gdb: add type::num_fields / type::set_num_fields
[deliverable/binutils-gdb.git] / gdb / stabsread.c
CommitLineData
c906108c 1/* Support routines for decoding "stabs" debugging information format.
cf5b2f1b 2
b811d2c2 3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20/* Support routines for reading and decoding debugging information in
1736a7bd
PA
21 the "stabs" format. This format is used by some systems that use
22 COFF or ELF where the stabs data is placed in a special section (as
23 well as with many old systems that used the a.out object file
24 format). Avoid placing any object file format specific code in
25 this file. */
c906108c
SS
26
27#include "defs.h"
c906108c 28#include "bfd.h"
04ea0df1 29#include "gdb_obstack.h"
c906108c
SS
30#include "symtab.h"
31#include "gdbtypes.h"
32#include "expression.h"
33#include "symfile.h"
34#include "objfiles.h"
3e43a32a 35#include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
c906108c
SS
36#include "libaout.h"
37#include "aout/aout64.h"
38#include "gdb-stabs.h"
0baae8db 39#include "buildsym-legacy.h"
c906108c
SS
40#include "complaints.h"
41#include "demangle.h"
50f182aa 42#include "gdb-demangle.h"
c906108c 43#include "language.h"
f69fdf9b 44#include "target-float.h"
bad5c026 45#include "c-lang.h"
de17c821
DJ
46#include "cp-abi.h"
47#include "cp-support.h"
c906108c
SS
48#include <ctype.h>
49
d65d5705
TT
50#include "stabsread.h"
51
52/* See stabsread.h for these globals. */
53unsigned int symnum;
54const char *(*next_symbol_text_func) (struct objfile *);
55unsigned char processing_gcc_compilation;
56int within_function;
57struct symbol *global_sym_chain[HASHSIZE];
58struct pending_stabs *global_stabs;
59int previous_stab_code;
60int *this_object_header_files;
61int n_this_object_header_files;
62int n_allocated_this_object_header_files;
c906108c 63
52059ffd
TT
64struct nextfield
65{
66 struct nextfield *next;
67
68 /* This is the raw visibility from the stab. It is not checked
69 for being one of the visibilities we recognize, so code which
70 examines this field better be able to deal. */
71 int visibility;
72
73 struct field field;
74};
75
76struct next_fnfieldlist
77{
78 struct next_fnfieldlist *next;
79 struct fn_fieldlist fn_fieldlist;
80};
81
c906108c
SS
82/* The routines that read and process a complete stabs for a C struct or
83 C++ class pass lists of data member fields and lists of member function
84 fields in an instance of a field_info structure, as defined below.
85 This is part of some reorganization of low level C++ support and is
c378eb4e 86 expected to eventually go away... (FIXME) */
c906108c 87
61b30099 88struct stab_field_info
c5aa993b 89 {
61b30099
TT
90 struct nextfield *list = nullptr;
91 struct next_fnfieldlist *fnlist = nullptr;
92
93 auto_obstack obstack;
c5aa993b 94 };
c906108c
SS
95
96static void
61b30099 97read_one_struct_field (struct stab_field_info *, const char **, const char *,
a14ed312 98 struct type *, struct objfile *);
c906108c 99
a14ed312 100static struct type *dbx_alloc_type (int[2], struct objfile *);
c906108c 101
a121b7c1 102static long read_huge_number (const char **, int, int *, int);
c906108c 103
a121b7c1 104static struct type *error_type (const char **, struct objfile *);
c906108c
SS
105
106static void
a14ed312
KB
107patch_block_stabs (struct pending *, struct pending_stabs *,
108 struct objfile *);
c906108c 109
46cb6474 110static void fix_common_block (struct symbol *, CORE_ADDR);
c906108c 111
a121b7c1 112static int read_type_number (const char **, int *);
c906108c 113
a121b7c1 114static struct type *read_type (const char **, struct objfile *);
a7a48797 115
a121b7c1
PA
116static struct type *read_range_type (const char **, int[2],
117 int, struct objfile *);
c906108c 118
a121b7c1
PA
119static struct type *read_sun_builtin_type (const char **,
120 int[2], struct objfile *);
c906108c 121
a121b7c1 122static struct type *read_sun_floating_type (const char **, int[2],
a14ed312 123 struct objfile *);
c906108c 124
a121b7c1 125static struct type *read_enum_type (const char **, struct type *, struct objfile *);
c906108c 126
46bf5051 127static struct type *rs6000_builtin_type (int, struct objfile *);
c906108c
SS
128
129static int
61b30099 130read_member_functions (struct stab_field_info *, const char **, struct type *,
a14ed312 131 struct objfile *);
c906108c
SS
132
133static int
61b30099 134read_struct_fields (struct stab_field_info *, const char **, struct type *,
a14ed312 135 struct objfile *);
c906108c
SS
136
137static int
61b30099 138read_baseclasses (struct stab_field_info *, const char **, struct type *,
a14ed312 139 struct objfile *);
c906108c
SS
140
141static int
61b30099 142read_tilde_fields (struct stab_field_info *, const char **, struct type *,
a14ed312 143 struct objfile *);
c906108c 144
61b30099 145static int attach_fn_fields_to_type (struct stab_field_info *, struct type *);
c906108c 146
61b30099 147static int attach_fields_to_type (struct stab_field_info *, struct type *,
570b8f7c 148 struct objfile *);
c906108c 149
a121b7c1 150static struct type *read_struct_type (const char **, struct type *,
2ae1c2d2 151 enum type_code,
a14ed312 152 struct objfile *);
c906108c 153
a121b7c1 154static struct type *read_array_type (const char **, struct type *,
a14ed312 155 struct objfile *);
c906108c 156
a121b7c1
PA
157static struct field *read_args (const char **, int, struct objfile *,
158 int *, int *);
c906108c 159
bf362611 160static void add_undefined_type (struct type *, int[2]);
a7a48797 161
c906108c 162static int
61b30099 163read_cpp_abbrev (struct stab_field_info *, const char **, struct type *,
a14ed312 164 struct objfile *);
c906108c 165
a121b7c1 166static const char *find_name_end (const char *name);
7e1d63ec 167
a121b7c1 168static int process_reference (const char **string);
c906108c 169
a14ed312 170void stabsread_clear_cache (void);
7be570e7 171
8343f86c
DJ
172static const char vptr_name[] = "_vptr$";
173static const char vb_name[] = "_vb$";
c906108c 174
23136709
KB
175static void
176invalid_cpp_abbrev_complaint (const char *arg1)
177{
b98664d3 178 complaint (_("invalid C++ abbreviation `%s'"), arg1);
23136709 179}
c906108c 180
23136709 181static void
49b0b195 182reg_value_complaint (int regnum, int num_regs, const char *sym)
23136709 183{
b98664d3 184 complaint (_("bad register number %d (max %d) in symbol %s"),
49b0b195 185 regnum, num_regs - 1, sym);
23136709 186}
c906108c 187
23136709
KB
188static void
189stabs_general_complaint (const char *arg1)
190{
b98664d3 191 complaint ("%s", arg1);
23136709 192}
c906108c 193
c906108c
SS
194/* Make a list of forward references which haven't been defined. */
195
196static struct type **undef_types;
197static int undef_types_allocated;
198static int undef_types_length;
199static struct symbol *current_symbol = NULL;
200
bf362611
JB
201/* Make a list of nameless types that are undefined.
202 This happens when another type is referenced by its number
c378eb4e 203 before this type is actually defined. For instance "t(0,1)=k(0,2)"
bf362611
JB
204 and type (0,2) is defined only later. */
205
206struct nat
207{
208 int typenums[2];
209 struct type *type;
210};
211static struct nat *noname_undefs;
212static int noname_undefs_allocated;
213static int noname_undefs_length;
214
c906108c
SS
215/* Check for and handle cretinous stabs symbol name continuation! */
216#define STABS_CONTINUE(pp,objfile) \
217 do { \
218 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
219 *(pp) = next_symbol_text (objfile); \
220 } while (0)
fc474241
DE
221
222/* Vector of types defined so far, indexed by their type numbers.
223 (In newer sun systems, dbx uses a pair of numbers in parens,
224 as in "(SUBFILENUM,NUMWITHINSUBFILE)".
225 Then these numbers must be translated through the type_translations
226 hash table to get the index into the type vector.) */
227
228static struct type **type_vector;
229
230/* Number of elements allocated for type_vector currently. */
231
232static int type_vector_length;
233
234/* Initial size of type vector. Is realloc'd larger if needed, and
235 realloc'd down to the size actually used, when completed. */
236
237#define INITIAL_TYPE_VECTOR_LENGTH 160
c906108c 238\f
c906108c
SS
239
240/* Look up a dbx type-number pair. Return the address of the slot
241 where the type for that number-pair is stored.
242 The number-pair is in TYPENUMS.
243
244 This can be used for finding the type associated with that pair
245 or for associating a new type with the pair. */
246
a7a48797 247static struct type **
46bf5051 248dbx_lookup_type (int typenums[2], struct objfile *objfile)
c906108c 249{
52f0bd74
AC
250 int filenum = typenums[0];
251 int index = typenums[1];
c906108c 252 unsigned old_len;
52f0bd74
AC
253 int real_filenum;
254 struct header_file *f;
c906108c
SS
255 int f_orig_length;
256
257 if (filenum == -1) /* -1,-1 is for temporary types. */
258 return 0;
259
260 if (filenum < 0 || filenum >= n_this_object_header_files)
261 {
b98664d3 262 complaint (_("Invalid symbol data: type number "
3e43a32a 263 "(%d,%d) out of range at symtab pos %d."),
23136709 264 filenum, index, symnum);
c906108c
SS
265 goto error_return;
266 }
267
268 if (filenum == 0)
269 {
270 if (index < 0)
271 {
272 /* Caller wants address of address of type. We think
273 that negative (rs6k builtin) types will never appear as
274 "lvalues", (nor should they), so we stuff the real type
275 pointer into a temp, and return its address. If referenced,
276 this will do the right thing. */
277 static struct type *temp_type;
278
46bf5051 279 temp_type = rs6000_builtin_type (index, objfile);
c906108c
SS
280 return &temp_type;
281 }
282
283 /* Type is defined outside of header files.
c5aa993b 284 Find it in this object file's type vector. */
c906108c
SS
285 if (index >= type_vector_length)
286 {
287 old_len = type_vector_length;
288 if (old_len == 0)
289 {
290 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
8d749320 291 type_vector = XNEWVEC (struct type *, type_vector_length);
c906108c
SS
292 }
293 while (index >= type_vector_length)
294 {
295 type_vector_length *= 2;
296 }
297 type_vector = (struct type **)
298 xrealloc ((char *) type_vector,
299 (type_vector_length * sizeof (struct type *)));
300 memset (&type_vector[old_len], 0,
301 (type_vector_length - old_len) * sizeof (struct type *));
c906108c
SS
302 }
303 return (&type_vector[index]);
304 }
305 else
306 {
307 real_filenum = this_object_header_files[filenum];
308
46bf5051 309 if (real_filenum >= N_HEADER_FILES (objfile))
c906108c 310 {
46bf5051 311 static struct type *temp_type;
c906108c 312
8a3fe4f8 313 warning (_("GDB internal error: bad real_filenum"));
c906108c
SS
314
315 error_return:
46bf5051
UW
316 temp_type = objfile_type (objfile)->builtin_error;
317 return &temp_type;
c906108c
SS
318 }
319
46bf5051 320 f = HEADER_FILES (objfile) + real_filenum;
c906108c
SS
321
322 f_orig_length = f->length;
323 if (index >= f_orig_length)
324 {
325 while (index >= f->length)
326 {
327 f->length *= 2;
328 }
329 f->vector = (struct type **)
330 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
331 memset (&f->vector[f_orig_length], 0,
332 (f->length - f_orig_length) * sizeof (struct type *));
333 }
334 return (&f->vector[index]);
335 }
336}
337
338/* Make sure there is a type allocated for type numbers TYPENUMS
339 and return the type object.
340 This can create an empty (zeroed) type object.
341 TYPENUMS may be (-1, -1) to return a new type object that is not
c378eb4e 342 put into the type vector, and so may not be referred to by number. */
c906108c
SS
343
344static struct type *
35a2f538 345dbx_alloc_type (int typenums[2], struct objfile *objfile)
c906108c 346{
52f0bd74 347 struct type **type_addr;
c906108c
SS
348
349 if (typenums[0] == -1)
350 {
351 return (alloc_type (objfile));
352 }
353
46bf5051 354 type_addr = dbx_lookup_type (typenums, objfile);
c906108c
SS
355
356 /* If we are referring to a type not known at all yet,
357 allocate an empty type for it.
358 We will fill it in later if we find out how. */
359 if (*type_addr == 0)
360 {
361 *type_addr = alloc_type (objfile);
362 }
363
364 return (*type_addr);
365}
366
9b790ce7
UW
367/* Allocate a floating-point type of size BITS. */
368
369static struct type *
370dbx_init_float_type (struct objfile *objfile, int bits)
371{
08feed99 372 struct gdbarch *gdbarch = objfile->arch ();
9b790ce7
UW
373 const struct floatformat **format;
374 struct type *type;
375
376 format = gdbarch_floatformat_for_type (gdbarch, NULL, bits);
377 if (format)
378 type = init_float_type (objfile, bits, NULL, format);
379 else
77b7c781 380 type = init_type (objfile, TYPE_CODE_ERROR, bits, NULL);
9b790ce7
UW
381
382 return type;
383}
384
c906108c 385/* for all the stabs in a given stab vector, build appropriate types
c378eb4e 386 and fix their symbols in given symbol vector. */
c906108c
SS
387
388static void
fba45db2
KB
389patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
390 struct objfile *objfile)
c906108c
SS
391{
392 int ii;
393 char *name;
a121b7c1 394 const char *pp;
c906108c
SS
395 struct symbol *sym;
396
397 if (stabs)
398 {
c906108c 399 /* for all the stab entries, find their corresponding symbols and
c378eb4e 400 patch their types! */
c5aa993b 401
c906108c
SS
402 for (ii = 0; ii < stabs->count; ++ii)
403 {
404 name = stabs->stab[ii];
c5aa993b 405 pp = (char *) strchr (name, ':');
8fb822e0 406 gdb_assert (pp); /* Must find a ':' or game's over. */
c906108c
SS
407 while (pp[1] == ':')
408 {
c5aa993b
JM
409 pp += 2;
410 pp = (char *) strchr (pp, ':');
c906108c 411 }
c5aa993b 412 sym = find_symbol_in_list (symbols, name, pp - name);
c906108c
SS
413 if (!sym)
414 {
415 /* FIXME-maybe: it would be nice if we noticed whether
c5aa993b
JM
416 the variable was defined *anywhere*, not just whether
417 it is defined in this compilation unit. But neither
418 xlc or GCC seem to need such a definition, and until
419 we do psymtabs (so that the minimal symbols from all
420 compilation units are available now), I'm not sure
421 how to get the information. */
c906108c
SS
422
423 /* On xcoff, if a global is defined and never referenced,
c5aa993b
JM
424 ld will remove it from the executable. There is then
425 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
8c14c3a3 426 sym = new (&objfile->objfile_obstack) symbol;
176620f1 427 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
f1e6e072 428 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
43678b0a
CB
429 sym->set_linkage_name
430 (obstack_strndup (&objfile->objfile_obstack, name, pp - name));
c906108c 431 pp += 2;
c5aa993b 432 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
c906108c
SS
433 {
434 /* I don't think the linker does this with functions,
435 so as far as I know this is never executed.
436 But it doesn't hurt to check. */
437 SYMBOL_TYPE (sym) =
438 lookup_function_type (read_type (&pp, objfile));
439 }
440 else
441 {
442 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
443 }
e148f09d 444 add_symbol_to_list (sym, get_global_symbols ());
c906108c
SS
445 }
446 else
447 {
448 pp += 2;
c5aa993b 449 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
c906108c
SS
450 {
451 SYMBOL_TYPE (sym) =
452 lookup_function_type (read_type (&pp, objfile));
453 }
454 else
455 {
456 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
457 }
458 }
459 }
460 }
461}
c906108c 462\f
c5aa993b 463
c906108c
SS
464/* Read a number by which a type is referred to in dbx data,
465 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
466 Just a single number N is equivalent to (0,N).
467 Return the two numbers by storing them in the vector TYPENUMS.
468 TYPENUMS will then be used as an argument to dbx_lookup_type.
469
470 Returns 0 for success, -1 for error. */
471
472static int
a121b7c1 473read_type_number (const char **pp, int *typenums)
c906108c
SS
474{
475 int nbits;
433759f7 476
c906108c
SS
477 if (**pp == '(')
478 {
479 (*pp)++;
94e10a22 480 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
c5aa993b
JM
481 if (nbits != 0)
482 return -1;
94e10a22 483 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
c5aa993b
JM
484 if (nbits != 0)
485 return -1;
c906108c
SS
486 }
487 else
488 {
489 typenums[0] = 0;
94e10a22 490 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
c5aa993b
JM
491 if (nbits != 0)
492 return -1;
c906108c
SS
493 }
494 return 0;
495}
c906108c 496\f
c5aa993b 497
c906108c
SS
498#define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
499#define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
500#define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
501#define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
502
c906108c 503/* Structure for storing pointers to reference definitions for fast lookup
c378eb4e 504 during "process_later". */
c906108c
SS
505
506struct ref_map
507{
a121b7c1 508 const char *stabs;
c906108c
SS
509 CORE_ADDR value;
510 struct symbol *sym;
511};
512
513#define MAX_CHUNK_REFS 100
514#define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
515#define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
516
c5aa993b 517static struct ref_map *ref_map;
c906108c 518
c378eb4e 519/* Ptr to free cell in chunk's linked list. */
c5aa993b 520static int ref_count = 0;
c906108c 521
c378eb4e 522/* Number of chunks malloced. */
c906108c
SS
523static int ref_chunk = 0;
524
7be570e7 525/* This file maintains a cache of stabs aliases found in the symbol
c378eb4e
MS
526 table. If the symbol table changes, this cache must be cleared
527 or we are left holding onto data in invalid obstacks. */
7be570e7 528void
fba45db2 529stabsread_clear_cache (void)
7be570e7
JM
530{
531 ref_count = 0;
532 ref_chunk = 0;
533}
534
c906108c
SS
535/* Create array of pointers mapping refids to symbols and stab strings.
536 Add pointers to reference definition symbols and/or their values as we
c378eb4e
MS
537 find them, using their reference numbers as our index.
538 These will be used later when we resolve references. */
c906108c 539void
a121b7c1 540ref_add (int refnum, struct symbol *sym, const char *stabs, CORE_ADDR value)
c906108c
SS
541{
542 if (ref_count == 0)
543 ref_chunk = 0;
544 if (refnum >= ref_count)
545 ref_count = refnum + 1;
546 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
547 {
c5aa993b 548 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
c906108c 549 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
433759f7 550
c906108c
SS
551 ref_map = (struct ref_map *)
552 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
433759f7
MS
553 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
554 new_chunks * REF_CHUNK_SIZE);
c906108c
SS
555 ref_chunk += new_chunks;
556 }
557 ref_map[refnum].stabs = stabs;
558 ref_map[refnum].sym = sym;
559 ref_map[refnum].value = value;
560}
561
562/* Return defined sym for the reference REFNUM. */
563struct symbol *
fba45db2 564ref_search (int refnum)
c906108c
SS
565{
566 if (refnum < 0 || refnum > ref_count)
567 return 0;
568 return ref_map[refnum].sym;
569}
570
c906108c
SS
571/* Parse a reference id in STRING and return the resulting
572 reference number. Move STRING beyond the reference id. */
573
c5aa993b 574static int
a121b7c1 575process_reference (const char **string)
c906108c 576{
a121b7c1 577 const char *p;
c906108c
SS
578 int refnum = 0;
579
c5aa993b
JM
580 if (**string != '#')
581 return 0;
582
c906108c
SS
583 /* Advance beyond the initial '#'. */
584 p = *string + 1;
585
c378eb4e 586 /* Read number as reference id. */
c906108c
SS
587 while (*p && isdigit (*p))
588 {
589 refnum = refnum * 10 + *p - '0';
590 p++;
591 }
592 *string = p;
593 return refnum;
594}
595
596/* If STRING defines a reference, store away a pointer to the reference
597 definition for later use. Return the reference number. */
598
599int
a121b7c1 600symbol_reference_defined (const char **string)
c906108c 601{
a121b7c1 602 const char *p = *string;
c906108c
SS
603 int refnum = 0;
604
605 refnum = process_reference (&p);
606
c378eb4e 607 /* Defining symbols end in '='. */
c5aa993b 608 if (*p == '=')
c906108c 609 {
c378eb4e 610 /* Symbol is being defined here. */
c906108c
SS
611 *string = p + 1;
612 return refnum;
613 }
614 else
615 {
c378eb4e 616 /* Must be a reference. Either the symbol has already been defined,
c906108c
SS
617 or this is a forward reference to it. */
618 *string = p;
619 return -1;
620 }
621}
622
768a979c
UW
623static int
624stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
625{
626 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
627
f6efe3f8 628 if (regno < 0 || regno >= gdbarch_num_cooked_regs (gdbarch))
768a979c 629 {
f6efe3f8 630 reg_value_complaint (regno, gdbarch_num_cooked_regs (gdbarch),
987012b8 631 sym->print_name ());
768a979c 632
c378eb4e 633 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
768a979c
UW
634 }
635
636 return regno;
637}
638
639static const struct symbol_register_ops stab_register_funcs = {
640 stab_reg_to_regnum
641};
642
f1e6e072
TT
643/* The "aclass" indices for computed symbols. */
644
645static int stab_register_index;
646static int stab_regparm_index;
647
c906108c 648struct symbol *
a121b7c1 649define_symbol (CORE_ADDR valu, const char *string, int desc, int type,
fba45db2 650 struct objfile *objfile)
c906108c 651{
08feed99 652 struct gdbarch *gdbarch = objfile->arch ();
52f0bd74 653 struct symbol *sym;
a121b7c1 654 const char *p = find_name_end (string);
c906108c
SS
655 int deftype;
656 int synonym = 0;
52f0bd74 657 int i;
c906108c
SS
658
659 /* We would like to eliminate nameless symbols, but keep their types.
660 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
c378eb4e
MS
661 to type 2, but, should not create a symbol to address that type. Since
662 the symbol will be nameless, there is no way any user can refer to it. */
c906108c
SS
663
664 int nameless;
665
666 /* Ignore syms with empty names. */
667 if (string[0] == 0)
668 return 0;
669
c378eb4e 670 /* Ignore old-style symbols from cc -go. */
c906108c
SS
671 if (p == 0)
672 return 0;
673
674 while (p[1] == ':')
675 {
c5aa993b
JM
676 p += 2;
677 p = strchr (p, ':');
681c238c
MS
678 if (p == NULL)
679 {
b98664d3 680 complaint (
681c238c
MS
681 _("Bad stabs string '%s'"), string);
682 return NULL;
683 }
c906108c
SS
684 }
685
686 /* If a nameless stab entry, all we need is the type, not the symbol.
687 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
688 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
689
8c14c3a3 690 current_symbol = sym = new (&objfile->objfile_obstack) symbol;
c906108c 691
c906108c
SS
692 if (processing_gcc_compilation)
693 {
694 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
c5aa993b
JM
695 number of bytes occupied by a type or object, which we ignore. */
696 SYMBOL_LINE (sym) = desc;
c906108c
SS
697 }
698 else
699 {
c5aa993b 700 SYMBOL_LINE (sym) = 0; /* unknown */
c906108c
SS
701 }
702
d3ecddab
CB
703 sym->set_language (get_current_subfile ()->language,
704 &objfile->objfile_obstack);
025ac414 705
c906108c
SS
706 if (is_cplus_marker (string[0]))
707 {
708 /* Special GNU C++ names. */
709 switch (string[1])
710 {
c5aa993b 711 case 't':
43678b0a 712 sym->set_linkage_name ("this");
c5aa993b 713 break;
c906108c 714
c5aa993b 715 case 'v': /* $vtbl_ptr_type */
c5aa993b 716 goto normal;
c906108c 717
c5aa993b 718 case 'e':
43678b0a 719 sym->set_linkage_name ("eh_throw");
c5aa993b 720 break;
c906108c 721
c5aa993b
JM
722 case '_':
723 /* This was an anonymous type that was never fixed up. */
724 goto normal;
c906108c 725
c5aa993b
JM
726 case 'X':
727 /* SunPRO (3.0 at least) static variable encoding. */
5e2b427d 728 if (gdbarch_static_transform_name_p (gdbarch))
149ad273 729 goto normal;
86a73007 730 /* fall through */
c906108c 731
c5aa993b 732 default:
b98664d3 733 complaint (_("Unknown C++ symbol name `%s'"),
23136709 734 string);
c378eb4e 735 goto normal; /* Do *something* with it. */
c906108c
SS
736 }
737 }
c906108c
SS
738 else
739 {
740 normal:
596dc4ad 741 gdb::unique_xmalloc_ptr<char> new_name;
2f408ecb 742
c1b5c1eb 743 if (sym->language () == language_cplus)
71c25dea 744 {
224c3ddb 745 char *name = (char *) alloca (p - string + 1);
433759f7 746
71c25dea
TT
747 memcpy (name, string, p - string);
748 name[p - string] = '\0';
749 new_name = cp_canonicalize_string (name);
71c25dea 750 }
596dc4ad
TT
751 if (new_name != nullptr)
752 sym->compute_and_set_names (new_name.get (), true, objfile->per_bfd);
71c25dea 753 else
4d4eaa30
CB
754 sym->compute_and_set_names (gdb::string_view (string, p - string), true,
755 objfile->per_bfd);
45c58896 756
c1b5c1eb 757 if (sym->language () == language_cplus)
80e649fc
TT
758 cp_scan_for_anonymous_namespaces (get_buildsym_compunit (), sym,
759 objfile);
45c58896 760
c906108c
SS
761 }
762 p++;
763
764 /* Determine the type of name being defined. */
765#if 0
766 /* Getting GDB to correctly skip the symbol on an undefined symbol
767 descriptor and not ever dump core is a very dodgy proposition if
768 we do things this way. I say the acorn RISC machine can just
769 fix their compiler. */
770 /* The Acorn RISC machine's compiler can put out locals that don't
771 start with "234=" or "(3,4)=", so assume anything other than the
772 deftypes we know how to handle is a local. */
773 if (!strchr ("cfFGpPrStTvVXCR", *p))
774#else
775 if (isdigit (*p) || *p == '(' || *p == '-')
776#endif
777 deftype = 'l';
778 else
779 deftype = *p++;
780
781 switch (deftype)
782 {
783 case 'c':
784 /* c is a special case, not followed by a type-number.
c5aa993b
JM
785 SYMBOL:c=iVALUE for an integer constant symbol.
786 SYMBOL:c=rVALUE for a floating constant symbol.
787 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
788 e.g. "b:c=e6,0" for "const b = blob1"
789 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
c906108c
SS
790 if (*p != '=')
791 {
f1e6e072 792 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
c906108c 793 SYMBOL_TYPE (sym) = error_type (&p, objfile);
176620f1 794 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e148f09d 795 add_symbol_to_list (sym, get_file_symbols ());
c906108c
SS
796 return sym;
797 }
798 ++p;
799 switch (*p++)
800 {
801 case 'r':
802 {
4e38b386 803 gdb_byte *dbl_valu;
6ccb9162 804 struct type *dbl_type;
c906108c 805
46bf5051 806 dbl_type = objfile_type (objfile)->builtin_double;
224c3ddb
SM
807 dbl_valu
808 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
809 TYPE_LENGTH (dbl_type));
f69fdf9b
UW
810
811 target_float_from_string (dbl_valu, dbl_type, std::string (p));
6ccb9162
UW
812
813 SYMBOL_TYPE (sym) = dbl_type;
c906108c 814 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
f1e6e072 815 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
c906108c
SS
816 }
817 break;
818 case 'i':
819 {
820 /* Defining integer constants this way is kind of silly,
821 since 'e' constants allows the compiler to give not
822 only the value, but the type as well. C has at least
823 int, long, unsigned int, and long long as constant
824 types; other languages probably should have at least
825 unsigned as well as signed constants. */
826
46bf5051 827 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
c906108c 828 SYMBOL_VALUE (sym) = atoi (p);
f1e6e072 829 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
c906108c
SS
830 }
831 break;
ec8a089a
PM
832
833 case 'c':
834 {
835 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
836 SYMBOL_VALUE (sym) = atoi (p);
f1e6e072 837 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
ec8a089a
PM
838 }
839 break;
840
841 case 's':
842 {
843 struct type *range_type;
844 int ind = 0;
845 char quote = *p++;
ec8a089a
PM
846 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
847 gdb_byte *string_value;
848
849 if (quote != '\'' && quote != '"')
850 {
f1e6e072 851 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
ec8a089a
PM
852 SYMBOL_TYPE (sym) = error_type (&p, objfile);
853 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e148f09d 854 add_symbol_to_list (sym, get_file_symbols ());
ec8a089a
PM
855 return sym;
856 }
857
858 /* Find matching quote, rejecting escaped quotes. */
859 while (*p && *p != quote)
860 {
861 if (*p == '\\' && p[1] == quote)
862 {
863 string_local[ind] = (gdb_byte) quote;
864 ind++;
865 p += 2;
866 }
867 else if (*p)
868 {
869 string_local[ind] = (gdb_byte) (*p);
870 ind++;
871 p++;
872 }
873 }
874 if (*p != quote)
875 {
f1e6e072 876 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
ec8a089a
PM
877 SYMBOL_TYPE (sym) = error_type (&p, objfile);
878 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e148f09d 879 add_symbol_to_list (sym, get_file_symbols ());
ec8a089a
PM
880 return sym;
881 }
882
883 /* NULL terminate the string. */
884 string_local[ind] = 0;
3e43a32a 885 range_type
0c9c3474
SA
886 = create_static_range_type (NULL,
887 objfile_type (objfile)->builtin_int,
888 0, ind);
ec8a089a
PM
889 SYMBOL_TYPE (sym) = create_array_type (NULL,
890 objfile_type (objfile)->builtin_char,
891 range_type);
224c3ddb
SM
892 string_value
893 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, ind + 1);
ec8a089a
PM
894 memcpy (string_value, string_local, ind + 1);
895 p++;
896
897 SYMBOL_VALUE_BYTES (sym) = string_value;
f1e6e072 898 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
ec8a089a
PM
899 }
900 break;
901
c906108c
SS
902 case 'e':
903 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
904 can be represented as integral.
905 e.g. "b:c=e6,0" for "const b = blob1"
906 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
907 {
f1e6e072 908 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
c906108c
SS
909 SYMBOL_TYPE (sym) = read_type (&p, objfile);
910
911 if (*p != ',')
912 {
913 SYMBOL_TYPE (sym) = error_type (&p, objfile);
914 break;
915 }
916 ++p;
917
918 /* If the value is too big to fit in an int (perhaps because
919 it is unsigned), or something like that, we silently get
920 a bogus value. The type and everything else about it is
921 correct. Ideally, we should be using whatever we have
922 available for parsing unsigned and long long values,
923 however. */
924 SYMBOL_VALUE (sym) = atoi (p);
925 }
926 break;
927 default:
928 {
f1e6e072 929 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
c906108c
SS
930 SYMBOL_TYPE (sym) = error_type (&p, objfile);
931 }
932 }
176620f1 933 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e148f09d 934 add_symbol_to_list (sym, get_file_symbols ());
c906108c
SS
935 return sym;
936
937 case 'C':
938 /* The name of a caught exception. */
939 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 940 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
176620f1 941 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
38583298 942 SET_SYMBOL_VALUE_ADDRESS (sym, valu);
e148f09d 943 add_symbol_to_list (sym, get_local_symbols ());
c906108c
SS
944 break;
945
946 case 'f':
947 /* A static function definition. */
948 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 949 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
176620f1 950 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e148f09d 951 add_symbol_to_list (sym, get_file_symbols ());
c906108c
SS
952 /* fall into process_function_types. */
953
954 process_function_types:
955 /* Function result types are described as the result type in stabs.
c5aa993b
JM
956 We need to convert this to the function-returning-type-X type
957 in GDB. E.g. "int" is converted to "function returning int". */
78134374 958 if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_FUNC)
c906108c
SS
959 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
960
1e698235
DJ
961 /* All functions in C++ have prototypes. Stabs does not offer an
962 explicit way to identify prototyped or unprototyped functions,
963 but both GCC and Sun CC emit stabs for the "call-as" type rather
964 than the "declared-as" type for unprototyped functions, so
965 we treat all functions as if they were prototyped. This is used
966 primarily for promotion when calling the function from GDB. */
876cecd0 967 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
c906108c 968
c378eb4e 969 /* fall into process_prototype_types. */
c906108c
SS
970
971 process_prototype_types:
972 /* Sun acc puts declared types of arguments here. */
973 if (*p == ';')
974 {
975 struct type *ftype = SYMBOL_TYPE (sym);
976 int nsemi = 0;
977 int nparams = 0;
a121b7c1 978 const char *p1 = p;
c906108c
SS
979
980 /* Obtain a worst case guess for the number of arguments
981 by counting the semicolons. */
982 while (*p1)
983 {
984 if (*p1++ == ';')
985 nsemi++;
986 }
987
c378eb4e 988 /* Allocate parameter information fields and fill them in. */
c906108c
SS
989 TYPE_FIELDS (ftype) = (struct field *)
990 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
991 while (*p++ == ';')
992 {
993 struct type *ptype;
994
995 /* A type number of zero indicates the start of varargs.
c5aa993b 996 FIXME: GDB currently ignores vararg functions. */
c906108c
SS
997 if (p[0] == '0' && p[1] == '\0')
998 break;
999 ptype = read_type (&p, objfile);
1000
1001 /* The Sun compilers mark integer arguments, which should
c5aa993b 1002 be promoted to the width of the calling conventions, with
c378eb4e 1003 a type which references itself. This type is turned into
c5aa993b 1004 a TYPE_CODE_VOID type by read_type, and we have to turn
5e2b427d
UW
1005 it back into builtin_int here.
1006 FIXME: Do we need a new builtin_promoted_int_arg ? */
78134374 1007 if (ptype->code () == TYPE_CODE_VOID)
46bf5051 1008 ptype = objfile_type (objfile)->builtin_int;
8176bb6d
DJ
1009 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
1010 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
c906108c 1011 }
5e33d5f4 1012 ftype->set_num_fields (nparams);
876cecd0 1013 TYPE_PROTOTYPED (ftype) = 1;
c906108c
SS
1014 }
1015 break;
1016
1017 case 'F':
1018 /* A global function definition. */
1019 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1020 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
176620f1 1021 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e148f09d 1022 add_symbol_to_list (sym, get_global_symbols ());
c906108c
SS
1023 goto process_function_types;
1024
1025 case 'G':
1026 /* For a class G (global) symbol, it appears that the
c5aa993b
JM
1027 value is not correct. It is necessary to search for the
1028 corresponding linker definition to find the value.
1029 These definitions appear at the end of the namelist. */
c906108c 1030 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1031 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
176620f1 1032 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c 1033 /* Don't add symbol references to global_sym_chain.
c5aa993b
JM
1034 Symbol references don't have valid names and wont't match up with
1035 minimal symbols when the global_sym_chain is relocated.
1036 We'll fixup symbol references when we fixup the defining symbol. */
987012b8 1037 if (sym->linkage_name () && sym->linkage_name ()[0] != '#')
c906108c 1038 {
987012b8 1039 i = hashname (sym->linkage_name ());
c5aa993b
JM
1040 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1041 global_sym_chain[i] = sym;
c906108c 1042 }
e148f09d 1043 add_symbol_to_list (sym, get_global_symbols ());
c906108c
SS
1044 break;
1045
1046 /* This case is faked by a conditional above,
c5aa993b
JM
1047 when there is no code letter in the dbx data.
1048 Dbx data never actually contains 'l'. */
c906108c
SS
1049 case 's':
1050 case 'l':
1051 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1052 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
c906108c 1053 SYMBOL_VALUE (sym) = valu;
176620f1 1054 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e148f09d 1055 add_symbol_to_list (sym, get_local_symbols ());
c906108c
SS
1056 break;
1057
1058 case 'p':
1059 if (*p == 'F')
1060 /* pF is a two-letter code that means a function parameter in Fortran.
1061 The type-number specifies the type of the return value.
1062 Translate it into a pointer-to-function type. */
1063 {
1064 p++;
1065 SYMBOL_TYPE (sym)
1066 = lookup_pointer_type
c5aa993b 1067 (lookup_function_type (read_type (&p, objfile)));
c906108c
SS
1068 }
1069 else
1070 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1071
f1e6e072 1072 SYMBOL_ACLASS_INDEX (sym) = LOC_ARG;
c906108c 1073 SYMBOL_VALUE (sym) = valu;
176620f1 1074 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
2a2d4dc3 1075 SYMBOL_IS_ARGUMENT (sym) = 1;
e148f09d 1076 add_symbol_to_list (sym, get_local_symbols ());
c906108c 1077
5e2b427d 1078 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
c906108c
SS
1079 {
1080 /* On little-endian machines, this crud is never necessary,
1081 and, if the extra bytes contain garbage, is harmful. */
1082 break;
1083 }
1084
1085 /* If it's gcc-compiled, if it says `short', believe it. */
f73e88f9 1086 if (processing_gcc_compilation
5e2b427d 1087 || gdbarch_believe_pcc_promotion (gdbarch))
c906108c
SS
1088 break;
1089
5e2b427d 1090 if (!gdbarch_believe_pcc_promotion (gdbarch))
7a292a7a 1091 {
8ee56bcf
AC
1092 /* If PCC says a parameter is a short or a char, it is
1093 really an int. */
5e2b427d
UW
1094 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1095 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
78134374 1096 && SYMBOL_TYPE (sym)->code () == TYPE_CODE_INT)
7a292a7a 1097 {
8ee56bcf
AC
1098 SYMBOL_TYPE (sym) =
1099 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
46bf5051
UW
1100 ? objfile_type (objfile)->builtin_unsigned_int
1101 : objfile_type (objfile)->builtin_int;
7a292a7a 1102 }
8ee56bcf 1103 break;
7a292a7a 1104 }
0019cd49 1105 /* Fall through. */
c906108c
SS
1106
1107 case 'P':
1108 /* acc seems to use P to declare the prototypes of functions that
1109 are referenced by this file. gdb is not prepared to deal
1110 with this extra information. FIXME, it ought to. */
1111 if (type == N_FUN)
1112 {
1113 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1114 goto process_prototype_types;
1115 }
c5aa993b 1116 /*FALLTHROUGH */
c906108c
SS
1117
1118 case 'R':
1119 /* Parameter which is in a register. */
1120 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1121 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
2a2d4dc3 1122 SYMBOL_IS_ARGUMENT (sym) = 1;
768a979c 1123 SYMBOL_VALUE (sym) = valu;
176620f1 1124 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e148f09d 1125 add_symbol_to_list (sym, get_local_symbols ());
c906108c
SS
1126 break;
1127
1128 case 'r':
1129 /* Register variable (either global or local). */
1130 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1131 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
768a979c 1132 SYMBOL_VALUE (sym) = valu;
176620f1 1133 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1134 if (within_function)
1135 {
192cb3d4
MK
1136 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1137 the same name to represent an argument passed in a
1138 register. GCC uses 'P' for the same case. So if we find
1139 such a symbol pair we combine it into one 'P' symbol.
987012b8 1140 For Sun cc we need to do this regardless of stabs_argument_has_addr, because the compiler puts out
192cb3d4
MK
1141 the 'p' symbol even if it never saves the argument onto
1142 the stack.
1143
1144 On most machines, we want to preserve both symbols, so
1145 that we can still get information about what is going on
1146 with the stack (VAX for computing args_printed, using
1147 stack slots instead of saved registers in backtraces,
1148 etc.).
c906108c
SS
1149
1150 Note that this code illegally combines
c5aa993b 1151 main(argc) struct foo argc; { register struct foo argc; }
c906108c
SS
1152 but this case is considered pathological and causes a warning
1153 from a decent compiler. */
1154
e148f09d 1155 struct pending *local_symbols = *get_local_symbols ();
c906108c
SS
1156 if (local_symbols
1157 && local_symbols->nsyms > 0
5e2b427d 1158 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
c906108c
SS
1159 {
1160 struct symbol *prev_sym;
433759f7 1161
c906108c
SS
1162 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1163 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1164 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
987012b8
CB
1165 && strcmp (prev_sym->linkage_name (),
1166 sym->linkage_name ()) == 0)
c906108c 1167 {
f1e6e072 1168 SYMBOL_ACLASS_INDEX (prev_sym) = stab_register_index;
c906108c
SS
1169 /* Use the type from the LOC_REGISTER; that is the type
1170 that is actually in that register. */
1171 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1172 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1173 sym = prev_sym;
1174 break;
1175 }
1176 }
e148f09d 1177 add_symbol_to_list (sym, get_local_symbols ());
c906108c
SS
1178 }
1179 else
e148f09d 1180 add_symbol_to_list (sym, get_file_symbols ());
c906108c
SS
1181 break;
1182
1183 case 'S':
c378eb4e 1184 /* Static symbol at top level of file. */
c906108c 1185 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1186 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
38583298 1187 SET_SYMBOL_VALUE_ADDRESS (sym, valu);
5e2b427d 1188 if (gdbarch_static_transform_name_p (gdbarch)
987012b8
CB
1189 && gdbarch_static_transform_name (gdbarch, sym->linkage_name ())
1190 != sym->linkage_name ())
c5aa993b 1191 {
3b7344d5 1192 struct bound_minimal_symbol msym;
433759f7 1193
987012b8 1194 msym = lookup_minimal_symbol (sym->linkage_name (), NULL, objfile);
3b7344d5 1195 if (msym.minsym != NULL)
c5aa993b 1196 {
0d5cff50 1197 const char *new_name = gdbarch_static_transform_name
987012b8 1198 (gdbarch, sym->linkage_name ());
433759f7 1199
43678b0a 1200 sym->set_linkage_name (new_name);
38583298
TT
1201 SET_SYMBOL_VALUE_ADDRESS (sym,
1202 BMSYMBOL_VALUE_ADDRESS (msym));
c5aa993b
JM
1203 }
1204 }
176620f1 1205 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e148f09d 1206 add_symbol_to_list (sym, get_file_symbols ());
c906108c
SS
1207 break;
1208
1209 case 't':
52eea4ce
JB
1210 /* In Ada, there is no distinction between typedef and non-typedef;
1211 any type declaration implicitly has the equivalent of a typedef,
c378eb4e 1212 and thus 't' is in fact equivalent to 'Tt'.
52eea4ce
JB
1213
1214 Therefore, for Ada units, we check the character immediately
1215 before the 't', and if we do not find a 'T', then make sure to
1216 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1217 will be stored in the VAR_DOMAIN). If the symbol was indeed
1218 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1219 elsewhere, so we don't need to take care of that.
1220
1221 This is important to do, because of forward references:
1222 The cleanup of undefined types stored in undef_types only uses
1223 STRUCT_DOMAIN symbols to perform the replacement. */
c1b5c1eb 1224 synonym = (sym->language () == language_ada && p[-2] != 'T');
52eea4ce 1225
e2cd42dd 1226 /* Typedef */
c906108c
SS
1227 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1228
1229 /* For a nameless type, we don't want a create a symbol, thus we
c378eb4e 1230 did not use `sym'. Return without further processing. */
c5aa993b
JM
1231 if (nameless)
1232 return NULL;
c906108c 1233
f1e6e072 1234 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
c906108c 1235 SYMBOL_VALUE (sym) = valu;
176620f1 1236 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c 1237 /* C++ vagaries: we may have a type which is derived from
c5aa993b
JM
1238 a base type which did not have its name defined when the
1239 derived class was output. We fill in the derived class's
1240 base part member's name here in that case. */
7d93a1e0 1241 if (SYMBOL_TYPE (sym)->name () != NULL)
78134374
SM
1242 if ((SYMBOL_TYPE (sym)->code () == TYPE_CODE_STRUCT
1243 || SYMBOL_TYPE (sym)->code () == TYPE_CODE_UNION)
c906108c
SS
1244 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1245 {
1246 int j;
433759f7 1247
c906108c
SS
1248 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1249 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1250 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
7d93a1e0 1251 TYPE_BASECLASS (SYMBOL_TYPE (sym), j)->name ();
c906108c
SS
1252 }
1253
7d93a1e0 1254 if (SYMBOL_TYPE (sym)->name () == NULL)
c906108c 1255 {
78134374 1256 if ((SYMBOL_TYPE (sym)->code () == TYPE_CODE_PTR
987012b8 1257 && strcmp (sym->linkage_name (), vtbl_ptr_name))
78134374 1258 || SYMBOL_TYPE (sym)->code () == TYPE_CODE_FUNC)
c906108c
SS
1259 {
1260 /* If we are giving a name to a type such as "pointer to
c5aa993b
JM
1261 foo" or "function returning foo", we better not set
1262 the TYPE_NAME. If the program contains "typedef char
1263 *caddr_t;", we don't want all variables of type char
1264 * to print as caddr_t. This is not just a
1265 consequence of GDB's type management; PCC and GCC (at
1266 least through version 2.4) both output variables of
1267 either type char * or caddr_t with the type number
1268 defined in the 't' symbol for caddr_t. If a future
1269 compiler cleans this up it GDB is not ready for it
1270 yet, but if it becomes ready we somehow need to
1271 disable this check (without breaking the PCC/GCC2.4
1272 case).
1273
1274 Sigh.
1275
1276 Fortunately, this check seems not to be necessary
1277 for anything except pointers or functions. */
c378eb4e
MS
1278 /* ezannoni: 2000-10-26. This seems to apply for
1279 versions of gcc older than 2.8. This was the original
49d97c60 1280 problem: with the following code gdb would tell that
c378eb4e
MS
1281 the type for name1 is caddr_t, and func is char().
1282
49d97c60
EZ
1283 typedef char *caddr_t;
1284 char *name2;
1285 struct x
1286 {
c378eb4e 1287 char *name1;
49d97c60
EZ
1288 } xx;
1289 char *func()
1290 {
1291 }
1292 main () {}
1293 */
1294
c378eb4e 1295 /* Pascal accepts names for pointer types. */
3c65e5b3 1296 if (get_current_subfile ()->language == language_pascal)
d0e39ea2 1297 SYMBOL_TYPE (sym)->set_name (sym->linkage_name ());
c906108c
SS
1298 }
1299 else
d0e39ea2 1300 SYMBOL_TYPE (sym)->set_name (sym->linkage_name ());
c906108c
SS
1301 }
1302
e148f09d 1303 add_symbol_to_list (sym, get_file_symbols ());
52eea4ce
JB
1304
1305 if (synonym)
1306 {
1307 /* Create the STRUCT_DOMAIN clone. */
8c14c3a3 1308 struct symbol *struct_sym = new (&objfile->objfile_obstack) symbol;
52eea4ce
JB
1309
1310 *struct_sym = *sym;
f1e6e072 1311 SYMBOL_ACLASS_INDEX (struct_sym) = LOC_TYPEDEF;
52eea4ce
JB
1312 SYMBOL_VALUE (struct_sym) = valu;
1313 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
7d93a1e0 1314 if (SYMBOL_TYPE (sym)->name () == 0)
d0e39ea2
SM
1315 SYMBOL_TYPE (sym)->set_name
1316 (obconcat (&objfile->objfile_obstack, sym->linkage_name (),
1317 (char *) NULL));
e148f09d 1318 add_symbol_to_list (struct_sym, get_file_symbols ());
52eea4ce 1319 }
d0e39ea2 1320
c906108c
SS
1321 break;
1322
1323 case 'T':
1324 /* Struct, union, or enum tag. For GNU C++, this can be be followed
c5aa993b 1325 by 't' which means we are typedef'ing it as well. */
c906108c
SS
1326 synonym = *p == 't';
1327
1328 if (synonym)
1329 p++;
c906108c
SS
1330
1331 SYMBOL_TYPE (sym) = read_type (&p, objfile);
25caa7a8 1332
c906108c 1333 /* For a nameless type, we don't want a create a symbol, thus we
c378eb4e 1334 did not use `sym'. Return without further processing. */
c5aa993b
JM
1335 if (nameless)
1336 return NULL;
c906108c 1337
f1e6e072 1338 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
c906108c 1339 SYMBOL_VALUE (sym) = valu;
176620f1 1340 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7d93a1e0 1341 if (SYMBOL_TYPE (sym)->name () == 0)
d0e39ea2
SM
1342 SYMBOL_TYPE (sym)->set_name
1343 (obconcat (&objfile->objfile_obstack, sym->linkage_name (),
1344 (char *) NULL));
e148f09d 1345 add_symbol_to_list (sym, get_file_symbols ());
c906108c
SS
1346
1347 if (synonym)
1348 {
c378eb4e 1349 /* Clone the sym and then modify it. */
8c14c3a3 1350 struct symbol *typedef_sym = new (&objfile->objfile_obstack) symbol;
433759f7 1351
c906108c 1352 *typedef_sym = *sym;
f1e6e072 1353 SYMBOL_ACLASS_INDEX (typedef_sym) = LOC_TYPEDEF;
c906108c 1354 SYMBOL_VALUE (typedef_sym) = valu;
176620f1 1355 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
7d93a1e0 1356 if (SYMBOL_TYPE (sym)->name () == 0)
d0e39ea2
SM
1357 SYMBOL_TYPE (sym)->set_name
1358 (obconcat (&objfile->objfile_obstack, sym->linkage_name (),
1359 (char *) NULL));
e148f09d 1360 add_symbol_to_list (typedef_sym, get_file_symbols ());
c906108c
SS
1361 }
1362 break;
1363
1364 case 'V':
c378eb4e 1365 /* Static symbol of local scope. */
c906108c 1366 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1367 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
38583298 1368 SET_SYMBOL_VALUE_ADDRESS (sym, valu);
5e2b427d 1369 if (gdbarch_static_transform_name_p (gdbarch)
987012b8
CB
1370 && gdbarch_static_transform_name (gdbarch, sym->linkage_name ())
1371 != sym->linkage_name ())
c5aa993b 1372 {
3b7344d5 1373 struct bound_minimal_symbol msym;
433759f7 1374
987012b8 1375 msym = lookup_minimal_symbol (sym->linkage_name (), NULL, objfile);
3b7344d5 1376 if (msym.minsym != NULL)
c5aa993b 1377 {
0d5cff50 1378 const char *new_name = gdbarch_static_transform_name
987012b8 1379 (gdbarch, sym->linkage_name ());
433759f7 1380
43678b0a 1381 sym->set_linkage_name (new_name);
38583298 1382 SET_SYMBOL_VALUE_ADDRESS (sym, BMSYMBOL_VALUE_ADDRESS (msym));
c5aa993b
JM
1383 }
1384 }
176620f1 1385 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e148f09d 1386 add_symbol_to_list (sym, get_local_symbols ());
c906108c
SS
1387 break;
1388
1389 case 'v':
1390 /* Reference parameter */
1391 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1392 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
2a2d4dc3 1393 SYMBOL_IS_ARGUMENT (sym) = 1;
c906108c 1394 SYMBOL_VALUE (sym) = valu;
176620f1 1395 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e148f09d 1396 add_symbol_to_list (sym, get_local_symbols ());
c906108c
SS
1397 break;
1398
1399 case 'a':
1400 /* Reference parameter which is in a register. */
1401 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1402 SYMBOL_ACLASS_INDEX (sym) = stab_regparm_index;
2a2d4dc3 1403 SYMBOL_IS_ARGUMENT (sym) = 1;
768a979c 1404 SYMBOL_VALUE (sym) = valu;
176620f1 1405 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e148f09d 1406 add_symbol_to_list (sym, get_local_symbols ());
c906108c
SS
1407 break;
1408
1409 case 'X':
1410 /* This is used by Sun FORTRAN for "function result value".
c5aa993b
JM
1411 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1412 that Pascal uses it too, but when I tried it Pascal used
1413 "x:3" (local symbol) instead. */
c906108c 1414 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1415 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
c906108c 1416 SYMBOL_VALUE (sym) = valu;
176620f1 1417 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e148f09d 1418 add_symbol_to_list (sym, get_local_symbols ());
c906108c 1419 break;
c906108c
SS
1420
1421 default:
1422 SYMBOL_TYPE (sym) = error_type (&p, objfile);
f1e6e072 1423 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
c906108c 1424 SYMBOL_VALUE (sym) = 0;
176620f1 1425 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e148f09d 1426 add_symbol_to_list (sym, get_file_symbols ());
c906108c
SS
1427 break;
1428 }
1429
192cb3d4
MK
1430 /* Some systems pass variables of certain types by reference instead
1431 of by value, i.e. they will pass the address of a structure (in a
1432 register or on the stack) instead of the structure itself. */
c906108c 1433
5e2b427d 1434 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
2a2d4dc3 1435 && SYMBOL_IS_ARGUMENT (sym))
c906108c 1436 {
2a2d4dc3 1437 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
192cb3d4 1438 variables passed in a register). */
2a2d4dc3 1439 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
f1e6e072 1440 SYMBOL_ACLASS_INDEX (sym) = LOC_REGPARM_ADDR;
192cb3d4
MK
1441 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1442 and subsequent arguments on SPARC, for example). */
1443 else if (SYMBOL_CLASS (sym) == LOC_ARG)
f1e6e072 1444 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
c906108c
SS
1445 }
1446
c906108c
SS
1447 return sym;
1448}
1449
c906108c
SS
1450/* Skip rest of this symbol and return an error type.
1451
1452 General notes on error recovery: error_type always skips to the
1453 end of the symbol (modulo cretinous dbx symbol name continuation).
1454 Thus code like this:
1455
1456 if (*(*pp)++ != ';')
c5aa993b 1457 return error_type (pp, objfile);
c906108c
SS
1458
1459 is wrong because if *pp starts out pointing at '\0' (typically as the
1460 result of an earlier error), it will be incremented to point to the
1461 start of the next symbol, which might produce strange results, at least
1462 if you run off the end of the string table. Instead use
1463
1464 if (**pp != ';')
c5aa993b 1465 return error_type (pp, objfile);
c906108c
SS
1466 ++*pp;
1467
1468 or
1469
1470 if (**pp != ';')
c5aa993b 1471 foo = error_type (pp, objfile);
c906108c 1472 else
c5aa993b 1473 ++*pp;
c906108c
SS
1474
1475 And in case it isn't obvious, the point of all this hair is so the compiler
1476 can define new types and new syntaxes, and old versions of the
1477 debugger will be able to read the new symbol tables. */
1478
1479static struct type *
a121b7c1 1480error_type (const char **pp, struct objfile *objfile)
c906108c 1481{
b98664d3 1482 complaint (_("couldn't parse type; debugger out of date?"));
c906108c
SS
1483 while (1)
1484 {
1485 /* Skip to end of symbol. */
1486 while (**pp != '\0')
1487 {
1488 (*pp)++;
1489 }
1490
1491 /* Check for and handle cretinous dbx symbol name continuation! */
1492 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1493 {
1494 *pp = next_symbol_text (objfile);
1495 }
1496 else
1497 {
1498 break;
1499 }
1500 }
46bf5051 1501 return objfile_type (objfile)->builtin_error;
c906108c 1502}
c906108c 1503\f
c5aa993b 1504
c906108c
SS
1505/* Read type information or a type definition; return the type. Even
1506 though this routine accepts either type information or a type
1507 definition, the distinction is relevant--some parts of stabsread.c
1508 assume that type information starts with a digit, '-', or '(' in
1509 deciding whether to call read_type. */
1510
a7a48797 1511static struct type *
a121b7c1 1512read_type (const char **pp, struct objfile *objfile)
c906108c 1513{
52f0bd74 1514 struct type *type = 0;
c906108c
SS
1515 struct type *type1;
1516 int typenums[2];
1517 char type_descriptor;
1518
1519 /* Size in bits of type if specified by a type attribute, or -1 if
1520 there is no size attribute. */
1521 int type_size = -1;
1522
c378eb4e 1523 /* Used to distinguish string and bitstring from char-array and set. */
c906108c
SS
1524 int is_string = 0;
1525
c378eb4e 1526 /* Used to distinguish vector from array. */
e2cd42dd
MS
1527 int is_vector = 0;
1528
c906108c
SS
1529 /* Read type number if present. The type number may be omitted.
1530 for instance in a two-dimensional array declared with type
1531 "ar1;1;10;ar1;1;10;4". */
1532 if ((**pp >= '0' && **pp <= '9')
1533 || **pp == '('
1534 || **pp == '-')
1535 {
1536 if (read_type_number (pp, typenums) != 0)
1537 return error_type (pp, objfile);
c5aa993b 1538
c906108c 1539 if (**pp != '=')
8cfe231d
JB
1540 {
1541 /* Type is not being defined here. Either it already
1542 exists, or this is a forward reference to it.
1543 dbx_alloc_type handles both cases. */
1544 type = dbx_alloc_type (typenums, objfile);
1545
1546 /* If this is a forward reference, arrange to complain if it
1547 doesn't get patched up by the time we're done
1548 reading. */
78134374 1549 if (type->code () == TYPE_CODE_UNDEF)
bf362611 1550 add_undefined_type (type, typenums);
8cfe231d
JB
1551
1552 return type;
1553 }
c906108c
SS
1554
1555 /* Type is being defined here. */
1556 /* Skip the '='.
c5aa993b
JM
1557 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1558 (*pp) += 2;
c906108c
SS
1559 }
1560 else
1561 {
1562 /* 'typenums=' not present, type is anonymous. Read and return
c5aa993b 1563 the definition, but don't put it in the type vector. */
c906108c
SS
1564 typenums[0] = typenums[1] = -1;
1565 (*pp)++;
1566 }
1567
c5aa993b 1568again:
c906108c
SS
1569 type_descriptor = (*pp)[-1];
1570 switch (type_descriptor)
1571 {
1572 case 'x':
1573 {
1574 enum type_code code;
1575
1576 /* Used to index through file_symbols. */
1577 struct pending *ppt;
1578 int i;
c5aa993b 1579
c906108c
SS
1580 /* Name including "struct", etc. */
1581 char *type_name;
c5aa993b 1582
c906108c 1583 {
a121b7c1 1584 const char *from, *p, *q1, *q2;
c5aa993b 1585
c906108c
SS
1586 /* Set the type code according to the following letter. */
1587 switch ((*pp)[0])
1588 {
1589 case 's':
1590 code = TYPE_CODE_STRUCT;
1591 break;
1592 case 'u':
1593 code = TYPE_CODE_UNION;
1594 break;
1595 case 'e':
1596 code = TYPE_CODE_ENUM;
1597 break;
1598 default:
1599 {
1600 /* Complain and keep going, so compilers can invent new
1601 cross-reference types. */
b98664d3 1602 complaint (_("Unrecognized cross-reference type `%c'"),
3e43a32a 1603 (*pp)[0]);
c906108c
SS
1604 code = TYPE_CODE_STRUCT;
1605 break;
1606 }
1607 }
c5aa993b 1608
c906108c
SS
1609 q1 = strchr (*pp, '<');
1610 p = strchr (*pp, ':');
1611 if (p == NULL)
1612 return error_type (pp, objfile);
1613 if (q1 && p > q1 && p[1] == ':')
1614 {
1615 int nesting_level = 0;
433759f7 1616
c906108c
SS
1617 for (q2 = q1; *q2; q2++)
1618 {
1619 if (*q2 == '<')
1620 nesting_level++;
1621 else if (*q2 == '>')
1622 nesting_level--;
1623 else if (*q2 == ':' && nesting_level == 0)
1624 break;
1625 }
1626 p = q2;
1627 if (*p != ':')
1628 return error_type (pp, objfile);
1629 }
71c25dea 1630 type_name = NULL;
3c65e5b3 1631 if (get_current_subfile ()->language == language_cplus)
71c25dea 1632 {
2f408ecb 1633 char *name = (char *) alloca (p - *pp + 1);
433759f7 1634
71c25dea
TT
1635 memcpy (name, *pp, p - *pp);
1636 name[p - *pp] = '\0';
2f408ecb 1637
596dc4ad
TT
1638 gdb::unique_xmalloc_ptr<char> new_name = cp_canonicalize_string (name);
1639 if (new_name != nullptr)
efba19b0 1640 type_name = obstack_strdup (&objfile->objfile_obstack,
596dc4ad 1641 new_name.get ());
71c25dea
TT
1642 }
1643 if (type_name == NULL)
1644 {
a121b7c1 1645 char *to = type_name = (char *)
3e43a32a 1646 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
71c25dea
TT
1647
1648 /* Copy the name. */
1649 from = *pp + 1;
1650 while (from < p)
1651 *to++ = *from++;
1652 *to = '\0';
1653 }
c5aa993b 1654
c906108c
SS
1655 /* Set the pointer ahead of the name which we just read, and
1656 the colon. */
71c25dea 1657 *pp = p + 1;
c906108c
SS
1658 }
1659
149d821b
JB
1660 /* If this type has already been declared, then reuse the same
1661 type, rather than allocating a new one. This saves some
1662 memory. */
c906108c 1663
e148f09d 1664 for (ppt = *get_file_symbols (); ppt; ppt = ppt->next)
c906108c
SS
1665 for (i = 0; i < ppt->nsyms; i++)
1666 {
1667 struct symbol *sym = ppt->symbol[i];
1668
1669 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
176620f1 1670 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
78134374 1671 && (SYMBOL_TYPE (sym)->code () == code)
987012b8 1672 && strcmp (sym->linkage_name (), type_name) == 0)
c906108c 1673 {
b99607ea 1674 obstack_free (&objfile->objfile_obstack, type_name);
c906108c 1675 type = SYMBOL_TYPE (sym);
149d821b 1676 if (typenums[0] != -1)
46bf5051 1677 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
1678 return type;
1679 }
1680 }
1681
1682 /* Didn't find the type to which this refers, so we must
1683 be dealing with a forward reference. Allocate a type
1684 structure for it, and keep track of it so we can
1685 fill in the rest of the fields when we get the full
1686 type. */
1687 type = dbx_alloc_type (typenums, objfile);
67607e24 1688 type->set_code (code);
d0e39ea2 1689 type->set_name (type_name);
c5aa993b 1690 INIT_CPLUS_SPECIFIC (type);
876cecd0 1691 TYPE_STUB (type) = 1;
c906108c 1692
bf362611 1693 add_undefined_type (type, typenums);
c906108c
SS
1694 return type;
1695 }
1696
c5aa993b 1697 case '-': /* RS/6000 built-in type */
c906108c
SS
1698 case '0':
1699 case '1':
1700 case '2':
1701 case '3':
1702 case '4':
1703 case '5':
1704 case '6':
1705 case '7':
1706 case '8':
1707 case '9':
1708 case '(':
1709 (*pp)--;
1710
1711 /* We deal with something like t(1,2)=(3,4)=... which
c378eb4e 1712 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
c906108c
SS
1713
1714 /* Allocate and enter the typedef type first.
c378eb4e 1715 This handles recursive types. */
c906108c 1716 type = dbx_alloc_type (typenums, objfile);
67607e24 1717 type->set_code (TYPE_CODE_TYPEDEF);
c5aa993b
JM
1718 {
1719 struct type *xtype = read_type (pp, objfile);
433759f7 1720
c906108c
SS
1721 if (type == xtype)
1722 {
1723 /* It's being defined as itself. That means it is "void". */
67607e24 1724 type->set_code (TYPE_CODE_VOID);
c906108c
SS
1725 TYPE_LENGTH (type) = 1;
1726 }
1727 else if (type_size >= 0 || is_string)
1728 {
dd6bda65
DJ
1729 /* This is the absolute wrong way to construct types. Every
1730 other debug format has found a way around this problem and
1731 the related problems with unnecessarily stubbed types;
1732 someone motivated should attempt to clean up the issue
1733 here as well. Once a type pointed to has been created it
13a393b0
JB
1734 should not be modified.
1735
1736 Well, it's not *absolutely* wrong. Constructing recursive
1737 types (trees, linked lists) necessarily entails modifying
1738 types after creating them. Constructing any loop structure
1739 entails side effects. The Dwarf 2 reader does handle this
1740 more gracefully (it never constructs more than once
1741 instance of a type object, so it doesn't have to copy type
1742 objects wholesale), but it still mutates type objects after
1743 other folks have references to them.
1744
1745 Keep in mind that this circularity/mutation issue shows up
1746 at the source language level, too: C's "incomplete types",
1747 for example. So the proper cleanup, I think, would be to
1748 limit GDB's type smashing to match exactly those required
1749 by the source language. So GDB could have a
1750 "complete_this_type" function, but never create unnecessary
1751 copies of a type otherwise. */
dd6bda65 1752 replace_type (type, xtype);
d0e39ea2 1753 type->set_name (NULL);
c906108c
SS
1754 }
1755 else
1756 {
876cecd0 1757 TYPE_TARGET_STUB (type) = 1;
c906108c
SS
1758 TYPE_TARGET_TYPE (type) = xtype;
1759 }
1760 }
1761 break;
1762
c5aa993b
JM
1763 /* In the following types, we must be sure to overwrite any existing
1764 type that the typenums refer to, rather than allocating a new one
1765 and making the typenums point to the new one. This is because there
1766 may already be pointers to the existing type (if it had been
1767 forward-referenced), and we must change it to a pointer, function,
1768 reference, or whatever, *in-place*. */
c906108c 1769
e2cd42dd 1770 case '*': /* Pointer to another type */
c906108c 1771 type1 = read_type (pp, objfile);
46bf5051 1772 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
c906108c
SS
1773 break;
1774
c5aa993b 1775 case '&': /* Reference to another type */
c906108c 1776 type1 = read_type (pp, objfile);
3b224330
AV
1777 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile),
1778 TYPE_CODE_REF);
c906108c
SS
1779 break;
1780
c5aa993b 1781 case 'f': /* Function returning another type */
c906108c 1782 type1 = read_type (pp, objfile);
0c8b41f1 1783 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
c906108c
SS
1784 break;
1785
da966255
JB
1786 case 'g': /* Prototyped function. (Sun) */
1787 {
1788 /* Unresolved questions:
1789
1790 - According to Sun's ``STABS Interface Manual'', for 'f'
1791 and 'F' symbol descriptors, a `0' in the argument type list
1792 indicates a varargs function. But it doesn't say how 'g'
1793 type descriptors represent that info. Someone with access
1794 to Sun's toolchain should try it out.
1795
1796 - According to the comment in define_symbol (search for
1797 `process_prototype_types:'), Sun emits integer arguments as
1798 types which ref themselves --- like `void' types. Do we
1799 have to deal with that here, too? Again, someone with
1800 access to Sun's toolchain should try it out and let us
1801 know. */
1802
1803 const char *type_start = (*pp) - 1;
1804 struct type *return_type = read_type (pp, objfile);
1805 struct type *func_type
46bf5051 1806 = make_function_type (return_type,
0c8b41f1 1807 dbx_lookup_type (typenums, objfile));
da966255
JB
1808 struct type_list {
1809 struct type *type;
1810 struct type_list *next;
1811 } *arg_types = 0;
1812 int num_args = 0;
1813
1814 while (**pp && **pp != '#')
1815 {
1816 struct type *arg_type = read_type (pp, objfile);
8d749320 1817 struct type_list *newobj = XALLOCA (struct type_list);
fe978cb0
PA
1818 newobj->type = arg_type;
1819 newobj->next = arg_types;
1820 arg_types = newobj;
da966255
JB
1821 num_args++;
1822 }
1823 if (**pp == '#')
1824 ++*pp;
1825 else
1826 {
b98664d3 1827 complaint (_("Prototyped function type didn't "
3e43a32a 1828 "end arguments with `#':\n%s"),
23136709 1829 type_start);
da966255
JB
1830 }
1831
1832 /* If there is just one argument whose type is `void', then
1833 that's just an empty argument list. */
1834 if (arg_types
1835 && ! arg_types->next
78134374 1836 && arg_types->type->code () == TYPE_CODE_VOID)
da966255
JB
1837 num_args = 0;
1838
1839 TYPE_FIELDS (func_type)
1840 = (struct field *) TYPE_ALLOC (func_type,
1841 num_args * sizeof (struct field));
1842 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1843 {
1844 int i;
1845 struct type_list *t;
1846
1847 /* We stuck each argument type onto the front of the list
1848 when we read it, so the list is reversed. Build the
1849 fields array right-to-left. */
1850 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1851 TYPE_FIELD_TYPE (func_type, i) = t->type;
1852 }
5e33d5f4 1853 func_type->set_num_fields (num_args);
876cecd0 1854 TYPE_PROTOTYPED (func_type) = 1;
da966255
JB
1855
1856 type = func_type;
1857 break;
1858 }
1859
c5aa993b 1860 case 'k': /* Const qualifier on some type (Sun) */
c906108c 1861 type = read_type (pp, objfile);
d7242108 1862 type = make_cv_type (1, TYPE_VOLATILE (type), type,
46bf5051 1863 dbx_lookup_type (typenums, objfile));
c906108c
SS
1864 break;
1865
c5aa993b 1866 case 'B': /* Volatile qual on some type (Sun) */
c906108c 1867 type = read_type (pp, objfile);
d7242108 1868 type = make_cv_type (TYPE_CONST (type), 1, type,
46bf5051 1869 dbx_lookup_type (typenums, objfile));
c906108c
SS
1870 break;
1871
1872 case '@':
c5aa993b
JM
1873 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1874 { /* Member (class & variable) type */
c906108c
SS
1875 /* FIXME -- we should be doing smash_to_XXX types here. */
1876
1877 struct type *domain = read_type (pp, objfile);
1878 struct type *memtype;
1879
1880 if (**pp != ',')
1881 /* Invalid member type data format. */
1882 return error_type (pp, objfile);
1883 ++*pp;
1884
1885 memtype = read_type (pp, objfile);
1886 type = dbx_alloc_type (typenums, objfile);
0d5de010 1887 smash_to_memberptr_type (type, domain, memtype);
c906108c 1888 }
c5aa993b
JM
1889 else
1890 /* type attribute */
c906108c 1891 {
a121b7c1 1892 const char *attr = *pp;
433759f7 1893
c906108c
SS
1894 /* Skip to the semicolon. */
1895 while (**pp != ';' && **pp != '\0')
1896 ++(*pp);
1897 if (**pp == '\0')
1898 return error_type (pp, objfile);
1899 else
c5aa993b 1900 ++ * pp; /* Skip the semicolon. */
c906108c
SS
1901
1902 switch (*attr)
1903 {
e2cd42dd 1904 case 's': /* Size attribute */
c906108c
SS
1905 type_size = atoi (attr + 1);
1906 if (type_size <= 0)
1907 type_size = -1;
1908 break;
1909
e2cd42dd 1910 case 'S': /* String attribute */
c378eb4e 1911 /* FIXME: check to see if following type is array? */
c906108c
SS
1912 is_string = 1;
1913 break;
1914
e2cd42dd 1915 case 'V': /* Vector attribute */
c378eb4e 1916 /* FIXME: check to see if following type is array? */
e2cd42dd
MS
1917 is_vector = 1;
1918 break;
1919
c906108c
SS
1920 default:
1921 /* Ignore unrecognized type attributes, so future compilers
c5aa993b 1922 can invent new ones. */
c906108c
SS
1923 break;
1924 }
1925 ++*pp;
1926 goto again;
1927 }
1928 break;
1929
c5aa993b 1930 case '#': /* Method (class & fn) type */
c906108c
SS
1931 if ((*pp)[0] == '#')
1932 {
1933 /* We'll get the parameter types from the name. */
1934 struct type *return_type;
1935
1936 (*pp)++;
1937 return_type = read_type (pp, objfile);
1938 if (*(*pp)++ != ';')
b98664d3 1939 complaint (_("invalid (minimal) member type "
3e43a32a 1940 "data format at symtab pos %d."),
23136709 1941 symnum);
c906108c
SS
1942 type = allocate_stub_method (return_type);
1943 if (typenums[0] != -1)
46bf5051 1944 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
1945 }
1946 else
1947 {
1948 struct type *domain = read_type (pp, objfile);
1949 struct type *return_type;
ad2f7632
DJ
1950 struct field *args;
1951 int nargs, varargs;
c906108c
SS
1952
1953 if (**pp != ',')
1954 /* Invalid member type data format. */
1955 return error_type (pp, objfile);
1956 else
1957 ++(*pp);
1958
1959 return_type = read_type (pp, objfile);
ad2f7632 1960 args = read_args (pp, ';', objfile, &nargs, &varargs);
0a029df5
DJ
1961 if (args == NULL)
1962 return error_type (pp, objfile);
c906108c 1963 type = dbx_alloc_type (typenums, objfile);
ad2f7632
DJ
1964 smash_to_method_type (type, domain, return_type, args,
1965 nargs, varargs);
c906108c
SS
1966 }
1967 break;
1968
c5aa993b 1969 case 'r': /* Range type */
94e10a22 1970 type = read_range_type (pp, typenums, type_size, objfile);
c906108c 1971 if (typenums[0] != -1)
46bf5051 1972 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
1973 break;
1974
1975 case 'b':
c906108c
SS
1976 {
1977 /* Sun ACC builtin int type */
1978 type = read_sun_builtin_type (pp, typenums, objfile);
1979 if (typenums[0] != -1)
46bf5051 1980 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
1981 }
1982 break;
1983
c5aa993b 1984 case 'R': /* Sun ACC builtin float type */
c906108c
SS
1985 type = read_sun_floating_type (pp, typenums, objfile);
1986 if (typenums[0] != -1)
46bf5051 1987 *dbx_lookup_type (typenums, objfile) = type;
c906108c 1988 break;
c5aa993b
JM
1989
1990 case 'e': /* Enumeration type */
c906108c
SS
1991 type = dbx_alloc_type (typenums, objfile);
1992 type = read_enum_type (pp, type, objfile);
1993 if (typenums[0] != -1)
46bf5051 1994 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
1995 break;
1996
c5aa993b
JM
1997 case 's': /* Struct type */
1998 case 'u': /* Union type */
2ae1c2d2
JB
1999 {
2000 enum type_code type_code = TYPE_CODE_UNDEF;
2001 type = dbx_alloc_type (typenums, objfile);
2002 switch (type_descriptor)
2003 {
2004 case 's':
2005 type_code = TYPE_CODE_STRUCT;
2006 break;
2007 case 'u':
2008 type_code = TYPE_CODE_UNION;
2009 break;
2010 }
2011 type = read_struct_type (pp, type, type_code, objfile);
2012 break;
2013 }
c906108c 2014
c5aa993b 2015 case 'a': /* Array type */
c906108c
SS
2016 if (**pp != 'r')
2017 return error_type (pp, objfile);
2018 ++*pp;
c5aa993b 2019
c906108c
SS
2020 type = dbx_alloc_type (typenums, objfile);
2021 type = read_array_type (pp, type, objfile);
2022 if (is_string)
67607e24 2023 type->set_code (TYPE_CODE_STRING);
e2cd42dd 2024 if (is_vector)
ea37ba09 2025 make_vector_type (type);
c906108c
SS
2026 break;
2027
6b1755ce 2028 case 'S': /* Set type */
c906108c 2029 type1 = read_type (pp, objfile);
cafb3438 2030 type = create_set_type (NULL, type1);
c906108c 2031 if (typenums[0] != -1)
46bf5051 2032 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
2033 break;
2034
2035 default:
c378eb4e
MS
2036 --*pp; /* Go back to the symbol in error. */
2037 /* Particularly important if it was \0! */
c906108c
SS
2038 return error_type (pp, objfile);
2039 }
2040
2041 if (type == 0)
2042 {
8a3fe4f8 2043 warning (_("GDB internal error, type is NULL in stabsread.c."));
c906108c
SS
2044 return error_type (pp, objfile);
2045 }
2046
2047 /* Size specified in a type attribute overrides any other size. */
2048 if (type_size != -1)
2049 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2050
2051 return type;
2052}
2053\f
2054/* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
c378eb4e 2055 Return the proper type node for a given builtin type number. */
c906108c 2056
d772d2ab
TT
2057static const struct objfile_key<struct type *,
2058 gdb::noop_deleter<struct type *>>
2059 rs6000_builtin_type_data;
46bf5051 2060
c906108c 2061static struct type *
46bf5051 2062rs6000_builtin_type (int typenum, struct objfile *objfile)
c906108c 2063{
d772d2ab 2064 struct type **negative_types = rs6000_builtin_type_data.get (objfile);
46bf5051 2065
c906108c
SS
2066 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2067#define NUMBER_RECOGNIZED 34
c906108c
SS
2068 struct type *rettype = NULL;
2069
2070 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2071 {
b98664d3 2072 complaint (_("Unknown builtin type %d"), typenum);
46bf5051 2073 return objfile_type (objfile)->builtin_error;
c906108c 2074 }
46bf5051
UW
2075
2076 if (!negative_types)
2077 {
2078 /* This includes an empty slot for type number -0. */
2079 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2080 NUMBER_RECOGNIZED + 1, struct type *);
d772d2ab 2081 rs6000_builtin_type_data.set (objfile, negative_types);
46bf5051
UW
2082 }
2083
c906108c
SS
2084 if (negative_types[-typenum] != NULL)
2085 return negative_types[-typenum];
2086
2087#if TARGET_CHAR_BIT != 8
c5aa993b 2088#error This code wrong for TARGET_CHAR_BIT not 8
c906108c
SS
2089 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2090 that if that ever becomes not true, the correct fix will be to
2091 make the size in the struct type to be in bits, not in units of
2092 TARGET_CHAR_BIT. */
2093#endif
2094
2095 switch (-typenum)
2096 {
2097 case 1:
2098 /* The size of this and all the other types are fixed, defined
c5aa993b
JM
2099 by the debugging format. If there is a type called "int" which
2100 is other than 32 bits, then it should use a new negative type
2101 number (or avoid negative type numbers for that case).
2102 See stabs.texinfo. */
19f392bc 2103 rettype = init_integer_type (objfile, 32, 0, "int");
c906108c
SS
2104 break;
2105 case 2:
19f392bc 2106 rettype = init_integer_type (objfile, 8, 0, "char");
c413c448 2107 TYPE_NOSIGN (rettype) = 1;
c906108c
SS
2108 break;
2109 case 3:
19f392bc 2110 rettype = init_integer_type (objfile, 16, 0, "short");
c906108c
SS
2111 break;
2112 case 4:
19f392bc 2113 rettype = init_integer_type (objfile, 32, 0, "long");
c906108c
SS
2114 break;
2115 case 5:
19f392bc 2116 rettype = init_integer_type (objfile, 8, 1, "unsigned char");
c906108c
SS
2117 break;
2118 case 6:
19f392bc 2119 rettype = init_integer_type (objfile, 8, 0, "signed char");
c906108c
SS
2120 break;
2121 case 7:
19f392bc 2122 rettype = init_integer_type (objfile, 16, 1, "unsigned short");
c906108c
SS
2123 break;
2124 case 8:
19f392bc 2125 rettype = init_integer_type (objfile, 32, 1, "unsigned int");
c906108c
SS
2126 break;
2127 case 9:
19f392bc 2128 rettype = init_integer_type (objfile, 32, 1, "unsigned");
89acf84d 2129 break;
c906108c 2130 case 10:
19f392bc 2131 rettype = init_integer_type (objfile, 32, 1, "unsigned long");
c906108c
SS
2132 break;
2133 case 11:
77b7c781 2134 rettype = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
c906108c
SS
2135 break;
2136 case 12:
2137 /* IEEE single precision (32 bit). */
49f190bc
UW
2138 rettype = init_float_type (objfile, 32, "float",
2139 floatformats_ieee_single);
c906108c
SS
2140 break;
2141 case 13:
2142 /* IEEE double precision (64 bit). */
49f190bc
UW
2143 rettype = init_float_type (objfile, 64, "double",
2144 floatformats_ieee_double);
c906108c
SS
2145 break;
2146 case 14:
2147 /* This is an IEEE double on the RS/6000, and different machines with
c5aa993b
JM
2148 different sizes for "long double" should use different negative
2149 type numbers. See stabs.texinfo. */
49f190bc
UW
2150 rettype = init_float_type (objfile, 64, "long double",
2151 floatformats_ieee_double);
c906108c
SS
2152 break;
2153 case 15:
19f392bc 2154 rettype = init_integer_type (objfile, 32, 0, "integer");
c906108c
SS
2155 break;
2156 case 16:
19f392bc 2157 rettype = init_boolean_type (objfile, 32, 1, "boolean");
c906108c
SS
2158 break;
2159 case 17:
49f190bc
UW
2160 rettype = init_float_type (objfile, 32, "short real",
2161 floatformats_ieee_single);
c906108c
SS
2162 break;
2163 case 18:
49f190bc
UW
2164 rettype = init_float_type (objfile, 64, "real",
2165 floatformats_ieee_double);
c906108c
SS
2166 break;
2167 case 19:
19f392bc 2168 rettype = init_type (objfile, TYPE_CODE_ERROR, 0, "stringptr");
c906108c
SS
2169 break;
2170 case 20:
19f392bc 2171 rettype = init_character_type (objfile, 8, 1, "character");
c906108c
SS
2172 break;
2173 case 21:
19f392bc 2174 rettype = init_boolean_type (objfile, 8, 1, "logical*1");
c906108c
SS
2175 break;
2176 case 22:
19f392bc 2177 rettype = init_boolean_type (objfile, 16, 1, "logical*2");
c906108c
SS
2178 break;
2179 case 23:
19f392bc 2180 rettype = init_boolean_type (objfile, 32, 1, "logical*4");
c906108c
SS
2181 break;
2182 case 24:
19f392bc 2183 rettype = init_boolean_type (objfile, 32, 1, "logical");
c906108c
SS
2184 break;
2185 case 25:
2186 /* Complex type consisting of two IEEE single precision values. */
5b930b45 2187 rettype = init_complex_type ("complex",
19f392bc 2188 rs6000_builtin_type (12, objfile));
c906108c
SS
2189 break;
2190 case 26:
2191 /* Complex type consisting of two IEEE double precision values. */
5b930b45 2192 rettype = init_complex_type ("double complex",
19f392bc 2193 rs6000_builtin_type (13, objfile));
c906108c
SS
2194 break;
2195 case 27:
19f392bc 2196 rettype = init_integer_type (objfile, 8, 0, "integer*1");
c906108c
SS
2197 break;
2198 case 28:
19f392bc 2199 rettype = init_integer_type (objfile, 16, 0, "integer*2");
c906108c
SS
2200 break;
2201 case 29:
19f392bc 2202 rettype = init_integer_type (objfile, 32, 0, "integer*4");
c906108c
SS
2203 break;
2204 case 30:
19f392bc 2205 rettype = init_character_type (objfile, 16, 0, "wchar");
c906108c
SS
2206 break;
2207 case 31:
19f392bc 2208 rettype = init_integer_type (objfile, 64, 0, "long long");
c906108c
SS
2209 break;
2210 case 32:
19f392bc 2211 rettype = init_integer_type (objfile, 64, 1, "unsigned long long");
c906108c
SS
2212 break;
2213 case 33:
19f392bc 2214 rettype = init_integer_type (objfile, 64, 1, "logical*8");
c906108c
SS
2215 break;
2216 case 34:
19f392bc 2217 rettype = init_integer_type (objfile, 64, 0, "integer*8");
c906108c
SS
2218 break;
2219 }
2220 negative_types[-typenum] = rettype;
2221 return rettype;
2222}
2223\f
2224/* This page contains subroutines of read_type. */
2225
0d5cff50
DE
2226/* Wrapper around method_name_from_physname to flag a complaint
2227 if there is an error. */
de17c821 2228
0d5cff50
DE
2229static char *
2230stabs_method_name_from_physname (const char *physname)
de17c821
DJ
2231{
2232 char *method_name;
2233
2234 method_name = method_name_from_physname (physname);
2235
2236 if (method_name == NULL)
c263362b 2237 {
b98664d3 2238 complaint (_("Method has bad physname %s\n"), physname);
0d5cff50 2239 return NULL;
c263362b 2240 }
de17c821 2241
0d5cff50 2242 return method_name;
de17c821
DJ
2243}
2244
c906108c
SS
2245/* Read member function stabs info for C++ classes. The form of each member
2246 function data is:
2247
c5aa993b 2248 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
c906108c
SS
2249
2250 An example with two member functions is:
2251
c5aa993b 2252 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
c906108c
SS
2253
2254 For the case of overloaded operators, the format is op$::*.funcs, where
2255 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2256 name (such as `+=') and `.' marks the end of the operator name.
2257
2258 Returns 1 for success, 0 for failure. */
2259
2260static int
61b30099 2261read_member_functions (struct stab_field_info *fip, const char **pp,
a121b7c1 2262 struct type *type, struct objfile *objfile)
c906108c
SS
2263{
2264 int nfn_fields = 0;
2265 int length = 0;
c906108c
SS
2266 int i;
2267 struct next_fnfield
2268 {
2269 struct next_fnfield *next;
2270 struct fn_field fn_field;
c5aa993b
JM
2271 }
2272 *sublist;
c906108c
SS
2273 struct type *look_ahead_type;
2274 struct next_fnfieldlist *new_fnlist;
2275 struct next_fnfield *new_sublist;
2276 char *main_fn_name;
a121b7c1 2277 const char *p;
c5aa993b 2278
c906108c 2279 /* Process each list until we find something that is not a member function
c378eb4e 2280 or find the end of the functions. */
c906108c
SS
2281
2282 while (**pp != ';')
2283 {
2284 /* We should be positioned at the start of the function name.
c5aa993b 2285 Scan forward to find the first ':' and if it is not the
c378eb4e 2286 first of a "::" delimiter, then this is not a member function. */
c906108c
SS
2287 p = *pp;
2288 while (*p != ':')
2289 {
2290 p++;
2291 }
2292 if (p[1] != ':')
2293 {
2294 break;
2295 }
2296
2297 sublist = NULL;
2298 look_ahead_type = NULL;
2299 length = 0;
c5aa993b 2300
61b30099 2301 new_fnlist = OBSTACK_ZALLOC (&fip->obstack, struct next_fnfieldlist);
c5aa993b 2302
c906108c
SS
2303 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2304 {
2305 /* This is a completely wierd case. In order to stuff in the
2306 names that might contain colons (the usual name delimiter),
2307 Mike Tiemann defined a different name format which is
2308 signalled if the identifier is "op$". In that case, the
2309 format is "op$::XXXX." where XXXX is the name. This is
2310 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2311 /* This lets the user type "break operator+".
2312 We could just put in "+" as the name, but that wouldn't
2313 work for "*". */
8343f86c 2314 static char opname[32] = "op$";
c906108c 2315 char *o = opname + 3;
c5aa993b 2316
c906108c
SS
2317 /* Skip past '::'. */
2318 *pp = p + 2;
2319
2320 STABS_CONTINUE (pp, objfile);
2321 p = *pp;
2322 while (*p != '.')
2323 {
2324 *o++ = *p++;
2325 }
2326 main_fn_name = savestring (opname, o - opname);
2327 /* Skip past '.' */
2328 *pp = p + 1;
2329 }
2330 else
2331 {
2332 main_fn_name = savestring (*pp, p - *pp);
2333 /* Skip past '::'. */
2334 *pp = p + 2;
2335 }
c5aa993b
JM
2336 new_fnlist->fn_fieldlist.name = main_fn_name;
2337
c906108c
SS
2338 do
2339 {
61b30099 2340 new_sublist = OBSTACK_ZALLOC (&fip->obstack, struct next_fnfield);
c5aa993b 2341
c906108c
SS
2342 /* Check for and handle cretinous dbx symbol name continuation! */
2343 if (look_ahead_type == NULL)
2344 {
c378eb4e 2345 /* Normal case. */
c906108c 2346 STABS_CONTINUE (pp, objfile);
c5aa993b
JM
2347
2348 new_sublist->fn_field.type = read_type (pp, objfile);
c906108c
SS
2349 if (**pp != ':')
2350 {
2351 /* Invalid symtab info for member function. */
2352 return 0;
2353 }
2354 }
2355 else
2356 {
2357 /* g++ version 1 kludge */
c5aa993b 2358 new_sublist->fn_field.type = look_ahead_type;
c906108c
SS
2359 look_ahead_type = NULL;
2360 }
c5aa993b 2361
c906108c
SS
2362 (*pp)++;
2363 p = *pp;
2364 while (*p != ';')
2365 {
2366 p++;
2367 }
c5aa993b 2368
09e2d7c7 2369 /* These are methods, not functions. */
78134374 2370 if (new_sublist->fn_field.type->code () == TYPE_CODE_FUNC)
67607e24 2371 new_sublist->fn_field.type->set_code (TYPE_CODE_METHOD);
09e2d7c7 2372 else
78134374 2373 gdb_assert (new_sublist->fn_field.type->code ()
09e2d7c7 2374 == TYPE_CODE_METHOD);
c906108c 2375
09e2d7c7 2376 /* If this is just a stub, then we don't have the real name here. */
74a9bb82 2377 if (TYPE_STUB (new_sublist->fn_field.type))
c906108c 2378 {
4bfb94b8 2379 if (!TYPE_SELF_TYPE (new_sublist->fn_field.type))
09e2d7c7 2380 set_type_self_type (new_sublist->fn_field.type, type);
c5aa993b 2381 new_sublist->fn_field.is_stub = 1;
c906108c 2382 }
09e2d7c7 2383
c5aa993b 2384 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
c906108c 2385 *pp = p + 1;
c5aa993b 2386
c906108c
SS
2387 /* Set this member function's visibility fields. */
2388 switch (*(*pp)++)
2389 {
c5aa993b
JM
2390 case VISIBILITY_PRIVATE:
2391 new_sublist->fn_field.is_private = 1;
2392 break;
2393 case VISIBILITY_PROTECTED:
2394 new_sublist->fn_field.is_protected = 1;
2395 break;
c906108c 2396 }
c5aa993b 2397
c906108c
SS
2398 STABS_CONTINUE (pp, objfile);
2399 switch (**pp)
2400 {
c378eb4e 2401 case 'A': /* Normal functions. */
c5aa993b
JM
2402 new_sublist->fn_field.is_const = 0;
2403 new_sublist->fn_field.is_volatile = 0;
2404 (*pp)++;
2405 break;
c378eb4e 2406 case 'B': /* `const' member functions. */
c5aa993b
JM
2407 new_sublist->fn_field.is_const = 1;
2408 new_sublist->fn_field.is_volatile = 0;
2409 (*pp)++;
2410 break;
c378eb4e 2411 case 'C': /* `volatile' member function. */
c5aa993b
JM
2412 new_sublist->fn_field.is_const = 0;
2413 new_sublist->fn_field.is_volatile = 1;
2414 (*pp)++;
2415 break;
c378eb4e 2416 case 'D': /* `const volatile' member function. */
c5aa993b
JM
2417 new_sublist->fn_field.is_const = 1;
2418 new_sublist->fn_field.is_volatile = 1;
2419 (*pp)++;
2420 break;
3e43a32a 2421 case '*': /* File compiled with g++ version 1 --
c378eb4e 2422 no info. */
c5aa993b
JM
2423 case '?':
2424 case '.':
2425 break;
2426 default:
b98664d3 2427 complaint (_("const/volatile indicator missing, got '%c'"),
3e43a32a 2428 **pp);
c5aa993b 2429 break;
c906108c 2430 }
c5aa993b 2431
c906108c
SS
2432 switch (*(*pp)++)
2433 {
c5aa993b 2434 case '*':
c906108c
SS
2435 {
2436 int nbits;
c5aa993b 2437 /* virtual member function, followed by index.
c906108c
SS
2438 The sign bit is set to distinguish pointers-to-methods
2439 from virtual function indicies. Since the array is
2440 in words, the quantity must be shifted left by 1
2441 on 16 bit machine, and by 2 on 32 bit machine, forcing
2442 the sign bit out, and usable as a valid index into
2443 the array. Remove the sign bit here. */
c5aa993b 2444 new_sublist->fn_field.voffset =
94e10a22 2445 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
c906108c
SS
2446 if (nbits != 0)
2447 return 0;
c5aa993b 2448
c906108c
SS
2449 STABS_CONTINUE (pp, objfile);
2450 if (**pp == ';' || **pp == '\0')
2451 {
2452 /* Must be g++ version 1. */
c5aa993b 2453 new_sublist->fn_field.fcontext = 0;
c906108c
SS
2454 }
2455 else
2456 {
2457 /* Figure out from whence this virtual function came.
2458 It may belong to virtual function table of
2459 one of its baseclasses. */
2460 look_ahead_type = read_type (pp, objfile);
2461 if (**pp == ':')
2462 {
c378eb4e 2463 /* g++ version 1 overloaded methods. */
c906108c
SS
2464 }
2465 else
2466 {
c5aa993b 2467 new_sublist->fn_field.fcontext = look_ahead_type;
c906108c
SS
2468 if (**pp != ';')
2469 {
2470 return 0;
2471 }
2472 else
2473 {
2474 ++*pp;
2475 }
2476 look_ahead_type = NULL;
2477 }
2478 }
2479 break;
2480 }
c5aa993b
JM
2481 case '?':
2482 /* static member function. */
4ea09c10
PS
2483 {
2484 int slen = strlen (main_fn_name);
2485
2486 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2487
2488 /* For static member functions, we can't tell if they
2489 are stubbed, as they are put out as functions, and not as
2490 methods.
2491 GCC v2 emits the fully mangled name if
2492 dbxout.c:flag_minimal_debug is not set, so we have to
2493 detect a fully mangled physname here and set is_stub
2494 accordingly. Fully mangled physnames in v2 start with
2495 the member function name, followed by two underscores.
2496 GCC v3 currently always emits stubbed member functions,
2497 but with fully mangled physnames, which start with _Z. */
2498 if (!(strncmp (new_sublist->fn_field.physname,
2499 main_fn_name, slen) == 0
2500 && new_sublist->fn_field.physname[slen] == '_'
2501 && new_sublist->fn_field.physname[slen + 1] == '_'))
2502 {
2503 new_sublist->fn_field.is_stub = 1;
2504 }
2505 break;
2506 }
c5aa993b
JM
2507
2508 default:
2509 /* error */
b98664d3 2510 complaint (_("member function type missing, got '%c'"),
3e43a32a 2511 (*pp)[-1]);
86a73007
TT
2512 /* Normal member function. */
2513 /* Fall through. */
c5aa993b
JM
2514
2515 case '.':
2516 /* normal member function. */
2517 new_sublist->fn_field.voffset = 0;
2518 new_sublist->fn_field.fcontext = 0;
2519 break;
c906108c 2520 }
c5aa993b
JM
2521
2522 new_sublist->next = sublist;
c906108c
SS
2523 sublist = new_sublist;
2524 length++;
2525 STABS_CONTINUE (pp, objfile);
2526 }
2527 while (**pp != ';' && **pp != '\0');
c5aa993b 2528
c906108c 2529 (*pp)++;
0c867556 2530 STABS_CONTINUE (pp, objfile);
c5aa993b 2531
0c867556
PS
2532 /* Skip GCC 3.X member functions which are duplicates of the callable
2533 constructor/destructor. */
6cbbcdfe
KS
2534 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2535 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
0c867556 2536 || strcmp (main_fn_name, "__deleting_dtor") == 0)
c906108c 2537 {
0c867556 2538 xfree (main_fn_name);
c906108c 2539 }
0c867556
PS
2540 else
2541 {
de17c821
DJ
2542 int has_destructor = 0, has_other = 0;
2543 int is_v3 = 0;
2544 struct next_fnfield *tmp_sublist;
2545
2546 /* Various versions of GCC emit various mostly-useless
2547 strings in the name field for special member functions.
2548
2549 For stub methods, we need to defer correcting the name
2550 until we are ready to unstub the method, because the current
2551 name string is used by gdb_mangle_name. The only stub methods
2552 of concern here are GNU v2 operators; other methods have their
2553 names correct (see caveat below).
2554
2555 For non-stub methods, in GNU v3, we have a complete physname.
2556 Therefore we can safely correct the name now. This primarily
2557 affects constructors and destructors, whose name will be
2558 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2559 operators will also have incorrect names; for instance,
2560 "operator int" will be named "operator i" (i.e. the type is
2561 mangled).
2562
2563 For non-stub methods in GNU v2, we have no easy way to
2564 know if we have a complete physname or not. For most
2565 methods the result depends on the platform (if CPLUS_MARKER
2566 can be `$' or `.', it will use minimal debug information, or
2567 otherwise the full physname will be included).
2568
2569 Rather than dealing with this, we take a different approach.
2570 For v3 mangled names, we can use the full physname; for v2,
2571 we use cplus_demangle_opname (which is actually v2 specific),
2572 because the only interesting names are all operators - once again
2573 barring the caveat below. Skip this process if any method in the
2574 group is a stub, to prevent our fouling up the workings of
2575 gdb_mangle_name.
2576
2577 The caveat: GCC 2.95.x (and earlier?) put constructors and
2578 destructors in the same method group. We need to split this
2579 into two groups, because they should have different names.
2580 So for each method group we check whether it contains both
2581 routines whose physname appears to be a destructor (the physnames
2582 for and destructors are always provided, due to quirks in v2
2583 mangling) and routines whose physname does not appear to be a
2584 destructor. If so then we break up the list into two halves.
2585 Even if the constructors and destructors aren't in the same group
2586 the destructor will still lack the leading tilde, so that also
2587 needs to be fixed.
2588
2589 So, to summarize what we expect and handle here:
2590
2591 Given Given Real Real Action
2592 method name physname physname method name
2593
2594 __opi [none] __opi__3Foo operator int opname
3e43a32a
MS
2595 [now or later]
2596 Foo _._3Foo _._3Foo ~Foo separate and
de17c821
DJ
2597 rename
2598 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2599 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2600 */
2601
2602 tmp_sublist = sublist;
2603 while (tmp_sublist != NULL)
2604 {
de17c821
DJ
2605 if (tmp_sublist->fn_field.physname[0] == '_'
2606 && tmp_sublist->fn_field.physname[1] == 'Z')
2607 is_v3 = 1;
2608
2609 if (is_destructor_name (tmp_sublist->fn_field.physname))
2610 has_destructor++;
2611 else
2612 has_other++;
2613
2614 tmp_sublist = tmp_sublist->next;
2615 }
2616
2617 if (has_destructor && has_other)
2618 {
2619 struct next_fnfieldlist *destr_fnlist;
2620 struct next_fnfield *last_sublist;
2621
2622 /* Create a new fn_fieldlist for the destructors. */
2623
61b30099
TT
2624 destr_fnlist = OBSTACK_ZALLOC (&fip->obstack,
2625 struct next_fnfieldlist);
8d749320 2626
de17c821 2627 destr_fnlist->fn_fieldlist.name
48cb83fd
JK
2628 = obconcat (&objfile->objfile_obstack, "~",
2629 new_fnlist->fn_fieldlist.name, (char *) NULL);
de17c821 2630
8d749320
SM
2631 destr_fnlist->fn_fieldlist.fn_fields =
2632 XOBNEWVEC (&objfile->objfile_obstack,
2633 struct fn_field, has_destructor);
de17c821
DJ
2634 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2635 sizeof (struct fn_field) * has_destructor);
2636 tmp_sublist = sublist;
2637 last_sublist = NULL;
2638 i = 0;
2639 while (tmp_sublist != NULL)
2640 {
2641 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2642 {
2643 tmp_sublist = tmp_sublist->next;
2644 continue;
2645 }
2646
2647 destr_fnlist->fn_fieldlist.fn_fields[i++]
2648 = tmp_sublist->fn_field;
2649 if (last_sublist)
2650 last_sublist->next = tmp_sublist->next;
2651 else
2652 sublist = tmp_sublist->next;
2653 last_sublist = tmp_sublist;
2654 tmp_sublist = tmp_sublist->next;
2655 }
2656
2657 destr_fnlist->fn_fieldlist.length = has_destructor;
2658 destr_fnlist->next = fip->fnlist;
2659 fip->fnlist = destr_fnlist;
2660 nfn_fields++;
de17c821
DJ
2661 length -= has_destructor;
2662 }
2663 else if (is_v3)
2664 {
2665 /* v3 mangling prevents the use of abbreviated physnames,
2666 so we can do this here. There are stubbed methods in v3
2667 only:
2668 - in -gstabs instead of -gstabs+
2669 - or for static methods, which are output as a function type
2670 instead of a method type. */
0d5cff50
DE
2671 char *new_method_name =
2672 stabs_method_name_from_physname (sublist->fn_field.physname);
de17c821 2673
0d5cff50
DE
2674 if (new_method_name != NULL
2675 && strcmp (new_method_name,
2676 new_fnlist->fn_fieldlist.name) != 0)
2677 {
2678 new_fnlist->fn_fieldlist.name = new_method_name;
2679 xfree (main_fn_name);
2680 }
2681 else
2682 xfree (new_method_name);
de17c821
DJ
2683 }
2684 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2685 {
1754f103 2686 new_fnlist->fn_fieldlist.name =
0d5cff50
DE
2687 obconcat (&objfile->objfile_obstack,
2688 "~", main_fn_name, (char *)NULL);
de17c821
DJ
2689 xfree (main_fn_name);
2690 }
de17c821 2691
e39db4db
SM
2692 new_fnlist->fn_fieldlist.fn_fields
2693 = OBSTACK_CALLOC (&objfile->objfile_obstack, length, fn_field);
0c867556
PS
2694 for (i = length; (i--, sublist); sublist = sublist->next)
2695 {
2696 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2697 }
c5aa993b 2698
0c867556
PS
2699 new_fnlist->fn_fieldlist.length = length;
2700 new_fnlist->next = fip->fnlist;
2701 fip->fnlist = new_fnlist;
2702 nfn_fields++;
0c867556 2703 }
c906108c
SS
2704 }
2705
2706 if (nfn_fields)
2707 {
2708 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2709 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2710 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2711 memset (TYPE_FN_FIELDLISTS (type), 0,
2712 sizeof (struct fn_fieldlist) * nfn_fields);
2713 TYPE_NFN_FIELDS (type) = nfn_fields;
c906108c
SS
2714 }
2715
2716 return 1;
2717}
2718
2719/* Special GNU C++ name.
2720
2721 Returns 1 for success, 0 for failure. "failure" means that we can't
2722 keep parsing and it's time for error_type(). */
2723
2724static int
61b30099
TT
2725read_cpp_abbrev (struct stab_field_info *fip, const char **pp,
2726 struct type *type, struct objfile *objfile)
c906108c 2727{
a121b7c1 2728 const char *p;
0d5cff50 2729 const char *name;
c906108c
SS
2730 char cpp_abbrev;
2731 struct type *context;
2732
2733 p = *pp;
2734 if (*++p == 'v')
2735 {
2736 name = NULL;
2737 cpp_abbrev = *++p;
2738
2739 *pp = p + 1;
2740
2741 /* At this point, *pp points to something like "22:23=*22...",
c5aa993b
JM
2742 where the type number before the ':' is the "context" and
2743 everything after is a regular type definition. Lookup the
c378eb4e 2744 type, find it's name, and construct the field name. */
c906108c
SS
2745
2746 context = read_type (pp, objfile);
2747
2748 switch (cpp_abbrev)
2749 {
c5aa993b 2750 case 'f': /* $vf -- a virtual function table pointer */
7d93a1e0 2751 name = context->name ();
c2bd2ed9 2752 if (name == NULL)
433759f7
MS
2753 {
2754 name = "";
2755 }
48cb83fd
JK
2756 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2757 vptr_name, name, (char *) NULL);
c5aa993b 2758 break;
c906108c 2759
c5aa993b 2760 case 'b': /* $vb -- a virtual bsomethingorother */
7d93a1e0 2761 name = context->name ();
c5aa993b
JM
2762 if (name == NULL)
2763 {
b98664d3 2764 complaint (_("C++ abbreviated type name "
3e43a32a 2765 "unknown at symtab pos %d"),
23136709 2766 symnum);
c5aa993b
JM
2767 name = "FOO";
2768 }
48cb83fd
JK
2769 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2770 name, (char *) NULL);
c5aa993b 2771 break;
c906108c 2772
c5aa993b 2773 default:
23136709 2774 invalid_cpp_abbrev_complaint (*pp);
48cb83fd
JK
2775 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2776 "INVALID_CPLUSPLUS_ABBREV",
2777 (char *) NULL);
c5aa993b 2778 break;
c906108c
SS
2779 }
2780
2781 /* At this point, *pp points to the ':'. Skip it and read the
c378eb4e 2782 field type. */
c906108c
SS
2783
2784 p = ++(*pp);
2785 if (p[-1] != ':')
2786 {
23136709 2787 invalid_cpp_abbrev_complaint (*pp);
c906108c
SS
2788 return 0;
2789 }
2790 fip->list->field.type = read_type (pp, objfile);
2791 if (**pp == ',')
c5aa993b 2792 (*pp)++; /* Skip the comma. */
c906108c
SS
2793 else
2794 return 0;
2795
2796 {
2797 int nbits;
433759f7 2798
f41f5e61
PA
2799 SET_FIELD_BITPOS (fip->list->field,
2800 read_huge_number (pp, ';', &nbits, 0));
c906108c
SS
2801 if (nbits != 0)
2802 return 0;
2803 }
2804 /* This field is unpacked. */
2805 FIELD_BITSIZE (fip->list->field) = 0;
2806 fip->list->visibility = VISIBILITY_PRIVATE;
2807 }
2808 else
2809 {
23136709 2810 invalid_cpp_abbrev_complaint (*pp);
c906108c 2811 /* We have no idea what syntax an unrecognized abbrev would have, so
c5aa993b
JM
2812 better return 0. If we returned 1, we would need to at least advance
2813 *pp to avoid an infinite loop. */
c906108c
SS
2814 return 0;
2815 }
2816 return 1;
2817}
2818
2819static void
61b30099
TT
2820read_one_struct_field (struct stab_field_info *fip, const char **pp,
2821 const char *p, struct type *type,
2822 struct objfile *objfile)
c906108c 2823{
08feed99 2824 struct gdbarch *gdbarch = objfile->arch ();
5e2b427d 2825
224c3ddb 2826 fip->list->field.name
0cf9feb9 2827 = obstack_strndup (&objfile->objfile_obstack, *pp, p - *pp);
c906108c
SS
2828 *pp = p + 1;
2829
c378eb4e 2830 /* This means we have a visibility for a field coming. */
c906108c
SS
2831 if (**pp == '/')
2832 {
2833 (*pp)++;
c5aa993b 2834 fip->list->visibility = *(*pp)++;
c906108c
SS
2835 }
2836 else
2837 {
2838 /* normal dbx-style format, no explicit visibility */
c5aa993b 2839 fip->list->visibility = VISIBILITY_PUBLIC;
c906108c
SS
2840 }
2841
c5aa993b 2842 fip->list->field.type = read_type (pp, objfile);
c906108c
SS
2843 if (**pp == ':')
2844 {
2845 p = ++(*pp);
2846#if 0
c378eb4e 2847 /* Possible future hook for nested types. */
c906108c
SS
2848 if (**pp == '!')
2849 {
c5aa993b 2850 fip->list->field.bitpos = (long) -2; /* nested type */
c906108c
SS
2851 p = ++(*pp);
2852 }
c5aa993b
JM
2853 else
2854 ...;
c906108c 2855#endif
c5aa993b 2856 while (*p != ';')
c906108c
SS
2857 {
2858 p++;
2859 }
2860 /* Static class member. */
2861 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2862 *pp = p + 1;
2863 return;
2864 }
2865 else if (**pp != ',')
2866 {
2867 /* Bad structure-type format. */
23136709 2868 stabs_general_complaint ("bad structure-type format");
c906108c
SS
2869 return;
2870 }
2871
2872 (*pp)++; /* Skip the comma. */
2873
2874 {
2875 int nbits;
433759f7 2876
f41f5e61
PA
2877 SET_FIELD_BITPOS (fip->list->field,
2878 read_huge_number (pp, ',', &nbits, 0));
c906108c
SS
2879 if (nbits != 0)
2880 {
23136709 2881 stabs_general_complaint ("bad structure-type format");
c906108c
SS
2882 return;
2883 }
94e10a22 2884 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
2885 if (nbits != 0)
2886 {
23136709 2887 stabs_general_complaint ("bad structure-type format");
c906108c
SS
2888 return;
2889 }
2890 }
2891
2892 if (FIELD_BITPOS (fip->list->field) == 0
2893 && FIELD_BITSIZE (fip->list->field) == 0)
2894 {
2895 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
c5aa993b
JM
2896 it is a field which has been optimized out. The correct stab for
2897 this case is to use VISIBILITY_IGNORE, but that is a recent
2898 invention. (2) It is a 0-size array. For example
e2e0b3e5 2899 union { int num; char str[0]; } foo. Printing _("<no value>" for
c5aa993b
JM
2900 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2901 will continue to work, and a 0-size array as a whole doesn't
2902 have any contents to print.
2903
2904 I suspect this probably could also happen with gcc -gstabs (not
2905 -gstabs+) for static fields, and perhaps other C++ extensions.
2906 Hopefully few people use -gstabs with gdb, since it is intended
2907 for dbx compatibility. */
c906108c
SS
2908
2909 /* Ignore this field. */
c5aa993b 2910 fip->list->visibility = VISIBILITY_IGNORE;
c906108c
SS
2911 }
2912 else
2913 {
2914 /* Detect an unpacked field and mark it as such.
c5aa993b
JM
2915 dbx gives a bit size for all fields.
2916 Note that forward refs cannot be packed,
2917 and treat enums as if they had the width of ints. */
c906108c
SS
2918
2919 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2920
78134374
SM
2921 if (field_type->code () != TYPE_CODE_INT
2922 && field_type->code () != TYPE_CODE_RANGE
2923 && field_type->code () != TYPE_CODE_BOOL
2924 && field_type->code () != TYPE_CODE_ENUM)
c906108c
SS
2925 {
2926 FIELD_BITSIZE (fip->list->field) = 0;
2927 }
c5aa993b 2928 if ((FIELD_BITSIZE (fip->list->field)
c906108c 2929 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
78134374 2930 || (field_type->code () == TYPE_CODE_ENUM
9a76efb6 2931 && FIELD_BITSIZE (fip->list->field)
5e2b427d 2932 == gdbarch_int_bit (gdbarch))
c5aa993b 2933 )
c906108c
SS
2934 &&
2935 FIELD_BITPOS (fip->list->field) % 8 == 0)
2936 {
2937 FIELD_BITSIZE (fip->list->field) = 0;
2938 }
2939 }
2940}
2941
2942
2943/* Read struct or class data fields. They have the form:
2944
c5aa993b 2945 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
c906108c
SS
2946
2947 At the end, we see a semicolon instead of a field.
2948
2949 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2950 a static field.
2951
2952 The optional VISIBILITY is one of:
2953
c5aa993b
JM
2954 '/0' (VISIBILITY_PRIVATE)
2955 '/1' (VISIBILITY_PROTECTED)
2956 '/2' (VISIBILITY_PUBLIC)
2957 '/9' (VISIBILITY_IGNORE)
c906108c
SS
2958
2959 or nothing, for C style fields with public visibility.
2960
2961 Returns 1 for success, 0 for failure. */
2962
2963static int
61b30099
TT
2964read_struct_fields (struct stab_field_info *fip, const char **pp,
2965 struct type *type, struct objfile *objfile)
c906108c 2966{
a121b7c1 2967 const char *p;
fe978cb0 2968 struct nextfield *newobj;
c906108c
SS
2969
2970 /* We better set p right now, in case there are no fields at all... */
2971
2972 p = *pp;
2973
2974 /* Read each data member type until we find the terminating ';' at the end of
2975 the data member list, or break for some other reason such as finding the
c378eb4e 2976 start of the member function list. */
fedbd091 2977 /* Stab string for structure/union does not end with two ';' in
c378eb4e 2978 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
c906108c 2979
fedbd091 2980 while (**pp != ';' && **pp != '\0')
c906108c 2981 {
c906108c
SS
2982 STABS_CONTINUE (pp, objfile);
2983 /* Get space to record the next field's data. */
61b30099 2984 newobj = OBSTACK_ZALLOC (&fip->obstack, struct nextfield);
8d749320 2985
fe978cb0
PA
2986 newobj->next = fip->list;
2987 fip->list = newobj;
c906108c
SS
2988
2989 /* Get the field name. */
2990 p = *pp;
2991
2992 /* If is starts with CPLUS_MARKER it is a special abbreviation,
c5aa993b
JM
2993 unless the CPLUS_MARKER is followed by an underscore, in
2994 which case it is just the name of an anonymous type, which we
2995 should handle like any other type name. */
c906108c
SS
2996
2997 if (is_cplus_marker (p[0]) && p[1] != '_')
2998 {
2999 if (!read_cpp_abbrev (fip, pp, type, objfile))
3000 return 0;
3001 continue;
3002 }
3003
3004 /* Look for the ':' that separates the field name from the field
c5aa993b
JM
3005 values. Data members are delimited by a single ':', while member
3006 functions are delimited by a pair of ':'s. When we hit the member
c378eb4e 3007 functions (if any), terminate scan loop and return. */
c906108c 3008
c5aa993b 3009 while (*p != ':' && *p != '\0')
c906108c
SS
3010 {
3011 p++;
3012 }
3013 if (*p == '\0')
3014 return 0;
3015
3016 /* Check to see if we have hit the member functions yet. */
3017 if (p[1] == ':')
3018 {
3019 break;
3020 }
3021 read_one_struct_field (fip, pp, p, type, objfile);
3022 }
3023 if (p[0] == ':' && p[1] == ':')
3024 {
1b831c93
AC
3025 /* (the deleted) chill the list of fields: the last entry (at
3026 the head) is a partially constructed entry which we now
c378eb4e 3027 scrub. */
c5aa993b 3028 fip->list = fip->list->next;
c906108c
SS
3029 }
3030 return 1;
3031}
9846de1b 3032/* *INDENT-OFF* */
c906108c
SS
3033/* The stabs for C++ derived classes contain baseclass information which
3034 is marked by a '!' character after the total size. This function is
3035 called when we encounter the baseclass marker, and slurps up all the
3036 baseclass information.
3037
3038 Immediately following the '!' marker is the number of base classes that
3039 the class is derived from, followed by information for each base class.
3040 For each base class, there are two visibility specifiers, a bit offset
3041 to the base class information within the derived class, a reference to
3042 the type for the base class, and a terminating semicolon.
3043
3044 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3045 ^^ ^ ^ ^ ^ ^ ^
3046 Baseclass information marker __________________|| | | | | | |
3047 Number of baseclasses __________________________| | | | | | |
3048 Visibility specifiers (2) ________________________| | | | | |
3049 Offset in bits from start of class _________________| | | | |
3050 Type number for base class ___________________________| | | |
3051 Visibility specifiers (2) _______________________________| | |
3052 Offset in bits from start of class ________________________| |
3053 Type number of base class ____________________________________|
3054
3055 Return 1 for success, 0 for (error-type-inducing) failure. */
9846de1b 3056/* *INDENT-ON* */
c906108c 3057
c5aa993b
JM
3058
3059
c906108c 3060static int
61b30099
TT
3061read_baseclasses (struct stab_field_info *fip, const char **pp,
3062 struct type *type, struct objfile *objfile)
c906108c
SS
3063{
3064 int i;
fe978cb0 3065 struct nextfield *newobj;
c906108c
SS
3066
3067 if (**pp != '!')
3068 {
3069 return 1;
3070 }
3071 else
3072 {
c378eb4e 3073 /* Skip the '!' baseclass information marker. */
c906108c
SS
3074 (*pp)++;
3075 }
3076
3077 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3078 {
3079 int nbits;
433759f7 3080
94e10a22 3081 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
c906108c
SS
3082 if (nbits != 0)
3083 return 0;
3084 }
3085
3086#if 0
3087 /* Some stupid compilers have trouble with the following, so break
3088 it up into simpler expressions. */
3089 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3090 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3091#else
3092 {
3093 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3094 char *pointer;
3095
3096 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3097 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3098 }
3099#endif /* 0 */
3100
3101 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3102
3103 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3104 {
61b30099 3105 newobj = OBSTACK_ZALLOC (&fip->obstack, struct nextfield);
8d749320 3106
fe978cb0
PA
3107 newobj->next = fip->list;
3108 fip->list = newobj;
3109 FIELD_BITSIZE (newobj->field) = 0; /* This should be an unpacked
c378eb4e 3110 field! */
c906108c
SS
3111
3112 STABS_CONTINUE (pp, objfile);
3113 switch (**pp)
3114 {
c5aa993b 3115 case '0':
c378eb4e 3116 /* Nothing to do. */
c5aa993b
JM
3117 break;
3118 case '1':
3119 SET_TYPE_FIELD_VIRTUAL (type, i);
3120 break;
3121 default:
3122 /* Unknown character. Complain and treat it as non-virtual. */
3123 {
b98664d3 3124 complaint (_("Unknown virtual character `%c' for baseclass"),
3e43a32a 3125 **pp);
c5aa993b 3126 }
c906108c
SS
3127 }
3128 ++(*pp);
3129
fe978cb0
PA
3130 newobj->visibility = *(*pp)++;
3131 switch (newobj->visibility)
c906108c 3132 {
c5aa993b
JM
3133 case VISIBILITY_PRIVATE:
3134 case VISIBILITY_PROTECTED:
3135 case VISIBILITY_PUBLIC:
3136 break;
3137 default:
3138 /* Bad visibility format. Complain and treat it as
3139 public. */
3140 {
b98664d3 3141 complaint (_("Unknown visibility `%c' for baseclass"),
fe978cb0
PA
3142 newobj->visibility);
3143 newobj->visibility = VISIBILITY_PUBLIC;
c5aa993b 3144 }
c906108c
SS
3145 }
3146
3147 {
3148 int nbits;
c5aa993b 3149
c906108c
SS
3150 /* The remaining value is the bit offset of the portion of the object
3151 corresponding to this baseclass. Always zero in the absence of
3152 multiple inheritance. */
3153
fe978cb0 3154 SET_FIELD_BITPOS (newobj->field, read_huge_number (pp, ',', &nbits, 0));
c906108c
SS
3155 if (nbits != 0)
3156 return 0;
3157 }
3158
3159 /* The last piece of baseclass information is the type of the
c5aa993b 3160 base class. Read it, and remember it's type name as this
c378eb4e 3161 field's name. */
c906108c 3162
fe978cb0 3163 newobj->field.type = read_type (pp, objfile);
7d93a1e0 3164 newobj->field.name = newobj->field.type->name ();
c906108c 3165
c378eb4e 3166 /* Skip trailing ';' and bump count of number of fields seen. */
c906108c
SS
3167 if (**pp == ';')
3168 (*pp)++;
3169 else
3170 return 0;
3171 }
3172 return 1;
3173}
3174
3175/* The tail end of stabs for C++ classes that contain a virtual function
3176 pointer contains a tilde, a %, and a type number.
3177 The type number refers to the base class (possibly this class itself) which
3178 contains the vtable pointer for the current class.
3179
3180 This function is called when we have parsed all the method declarations,
3181 so we can look for the vptr base class info. */
3182
3183static int
61b30099
TT
3184read_tilde_fields (struct stab_field_info *fip, const char **pp,
3185 struct type *type, struct objfile *objfile)
c906108c 3186{
a121b7c1 3187 const char *p;
c906108c
SS
3188
3189 STABS_CONTINUE (pp, objfile);
3190
c378eb4e 3191 /* If we are positioned at a ';', then skip it. */
c906108c
SS
3192 if (**pp == ';')
3193 {
3194 (*pp)++;
3195 }
3196
3197 if (**pp == '~')
3198 {
3199 (*pp)++;
3200
3201 if (**pp == '=' || **pp == '+' || **pp == '-')
3202 {
3203 /* Obsolete flags that used to indicate the presence
c378eb4e 3204 of constructors and/or destructors. */
c906108c
SS
3205 (*pp)++;
3206 }
3207
3208 /* Read either a '%' or the final ';'. */
3209 if (*(*pp)++ == '%')
3210 {
3211 /* The next number is the type number of the base class
3212 (possibly our own class) which supplies the vtable for
3213 this class. Parse it out, and search that class to find
3214 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3215 and TYPE_VPTR_FIELDNO. */
3216
3217 struct type *t;
3218 int i;
3219
3220 t = read_type (pp, objfile);
3221 p = (*pp)++;
3222 while (*p != '\0' && *p != ';')
3223 {
3224 p++;
3225 }
3226 if (*p == '\0')
3227 {
3228 /* Premature end of symbol. */
3229 return 0;
3230 }
c5aa993b 3231
ae6ae975 3232 set_type_vptr_basetype (type, t);
c378eb4e 3233 if (type == t) /* Our own class provides vtbl ptr. */
c906108c
SS
3234 {
3235 for (i = TYPE_NFIELDS (t) - 1;
3236 i >= TYPE_N_BASECLASSES (t);
3237 --i)
3238 {
0d5cff50 3239 const char *name = TYPE_FIELD_NAME (t, i);
433759f7 3240
8343f86c 3241 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
74451869 3242 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
c906108c 3243 {
ae6ae975 3244 set_type_vptr_fieldno (type, i);
c906108c
SS
3245 goto gotit;
3246 }
3247 }
3248 /* Virtual function table field not found. */
b98664d3 3249 complaint (_("virtual function table pointer "
3e43a32a 3250 "not found when defining class `%s'"),
7d93a1e0 3251 type->name ());
c906108c
SS
3252 return 0;
3253 }
3254 else
3255 {
ae6ae975 3256 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
c906108c
SS
3257 }
3258
c5aa993b 3259 gotit:
c906108c
SS
3260 *pp = p + 1;
3261 }
3262 }
3263 return 1;
3264}
3265
3266static int
61b30099 3267attach_fn_fields_to_type (struct stab_field_info *fip, struct type *type)
c906108c 3268{
52f0bd74 3269 int n;
c906108c
SS
3270
3271 for (n = TYPE_NFN_FIELDS (type);
c5aa993b
JM
3272 fip->fnlist != NULL;
3273 fip->fnlist = fip->fnlist->next)
c906108c 3274 {
c378eb4e 3275 --n; /* Circumvent Sun3 compiler bug. */
c5aa993b 3276 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
c906108c
SS
3277 }
3278 return 1;
3279}
3280
c906108c
SS
3281/* Create the vector of fields, and record how big it is.
3282 We need this info to record proper virtual function table information
3283 for this class's virtual functions. */
3284
3285static int
61b30099 3286attach_fields_to_type (struct stab_field_info *fip, struct type *type,
fba45db2 3287 struct objfile *objfile)
c906108c 3288{
52f0bd74
AC
3289 int nfields = 0;
3290 int non_public_fields = 0;
3291 struct nextfield *scan;
c906108c
SS
3292
3293 /* Count up the number of fields that we have, as well as taking note of
3294 whether or not there are any non-public fields, which requires us to
3295 allocate and build the private_field_bits and protected_field_bits
c378eb4e 3296 bitfields. */
c906108c 3297
c5aa993b 3298 for (scan = fip->list; scan != NULL; scan = scan->next)
c906108c
SS
3299 {
3300 nfields++;
c5aa993b 3301 if (scan->visibility != VISIBILITY_PUBLIC)
c906108c
SS
3302 {
3303 non_public_fields++;
3304 }
3305 }
3306
3307 /* Now we know how many fields there are, and whether or not there are any
3308 non-public fields. Record the field count, allocate space for the
c378eb4e 3309 array of fields, and create blank visibility bitfields if necessary. */
c906108c 3310
5e33d5f4 3311 type->set_num_fields (nfields);
c906108c
SS
3312 TYPE_FIELDS (type) = (struct field *)
3313 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3314 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3315
3316 if (non_public_fields)
3317 {
3318 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3319
3320 TYPE_FIELD_PRIVATE_BITS (type) =
3321 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3322 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3323
3324 TYPE_FIELD_PROTECTED_BITS (type) =
3325 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3326 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3327
3328 TYPE_FIELD_IGNORE_BITS (type) =
3329 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3330 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3331 }
3332
c378eb4e
MS
3333 /* Copy the saved-up fields into the field vector. Start from the
3334 head of the list, adding to the tail of the field array, so that
3335 they end up in the same order in the array in which they were
3336 added to the list. */
c906108c
SS
3337
3338 while (nfields-- > 0)
3339 {
c5aa993b
JM
3340 TYPE_FIELD (type, nfields) = fip->list->field;
3341 switch (fip->list->visibility)
c906108c 3342 {
c5aa993b
JM
3343 case VISIBILITY_PRIVATE:
3344 SET_TYPE_FIELD_PRIVATE (type, nfields);
3345 break;
c906108c 3346
c5aa993b
JM
3347 case VISIBILITY_PROTECTED:
3348 SET_TYPE_FIELD_PROTECTED (type, nfields);
3349 break;
c906108c 3350
c5aa993b
JM
3351 case VISIBILITY_IGNORE:
3352 SET_TYPE_FIELD_IGNORE (type, nfields);
3353 break;
c906108c 3354
c5aa993b
JM
3355 case VISIBILITY_PUBLIC:
3356 break;
c906108c 3357
c5aa993b
JM
3358 default:
3359 /* Unknown visibility. Complain and treat it as public. */
3360 {
b98664d3 3361 complaint (_("Unknown visibility `%c' for field"),
23136709 3362 fip->list->visibility);
c5aa993b
JM
3363 }
3364 break;
c906108c 3365 }
c5aa993b 3366 fip->list = fip->list->next;
c906108c
SS
3367 }
3368 return 1;
3369}
3370
2ae1c2d2 3371
2ae1c2d2
JB
3372/* Complain that the compiler has emitted more than one definition for the
3373 structure type TYPE. */
3374static void
3375complain_about_struct_wipeout (struct type *type)
3376{
0d5cff50
DE
3377 const char *name = "";
3378 const char *kind = "";
2ae1c2d2 3379
7d93a1e0 3380 if (type->name ())
2ae1c2d2 3381 {
7d93a1e0 3382 name = type->name ();
78134374 3383 switch (type->code ())
2ae1c2d2
JB
3384 {
3385 case TYPE_CODE_STRUCT: kind = "struct "; break;
3386 case TYPE_CODE_UNION: kind = "union "; break;
3387 case TYPE_CODE_ENUM: kind = "enum "; break;
3388 default: kind = "";
3389 }
3390 }
2ae1c2d2
JB
3391 else
3392 {
3393 name = "<unknown>";
3394 kind = "";
3395 }
3396
b98664d3 3397 complaint (_("struct/union type gets multiply defined: %s%s"), kind, name);
2ae1c2d2
JB
3398}
3399
621791b8
PM
3400/* Set the length for all variants of a same main_type, which are
3401 connected in the closed chain.
3402
3403 This is something that needs to be done when a type is defined *after*
3404 some cross references to this type have already been read. Consider
3405 for instance the following scenario where we have the following two
3406 stabs entries:
3407
3408 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3409 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3410
3411 A stubbed version of type dummy is created while processing the first
3412 stabs entry. The length of that type is initially set to zero, since
3413 it is unknown at this point. Also, a "constant" variation of type
3414 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3415 the stabs line).
3416
3417 The second stabs entry allows us to replace the stubbed definition
3418 with the real definition. However, we still need to adjust the length
3419 of the "constant" variation of that type, as its length was left
3420 untouched during the main type replacement... */
3421
3422static void
9e69f3b6 3423set_length_in_type_chain (struct type *type)
621791b8
PM
3424{
3425 struct type *ntype = TYPE_CHAIN (type);
3426
3427 while (ntype != type)
3428 {
3429 if (TYPE_LENGTH(ntype) == 0)
3430 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3431 else
3432 complain_about_struct_wipeout (ntype);
3433 ntype = TYPE_CHAIN (ntype);
3434 }
3435}
2ae1c2d2 3436
c906108c
SS
3437/* Read the description of a structure (or union type) and return an object
3438 describing the type.
3439
3440 PP points to a character pointer that points to the next unconsumed token
b021a221 3441 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
c906108c
SS
3442 *PP will point to "4a:1,0,32;;".
3443
3444 TYPE points to an incomplete type that needs to be filled in.
3445
3446 OBJFILE points to the current objfile from which the stabs information is
3447 being read. (Note that it is redundant in that TYPE also contains a pointer
3448 to this same objfile, so it might be a good idea to eliminate it. FIXME).
c5aa993b 3449 */
c906108c
SS
3450
3451static struct type *
a121b7c1 3452read_struct_type (const char **pp, struct type *type, enum type_code type_code,
2ae1c2d2 3453 struct objfile *objfile)
c906108c 3454{
61b30099 3455 struct stab_field_info fi;
c906108c 3456
2ae1c2d2
JB
3457 /* When describing struct/union/class types in stabs, G++ always drops
3458 all qualifications from the name. So if you've got:
3459 struct A { ... struct B { ... }; ... };
3460 then G++ will emit stabs for `struct A::B' that call it simply
3461 `struct B'. Obviously, if you've got a real top-level definition for
3462 `struct B', or other nested definitions, this is going to cause
3463 problems.
3464
3465 Obviously, GDB can't fix this by itself, but it can at least avoid
3466 scribbling on existing structure type objects when new definitions
3467 appear. */
78134374 3468 if (! (type->code () == TYPE_CODE_UNDEF
2ae1c2d2
JB
3469 || TYPE_STUB (type)))
3470 {
3471 complain_about_struct_wipeout (type);
3472
3473 /* It's probably best to return the type unchanged. */
3474 return type;
3475 }
3476
c906108c 3477 INIT_CPLUS_SPECIFIC (type);
67607e24 3478 type->set_code (type_code);
876cecd0 3479 TYPE_STUB (type) = 0;
c906108c
SS
3480
3481 /* First comes the total size in bytes. */
3482
3483 {
3484 int nbits;
433759f7 3485
94e10a22 3486 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
c906108c 3487 if (nbits != 0)
61b30099 3488 return error_type (pp, objfile);
621791b8 3489 set_length_in_type_chain (type);
c906108c
SS
3490 }
3491
3492 /* Now read the baseclasses, if any, read the regular C struct or C++
3493 class member fields, attach the fields to the type, read the C++
3494 member functions, attach them to the type, and then read any tilde
3e43a32a 3495 field (baseclass specifier for the class holding the main vtable). */
c906108c
SS
3496
3497 if (!read_baseclasses (&fi, pp, type, objfile)
3498 || !read_struct_fields (&fi, pp, type, objfile)
3499 || !attach_fields_to_type (&fi, type, objfile)
3500 || !read_member_functions (&fi, pp, type, objfile)
3501 || !attach_fn_fields_to_type (&fi, type)
3502 || !read_tilde_fields (&fi, pp, type, objfile))
3503 {
3504 type = error_type (pp, objfile);
3505 }
3506
c906108c
SS
3507 return (type);
3508}
3509
3510/* Read a definition of an array type,
3511 and create and return a suitable type object.
3512 Also creates a range type which represents the bounds of that
3513 array. */
3514
3515static struct type *
a121b7c1 3516read_array_type (const char **pp, struct type *type,
fba45db2 3517 struct objfile *objfile)
c906108c
SS
3518{
3519 struct type *index_type, *element_type, *range_type;
3520 int lower, upper;
3521 int adjustable = 0;
3522 int nbits;
3523
3524 /* Format of an array type:
3525 "ar<index type>;lower;upper;<array_contents_type>".
3526 OS9000: "arlower,upper;<array_contents_type>".
3527
3528 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3529 for these, produce a type like float[][]. */
3530
c906108c
SS
3531 {
3532 index_type = read_type (pp, objfile);
3533 if (**pp != ';')
3534 /* Improper format of array type decl. */
3535 return error_type (pp, objfile);
3536 ++*pp;
3537 }
3538
3539 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3540 {
3541 (*pp)++;
3542 adjustable = 1;
3543 }
94e10a22 3544 lower = read_huge_number (pp, ';', &nbits, 0);
cdecafbe 3545
c906108c
SS
3546 if (nbits != 0)
3547 return error_type (pp, objfile);
3548
3549 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3550 {
3551 (*pp)++;
3552 adjustable = 1;
3553 }
94e10a22 3554 upper = read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
3555 if (nbits != 0)
3556 return error_type (pp, objfile);
c5aa993b 3557
c906108c
SS
3558 element_type = read_type (pp, objfile);
3559
3560 if (adjustable)
3561 {
3562 lower = 0;
3563 upper = -1;
3564 }
3565
3566 range_type =
cafb3438 3567 create_static_range_type (NULL, index_type, lower, upper);
c906108c
SS
3568 type = create_array_type (type, element_type, range_type);
3569
3570 return type;
3571}
3572
3573
3574/* Read a definition of an enumeration type,
3575 and create and return a suitable type object.
3576 Also defines the symbols that represent the values of the type. */
3577
3578static struct type *
a121b7c1 3579read_enum_type (const char **pp, struct type *type,
fba45db2 3580 struct objfile *objfile)
c906108c 3581{
08feed99 3582 struct gdbarch *gdbarch = objfile->arch ();
a121b7c1 3583 const char *p;
c906108c 3584 char *name;
52f0bd74
AC
3585 long n;
3586 struct symbol *sym;
c906108c
SS
3587 int nsyms = 0;
3588 struct pending **symlist;
3589 struct pending *osyms, *syms;
3590 int o_nsyms;
3591 int nbits;
3592 int unsigned_enum = 1;
3593
3594#if 0
3595 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3596 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3597 to do? For now, force all enum values to file scope. */
3598 if (within_function)
e148f09d 3599 symlist = get_local_symbols ();
c906108c
SS
3600 else
3601#endif
e148f09d 3602 symlist = get_file_symbols ();
c906108c
SS
3603 osyms = *symlist;
3604 o_nsyms = osyms ? osyms->nsyms : 0;
3605
c906108c
SS
3606 /* The aix4 compiler emits an extra field before the enum members;
3607 my guess is it's a type of some sort. Just ignore it. */
3608 if (**pp == '-')
3609 {
3610 /* Skip over the type. */
3611 while (**pp != ':')
c5aa993b 3612 (*pp)++;
c906108c
SS
3613
3614 /* Skip over the colon. */
3615 (*pp)++;
3616 }
3617
3618 /* Read the value-names and their values.
3619 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3620 A semicolon or comma instead of a NAME means the end. */
3621 while (**pp && **pp != ';' && **pp != ',')
3622 {
3623 STABS_CONTINUE (pp, objfile);
3624 p = *pp;
c5aa993b
JM
3625 while (*p != ':')
3626 p++;
0cf9feb9 3627 name = obstack_strndup (&objfile->objfile_obstack, *pp, p - *pp);
c906108c 3628 *pp = p + 1;
94e10a22 3629 n = read_huge_number (pp, ',', &nbits, 0);
c906108c
SS
3630 if (nbits != 0)
3631 return error_type (pp, objfile);
3632
8c14c3a3 3633 sym = new (&objfile->objfile_obstack) symbol;
43678b0a 3634 sym->set_linkage_name (name);
d3ecddab
CB
3635 sym->set_language (get_current_subfile ()->language,
3636 &objfile->objfile_obstack);
f1e6e072 3637 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
176620f1 3638 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
3639 SYMBOL_VALUE (sym) = n;
3640 if (n < 0)
3641 unsigned_enum = 0;
3642 add_symbol_to_list (sym, symlist);
3643 nsyms++;
3644 }
3645
3646 if (**pp == ';')
3647 (*pp)++; /* Skip the semicolon. */
3648
3649 /* Now fill in the fields of the type-structure. */
3650
5e2b427d 3651 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
621791b8 3652 set_length_in_type_chain (type);
67607e24 3653 type->set_code (TYPE_CODE_ENUM);
876cecd0 3654 TYPE_STUB (type) = 0;
c906108c 3655 if (unsigned_enum)
876cecd0 3656 TYPE_UNSIGNED (type) = 1;
5e33d5f4 3657 type->set_num_fields (nsyms);
c906108c
SS
3658 TYPE_FIELDS (type) = (struct field *)
3659 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3660 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3661
3662 /* Find the symbols for the values and put them into the type.
3663 The symbols can be found in the symlist that we put them on
3664 to cause them to be defined. osyms contains the old value
3665 of that symlist; everything up to there was defined by us. */
3666 /* Note that we preserve the order of the enum constants, so
3667 that in something like "enum {FOO, LAST_THING=FOO}" we print
3668 FOO, not LAST_THING. */
3669
3670 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3671 {
3672 int last = syms == osyms ? o_nsyms : 0;
3673 int j = syms->nsyms;
433759f7 3674
c906108c
SS
3675 for (; --j >= last; --n)
3676 {
3677 struct symbol *xsym = syms->symbol[j];
433759f7 3678
c906108c 3679 SYMBOL_TYPE (xsym) = type;
987012b8 3680 TYPE_FIELD_NAME (type, n) = xsym->linkage_name ();
14e75d8e 3681 SET_FIELD_ENUMVAL (TYPE_FIELD (type, n), SYMBOL_VALUE (xsym));
c906108c
SS
3682 TYPE_FIELD_BITSIZE (type, n) = 0;
3683 }
3684 if (syms == osyms)
3685 break;
3686 }
3687
3688 return type;
3689}
3690
3691/* Sun's ACC uses a somewhat saner method for specifying the builtin
3692 typedefs in every file (for int, long, etc):
3693
c5aa993b
JM
3694 type = b <signed> <width> <format type>; <offset>; <nbits>
3695 signed = u or s.
3696 optional format type = c or b for char or boolean.
3697 offset = offset from high order bit to start bit of type.
3698 width is # bytes in object of this type, nbits is # bits in type.
c906108c
SS
3699
3700 The width/offset stuff appears to be for small objects stored in
3701 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3702 FIXME. */
3703
3704static struct type *
a121b7c1 3705read_sun_builtin_type (const char **pp, int typenums[2], struct objfile *objfile)
c906108c
SS
3706{
3707 int type_bits;
3708 int nbits;
19f392bc
UW
3709 int unsigned_type;
3710 int boolean_type = 0;
c906108c
SS
3711
3712 switch (**pp)
3713 {
c5aa993b 3714 case 's':
19f392bc 3715 unsigned_type = 0;
c5aa993b
JM
3716 break;
3717 case 'u':
19f392bc 3718 unsigned_type = 1;
c5aa993b
JM
3719 break;
3720 default:
3721 return error_type (pp, objfile);
c906108c
SS
3722 }
3723 (*pp)++;
3724
3725 /* For some odd reason, all forms of char put a c here. This is strange
3726 because no other type has this honor. We can safely ignore this because
3727 we actually determine 'char'acterness by the number of bits specified in
3728 the descriptor.
3729 Boolean forms, e.g Fortran logical*X, put a b here. */
3730
3731 if (**pp == 'c')
3732 (*pp)++;
3733 else if (**pp == 'b')
3734 {
19f392bc 3735 boolean_type = 1;
c906108c
SS
3736 (*pp)++;
3737 }
3738
3739 /* The first number appears to be the number of bytes occupied
3740 by this type, except that unsigned short is 4 instead of 2.
3741 Since this information is redundant with the third number,
3742 we will ignore it. */
94e10a22 3743 read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
3744 if (nbits != 0)
3745 return error_type (pp, objfile);
3746
c378eb4e 3747 /* The second number is always 0, so ignore it too. */
94e10a22 3748 read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
3749 if (nbits != 0)
3750 return error_type (pp, objfile);
3751
c378eb4e 3752 /* The third number is the number of bits for this type. */
94e10a22 3753 type_bits = read_huge_number (pp, 0, &nbits, 0);
c906108c
SS
3754 if (nbits != 0)
3755 return error_type (pp, objfile);
3756 /* The type *should* end with a semicolon. If it are embedded
3757 in a larger type the semicolon may be the only way to know where
3758 the type ends. If this type is at the end of the stabstring we
3759 can deal with the omitted semicolon (but we don't have to like
3760 it). Don't bother to complain(), Sun's compiler omits the semicolon
3761 for "void". */
3762 if (**pp == ';')
3763 ++(*pp);
3764
3765 if (type_bits == 0)
19f392bc 3766 {
77b7c781
UW
3767 struct type *type = init_type (objfile, TYPE_CODE_VOID,
3768 TARGET_CHAR_BIT, NULL);
19f392bc
UW
3769 if (unsigned_type)
3770 TYPE_UNSIGNED (type) = 1;
3771 return type;
3772 }
3773
3774 if (boolean_type)
3775 return init_boolean_type (objfile, type_bits, unsigned_type, NULL);
c906108c 3776 else
19f392bc 3777 return init_integer_type (objfile, type_bits, unsigned_type, NULL);
c906108c
SS
3778}
3779
3780static struct type *
a121b7c1
PA
3781read_sun_floating_type (const char **pp, int typenums[2],
3782 struct objfile *objfile)
c906108c
SS
3783{
3784 int nbits;
3785 int details;
3786 int nbytes;
f65ca430 3787 struct type *rettype;
c906108c
SS
3788
3789 /* The first number has more details about the type, for example
3790 FN_COMPLEX. */
94e10a22 3791 details = read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
3792 if (nbits != 0)
3793 return error_type (pp, objfile);
3794
c378eb4e 3795 /* The second number is the number of bytes occupied by this type. */
94e10a22 3796 nbytes = read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
3797 if (nbits != 0)
3798 return error_type (pp, objfile);
3799
19f392bc
UW
3800 nbits = nbytes * TARGET_CHAR_BIT;
3801
c906108c
SS
3802 if (details == NF_COMPLEX || details == NF_COMPLEX16
3803 || details == NF_COMPLEX32)
f65ca430 3804 {
9b790ce7 3805 rettype = dbx_init_float_type (objfile, nbits / 2);
5b930b45 3806 return init_complex_type (NULL, rettype);
f65ca430 3807 }
c906108c 3808
9b790ce7 3809 return dbx_init_float_type (objfile, nbits);
c906108c
SS
3810}
3811
3812/* Read a number from the string pointed to by *PP.
3813 The value of *PP is advanced over the number.
3814 If END is nonzero, the character that ends the
3815 number must match END, or an error happens;
3816 and that character is skipped if it does match.
3817 If END is zero, *PP is left pointing to that character.
3818
94e10a22
JG
3819 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3820 the number is represented in an octal representation, assume that
3821 it is represented in a 2's complement representation with a size of
3822 TWOS_COMPLEMENT_BITS.
3823
c906108c
SS
3824 If the number fits in a long, set *BITS to 0 and return the value.
3825 If not, set *BITS to be the number of bits in the number and return 0.
3826
3827 If encounter garbage, set *BITS to -1 and return 0. */
3828
c2d11a7d 3829static long
a121b7c1
PA
3830read_huge_number (const char **pp, int end, int *bits,
3831 int twos_complement_bits)
c906108c 3832{
a121b7c1 3833 const char *p = *pp;
c906108c 3834 int sign = 1;
51e9e0d4 3835 int sign_bit = 0;
c2d11a7d 3836 long n = 0;
c906108c
SS
3837 int radix = 10;
3838 char overflow = 0;
3839 int nbits = 0;
3840 int c;
c2d11a7d 3841 long upper_limit;
a2699720 3842 int twos_complement_representation = 0;
c5aa993b 3843
c906108c
SS
3844 if (*p == '-')
3845 {
3846 sign = -1;
3847 p++;
3848 }
3849
3850 /* Leading zero means octal. GCC uses this to output values larger
3851 than an int (because that would be hard in decimal). */
3852 if (*p == '0')
3853 {
3854 radix = 8;
3855 p++;
3856 }
3857
a2699720
PA
3858 /* Skip extra zeros. */
3859 while (*p == '0')
3860 p++;
3861
3862 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3863 {
3864 /* Octal, possibly signed. Check if we have enough chars for a
3865 negative number. */
3866
3867 size_t len;
a121b7c1 3868 const char *p1 = p;
433759f7 3869
a2699720
PA
3870 while ((c = *p1) >= '0' && c < '8')
3871 p1++;
3872
3873 len = p1 - p;
3874 if (len > twos_complement_bits / 3
3e43a32a
MS
3875 || (twos_complement_bits % 3 == 0
3876 && len == twos_complement_bits / 3))
a2699720
PA
3877 {
3878 /* Ok, we have enough characters for a signed value, check
85102364 3879 for signedness by testing if the sign bit is set. */
a2699720
PA
3880 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3881 c = *p - '0';
3882 if (c & (1 << sign_bit))
3883 {
3884 /* Definitely signed. */
3885 twos_complement_representation = 1;
3886 sign = -1;
3887 }
3888 }
3889 }
3890
1b831c93 3891 upper_limit = LONG_MAX / radix;
c906108c
SS
3892
3893 while ((c = *p++) >= '0' && c < ('0' + radix))
3894 {
3895 if (n <= upper_limit)
94e10a22
JG
3896 {
3897 if (twos_complement_representation)
3898 {
a2699720
PA
3899 /* Octal, signed, twos complement representation. In
3900 this case, n is the corresponding absolute value. */
3901 if (n == 0)
3902 {
3903 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
433759f7 3904
a2699720
PA
3905 n = -sn;
3906 }
94e10a22
JG
3907 else
3908 {
a2699720
PA
3909 n *= radix;
3910 n -= c - '0';
94e10a22 3911 }
94e10a22
JG
3912 }
3913 else
3914 {
3915 /* unsigned representation */
3916 n *= radix;
c378eb4e 3917 n += c - '0'; /* FIXME this overflows anyway. */
94e10a22
JG
3918 }
3919 }
c906108c 3920 else
94e10a22 3921 overflow = 1;
c5aa993b 3922
c906108c 3923 /* This depends on large values being output in octal, which is
c378eb4e 3924 what GCC does. */
c906108c
SS
3925 if (radix == 8)
3926 {
3927 if (nbits == 0)
3928 {
3929 if (c == '0')
3930 /* Ignore leading zeroes. */
3931 ;
3932 else if (c == '1')
3933 nbits = 1;
3934 else if (c == '2' || c == '3')
3935 nbits = 2;
3936 else
3937 nbits = 3;
3938 }
3939 else
3940 nbits += 3;
3941 }
3942 }
3943 if (end)
3944 {
3945 if (c && c != end)
3946 {
3947 if (bits != NULL)
3948 *bits = -1;
3949 return 0;
3950 }
3951 }
3952 else
3953 --p;
3954
a2699720
PA
3955 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
3956 {
3957 /* We were supposed to parse a number with maximum
3958 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
3959 if (bits != NULL)
3960 *bits = -1;
3961 return 0;
3962 }
3963
c906108c
SS
3964 *pp = p;
3965 if (overflow)
3966 {
3967 if (nbits == 0)
3968 {
3969 /* Large decimal constants are an error (because it is hard to
3970 count how many bits are in them). */
3971 if (bits != NULL)
3972 *bits = -1;
3973 return 0;
3974 }
c5aa993b 3975
c906108c 3976 /* -0x7f is the same as 0x80. So deal with it by adding one to
a2699720
PA
3977 the number of bits. Two's complement represention octals
3978 can't have a '-' in front. */
3979 if (sign == -1 && !twos_complement_representation)
c906108c
SS
3980 ++nbits;
3981 if (bits)
3982 *bits = nbits;
3983 }
3984 else
3985 {
3986 if (bits)
3987 *bits = 0;
a2699720 3988 return n * sign;
c906108c
SS
3989 }
3990 /* It's *BITS which has the interesting information. */
3991 return 0;
3992}
3993
3994static struct type *
a121b7c1 3995read_range_type (const char **pp, int typenums[2], int type_size,
94e10a22 3996 struct objfile *objfile)
c906108c 3997{
08feed99 3998 struct gdbarch *gdbarch = objfile->arch ();
a121b7c1 3999 const char *orig_pp = *pp;
c906108c 4000 int rangenums[2];
c2d11a7d 4001 long n2, n3;
c906108c
SS
4002 int n2bits, n3bits;
4003 int self_subrange;
4004 struct type *result_type;
4005 struct type *index_type = NULL;
4006
4007 /* First comes a type we are a subrange of.
4008 In C it is usually 0, 1 or the type being defined. */
4009 if (read_type_number (pp, rangenums) != 0)
4010 return error_type (pp, objfile);
4011 self_subrange = (rangenums[0] == typenums[0] &&
4012 rangenums[1] == typenums[1]);
4013
4014 if (**pp == '=')
4015 {
4016 *pp = orig_pp;
4017 index_type = read_type (pp, objfile);
4018 }
4019
4020 /* A semicolon should now follow; skip it. */
4021 if (**pp == ';')
4022 (*pp)++;
4023
4024 /* The remaining two operands are usually lower and upper bounds
4025 of the range. But in some special cases they mean something else. */
94e10a22
JG
4026 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4027 n3 = read_huge_number (pp, ';', &n3bits, type_size);
c906108c
SS
4028
4029 if (n2bits == -1 || n3bits == -1)
4030 return error_type (pp, objfile);
4031
4032 if (index_type)
4033 goto handle_true_range;
4034
4035 /* If limits are huge, must be large integral type. */
4036 if (n2bits != 0 || n3bits != 0)
4037 {
4038 char got_signed = 0;
4039 char got_unsigned = 0;
4040 /* Number of bits in the type. */
4041 int nbits = 0;
4042
94e10a22 4043 /* If a type size attribute has been specified, the bounds of
c378eb4e 4044 the range should fit in this size. If the lower bounds needs
94e10a22
JG
4045 more bits than the upper bound, then the type is signed. */
4046 if (n2bits <= type_size && n3bits <= type_size)
4047 {
4048 if (n2bits == type_size && n2bits > n3bits)
4049 got_signed = 1;
4050 else
4051 got_unsigned = 1;
4052 nbits = type_size;
4053 }
c906108c 4054 /* Range from 0 to <large number> is an unsigned large integral type. */
94e10a22 4055 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
c906108c
SS
4056 {
4057 got_unsigned = 1;
4058 nbits = n3bits;
4059 }
4060 /* Range from <large number> to <large number>-1 is a large signed
c5aa993b
JM
4061 integral type. Take care of the case where <large number> doesn't
4062 fit in a long but <large number>-1 does. */
c906108c
SS
4063 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4064 || (n2bits != 0 && n3bits == 0
c2d11a7d
JM
4065 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4066 && n3 == LONG_MAX))
c906108c
SS
4067 {
4068 got_signed = 1;
4069 nbits = n2bits;
4070 }
4071
4072 if (got_signed || got_unsigned)
19f392bc 4073 return init_integer_type (objfile, nbits, got_unsigned, NULL);
c906108c
SS
4074 else
4075 return error_type (pp, objfile);
4076 }
4077
4078 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4079 if (self_subrange && n2 == 0 && n3 == 0)
77b7c781 4080 return init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
c906108c
SS
4081
4082 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4083 is the width in bytes.
4084
4085 Fortran programs appear to use this for complex types also. To
4086 distinguish between floats and complex, g77 (and others?) seem
4087 to use self-subranges for the complexes, and subranges of int for
4088 the floats.
4089
4090 Also note that for complexes, g77 sets n2 to the size of one of
4091 the member floats, not the whole complex beast. My guess is that
c378eb4e 4092 this was to work well with pre-COMPLEX versions of gdb. */
c906108c
SS
4093
4094 if (n3 == 0 && n2 > 0)
4095 {
1300f5dd 4096 struct type *float_type
9b790ce7 4097 = dbx_init_float_type (objfile, n2 * TARGET_CHAR_BIT);
1300f5dd 4098
c906108c 4099 if (self_subrange)
5b930b45 4100 return init_complex_type (NULL, float_type);
c906108c 4101 else
1300f5dd 4102 return float_type;
c906108c
SS
4103 }
4104
a2699720 4105 /* If the upper bound is -1, it must really be an unsigned integral. */
c906108c
SS
4106
4107 else if (n2 == 0 && n3 == -1)
4108 {
a2699720 4109 int bits = type_size;
433759f7 4110
a2699720
PA
4111 if (bits <= 0)
4112 {
4113 /* We don't know its size. It is unsigned int or unsigned
4114 long. GCC 2.3.3 uses this for long long too, but that is
4115 just a GDB 3.5 compatibility hack. */
5e2b427d 4116 bits = gdbarch_int_bit (gdbarch);
a2699720
PA
4117 }
4118
19f392bc 4119 return init_integer_type (objfile, bits, 1, NULL);
c906108c
SS
4120 }
4121
4122 /* Special case: char is defined (Who knows why) as a subrange of
4123 itself with range 0-127. */
4124 else if (self_subrange && n2 == 0 && n3 == 127)
19f392bc 4125 {
77b7c781
UW
4126 struct type *type = init_integer_type (objfile, TARGET_CHAR_BIT,
4127 0, NULL);
19f392bc
UW
4128 TYPE_NOSIGN (type) = 1;
4129 return type;
4130 }
c906108c
SS
4131 /* We used to do this only for subrange of self or subrange of int. */
4132 else if (n2 == 0)
4133 {
a0b3c4fd
JM
4134 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4135 "unsigned long", and we already checked for that,
4136 so don't need to test for it here. */
4137
c906108c
SS
4138 if (n3 < 0)
4139 /* n3 actually gives the size. */
19f392bc 4140 return init_integer_type (objfile, -n3 * TARGET_CHAR_BIT, 1, NULL);
c906108c 4141
7be570e7 4142 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
a0b3c4fd
JM
4143 unsigned n-byte integer. But do require n to be a power of
4144 two; we don't want 3- and 5-byte integers flying around. */
4145 {
4146 int bytes;
4147 unsigned long bits;
4148
4149 bits = n3;
4150 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4151 bits >>= 8;
4152 if (bits == 0
4153 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
19f392bc 4154 return init_integer_type (objfile, bytes * TARGET_CHAR_BIT, 1, NULL);
a0b3c4fd 4155 }
c906108c
SS
4156 }
4157 /* I think this is for Convex "long long". Since I don't know whether
4158 Convex sets self_subrange, I also accept that particular size regardless
4159 of self_subrange. */
4160 else if (n3 == 0 && n2 < 0
4161 && (self_subrange
9a76efb6 4162 || n2 == -gdbarch_long_long_bit
5e2b427d 4163 (gdbarch) / TARGET_CHAR_BIT))
19f392bc 4164 return init_integer_type (objfile, -n2 * TARGET_CHAR_BIT, 0, NULL);
c5aa993b 4165 else if (n2 == -n3 - 1)
c906108c
SS
4166 {
4167 if (n3 == 0x7f)
19f392bc 4168 return init_integer_type (objfile, 8, 0, NULL);
c906108c 4169 if (n3 == 0x7fff)
19f392bc 4170 return init_integer_type (objfile, 16, 0, NULL);
c906108c 4171 if (n3 == 0x7fffffff)
19f392bc 4172 return init_integer_type (objfile, 32, 0, NULL);
c906108c
SS
4173 }
4174
4175 /* We have a real range type on our hands. Allocate space and
4176 return a real pointer. */
c5aa993b 4177handle_true_range:
c906108c
SS
4178
4179 if (self_subrange)
46bf5051 4180 index_type = objfile_type (objfile)->builtin_int;
c906108c 4181 else
46bf5051 4182 index_type = *dbx_lookup_type (rangenums, objfile);
c906108c
SS
4183 if (index_type == NULL)
4184 {
4185 /* Does this actually ever happen? Is that why we are worrying
4186 about dealing with it rather than just calling error_type? */
4187
b98664d3 4188 complaint (_("base type %d of range type is not defined"), rangenums[1]);
5e2b427d 4189
46bf5051 4190 index_type = objfile_type (objfile)->builtin_int;
c906108c
SS
4191 }
4192
0c9c3474 4193 result_type
cafb3438 4194 = create_static_range_type (NULL, index_type, n2, n3);
c906108c
SS
4195 return (result_type);
4196}
4197
4198/* Read in an argument list. This is a list of types, separated by commas
0a029df5
DJ
4199 and terminated with END. Return the list of types read in, or NULL
4200 if there is an error. */
c906108c 4201
ad2f7632 4202static struct field *
a121b7c1 4203read_args (const char **pp, int end, struct objfile *objfile, int *nargsp,
ad2f7632 4204 int *varargsp)
c906108c
SS
4205{
4206 /* FIXME! Remove this arbitrary limit! */
c378eb4e 4207 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
ad2f7632
DJ
4208 int n = 0, i;
4209 struct field *rval;
c906108c
SS
4210
4211 while (**pp != end)
4212 {
4213 if (**pp != ',')
4214 /* Invalid argument list: no ','. */
0a029df5 4215 return NULL;
c906108c
SS
4216 (*pp)++;
4217 STABS_CONTINUE (pp, objfile);
4218 types[n++] = read_type (pp, objfile);
4219 }
c378eb4e 4220 (*pp)++; /* get past `end' (the ':' character). */
c906108c 4221
d24d8548
JK
4222 if (n == 0)
4223 {
4224 /* We should read at least the THIS parameter here. Some broken stabs
4225 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4226 have been present ";-16,(0,43)" reference instead. This way the
4227 excessive ";" marker prematurely stops the parameters parsing. */
4228
b98664d3 4229 complaint (_("Invalid (empty) method arguments"));
d24d8548
JK
4230 *varargsp = 0;
4231 }
78134374 4232 else if (types[n - 1]->code () != TYPE_CODE_VOID)
ad2f7632 4233 *varargsp = 1;
c906108c
SS
4234 else
4235 {
ad2f7632
DJ
4236 n--;
4237 *varargsp = 0;
c906108c 4238 }
ad2f7632 4239
8d749320 4240 rval = XCNEWVEC (struct field, n);
ad2f7632
DJ
4241 for (i = 0; i < n; i++)
4242 rval[i].type = types[i];
4243 *nargsp = n;
c906108c
SS
4244 return rval;
4245}
4246\f
4247/* Common block handling. */
4248
4249/* List of symbols declared since the last BCOMM. This list is a tail
4250 of local_symbols. When ECOMM is seen, the symbols on the list
4251 are noted so their proper addresses can be filled in later,
4252 using the common block base address gotten from the assembler
4253 stabs. */
4254
4255static struct pending *common_block;
4256static int common_block_i;
4257
4258/* Name of the current common block. We get it from the BCOMM instead of the
4259 ECOMM to match IBM documentation (even though IBM puts the name both places
4260 like everyone else). */
4261static char *common_block_name;
4262
4263/* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4264 to remain after this function returns. */
4265
4266void
a121b7c1 4267common_block_start (const char *name, struct objfile *objfile)
c906108c
SS
4268{
4269 if (common_block_name != NULL)
4270 {
b98664d3 4271 complaint (_("Invalid symbol data: common block within common block"));
c906108c 4272 }
e148f09d
TT
4273 common_block = *get_local_symbols ();
4274 common_block_i = common_block ? common_block->nsyms : 0;
021887d8 4275 common_block_name = obstack_strdup (&objfile->objfile_obstack, name);
c906108c
SS
4276}
4277
4278/* Process a N_ECOMM symbol. */
4279
4280void
fba45db2 4281common_block_end (struct objfile *objfile)
c906108c
SS
4282{
4283 /* Symbols declared since the BCOMM are to have the common block
4284 start address added in when we know it. common_block and
4285 common_block_i point to the first symbol after the BCOMM in
4286 the local_symbols list; copy the list and hang it off the
4287 symbol for the common block name for later fixup. */
4288 int i;
4289 struct symbol *sym;
fe978cb0 4290 struct pending *newobj = 0;
c906108c
SS
4291 struct pending *next;
4292 int j;
4293
4294 if (common_block_name == NULL)
4295 {
b98664d3 4296 complaint (_("ECOMM symbol unmatched by BCOMM"));
c906108c
SS
4297 return;
4298 }
4299
8c14c3a3 4300 sym = new (&objfile->objfile_obstack) symbol;
c378eb4e 4301 /* Note: common_block_name already saved on objfile_obstack. */
43678b0a 4302 sym->set_linkage_name (common_block_name);
f1e6e072 4303 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
c906108c
SS
4304
4305 /* Now we copy all the symbols which have been defined since the BCOMM. */
4306
4307 /* Copy all the struct pendings before common_block. */
e148f09d 4308 for (next = *get_local_symbols ();
c906108c
SS
4309 next != NULL && next != common_block;
4310 next = next->next)
4311 {
4312 for (j = 0; j < next->nsyms; j++)
fe978cb0 4313 add_symbol_to_list (next->symbol[j], &newobj);
c906108c
SS
4314 }
4315
4316 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4317 NULL, it means copy all the local symbols (which we already did
4318 above). */
4319
4320 if (common_block != NULL)
4321 for (j = common_block_i; j < common_block->nsyms; j++)
fe978cb0 4322 add_symbol_to_list (common_block->symbol[j], &newobj);
c906108c 4323
fe978cb0 4324 SYMBOL_TYPE (sym) = (struct type *) newobj;
c906108c
SS
4325
4326 /* Should we be putting local_symbols back to what it was?
4327 Does it matter? */
4328
987012b8 4329 i = hashname (sym->linkage_name ());
c906108c
SS
4330 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4331 global_sym_chain[i] = sym;
4332 common_block_name = NULL;
4333}
4334
4335/* Add a common block's start address to the offset of each symbol
4336 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4337 the common block name). */
4338
4339static void
46cb6474 4340fix_common_block (struct symbol *sym, CORE_ADDR valu)
c906108c
SS
4341{
4342 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
433759f7 4343
c5aa993b 4344 for (; next; next = next->next)
c906108c 4345 {
aa1ee363 4346 int j;
433759f7 4347
c906108c 4348 for (j = next->nsyms - 1; j >= 0; j--)
38583298
TT
4349 SET_SYMBOL_VALUE_ADDRESS (next->symbol[j],
4350 SYMBOL_VALUE_ADDRESS (next->symbol[j])
4351 + valu);
c906108c
SS
4352 }
4353}
c5aa993b 4354\f
c906108c
SS
4355
4356
bf362611
JB
4357/* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4358 See add_undefined_type for more details. */
c906108c 4359
a7a48797 4360static void
bf362611
JB
4361add_undefined_type_noname (struct type *type, int typenums[2])
4362{
4363 struct nat nat;
4364
4365 nat.typenums[0] = typenums [0];
4366 nat.typenums[1] = typenums [1];
4367 nat.type = type;
4368
4369 if (noname_undefs_length == noname_undefs_allocated)
4370 {
4371 noname_undefs_allocated *= 2;
4372 noname_undefs = (struct nat *)
4373 xrealloc ((char *) noname_undefs,
4374 noname_undefs_allocated * sizeof (struct nat));
4375 }
4376 noname_undefs[noname_undefs_length++] = nat;
4377}
4378
4379/* Add TYPE to the UNDEF_TYPES vector.
4380 See add_undefined_type for more details. */
4381
4382static void
4383add_undefined_type_1 (struct type *type)
c906108c
SS
4384{
4385 if (undef_types_length == undef_types_allocated)
4386 {
4387 undef_types_allocated *= 2;
4388 undef_types = (struct type **)
4389 xrealloc ((char *) undef_types,
4390 undef_types_allocated * sizeof (struct type *));
4391 }
4392 undef_types[undef_types_length++] = type;
4393}
4394
bf362611
JB
4395/* What about types defined as forward references inside of a small lexical
4396 scope? */
4397/* Add a type to the list of undefined types to be checked through
4398 once this file has been read in.
4399
4400 In practice, we actually maintain two such lists: The first list
4401 (UNDEF_TYPES) is used for types whose name has been provided, and
4402 concerns forward references (eg 'xs' or 'xu' forward references);
4403 the second list (NONAME_UNDEFS) is used for types whose name is
4404 unknown at creation time, because they were referenced through
4405 their type number before the actual type was declared.
4406 This function actually adds the given type to the proper list. */
4407
4408static void
4409add_undefined_type (struct type *type, int typenums[2])
4410{
7d93a1e0 4411 if (type->name () == NULL)
bf362611
JB
4412 add_undefined_type_noname (type, typenums);
4413 else
4414 add_undefined_type_1 (type);
4415}
4416
4417/* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4418
2c0b251b 4419static void
46bf5051 4420cleanup_undefined_types_noname (struct objfile *objfile)
bf362611
JB
4421{
4422 int i;
4423
4424 for (i = 0; i < noname_undefs_length; i++)
4425 {
4426 struct nat nat = noname_undefs[i];
4427 struct type **type;
4428
46bf5051 4429 type = dbx_lookup_type (nat.typenums, objfile);
78134374 4430 if (nat.type != *type && (*type)->code () != TYPE_CODE_UNDEF)
56953f80
JB
4431 {
4432 /* The instance flags of the undefined type are still unset,
4433 and needs to be copied over from the reference type.
4434 Since replace_type expects them to be identical, we need
4435 to set these flags manually before hand. */
4436 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4437 replace_type (nat.type, *type);
4438 }
bf362611
JB
4439 }
4440
4441 noname_undefs_length = 0;
4442}
4443
c906108c
SS
4444/* Go through each undefined type, see if it's still undefined, and fix it
4445 up if possible. We have two kinds of undefined types:
4446
4447 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
c5aa993b
JM
4448 Fix: update array length using the element bounds
4449 and the target type's length.
c906108c 4450 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
c5aa993b
JM
4451 yet defined at the time a pointer to it was made.
4452 Fix: Do a full lookup on the struct/union tag. */
bf362611 4453
2c0b251b 4454static void
bf362611 4455cleanup_undefined_types_1 (void)
c906108c
SS
4456{
4457 struct type **type;
4458
9e386756
JB
4459 /* Iterate over every undefined type, and look for a symbol whose type
4460 matches our undefined type. The symbol matches if:
4461 1. It is a typedef in the STRUCT domain;
4462 2. It has the same name, and same type code;
4463 3. The instance flags are identical.
4464
4465 It is important to check the instance flags, because we have seen
4466 examples where the debug info contained definitions such as:
4467
4468 "foo_t:t30=B31=xefoo_t:"
4469
4470 In this case, we have created an undefined type named "foo_t" whose
4471 instance flags is null (when processing "xefoo_t"), and then created
4472 another type with the same name, but with different instance flags
4473 ('B' means volatile). I think that the definition above is wrong,
4474 since the same type cannot be volatile and non-volatile at the same
4475 time, but we need to be able to cope with it when it happens. The
4476 approach taken here is to treat these two types as different. */
4477
c906108c
SS
4478 for (type = undef_types; type < undef_types + undef_types_length; type++)
4479 {
78134374 4480 switch ((*type)->code ())
c906108c
SS
4481 {
4482
c5aa993b
JM
4483 case TYPE_CODE_STRUCT:
4484 case TYPE_CODE_UNION:
4485 case TYPE_CODE_ENUM:
c906108c
SS
4486 {
4487 /* Check if it has been defined since. Need to do this here
4488 as well as in check_typedef to deal with the (legitimate in
4489 C though not C++) case of several types with the same name
4490 in different source files. */
74a9bb82 4491 if (TYPE_STUB (*type))
c906108c
SS
4492 {
4493 struct pending *ppt;
4494 int i;
c378eb4e 4495 /* Name of the type, without "struct" or "union". */
7d93a1e0 4496 const char *type_name = (*type)->name ();
c906108c 4497
fe978cb0 4498 if (type_name == NULL)
c906108c 4499 {
b98664d3 4500 complaint (_("need a type name"));
c906108c
SS
4501 break;
4502 }
e148f09d 4503 for (ppt = *get_file_symbols (); ppt; ppt = ppt->next)
c906108c
SS
4504 {
4505 for (i = 0; i < ppt->nsyms; i++)
4506 {
4507 struct symbol *sym = ppt->symbol[i];
c5aa993b 4508
c906108c 4509 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
176620f1 4510 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
78134374
SM
4511 && (SYMBOL_TYPE (sym)->code () ==
4512 (*type)->code ())
9e386756
JB
4513 && (TYPE_INSTANCE_FLAGS (*type) ==
4514 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
987012b8 4515 && strcmp (sym->linkage_name (), type_name) == 0)
13a393b0 4516 replace_type (*type, SYMBOL_TYPE (sym));
c906108c
SS
4517 }
4518 }
4519 }
4520 }
4521 break;
4522
4523 default:
4524 {
b98664d3 4525 complaint (_("forward-referenced types left unresolved, "
e2e0b3e5 4526 "type code %d."),
78134374 4527 (*type)->code ());
c906108c
SS
4528 }
4529 break;
4530 }
4531 }
4532
4533 undef_types_length = 0;
4534}
4535
30baf67b 4536/* Try to fix all the undefined types we encountered while processing
bf362611
JB
4537 this unit. */
4538
4539void
0a0edcd5 4540cleanup_undefined_stabs_types (struct objfile *objfile)
bf362611
JB
4541{
4542 cleanup_undefined_types_1 ();
46bf5051 4543 cleanup_undefined_types_noname (objfile);
bf362611
JB
4544}
4545
77d6f1aa 4546/* See stabsread.h. */
c906108c
SS
4547
4548void
fba45db2 4549scan_file_globals (struct objfile *objfile)
c906108c
SS
4550{
4551 int hash;
507836c0 4552 struct symbol *sym, *prev;
c906108c
SS
4553 struct objfile *resolve_objfile;
4554
4555 /* SVR4 based linkers copy referenced global symbols from shared
4556 libraries to the main executable.
4557 If we are scanning the symbols for a shared library, try to resolve
4558 them from the minimal symbols of the main executable first. */
4559
4560 if (symfile_objfile && objfile != symfile_objfile)
4561 resolve_objfile = symfile_objfile;
4562 else
4563 resolve_objfile = objfile;
4564
4565 while (1)
4566 {
4567 /* Avoid expensive loop through all minimal symbols if there are
c5aa993b 4568 no unresolved symbols. */
c906108c
SS
4569 for (hash = 0; hash < HASHSIZE; hash++)
4570 {
4571 if (global_sym_chain[hash])
4572 break;
4573 }
4574 if (hash >= HASHSIZE)
4575 return;
4576
7932255d 4577 for (minimal_symbol *msymbol : resolve_objfile->msymbols ())
c906108c
SS
4578 {
4579 QUIT;
4580
4581 /* Skip static symbols. */
4582 switch (MSYMBOL_TYPE (msymbol))
4583 {
4584 case mst_file_text:
4585 case mst_file_data:
4586 case mst_file_bss:
4587 continue;
4588 default:
4589 break;
4590 }
4591
4592 prev = NULL;
4593
4594 /* Get the hash index and check all the symbols
c378eb4e 4595 under that hash index. */
c906108c 4596
c9d95fa3 4597 hash = hashname (msymbol->linkage_name ());
c906108c
SS
4598
4599 for (sym = global_sym_chain[hash]; sym;)
4600 {
987012b8 4601 if (strcmp (msymbol->linkage_name (), sym->linkage_name ()) == 0)
c906108c 4602 {
c906108c 4603 /* Splice this symbol out of the hash chain and
c378eb4e 4604 assign the value we have to it. */
c906108c
SS
4605 if (prev)
4606 {
4607 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4608 }
4609 else
4610 {
4611 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4612 }
c5aa993b 4613
c906108c
SS
4614 /* Check to see whether we need to fix up a common block. */
4615 /* Note: this code might be executed several times for
4616 the same symbol if there are multiple references. */
507836c0 4617 if (sym)
c906108c 4618 {
507836c0 4619 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
c906108c 4620 {
507836c0 4621 fix_common_block (sym,
77e371c0
TT
4622 MSYMBOL_VALUE_ADDRESS (resolve_objfile,
4623 msymbol));
c906108c
SS
4624 }
4625 else
4626 {
38583298
TT
4627 SET_SYMBOL_VALUE_ADDRESS
4628 (sym, MSYMBOL_VALUE_ADDRESS (resolve_objfile,
4629 msymbol));
c906108c 4630 }
efd66ac6 4631 SYMBOL_SECTION (sym) = MSYMBOL_SECTION (msymbol);
c906108c
SS
4632 }
4633
c906108c
SS
4634 if (prev)
4635 {
4636 sym = SYMBOL_VALUE_CHAIN (prev);
4637 }
4638 else
4639 {
4640 sym = global_sym_chain[hash];
4641 }
4642 }
4643 else
4644 {
4645 prev = sym;
4646 sym = SYMBOL_VALUE_CHAIN (sym);
4647 }
4648 }
4649 }
4650 if (resolve_objfile == objfile)
4651 break;
4652 resolve_objfile = objfile;
4653 }
4654
4655 /* Change the storage class of any remaining unresolved globals to
4656 LOC_UNRESOLVED and remove them from the chain. */
4657 for (hash = 0; hash < HASHSIZE; hash++)
4658 {
4659 sym = global_sym_chain[hash];
4660 while (sym)
4661 {
4662 prev = sym;
4663 sym = SYMBOL_VALUE_CHAIN (sym);
4664
4665 /* Change the symbol address from the misleading chain value
4666 to address zero. */
38583298 4667 SET_SYMBOL_VALUE_ADDRESS (prev, 0);
c906108c
SS
4668
4669 /* Complain about unresolved common block symbols. */
4670 if (SYMBOL_CLASS (prev) == LOC_STATIC)
f1e6e072 4671 SYMBOL_ACLASS_INDEX (prev) = LOC_UNRESOLVED;
c906108c 4672 else
b98664d3 4673 complaint (_("%s: common block `%s' from "
3e43a32a 4674 "global_sym_chain unresolved"),
987012b8 4675 objfile_name (objfile), prev->print_name ());
c906108c
SS
4676 }
4677 }
4678 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4679}
4680
4681/* Initialize anything that needs initializing when starting to read
4682 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4683 to a psymtab. */
4684
4685void
fba45db2 4686stabsread_init (void)
c906108c
SS
4687{
4688}
4689
4690/* Initialize anything that needs initializing when a completely new
4691 symbol file is specified (not just adding some symbols from another
4692 file, e.g. a shared library). */
4693
4694void
fba45db2 4695stabsread_new_init (void)
c906108c
SS
4696{
4697 /* Empty the hash table of global syms looking for values. */
4698 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4699}
4700
4701/* Initialize anything that needs initializing at the same time as
c378eb4e 4702 start_symtab() is called. */
c906108c 4703
c5aa993b 4704void
fba45db2 4705start_stabs (void)
c906108c
SS
4706{
4707 global_stabs = NULL; /* AIX COFF */
4708 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4709 n_this_object_header_files = 1;
4710 type_vector_length = 0;
4711 type_vector = (struct type **) 0;
5985ac61 4712 within_function = 0;
c906108c
SS
4713
4714 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4715 common_block_name = NULL;
c906108c
SS
4716}
4717
c378eb4e 4718/* Call after end_symtab(). */
c906108c 4719
c5aa993b 4720void
fba45db2 4721end_stabs (void)
c906108c
SS
4722{
4723 if (type_vector)
4724 {
b8c9b27d 4725 xfree (type_vector);
c906108c
SS
4726 }
4727 type_vector = 0;
4728 type_vector_length = 0;
4729 previous_stab_code = 0;
4730}
4731
4732void
fba45db2 4733finish_global_stabs (struct objfile *objfile)
c906108c
SS
4734{
4735 if (global_stabs)
4736 {
e148f09d 4737 patch_block_stabs (*get_global_symbols (), global_stabs, objfile);
b8c9b27d 4738 xfree (global_stabs);
c906108c
SS
4739 global_stabs = NULL;
4740 }
4741}
4742
7e1d63ec
AF
4743/* Find the end of the name, delimited by a ':', but don't match
4744 ObjC symbols which look like -[Foo bar::]:bla. */
a121b7c1
PA
4745static const char *
4746find_name_end (const char *name)
7e1d63ec 4747{
a121b7c1 4748 const char *s = name;
433759f7 4749
7e1d63ec
AF
4750 if (s[0] == '-' || *s == '+')
4751 {
4752 /* Must be an ObjC method symbol. */
4753 if (s[1] != '[')
4754 {
8a3fe4f8 4755 error (_("invalid symbol name \"%s\""), name);
7e1d63ec
AF
4756 }
4757 s = strchr (s, ']');
4758 if (s == NULL)
4759 {
8a3fe4f8 4760 error (_("invalid symbol name \"%s\""), name);
7e1d63ec
AF
4761 }
4762 return strchr (s, ':');
4763 }
4764 else
4765 {
4766 return strchr (s, ':');
4767 }
4768}
4769
2150c3ef
TT
4770/* See stabsread.h. */
4771
4772int
4773hashname (const char *name)
4774{
4cbd39b2 4775 return fast_hash (name, strlen (name)) % HASHSIZE;
2150c3ef
TT
4776}
4777
c378eb4e 4778/* Initializer for this module. */
c906108c 4779
6c265988 4780void _initialize_stabsread ();
c906108c 4781void
6c265988 4782_initialize_stabsread ()
c906108c
SS
4783{
4784 undef_types_allocated = 20;
4785 undef_types_length = 0;
8d749320 4786 undef_types = XNEWVEC (struct type *, undef_types_allocated);
bf362611
JB
4787
4788 noname_undefs_allocated = 20;
4789 noname_undefs_length = 0;
8d749320 4790 noname_undefs = XNEWVEC (struct nat, noname_undefs_allocated);
f1e6e072
TT
4791
4792 stab_register_index = register_symbol_register_impl (LOC_REGISTER,
4793 &stab_register_funcs);
4794 stab_regparm_index = register_symbol_register_impl (LOC_REGPARM_ADDR,
4795 &stab_register_funcs);
c906108c 4796}
This page took 2.814551 seconds and 4 git commands to generate.