array type decl. */
3593 return error_type (pp, objfile);
3594 ++*pp;
3595 }
3596
3597 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3598 {
3599 (*pp)++;
3600 adjustable = 1;
3601 }
94e10a22 3602 lower = read_huge_number (pp, ';', &nbits, 0);
cdecafbe 3603
c906108c
SS
3604 if (nbits != 0)
3605 return error_type (pp, objfile);
3606
3607 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3608 {
3609 (*pp)++;
3610 adjustable = 1;
3611 }
94e10a22 3612 upper = read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
3613 if (nbits != 0)
3614 return error_type (pp, objfile);
c5aa993b 3615
c906108c
SS
3616 element_type = read_type (pp, objfile);
3617
3618 if (adjustable)
3619 {
3620 lower = 0;
3621 upper = -1;
3622 }
3623
3624 range_type =
0c9c3474 3625 create_static_range_type ((struct type *) NULL, index_type, lower, upper);
c906108c
SS
3626 type = create_array_type (type, element_type, range_type);
3627
3628 return type;
3629}
3630
3631
3632/* Read a definition of an enumeration type,
3633 and create and return a suitable type object.
3634 Also defines the symbols that represent the values of the type. */
3635
3636static struct type *
aa1ee363 3637read_enum_type (char **pp, struct type *type,
fba45db2 3638 struct objfile *objfile)
c906108c 3639{
5e2b427d 3640 struct gdbarch *gdbarch = get_objfile_arch (objfile);
52f0bd74 3641 char *p;
c906108c 3642 char *name;
52f0bd74
AC
3643 long n;
3644 struct symbol *sym;
c906108c
SS
3645 int nsyms = 0;
3646 struct pending **symlist;
3647 struct pending *osyms, *syms;
3648 int o_nsyms;
3649 int nbits;
3650 int unsigned_enum = 1;
3651
3652#if 0
3653 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3654 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3655 to do? For now, force all enum values to file scope. */
3656 if (within_function)
3657 symlist = &local_symbols;
3658 else
3659#endif
3660 symlist = &file_symbols;
3661 osyms = *symlist;
3662 o_nsyms = osyms ? osyms->nsyms : 0;
3663
c906108c
SS
3664 /* The aix4 compiler emits an extra field before the enum members;
3665 my guess is it's a type of some sort. Just ignore it. */
3666 if (**pp == '-')
3667 {
3668 /* Skip over the type. */
3669 while (**pp != ':')
c5aa993b 3670 (*pp)++;
c906108c
SS
3671
3672 /* Skip over the colon. */
3673 (*pp)++;
3674 }
3675
3676 /* Read the value-names and their values.
3677 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3678 A semicolon or comma instead of a NAME means the end. */
3679 while (**pp && **pp != ';' && **pp != ',')
3680 {
3681 STABS_CONTINUE (pp, objfile);
3682 p = *pp;
c5aa993b
JM
3683 while (*p != ':')
3684 p++;
10f0c4bb 3685 name = obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
c906108c 3686 *pp = p + 1;
94e10a22 3687 n = read_huge_number (pp, ',', &nbits, 0);
c906108c
SS
3688 if (nbits != 0)
3689 return error_type (pp, objfile);
3690
e623cf5d 3691 sym = allocate_symbol (objfile);
3567439c 3692 SYMBOL_SET_LINKAGE_NAME (sym, name);
f85f34ed
TT
3693 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
3694 &objfile->objfile_obstack);
f1e6e072 3695 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
176620f1 3696 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
3697 SYMBOL_VALUE (sym) = n;
3698 if (n < 0)
3699 unsigned_enum = 0;
3700 add_symbol_to_list (sym, symlist);
3701 nsyms++;
3702 }
3703
3704 if (**pp == ';')
3705 (*pp)++; /* Skip the semicolon. */
3706
3707 /* Now fill in the fields of the type-structure. */
3708
5e2b427d 3709 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
621791b8 3710 set_length_in_type_chain (type);
c906108c 3711 TYPE_CODE (type) = TYPE_CODE_ENUM;
876cecd0 3712 TYPE_STUB (type) = 0;
c906108c 3713 if (unsigned_enum)
876cecd0 3714 TYPE_UNSIGNED (type) = 1;
c906108c
SS
3715 TYPE_NFIELDS (type) = nsyms;
3716 TYPE_FIELDS (type) = (struct field *)
3717 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3718 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3719
3720 /* Find the symbols for the values and put them into the type.
3721 The symbols can be found in the symlist that we put them on
3722 to cause them to be defined. osyms contains the old value
3723 of that symlist; everything up to there was defined by us. */
3724 /* Note that we preserve the order of the enum constants, so
3725 that in something like "enum {FOO, LAST_THING=FOO}" we print
3726 FOO, not LAST_THING. */
3727
3728 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3729 {
3730 int last = syms == osyms ? o_nsyms : 0;
3731 int j = syms->nsyms;
433759f7 3732
c906108c
SS
3733 for (; --j >= last; --n)
3734 {
3735 struct symbol *xsym = syms->symbol[j];
433759f7 3736
c906108c 3737 SYMBOL_TYPE (xsym) = type;
3567439c 3738 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
14e75d8e 3739 SET_FIELD_ENUMVAL (TYPE_FIELD (type, n), SYMBOL_VALUE (xsym));
c906108c
SS
3740 TYPE_FIELD_BITSIZE (type, n) = 0;
3741 }
3742 if (syms == osyms)
3743 break;
3744 }
3745
3746 return type;
3747}
3748
3749/* Sun's ACC uses a somewhat saner method for specifying the builtin
3750 typedefs in every file (for int, long, etc):
3751
c5aa993b
JM
3752 type = b <signed> <width> <format type>; <offset>; <nbits>
3753 signed = u or s.
3754 optional format type = c or b for char or boolean.
3755 offset = offset from high order bit to start bit of type.
3756 width is # bytes in object of this type, nbits is # bits in type.
c906108c
SS
3757
3758 The width/offset stuff appears to be for small objects stored in
3759 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3760 FIXME. */
3761
3762static struct type *
35a2f538 3763read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
c906108c
SS
3764{
3765 int type_bits;
3766 int nbits;
3767 int signed_type;
3768 enum type_code code = TYPE_CODE_INT;
3769
3770 switch (**pp)
3771 {
c5aa993b
JM
3772 case 's':
3773 signed_type = 1;
3774 break;
3775 case 'u':
3776 signed_type = 0;
3777 break;
3778 default:
3779 return error_type (pp, objfile);
c906108c
SS
3780 }
3781 (*pp)++;
3782
3783 /* For some odd reason, all forms of char put a c here. This is strange
3784 because no other type has this honor. We can safely ignore this because
3785 we actually determine 'char'acterness by the number of bits specified in
3786 the descriptor.
3787 Boolean forms, e.g Fortran logical*X, put a b here. */
3788
3789 if (**pp == 'c')
3790 (*pp)++;
3791 else if (**pp == 'b')
3792 {
3793 code = TYPE_CODE_BOOL;
3794 (*pp)++;
3795 }
3796
3797 /* The first number appears to be the number of bytes occupied
3798 by this type, except that unsigned short is 4 instead of 2.
3799 Since this information is redundant with the third number,
3800 we will ignore it. */
94e10a22 3801 read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
3802 if (nbits != 0)
3803 return error_type (pp, objfile);
3804
c378eb4e 3805 /* The second number is always 0, so ignore it too. */
94e10a22 3806 read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
3807 if (nbits != 0)
3808 return error_type (pp, objfile);
3809
c378eb4e 3810 /* The third number is the number of bits for this type. */
94e10a22 3811 type_bits = read_huge_number (pp, 0, &nbits, 0);
c906108c
SS
3812 if (nbits != 0)
3813 return error_type (pp, objfile);
3814 /* The type *should* end with a semicolon. If it are embedded
3815 in a larger type the semicolon may be the only way to know where
3816 the type ends. If this type is at the end of the stabstring we
3817 can deal with the omitted semicolon (but we don't have to like
3818 it). Don't bother to complain(), Sun's compiler omits the semicolon
3819 for "void". */
3820 if (**pp == ';')
3821 ++(*pp);
3822
3823 if (type_bits == 0)
3824 return init_type (TYPE_CODE_VOID, 1,
c5aa993b 3825 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
c906108c
SS
3826 objfile);
3827 else
3828 return init_type (code,
3829 type_bits / TARGET_CHAR_BIT,
c5aa993b 3830 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
c906108c
SS
3831 objfile);
3832}
3833
3834static struct type *
35a2f538 3835read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
c906108c
SS
3836{
3837 int nbits;
3838 int details;
3839 int nbytes;
f65ca430 3840 struct type *rettype;
c906108c
SS
3841
3842 /* The first number has more details about the type, for example
3843 FN_COMPLEX. */
94e10a22 3844 details = read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
3845 if (nbits != 0)
3846 return error_type (pp, objfile);
3847
c378eb4e 3848 /* The second number is the number of bytes occupied by this type. */
94e10a22 3849 nbytes = read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
3850 if (nbits != 0)
3851 return error_type (pp, objfile);
3852
3853 if (details == NF_COMPLEX || details == NF_COMPLEX16
3854 || details == NF_COMPLEX32)
f65ca430
DJ
3855 {
3856 rettype = init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
3857 TYPE_TARGET_TYPE (rettype)
3858 = init_type (TYPE_CODE_FLT, nbytes / 2, 0, NULL, objfile);
3859 return rettype;
3860 }
c906108c
SS
3861
3862 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3863}
3864
3865/* Read a number from the string pointed to by *PP.
3866 The value of *PP is advanced over the number.
3867 If END is nonzero, the character that ends the
3868 number must match END, or an error happens;
3869 and that character is skipped if it does match.
3870 If END is zero, *PP is left pointing to that character.
3871
94e10a22
JG
3872 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3873 the number is represented in an octal representation, assume that
3874 it is represented in a 2's complement representation with a size of
3875 TWOS_COMPLEMENT_BITS.
3876
c906108c
SS
3877 If the number fits in a long, set *BITS to 0 and return the value.
3878 If not, set *BITS to be the number of bits in the number and return 0.
3879
3880 If encounter garbage, set *BITS to -1 and return 0. */
3881
c2d11a7d 3882static long
94e10a22 3883read_huge_number (char **pp, int end, int *bits, int twos_complement_bits)
c906108c
SS
3884{
3885 char *p = *pp;
3886 int sign = 1;
51e9e0d4 3887 int sign_bit = 0;
c2d11a7d 3888 long n = 0;
c906108c
SS
3889 int radix = 10;
3890 char overflow = 0;
3891 int nbits = 0;
3892 int c;
c2d11a7d 3893 long upper_limit;
a2699720 3894 int twos_complement_representation = 0;
c5aa993b 3895
c906108c
SS
3896 if (*p == '-')
3897 {
3898 sign = -1;
3899 p++;
3900 }
3901
3902 /* Leading zero means octal. GCC uses this to output values larger
3903 than an int (because that would be hard in decimal). */
3904 if (*p == '0')
3905 {
3906 radix = 8;
3907 p++;
3908 }
3909
a2699720
PA
3910 /* Skip extra zeros. */
3911 while (*p == '0')
3912 p++;
3913
3914 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3915 {
3916 /* Octal, possibly signed. Check if we have enough chars for a
3917 negative number. */
3918
3919 size_t len;
3920 char *p1 = p;
433759f7 3921
a2699720
PA
3922 while ((c = *p1) >= '0' && c < '8')
3923 p1++;
3924
3925 len = p1 - p;
3926 if (len > twos_complement_bits / 3
3e43a32a
MS
3927 || (twos_complement_bits % 3 == 0
3928 && len == twos_complement_bits / 3))
a2699720
PA
3929 {
3930 /* Ok, we have enough characters for a signed value, check
3931 for signness by testing if the sign bit is set. */
3932 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3933 c = *p - '0';
3934 if (c & (1 << sign_bit))
3935 {
3936 /* Definitely signed. */
3937 twos_complement_representation = 1;
3938 sign = -1;
3939 }
3940 }
3941 }
3942
1b831c93 3943 upper_limit = LONG_MAX / radix;
c906108c
SS
3944
3945 while ((c = *p++) >= '0' && c < ('0' + radix))
3946 {
3947 if (n <= upper_limit)
94e10a22
JG
3948 {
3949 if (twos_complement_representation)
3950 {
a2699720
PA
3951 /* Octal, signed, twos complement representation. In
3952 this case, n is the corresponding absolute value. */
3953 if (n == 0)
3954 {
3955 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
433759f7 3956
a2699720
PA
3957 n = -sn;
3958 }
94e10a22
JG
3959 else
3960 {
a2699720
PA
3961 n *= radix;
3962 n -= c - '0';
94e10a22 3963 }
94e10a22
JG
3964 }
3965 else
3966 {
3967 /* unsigned representation */
3968 n *= radix;
c378eb4e 3969 n += c - '0'; /* FIXME this overflows anyway. */
94e10a22
JG
3970 }
3971 }
c906108c 3972 else
94e10a22 3973 overflow = 1;
c5aa993b 3974
c906108c 3975 /* This depends on large values being output in octal, which is
c378eb4e 3976 what GCC does. */
c906108c
SS
3977 if (radix == 8)
3978 {
3979 if (nbits == 0)
3980 {
3981 if (c == '0')
3982 /* Ignore leading zeroes. */
3983 ;
3984 else if (c == '1')
3985 nbits = 1;
3986 else if (c == '2' || c == '3')
3987 nbits = 2;
3988 else
3989 nbits = 3;
3990 }
3991 else
3992 nbits += 3;
3993 }
3994 }
3995 if (end)
3996 {
3997 if (c && c != end)
3998 {
3999 if (bits != NULL)
4000 *bits = -1;
4001 return 0;
4002 }
4003 }
4004 else
4005 --p;
4006
a2699720
PA
4007 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
4008 {
4009 /* We were supposed to parse a number with maximum
4010 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
4011 if (bits != NULL)
4012 *bits = -1;
4013 return 0;
4014 }
4015
c906108c
SS
4016 *pp = p;
4017 if (overflow)
4018 {
4019 if (nbits == 0)
4020 {
4021 /* Large decimal constants are an error (because it is hard to
4022 count how many bits are in them). */
4023 if (bits != NULL)
4024 *bits = -1;
4025 return 0;
4026 }
c5aa993b 4027
c906108c 4028 /* -0x7f is the same as 0x80. So deal with it by adding one to
a2699720
PA
4029 the number of bits. Two's complement represention octals
4030 can't have a '-' in front. */
4031 if (sign == -1 && !twos_complement_representation)
c906108c
SS
4032 ++nbits;
4033 if (bits)
4034 *bits = nbits;
4035 }
4036 else
4037 {
4038 if (bits)
4039 *bits = 0;
a2699720 4040 return n * sign;
c906108c
SS
4041 }
4042 /* It's *BITS which has the interesting information. */
4043 return 0;
4044}
4045
4046static struct type *
94e10a22
JG
4047read_range_type (char **pp, int typenums[2], int type_size,
4048 struct objfile *objfile)
c906108c 4049{
5e2b427d 4050 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
4051 char *orig_pp = *pp;
4052 int rangenums[2];
c2d11a7d 4053 long n2, n3;
c906108c
SS
4054 int n2bits, n3bits;
4055 int self_subrange;
4056 struct type *result_type;
4057 struct type *index_type = NULL;
4058
4059 /* First comes a type we are a subrange of.
4060 In C it is usually 0, 1 or the type being defined. */
4061 if (read_type_number (pp, rangenums) != 0)
4062 return error_type (pp, objfile);
4063 self_subrange = (rangenums[0] == typenums[0] &&
4064 rangenums[1] == typenums[1]);
4065
4066 if (**pp == '=')
4067 {
4068 *pp = orig_pp;
4069 index_type = read_type (pp, objfile);
4070 }
4071
4072 /* A semicolon should now follow; skip it. */
4073 if (**pp == ';')
4074 (*pp)++;
4075
4076 /* The remaining two operands are usually lower and upper bounds
4077 of the range. But in some special cases they mean something else. */
94e10a22
JG
4078 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4079 n3 = read_huge_number (pp, ';', &n3bits, type_size);
c906108c
SS
4080
4081 if (n2bits == -1 || n3bits == -1)
4082 return error_type (pp, objfile);
4083
4084 if (index_type)
4085 goto handle_true_range;
4086
4087 /* If limits are huge, must be large integral type. */
4088 if (n2bits != 0 || n3bits != 0)
4089 {
4090 char got_signed = 0;
4091 char got_unsigned = 0;
4092 /* Number of bits in the type. */
4093 int nbits = 0;
4094
94e10a22 4095 /* If a type size attribute has been specified, the bounds of
c378eb4e 4096 the range should fit in this size. If the lower bounds needs
94e10a22
JG
4097 more bits than the upper bound, then the type is signed. */
4098 if (n2bits <= type_size && n3bits <= type_size)
4099 {
4100 if (n2bits == type_size && n2bits > n3bits)
4101 got_signed = 1;
4102 else
4103 got_unsigned = 1;
4104 nbits = type_size;
4105 }
c906108c 4106 /* Range from 0 to <large number> is an unsigned large integral type. */
94e10a22 4107 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
c906108c
SS
4108 {
4109 got_unsigned = 1;
4110 nbits = n3bits;
4111 }
4112 /* Range from <large number> to <large number>-1 is a large signed
c5aa993b
JM
4113 integral type. Take care of the case where <large number> doesn't
4114 fit in a long but <large number>-1 does. */
c906108c
SS
4115 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4116 || (n2bits != 0 && n3bits == 0
c2d11a7d
JM
4117 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4118 && n3 == LONG_MAX))
c906108c
SS
4119 {
4120 got_signed = 1;
4121 nbits = n2bits;
4122 }
4123
4124 if (got_signed || got_unsigned)
4125 {
4126 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
4127 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
4128 objfile);
4129 }
4130 else
4131 return error_type (pp, objfile);
4132 }
4133
4134 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4135 if (self_subrange && n2 == 0 && n3 == 0)
4136 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
4137
4138 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4139 is the width in bytes.
4140
4141 Fortran programs appear to use this for complex types also. To
4142 distinguish between floats and complex, g77 (and others?) seem
4143 to use self-subranges for the complexes, and subranges of int for
4144 the floats.
4145
4146 Also note that for complexes, g77 sets n2 to the size of one of
4147 the member floats, not the whole complex beast. My guess is that
c378eb4e 4148 this was to work well with pre-COMPLEX versions of gdb. */
c906108c
SS
4149
4150 if (n3 == 0 && n2 > 0)
4151 {
1300f5dd
JB
4152 struct type *float_type
4153 = init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
4154
c906108c
SS
4155 if (self_subrange)
4156 {
1300f5dd
JB
4157 struct type *complex_type =
4158 init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
433759f7 4159
1300f5dd
JB
4160 TYPE_TARGET_TYPE (complex_type) = float_type;
4161 return complex_type;
c906108c
SS
4162 }
4163 else
1300f5dd 4164 return float_type;
c906108c
SS
4165 }
4166
a2699720 4167 /* If the upper bound is -1, it must really be an unsigned integral. */
c906108c
SS
4168
4169 else if (n2 == 0 && n3 == -1)
4170 {
a2699720 4171 int bits = type_size;
433759f7 4172
a2699720
PA
4173 if (bits <= 0)
4174 {
4175 /* We don't know its size. It is unsigned int or unsigned
4176 long. GCC 2.3.3 uses this for long long too, but that is
4177 just a GDB 3.5 compatibility hack. */
5e2b427d 4178 bits = gdbarch_int_bit (gdbarch);
a2699720
PA
4179 }
4180
4181 return init_type (TYPE_CODE_INT, bits / TARGET_CHAR_BIT,
c906108c
SS
4182 TYPE_FLAG_UNSIGNED, NULL, objfile);
4183 }
4184
4185 /* Special case: char is defined (Who knows why) as a subrange of
4186 itself with range 0-127. */
4187 else if (self_subrange && n2 == 0 && n3 == 127)
973ccf8b 4188 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_NOSIGN, NULL, objfile);
c906108c 4189
c906108c
SS
4190 /* We used to do this only for subrange of self or subrange of int. */
4191 else if (n2 == 0)
4192 {
a0b3c4fd
JM
4193 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4194 "unsigned long", and we already checked for that,
4195 so don't need to test for it here. */
4196
c906108c
SS
4197 if (n3 < 0)
4198 /* n3 actually gives the size. */
c5aa993b 4199 return init_type (TYPE_CODE_INT, -n3, TYPE_FLAG_UNSIGNED,
c906108c 4200 NULL, objfile);
c906108c 4201
7be570e7 4202 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
a0b3c4fd
JM
4203 unsigned n-byte integer. But do require n to be a power of
4204 two; we don't want 3- and 5-byte integers flying around. */
4205 {
4206 int bytes;
4207 unsigned long bits;
4208
4209 bits = n3;
4210 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4211 bits >>= 8;
4212 if (bits == 0
4213 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4214 return init_type (TYPE_CODE_INT, bytes, TYPE_FLAG_UNSIGNED, NULL,
4215 objfile);
4216 }
c906108c
SS
4217 }
4218 /* I think this is for Convex "long long". Since I don't know whether
4219 Convex sets self_subrange, I also accept that particular size regardless
4220 of self_subrange. */
4221 else if (n3 == 0 && n2 < 0
4222 && (self_subrange
9a76efb6 4223 || n2 == -gdbarch_long_long_bit
5e2b427d 4224 (gdbarch) / TARGET_CHAR_BIT))
c5aa993b
JM
4225 return init_type (TYPE_CODE_INT, -n2, 0, NULL, objfile);
4226 else if (n2 == -n3 - 1)
c906108c
SS
4227 {
4228 if (n3 == 0x7f)
4229 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
4230 if (n3 == 0x7fff)
4231 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
4232 if (n3 == 0x7fffffff)
4233 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
4234 }
4235
4236 /* We have a real range type on our hands. Allocate space and
4237 return a real pointer. */
c5aa993b 4238handle_true_range:
c906108c
SS
4239
4240 if (self_subrange)
46bf5051 4241 index_type = objfile_type (objfile)->builtin_int;
c906108c 4242 else
46bf5051 4243 index_type = *dbx_lookup_type (rangenums, objfile);
c906108c
SS
4244 if (index_type == NULL)
4245 {
4246 /* Does this actually ever happen? Is that why we are worrying
4247 about dealing with it rather than just calling error_type? */
4248
23136709 4249 complaint (&symfile_complaints,
e2e0b3e5 4250 _("base type %d of range type is not defined"), rangenums[1]);
5e2b427d 4251
46bf5051 4252 index_type = objfile_type (objfile)->builtin_int;
c906108c
SS
4253 }
4254
0c9c3474
SA
4255 result_type
4256 = create_static_range_type ((struct type *) NULL, index_type, n2, n3);
c906108c
SS
4257 return (result_type);
4258}
4259
4260/* Read in an argument list. This is a list of types, separated by commas
0a029df5
DJ
4261 and terminated with END. Return the list of types read in, or NULL
4262 if there is an error. */
c906108c 4263
ad2f7632
DJ
4264static struct field *
4265read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
4266 int *varargsp)
c906108c
SS
4267{
4268 /* FIXME! Remove this arbitrary limit! */
c378eb4e 4269 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
ad2f7632
DJ
4270 int n = 0, i;
4271 struct field *rval;
c906108c
SS
4272
4273 while (**pp != end)
4274 {
4275 if (**pp != ',')
4276 /* Invalid argument list: no ','. */
0a029df5 4277 return NULL;
c906108c
SS
4278 (*pp)++;
4279 STABS_CONTINUE (pp, objfile);
4280 types[n++] = read_type (pp, objfile);
4281 }
c378eb4e 4282 (*pp)++; /* get past `end' (the ':' character). */
c906108c 4283
d24d8548
JK
4284 if (n == 0)
4285 {
4286 /* We should read at least the THIS parameter here. Some broken stabs
4287 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4288 have been present ";-16,(0,43)" reference instead. This way the
4289 excessive ";" marker prematurely stops the parameters parsing. */
4290
4291 complaint (&symfile_complaints, _("Invalid (empty) method arguments"));
4292 *varargsp = 0;
4293 }
4294 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
ad2f7632 4295 *varargsp = 1;
c906108c
SS
4296 else
4297 {
ad2f7632
DJ
4298 n--;
4299 *varargsp = 0;
c906108c 4300 }
ad2f7632
DJ
4301
4302 rval = (struct field *) xmalloc (n * sizeof (struct field));
4303 memset (rval, 0, n * sizeof (struct field));
4304 for (i = 0; i < n; i++)
4305 rval[i].type = types[i];
4306 *nargsp = n;
c906108c
SS
4307 return rval;
4308}
4309\f
4310/* Common block handling. */
4311
4312/* List of symbols declared since the last BCOMM. This list is a tail
4313 of local_symbols. When ECOMM is seen, the symbols on the list
4314 are noted so their proper addresses can be filled in later,
4315 using the common block base address gotten from the assembler
4316 stabs. */
4317
4318static struct pending *common_block;
4319static int common_block_i;
4320
4321/* Name of the current common block. We get it from the BCOMM instead of the
4322 ECOMM to match IBM documentation (even though IBM puts the name both places
4323 like everyone else). */
4324static char *common_block_name;
4325
4326/* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4327 to remain after this function returns. */
4328
4329void
fba45db2 4330common_block_start (char *name, struct objfile *objfile)
c906108c
SS
4331{
4332 if (common_block_name != NULL)
4333 {
23136709 4334 complaint (&symfile_complaints,
e2e0b3e5 4335 _("Invalid symbol data: common block within common block"));
c906108c
SS
4336 }
4337 common_block = local_symbols;
4338 common_block_i = local_symbols ? local_symbols->nsyms : 0;
10f0c4bb
TT
4339 common_block_name = obstack_copy0 (&objfile->objfile_obstack,
4340 name, strlen (name));
c906108c
SS
4341}
4342
4343/* Process a N_ECOMM symbol. */
4344
4345void
fba45db2 4346common_block_end (struct objfile *objfile)
c906108c
SS
4347{
4348 /* Symbols declared since the BCOMM are to have the common block
4349 start address added in when we know it. common_block and
4350 common_block_i point to the first symbol after the BCOMM in
4351 the local_symbols list; copy the list and hang it off the
4352 symbol for the common block name for later fixup. */
4353 int i;
4354 struct symbol *sym;
fe978cb0 4355 struct pending *newobj = 0;
c906108c
SS
4356 struct pending *next;
4357 int j;
4358
4359 if (common_block_name == NULL)
4360 {
e2e0b3e5 4361 complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
c906108c
SS
4362 return;
4363 }
4364
e623cf5d 4365 sym = allocate_symbol (objfile);
c378eb4e 4366 /* Note: common_block_name already saved on objfile_obstack. */
3567439c 4367 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
f1e6e072 4368 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
c906108c
SS
4369
4370 /* Now we copy all the symbols which have been defined since the BCOMM. */
4371
4372 /* Copy all the struct pendings before common_block. */
4373 for (next = local_symbols;
4374 next != NULL && next != common_block;
4375 next = next->next)
4376 {
4377 for (j = 0; j < next->nsyms; j++)
fe978cb0 4378 add_symbol_to_list (next->symbol[j], &newobj);
c906108c
SS
4379 }
4380
4381 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4382 NULL, it means copy all the local symbols (which we already did
4383 above). */
4384
4385 if (common_block != NULL)
4386 for (j = common_block_i; j < common_block->nsyms; j++)
fe978cb0 4387 add_symbol_to_list (common_block->symbol[j], &newobj);
c906108c 4388
fe978cb0 4389 SYMBOL_TYPE (sym) = (struct type *) newobj;
c906108c
SS
4390
4391 /* Should we be putting local_symbols back to what it was?
4392 Does it matter? */
4393
3567439c 4394 i = hashname (SYMBOL_LINKAGE_NAME (sym));
c906108c
SS
4395 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4396 global_sym_chain[i] = sym;
4397 common_block_name = NULL;
4398}
4399
4400/* Add a common block's start address to the offset of each symbol
4401 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4402 the common block name). */
4403
4404static void
46cb6474 4405fix_common_block (struct symbol *sym, CORE_ADDR valu)
c906108c
SS
4406{
4407 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
433759f7 4408
c5aa993b 4409 for (; next; next = next->next)
c906108c 4410 {
aa1ee363 4411 int j;
433759f7 4412
c906108c
SS
4413 for (j = next->nsyms - 1; j >= 0; j--)
4414 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4415 }
4416}
c5aa993b 4417\f
c906108c
SS
4418
4419
bf362611
JB
4420/* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4421 See add_undefined_type for more details. */
c906108c 4422
a7a48797 4423static void
bf362611
JB
4424add_undefined_type_noname (struct type *type, int typenums[2])
4425{
4426 struct nat nat;
4427
4428 nat.typenums[0] = typenums [0];
4429 nat.typenums[1] = typenums [1];
4430 nat.type = type;
4431
4432 if (noname_undefs_length == noname_undefs_allocated)
4433 {
4434 noname_undefs_allocated *= 2;
4435 noname_undefs = (struct nat *)
4436 xrealloc ((char *) noname_undefs,
4437 noname_undefs_allocated * sizeof (struct nat));
4438 }
4439 noname_undefs[noname_undefs_length++] = nat;
4440}
4441
4442/* Add TYPE to the UNDEF_TYPES vector.
4443 See add_undefined_type for more details. */
4444
4445static void
4446add_undefined_type_1 (struct type *type)
c906108c
SS
4447{
4448 if (undef_types_length == undef_types_allocated)
4449 {
4450 undef_types_allocated *= 2;
4451 undef_types = (struct type **)
4452 xrealloc ((char *) undef_types,
4453 undef_types_allocated * sizeof (struct type *));
4454 }
4455 undef_types[undef_types_length++] = type;
4456}
4457
bf362611
JB
4458/* What about types defined as forward references inside of a small lexical
4459 scope? */
4460/* Add a type to the list of undefined types to be checked through
4461 once this file has been read in.
4462
4463 In practice, we actually maintain two such lists: The first list
4464 (UNDEF_TYPES) is used for types whose name has been provided, and
4465 concerns forward references (eg 'xs' or 'xu' forward references);
4466 the second list (NONAME_UNDEFS) is used for types whose name is
4467 unknown at creation time, because they were referenced through
4468 their type number before the actual type was declared.
4469 This function actually adds the given type to the proper list. */
4470
4471static void
4472add_undefined_type (struct type *type, int typenums[2])
4473{
4474 if (TYPE_TAG_NAME (type) == NULL)
4475 add_undefined_type_noname (type, typenums);
4476 else
4477 add_undefined_type_1 (type);
4478}
4479
4480/* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4481
2c0b251b 4482static void
46bf5051 4483cleanup_undefined_types_noname (struct objfile *objfile)
bf362611
JB
4484{
4485 int i;
4486
4487 for (i = 0; i < noname_undefs_length; i++)
4488 {
4489 struct nat nat = noname_undefs[i];
4490 struct type **type;
4491
46bf5051 4492 type = dbx_lookup_type (nat.typenums, objfile);
bf362611 4493 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
56953f80
JB
4494 {
4495 /* The instance flags of the undefined type are still unset,
4496 and needs to be copied over from the reference type.
4497 Since replace_type expects them to be identical, we need
4498 to set these flags manually before hand. */
4499 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4500 replace_type (nat.type, *type);
4501 }
bf362611
JB
4502 }
4503
4504 noname_undefs_length = 0;
4505}
4506
c906108c
SS
4507/* Go through each undefined type, see if it's still undefined, and fix it
4508 up if possible. We have two kinds of undefined types:
4509
4510 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
c5aa993b
JM
4511 Fix: update array length using the element bounds
4512 and the target type's length.
c906108c 4513 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
c5aa993b
JM
4514 yet defined at the time a pointer to it was made.
4515 Fix: Do a full lookup on the struct/union tag. */
bf362611 4516
2c0b251b 4517static void
bf362611 4518cleanup_undefined_types_1 (void)
c906108c
SS
4519{
4520 struct type **type;
4521
9e386756
JB
4522 /* Iterate over every undefined type, and look for a symbol whose type
4523 matches our undefined type. The symbol matches if:
4524 1. It is a typedef in the STRUCT domain;
4525 2. It has the same name, and same type code;
4526 3. The instance flags are identical.
4527
4528 It is important to check the instance flags, because we have seen
4529 examples where the debug info contained definitions such as:
4530
4531 "foo_t:t30=B31=xefoo_t:"
4532
4533 In this case, we have created an undefined type named "foo_t" whose
4534 instance flags is null (when processing "xefoo_t"), and then created
4535 another type with the same name, but with different instance flags
4536 ('B' means volatile). I think that the definition above is wrong,
4537 since the same type cannot be volatile and non-volatile at the same
4538 time, but we need to be able to cope with it when it happens. The
4539 approach taken here is to treat these two types as different. */
4540
c906108c
SS
4541 for (type = undef_types; type < undef_types + undef_types_length; type++)
4542 {
4543 switch (TYPE_CODE (*type))
4544 {
4545
c5aa993b
JM
4546 case TYPE_CODE_STRUCT:
4547 case TYPE_CODE_UNION:
4548 case TYPE_CODE_ENUM:
c906108c
SS
4549 {
4550 /* Check if it has been defined since. Need to do this here
4551 as well as in check_typedef to deal with the (legitimate in
4552 C though not C++) case of several types with the same name
4553 in different source files. */
74a9bb82 4554 if (TYPE_STUB (*type))
c906108c
SS
4555 {
4556 struct pending *ppt;
4557 int i;
c378eb4e 4558 /* Name of the type, without "struct" or "union". */
fe978cb0 4559 const char *type_name = TYPE_TAG_NAME (*type);
c906108c 4560
fe978cb0 4561 if (type_name == NULL)
c906108c 4562 {
e2e0b3e5 4563 complaint (&symfile_complaints, _("need a type name"));
c906108c
SS
4564 break;
4565 }
4566 for (ppt = file_symbols; ppt; ppt = ppt->next)
4567 {
4568 for (i = 0; i < ppt->nsyms; i++)
4569 {
4570 struct symbol *sym = ppt->symbol[i];
c5aa993b 4571
c906108c 4572 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
176620f1 4573 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
c906108c
SS
4574 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4575 TYPE_CODE (*type))
9e386756
JB
4576 && (TYPE_INSTANCE_FLAGS (*type) ==
4577 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
3567439c 4578 && strcmp (SYMBOL_LINKAGE_NAME (sym),
fe978cb0 4579 type_name) == 0)
13a393b0 4580 replace_type (*type, SYMBOL_TYPE (sym));
c906108c
SS
4581 }
4582 }
4583 }
4584 }
4585 break;
4586
4587 default:
4588 {
23136709 4589 complaint (&symfile_complaints,
e2e0b3e5
AC
4590 _("forward-referenced types left unresolved, "
4591 "type code %d."),
23136709 4592 TYPE_CODE (*type));
c906108c
SS
4593 }
4594 break;
4595 }
4596 }
4597
4598 undef_types_length = 0;
4599}
4600
bf362611
JB
4601/* Try to fix all the undefined types we ecountered while processing
4602 this unit. */
4603
4604void
0a0edcd5 4605cleanup_undefined_stabs_types (struct objfile *objfile)
bf362611
JB
4606{
4607 cleanup_undefined_types_1 ();
46bf5051 4608 cleanup_undefined_types_noname (objfile);
bf362611
JB
4609}
4610
c906108c
SS
4611/* Scan through all of the global symbols defined in the object file,
4612 assigning values to the debugging symbols that need to be assigned
4613 to. Get these symbols from the minimal symbol table. */
4614
4615void
fba45db2 4616scan_file_globals (struct objfile *objfile)
c906108c
SS
4617{
4618 int hash;
4619 struct minimal_symbol *msymbol;
507836c0 4620 struct symbol *sym, *prev;
c906108c
SS
4621 struct objfile *resolve_objfile;
4622
4623 /* SVR4 based linkers copy referenced global symbols from shared
4624 libraries to the main executable.
4625 If we are scanning the symbols for a shared library, try to resolve
4626 them from the minimal symbols of the main executable first. */
4627
4628 if (symfile_objfile && objfile != symfile_objfile)
4629 resolve_objfile = symfile_objfile;
4630 else
4631 resolve_objfile = objfile;
4632
4633 while (1)
4634 {
4635 /* Avoid expensive loop through all minimal symbols if there are
c5aa993b 4636 no unresolved symbols. */
c906108c
SS
4637 for (hash = 0; hash < HASHSIZE; hash++)
4638 {
4639 if (global_sym_chain[hash])
4640 break;
4641 }
4642 if (hash >= HASHSIZE)
4643 return;
4644
3567439c 4645 ALL_OBJFILE_MSYMBOLS (resolve_objfile, msymbol)
c906108c
SS
4646 {
4647 QUIT;
4648
4649 /* Skip static symbols. */
4650 switch (MSYMBOL_TYPE (msymbol))
4651 {
4652 case mst_file_text:
4653 case mst_file_data:
4654 case mst_file_bss:
4655 continue;
4656 default:
4657 break;
4658 }
4659
4660 prev = NULL;
4661
4662 /* Get the hash index and check all the symbols
c378eb4e 4663 under that hash index. */
c906108c 4664
efd66ac6 4665 hash = hashname (MSYMBOL_LINKAGE_NAME (msymbol));
c906108c
SS
4666
4667 for (sym = global_sym_chain[hash]; sym;)
4668 {
efd66ac6 4669 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
3567439c 4670 SYMBOL_LINKAGE_NAME (sym)) == 0)
c906108c 4671 {
c906108c 4672 /* Splice this symbol out of the hash chain and
c378eb4e 4673 assign the value we have to it. */
c906108c
SS
4674 if (prev)
4675 {
4676 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4677 }
4678 else
4679 {
4680 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4681 }
c5aa993b 4682
c906108c
SS
4683 /* Check to see whether we need to fix up a common block. */
4684 /* Note: this code might be executed several times for
4685 the same symbol if there are multiple references. */
507836c0 4686 if (sym)
c906108c 4687 {
507836c0 4688 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
c906108c 4689 {
507836c0 4690 fix_common_block (sym,
77e371c0
TT
4691 MSYMBOL_VALUE_ADDRESS (resolve_objfile,
4692 msymbol));
c906108c
SS
4693 }
4694 else
4695 {
507836c0 4696 SYMBOL_VALUE_ADDRESS (sym)
77e371c0 4697 = MSYMBOL_VALUE_ADDRESS (resolve_objfile, msymbol);
c906108c 4698 }
efd66ac6 4699 SYMBOL_SECTION (sym) = MSYMBOL_SECTION (msymbol);
c906108c
SS
4700 }
4701
c906108c
SS
4702 if (prev)
4703 {
4704 sym = SYMBOL_VALUE_CHAIN (prev);
4705 }
4706 else
4707 {
4708 sym = global_sym_chain[hash];
4709 }
4710 }
4711 else
4712 {
4713 prev = sym;
4714 sym = SYMBOL_VALUE_CHAIN (sym);
4715 }
4716 }
4717 }
4718 if (resolve_objfile == objfile)
4719 break;
4720 resolve_objfile = objfile;
4721 }
4722
4723 /* Change the storage class of any remaining unresolved globals to
4724 LOC_UNRESOLVED and remove them from the chain. */
4725 for (hash = 0; hash < HASHSIZE; hash++)
4726 {
4727 sym = global_sym_chain[hash];
4728 while (sym)
4729 {
4730 prev = sym;
4731 sym = SYMBOL_VALUE_CHAIN (sym);
4732
4733 /* Change the symbol address from the misleading chain value
4734 to address zero. */
4735 SYMBOL_VALUE_ADDRESS (prev) = 0;
4736
4737 /* Complain about unresolved common block symbols. */
4738 if (SYMBOL_CLASS (prev) == LOC_STATIC)
f1e6e072 4739 SYMBOL_ACLASS_INDEX (prev) = LOC_UNRESOLVED;
c906108c 4740 else
23136709 4741 complaint (&symfile_complaints,
3e43a32a
MS
4742 _("%s: common block `%s' from "
4743 "global_sym_chain unresolved"),
4262abfb 4744 objfile_name (objfile), SYMBOL_PRINT_NAME (prev));
c906108c
SS
4745 }
4746 }
4747 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4748}
4749
4750/* Initialize anything that needs initializing when starting to read
4751 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4752 to a psymtab. */
4753
4754void
fba45db2 4755stabsread_init (void)
c906108c
SS
4756{
4757}
4758
4759/* Initialize anything that needs initializing when a completely new
4760 symbol file is specified (not just adding some symbols from another
4761 file, e.g. a shared library). */
4762
4763void
fba45db2 4764stabsread_new_init (void)
c906108c
SS
4765{
4766 /* Empty the hash table of global syms looking for values. */
4767 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4768}
4769
4770/* Initialize anything that needs initializing at the same time as
c378eb4e 4771 start_symtab() is called. */
c906108c 4772
c5aa993b 4773void
fba45db2 4774start_stabs (void)
c906108c
SS
4775{
4776 global_stabs = NULL; /* AIX COFF */
4777 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4778 n_this_object_header_files = 1;
4779 type_vector_length = 0;
4780 type_vector = (struct type **) 0;
4781
4782 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4783 common_block_name = NULL;
c906108c
SS
4784}
4785
c378eb4e 4786/* Call after end_symtab(). */
c906108c 4787
c5aa993b 4788void
fba45db2 4789end_stabs (void)
c906108c
SS
4790{
4791 if (type_vector)
4792 {
b8c9b27d 4793 xfree (type_vector);
c906108c
SS
4794 }
4795 type_vector = 0;
4796 type_vector_length = 0;
4797 previous_stab_code = 0;
4798}
4799
4800void
fba45db2 4801finish_global_stabs (struct objfile *objfile)
c906108c
SS
4802{
4803 if (global_stabs)
4804 {
4805 patch_block_stabs (global_symbols, global_stabs, objfile);
b8c9b27d 4806 xfree (global_stabs);
c906108c
SS
4807 global_stabs = NULL;
4808 }
4809}
4810
7e1d63ec
AF
4811/* Find the end of the name, delimited by a ':', but don't match
4812 ObjC symbols which look like -[Foo bar::]:bla. */
4813static char *
4814find_name_end (char *name)
4815{
4816 char *s = name;
433759f7 4817
7e1d63ec
AF
4818 if (s[0] == '-' || *s == '+')
4819 {
4820 /* Must be an ObjC method symbol. */
4821 if (s[1] != '[')
4822 {
8a3fe4f8 4823 error (_("invalid symbol name \"%s\""), name);
7e1d63ec
AF
4824 }
4825 s = strchr (s, ']');
4826 if (s == NULL)
4827 {
8a3fe4f8 4828 error (_("invalid symbol name \"%s\""), name);
7e1d63ec
AF
4829 }
4830 return strchr (s, ':');
4831 }
4832 else
4833 {
4834 return strchr (s, ':');
4835 }
4836}
4837
c378eb4e 4838/* Initializer for this module. */
c906108c
SS
4839
4840void
fba45db2 4841_initialize_stabsread (void)
c906108c 4842{
46bf5051
UW
4843 rs6000_builtin_type_data = register_objfile_data ();
4844
c906108c
SS
4845 undef_types_allocated = 20;
4846 undef_types_length = 0;
4847 undef_types = (struct type **)
4848 xmalloc (undef_types_allocated * sizeof (struct type *));
bf362611
JB
4849
4850 noname_undefs_allocated = 20;
4851 noname_undefs_length = 0;
4852 noname_undefs = (struct nat *)
4853 xmalloc (noname_undefs_allocated * sizeof (struct nat));
f1e6e072
TT
4854
4855 stab_register_index = register_symbol_register_impl (LOC_REGISTER,
4856 &stab_register_funcs);
4857 stab_regparm_index = register_symbol_register_impl (LOC_REGPARM_ADDR,
4858 &stab_register_funcs);
c906108c 4859}
This page took 2.374313 seconds and 4 git commands to generate.