2010-05-16 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / gdb / stabsread.c
CommitLineData
c906108c 1/* Support routines for decoding "stabs" debugging information format.
cf5b2f1b 2
6aba47ca 3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
9b254dd1 4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
4c38e0a4 5 2008, 2009, 2010 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22/* Support routines for reading and decoding debugging information in
23 the "stabs" format. This format is used with many systems that use
24 the a.out object file format, as well as some systems that use
25 COFF or ELF where the stabs data is placed in a special section.
26 Avoid placing any object file format specific code in this file. */
27
28#include "defs.h"
29#include "gdb_string.h"
30#include "bfd.h"
04ea0df1 31#include "gdb_obstack.h"
c906108c
SS
32#include "symtab.h"
33#include "gdbtypes.h"
34#include "expression.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
38#include "libaout.h"
39#include "aout/aout64.h"
40#include "gdb-stabs.h"
41#include "buildsym.h"
42#include "complaints.h"
43#include "demangle.h"
44#include "language.h"
d16aafd8 45#include "doublest.h"
de17c821
DJ
46#include "cp-abi.h"
47#include "cp-support.h"
8fb822e0 48#include "gdb_assert.h"
c906108c
SS
49
50#include <ctype.h>
51
52/* Ask stabsread.h to define the vars it normally declares `extern'. */
c5aa993b
JM
53#define EXTERN
54/**/
c906108c
SS
55#include "stabsread.h" /* Our own declarations */
56#undef EXTERN
57
a14ed312 58extern void _initialize_stabsread (void);
392a587b 59
c906108c
SS
60/* The routines that read and process a complete stabs for a C struct or
61 C++ class pass lists of data member fields and lists of member function
62 fields in an instance of a field_info structure, as defined below.
63 This is part of some reorganization of low level C++ support and is
64 expected to eventually go away... (FIXME) */
65
66struct field_info
c5aa993b
JM
67 {
68 struct nextfield
69 {
70 struct nextfield *next;
c906108c 71
c5aa993b
JM
72 /* This is the raw visibility from the stab. It is not checked
73 for being one of the visibilities we recognize, so code which
74 examines this field better be able to deal. */
75 int visibility;
c906108c 76
c5aa993b
JM
77 struct field field;
78 }
79 *list;
80 struct next_fnfieldlist
81 {
82 struct next_fnfieldlist *next;
83 struct fn_fieldlist fn_fieldlist;
84 }
85 *fnlist;
86 };
c906108c
SS
87
88static void
a14ed312
KB
89read_one_struct_field (struct field_info *, char **, char *,
90 struct type *, struct objfile *);
c906108c 91
a14ed312 92static struct type *dbx_alloc_type (int[2], struct objfile *);
c906108c 93
94e10a22 94static long read_huge_number (char **, int, int *, int);
c906108c 95
a14ed312 96static struct type *error_type (char **, struct objfile *);
c906108c
SS
97
98static void
a14ed312
KB
99patch_block_stabs (struct pending *, struct pending_stabs *,
100 struct objfile *);
c906108c 101
a14ed312 102static void fix_common_block (struct symbol *, int);
c906108c 103
a14ed312 104static int read_type_number (char **, int *);
c906108c 105
a7a48797
EZ
106static struct type *read_type (char **, struct objfile *);
107
94e10a22 108static struct type *read_range_type (char **, int[2], int, struct objfile *);
c906108c 109
a14ed312 110static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
c906108c 111
a14ed312
KB
112static struct type *read_sun_floating_type (char **, int[2],
113 struct objfile *);
c906108c 114
a14ed312 115static struct type *read_enum_type (char **, struct type *, struct objfile *);
c906108c 116
46bf5051 117static struct type *rs6000_builtin_type (int, struct objfile *);
c906108c
SS
118
119static int
a14ed312
KB
120read_member_functions (struct field_info *, char **, struct type *,
121 struct objfile *);
c906108c
SS
122
123static int
a14ed312
KB
124read_struct_fields (struct field_info *, char **, struct type *,
125 struct objfile *);
c906108c
SS
126
127static int
a14ed312
KB
128read_baseclasses (struct field_info *, char **, struct type *,
129 struct objfile *);
c906108c
SS
130
131static int
a14ed312
KB
132read_tilde_fields (struct field_info *, char **, struct type *,
133 struct objfile *);
c906108c 134
a14ed312 135static int attach_fn_fields_to_type (struct field_info *, struct type *);
c906108c 136
570b8f7c
AC
137static int attach_fields_to_type (struct field_info *, struct type *,
138 struct objfile *);
c906108c 139
a14ed312 140static struct type *read_struct_type (char **, struct type *,
2ae1c2d2 141 enum type_code,
a14ed312 142 struct objfile *);
c906108c 143
a14ed312
KB
144static struct type *read_array_type (char **, struct type *,
145 struct objfile *);
c906108c 146
ad2f7632 147static struct field *read_args (char **, int, struct objfile *, int *, int *);
c906108c 148
bf362611 149static void add_undefined_type (struct type *, int[2]);
a7a48797 150
c906108c 151static int
a14ed312
KB
152read_cpp_abbrev (struct field_info *, char **, struct type *,
153 struct objfile *);
c906108c 154
7e1d63ec
AF
155static char *find_name_end (char *name);
156
a14ed312 157static int process_reference (char **string);
c906108c 158
a14ed312 159void stabsread_clear_cache (void);
7be570e7 160
8343f86c
DJ
161static const char vptr_name[] = "_vptr$";
162static const char vb_name[] = "_vb$";
c906108c 163
23136709
KB
164static void
165invalid_cpp_abbrev_complaint (const char *arg1)
166{
e2e0b3e5 167 complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
23136709 168}
c906108c 169
23136709 170static void
49b0b195 171reg_value_complaint (int regnum, int num_regs, const char *sym)
23136709
KB
172{
173 complaint (&symfile_complaints,
e2e0b3e5 174 _("register number %d too large (max %d) in symbol %s"),
49b0b195 175 regnum, num_regs - 1, sym);
23136709 176}
c906108c 177
23136709
KB
178static void
179stabs_general_complaint (const char *arg1)
180{
181 complaint (&symfile_complaints, "%s", arg1);
182}
c906108c 183
c906108c
SS
184/* Make a list of forward references which haven't been defined. */
185
186static struct type **undef_types;
187static int undef_types_allocated;
188static int undef_types_length;
189static struct symbol *current_symbol = NULL;
190
bf362611
JB
191/* Make a list of nameless types that are undefined.
192 This happens when another type is referenced by its number
193 before this type is actually defined. For instance "t(0,1)=k(0,2)"
194 and type (0,2) is defined only later. */
195
196struct nat
197{
198 int typenums[2];
199 struct type *type;
200};
201static struct nat *noname_undefs;
202static int noname_undefs_allocated;
203static int noname_undefs_length;
204
c906108c
SS
205/* Check for and handle cretinous stabs symbol name continuation! */
206#define STABS_CONTINUE(pp,objfile) \
207 do { \
208 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
209 *(pp) = next_symbol_text (objfile); \
210 } while (0)
211\f
c906108c
SS
212
213/* Look up a dbx type-number pair. Return the address of the slot
214 where the type for that number-pair is stored.
215 The number-pair is in TYPENUMS.
216
217 This can be used for finding the type associated with that pair
218 or for associating a new type with the pair. */
219
a7a48797 220static struct type **
46bf5051 221dbx_lookup_type (int typenums[2], struct objfile *objfile)
c906108c 222{
52f0bd74
AC
223 int filenum = typenums[0];
224 int index = typenums[1];
c906108c 225 unsigned old_len;
52f0bd74
AC
226 int real_filenum;
227 struct header_file *f;
c906108c
SS
228 int f_orig_length;
229
230 if (filenum == -1) /* -1,-1 is for temporary types. */
231 return 0;
232
233 if (filenum < 0 || filenum >= n_this_object_header_files)
234 {
23136709 235 complaint (&symfile_complaints,
e2e0b3e5 236 _("Invalid symbol data: type number (%d,%d) out of range at symtab pos %d."),
23136709 237 filenum, index, symnum);
c906108c
SS
238 goto error_return;
239 }
240
241 if (filenum == 0)
242 {
243 if (index < 0)
244 {
245 /* Caller wants address of address of type. We think
246 that negative (rs6k builtin) types will never appear as
247 "lvalues", (nor should they), so we stuff the real type
248 pointer into a temp, and return its address. If referenced,
249 this will do the right thing. */
250 static struct type *temp_type;
251
46bf5051 252 temp_type = rs6000_builtin_type (index, objfile);
c906108c
SS
253 return &temp_type;
254 }
255
256 /* Type is defined outside of header files.
c5aa993b 257 Find it in this object file's type vector. */
c906108c
SS
258 if (index >= type_vector_length)
259 {
260 old_len = type_vector_length;
261 if (old_len == 0)
262 {
263 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
264 type_vector = (struct type **)
265 xmalloc (type_vector_length * sizeof (struct type *));
266 }
267 while (index >= type_vector_length)
268 {
269 type_vector_length *= 2;
270 }
271 type_vector = (struct type **)
272 xrealloc ((char *) type_vector,
273 (type_vector_length * sizeof (struct type *)));
274 memset (&type_vector[old_len], 0,
275 (type_vector_length - old_len) * sizeof (struct type *));
c906108c
SS
276 }
277 return (&type_vector[index]);
278 }
279 else
280 {
281 real_filenum = this_object_header_files[filenum];
282
46bf5051 283 if (real_filenum >= N_HEADER_FILES (objfile))
c906108c 284 {
46bf5051 285 static struct type *temp_type;
c906108c 286
8a3fe4f8 287 warning (_("GDB internal error: bad real_filenum"));
c906108c
SS
288
289 error_return:
46bf5051
UW
290 temp_type = objfile_type (objfile)->builtin_error;
291 return &temp_type;
c906108c
SS
292 }
293
46bf5051 294 f = HEADER_FILES (objfile) + real_filenum;
c906108c
SS
295
296 f_orig_length = f->length;
297 if (index >= f_orig_length)
298 {
299 while (index >= f->length)
300 {
301 f->length *= 2;
302 }
303 f->vector = (struct type **)
304 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
305 memset (&f->vector[f_orig_length], 0,
306 (f->length - f_orig_length) * sizeof (struct type *));
307 }
308 return (&f->vector[index]);
309 }
310}
311
312/* Make sure there is a type allocated for type numbers TYPENUMS
313 and return the type object.
314 This can create an empty (zeroed) type object.
315 TYPENUMS may be (-1, -1) to return a new type object that is not
316 put into the type vector, and so may not be referred to by number. */
317
318static struct type *
35a2f538 319dbx_alloc_type (int typenums[2], struct objfile *objfile)
c906108c 320{
52f0bd74 321 struct type **type_addr;
c906108c
SS
322
323 if (typenums[0] == -1)
324 {
325 return (alloc_type (objfile));
326 }
327
46bf5051 328 type_addr = dbx_lookup_type (typenums, objfile);
c906108c
SS
329
330 /* If we are referring to a type not known at all yet,
331 allocate an empty type for it.
332 We will fill it in later if we find out how. */
333 if (*type_addr == 0)
334 {
335 *type_addr = alloc_type (objfile);
336 }
337
338 return (*type_addr);
339}
340
341/* for all the stabs in a given stab vector, build appropriate types
342 and fix their symbols in given symbol vector. */
343
344static void
fba45db2
KB
345patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
346 struct objfile *objfile)
c906108c
SS
347{
348 int ii;
349 char *name;
350 char *pp;
351 struct symbol *sym;
352
353 if (stabs)
354 {
c5aa993b 355
c906108c 356 /* for all the stab entries, find their corresponding symbols and
c5aa993b
JM
357 patch their types! */
358
c906108c
SS
359 for (ii = 0; ii < stabs->count; ++ii)
360 {
361 name = stabs->stab[ii];
c5aa993b 362 pp = (char *) strchr (name, ':');
8fb822e0 363 gdb_assert (pp); /* Must find a ':' or game's over. */
c906108c
SS
364 while (pp[1] == ':')
365 {
c5aa993b
JM
366 pp += 2;
367 pp = (char *) strchr (pp, ':');
c906108c 368 }
c5aa993b 369 sym = find_symbol_in_list (symbols, name, pp - name);
c906108c
SS
370 if (!sym)
371 {
372 /* FIXME-maybe: it would be nice if we noticed whether
c5aa993b
JM
373 the variable was defined *anywhere*, not just whether
374 it is defined in this compilation unit. But neither
375 xlc or GCC seem to need such a definition, and until
376 we do psymtabs (so that the minimal symbols from all
377 compilation units are available now), I'm not sure
378 how to get the information. */
c906108c
SS
379
380 /* On xcoff, if a global is defined and never referenced,
c5aa993b
JM
381 ld will remove it from the executable. There is then
382 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
c906108c 383 sym = (struct symbol *)
4a146b47 384 obstack_alloc (&objfile->objfile_obstack,
c906108c
SS
385 sizeof (struct symbol));
386
387 memset (sym, 0, sizeof (struct symbol));
176620f1 388 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c 389 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
3567439c
DJ
390 SYMBOL_SET_LINKAGE_NAME
391 (sym, obsavestring (name, pp - name,
392 &objfile->objfile_obstack));
c906108c 393 pp += 2;
c5aa993b 394 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
c906108c
SS
395 {
396 /* I don't think the linker does this with functions,
397 so as far as I know this is never executed.
398 But it doesn't hurt to check. */
399 SYMBOL_TYPE (sym) =
400 lookup_function_type (read_type (&pp, objfile));
401 }
402 else
403 {
404 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
405 }
406 add_symbol_to_list (sym, &global_symbols);
407 }
408 else
409 {
410 pp += 2;
c5aa993b 411 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
c906108c
SS
412 {
413 SYMBOL_TYPE (sym) =
414 lookup_function_type (read_type (&pp, objfile));
415 }
416 else
417 {
418 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
419 }
420 }
421 }
422 }
423}
c906108c 424\f
c5aa993b 425
c906108c
SS
426/* Read a number by which a type is referred to in dbx data,
427 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
428 Just a single number N is equivalent to (0,N).
429 Return the two numbers by storing them in the vector TYPENUMS.
430 TYPENUMS will then be used as an argument to dbx_lookup_type.
431
432 Returns 0 for success, -1 for error. */
433
434static int
aa1ee363 435read_type_number (char **pp, int *typenums)
c906108c
SS
436{
437 int nbits;
438 if (**pp == '(')
439 {
440 (*pp)++;
94e10a22 441 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
c5aa993b
JM
442 if (nbits != 0)
443 return -1;
94e10a22 444 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
c5aa993b
JM
445 if (nbits != 0)
446 return -1;
c906108c
SS
447 }
448 else
449 {
450 typenums[0] = 0;
94e10a22 451 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
c5aa993b
JM
452 if (nbits != 0)
453 return -1;
c906108c
SS
454 }
455 return 0;
456}
c906108c 457\f
c5aa993b 458
c906108c
SS
459#define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
460#define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
461#define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
462#define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
463
c906108c
SS
464/* Structure for storing pointers to reference definitions for fast lookup
465 during "process_later". */
466
467struct ref_map
468{
469 char *stabs;
470 CORE_ADDR value;
471 struct symbol *sym;
472};
473
474#define MAX_CHUNK_REFS 100
475#define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
476#define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
477
c5aa993b 478static struct ref_map *ref_map;
c906108c
SS
479
480/* Ptr to free cell in chunk's linked list. */
c5aa993b 481static int ref_count = 0;
c906108c
SS
482
483/* Number of chunks malloced. */
484static int ref_chunk = 0;
485
7be570e7
JM
486/* This file maintains a cache of stabs aliases found in the symbol
487 table. If the symbol table changes, this cache must be cleared
488 or we are left holding onto data in invalid obstacks. */
489void
fba45db2 490stabsread_clear_cache (void)
7be570e7
JM
491{
492 ref_count = 0;
493 ref_chunk = 0;
494}
495
c906108c
SS
496/* Create array of pointers mapping refids to symbols and stab strings.
497 Add pointers to reference definition symbols and/or their values as we
498 find them, using their reference numbers as our index.
499 These will be used later when we resolve references. */
500void
fba45db2 501ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
c906108c
SS
502{
503 if (ref_count == 0)
504 ref_chunk = 0;
505 if (refnum >= ref_count)
506 ref_count = refnum + 1;
507 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
508 {
c5aa993b 509 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
c906108c
SS
510 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
511 ref_map = (struct ref_map *)
512 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
513 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0, new_chunks * REF_CHUNK_SIZE);
514 ref_chunk += new_chunks;
515 }
516 ref_map[refnum].stabs = stabs;
517 ref_map[refnum].sym = sym;
518 ref_map[refnum].value = value;
519}
520
521/* Return defined sym for the reference REFNUM. */
522struct symbol *
fba45db2 523ref_search (int refnum)
c906108c
SS
524{
525 if (refnum < 0 || refnum > ref_count)
526 return 0;
527 return ref_map[refnum].sym;
528}
529
c906108c
SS
530/* Parse a reference id in STRING and return the resulting
531 reference number. Move STRING beyond the reference id. */
532
c5aa993b 533static int
fba45db2 534process_reference (char **string)
c906108c
SS
535{
536 char *p;
537 int refnum = 0;
538
c5aa993b
JM
539 if (**string != '#')
540 return 0;
541
c906108c
SS
542 /* Advance beyond the initial '#'. */
543 p = *string + 1;
544
545 /* Read number as reference id. */
546 while (*p && isdigit (*p))
547 {
548 refnum = refnum * 10 + *p - '0';
549 p++;
550 }
551 *string = p;
552 return refnum;
553}
554
555/* If STRING defines a reference, store away a pointer to the reference
556 definition for later use. Return the reference number. */
557
558int
fba45db2 559symbol_reference_defined (char **string)
c906108c
SS
560{
561 char *p = *string;
562 int refnum = 0;
563
564 refnum = process_reference (&p);
565
566 /* Defining symbols end in '=' */
c5aa993b 567 if (*p == '=')
c906108c 568 {
c5aa993b 569 /* Symbol is being defined here. */
c906108c
SS
570 *string = p + 1;
571 return refnum;
572 }
573 else
574 {
575 /* Must be a reference. Either the symbol has already been defined,
576 or this is a forward reference to it. */
577 *string = p;
578 return -1;
579 }
580}
581
768a979c
UW
582static int
583stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
584{
585 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
586
587 if (regno >= gdbarch_num_regs (gdbarch)
588 + gdbarch_num_pseudo_regs (gdbarch))
589 {
590 reg_value_complaint (regno,
591 gdbarch_num_regs (gdbarch)
592 + gdbarch_num_pseudo_regs (gdbarch),
593 SYMBOL_PRINT_NAME (sym));
594
595 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless */
596 }
597
598 return regno;
599}
600
601static const struct symbol_register_ops stab_register_funcs = {
602 stab_reg_to_regnum
603};
604
c906108c 605struct symbol *
fba45db2
KB
606define_symbol (CORE_ADDR valu, char *string, int desc, int type,
607 struct objfile *objfile)
c906108c 608{
5e2b427d 609 struct gdbarch *gdbarch = get_objfile_arch (objfile);
52f0bd74 610 struct symbol *sym;
7e1d63ec 611 char *p = (char *) find_name_end (string);
c906108c
SS
612 int deftype;
613 int synonym = 0;
52f0bd74 614 int i;
71c25dea 615 char *new_name = NULL;
c906108c
SS
616
617 /* We would like to eliminate nameless symbols, but keep their types.
618 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
619 to type 2, but, should not create a symbol to address that type. Since
620 the symbol will be nameless, there is no way any user can refer to it. */
621
622 int nameless;
623
624 /* Ignore syms with empty names. */
625 if (string[0] == 0)
626 return 0;
627
628 /* Ignore old-style symbols from cc -go */
629 if (p == 0)
630 return 0;
631
632 while (p[1] == ':')
633 {
c5aa993b
JM
634 p += 2;
635 p = strchr (p, ':');
c906108c
SS
636 }
637
638 /* If a nameless stab entry, all we need is the type, not the symbol.
639 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
640 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
641
c5aa993b 642 current_symbol = sym = (struct symbol *)
4a146b47 643 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
c906108c
SS
644 memset (sym, 0, sizeof (struct symbol));
645
646 switch (type & N_TYPE)
647 {
648 case N_TEXT:
b8fbeb18 649 SYMBOL_SECTION (sym) = SECT_OFF_TEXT (objfile);
c906108c
SS
650 break;
651 case N_DATA:
b8fbeb18 652 SYMBOL_SECTION (sym) = SECT_OFF_DATA (objfile);
c906108c
SS
653 break;
654 case N_BSS:
b8fbeb18 655 SYMBOL_SECTION (sym) = SECT_OFF_BSS (objfile);
c906108c
SS
656 break;
657 }
658
659 if (processing_gcc_compilation)
660 {
661 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
c5aa993b
JM
662 number of bytes occupied by a type or object, which we ignore. */
663 SYMBOL_LINE (sym) = desc;
c906108c
SS
664 }
665 else
666 {
c5aa993b 667 SYMBOL_LINE (sym) = 0; /* unknown */
c906108c
SS
668 }
669
670 if (is_cplus_marker (string[0]))
671 {
672 /* Special GNU C++ names. */
673 switch (string[1])
674 {
c5aa993b 675 case 't':
1c9e8358 676 SYMBOL_SET_LINKAGE_NAME (sym, "this");
c5aa993b 677 break;
c906108c 678
c5aa993b 679 case 'v': /* $vtbl_ptr_type */
c5aa993b 680 goto normal;
c906108c 681
c5aa993b 682 case 'e':
1c9e8358 683 SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
c5aa993b 684 break;
c906108c 685
c5aa993b
JM
686 case '_':
687 /* This was an anonymous type that was never fixed up. */
688 goto normal;
c906108c 689
c5aa993b
JM
690 case 'X':
691 /* SunPRO (3.0 at least) static variable encoding. */
5e2b427d 692 if (gdbarch_static_transform_name_p (gdbarch))
149ad273
UW
693 goto normal;
694 /* ... fall through ... */
c906108c 695
c5aa993b 696 default:
e2e0b3e5 697 complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
23136709 698 string);
c5aa993b 699 goto normal; /* Do *something* with it */
c906108c
SS
700 }
701 }
c906108c
SS
702 else
703 {
704 normal:
c5aa993b 705 SYMBOL_LANGUAGE (sym) = current_subfile->language;
df8a16a1 706 if (SYMBOL_LANGUAGE (sym) == language_cplus)
71c25dea
TT
707 {
708 char *name = alloca (p - string + 1);
709 memcpy (name, string, p - string);
710 name[p - string] = '\0';
711 new_name = cp_canonicalize_string (name);
712 cp_scan_for_anonymous_namespaces (sym);
713 }
714 if (new_name != NULL)
715 {
04a679b8 716 SYMBOL_SET_NAMES (sym, new_name, strlen (new_name), 1, objfile);
71c25dea
TT
717 xfree (new_name);
718 }
719 else
04a679b8 720 SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
c906108c
SS
721 }
722 p++;
723
724 /* Determine the type of name being defined. */
725#if 0
726 /* Getting GDB to correctly skip the symbol on an undefined symbol
727 descriptor and not ever dump core is a very dodgy proposition if
728 we do things this way. I say the acorn RISC machine can just
729 fix their compiler. */
730 /* The Acorn RISC machine's compiler can put out locals that don't
731 start with "234=" or "(3,4)=", so assume anything other than the
732 deftypes we know how to handle is a local. */
733 if (!strchr ("cfFGpPrStTvVXCR", *p))
734#else
735 if (isdigit (*p) || *p == '(' || *p == '-')
736#endif
737 deftype = 'l';
738 else
739 deftype = *p++;
740
741 switch (deftype)
742 {
743 case 'c':
744 /* c is a special case, not followed by a type-number.
c5aa993b
JM
745 SYMBOL:c=iVALUE for an integer constant symbol.
746 SYMBOL:c=rVALUE for a floating constant symbol.
747 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
748 e.g. "b:c=e6,0" for "const b = blob1"
749 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
c906108c
SS
750 if (*p != '=')
751 {
752 SYMBOL_CLASS (sym) = LOC_CONST;
753 SYMBOL_TYPE (sym) = error_type (&p, objfile);
176620f1 754 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
755 add_symbol_to_list (sym, &file_symbols);
756 return sym;
757 }
758 ++p;
759 switch (*p++)
760 {
761 case 'r':
762 {
763 double d = atof (p);
4e38b386 764 gdb_byte *dbl_valu;
6ccb9162 765 struct type *dbl_type;
c906108c
SS
766
767 /* FIXME-if-picky-about-floating-accuracy: Should be using
768 target arithmetic to get the value. real.c in GCC
769 probably has the necessary code. */
770
46bf5051 771 dbl_type = objfile_type (objfile)->builtin_double;
4e38b386 772 dbl_valu =
4a146b47 773 obstack_alloc (&objfile->objfile_obstack,
6ccb9162
UW
774 TYPE_LENGTH (dbl_type));
775 store_typed_floating (dbl_valu, dbl_type, d);
776
777 SYMBOL_TYPE (sym) = dbl_type;
c906108c
SS
778 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
779 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
780 }
781 break;
782 case 'i':
783 {
784 /* Defining integer constants this way is kind of silly,
785 since 'e' constants allows the compiler to give not
786 only the value, but the type as well. C has at least
787 int, long, unsigned int, and long long as constant
788 types; other languages probably should have at least
789 unsigned as well as signed constants. */
790
46bf5051 791 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
c906108c
SS
792 SYMBOL_VALUE (sym) = atoi (p);
793 SYMBOL_CLASS (sym) = LOC_CONST;
794 }
795 break;
ec8a089a
PM
796
797 case 'c':
798 {
799 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
800 SYMBOL_VALUE (sym) = atoi (p);
801 SYMBOL_CLASS (sym) = LOC_CONST;
802 }
803 break;
804
805 case 's':
806 {
807 struct type *range_type;
808 int ind = 0;
809 char quote = *p++;
ec8a089a
PM
810 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
811 gdb_byte *string_value;
812
813 if (quote != '\'' && quote != '"')
814 {
815 SYMBOL_CLASS (sym) = LOC_CONST;
816 SYMBOL_TYPE (sym) = error_type (&p, objfile);
817 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
818 add_symbol_to_list (sym, &file_symbols);
819 return sym;
820 }
821
822 /* Find matching quote, rejecting escaped quotes. */
823 while (*p && *p != quote)
824 {
825 if (*p == '\\' && p[1] == quote)
826 {
827 string_local[ind] = (gdb_byte) quote;
828 ind++;
829 p += 2;
830 }
831 else if (*p)
832 {
833 string_local[ind] = (gdb_byte) (*p);
834 ind++;
835 p++;
836 }
837 }
838 if (*p != quote)
839 {
840 SYMBOL_CLASS (sym) = LOC_CONST;
841 SYMBOL_TYPE (sym) = error_type (&p, objfile);
842 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
843 add_symbol_to_list (sym, &file_symbols);
844 return sym;
845 }
846
847 /* NULL terminate the string. */
848 string_local[ind] = 0;
849 range_type = create_range_type (NULL,
850 objfile_type (objfile)->builtin_int,
851 0, ind);
852 SYMBOL_TYPE (sym) = create_array_type (NULL,
853 objfile_type (objfile)->builtin_char,
854 range_type);
855 string_value = obstack_alloc (&objfile->objfile_obstack, ind + 1);
856 memcpy (string_value, string_local, ind + 1);
857 p++;
858
859 SYMBOL_VALUE_BYTES (sym) = string_value;
860 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
861 }
862 break;
863
c906108c
SS
864 case 'e':
865 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
866 can be represented as integral.
867 e.g. "b:c=e6,0" for "const b = blob1"
868 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
869 {
870 SYMBOL_CLASS (sym) = LOC_CONST;
871 SYMBOL_TYPE (sym) = read_type (&p, objfile);
872
873 if (*p != ',')
874 {
875 SYMBOL_TYPE (sym) = error_type (&p, objfile);
876 break;
877 }
878 ++p;
879
880 /* If the value is too big to fit in an int (perhaps because
881 it is unsigned), or something like that, we silently get
882 a bogus value. The type and everything else about it is
883 correct. Ideally, we should be using whatever we have
884 available for parsing unsigned and long long values,
885 however. */
886 SYMBOL_VALUE (sym) = atoi (p);
887 }
888 break;
889 default:
890 {
891 SYMBOL_CLASS (sym) = LOC_CONST;
892 SYMBOL_TYPE (sym) = error_type (&p, objfile);
893 }
894 }
176620f1 895 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
896 add_symbol_to_list (sym, &file_symbols);
897 return sym;
898
899 case 'C':
900 /* The name of a caught exception. */
901 SYMBOL_TYPE (sym) = read_type (&p, objfile);
902 SYMBOL_CLASS (sym) = LOC_LABEL;
176620f1 903 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
904 SYMBOL_VALUE_ADDRESS (sym) = valu;
905 add_symbol_to_list (sym, &local_symbols);
906 break;
907
908 case 'f':
909 /* A static function definition. */
910 SYMBOL_TYPE (sym) = read_type (&p, objfile);
911 SYMBOL_CLASS (sym) = LOC_BLOCK;
176620f1 912 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
913 add_symbol_to_list (sym, &file_symbols);
914 /* fall into process_function_types. */
915
916 process_function_types:
917 /* Function result types are described as the result type in stabs.
c5aa993b
JM
918 We need to convert this to the function-returning-type-X type
919 in GDB. E.g. "int" is converted to "function returning int". */
c906108c
SS
920 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
921 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
922
1e698235
DJ
923 /* All functions in C++ have prototypes. Stabs does not offer an
924 explicit way to identify prototyped or unprototyped functions,
925 but both GCC and Sun CC emit stabs for the "call-as" type rather
926 than the "declared-as" type for unprototyped functions, so
927 we treat all functions as if they were prototyped. This is used
928 primarily for promotion when calling the function from GDB. */
876cecd0 929 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
c906108c
SS
930
931 /* fall into process_prototype_types */
932
933 process_prototype_types:
934 /* Sun acc puts declared types of arguments here. */
935 if (*p == ';')
936 {
937 struct type *ftype = SYMBOL_TYPE (sym);
938 int nsemi = 0;
939 int nparams = 0;
940 char *p1 = p;
941
942 /* Obtain a worst case guess for the number of arguments
943 by counting the semicolons. */
944 while (*p1)
945 {
946 if (*p1++ == ';')
947 nsemi++;
948 }
949
950 /* Allocate parameter information fields and fill them in. */
951 TYPE_FIELDS (ftype) = (struct field *)
952 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
953 while (*p++ == ';')
954 {
955 struct type *ptype;
956
957 /* A type number of zero indicates the start of varargs.
c5aa993b 958 FIXME: GDB currently ignores vararg functions. */
c906108c
SS
959 if (p[0] == '0' && p[1] == '\0')
960 break;
961 ptype = read_type (&p, objfile);
962
963 /* The Sun compilers mark integer arguments, which should
c5aa993b
JM
964 be promoted to the width of the calling conventions, with
965 a type which references itself. This type is turned into
966 a TYPE_CODE_VOID type by read_type, and we have to turn
5e2b427d
UW
967 it back into builtin_int here.
968 FIXME: Do we need a new builtin_promoted_int_arg ? */
c906108c 969 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
46bf5051 970 ptype = objfile_type (objfile)->builtin_int;
8176bb6d
DJ
971 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
972 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
c906108c
SS
973 }
974 TYPE_NFIELDS (ftype) = nparams;
876cecd0 975 TYPE_PROTOTYPED (ftype) = 1;
c906108c
SS
976 }
977 break;
978
979 case 'F':
980 /* A global function definition. */
981 SYMBOL_TYPE (sym) = read_type (&p, objfile);
982 SYMBOL_CLASS (sym) = LOC_BLOCK;
176620f1 983 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
984 add_symbol_to_list (sym, &global_symbols);
985 goto process_function_types;
986
987 case 'G':
988 /* For a class G (global) symbol, it appears that the
c5aa993b
JM
989 value is not correct. It is necessary to search for the
990 corresponding linker definition to find the value.
991 These definitions appear at the end of the namelist. */
c906108c
SS
992 SYMBOL_TYPE (sym) = read_type (&p, objfile);
993 SYMBOL_CLASS (sym) = LOC_STATIC;
176620f1 994 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c 995 /* Don't add symbol references to global_sym_chain.
c5aa993b
JM
996 Symbol references don't have valid names and wont't match up with
997 minimal symbols when the global_sym_chain is relocated.
998 We'll fixup symbol references when we fixup the defining symbol. */
3567439c 999 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
c906108c 1000 {
3567439c 1001 i = hashname (SYMBOL_LINKAGE_NAME (sym));
c5aa993b
JM
1002 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1003 global_sym_chain[i] = sym;
c906108c
SS
1004 }
1005 add_symbol_to_list (sym, &global_symbols);
1006 break;
1007
1008 /* This case is faked by a conditional above,
c5aa993b
JM
1009 when there is no code letter in the dbx data.
1010 Dbx data never actually contains 'l'. */
c906108c
SS
1011 case 's':
1012 case 'l':
1013 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1014 SYMBOL_CLASS (sym) = LOC_LOCAL;
1015 SYMBOL_VALUE (sym) = valu;
176620f1 1016 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1017 add_symbol_to_list (sym, &local_symbols);
1018 break;
1019
1020 case 'p':
1021 if (*p == 'F')
1022 /* pF is a two-letter code that means a function parameter in Fortran.
1023 The type-number specifies the type of the return value.
1024 Translate it into a pointer-to-function type. */
1025 {
1026 p++;
1027 SYMBOL_TYPE (sym)
1028 = lookup_pointer_type
c5aa993b 1029 (lookup_function_type (read_type (&p, objfile)));
c906108c
SS
1030 }
1031 else
1032 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1033
7ca9f392 1034 SYMBOL_CLASS (sym) = LOC_ARG;
c906108c 1035 SYMBOL_VALUE (sym) = valu;
176620f1 1036 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
2a2d4dc3 1037 SYMBOL_IS_ARGUMENT (sym) = 1;
c906108c
SS
1038 add_symbol_to_list (sym, &local_symbols);
1039
5e2b427d 1040 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
c906108c
SS
1041 {
1042 /* On little-endian machines, this crud is never necessary,
1043 and, if the extra bytes contain garbage, is harmful. */
1044 break;
1045 }
1046
1047 /* If it's gcc-compiled, if it says `short', believe it. */
f73e88f9 1048 if (processing_gcc_compilation
5e2b427d 1049 || gdbarch_believe_pcc_promotion (gdbarch))
c906108c
SS
1050 break;
1051
5e2b427d 1052 if (!gdbarch_believe_pcc_promotion (gdbarch))
7a292a7a 1053 {
8ee56bcf
AC
1054 /* If PCC says a parameter is a short or a char, it is
1055 really an int. */
5e2b427d
UW
1056 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1057 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
8ee56bcf 1058 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
7a292a7a 1059 {
8ee56bcf
AC
1060 SYMBOL_TYPE (sym) =
1061 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
46bf5051
UW
1062 ? objfile_type (objfile)->builtin_unsigned_int
1063 : objfile_type (objfile)->builtin_int;
7a292a7a 1064 }
8ee56bcf 1065 break;
7a292a7a 1066 }
c906108c
SS
1067
1068 case 'P':
1069 /* acc seems to use P to declare the prototypes of functions that
1070 are referenced by this file. gdb is not prepared to deal
1071 with this extra information. FIXME, it ought to. */
1072 if (type == N_FUN)
1073 {
1074 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1075 goto process_prototype_types;
1076 }
c5aa993b 1077 /*FALLTHROUGH */
c906108c
SS
1078
1079 case 'R':
1080 /* Parameter which is in a register. */
1081 SYMBOL_TYPE (sym) = read_type (&p, objfile);
2a2d4dc3 1082 SYMBOL_CLASS (sym) = LOC_REGISTER;
768a979c 1083 SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
2a2d4dc3 1084 SYMBOL_IS_ARGUMENT (sym) = 1;
768a979c 1085 SYMBOL_VALUE (sym) = valu;
176620f1 1086 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1087 add_symbol_to_list (sym, &local_symbols);
1088 break;
1089
1090 case 'r':
1091 /* Register variable (either global or local). */
1092 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1093 SYMBOL_CLASS (sym) = LOC_REGISTER;
768a979c
UW
1094 SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
1095 SYMBOL_VALUE (sym) = valu;
176620f1 1096 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1097 if (within_function)
1098 {
192cb3d4
MK
1099 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1100 the same name to represent an argument passed in a
1101 register. GCC uses 'P' for the same case. So if we find
1102 such a symbol pair we combine it into one 'P' symbol.
1103 For Sun cc we need to do this regardless of
1104 stabs_argument_has_addr, because the compiler puts out
1105 the 'p' symbol even if it never saves the argument onto
1106 the stack.
1107
1108 On most machines, we want to preserve both symbols, so
1109 that we can still get information about what is going on
1110 with the stack (VAX for computing args_printed, using
1111 stack slots instead of saved registers in backtraces,
1112 etc.).
c906108c
SS
1113
1114 Note that this code illegally combines
c5aa993b 1115 main(argc) struct foo argc; { register struct foo argc; }
c906108c
SS
1116 but this case is considered pathological and causes a warning
1117 from a decent compiler. */
1118
1119 if (local_symbols
1120 && local_symbols->nsyms > 0
5e2b427d 1121 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
c906108c
SS
1122 {
1123 struct symbol *prev_sym;
1124 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1125 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1126 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
3567439c
DJ
1127 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1128 SYMBOL_LINKAGE_NAME (sym)) == 0)
c906108c 1129 {
2a2d4dc3 1130 SYMBOL_CLASS (prev_sym) = LOC_REGISTER;
768a979c 1131 SYMBOL_REGISTER_OPS (prev_sym) = &stab_register_funcs;
c906108c
SS
1132 /* Use the type from the LOC_REGISTER; that is the type
1133 that is actually in that register. */
1134 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1135 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1136 sym = prev_sym;
1137 break;
1138 }
1139 }
c5aa993b 1140 add_symbol_to_list (sym, &local_symbols);
c906108c
SS
1141 }
1142 else
c5aa993b 1143 add_symbol_to_list (sym, &file_symbols);
c906108c
SS
1144 break;
1145
1146 case 'S':
1147 /* Static symbol at top level of file */
1148 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1149 SYMBOL_CLASS (sym) = LOC_STATIC;
1150 SYMBOL_VALUE_ADDRESS (sym) = valu;
5e2b427d
UW
1151 if (gdbarch_static_transform_name_p (gdbarch)
1152 && gdbarch_static_transform_name (gdbarch,
3567439c
DJ
1153 SYMBOL_LINKAGE_NAME (sym))
1154 != SYMBOL_LINKAGE_NAME (sym))
c5aa993b
JM
1155 {
1156 struct minimal_symbol *msym;
3567439c 1157 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym), NULL, objfile);
c5aa993b
JM
1158 if (msym != NULL)
1159 {
3567439c
DJ
1160 char *new_name = gdbarch_static_transform_name
1161 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1162 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
c5aa993b
JM
1163 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1164 }
1165 }
176620f1 1166 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1167 add_symbol_to_list (sym, &file_symbols);
1168 break;
1169
1170 case 't':
52eea4ce
JB
1171 /* In Ada, there is no distinction between typedef and non-typedef;
1172 any type declaration implicitly has the equivalent of a typedef,
1173 and thus 't' is in fact equivalent to 'Tt'.
1174
1175 Therefore, for Ada units, we check the character immediately
1176 before the 't', and if we do not find a 'T', then make sure to
1177 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1178 will be stored in the VAR_DOMAIN). If the symbol was indeed
1179 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1180 elsewhere, so we don't need to take care of that.
1181
1182 This is important to do, because of forward references:
1183 The cleanup of undefined types stored in undef_types only uses
1184 STRUCT_DOMAIN symbols to perform the replacement. */
1185 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1186
e2cd42dd 1187 /* Typedef */
c906108c
SS
1188 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1189
1190 /* For a nameless type, we don't want a create a symbol, thus we
c5aa993b
JM
1191 did not use `sym'. Return without further processing. */
1192 if (nameless)
1193 return NULL;
c906108c
SS
1194
1195 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1196 SYMBOL_VALUE (sym) = valu;
176620f1 1197 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c 1198 /* C++ vagaries: we may have a type which is derived from
c5aa993b
JM
1199 a base type which did not have its name defined when the
1200 derived class was output. We fill in the derived class's
1201 base part member's name here in that case. */
c906108c
SS
1202 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1203 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1204 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1205 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1206 {
1207 int j;
1208 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1209 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1210 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1211 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1212 }
1213
1214 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1215 {
1216 /* gcc-2.6 or later (when using -fvtable-thunks)
1217 emits a unique named type for a vtable entry.
1218 Some gdb code depends on that specific name. */
1219 extern const char vtbl_ptr_name[];
1220
1221 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
3567439c 1222 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
c906108c
SS
1223 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1224 {
1225 /* If we are giving a name to a type such as "pointer to
c5aa993b
JM
1226 foo" or "function returning foo", we better not set
1227 the TYPE_NAME. If the program contains "typedef char
1228 *caddr_t;", we don't want all variables of type char
1229 * to print as caddr_t. This is not just a
1230 consequence of GDB's type management; PCC and GCC (at
1231 least through version 2.4) both output variables of
1232 either type char * or caddr_t with the type number
1233 defined in the 't' symbol for caddr_t. If a future
1234 compiler cleans this up it GDB is not ready for it
1235 yet, but if it becomes ready we somehow need to
1236 disable this check (without breaking the PCC/GCC2.4
1237 case).
1238
1239 Sigh.
1240
1241 Fortunately, this check seems not to be necessary
1242 for anything except pointers or functions. */
49d97c60
EZ
1243 /* ezannoni: 2000-10-26. This seems to apply for
1244 versions of gcc older than 2.8. This was the original
1245 problem: with the following code gdb would tell that
1246 the type for name1 is caddr_t, and func is char()
1247 typedef char *caddr_t;
1248 char *name2;
1249 struct x
1250 {
1251 char *name1;
1252 } xx;
1253 char *func()
1254 {
1255 }
1256 main () {}
1257 */
1258
1259 /* Pascal accepts names for pointer types. */
1260 if (current_subfile->language == language_pascal)
1261 {
3567439c 1262 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
49d97c60 1263 }
c906108c
SS
1264 }
1265 else
3567439c 1266 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
c906108c
SS
1267 }
1268
1269 add_symbol_to_list (sym, &file_symbols);
52eea4ce
JB
1270
1271 if (synonym)
1272 {
1273 /* Create the STRUCT_DOMAIN clone. */
1274 struct symbol *struct_sym = (struct symbol *)
1275 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1276
1277 *struct_sym = *sym;
1278 SYMBOL_CLASS (struct_sym) = LOC_TYPEDEF;
1279 SYMBOL_VALUE (struct_sym) = valu;
1280 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1281 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
48cb83fd
JK
1282 TYPE_NAME (SYMBOL_TYPE (sym)) = obconcat (&objfile->objfile_obstack,
1283 SYMBOL_LINKAGE_NAME (sym),
1284 (char *) NULL);
52eea4ce
JB
1285 add_symbol_to_list (struct_sym, &file_symbols);
1286 }
1287
c906108c
SS
1288 break;
1289
1290 case 'T':
1291 /* Struct, union, or enum tag. For GNU C++, this can be be followed
c5aa993b 1292 by 't' which means we are typedef'ing it as well. */
c906108c
SS
1293 synonym = *p == 't';
1294
1295 if (synonym)
1296 p++;
c906108c
SS
1297
1298 SYMBOL_TYPE (sym) = read_type (&p, objfile);
25caa7a8 1299
c906108c 1300 /* For a nameless type, we don't want a create a symbol, thus we
c5aa993b
JM
1301 did not use `sym'. Return without further processing. */
1302 if (nameless)
1303 return NULL;
c906108c
SS
1304
1305 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1306 SYMBOL_VALUE (sym) = valu;
176620f1 1307 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 1308 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
48cb83fd
JK
1309 TYPE_TAG_NAME (SYMBOL_TYPE (sym)) = obconcat (&objfile->objfile_obstack,
1310 SYMBOL_LINKAGE_NAME (sym),
1311 (char *) NULL);
c906108c
SS
1312 add_symbol_to_list (sym, &file_symbols);
1313
1314 if (synonym)
1315 {
1316 /* Clone the sym and then modify it. */
aa1ee363 1317 struct symbol *typedef_sym = (struct symbol *)
4a146b47 1318 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
c906108c
SS
1319 *typedef_sym = *sym;
1320 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
1321 SYMBOL_VALUE (typedef_sym) = valu;
176620f1 1322 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
c906108c 1323 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
48cb83fd
JK
1324 TYPE_NAME (SYMBOL_TYPE (sym)) = obconcat (&objfile->objfile_obstack,
1325 SYMBOL_LINKAGE_NAME (sym),
1326 (char *) NULL);
c906108c
SS
1327 add_symbol_to_list (typedef_sym, &file_symbols);
1328 }
1329 break;
1330
1331 case 'V':
1332 /* Static symbol of local scope */
1333 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1334 SYMBOL_CLASS (sym) = LOC_STATIC;
1335 SYMBOL_VALUE_ADDRESS (sym) = valu;
5e2b427d
UW
1336 if (gdbarch_static_transform_name_p (gdbarch)
1337 && gdbarch_static_transform_name (gdbarch,
3567439c
DJ
1338 SYMBOL_LINKAGE_NAME (sym))
1339 != SYMBOL_LINKAGE_NAME (sym))
c5aa993b
JM
1340 {
1341 struct minimal_symbol *msym;
3567439c 1342 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym), NULL, objfile);
c5aa993b
JM
1343 if (msym != NULL)
1344 {
3567439c
DJ
1345 char *new_name = gdbarch_static_transform_name
1346 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1347 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
c5aa993b
JM
1348 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1349 }
1350 }
176620f1 1351 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1352 add_symbol_to_list (sym, &local_symbols);
1353 break;
1354
1355 case 'v':
1356 /* Reference parameter */
1357 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1358 SYMBOL_CLASS (sym) = LOC_REF_ARG;
2a2d4dc3 1359 SYMBOL_IS_ARGUMENT (sym) = 1;
c906108c 1360 SYMBOL_VALUE (sym) = valu;
176620f1 1361 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1362 add_symbol_to_list (sym, &local_symbols);
1363 break;
1364
1365 case 'a':
1366 /* Reference parameter which is in a register. */
1367 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1368 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
768a979c 1369 SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
2a2d4dc3 1370 SYMBOL_IS_ARGUMENT (sym) = 1;
768a979c 1371 SYMBOL_VALUE (sym) = valu;
176620f1 1372 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1373 add_symbol_to_list (sym, &local_symbols);
1374 break;
1375
1376 case 'X':
1377 /* This is used by Sun FORTRAN for "function result value".
c5aa993b
JM
1378 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1379 that Pascal uses it too, but when I tried it Pascal used
1380 "x:3" (local symbol) instead. */
c906108c
SS
1381 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1382 SYMBOL_CLASS (sym) = LOC_LOCAL;
1383 SYMBOL_VALUE (sym) = valu;
176620f1 1384 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1385 add_symbol_to_list (sym, &local_symbols);
1386 break;
c906108c
SS
1387
1388 default:
1389 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1390 SYMBOL_CLASS (sym) = LOC_CONST;
1391 SYMBOL_VALUE (sym) = 0;
176620f1 1392 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1393 add_symbol_to_list (sym, &file_symbols);
1394 break;
1395 }
1396
192cb3d4
MK
1397 /* Some systems pass variables of certain types by reference instead
1398 of by value, i.e. they will pass the address of a structure (in a
1399 register or on the stack) instead of the structure itself. */
c906108c 1400
5e2b427d 1401 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
2a2d4dc3 1402 && SYMBOL_IS_ARGUMENT (sym))
c906108c 1403 {
2a2d4dc3 1404 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
192cb3d4 1405 variables passed in a register). */
2a2d4dc3 1406 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
192cb3d4
MK
1407 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1408 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1409 and subsequent arguments on SPARC, for example). */
1410 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1411 SYMBOL_CLASS (sym) = LOC_REF_ARG;
c906108c
SS
1412 }
1413
c906108c
SS
1414 return sym;
1415}
1416
c906108c
SS
1417/* Skip rest of this symbol and return an error type.
1418
1419 General notes on error recovery: error_type always skips to the
1420 end of the symbol (modulo cretinous dbx symbol name continuation).
1421 Thus code like this:
1422
1423 if (*(*pp)++ != ';')
c5aa993b 1424 return error_type (pp, objfile);
c906108c
SS
1425
1426 is wrong because if *pp starts out pointing at '\0' (typically as the
1427 result of an earlier error), it will be incremented to point to the
1428 start of the next symbol, which might produce strange results, at least
1429 if you run off the end of the string table. Instead use
1430
1431 if (**pp != ';')
c5aa993b 1432 return error_type (pp, objfile);
c906108c
SS
1433 ++*pp;
1434
1435 or
1436
1437 if (**pp != ';')
c5aa993b 1438 foo = error_type (pp, objfile);
c906108c 1439 else
c5aa993b 1440 ++*pp;
c906108c
SS
1441
1442 And in case it isn't obvious, the point of all this hair is so the compiler
1443 can define new types and new syntaxes, and old versions of the
1444 debugger will be able to read the new symbol tables. */
1445
1446static struct type *
fba45db2 1447error_type (char **pp, struct objfile *objfile)
c906108c 1448{
e2e0b3e5 1449 complaint (&symfile_complaints, _("couldn't parse type; debugger out of date?"));
c906108c
SS
1450 while (1)
1451 {
1452 /* Skip to end of symbol. */
1453 while (**pp != '\0')
1454 {
1455 (*pp)++;
1456 }
1457
1458 /* Check for and handle cretinous dbx symbol name continuation! */
1459 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1460 {
1461 *pp = next_symbol_text (objfile);
1462 }
1463 else
1464 {
1465 break;
1466 }
1467 }
46bf5051 1468 return objfile_type (objfile)->builtin_error;
c906108c 1469}
c906108c 1470\f
c5aa993b 1471
c906108c
SS
1472/* Read type information or a type definition; return the type. Even
1473 though this routine accepts either type information or a type
1474 definition, the distinction is relevant--some parts of stabsread.c
1475 assume that type information starts with a digit, '-', or '(' in
1476 deciding whether to call read_type. */
1477
a7a48797 1478static struct type *
aa1ee363 1479read_type (char **pp, struct objfile *objfile)
c906108c 1480{
52f0bd74 1481 struct type *type = 0;
c906108c
SS
1482 struct type *type1;
1483 int typenums[2];
1484 char type_descriptor;
1485
1486 /* Size in bits of type if specified by a type attribute, or -1 if
1487 there is no size attribute. */
1488 int type_size = -1;
1489
1490 /* Used to distinguish string and bitstring from char-array and set. */
1491 int is_string = 0;
1492
e2cd42dd
MS
1493 /* Used to distinguish vector from array. */
1494 int is_vector = 0;
1495
c906108c
SS
1496 /* Read type number if present. The type number may be omitted.
1497 for instance in a two-dimensional array declared with type
1498 "ar1;1;10;ar1;1;10;4". */
1499 if ((**pp >= '0' && **pp <= '9')
1500 || **pp == '('
1501 || **pp == '-')
1502 {
1503 if (read_type_number (pp, typenums) != 0)
1504 return error_type (pp, objfile);
c5aa993b 1505
c906108c 1506 if (**pp != '=')
8cfe231d
JB
1507 {
1508 /* Type is not being defined here. Either it already
1509 exists, or this is a forward reference to it.
1510 dbx_alloc_type handles both cases. */
1511 type = dbx_alloc_type (typenums, objfile);
1512
1513 /* If this is a forward reference, arrange to complain if it
1514 doesn't get patched up by the time we're done
1515 reading. */
1516 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
bf362611 1517 add_undefined_type (type, typenums);
8cfe231d
JB
1518
1519 return type;
1520 }
c906108c
SS
1521
1522 /* Type is being defined here. */
1523 /* Skip the '='.
c5aa993b
JM
1524 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1525 (*pp) += 2;
c906108c
SS
1526 }
1527 else
1528 {
1529 /* 'typenums=' not present, type is anonymous. Read and return
c5aa993b 1530 the definition, but don't put it in the type vector. */
c906108c
SS
1531 typenums[0] = typenums[1] = -1;
1532 (*pp)++;
1533 }
1534
c5aa993b 1535again:
c906108c
SS
1536 type_descriptor = (*pp)[-1];
1537 switch (type_descriptor)
1538 {
1539 case 'x':
1540 {
1541 enum type_code code;
1542
1543 /* Used to index through file_symbols. */
1544 struct pending *ppt;
1545 int i;
c5aa993b 1546
c906108c
SS
1547 /* Name including "struct", etc. */
1548 char *type_name;
c5aa993b 1549
c906108c
SS
1550 {
1551 char *from, *to, *p, *q1, *q2;
c5aa993b 1552
c906108c
SS
1553 /* Set the type code according to the following letter. */
1554 switch ((*pp)[0])
1555 {
1556 case 's':
1557 code = TYPE_CODE_STRUCT;
1558 break;
1559 case 'u':
1560 code = TYPE_CODE_UNION;
1561 break;
1562 case 'e':
1563 code = TYPE_CODE_ENUM;
1564 break;
1565 default:
1566 {
1567 /* Complain and keep going, so compilers can invent new
1568 cross-reference types. */
23136709 1569 complaint (&symfile_complaints,
e2e0b3e5 1570 _("Unrecognized cross-reference type `%c'"), (*pp)[0]);
c906108c
SS
1571 code = TYPE_CODE_STRUCT;
1572 break;
1573 }
1574 }
c5aa993b 1575
c906108c
SS
1576 q1 = strchr (*pp, '<');
1577 p = strchr (*pp, ':');
1578 if (p == NULL)
1579 return error_type (pp, objfile);
1580 if (q1 && p > q1 && p[1] == ':')
1581 {
1582 int nesting_level = 0;
1583 for (q2 = q1; *q2; q2++)
1584 {
1585 if (*q2 == '<')
1586 nesting_level++;
1587 else if (*q2 == '>')
1588 nesting_level--;
1589 else if (*q2 == ':' && nesting_level == 0)
1590 break;
1591 }
1592 p = q2;
1593 if (*p != ':')
1594 return error_type (pp, objfile);
1595 }
71c25dea
TT
1596 type_name = NULL;
1597 if (current_subfile->language == language_cplus)
1598 {
1599 char *new_name, *name = alloca (p - *pp + 1);
1600 memcpy (name, *pp, p - *pp);
1601 name[p - *pp] = '\0';
1602 new_name = cp_canonicalize_string (name);
1603 if (new_name != NULL)
1604 {
1605 type_name = obsavestring (new_name, strlen (new_name),
1606 &objfile->objfile_obstack);
1607 xfree (new_name);
1608 }
1609 }
1610 if (type_name == NULL)
1611 {
1612 to = type_name =
1613 (char *) obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1614
1615 /* Copy the name. */
1616 from = *pp + 1;
1617 while (from < p)
1618 *to++ = *from++;
1619 *to = '\0';
1620 }
c5aa993b 1621
c906108c
SS
1622 /* Set the pointer ahead of the name which we just read, and
1623 the colon. */
71c25dea 1624 *pp = p + 1;
c906108c
SS
1625 }
1626
149d821b
JB
1627 /* If this type has already been declared, then reuse the same
1628 type, rather than allocating a new one. This saves some
1629 memory. */
c906108c
SS
1630
1631 for (ppt = file_symbols; ppt; ppt = ppt->next)
1632 for (i = 0; i < ppt->nsyms; i++)
1633 {
1634 struct symbol *sym = ppt->symbol[i];
1635
1636 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
176620f1 1637 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
c906108c 1638 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
3567439c 1639 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
c906108c 1640 {
b99607ea 1641 obstack_free (&objfile->objfile_obstack, type_name);
c906108c 1642 type = SYMBOL_TYPE (sym);
149d821b 1643 if (typenums[0] != -1)
46bf5051 1644 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
1645 return type;
1646 }
1647 }
1648
1649 /* Didn't find the type to which this refers, so we must
1650 be dealing with a forward reference. Allocate a type
1651 structure for it, and keep track of it so we can
1652 fill in the rest of the fields when we get the full
1653 type. */
1654 type = dbx_alloc_type (typenums, objfile);
1655 TYPE_CODE (type) = code;
1656 TYPE_TAG_NAME (type) = type_name;
c5aa993b 1657 INIT_CPLUS_SPECIFIC (type);
876cecd0 1658 TYPE_STUB (type) = 1;
c906108c 1659
bf362611 1660 add_undefined_type (type, typenums);
c906108c
SS
1661 return type;
1662 }
1663
c5aa993b 1664 case '-': /* RS/6000 built-in type */
c906108c
SS
1665 case '0':
1666 case '1':
1667 case '2':
1668 case '3':
1669 case '4':
1670 case '5':
1671 case '6':
1672 case '7':
1673 case '8':
1674 case '9':
1675 case '(':
1676 (*pp)--;
1677
1678 /* We deal with something like t(1,2)=(3,4)=... which
c5aa993b 1679 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
c906108c
SS
1680
1681 /* Allocate and enter the typedef type first.
c5aa993b 1682 This handles recursive types. */
c906108c
SS
1683 type = dbx_alloc_type (typenums, objfile);
1684 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
c5aa993b
JM
1685 {
1686 struct type *xtype = read_type (pp, objfile);
c906108c
SS
1687 if (type == xtype)
1688 {
1689 /* It's being defined as itself. That means it is "void". */
1690 TYPE_CODE (type) = TYPE_CODE_VOID;
1691 TYPE_LENGTH (type) = 1;
1692 }
1693 else if (type_size >= 0 || is_string)
1694 {
dd6bda65
DJ
1695 /* This is the absolute wrong way to construct types. Every
1696 other debug format has found a way around this problem and
1697 the related problems with unnecessarily stubbed types;
1698 someone motivated should attempt to clean up the issue
1699 here as well. Once a type pointed to has been created it
13a393b0
JB
1700 should not be modified.
1701
1702 Well, it's not *absolutely* wrong. Constructing recursive
1703 types (trees, linked lists) necessarily entails modifying
1704 types after creating them. Constructing any loop structure
1705 entails side effects. The Dwarf 2 reader does handle this
1706 more gracefully (it never constructs more than once
1707 instance of a type object, so it doesn't have to copy type
1708 objects wholesale), but it still mutates type objects after
1709 other folks have references to them.
1710
1711 Keep in mind that this circularity/mutation issue shows up
1712 at the source language level, too: C's "incomplete types",
1713 for example. So the proper cleanup, I think, would be to
1714 limit GDB's type smashing to match exactly those required
1715 by the source language. So GDB could have a
1716 "complete_this_type" function, but never create unnecessary
1717 copies of a type otherwise. */
dd6bda65 1718 replace_type (type, xtype);
c906108c
SS
1719 TYPE_NAME (type) = NULL;
1720 TYPE_TAG_NAME (type) = NULL;
1721 }
1722 else
1723 {
876cecd0 1724 TYPE_TARGET_STUB (type) = 1;
c906108c
SS
1725 TYPE_TARGET_TYPE (type) = xtype;
1726 }
1727 }
1728 break;
1729
c5aa993b
JM
1730 /* In the following types, we must be sure to overwrite any existing
1731 type that the typenums refer to, rather than allocating a new one
1732 and making the typenums point to the new one. This is because there
1733 may already be pointers to the existing type (if it had been
1734 forward-referenced), and we must change it to a pointer, function,
1735 reference, or whatever, *in-place*. */
c906108c 1736
e2cd42dd 1737 case '*': /* Pointer to another type */
c906108c 1738 type1 = read_type (pp, objfile);
46bf5051 1739 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
c906108c
SS
1740 break;
1741
c5aa993b 1742 case '&': /* Reference to another type */
c906108c 1743 type1 = read_type (pp, objfile);
46bf5051 1744 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile));
c906108c
SS
1745 break;
1746
c5aa993b 1747 case 'f': /* Function returning another type */
c906108c 1748 type1 = read_type (pp, objfile);
0c8b41f1 1749 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
c906108c
SS
1750 break;
1751
da966255
JB
1752 case 'g': /* Prototyped function. (Sun) */
1753 {
1754 /* Unresolved questions:
1755
1756 - According to Sun's ``STABS Interface Manual'', for 'f'
1757 and 'F' symbol descriptors, a `0' in the argument type list
1758 indicates a varargs function. But it doesn't say how 'g'
1759 type descriptors represent that info. Someone with access
1760 to Sun's toolchain should try it out.
1761
1762 - According to the comment in define_symbol (search for
1763 `process_prototype_types:'), Sun emits integer arguments as
1764 types which ref themselves --- like `void' types. Do we
1765 have to deal with that here, too? Again, someone with
1766 access to Sun's toolchain should try it out and let us
1767 know. */
1768
1769 const char *type_start = (*pp) - 1;
1770 struct type *return_type = read_type (pp, objfile);
1771 struct type *func_type
46bf5051 1772 = make_function_type (return_type,
0c8b41f1 1773 dbx_lookup_type (typenums, objfile));
da966255
JB
1774 struct type_list {
1775 struct type *type;
1776 struct type_list *next;
1777 } *arg_types = 0;
1778 int num_args = 0;
1779
1780 while (**pp && **pp != '#')
1781 {
1782 struct type *arg_type = read_type (pp, objfile);
1783 struct type_list *new = alloca (sizeof (*new));
1784 new->type = arg_type;
1785 new->next = arg_types;
1786 arg_types = new;
1787 num_args++;
1788 }
1789 if (**pp == '#')
1790 ++*pp;
1791 else
1792 {
23136709 1793 complaint (&symfile_complaints,
e2e0b3e5 1794 _("Prototyped function type didn't end arguments with `#':\n%s"),
23136709 1795 type_start);
da966255
JB
1796 }
1797
1798 /* If there is just one argument whose type is `void', then
1799 that's just an empty argument list. */
1800 if (arg_types
1801 && ! arg_types->next
1802 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1803 num_args = 0;
1804
1805 TYPE_FIELDS (func_type)
1806 = (struct field *) TYPE_ALLOC (func_type,
1807 num_args * sizeof (struct field));
1808 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1809 {
1810 int i;
1811 struct type_list *t;
1812
1813 /* We stuck each argument type onto the front of the list
1814 when we read it, so the list is reversed. Build the
1815 fields array right-to-left. */
1816 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1817 TYPE_FIELD_TYPE (func_type, i) = t->type;
1818 }
1819 TYPE_NFIELDS (func_type) = num_args;
876cecd0 1820 TYPE_PROTOTYPED (func_type) = 1;
da966255
JB
1821
1822 type = func_type;
1823 break;
1824 }
1825
c5aa993b 1826 case 'k': /* Const qualifier on some type (Sun) */
c906108c 1827 type = read_type (pp, objfile);
d7242108 1828 type = make_cv_type (1, TYPE_VOLATILE (type), type,
46bf5051 1829 dbx_lookup_type (typenums, objfile));
c906108c
SS
1830 break;
1831
c5aa993b 1832 case 'B': /* Volatile qual on some type (Sun) */
c906108c 1833 type = read_type (pp, objfile);
d7242108 1834 type = make_cv_type (TYPE_CONST (type), 1, type,
46bf5051 1835 dbx_lookup_type (typenums, objfile));
c906108c
SS
1836 break;
1837
1838 case '@':
c5aa993b
JM
1839 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1840 { /* Member (class & variable) type */
c906108c
SS
1841 /* FIXME -- we should be doing smash_to_XXX types here. */
1842
1843 struct type *domain = read_type (pp, objfile);
1844 struct type *memtype;
1845
1846 if (**pp != ',')
1847 /* Invalid member type data format. */
1848 return error_type (pp, objfile);
1849 ++*pp;
1850
1851 memtype = read_type (pp, objfile);
1852 type = dbx_alloc_type (typenums, objfile);
0d5de010 1853 smash_to_memberptr_type (type, domain, memtype);
c906108c 1854 }
c5aa993b
JM
1855 else
1856 /* type attribute */
c906108c
SS
1857 {
1858 char *attr = *pp;
1859 /* Skip to the semicolon. */
1860 while (**pp != ';' && **pp != '\0')
1861 ++(*pp);
1862 if (**pp == '\0')
1863 return error_type (pp, objfile);
1864 else
c5aa993b 1865 ++ * pp; /* Skip the semicolon. */
c906108c
SS
1866
1867 switch (*attr)
1868 {
e2cd42dd 1869 case 's': /* Size attribute */
c906108c
SS
1870 type_size = atoi (attr + 1);
1871 if (type_size <= 0)
1872 type_size = -1;
1873 break;
1874
e2cd42dd
MS
1875 case 'S': /* String attribute */
1876 /* FIXME: check to see if following type is array? */
c906108c
SS
1877 is_string = 1;
1878 break;
1879
e2cd42dd
MS
1880 case 'V': /* Vector attribute */
1881 /* FIXME: check to see if following type is array? */
1882 is_vector = 1;
1883 break;
1884
c906108c
SS
1885 default:
1886 /* Ignore unrecognized type attributes, so future compilers
c5aa993b 1887 can invent new ones. */
c906108c
SS
1888 break;
1889 }
1890 ++*pp;
1891 goto again;
1892 }
1893 break;
1894
c5aa993b 1895 case '#': /* Method (class & fn) type */
c906108c
SS
1896 if ((*pp)[0] == '#')
1897 {
1898 /* We'll get the parameter types from the name. */
1899 struct type *return_type;
1900
1901 (*pp)++;
1902 return_type = read_type (pp, objfile);
1903 if (*(*pp)++ != ';')
23136709 1904 complaint (&symfile_complaints,
e2e0b3e5 1905 _("invalid (minimal) member type data format at symtab pos %d."),
23136709 1906 symnum);
c906108c
SS
1907 type = allocate_stub_method (return_type);
1908 if (typenums[0] != -1)
46bf5051 1909 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
1910 }
1911 else
1912 {
1913 struct type *domain = read_type (pp, objfile);
1914 struct type *return_type;
ad2f7632
DJ
1915 struct field *args;
1916 int nargs, varargs;
c906108c
SS
1917
1918 if (**pp != ',')
1919 /* Invalid member type data format. */
1920 return error_type (pp, objfile);
1921 else
1922 ++(*pp);
1923
1924 return_type = read_type (pp, objfile);
ad2f7632 1925 args = read_args (pp, ';', objfile, &nargs, &varargs);
0a029df5
DJ
1926 if (args == NULL)
1927 return error_type (pp, objfile);
c906108c 1928 type = dbx_alloc_type (typenums, objfile);
ad2f7632
DJ
1929 smash_to_method_type (type, domain, return_type, args,
1930 nargs, varargs);
c906108c
SS
1931 }
1932 break;
1933
c5aa993b 1934 case 'r': /* Range type */
94e10a22 1935 type = read_range_type (pp, typenums, type_size, objfile);
c906108c 1936 if (typenums[0] != -1)
46bf5051 1937 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
1938 break;
1939
1940 case 'b':
c906108c
SS
1941 {
1942 /* Sun ACC builtin int type */
1943 type = read_sun_builtin_type (pp, typenums, objfile);
1944 if (typenums[0] != -1)
46bf5051 1945 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
1946 }
1947 break;
1948
c5aa993b 1949 case 'R': /* Sun ACC builtin float type */
c906108c
SS
1950 type = read_sun_floating_type (pp, typenums, objfile);
1951 if (typenums[0] != -1)
46bf5051 1952 *dbx_lookup_type (typenums, objfile) = type;
c906108c 1953 break;
c5aa993b
JM
1954
1955 case 'e': /* Enumeration type */
c906108c
SS
1956 type = dbx_alloc_type (typenums, objfile);
1957 type = read_enum_type (pp, type, objfile);
1958 if (typenums[0] != -1)
46bf5051 1959 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
1960 break;
1961
c5aa993b
JM
1962 case 's': /* Struct type */
1963 case 'u': /* Union type */
2ae1c2d2
JB
1964 {
1965 enum type_code type_code = TYPE_CODE_UNDEF;
1966 type = dbx_alloc_type (typenums, objfile);
1967 switch (type_descriptor)
1968 {
1969 case 's':
1970 type_code = TYPE_CODE_STRUCT;
1971 break;
1972 case 'u':
1973 type_code = TYPE_CODE_UNION;
1974 break;
1975 }
1976 type = read_struct_type (pp, type, type_code, objfile);
1977 break;
1978 }
c906108c 1979
c5aa993b 1980 case 'a': /* Array type */
c906108c
SS
1981 if (**pp != 'r')
1982 return error_type (pp, objfile);
1983 ++*pp;
c5aa993b 1984
c906108c
SS
1985 type = dbx_alloc_type (typenums, objfile);
1986 type = read_array_type (pp, type, objfile);
1987 if (is_string)
1988 TYPE_CODE (type) = TYPE_CODE_STRING;
e2cd42dd 1989 if (is_vector)
ea37ba09 1990 make_vector_type (type);
c906108c
SS
1991 break;
1992
e2cd42dd 1993 case 'S': /* Set or bitstring type */
c906108c 1994 type1 = read_type (pp, objfile);
c5aa993b 1995 type = create_set_type ((struct type *) NULL, type1);
c906108c
SS
1996 if (is_string)
1997 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1998 if (typenums[0] != -1)
46bf5051 1999 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
2000 break;
2001
2002 default:
2003 --*pp; /* Go back to the symbol in error */
c5aa993b 2004 /* Particularly important if it was \0! */
c906108c
SS
2005 return error_type (pp, objfile);
2006 }
2007
2008 if (type == 0)
2009 {
8a3fe4f8 2010 warning (_("GDB internal error, type is NULL in stabsread.c."));
c906108c
SS
2011 return error_type (pp, objfile);
2012 }
2013
2014 /* Size specified in a type attribute overrides any other size. */
2015 if (type_size != -1)
2016 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2017
2018 return type;
2019}
2020\f
2021/* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2022 Return the proper type node for a given builtin type number. */
2023
46bf5051
UW
2024static const struct objfile_data *rs6000_builtin_type_data;
2025
c906108c 2026static struct type *
46bf5051 2027rs6000_builtin_type (int typenum, struct objfile *objfile)
c906108c 2028{
46bf5051
UW
2029 struct type **negative_types = objfile_data (objfile, rs6000_builtin_type_data);
2030
c906108c
SS
2031 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2032#define NUMBER_RECOGNIZED 34
c906108c
SS
2033 struct type *rettype = NULL;
2034
2035 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2036 {
e2e0b3e5 2037 complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
46bf5051 2038 return objfile_type (objfile)->builtin_error;
c906108c 2039 }
46bf5051
UW
2040
2041 if (!negative_types)
2042 {
2043 /* This includes an empty slot for type number -0. */
2044 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2045 NUMBER_RECOGNIZED + 1, struct type *);
2046 set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
2047 }
2048
c906108c
SS
2049 if (negative_types[-typenum] != NULL)
2050 return negative_types[-typenum];
2051
2052#if TARGET_CHAR_BIT != 8
c5aa993b 2053#error This code wrong for TARGET_CHAR_BIT not 8
c906108c
SS
2054 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2055 that if that ever becomes not true, the correct fix will be to
2056 make the size in the struct type to be in bits, not in units of
2057 TARGET_CHAR_BIT. */
2058#endif
2059
2060 switch (-typenum)
2061 {
2062 case 1:
2063 /* The size of this and all the other types are fixed, defined
c5aa993b
JM
2064 by the debugging format. If there is a type called "int" which
2065 is other than 32 bits, then it should use a new negative type
2066 number (or avoid negative type numbers for that case).
2067 See stabs.texinfo. */
46bf5051 2068 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", objfile);
c906108c
SS
2069 break;
2070 case 2:
46bf5051 2071 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", objfile);
c906108c
SS
2072 break;
2073 case 3:
46bf5051 2074 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", objfile);
c906108c
SS
2075 break;
2076 case 4:
46bf5051 2077 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", objfile);
c906108c
SS
2078 break;
2079 case 5:
2080 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
46bf5051 2081 "unsigned char", objfile);
c906108c
SS
2082 break;
2083 case 6:
46bf5051 2084 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", objfile);
c906108c
SS
2085 break;
2086 case 7:
2087 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
46bf5051 2088 "unsigned short", objfile);
c906108c
SS
2089 break;
2090 case 8:
2091 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
46bf5051 2092 "unsigned int", objfile);
c906108c
SS
2093 break;
2094 case 9:
2095 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
46bf5051 2096 "unsigned", objfile);
c906108c
SS
2097 case 10:
2098 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
46bf5051 2099 "unsigned long", objfile);
c906108c
SS
2100 break;
2101 case 11:
46bf5051 2102 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", objfile);
c906108c
SS
2103 break;
2104 case 12:
2105 /* IEEE single precision (32 bit). */
46bf5051 2106 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", objfile);
c906108c
SS
2107 break;
2108 case 13:
2109 /* IEEE double precision (64 bit). */
46bf5051 2110 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", objfile);
c906108c
SS
2111 break;
2112 case 14:
2113 /* This is an IEEE double on the RS/6000, and different machines with
c5aa993b
JM
2114 different sizes for "long double" should use different negative
2115 type numbers. See stabs.texinfo. */
46bf5051 2116 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", objfile);
c906108c
SS
2117 break;
2118 case 15:
46bf5051 2119 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", objfile);
c906108c
SS
2120 break;
2121 case 16:
2122 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
46bf5051 2123 "boolean", objfile);
c906108c
SS
2124 break;
2125 case 17:
46bf5051 2126 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", objfile);
c906108c
SS
2127 break;
2128 case 18:
46bf5051 2129 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", objfile);
c906108c
SS
2130 break;
2131 case 19:
46bf5051 2132 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", objfile);
c906108c
SS
2133 break;
2134 case 20:
2135 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
46bf5051 2136 "character", objfile);
c906108c
SS
2137 break;
2138 case 21:
2139 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
46bf5051 2140 "logical*1", objfile);
c906108c
SS
2141 break;
2142 case 22:
2143 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
46bf5051 2144 "logical*2", objfile);
c906108c
SS
2145 break;
2146 case 23:
2147 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
46bf5051 2148 "logical*4", objfile);
c906108c
SS
2149 break;
2150 case 24:
2151 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
46bf5051 2152 "logical", objfile);
c906108c
SS
2153 break;
2154 case 25:
2155 /* Complex type consisting of two IEEE single precision values. */
46bf5051 2156 rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", objfile);
f65ca430 2157 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 4, 0, "float",
46bf5051 2158 objfile);
c906108c
SS
2159 break;
2160 case 26:
2161 /* Complex type consisting of two IEEE double precision values. */
2162 rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
f65ca430 2163 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 8, 0, "double",
46bf5051 2164 objfile);
c906108c
SS
2165 break;
2166 case 27:
46bf5051 2167 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", objfile);
c906108c
SS
2168 break;
2169 case 28:
46bf5051 2170 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", objfile);
c906108c
SS
2171 break;
2172 case 29:
46bf5051 2173 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", objfile);
c906108c
SS
2174 break;
2175 case 30:
46bf5051 2176 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", objfile);
c906108c
SS
2177 break;
2178 case 31:
46bf5051 2179 rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", objfile);
c906108c
SS
2180 break;
2181 case 32:
2182 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
46bf5051 2183 "unsigned long long", objfile);
c906108c
SS
2184 break;
2185 case 33:
2186 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
46bf5051 2187 "logical*8", objfile);
c906108c
SS
2188 break;
2189 case 34:
46bf5051 2190 rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", objfile);
c906108c
SS
2191 break;
2192 }
2193 negative_types[-typenum] = rettype;
2194 return rettype;
2195}
2196\f
2197/* This page contains subroutines of read_type. */
2198
de17c821
DJ
2199/* Replace *OLD_NAME with the method name portion of PHYSNAME. */
2200
2201static void
2202update_method_name_from_physname (char **old_name, char *physname)
2203{
2204 char *method_name;
2205
2206 method_name = method_name_from_physname (physname);
2207
2208 if (method_name == NULL)
c263362b
DJ
2209 {
2210 complaint (&symfile_complaints,
e2e0b3e5 2211 _("Method has bad physname %s\n"), physname);
c263362b
DJ
2212 return;
2213 }
de17c821
DJ
2214
2215 if (strcmp (*old_name, method_name) != 0)
2216 {
2217 xfree (*old_name);
2218 *old_name = method_name;
2219 }
2220 else
2221 xfree (method_name);
2222}
2223
c906108c
SS
2224/* Read member function stabs info for C++ classes. The form of each member
2225 function data is:
2226
c5aa993b 2227 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
c906108c
SS
2228
2229 An example with two member functions is:
2230
c5aa993b 2231 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
c906108c
SS
2232
2233 For the case of overloaded operators, the format is op$::*.funcs, where
2234 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2235 name (such as `+=') and `.' marks the end of the operator name.
2236
2237 Returns 1 for success, 0 for failure. */
2238
2239static int
fba45db2
KB
2240read_member_functions (struct field_info *fip, char **pp, struct type *type,
2241 struct objfile *objfile)
c906108c
SS
2242{
2243 int nfn_fields = 0;
2244 int length = 0;
2245 /* Total number of member functions defined in this class. If the class
2246 defines two `f' functions, and one `g' function, then this will have
2247 the value 3. */
2248 int total_length = 0;
2249 int i;
2250 struct next_fnfield
2251 {
2252 struct next_fnfield *next;
2253 struct fn_field fn_field;
c5aa993b
JM
2254 }
2255 *sublist;
c906108c
SS
2256 struct type *look_ahead_type;
2257 struct next_fnfieldlist *new_fnlist;
2258 struct next_fnfield *new_sublist;
2259 char *main_fn_name;
52f0bd74 2260 char *p;
c5aa993b 2261
c906108c
SS
2262 /* Process each list until we find something that is not a member function
2263 or find the end of the functions. */
2264
2265 while (**pp != ';')
2266 {
2267 /* We should be positioned at the start of the function name.
c5aa993b
JM
2268 Scan forward to find the first ':' and if it is not the
2269 first of a "::" delimiter, then this is not a member function. */
c906108c
SS
2270 p = *pp;
2271 while (*p != ':')
2272 {
2273 p++;
2274 }
2275 if (p[1] != ':')
2276 {
2277 break;
2278 }
2279
2280 sublist = NULL;
2281 look_ahead_type = NULL;
2282 length = 0;
c5aa993b 2283
c906108c
SS
2284 new_fnlist = (struct next_fnfieldlist *)
2285 xmalloc (sizeof (struct next_fnfieldlist));
b8c9b27d 2286 make_cleanup (xfree, new_fnlist);
c906108c 2287 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
c5aa993b 2288
c906108c
SS
2289 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2290 {
2291 /* This is a completely wierd case. In order to stuff in the
2292 names that might contain colons (the usual name delimiter),
2293 Mike Tiemann defined a different name format which is
2294 signalled if the identifier is "op$". In that case, the
2295 format is "op$::XXXX." where XXXX is the name. This is
2296 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2297 /* This lets the user type "break operator+".
2298 We could just put in "+" as the name, but that wouldn't
2299 work for "*". */
8343f86c 2300 static char opname[32] = "op$";
c906108c 2301 char *o = opname + 3;
c5aa993b 2302
c906108c
SS
2303 /* Skip past '::'. */
2304 *pp = p + 2;
2305
2306 STABS_CONTINUE (pp, objfile);
2307 p = *pp;
2308 while (*p != '.')
2309 {
2310 *o++ = *p++;
2311 }
2312 main_fn_name = savestring (opname, o - opname);
2313 /* Skip past '.' */
2314 *pp = p + 1;
2315 }
2316 else
2317 {
2318 main_fn_name = savestring (*pp, p - *pp);
2319 /* Skip past '::'. */
2320 *pp = p + 2;
2321 }
c5aa993b
JM
2322 new_fnlist->fn_fieldlist.name = main_fn_name;
2323
c906108c
SS
2324 do
2325 {
2326 new_sublist =
2327 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
b8c9b27d 2328 make_cleanup (xfree, new_sublist);
c906108c 2329 memset (new_sublist, 0, sizeof (struct next_fnfield));
c5aa993b 2330
c906108c
SS
2331 /* Check for and handle cretinous dbx symbol name continuation! */
2332 if (look_ahead_type == NULL)
2333 {
2334 /* Normal case. */
2335 STABS_CONTINUE (pp, objfile);
c5aa993b
JM
2336
2337 new_sublist->fn_field.type = read_type (pp, objfile);
c906108c
SS
2338 if (**pp != ':')
2339 {
2340 /* Invalid symtab info for member function. */
2341 return 0;
2342 }
2343 }
2344 else
2345 {
2346 /* g++ version 1 kludge */
c5aa993b 2347 new_sublist->fn_field.type = look_ahead_type;
c906108c
SS
2348 look_ahead_type = NULL;
2349 }
c5aa993b 2350
c906108c
SS
2351 (*pp)++;
2352 p = *pp;
2353 while (*p != ';')
2354 {
2355 p++;
2356 }
c5aa993b 2357
c906108c
SS
2358 /* If this is just a stub, then we don't have the real name here. */
2359
74a9bb82 2360 if (TYPE_STUB (new_sublist->fn_field.type))
c906108c 2361 {
c5aa993b
JM
2362 if (!TYPE_DOMAIN_TYPE (new_sublist->fn_field.type))
2363 TYPE_DOMAIN_TYPE (new_sublist->fn_field.type) = type;
2364 new_sublist->fn_field.is_stub = 1;
c906108c 2365 }
c5aa993b 2366 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
c906108c 2367 *pp = p + 1;
c5aa993b 2368
c906108c
SS
2369 /* Set this member function's visibility fields. */
2370 switch (*(*pp)++)
2371 {
c5aa993b
JM
2372 case VISIBILITY_PRIVATE:
2373 new_sublist->fn_field.is_private = 1;
2374 break;
2375 case VISIBILITY_PROTECTED:
2376 new_sublist->fn_field.is_protected = 1;
2377 break;
c906108c 2378 }
c5aa993b 2379
c906108c
SS
2380 STABS_CONTINUE (pp, objfile);
2381 switch (**pp)
2382 {
c5aa993b
JM
2383 case 'A': /* Normal functions. */
2384 new_sublist->fn_field.is_const = 0;
2385 new_sublist->fn_field.is_volatile = 0;
2386 (*pp)++;
2387 break;
2388 case 'B': /* `const' member functions. */
2389 new_sublist->fn_field.is_const = 1;
2390 new_sublist->fn_field.is_volatile = 0;
2391 (*pp)++;
2392 break;
2393 case 'C': /* `volatile' member function. */
2394 new_sublist->fn_field.is_const = 0;
2395 new_sublist->fn_field.is_volatile = 1;
2396 (*pp)++;
2397 break;
2398 case 'D': /* `const volatile' member function. */
2399 new_sublist->fn_field.is_const = 1;
2400 new_sublist->fn_field.is_volatile = 1;
2401 (*pp)++;
2402 break;
2403 case '*': /* File compiled with g++ version 1 -- no info */
2404 case '?':
2405 case '.':
2406 break;
2407 default:
23136709 2408 complaint (&symfile_complaints,
e2e0b3e5 2409 _("const/volatile indicator missing, got '%c'"), **pp);
c5aa993b 2410 break;
c906108c 2411 }
c5aa993b 2412
c906108c
SS
2413 switch (*(*pp)++)
2414 {
c5aa993b 2415 case '*':
c906108c
SS
2416 {
2417 int nbits;
c5aa993b 2418 /* virtual member function, followed by index.
c906108c
SS
2419 The sign bit is set to distinguish pointers-to-methods
2420 from virtual function indicies. Since the array is
2421 in words, the quantity must be shifted left by 1
2422 on 16 bit machine, and by 2 on 32 bit machine, forcing
2423 the sign bit out, and usable as a valid index into
2424 the array. Remove the sign bit here. */
c5aa993b 2425 new_sublist->fn_field.voffset =
94e10a22 2426 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
c906108c
SS
2427 if (nbits != 0)
2428 return 0;
c5aa993b 2429
c906108c
SS
2430 STABS_CONTINUE (pp, objfile);
2431 if (**pp == ';' || **pp == '\0')
2432 {
2433 /* Must be g++ version 1. */
c5aa993b 2434 new_sublist->fn_field.fcontext = 0;
c906108c
SS
2435 }
2436 else
2437 {
2438 /* Figure out from whence this virtual function came.
2439 It may belong to virtual function table of
2440 one of its baseclasses. */
2441 look_ahead_type = read_type (pp, objfile);
2442 if (**pp == ':')
2443 {
2444 /* g++ version 1 overloaded methods. */
2445 }
2446 else
2447 {
c5aa993b 2448 new_sublist->fn_field.fcontext = look_ahead_type;
c906108c
SS
2449 if (**pp != ';')
2450 {
2451 return 0;
2452 }
2453 else
2454 {
2455 ++*pp;
2456 }
2457 look_ahead_type = NULL;
2458 }
2459 }
2460 break;
2461 }
c5aa993b
JM
2462 case '?':
2463 /* static member function. */
4ea09c10
PS
2464 {
2465 int slen = strlen (main_fn_name);
2466
2467 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2468
2469 /* For static member functions, we can't tell if they
2470 are stubbed, as they are put out as functions, and not as
2471 methods.
2472 GCC v2 emits the fully mangled name if
2473 dbxout.c:flag_minimal_debug is not set, so we have to
2474 detect a fully mangled physname here and set is_stub
2475 accordingly. Fully mangled physnames in v2 start with
2476 the member function name, followed by two underscores.
2477 GCC v3 currently always emits stubbed member functions,
2478 but with fully mangled physnames, which start with _Z. */
2479 if (!(strncmp (new_sublist->fn_field.physname,
2480 main_fn_name, slen) == 0
2481 && new_sublist->fn_field.physname[slen] == '_'
2482 && new_sublist->fn_field.physname[slen + 1] == '_'))
2483 {
2484 new_sublist->fn_field.is_stub = 1;
2485 }
2486 break;
2487 }
c5aa993b
JM
2488
2489 default:
2490 /* error */
23136709 2491 complaint (&symfile_complaints,
e2e0b3e5 2492 _("member function type missing, got '%c'"), (*pp)[-1]);
c5aa993b
JM
2493 /* Fall through into normal member function. */
2494
2495 case '.':
2496 /* normal member function. */
2497 new_sublist->fn_field.voffset = 0;
2498 new_sublist->fn_field.fcontext = 0;
2499 break;
c906108c 2500 }
c5aa993b
JM
2501
2502 new_sublist->next = sublist;
c906108c
SS
2503 sublist = new_sublist;
2504 length++;
2505 STABS_CONTINUE (pp, objfile);
2506 }
2507 while (**pp != ';' && **pp != '\0');
c5aa993b 2508
c906108c 2509 (*pp)++;
0c867556 2510 STABS_CONTINUE (pp, objfile);
c5aa993b 2511
0c867556
PS
2512 /* Skip GCC 3.X member functions which are duplicates of the callable
2513 constructor/destructor. */
6cbbcdfe
KS
2514 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2515 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
0c867556 2516 || strcmp (main_fn_name, "__deleting_dtor") == 0)
c906108c 2517 {
0c867556 2518 xfree (main_fn_name);
c906108c 2519 }
0c867556
PS
2520 else
2521 {
de17c821
DJ
2522 int has_stub = 0;
2523 int has_destructor = 0, has_other = 0;
2524 int is_v3 = 0;
2525 struct next_fnfield *tmp_sublist;
2526
2527 /* Various versions of GCC emit various mostly-useless
2528 strings in the name field for special member functions.
2529
2530 For stub methods, we need to defer correcting the name
2531 until we are ready to unstub the method, because the current
2532 name string is used by gdb_mangle_name. The only stub methods
2533 of concern here are GNU v2 operators; other methods have their
2534 names correct (see caveat below).
2535
2536 For non-stub methods, in GNU v3, we have a complete physname.
2537 Therefore we can safely correct the name now. This primarily
2538 affects constructors and destructors, whose name will be
2539 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2540 operators will also have incorrect names; for instance,
2541 "operator int" will be named "operator i" (i.e. the type is
2542 mangled).
2543
2544 For non-stub methods in GNU v2, we have no easy way to
2545 know if we have a complete physname or not. For most
2546 methods the result depends on the platform (if CPLUS_MARKER
2547 can be `$' or `.', it will use minimal debug information, or
2548 otherwise the full physname will be included).
2549
2550 Rather than dealing with this, we take a different approach.
2551 For v3 mangled names, we can use the full physname; for v2,
2552 we use cplus_demangle_opname (which is actually v2 specific),
2553 because the only interesting names are all operators - once again
2554 barring the caveat below. Skip this process if any method in the
2555 group is a stub, to prevent our fouling up the workings of
2556 gdb_mangle_name.
2557
2558 The caveat: GCC 2.95.x (and earlier?) put constructors and
2559 destructors in the same method group. We need to split this
2560 into two groups, because they should have different names.
2561 So for each method group we check whether it contains both
2562 routines whose physname appears to be a destructor (the physnames
2563 for and destructors are always provided, due to quirks in v2
2564 mangling) and routines whose physname does not appear to be a
2565 destructor. If so then we break up the list into two halves.
2566 Even if the constructors and destructors aren't in the same group
2567 the destructor will still lack the leading tilde, so that also
2568 needs to be fixed.
2569
2570 So, to summarize what we expect and handle here:
2571
2572 Given Given Real Real Action
2573 method name physname physname method name
2574
2575 __opi [none] __opi__3Foo operator int opname
2576 [now or later]
2577 Foo _._3Foo _._3Foo ~Foo separate and
2578 rename
2579 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2580 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2581 */
2582
2583 tmp_sublist = sublist;
2584 while (tmp_sublist != NULL)
2585 {
2586 if (tmp_sublist->fn_field.is_stub)
2587 has_stub = 1;
2588 if (tmp_sublist->fn_field.physname[0] == '_'
2589 && tmp_sublist->fn_field.physname[1] == 'Z')
2590 is_v3 = 1;
2591
2592 if (is_destructor_name (tmp_sublist->fn_field.physname))
2593 has_destructor++;
2594 else
2595 has_other++;
2596
2597 tmp_sublist = tmp_sublist->next;
2598 }
2599
2600 if (has_destructor && has_other)
2601 {
2602 struct next_fnfieldlist *destr_fnlist;
2603 struct next_fnfield *last_sublist;
2604
2605 /* Create a new fn_fieldlist for the destructors. */
2606
2607 destr_fnlist = (struct next_fnfieldlist *)
2608 xmalloc (sizeof (struct next_fnfieldlist));
2609 make_cleanup (xfree, destr_fnlist);
2610 memset (destr_fnlist, 0, sizeof (struct next_fnfieldlist));
2611 destr_fnlist->fn_fieldlist.name
48cb83fd
JK
2612 = obconcat (&objfile->objfile_obstack, "~",
2613 new_fnlist->fn_fieldlist.name, (char *) NULL);
de17c821
DJ
2614
2615 destr_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
b99607ea 2616 obstack_alloc (&objfile->objfile_obstack,
de17c821
DJ
2617 sizeof (struct fn_field) * has_destructor);
2618 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2619 sizeof (struct fn_field) * has_destructor);
2620 tmp_sublist = sublist;
2621 last_sublist = NULL;
2622 i = 0;
2623 while (tmp_sublist != NULL)
2624 {
2625 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2626 {
2627 tmp_sublist = tmp_sublist->next;
2628 continue;
2629 }
2630
2631 destr_fnlist->fn_fieldlist.fn_fields[i++]
2632 = tmp_sublist->fn_field;
2633 if (last_sublist)
2634 last_sublist->next = tmp_sublist->next;
2635 else
2636 sublist = tmp_sublist->next;
2637 last_sublist = tmp_sublist;
2638 tmp_sublist = tmp_sublist->next;
2639 }
2640
2641 destr_fnlist->fn_fieldlist.length = has_destructor;
2642 destr_fnlist->next = fip->fnlist;
2643 fip->fnlist = destr_fnlist;
2644 nfn_fields++;
2645 total_length += has_destructor;
2646 length -= has_destructor;
2647 }
2648 else if (is_v3)
2649 {
2650 /* v3 mangling prevents the use of abbreviated physnames,
2651 so we can do this here. There are stubbed methods in v3
2652 only:
2653 - in -gstabs instead of -gstabs+
2654 - or for static methods, which are output as a function type
2655 instead of a method type. */
2656
2657 update_method_name_from_physname (&new_fnlist->fn_fieldlist.name,
2658 sublist->fn_field.physname);
2659 }
2660 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2661 {
1754f103
MK
2662 new_fnlist->fn_fieldlist.name =
2663 concat ("~", main_fn_name, (char *)NULL);
de17c821
DJ
2664 xfree (main_fn_name);
2665 }
2666 else if (!has_stub)
2667 {
2668 char dem_opname[256];
2669 int ret;
2670 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2671 dem_opname, DMGL_ANSI);
2672 if (!ret)
2673 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2674 dem_opname, 0);
2675 if (ret)
2676 new_fnlist->fn_fieldlist.name
2677 = obsavestring (dem_opname, strlen (dem_opname),
b99607ea 2678 &objfile->objfile_obstack);
de17c821
DJ
2679 }
2680
0c867556 2681 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
b99607ea 2682 obstack_alloc (&objfile->objfile_obstack,
0c867556
PS
2683 sizeof (struct fn_field) * length);
2684 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2685 sizeof (struct fn_field) * length);
2686 for (i = length; (i--, sublist); sublist = sublist->next)
2687 {
2688 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2689 }
c5aa993b 2690
0c867556
PS
2691 new_fnlist->fn_fieldlist.length = length;
2692 new_fnlist->next = fip->fnlist;
2693 fip->fnlist = new_fnlist;
2694 nfn_fields++;
2695 total_length += length;
2696 }
c906108c
SS
2697 }
2698
2699 if (nfn_fields)
2700 {
2701 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2702 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2703 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2704 memset (TYPE_FN_FIELDLISTS (type), 0,
2705 sizeof (struct fn_fieldlist) * nfn_fields);
2706 TYPE_NFN_FIELDS (type) = nfn_fields;
2707 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
2708 }
2709
2710 return 1;
2711}
2712
2713/* Special GNU C++ name.
2714
2715 Returns 1 for success, 0 for failure. "failure" means that we can't
2716 keep parsing and it's time for error_type(). */
2717
2718static int
fba45db2
KB
2719read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
2720 struct objfile *objfile)
c906108c 2721{
52f0bd74 2722 char *p;
c906108c
SS
2723 char *name;
2724 char cpp_abbrev;
2725 struct type *context;
2726
2727 p = *pp;
2728 if (*++p == 'v')
2729 {
2730 name = NULL;
2731 cpp_abbrev = *++p;
2732
2733 *pp = p + 1;
2734
2735 /* At this point, *pp points to something like "22:23=*22...",
c5aa993b
JM
2736 where the type number before the ':' is the "context" and
2737 everything after is a regular type definition. Lookup the
2738 type, find it's name, and construct the field name. */
c906108c
SS
2739
2740 context = read_type (pp, objfile);
2741
2742 switch (cpp_abbrev)
2743 {
c5aa993b 2744 case 'f': /* $vf -- a virtual function table pointer */
c2bd2ed9
JB
2745 name = type_name_no_tag (context);
2746 if (name == NULL)
2747 {
2748 name = "";
2749 }
48cb83fd
JK
2750 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2751 vptr_name, name, (char *) NULL);
c5aa993b 2752 break;
c906108c 2753
c5aa993b
JM
2754 case 'b': /* $vb -- a virtual bsomethingorother */
2755 name = type_name_no_tag (context);
2756 if (name == NULL)
2757 {
23136709 2758 complaint (&symfile_complaints,
e2e0b3e5 2759 _("C++ abbreviated type name unknown at symtab pos %d"),
23136709 2760 symnum);
c5aa993b
JM
2761 name = "FOO";
2762 }
48cb83fd
JK
2763 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2764 name, (char *) NULL);
c5aa993b 2765 break;
c906108c 2766
c5aa993b 2767 default:
23136709 2768 invalid_cpp_abbrev_complaint (*pp);
48cb83fd
JK
2769 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2770 "INVALID_CPLUSPLUS_ABBREV",
2771 (char *) NULL);
c5aa993b 2772 break;
c906108c
SS
2773 }
2774
2775 /* At this point, *pp points to the ':'. Skip it and read the
c5aa993b 2776 field type. */
c906108c
SS
2777
2778 p = ++(*pp);
2779 if (p[-1] != ':')
2780 {
23136709 2781 invalid_cpp_abbrev_complaint (*pp);
c906108c
SS
2782 return 0;
2783 }
2784 fip->list->field.type = read_type (pp, objfile);
2785 if (**pp == ',')
c5aa993b 2786 (*pp)++; /* Skip the comma. */
c906108c
SS
2787 else
2788 return 0;
2789
2790 {
2791 int nbits;
94e10a22
JG
2792 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ';', &nbits,
2793 0);
c906108c
SS
2794 if (nbits != 0)
2795 return 0;
2796 }
2797 /* This field is unpacked. */
2798 FIELD_BITSIZE (fip->list->field) = 0;
2799 fip->list->visibility = VISIBILITY_PRIVATE;
2800 }
2801 else
2802 {
23136709 2803 invalid_cpp_abbrev_complaint (*pp);
c906108c 2804 /* We have no idea what syntax an unrecognized abbrev would have, so
c5aa993b
JM
2805 better return 0. If we returned 1, we would need to at least advance
2806 *pp to avoid an infinite loop. */
c906108c
SS
2807 return 0;
2808 }
2809 return 1;
2810}
2811
2812static void
fba45db2
KB
2813read_one_struct_field (struct field_info *fip, char **pp, char *p,
2814 struct type *type, struct objfile *objfile)
c906108c 2815{
5e2b427d
UW
2816 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2817
41989fcd 2818 fip->list->field.name =
b99607ea 2819 obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
c906108c
SS
2820 *pp = p + 1;
2821
2822 /* This means we have a visibility for a field coming. */
2823 if (**pp == '/')
2824 {
2825 (*pp)++;
c5aa993b 2826 fip->list->visibility = *(*pp)++;
c906108c
SS
2827 }
2828 else
2829 {
2830 /* normal dbx-style format, no explicit visibility */
c5aa993b 2831 fip->list->visibility = VISIBILITY_PUBLIC;
c906108c
SS
2832 }
2833
c5aa993b 2834 fip->list->field.type = read_type (pp, objfile);
c906108c
SS
2835 if (**pp == ':')
2836 {
2837 p = ++(*pp);
2838#if 0
2839 /* Possible future hook for nested types. */
2840 if (**pp == '!')
2841 {
c5aa993b 2842 fip->list->field.bitpos = (long) -2; /* nested type */
c906108c
SS
2843 p = ++(*pp);
2844 }
c5aa993b
JM
2845 else
2846 ...;
c906108c 2847#endif
c5aa993b 2848 while (*p != ';')
c906108c
SS
2849 {
2850 p++;
2851 }
2852 /* Static class member. */
2853 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2854 *pp = p + 1;
2855 return;
2856 }
2857 else if (**pp != ',')
2858 {
2859 /* Bad structure-type format. */
23136709 2860 stabs_general_complaint ("bad structure-type format");
c906108c
SS
2861 return;
2862 }
2863
2864 (*pp)++; /* Skip the comma. */
2865
2866 {
2867 int nbits;
94e10a22 2868 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ',', &nbits, 0);
c906108c
SS
2869 if (nbits != 0)
2870 {
23136709 2871 stabs_general_complaint ("bad structure-type format");
c906108c
SS
2872 return;
2873 }
94e10a22 2874 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
2875 if (nbits != 0)
2876 {
23136709 2877 stabs_general_complaint ("bad structure-type format");
c906108c
SS
2878 return;
2879 }
2880 }
2881
2882 if (FIELD_BITPOS (fip->list->field) == 0
2883 && FIELD_BITSIZE (fip->list->field) == 0)
2884 {
2885 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
c5aa993b
JM
2886 it is a field which has been optimized out. The correct stab for
2887 this case is to use VISIBILITY_IGNORE, but that is a recent
2888 invention. (2) It is a 0-size array. For example
e2e0b3e5 2889 union { int num; char str[0]; } foo. Printing _("<no value>" for
c5aa993b
JM
2890 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2891 will continue to work, and a 0-size array as a whole doesn't
2892 have any contents to print.
2893
2894 I suspect this probably could also happen with gcc -gstabs (not
2895 -gstabs+) for static fields, and perhaps other C++ extensions.
2896 Hopefully few people use -gstabs with gdb, since it is intended
2897 for dbx compatibility. */
c906108c
SS
2898
2899 /* Ignore this field. */
c5aa993b 2900 fip->list->visibility = VISIBILITY_IGNORE;
c906108c
SS
2901 }
2902 else
2903 {
2904 /* Detect an unpacked field and mark it as such.
c5aa993b
JM
2905 dbx gives a bit size for all fields.
2906 Note that forward refs cannot be packed,
2907 and treat enums as if they had the width of ints. */
c906108c
SS
2908
2909 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2910
2911 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2912 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2913 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2914 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2915 {
2916 FIELD_BITSIZE (fip->list->field) = 0;
2917 }
c5aa993b 2918 if ((FIELD_BITSIZE (fip->list->field)
c906108c
SS
2919 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2920 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
9a76efb6 2921 && FIELD_BITSIZE (fip->list->field)
5e2b427d 2922 == gdbarch_int_bit (gdbarch))
c5aa993b 2923 )
c906108c
SS
2924 &&
2925 FIELD_BITPOS (fip->list->field) % 8 == 0)
2926 {
2927 FIELD_BITSIZE (fip->list->field) = 0;
2928 }
2929 }
2930}
2931
2932
2933/* Read struct or class data fields. They have the form:
2934
c5aa993b 2935 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
c906108c
SS
2936
2937 At the end, we see a semicolon instead of a field.
2938
2939 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2940 a static field.
2941
2942 The optional VISIBILITY is one of:
2943
c5aa993b
JM
2944 '/0' (VISIBILITY_PRIVATE)
2945 '/1' (VISIBILITY_PROTECTED)
2946 '/2' (VISIBILITY_PUBLIC)
2947 '/9' (VISIBILITY_IGNORE)
c906108c
SS
2948
2949 or nothing, for C style fields with public visibility.
2950
2951 Returns 1 for success, 0 for failure. */
2952
2953static int
fba45db2
KB
2954read_struct_fields (struct field_info *fip, char **pp, struct type *type,
2955 struct objfile *objfile)
c906108c 2956{
52f0bd74 2957 char *p;
c906108c
SS
2958 struct nextfield *new;
2959
2960 /* We better set p right now, in case there are no fields at all... */
2961
2962 p = *pp;
2963
2964 /* Read each data member type until we find the terminating ';' at the end of
2965 the data member list, or break for some other reason such as finding the
2966 start of the member function list. */
fedbd091
EZ
2967 /* Stab string for structure/union does not end with two ';' in
2968 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
c906108c 2969
fedbd091 2970 while (**pp != ';' && **pp != '\0')
c906108c 2971 {
c906108c
SS
2972 STABS_CONTINUE (pp, objfile);
2973 /* Get space to record the next field's data. */
2974 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
b8c9b27d 2975 make_cleanup (xfree, new);
c906108c 2976 memset (new, 0, sizeof (struct nextfield));
c5aa993b
JM
2977 new->next = fip->list;
2978 fip->list = new;
c906108c
SS
2979
2980 /* Get the field name. */
2981 p = *pp;
2982
2983 /* If is starts with CPLUS_MARKER it is a special abbreviation,
c5aa993b
JM
2984 unless the CPLUS_MARKER is followed by an underscore, in
2985 which case it is just the name of an anonymous type, which we
2986 should handle like any other type name. */
c906108c
SS
2987
2988 if (is_cplus_marker (p[0]) && p[1] != '_')
2989 {
2990 if (!read_cpp_abbrev (fip, pp, type, objfile))
2991 return 0;
2992 continue;
2993 }
2994
2995 /* Look for the ':' that separates the field name from the field
c5aa993b
JM
2996 values. Data members are delimited by a single ':', while member
2997 functions are delimited by a pair of ':'s. When we hit the member
2998 functions (if any), terminate scan loop and return. */
c906108c 2999
c5aa993b 3000 while (*p != ':' && *p != '\0')
c906108c
SS
3001 {
3002 p++;
3003 }
3004 if (*p == '\0')
3005 return 0;
3006
3007 /* Check to see if we have hit the member functions yet. */
3008 if (p[1] == ':')
3009 {
3010 break;
3011 }
3012 read_one_struct_field (fip, pp, p, type, objfile);
3013 }
3014 if (p[0] == ':' && p[1] == ':')
3015 {
1b831c93
AC
3016 /* (the deleted) chill the list of fields: the last entry (at
3017 the head) is a partially constructed entry which we now
3018 scrub. */
c5aa993b 3019 fip->list = fip->list->next;
c906108c
SS
3020 }
3021 return 1;
3022}
9846de1b 3023/* *INDENT-OFF* */
c906108c
SS
3024/* The stabs for C++ derived classes contain baseclass information which
3025 is marked by a '!' character after the total size. This function is
3026 called when we encounter the baseclass marker, and slurps up all the
3027 baseclass information.
3028
3029 Immediately following the '!' marker is the number of base classes that
3030 the class is derived from, followed by information for each base class.
3031 For each base class, there are two visibility specifiers, a bit offset
3032 to the base class information within the derived class, a reference to
3033 the type for the base class, and a terminating semicolon.
3034
3035 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3036 ^^ ^ ^ ^ ^ ^ ^
3037 Baseclass information marker __________________|| | | | | | |
3038 Number of baseclasses __________________________| | | | | | |
3039 Visibility specifiers (2) ________________________| | | | | |
3040 Offset in bits from start of class _________________| | | | |
3041 Type number for base class ___________________________| | | |
3042 Visibility specifiers (2) _______________________________| | |
3043 Offset in bits from start of class ________________________| |
3044 Type number of base class ____________________________________|
3045
3046 Return 1 for success, 0 for (error-type-inducing) failure. */
9846de1b 3047/* *INDENT-ON* */
c906108c 3048
c5aa993b
JM
3049
3050
c906108c 3051static int
fba45db2
KB
3052read_baseclasses (struct field_info *fip, char **pp, struct type *type,
3053 struct objfile *objfile)
c906108c
SS
3054{
3055 int i;
3056 struct nextfield *new;
3057
3058 if (**pp != '!')
3059 {
3060 return 1;
3061 }
3062 else
3063 {
3064 /* Skip the '!' baseclass information marker. */
3065 (*pp)++;
3066 }
3067
3068 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3069 {
3070 int nbits;
94e10a22 3071 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
c906108c
SS
3072 if (nbits != 0)
3073 return 0;
3074 }
3075
3076#if 0
3077 /* Some stupid compilers have trouble with the following, so break
3078 it up into simpler expressions. */
3079 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3080 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3081#else
3082 {
3083 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3084 char *pointer;
3085
3086 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3087 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3088 }
3089#endif /* 0 */
3090
3091 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3092
3093 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3094 {
3095 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
b8c9b27d 3096 make_cleanup (xfree, new);
c906108c 3097 memset (new, 0, sizeof (struct nextfield));
c5aa993b
JM
3098 new->next = fip->list;
3099 fip->list = new;
c906108c
SS
3100 FIELD_BITSIZE (new->field) = 0; /* this should be an unpacked field! */
3101
3102 STABS_CONTINUE (pp, objfile);
3103 switch (**pp)
3104 {
c5aa993b
JM
3105 case '0':
3106 /* Nothing to do. */
3107 break;
3108 case '1':
3109 SET_TYPE_FIELD_VIRTUAL (type, i);
3110 break;
3111 default:
3112 /* Unknown character. Complain and treat it as non-virtual. */
3113 {
23136709 3114 complaint (&symfile_complaints,
e2e0b3e5 3115 _("Unknown virtual character `%c' for baseclass"), **pp);
c5aa993b 3116 }
c906108c
SS
3117 }
3118 ++(*pp);
3119
c5aa993b
JM
3120 new->visibility = *(*pp)++;
3121 switch (new->visibility)
c906108c 3122 {
c5aa993b
JM
3123 case VISIBILITY_PRIVATE:
3124 case VISIBILITY_PROTECTED:
3125 case VISIBILITY_PUBLIC:
3126 break;
3127 default:
3128 /* Bad visibility format. Complain and treat it as
3129 public. */
3130 {
23136709 3131 complaint (&symfile_complaints,
e2e0b3e5 3132 _("Unknown visibility `%c' for baseclass"),
23136709 3133 new->visibility);
c5aa993b
JM
3134 new->visibility = VISIBILITY_PUBLIC;
3135 }
c906108c
SS
3136 }
3137
3138 {
3139 int nbits;
c5aa993b 3140
c906108c
SS
3141 /* The remaining value is the bit offset of the portion of the object
3142 corresponding to this baseclass. Always zero in the absence of
3143 multiple inheritance. */
3144
94e10a22 3145 FIELD_BITPOS (new->field) = read_huge_number (pp, ',', &nbits, 0);
c906108c
SS
3146 if (nbits != 0)
3147 return 0;
3148 }
3149
3150 /* The last piece of baseclass information is the type of the
c5aa993b
JM
3151 base class. Read it, and remember it's type name as this
3152 field's name. */
c906108c 3153
c5aa993b
JM
3154 new->field.type = read_type (pp, objfile);
3155 new->field.name = type_name_no_tag (new->field.type);
c906108c
SS
3156
3157 /* skip trailing ';' and bump count of number of fields seen */
3158 if (**pp == ';')
3159 (*pp)++;
3160 else
3161 return 0;
3162 }
3163 return 1;
3164}
3165
3166/* The tail end of stabs for C++ classes that contain a virtual function
3167 pointer contains a tilde, a %, and a type number.
3168 The type number refers to the base class (possibly this class itself) which
3169 contains the vtable pointer for the current class.
3170
3171 This function is called when we have parsed all the method declarations,
3172 so we can look for the vptr base class info. */
3173
3174static int
fba45db2
KB
3175read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3176 struct objfile *objfile)
c906108c 3177{
52f0bd74 3178 char *p;
c906108c
SS
3179
3180 STABS_CONTINUE (pp, objfile);
3181
3182 /* If we are positioned at a ';', then skip it. */
3183 if (**pp == ';')
3184 {
3185 (*pp)++;
3186 }
3187
3188 if (**pp == '~')
3189 {
3190 (*pp)++;
3191
3192 if (**pp == '=' || **pp == '+' || **pp == '-')
3193 {
3194 /* Obsolete flags that used to indicate the presence
3195 of constructors and/or destructors. */
3196 (*pp)++;
3197 }
3198
3199 /* Read either a '%' or the final ';'. */
3200 if (*(*pp)++ == '%')
3201 {
3202 /* The next number is the type number of the base class
3203 (possibly our own class) which supplies the vtable for
3204 this class. Parse it out, and search that class to find
3205 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3206 and TYPE_VPTR_FIELDNO. */
3207
3208 struct type *t;
3209 int i;
3210
3211 t = read_type (pp, objfile);
3212 p = (*pp)++;
3213 while (*p != '\0' && *p != ';')
3214 {
3215 p++;
3216 }
3217 if (*p == '\0')
3218 {
3219 /* Premature end of symbol. */
3220 return 0;
3221 }
c5aa993b 3222
c906108c 3223 TYPE_VPTR_BASETYPE (type) = t;
c5aa993b 3224 if (type == t) /* Our own class provides vtbl ptr */
c906108c
SS
3225 {
3226 for (i = TYPE_NFIELDS (t) - 1;
3227 i >= TYPE_N_BASECLASSES (t);
3228 --i)
3229 {
8343f86c
DJ
3230 char *name = TYPE_FIELD_NAME (t, i);
3231 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
74451869 3232 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
c906108c
SS
3233 {
3234 TYPE_VPTR_FIELDNO (type) = i;
3235 goto gotit;
3236 }
3237 }
3238 /* Virtual function table field not found. */
23136709 3239 complaint (&symfile_complaints,
e2e0b3e5 3240 _("virtual function table pointer not found when defining class `%s'"),
23136709 3241 TYPE_NAME (type));
c906108c
SS
3242 return 0;
3243 }
3244 else
3245 {
3246 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3247 }
3248
c5aa993b 3249 gotit:
c906108c
SS
3250 *pp = p + 1;
3251 }
3252 }
3253 return 1;
3254}
3255
3256static int
aa1ee363 3257attach_fn_fields_to_type (struct field_info *fip, struct type *type)
c906108c 3258{
52f0bd74 3259 int n;
c906108c
SS
3260
3261 for (n = TYPE_NFN_FIELDS (type);
c5aa993b
JM
3262 fip->fnlist != NULL;
3263 fip->fnlist = fip->fnlist->next)
c906108c 3264 {
c5aa993b
JM
3265 --n; /* Circumvent Sun3 compiler bug */
3266 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
c906108c
SS
3267 }
3268 return 1;
3269}
3270
c906108c
SS
3271/* Create the vector of fields, and record how big it is.
3272 We need this info to record proper virtual function table information
3273 for this class's virtual functions. */
3274
3275static int
aa1ee363 3276attach_fields_to_type (struct field_info *fip, struct type *type,
fba45db2 3277 struct objfile *objfile)
c906108c 3278{
52f0bd74
AC
3279 int nfields = 0;
3280 int non_public_fields = 0;
3281 struct nextfield *scan;
c906108c
SS
3282
3283 /* Count up the number of fields that we have, as well as taking note of
3284 whether or not there are any non-public fields, which requires us to
3285 allocate and build the private_field_bits and protected_field_bits
3286 bitfields. */
3287
c5aa993b 3288 for (scan = fip->list; scan != NULL; scan = scan->next)
c906108c
SS
3289 {
3290 nfields++;
c5aa993b 3291 if (scan->visibility != VISIBILITY_PUBLIC)
c906108c
SS
3292 {
3293 non_public_fields++;
3294 }
3295 }
3296
3297 /* Now we know how many fields there are, and whether or not there are any
3298 non-public fields. Record the field count, allocate space for the
3299 array of fields, and create blank visibility bitfields if necessary. */
3300
3301 TYPE_NFIELDS (type) = nfields;
3302 TYPE_FIELDS (type) = (struct field *)
3303 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3304 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3305
3306 if (non_public_fields)
3307 {
3308 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3309
3310 TYPE_FIELD_PRIVATE_BITS (type) =
3311 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3312 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3313
3314 TYPE_FIELD_PROTECTED_BITS (type) =
3315 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3316 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3317
3318 TYPE_FIELD_IGNORE_BITS (type) =
3319 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3320 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3321 }
3322
3323 /* Copy the saved-up fields into the field vector. Start from the head
3324 of the list, adding to the tail of the field array, so that they end
3325 up in the same order in the array in which they were added to the list. */
3326
3327 while (nfields-- > 0)
3328 {
c5aa993b
JM
3329 TYPE_FIELD (type, nfields) = fip->list->field;
3330 switch (fip->list->visibility)
c906108c 3331 {
c5aa993b
JM
3332 case VISIBILITY_PRIVATE:
3333 SET_TYPE_FIELD_PRIVATE (type, nfields);
3334 break;
c906108c 3335
c5aa993b
JM
3336 case VISIBILITY_PROTECTED:
3337 SET_TYPE_FIELD_PROTECTED (type, nfields);
3338 break;
c906108c 3339
c5aa993b
JM
3340 case VISIBILITY_IGNORE:
3341 SET_TYPE_FIELD_IGNORE (type, nfields);
3342 break;
c906108c 3343
c5aa993b
JM
3344 case VISIBILITY_PUBLIC:
3345 break;
c906108c 3346
c5aa993b
JM
3347 default:
3348 /* Unknown visibility. Complain and treat it as public. */
3349 {
e2e0b3e5 3350 complaint (&symfile_complaints, _("Unknown visibility `%c' for field"),
23136709 3351 fip->list->visibility);
c5aa993b
JM
3352 }
3353 break;
c906108c 3354 }
c5aa993b 3355 fip->list = fip->list->next;
c906108c
SS
3356 }
3357 return 1;
3358}
3359
2ae1c2d2 3360
2ae1c2d2
JB
3361/* Complain that the compiler has emitted more than one definition for the
3362 structure type TYPE. */
3363static void
3364complain_about_struct_wipeout (struct type *type)
3365{
3366 char *name = "";
3367 char *kind = "";
3368
3369 if (TYPE_TAG_NAME (type))
3370 {
3371 name = TYPE_TAG_NAME (type);
3372 switch (TYPE_CODE (type))
3373 {
3374 case TYPE_CODE_STRUCT: kind = "struct "; break;
3375 case TYPE_CODE_UNION: kind = "union "; break;
3376 case TYPE_CODE_ENUM: kind = "enum "; break;
3377 default: kind = "";
3378 }
3379 }
3380 else if (TYPE_NAME (type))
3381 {
3382 name = TYPE_NAME (type);
3383 kind = "";
3384 }
3385 else
3386 {
3387 name = "<unknown>";
3388 kind = "";
3389 }
3390
23136709 3391 complaint (&symfile_complaints,
e2e0b3e5 3392 _("struct/union type gets multiply defined: %s%s"), kind, name);
2ae1c2d2
JB
3393}
3394
621791b8
PM
3395/* Set the length for all variants of a same main_type, which are
3396 connected in the closed chain.
3397
3398 This is something that needs to be done when a type is defined *after*
3399 some cross references to this type have already been read. Consider
3400 for instance the following scenario where we have the following two
3401 stabs entries:
3402
3403 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3404 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3405
3406 A stubbed version of type dummy is created while processing the first
3407 stabs entry. The length of that type is initially set to zero, since
3408 it is unknown at this point. Also, a "constant" variation of type
3409 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3410 the stabs line).
3411
3412 The second stabs entry allows us to replace the stubbed definition
3413 with the real definition. However, we still need to adjust the length
3414 of the "constant" variation of that type, as its length was left
3415 untouched during the main type replacement... */
3416
3417static void
9e69f3b6 3418set_length_in_type_chain (struct type *type)
621791b8
PM
3419{
3420 struct type *ntype = TYPE_CHAIN (type);
3421
3422 while (ntype != type)
3423 {
3424 if (TYPE_LENGTH(ntype) == 0)
3425 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3426 else
3427 complain_about_struct_wipeout (ntype);
3428 ntype = TYPE_CHAIN (ntype);
3429 }
3430}
2ae1c2d2 3431
c906108c
SS
3432/* Read the description of a structure (or union type) and return an object
3433 describing the type.
3434
3435 PP points to a character pointer that points to the next unconsumed token
3436 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3437 *PP will point to "4a:1,0,32;;".
3438
3439 TYPE points to an incomplete type that needs to be filled in.
3440
3441 OBJFILE points to the current objfile from which the stabs information is
3442 being read. (Note that it is redundant in that TYPE also contains a pointer
3443 to this same objfile, so it might be a good idea to eliminate it. FIXME).
c5aa993b 3444 */
c906108c
SS
3445
3446static struct type *
2ae1c2d2
JB
3447read_struct_type (char **pp, struct type *type, enum type_code type_code,
3448 struct objfile *objfile)
c906108c
SS
3449{
3450 struct cleanup *back_to;
3451 struct field_info fi;
3452
3453 fi.list = NULL;
3454 fi.fnlist = NULL;
3455
2ae1c2d2
JB
3456 /* When describing struct/union/class types in stabs, G++ always drops
3457 all qualifications from the name. So if you've got:
3458 struct A { ... struct B { ... }; ... };
3459 then G++ will emit stabs for `struct A::B' that call it simply
3460 `struct B'. Obviously, if you've got a real top-level definition for
3461 `struct B', or other nested definitions, this is going to cause
3462 problems.
3463
3464 Obviously, GDB can't fix this by itself, but it can at least avoid
3465 scribbling on existing structure type objects when new definitions
3466 appear. */
3467 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3468 || TYPE_STUB (type)))
3469 {
3470 complain_about_struct_wipeout (type);
3471
3472 /* It's probably best to return the type unchanged. */
3473 return type;
3474 }
3475
c906108c
SS
3476 back_to = make_cleanup (null_cleanup, 0);
3477
3478 INIT_CPLUS_SPECIFIC (type);
2ae1c2d2 3479 TYPE_CODE (type) = type_code;
876cecd0 3480 TYPE_STUB (type) = 0;
c906108c
SS
3481
3482 /* First comes the total size in bytes. */
3483
3484 {
3485 int nbits;
94e10a22 3486 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
c906108c
SS
3487 if (nbits != 0)
3488 return error_type (pp, objfile);
621791b8 3489 set_length_in_type_chain (type);
c906108c
SS
3490 }
3491
3492 /* Now read the baseclasses, if any, read the regular C struct or C++
3493 class member fields, attach the fields to the type, read the C++
3494 member functions, attach them to the type, and then read any tilde
3495 field (baseclass specifier for the class holding the main vtable). */
3496
3497 if (!read_baseclasses (&fi, pp, type, objfile)
3498 || !read_struct_fields (&fi, pp, type, objfile)
3499 || !attach_fields_to_type (&fi, type, objfile)
3500 || !read_member_functions (&fi, pp, type, objfile)
3501 || !attach_fn_fields_to_type (&fi, type)
3502 || !read_tilde_fields (&fi, pp, type, objfile))
3503 {
3504 type = error_type (pp, objfile);
3505 }
3506
3507 do_cleanups (back_to);
3508 return (type);
3509}
3510
3511/* Read a definition of an array type,
3512 and create and return a suitable type object.
3513 Also creates a range type which represents the bounds of that
3514 array. */
3515
3516static struct type *
aa1ee363 3517read_array_type (char **pp, struct type *type,
fba45db2 3518 struct objfile *objfile)
c906108c
SS
3519{
3520 struct type *index_type, *element_type, *range_type;
3521 int lower, upper;
3522 int adjustable = 0;
3523 int nbits;
3524
3525 /* Format of an array type:
3526 "ar<index type>;lower;upper;<array_contents_type>".
3527 OS9000: "arlower,upper;<array_contents_type>".
3528
3529 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3530 for these, produce a type like float[][]. */
3531
c906108c
SS
3532 {
3533 index_type = read_type (pp, objfile);
3534 if (**pp != ';')
3535 /* Improper format of array type decl. */
3536 return error_type (pp, objfile);
3537 ++*pp;
3538 }
3539
3540 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3541 {
3542 (*pp)++;
3543 adjustable = 1;
3544 }
94e10a22 3545 lower = read_huge_number (pp, ';', &nbits, 0);
cdecafbe 3546
c906108c
SS
3547 if (nbits != 0)
3548 return error_type (pp, objfile);
3549
3550 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3551 {
3552 (*pp)++;
3553 adjustable = 1;
3554 }
94e10a22 3555 upper = read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
3556 if (nbits != 0)
3557 return error_type (pp, objfile);
c5aa993b 3558
c906108c
SS
3559 element_type = read_type (pp, objfile);
3560
3561 if (adjustable)
3562 {
3563 lower = 0;
3564 upper = -1;
3565 }
3566
3567 range_type =
3568 create_range_type ((struct type *) NULL, index_type, lower, upper);
3569 type = create_array_type (type, element_type, range_type);
3570
3571 return type;
3572}
3573
3574
3575/* Read a definition of an enumeration type,
3576 and create and return a suitable type object.
3577 Also defines the symbols that represent the values of the type. */
3578
3579static struct type *
aa1ee363 3580read_enum_type (char **pp, struct type *type,
fba45db2 3581 struct objfile *objfile)
c906108c 3582{
5e2b427d 3583 struct gdbarch *gdbarch = get_objfile_arch (objfile);
52f0bd74 3584 char *p;
c906108c 3585 char *name;
52f0bd74
AC
3586 long n;
3587 struct symbol *sym;
c906108c
SS
3588 int nsyms = 0;
3589 struct pending **symlist;
3590 struct pending *osyms, *syms;
3591 int o_nsyms;
3592 int nbits;
3593 int unsigned_enum = 1;
3594
3595#if 0
3596 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3597 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3598 to do? For now, force all enum values to file scope. */
3599 if (within_function)
3600 symlist = &local_symbols;
3601 else
3602#endif
3603 symlist = &file_symbols;
3604 osyms = *symlist;
3605 o_nsyms = osyms ? osyms->nsyms : 0;
3606
c906108c
SS
3607 /* The aix4 compiler emits an extra field before the enum members;
3608 my guess is it's a type of some sort. Just ignore it. */
3609 if (**pp == '-')
3610 {
3611 /* Skip over the type. */
3612 while (**pp != ':')
c5aa993b 3613 (*pp)++;
c906108c
SS
3614
3615 /* Skip over the colon. */
3616 (*pp)++;
3617 }
3618
3619 /* Read the value-names and their values.
3620 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3621 A semicolon or comma instead of a NAME means the end. */
3622 while (**pp && **pp != ';' && **pp != ',')
3623 {
3624 STABS_CONTINUE (pp, objfile);
3625 p = *pp;
c5aa993b
JM
3626 while (*p != ':')
3627 p++;
4a146b47 3628 name = obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
c906108c 3629 *pp = p + 1;
94e10a22 3630 n = read_huge_number (pp, ',', &nbits, 0);
c906108c
SS
3631 if (nbits != 0)
3632 return error_type (pp, objfile);
3633
3634 sym = (struct symbol *)
4a146b47 3635 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
c906108c 3636 memset (sym, 0, sizeof (struct symbol));
3567439c 3637 SYMBOL_SET_LINKAGE_NAME (sym, name);
c5aa993b 3638 SYMBOL_LANGUAGE (sym) = current_subfile->language;
c906108c 3639 SYMBOL_CLASS (sym) = LOC_CONST;
176620f1 3640 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
3641 SYMBOL_VALUE (sym) = n;
3642 if (n < 0)
3643 unsigned_enum = 0;
3644 add_symbol_to_list (sym, symlist);
3645 nsyms++;
3646 }
3647
3648 if (**pp == ';')
3649 (*pp)++; /* Skip the semicolon. */
3650
3651 /* Now fill in the fields of the type-structure. */
3652
5e2b427d 3653 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
621791b8 3654 set_length_in_type_chain (type);
c906108c 3655 TYPE_CODE (type) = TYPE_CODE_ENUM;
876cecd0 3656 TYPE_STUB (type) = 0;
c906108c 3657 if (unsigned_enum)
876cecd0 3658 TYPE_UNSIGNED (type) = 1;
c906108c
SS
3659 TYPE_NFIELDS (type) = nsyms;
3660 TYPE_FIELDS (type) = (struct field *)
3661 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3662 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3663
3664 /* Find the symbols for the values and put them into the type.
3665 The symbols can be found in the symlist that we put them on
3666 to cause them to be defined. osyms contains the old value
3667 of that symlist; everything up to there was defined by us. */
3668 /* Note that we preserve the order of the enum constants, so
3669 that in something like "enum {FOO, LAST_THING=FOO}" we print
3670 FOO, not LAST_THING. */
3671
3672 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3673 {
3674 int last = syms == osyms ? o_nsyms : 0;
3675 int j = syms->nsyms;
3676 for (; --j >= last; --n)
3677 {
3678 struct symbol *xsym = syms->symbol[j];
3679 SYMBOL_TYPE (xsym) = type;
3567439c 3680 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
c906108c
SS
3681 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
3682 TYPE_FIELD_BITSIZE (type, n) = 0;
3683 }
3684 if (syms == osyms)
3685 break;
3686 }
3687
3688 return type;
3689}
3690
3691/* Sun's ACC uses a somewhat saner method for specifying the builtin
3692 typedefs in every file (for int, long, etc):
3693
c5aa993b
JM
3694 type = b <signed> <width> <format type>; <offset>; <nbits>
3695 signed = u or s.
3696 optional format type = c or b for char or boolean.
3697 offset = offset from high order bit to start bit of type.
3698 width is # bytes in object of this type, nbits is # bits in type.
c906108c
SS
3699
3700 The width/offset stuff appears to be for small objects stored in
3701 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3702 FIXME. */
3703
3704static struct type *
35a2f538 3705read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
c906108c
SS
3706{
3707 int type_bits;
3708 int nbits;
3709 int signed_type;
3710 enum type_code code = TYPE_CODE_INT;
3711
3712 switch (**pp)
3713 {
c5aa993b
JM
3714 case 's':
3715 signed_type = 1;
3716 break;
3717 case 'u':
3718 signed_type = 0;
3719 break;
3720 default:
3721 return error_type (pp, objfile);
c906108c
SS
3722 }
3723 (*pp)++;
3724
3725 /* For some odd reason, all forms of char put a c here. This is strange
3726 because no other type has this honor. We can safely ignore this because
3727 we actually determine 'char'acterness by the number of bits specified in
3728 the descriptor.
3729 Boolean forms, e.g Fortran logical*X, put a b here. */
3730
3731 if (**pp == 'c')
3732 (*pp)++;
3733 else if (**pp == 'b')
3734 {
3735 code = TYPE_CODE_BOOL;
3736 (*pp)++;
3737 }
3738
3739 /* The first number appears to be the number of bytes occupied
3740 by this type, except that unsigned short is 4 instead of 2.
3741 Since this information is redundant with the third number,
3742 we will ignore it. */
94e10a22 3743 read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
3744 if (nbits != 0)
3745 return error_type (pp, objfile);
3746
3747 /* The second number is always 0, so ignore it too. */
94e10a22 3748 read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
3749 if (nbits != 0)
3750 return error_type (pp, objfile);
3751
3752 /* The third number is the number of bits for this type. */
94e10a22 3753 type_bits = read_huge_number (pp, 0, &nbits, 0);
c906108c
SS
3754 if (nbits != 0)
3755 return error_type (pp, objfile);
3756 /* The type *should* end with a semicolon. If it are embedded
3757 in a larger type the semicolon may be the only way to know where
3758 the type ends. If this type is at the end of the stabstring we
3759 can deal with the omitted semicolon (but we don't have to like
3760 it). Don't bother to complain(), Sun's compiler omits the semicolon
3761 for "void". */
3762 if (**pp == ';')
3763 ++(*pp);
3764
3765 if (type_bits == 0)
3766 return init_type (TYPE_CODE_VOID, 1,
c5aa993b 3767 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
c906108c
SS
3768 objfile);
3769 else
3770 return init_type (code,
3771 type_bits / TARGET_CHAR_BIT,
c5aa993b 3772 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
c906108c
SS
3773 objfile);
3774}
3775
3776static struct type *
35a2f538 3777read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
c906108c
SS
3778{
3779 int nbits;
3780 int details;
3781 int nbytes;
f65ca430 3782 struct type *rettype;
c906108c
SS
3783
3784 /* The first number has more details about the type, for example
3785 FN_COMPLEX. */
94e10a22 3786 details = read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
3787 if (nbits != 0)
3788 return error_type (pp, objfile);
3789
3790 /* The second number is the number of bytes occupied by this type */
94e10a22 3791 nbytes = read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
3792 if (nbits != 0)
3793 return error_type (pp, objfile);
3794
3795 if (details == NF_COMPLEX || details == NF_COMPLEX16
3796 || details == NF_COMPLEX32)
f65ca430
DJ
3797 {
3798 rettype = init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
3799 TYPE_TARGET_TYPE (rettype)
3800 = init_type (TYPE_CODE_FLT, nbytes / 2, 0, NULL, objfile);
3801 return rettype;
3802 }
c906108c
SS
3803
3804 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3805}
3806
3807/* Read a number from the string pointed to by *PP.
3808 The value of *PP is advanced over the number.
3809 If END is nonzero, the character that ends the
3810 number must match END, or an error happens;
3811 and that character is skipped if it does match.
3812 If END is zero, *PP is left pointing to that character.
3813
94e10a22
JG
3814 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3815 the number is represented in an octal representation, assume that
3816 it is represented in a 2's complement representation with a size of
3817 TWOS_COMPLEMENT_BITS.
3818
c906108c
SS
3819 If the number fits in a long, set *BITS to 0 and return the value.
3820 If not, set *BITS to be the number of bits in the number and return 0.
3821
3822 If encounter garbage, set *BITS to -1 and return 0. */
3823
c2d11a7d 3824static long
94e10a22 3825read_huge_number (char **pp, int end, int *bits, int twos_complement_bits)
c906108c
SS
3826{
3827 char *p = *pp;
3828 int sign = 1;
51e9e0d4 3829 int sign_bit = 0;
c2d11a7d 3830 long n = 0;
c906108c
SS
3831 int radix = 10;
3832 char overflow = 0;
3833 int nbits = 0;
3834 int c;
c2d11a7d 3835 long upper_limit;
a2699720 3836 int twos_complement_representation = 0;
c5aa993b 3837
c906108c
SS
3838 if (*p == '-')
3839 {
3840 sign = -1;
3841 p++;
3842 }
3843
3844 /* Leading zero means octal. GCC uses this to output values larger
3845 than an int (because that would be hard in decimal). */
3846 if (*p == '0')
3847 {
3848 radix = 8;
3849 p++;
3850 }
3851
a2699720
PA
3852 /* Skip extra zeros. */
3853 while (*p == '0')
3854 p++;
3855
3856 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3857 {
3858 /* Octal, possibly signed. Check if we have enough chars for a
3859 negative number. */
3860
3861 size_t len;
3862 char *p1 = p;
3863 while ((c = *p1) >= '0' && c < '8')
3864 p1++;
3865
3866 len = p1 - p;
3867 if (len > twos_complement_bits / 3
3868 || (twos_complement_bits % 3 == 0 && len == twos_complement_bits / 3))
3869 {
3870 /* Ok, we have enough characters for a signed value, check
3871 for signness by testing if the sign bit is set. */
3872 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3873 c = *p - '0';
3874 if (c & (1 << sign_bit))
3875 {
3876 /* Definitely signed. */
3877 twos_complement_representation = 1;
3878 sign = -1;
3879 }
3880 }
3881 }
3882
1b831c93 3883 upper_limit = LONG_MAX / radix;
c906108c
SS
3884
3885 while ((c = *p++) >= '0' && c < ('0' + radix))
3886 {
3887 if (n <= upper_limit)
94e10a22
JG
3888 {
3889 if (twos_complement_representation)
3890 {
a2699720
PA
3891 /* Octal, signed, twos complement representation. In
3892 this case, n is the corresponding absolute value. */
3893 if (n == 0)
3894 {
3895 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3896 n = -sn;
3897 }
94e10a22
JG
3898 else
3899 {
a2699720
PA
3900 n *= radix;
3901 n -= c - '0';
94e10a22 3902 }
94e10a22
JG
3903 }
3904 else
3905 {
3906 /* unsigned representation */
3907 n *= radix;
3908 n += c - '0'; /* FIXME this overflows anyway */
3909 }
3910 }
c906108c 3911 else
94e10a22 3912 overflow = 1;
c5aa993b 3913
c906108c 3914 /* This depends on large values being output in octal, which is
c5aa993b 3915 what GCC does. */
c906108c
SS
3916 if (radix == 8)
3917 {
3918 if (nbits == 0)
3919 {
3920 if (c == '0')
3921 /* Ignore leading zeroes. */
3922 ;
3923 else if (c == '1')
3924 nbits = 1;
3925 else if (c == '2' || c == '3')
3926 nbits = 2;
3927 else
3928 nbits = 3;
3929 }
3930 else
3931 nbits += 3;
3932 }
3933 }
3934 if (end)
3935 {
3936 if (c && c != end)
3937 {
3938 if (bits != NULL)
3939 *bits = -1;
3940 return 0;
3941 }
3942 }
3943 else
3944 --p;
3945
a2699720
PA
3946 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
3947 {
3948 /* We were supposed to parse a number with maximum
3949 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
3950 if (bits != NULL)
3951 *bits = -1;
3952 return 0;
3953 }
3954
c906108c
SS
3955 *pp = p;
3956 if (overflow)
3957 {
3958 if (nbits == 0)
3959 {
3960 /* Large decimal constants are an error (because it is hard to
3961 count how many bits are in them). */
3962 if (bits != NULL)
3963 *bits = -1;
3964 return 0;
3965 }
c5aa993b 3966
c906108c 3967 /* -0x7f is the same as 0x80. So deal with it by adding one to
a2699720
PA
3968 the number of bits. Two's complement represention octals
3969 can't have a '-' in front. */
3970 if (sign == -1 && !twos_complement_representation)
c906108c
SS
3971 ++nbits;
3972 if (bits)
3973 *bits = nbits;
3974 }
3975 else
3976 {
3977 if (bits)
3978 *bits = 0;
a2699720 3979 return n * sign;
c906108c
SS
3980 }
3981 /* It's *BITS which has the interesting information. */
3982 return 0;
3983}
3984
3985static struct type *
94e10a22
JG
3986read_range_type (char **pp, int typenums[2], int type_size,
3987 struct objfile *objfile)
c906108c 3988{
5e2b427d 3989 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
3990 char *orig_pp = *pp;
3991 int rangenums[2];
c2d11a7d 3992 long n2, n3;
c906108c
SS
3993 int n2bits, n3bits;
3994 int self_subrange;
3995 struct type *result_type;
3996 struct type *index_type = NULL;
3997
3998 /* First comes a type we are a subrange of.
3999 In C it is usually 0, 1 or the type being defined. */
4000 if (read_type_number (pp, rangenums) != 0)
4001 return error_type (pp, objfile);
4002 self_subrange = (rangenums[0] == typenums[0] &&
4003 rangenums[1] == typenums[1]);
4004
4005 if (**pp == '=')
4006 {
4007 *pp = orig_pp;
4008 index_type = read_type (pp, objfile);
4009 }
4010
4011 /* A semicolon should now follow; skip it. */
4012 if (**pp == ';')
4013 (*pp)++;
4014
4015 /* The remaining two operands are usually lower and upper bounds
4016 of the range. But in some special cases they mean something else. */
94e10a22
JG
4017 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4018 n3 = read_huge_number (pp, ';', &n3bits, type_size);
c906108c
SS
4019
4020 if (n2bits == -1 || n3bits == -1)
4021 return error_type (pp, objfile);
4022
4023 if (index_type)
4024 goto handle_true_range;
4025
4026 /* If limits are huge, must be large integral type. */
4027 if (n2bits != 0 || n3bits != 0)
4028 {
4029 char got_signed = 0;
4030 char got_unsigned = 0;
4031 /* Number of bits in the type. */
4032 int nbits = 0;
4033
94e10a22
JG
4034 /* If a type size attribute has been specified, the bounds of
4035 the range should fit in this size. If the lower bounds needs
4036 more bits than the upper bound, then the type is signed. */
4037 if (n2bits <= type_size && n3bits <= type_size)
4038 {
4039 if (n2bits == type_size && n2bits > n3bits)
4040 got_signed = 1;
4041 else
4042 got_unsigned = 1;
4043 nbits = type_size;
4044 }
c906108c 4045 /* Range from 0 to <large number> is an unsigned large integral type. */
94e10a22 4046 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
c906108c
SS
4047 {
4048 got_unsigned = 1;
4049 nbits = n3bits;
4050 }
4051 /* Range from <large number> to <large number>-1 is a large signed
c5aa993b
JM
4052 integral type. Take care of the case where <large number> doesn't
4053 fit in a long but <large number>-1 does. */
c906108c
SS
4054 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4055 || (n2bits != 0 && n3bits == 0
c2d11a7d
JM
4056 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4057 && n3 == LONG_MAX))
c906108c
SS
4058 {
4059 got_signed = 1;
4060 nbits = n2bits;
4061 }
4062
4063 if (got_signed || got_unsigned)
4064 {
4065 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
4066 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
4067 objfile);
4068 }
4069 else
4070 return error_type (pp, objfile);
4071 }
4072
4073 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4074 if (self_subrange && n2 == 0 && n3 == 0)
4075 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
4076
4077 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4078 is the width in bytes.
4079
4080 Fortran programs appear to use this for complex types also. To
4081 distinguish between floats and complex, g77 (and others?) seem
4082 to use self-subranges for the complexes, and subranges of int for
4083 the floats.
4084
4085 Also note that for complexes, g77 sets n2 to the size of one of
4086 the member floats, not the whole complex beast. My guess is that
4087 this was to work well with pre-COMPLEX versions of gdb. */
4088
4089 if (n3 == 0 && n2 > 0)
4090 {
1300f5dd
JB
4091 struct type *float_type
4092 = init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
4093
c906108c
SS
4094 if (self_subrange)
4095 {
1300f5dd
JB
4096 struct type *complex_type =
4097 init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
4098 TYPE_TARGET_TYPE (complex_type) = float_type;
4099 return complex_type;
c906108c
SS
4100 }
4101 else
1300f5dd 4102 return float_type;
c906108c
SS
4103 }
4104
a2699720 4105 /* If the upper bound is -1, it must really be an unsigned integral. */
c906108c
SS
4106
4107 else if (n2 == 0 && n3 == -1)
4108 {
a2699720
PA
4109 int bits = type_size;
4110 if (bits <= 0)
4111 {
4112 /* We don't know its size. It is unsigned int or unsigned
4113 long. GCC 2.3.3 uses this for long long too, but that is
4114 just a GDB 3.5 compatibility hack. */
5e2b427d 4115 bits = gdbarch_int_bit (gdbarch);
a2699720
PA
4116 }
4117
4118 return init_type (TYPE_CODE_INT, bits / TARGET_CHAR_BIT,
c906108c
SS
4119 TYPE_FLAG_UNSIGNED, NULL, objfile);
4120 }
4121
4122 /* Special case: char is defined (Who knows why) as a subrange of
4123 itself with range 0-127. */
4124 else if (self_subrange && n2 == 0 && n3 == 127)
973ccf8b 4125 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_NOSIGN, NULL, objfile);
c906108c 4126
c906108c
SS
4127 /* We used to do this only for subrange of self or subrange of int. */
4128 else if (n2 == 0)
4129 {
a0b3c4fd
JM
4130 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4131 "unsigned long", and we already checked for that,
4132 so don't need to test for it here. */
4133
c906108c
SS
4134 if (n3 < 0)
4135 /* n3 actually gives the size. */
c5aa993b 4136 return init_type (TYPE_CODE_INT, -n3, TYPE_FLAG_UNSIGNED,
c906108c 4137 NULL, objfile);
c906108c 4138
7be570e7 4139 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
a0b3c4fd
JM
4140 unsigned n-byte integer. But do require n to be a power of
4141 two; we don't want 3- and 5-byte integers flying around. */
4142 {
4143 int bytes;
4144 unsigned long bits;
4145
4146 bits = n3;
4147 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4148 bits >>= 8;
4149 if (bits == 0
4150 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4151 return init_type (TYPE_CODE_INT, bytes, TYPE_FLAG_UNSIGNED, NULL,
4152 objfile);
4153 }
c906108c
SS
4154 }
4155 /* I think this is for Convex "long long". Since I don't know whether
4156 Convex sets self_subrange, I also accept that particular size regardless
4157 of self_subrange. */
4158 else if (n3 == 0 && n2 < 0
4159 && (self_subrange
9a76efb6 4160 || n2 == -gdbarch_long_long_bit
5e2b427d 4161 (gdbarch) / TARGET_CHAR_BIT))
c5aa993b
JM
4162 return init_type (TYPE_CODE_INT, -n2, 0, NULL, objfile);
4163 else if (n2 == -n3 - 1)
c906108c
SS
4164 {
4165 if (n3 == 0x7f)
4166 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
4167 if (n3 == 0x7fff)
4168 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
4169 if (n3 == 0x7fffffff)
4170 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
4171 }
4172
4173 /* We have a real range type on our hands. Allocate space and
4174 return a real pointer. */
c5aa993b 4175handle_true_range:
c906108c
SS
4176
4177 if (self_subrange)
46bf5051 4178 index_type = objfile_type (objfile)->builtin_int;
c906108c 4179 else
46bf5051 4180 index_type = *dbx_lookup_type (rangenums, objfile);
c906108c
SS
4181 if (index_type == NULL)
4182 {
4183 /* Does this actually ever happen? Is that why we are worrying
4184 about dealing with it rather than just calling error_type? */
4185
23136709 4186 complaint (&symfile_complaints,
e2e0b3e5 4187 _("base type %d of range type is not defined"), rangenums[1]);
5e2b427d 4188
46bf5051 4189 index_type = objfile_type (objfile)->builtin_int;
c906108c
SS
4190 }
4191
4192 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
4193 return (result_type);
4194}
4195
4196/* Read in an argument list. This is a list of types, separated by commas
0a029df5
DJ
4197 and terminated with END. Return the list of types read in, or NULL
4198 if there is an error. */
c906108c 4199
ad2f7632
DJ
4200static struct field *
4201read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
4202 int *varargsp)
c906108c
SS
4203{
4204 /* FIXME! Remove this arbitrary limit! */
ad2f7632
DJ
4205 struct type *types[1024]; /* allow for fns of 1023 parameters */
4206 int n = 0, i;
4207 struct field *rval;
c906108c
SS
4208
4209 while (**pp != end)
4210 {
4211 if (**pp != ',')
4212 /* Invalid argument list: no ','. */
0a029df5 4213 return NULL;
c906108c
SS
4214 (*pp)++;
4215 STABS_CONTINUE (pp, objfile);
4216 types[n++] = read_type (pp, objfile);
4217 }
4218 (*pp)++; /* get past `end' (the ':' character) */
4219
d24d8548
JK
4220 if (n == 0)
4221 {
4222 /* We should read at least the THIS parameter here. Some broken stabs
4223 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4224 have been present ";-16,(0,43)" reference instead. This way the
4225 excessive ";" marker prematurely stops the parameters parsing. */
4226
4227 complaint (&symfile_complaints, _("Invalid (empty) method arguments"));
4228 *varargsp = 0;
4229 }
4230 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
ad2f7632 4231 *varargsp = 1;
c906108c
SS
4232 else
4233 {
ad2f7632
DJ
4234 n--;
4235 *varargsp = 0;
c906108c 4236 }
ad2f7632
DJ
4237
4238 rval = (struct field *) xmalloc (n * sizeof (struct field));
4239 memset (rval, 0, n * sizeof (struct field));
4240 for (i = 0; i < n; i++)
4241 rval[i].type = types[i];
4242 *nargsp = n;
c906108c
SS
4243 return rval;
4244}
4245\f
4246/* Common block handling. */
4247
4248/* List of symbols declared since the last BCOMM. This list is a tail
4249 of local_symbols. When ECOMM is seen, the symbols on the list
4250 are noted so their proper addresses can be filled in later,
4251 using the common block base address gotten from the assembler
4252 stabs. */
4253
4254static struct pending *common_block;
4255static int common_block_i;
4256
4257/* Name of the current common block. We get it from the BCOMM instead of the
4258 ECOMM to match IBM documentation (even though IBM puts the name both places
4259 like everyone else). */
4260static char *common_block_name;
4261
4262/* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4263 to remain after this function returns. */
4264
4265void
fba45db2 4266common_block_start (char *name, struct objfile *objfile)
c906108c
SS
4267{
4268 if (common_block_name != NULL)
4269 {
23136709 4270 complaint (&symfile_complaints,
e2e0b3e5 4271 _("Invalid symbol data: common block within common block"));
c906108c
SS
4272 }
4273 common_block = local_symbols;
4274 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4275 common_block_name = obsavestring (name, strlen (name),
4a146b47 4276 &objfile->objfile_obstack);
c906108c
SS
4277}
4278
4279/* Process a N_ECOMM symbol. */
4280
4281void
fba45db2 4282common_block_end (struct objfile *objfile)
c906108c
SS
4283{
4284 /* Symbols declared since the BCOMM are to have the common block
4285 start address added in when we know it. common_block and
4286 common_block_i point to the first symbol after the BCOMM in
4287 the local_symbols list; copy the list and hang it off the
4288 symbol for the common block name for later fixup. */
4289 int i;
4290 struct symbol *sym;
4291 struct pending *new = 0;
4292 struct pending *next;
4293 int j;
4294
4295 if (common_block_name == NULL)
4296 {
e2e0b3e5 4297 complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
c906108c
SS
4298 return;
4299 }
4300
c5aa993b 4301 sym = (struct symbol *)
4a146b47 4302 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
c906108c 4303 memset (sym, 0, sizeof (struct symbol));
4a146b47 4304 /* Note: common_block_name already saved on objfile_obstack */
3567439c 4305 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
c906108c
SS
4306 SYMBOL_CLASS (sym) = LOC_BLOCK;
4307
4308 /* Now we copy all the symbols which have been defined since the BCOMM. */
4309
4310 /* Copy all the struct pendings before common_block. */
4311 for (next = local_symbols;
4312 next != NULL && next != common_block;
4313 next = next->next)
4314 {
4315 for (j = 0; j < next->nsyms; j++)
4316 add_symbol_to_list (next->symbol[j], &new);
4317 }
4318
4319 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4320 NULL, it means copy all the local symbols (which we already did
4321 above). */
4322
4323 if (common_block != NULL)
4324 for (j = common_block_i; j < common_block->nsyms; j++)
4325 add_symbol_to_list (common_block->symbol[j], &new);
4326
4327 SYMBOL_TYPE (sym) = (struct type *) new;
4328
4329 /* Should we be putting local_symbols back to what it was?
4330 Does it matter? */
4331
3567439c 4332 i = hashname (SYMBOL_LINKAGE_NAME (sym));
c906108c
SS
4333 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4334 global_sym_chain[i] = sym;
4335 common_block_name = NULL;
4336}
4337
4338/* Add a common block's start address to the offset of each symbol
4339 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4340 the common block name). */
4341
4342static void
fba45db2 4343fix_common_block (struct symbol *sym, int valu)
c906108c
SS
4344{
4345 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
c5aa993b 4346 for (; next; next = next->next)
c906108c 4347 {
aa1ee363 4348 int j;
c906108c
SS
4349 for (j = next->nsyms - 1; j >= 0; j--)
4350 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4351 }
4352}
c5aa993b 4353\f
c906108c
SS
4354
4355
bf362611
JB
4356/* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4357 See add_undefined_type for more details. */
c906108c 4358
a7a48797 4359static void
bf362611
JB
4360add_undefined_type_noname (struct type *type, int typenums[2])
4361{
4362 struct nat nat;
4363
4364 nat.typenums[0] = typenums [0];
4365 nat.typenums[1] = typenums [1];
4366 nat.type = type;
4367
4368 if (noname_undefs_length == noname_undefs_allocated)
4369 {
4370 noname_undefs_allocated *= 2;
4371 noname_undefs = (struct nat *)
4372 xrealloc ((char *) noname_undefs,
4373 noname_undefs_allocated * sizeof (struct nat));
4374 }
4375 noname_undefs[noname_undefs_length++] = nat;
4376}
4377
4378/* Add TYPE to the UNDEF_TYPES vector.
4379 See add_undefined_type for more details. */
4380
4381static void
4382add_undefined_type_1 (struct type *type)
c906108c
SS
4383{
4384 if (undef_types_length == undef_types_allocated)
4385 {
4386 undef_types_allocated *= 2;
4387 undef_types = (struct type **)
4388 xrealloc ((char *) undef_types,
4389 undef_types_allocated * sizeof (struct type *));
4390 }
4391 undef_types[undef_types_length++] = type;
4392}
4393
bf362611
JB
4394/* What about types defined as forward references inside of a small lexical
4395 scope? */
4396/* Add a type to the list of undefined types to be checked through
4397 once this file has been read in.
4398
4399 In practice, we actually maintain two such lists: The first list
4400 (UNDEF_TYPES) is used for types whose name has been provided, and
4401 concerns forward references (eg 'xs' or 'xu' forward references);
4402 the second list (NONAME_UNDEFS) is used for types whose name is
4403 unknown at creation time, because they were referenced through
4404 their type number before the actual type was declared.
4405 This function actually adds the given type to the proper list. */
4406
4407static void
4408add_undefined_type (struct type *type, int typenums[2])
4409{
4410 if (TYPE_TAG_NAME (type) == NULL)
4411 add_undefined_type_noname (type, typenums);
4412 else
4413 add_undefined_type_1 (type);
4414}
4415
4416/* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4417
2c0b251b 4418static void
46bf5051 4419cleanup_undefined_types_noname (struct objfile *objfile)
bf362611
JB
4420{
4421 int i;
4422
4423 for (i = 0; i < noname_undefs_length; i++)
4424 {
4425 struct nat nat = noname_undefs[i];
4426 struct type **type;
4427
46bf5051 4428 type = dbx_lookup_type (nat.typenums, objfile);
bf362611 4429 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
56953f80
JB
4430 {
4431 /* The instance flags of the undefined type are still unset,
4432 and needs to be copied over from the reference type.
4433 Since replace_type expects them to be identical, we need
4434 to set these flags manually before hand. */
4435 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4436 replace_type (nat.type, *type);
4437 }
bf362611
JB
4438 }
4439
4440 noname_undefs_length = 0;
4441}
4442
c906108c
SS
4443/* Go through each undefined type, see if it's still undefined, and fix it
4444 up if possible. We have two kinds of undefined types:
4445
4446 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
c5aa993b
JM
4447 Fix: update array length using the element bounds
4448 and the target type's length.
c906108c 4449 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
c5aa993b
JM
4450 yet defined at the time a pointer to it was made.
4451 Fix: Do a full lookup on the struct/union tag. */
bf362611 4452
2c0b251b 4453static void
bf362611 4454cleanup_undefined_types_1 (void)
c906108c
SS
4455{
4456 struct type **type;
4457
9e386756
JB
4458 /* Iterate over every undefined type, and look for a symbol whose type
4459 matches our undefined type. The symbol matches if:
4460 1. It is a typedef in the STRUCT domain;
4461 2. It has the same name, and same type code;
4462 3. The instance flags are identical.
4463
4464 It is important to check the instance flags, because we have seen
4465 examples where the debug info contained definitions such as:
4466
4467 "foo_t:t30=B31=xefoo_t:"
4468
4469 In this case, we have created an undefined type named "foo_t" whose
4470 instance flags is null (when processing "xefoo_t"), and then created
4471 another type with the same name, but with different instance flags
4472 ('B' means volatile). I think that the definition above is wrong,
4473 since the same type cannot be volatile and non-volatile at the same
4474 time, but we need to be able to cope with it when it happens. The
4475 approach taken here is to treat these two types as different. */
4476
c906108c
SS
4477 for (type = undef_types; type < undef_types + undef_types_length; type++)
4478 {
4479 switch (TYPE_CODE (*type))
4480 {
4481
c5aa993b
JM
4482 case TYPE_CODE_STRUCT:
4483 case TYPE_CODE_UNION:
4484 case TYPE_CODE_ENUM:
c906108c
SS
4485 {
4486 /* Check if it has been defined since. Need to do this here
4487 as well as in check_typedef to deal with the (legitimate in
4488 C though not C++) case of several types with the same name
4489 in different source files. */
74a9bb82 4490 if (TYPE_STUB (*type))
c906108c
SS
4491 {
4492 struct pending *ppt;
4493 int i;
4494 /* Name of the type, without "struct" or "union" */
4495 char *typename = TYPE_TAG_NAME (*type);
4496
4497 if (typename == NULL)
4498 {
e2e0b3e5 4499 complaint (&symfile_complaints, _("need a type name"));
c906108c
SS
4500 break;
4501 }
4502 for (ppt = file_symbols; ppt; ppt = ppt->next)
4503 {
4504 for (i = 0; i < ppt->nsyms; i++)
4505 {
4506 struct symbol *sym = ppt->symbol[i];
c5aa993b 4507
c906108c 4508 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
176620f1 4509 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
c906108c
SS
4510 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4511 TYPE_CODE (*type))
9e386756
JB
4512 && (TYPE_INSTANCE_FLAGS (*type) ==
4513 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
3567439c 4514 && strcmp (SYMBOL_LINKAGE_NAME (sym),
9e386756 4515 typename) == 0)
13a393b0 4516 replace_type (*type, SYMBOL_TYPE (sym));
c906108c
SS
4517 }
4518 }
4519 }
4520 }
4521 break;
4522
4523 default:
4524 {
23136709 4525 complaint (&symfile_complaints,
e2e0b3e5
AC
4526 _("forward-referenced types left unresolved, "
4527 "type code %d."),
23136709 4528 TYPE_CODE (*type));
c906108c
SS
4529 }
4530 break;
4531 }
4532 }
4533
4534 undef_types_length = 0;
4535}
4536
bf362611
JB
4537/* Try to fix all the undefined types we ecountered while processing
4538 this unit. */
4539
4540void
46bf5051 4541cleanup_undefined_types (struct objfile *objfile)
bf362611
JB
4542{
4543 cleanup_undefined_types_1 ();
46bf5051 4544 cleanup_undefined_types_noname (objfile);
bf362611
JB
4545}
4546
c906108c
SS
4547/* Scan through all of the global symbols defined in the object file,
4548 assigning values to the debugging symbols that need to be assigned
4549 to. Get these symbols from the minimal symbol table. */
4550
4551void
fba45db2 4552scan_file_globals (struct objfile *objfile)
c906108c
SS
4553{
4554 int hash;
4555 struct minimal_symbol *msymbol;
507836c0 4556 struct symbol *sym, *prev;
c906108c
SS
4557 struct objfile *resolve_objfile;
4558
4559 /* SVR4 based linkers copy referenced global symbols from shared
4560 libraries to the main executable.
4561 If we are scanning the symbols for a shared library, try to resolve
4562 them from the minimal symbols of the main executable first. */
4563
4564 if (symfile_objfile && objfile != symfile_objfile)
4565 resolve_objfile = symfile_objfile;
4566 else
4567 resolve_objfile = objfile;
4568
4569 while (1)
4570 {
4571 /* Avoid expensive loop through all minimal symbols if there are
c5aa993b 4572 no unresolved symbols. */
c906108c
SS
4573 for (hash = 0; hash < HASHSIZE; hash++)
4574 {
4575 if (global_sym_chain[hash])
4576 break;
4577 }
4578 if (hash >= HASHSIZE)
4579 return;
4580
3567439c 4581 ALL_OBJFILE_MSYMBOLS (resolve_objfile, msymbol)
c906108c
SS
4582 {
4583 QUIT;
4584
4585 /* Skip static symbols. */
4586 switch (MSYMBOL_TYPE (msymbol))
4587 {
4588 case mst_file_text:
4589 case mst_file_data:
4590 case mst_file_bss:
4591 continue;
4592 default:
4593 break;
4594 }
4595
4596 prev = NULL;
4597
4598 /* Get the hash index and check all the symbols
4599 under that hash index. */
4600
3567439c 4601 hash = hashname (SYMBOL_LINKAGE_NAME (msymbol));
c906108c
SS
4602
4603 for (sym = global_sym_chain[hash]; sym;)
4604 {
3567439c
DJ
4605 if (strcmp (SYMBOL_LINKAGE_NAME (msymbol),
4606 SYMBOL_LINKAGE_NAME (sym)) == 0)
c906108c 4607 {
c906108c
SS
4608 /* Splice this symbol out of the hash chain and
4609 assign the value we have to it. */
4610 if (prev)
4611 {
4612 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4613 }
4614 else
4615 {
4616 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4617 }
c5aa993b 4618
c906108c
SS
4619 /* Check to see whether we need to fix up a common block. */
4620 /* Note: this code might be executed several times for
4621 the same symbol if there are multiple references. */
507836c0 4622 if (sym)
c906108c 4623 {
507836c0 4624 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
c906108c 4625 {
507836c0 4626 fix_common_block (sym,
c906108c
SS
4627 SYMBOL_VALUE_ADDRESS (msymbol));
4628 }
4629 else
4630 {
507836c0 4631 SYMBOL_VALUE_ADDRESS (sym)
c906108c
SS
4632 = SYMBOL_VALUE_ADDRESS (msymbol);
4633 }
507836c0 4634 SYMBOL_SECTION (sym) = SYMBOL_SECTION (msymbol);
c906108c
SS
4635 }
4636
c906108c
SS
4637 if (prev)
4638 {
4639 sym = SYMBOL_VALUE_CHAIN (prev);
4640 }
4641 else
4642 {
4643 sym = global_sym_chain[hash];
4644 }
4645 }
4646 else
4647 {
4648 prev = sym;
4649 sym = SYMBOL_VALUE_CHAIN (sym);
4650 }
4651 }
4652 }
4653 if (resolve_objfile == objfile)
4654 break;
4655 resolve_objfile = objfile;
4656 }
4657
4658 /* Change the storage class of any remaining unresolved globals to
4659 LOC_UNRESOLVED and remove them from the chain. */
4660 for (hash = 0; hash < HASHSIZE; hash++)
4661 {
4662 sym = global_sym_chain[hash];
4663 while (sym)
4664 {
4665 prev = sym;
4666 sym = SYMBOL_VALUE_CHAIN (sym);
4667
4668 /* Change the symbol address from the misleading chain value
4669 to address zero. */
4670 SYMBOL_VALUE_ADDRESS (prev) = 0;
4671
4672 /* Complain about unresolved common block symbols. */
4673 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4674 SYMBOL_CLASS (prev) = LOC_UNRESOLVED;
4675 else
23136709 4676 complaint (&symfile_complaints,
e2e0b3e5 4677 _("%s: common block `%s' from global_sym_chain unresolved"),
3567439c 4678 objfile->name, SYMBOL_PRINT_NAME (prev));
c906108c
SS
4679 }
4680 }
4681 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4682}
4683
4684/* Initialize anything that needs initializing when starting to read
4685 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4686 to a psymtab. */
4687
4688void
fba45db2 4689stabsread_init (void)
c906108c
SS
4690{
4691}
4692
4693/* Initialize anything that needs initializing when a completely new
4694 symbol file is specified (not just adding some symbols from another
4695 file, e.g. a shared library). */
4696
4697void
fba45db2 4698stabsread_new_init (void)
c906108c
SS
4699{
4700 /* Empty the hash table of global syms looking for values. */
4701 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4702}
4703
4704/* Initialize anything that needs initializing at the same time as
4705 start_symtab() is called. */
4706
c5aa993b 4707void
fba45db2 4708start_stabs (void)
c906108c
SS
4709{
4710 global_stabs = NULL; /* AIX COFF */
4711 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4712 n_this_object_header_files = 1;
4713 type_vector_length = 0;
4714 type_vector = (struct type **) 0;
4715
4716 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4717 common_block_name = NULL;
c906108c
SS
4718}
4719
4720/* Call after end_symtab() */
4721
c5aa993b 4722void
fba45db2 4723end_stabs (void)
c906108c
SS
4724{
4725 if (type_vector)
4726 {
b8c9b27d 4727 xfree (type_vector);
c906108c
SS
4728 }
4729 type_vector = 0;
4730 type_vector_length = 0;
4731 previous_stab_code = 0;
4732}
4733
4734void
fba45db2 4735finish_global_stabs (struct objfile *objfile)
c906108c
SS
4736{
4737 if (global_stabs)
4738 {
4739 patch_block_stabs (global_symbols, global_stabs, objfile);
b8c9b27d 4740 xfree (global_stabs);
c906108c
SS
4741 global_stabs = NULL;
4742 }
4743}
4744
7e1d63ec
AF
4745/* Find the end of the name, delimited by a ':', but don't match
4746 ObjC symbols which look like -[Foo bar::]:bla. */
4747static char *
4748find_name_end (char *name)
4749{
4750 char *s = name;
4751 if (s[0] == '-' || *s == '+')
4752 {
4753 /* Must be an ObjC method symbol. */
4754 if (s[1] != '[')
4755 {
8a3fe4f8 4756 error (_("invalid symbol name \"%s\""), name);
7e1d63ec
AF
4757 }
4758 s = strchr (s, ']');
4759 if (s == NULL)
4760 {
8a3fe4f8 4761 error (_("invalid symbol name \"%s\""), name);
7e1d63ec
AF
4762 }
4763 return strchr (s, ':');
4764 }
4765 else
4766 {
4767 return strchr (s, ':');
4768 }
4769}
4770
c906108c
SS
4771/* Initializer for this module */
4772
4773void
fba45db2 4774_initialize_stabsread (void)
c906108c 4775{
46bf5051
UW
4776 rs6000_builtin_type_data = register_objfile_data ();
4777
c906108c
SS
4778 undef_types_allocated = 20;
4779 undef_types_length = 0;
4780 undef_types = (struct type **)
4781 xmalloc (undef_types_allocated * sizeof (struct type *));
bf362611
JB
4782
4783 noname_undefs_allocated = 20;
4784 noname_undefs_length = 0;
4785 noname_undefs = (struct nat *)
4786 xmalloc (noname_undefs_allocated * sizeof (struct nat));
c906108c 4787}
This page took 1.340482 seconds and 4 git commands to generate.