Check .gnu.warning section in shared library
[deliverable/binutils-gdb.git] / gdb / stap-probe.c
CommitLineData
55aa24fb
SDJ
1/* SystemTap probe support for GDB.
2
28e7fd62 3 Copyright (C) 2012-2013 Free Software Foundation, Inc.
55aa24fb
SDJ
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20#include "defs.h"
21#include "stap-probe.h"
22#include "probe.h"
23#include "vec.h"
24#include "ui-out.h"
25#include "objfiles.h"
26#include "arch-utils.h"
27#include "command.h"
28#include "gdbcmd.h"
29#include "filenames.h"
30#include "value.h"
31#include "exceptions.h"
32#include "ax.h"
33#include "ax-gdb.h"
34#include "complaints.h"
35#include "cli/cli-utils.h"
36#include "linespec.h"
37#include "user-regs.h"
38#include "parser-defs.h"
39#include "language.h"
40#include "elf-bfd.h"
41
42#include <ctype.h>
43
44/* The name of the SystemTap section where we will find information about
45 the probes. */
46
47#define STAP_BASE_SECTION_NAME ".stapsdt.base"
48
49/* Forward declaration. */
50
51static const struct probe_ops stap_probe_ops;
52
53/* Should we display debug information for the probe's argument expression
54 parsing? */
55
ccce17b0 56static unsigned int stap_expression_debug = 0;
55aa24fb
SDJ
57
58/* The various possibilities of bitness defined for a probe's argument.
59
60 The relationship is:
61
62 - STAP_ARG_BITNESS_UNDEFINED: The user hasn't specified the bitness.
63 - STAP_ARG_BITNESS_32BIT_UNSIGNED: argument string starts with `4@'.
64 - STAP_ARG_BITNESS_32BIT_SIGNED: argument string starts with `-4@'.
65 - STAP_ARG_BITNESS_64BIT_UNSIGNED: argument string starts with `8@'.
66 - STAP_ARG_BITNESS_64BIT_SIGNED: argument string starts with `-8@'. */
67
68enum stap_arg_bitness
69{
70 STAP_ARG_BITNESS_UNDEFINED,
71 STAP_ARG_BITNESS_32BIT_UNSIGNED,
72 STAP_ARG_BITNESS_32BIT_SIGNED,
73 STAP_ARG_BITNESS_64BIT_UNSIGNED,
74 STAP_ARG_BITNESS_64BIT_SIGNED,
75};
76
77/* The following structure represents a single argument for the probe. */
78
79struct stap_probe_arg
80{
81 /* The bitness of this argument. */
82 enum stap_arg_bitness bitness;
83
84 /* The corresponding `struct type *' to the bitness. */
85 struct type *atype;
86
87 /* The argument converted to an internal GDB expression. */
88 struct expression *aexpr;
89};
90
91typedef struct stap_probe_arg stap_probe_arg_s;
92DEF_VEC_O (stap_probe_arg_s);
93
94struct stap_probe
95{
96 /* Generic information about the probe. This shall be the first element
97 of this struct, in order to maintain binary compatibility with the
98 `struct probe' and be able to fully abstract it. */
99 struct probe p;
100
101 /* If the probe has a semaphore associated, then this is the value of
102 it. */
103 CORE_ADDR sem_addr;
104
105 unsigned int args_parsed : 1;
106 union
107 {
108 const char *text;
109
110 /* Information about each argument. This is an array of `stap_probe_arg',
111 with each entry representing one argument. */
112 VEC (stap_probe_arg_s) *vec;
113 }
114 args_u;
115};
116
117/* When parsing the arguments, we have to establish different precedences
118 for the various kinds of asm operators. This enumeration represents those
119 precedences.
120
121 This logic behind this is available at
122 <http://sourceware.org/binutils/docs/as/Infix-Ops.html#Infix-Ops>, or using
123 the command "info '(as)Infix Ops'". */
124
125enum stap_operand_prec
126{
127 /* Lowest precedence, used for non-recognized operands or for the beginning
128 of the parsing process. */
129 STAP_OPERAND_PREC_NONE = 0,
130
131 /* Precedence of logical OR. */
132 STAP_OPERAND_PREC_LOGICAL_OR,
133
134 /* Precedence of logical AND. */
135 STAP_OPERAND_PREC_LOGICAL_AND,
136
137 /* Precedence of additive (plus, minus) and comparative (equal, less,
138 greater-than, etc) operands. */
139 STAP_OPERAND_PREC_ADD_CMP,
140
141 /* Precedence of bitwise operands (bitwise OR, XOR, bitwise AND,
142 logical NOT). */
143 STAP_OPERAND_PREC_BITWISE,
144
145 /* Precedence of multiplicative operands (multiplication, division,
146 remainder, left shift and right shift). */
147 STAP_OPERAND_PREC_MUL
148};
149
150static void stap_parse_argument_1 (struct stap_parse_info *p, int has_lhs,
151 enum stap_operand_prec prec);
152
153static void stap_parse_argument_conditionally (struct stap_parse_info *p);
154
155/* Returns 1 if *S is an operator, zero otherwise. */
156
fcf57f19 157static int stap_is_operator (const char *op);
55aa24fb
SDJ
158
159static void
160show_stapexpressiondebug (struct ui_file *file, int from_tty,
161 struct cmd_list_element *c, const char *value)
162{
163 fprintf_filtered (file, _("SystemTap Probe expression debugging is %s.\n"),
164 value);
165}
166
167/* Returns the operator precedence level of OP, or STAP_OPERAND_PREC_NONE
168 if the operator code was not recognized. */
169
170static enum stap_operand_prec
171stap_get_operator_prec (enum exp_opcode op)
172{
173 switch (op)
174 {
175 case BINOP_LOGICAL_OR:
176 return STAP_OPERAND_PREC_LOGICAL_OR;
177
178 case BINOP_LOGICAL_AND:
179 return STAP_OPERAND_PREC_LOGICAL_AND;
180
181 case BINOP_ADD:
182 case BINOP_SUB:
183 case BINOP_EQUAL:
184 case BINOP_NOTEQUAL:
185 case BINOP_LESS:
186 case BINOP_LEQ:
187 case BINOP_GTR:
188 case BINOP_GEQ:
189 return STAP_OPERAND_PREC_ADD_CMP;
190
191 case BINOP_BITWISE_IOR:
192 case BINOP_BITWISE_AND:
193 case BINOP_BITWISE_XOR:
194 case UNOP_LOGICAL_NOT:
195 return STAP_OPERAND_PREC_BITWISE;
196
197 case BINOP_MUL:
198 case BINOP_DIV:
199 case BINOP_REM:
200 case BINOP_LSH:
201 case BINOP_RSH:
202 return STAP_OPERAND_PREC_MUL;
203
204 default:
205 return STAP_OPERAND_PREC_NONE;
206 }
207}
208
209/* Given S, read the operator in it and fills the OP pointer with its code.
210 Return 1 on success, zero if the operator was not recognized. */
211
fcf57f19
SDJ
212static enum exp_opcode
213stap_get_opcode (const char **s)
55aa24fb
SDJ
214{
215 const char c = **s;
fcf57f19 216 enum exp_opcode op;
55aa24fb
SDJ
217
218 *s += 1;
219
220 switch (c)
221 {
222 case '*':
fcf57f19 223 op = BINOP_MUL;
55aa24fb
SDJ
224 break;
225
226 case '/':
fcf57f19 227 op = BINOP_DIV;
55aa24fb
SDJ
228 break;
229
230 case '%':
fcf57f19 231 op = BINOP_REM;
55aa24fb
SDJ
232 break;
233
234 case '<':
fcf57f19 235 op = BINOP_LESS;
55aa24fb
SDJ
236 if (**s == '<')
237 {
238 *s += 1;
fcf57f19 239 op = BINOP_LSH;
55aa24fb
SDJ
240 }
241 else if (**s == '=')
242 {
243 *s += 1;
fcf57f19 244 op = BINOP_LEQ;
55aa24fb
SDJ
245 }
246 else if (**s == '>')
247 {
248 *s += 1;
fcf57f19 249 op = BINOP_NOTEQUAL;
55aa24fb
SDJ
250 }
251 break;
252
253 case '>':
fcf57f19 254 op = BINOP_GTR;
55aa24fb
SDJ
255 if (**s == '>')
256 {
257 *s += 1;
fcf57f19 258 op = BINOP_RSH;
55aa24fb
SDJ
259 }
260 else if (**s == '=')
261 {
262 *s += 1;
fcf57f19 263 op = BINOP_GEQ;
55aa24fb
SDJ
264 }
265 break;
266
267 case '|':
fcf57f19 268 op = BINOP_BITWISE_IOR;
55aa24fb
SDJ
269 if (**s == '|')
270 {
271 *s += 1;
fcf57f19 272 op = BINOP_LOGICAL_OR;
55aa24fb
SDJ
273 }
274 break;
275
276 case '&':
fcf57f19 277 op = BINOP_BITWISE_AND;
55aa24fb
SDJ
278 if (**s == '&')
279 {
280 *s += 1;
fcf57f19 281 op = BINOP_LOGICAL_AND;
55aa24fb
SDJ
282 }
283 break;
284
285 case '^':
fcf57f19 286 op = BINOP_BITWISE_XOR;
55aa24fb
SDJ
287 break;
288
289 case '!':
fcf57f19 290 op = UNOP_LOGICAL_NOT;
55aa24fb
SDJ
291 break;
292
293 case '+':
fcf57f19 294 op = BINOP_ADD;
55aa24fb
SDJ
295 break;
296
297 case '-':
fcf57f19 298 op = BINOP_SUB;
55aa24fb
SDJ
299 break;
300
301 case '=':
fcf57f19
SDJ
302 gdb_assert (**s == '=');
303 op = BINOP_EQUAL;
55aa24fb
SDJ
304 break;
305
306 default:
fcf57f19
SDJ
307 internal_error (__FILE__, __LINE__,
308 _("Invalid opcode in expression `%s' for SystemTap"
309 "probe"), *s);
55aa24fb
SDJ
310 }
311
fcf57f19 312 return op;
55aa24fb
SDJ
313}
314
315/* Given the bitness of the argument, represented by B, return the
316 corresponding `struct type *'. */
317
318static struct type *
319stap_get_expected_argument_type (struct gdbarch *gdbarch,
320 enum stap_arg_bitness b)
321{
322 switch (b)
323 {
324 case STAP_ARG_BITNESS_UNDEFINED:
325 if (gdbarch_addr_bit (gdbarch) == 32)
326 return builtin_type (gdbarch)->builtin_uint32;
327 else
328 return builtin_type (gdbarch)->builtin_uint64;
329
330 case STAP_ARG_BITNESS_32BIT_SIGNED:
331 return builtin_type (gdbarch)->builtin_int32;
332
333 case STAP_ARG_BITNESS_32BIT_UNSIGNED:
334 return builtin_type (gdbarch)->builtin_uint32;
335
336 case STAP_ARG_BITNESS_64BIT_SIGNED:
337 return builtin_type (gdbarch)->builtin_int64;
338
339 case STAP_ARG_BITNESS_64BIT_UNSIGNED:
340 return builtin_type (gdbarch)->builtin_uint64;
341
342 default:
343 internal_error (__FILE__, __LINE__,
344 _("Undefined bitness for probe."));
345 break;
346 }
347}
348
349/* Function responsible for parsing a register operand according to
350 SystemTap parlance. Assuming:
351
352 RP = register prefix
353 RS = register suffix
354 RIP = register indirection prefix
355 RIS = register indirection suffix
356
357 Then a register operand can be:
358
359 [RIP] [RP] REGISTER [RS] [RIS]
360
361 This function takes care of a register's indirection, displacement and
362 direct access. It also takes into consideration the fact that some
363 registers are named differently inside and outside GDB, e.g., PPC's
364 general-purpose registers are represented by integers in the assembly
365 language (e.g., `15' is the 15th general-purpose register), but inside
366 GDB they have a prefix (the letter `r') appended. */
367
368static void
369stap_parse_register_operand (struct stap_parse_info *p)
370{
371 /* Simple flag to indicate whether we have seen a minus signal before
372 certain number. */
373 int got_minus = 0;
374
375 /* Flags to indicate whether this register access is being displaced and/or
376 indirected. */
377 int disp_p = 0, indirect_p = 0;
378 struct gdbarch *gdbarch = p->gdbarch;
379
380 /* Needed to generate the register name as a part of an expression. */
381 struct stoken str;
382
383 /* Variables used to extract the register name from the probe's
384 argument. */
385 const char *start;
386 char *regname;
387 int len;
388
389 /* Prefixes for the parser. */
390 const char *reg_prefix = gdbarch_stap_register_prefix (gdbarch);
391 const char *reg_ind_prefix
392 = gdbarch_stap_register_indirection_prefix (gdbarch);
393 const char *gdb_reg_prefix = gdbarch_stap_gdb_register_prefix (gdbarch);
394 int reg_prefix_len = reg_prefix ? strlen (reg_prefix) : 0;
395 int reg_ind_prefix_len = reg_ind_prefix ? strlen (reg_ind_prefix) : 0;
396 int gdb_reg_prefix_len = gdb_reg_prefix ? strlen (gdb_reg_prefix) : 0;
397
398 /* Suffixes for the parser. */
399 const char *reg_suffix = gdbarch_stap_register_suffix (gdbarch);
400 const char *reg_ind_suffix
401 = gdbarch_stap_register_indirection_suffix (gdbarch);
402 const char *gdb_reg_suffix = gdbarch_stap_gdb_register_suffix (gdbarch);
403 int reg_suffix_len = reg_suffix ? strlen (reg_suffix) : 0;
404 int reg_ind_suffix_len = reg_ind_suffix ? strlen (reg_ind_suffix) : 0;
405 int gdb_reg_suffix_len = gdb_reg_suffix ? strlen (gdb_reg_suffix) : 0;
406
407 /* Checking for a displacement argument. */
408 if (*p->arg == '+')
409 {
410 /* If it's a plus sign, we don't need to do anything, just advance the
411 pointer. */
412 ++p->arg;
413 }
414
415 if (*p->arg == '-')
416 {
417 got_minus = 1;
418 ++p->arg;
419 }
420
421 if (isdigit (*p->arg))
422 {
423 /* The value of the displacement. */
424 long displacement;
a0bcdaa7 425 char *endp;
55aa24fb
SDJ
426
427 disp_p = 1;
a0bcdaa7
PA
428 displacement = strtol (p->arg, &endp, 10);
429 p->arg = endp;
55aa24fb
SDJ
430
431 /* Generating the expression for the displacement. */
432 write_exp_elt_opcode (OP_LONG);
433 write_exp_elt_type (builtin_type (gdbarch)->builtin_long);
434 write_exp_elt_longcst (displacement);
435 write_exp_elt_opcode (OP_LONG);
436 if (got_minus)
437 write_exp_elt_opcode (UNOP_NEG);
438 }
439
440 /* Getting rid of register indirection prefix. */
441 if (reg_ind_prefix
442 && strncmp (p->arg, reg_ind_prefix, reg_ind_prefix_len) == 0)
443 {
444 indirect_p = 1;
445 p->arg += reg_ind_prefix_len;
446 }
447
448 if (disp_p && !indirect_p)
449 error (_("Invalid register displacement syntax on expression `%s'."),
450 p->saved_arg);
451
452 /* Getting rid of register prefix. */
453 if (reg_prefix && strncmp (p->arg, reg_prefix, reg_prefix_len) == 0)
454 p->arg += reg_prefix_len;
455
456 /* Now we should have only the register name. Let's extract it and get
457 the associated number. */
458 start = p->arg;
459
460 /* We assume the register name is composed by letters and numbers. */
461 while (isalnum (*p->arg))
462 ++p->arg;
463
464 len = p->arg - start;
465
466 regname = alloca (len + gdb_reg_prefix_len + gdb_reg_suffix_len + 1);
467 regname[0] = '\0';
468
469 /* We only add the GDB's register prefix/suffix if we are dealing with
470 a numeric register. */
471 if (gdb_reg_prefix && isdigit (*start))
472 {
473 strncpy (regname, gdb_reg_prefix, gdb_reg_prefix_len);
474 strncpy (regname + gdb_reg_prefix_len, start, len);
475
476 if (gdb_reg_suffix)
477 strncpy (regname + gdb_reg_prefix_len + len,
478 gdb_reg_suffix, gdb_reg_suffix_len);
479
480 len += gdb_reg_prefix_len + gdb_reg_suffix_len;
481 }
482 else
483 strncpy (regname, start, len);
484
485 regname[len] = '\0';
486
487 /* Is this a valid register name? */
488 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
489 error (_("Invalid register name `%s' on expression `%s'."),
490 regname, p->saved_arg);
491
492 write_exp_elt_opcode (OP_REGISTER);
493 str.ptr = regname;
494 str.length = len;
495 write_exp_string (str);
496 write_exp_elt_opcode (OP_REGISTER);
497
498 if (indirect_p)
499 {
500 if (disp_p)
501 write_exp_elt_opcode (BINOP_ADD);
502
503 /* Casting to the expected type. */
504 write_exp_elt_opcode (UNOP_CAST);
505 write_exp_elt_type (lookup_pointer_type (p->arg_type));
506 write_exp_elt_opcode (UNOP_CAST);
507
508 write_exp_elt_opcode (UNOP_IND);
509 }
510
511 /* Getting rid of the register name suffix. */
512 if (reg_suffix)
513 {
514 if (strncmp (p->arg, reg_suffix, reg_suffix_len) != 0)
515 error (_("Missing register name suffix `%s' on expression `%s'."),
516 reg_suffix, p->saved_arg);
517
518 p->arg += reg_suffix_len;
519 }
520
521 /* Getting rid of the register indirection suffix. */
522 if (indirect_p && reg_ind_suffix)
523 {
524 if (strncmp (p->arg, reg_ind_suffix, reg_ind_suffix_len) != 0)
525 error (_("Missing indirection suffix `%s' on expression `%s'."),
526 reg_ind_suffix, p->saved_arg);
527
528 p->arg += reg_ind_suffix_len;
529 }
530}
531
532/* This function is responsible for parsing a single operand.
533
534 A single operand can be:
535
536 - an unary operation (e.g., `-5', `~2', or even with subexpressions
537 like `-(2 + 1)')
538 - a register displacement, which will be treated as a register
539 operand (e.g., `-4(%eax)' on x86)
540 - a numeric constant, or
541 - a register operand (see function `stap_parse_register_operand')
542
543 The function also calls special-handling functions to deal with
544 unrecognized operands, allowing arch-specific parsers to be
545 created. */
546
547static void
548stap_parse_single_operand (struct stap_parse_info *p)
549{
550 struct gdbarch *gdbarch = p->gdbarch;
551
552 /* Prefixes for the parser. */
553 const char *const_prefix = gdbarch_stap_integer_prefix (gdbarch);
554 const char *reg_prefix = gdbarch_stap_register_prefix (gdbarch);
555 const char *reg_ind_prefix
556 = gdbarch_stap_register_indirection_prefix (gdbarch);
557 int const_prefix_len = const_prefix ? strlen (const_prefix) : 0;
558 int reg_prefix_len = reg_prefix ? strlen (reg_prefix) : 0;
559 int reg_ind_prefix_len = reg_ind_prefix ? strlen (reg_ind_prefix) : 0;
560
561 /* Suffixes for the parser. */
562 const char *const_suffix = gdbarch_stap_integer_suffix (gdbarch);
55aa24fb 563 int const_suffix_len = const_suffix ? strlen (const_suffix) : 0;
55aa24fb
SDJ
564
565 /* We first try to parse this token as a "special token". */
566 if (gdbarch_stap_parse_special_token_p (gdbarch))
567 {
568 int ret = gdbarch_stap_parse_special_token (gdbarch, p);
569
570 if (ret)
571 {
572 /* If the return value of the above function is not zero,
573 it means it successfully parsed the special token.
574
575 If it is NULL, we try to parse it using our method. */
576 return;
577 }
578 }
579
580 if (*p->arg == '-' || *p->arg == '~' || *p->arg == '+')
581 {
582 char c = *p->arg;
583 int number;
584
585 /* We use this variable to do a lookahead. */
586 const char *tmp = p->arg;
587
588 ++tmp;
589
590 /* This is an unary operation. Here is a list of allowed tokens
591 here:
592
593 - numeric literal;
594 - number (from register displacement)
595 - subexpression (beginning with `(')
596
597 We handle the register displacement here, and the other cases
598 recursively. */
599 if (p->inside_paren_p)
600 tmp = skip_spaces_const (tmp);
601
602 if (isdigit (*tmp))
a0bcdaa7
PA
603 {
604 char *endp;
605
606 number = strtol (tmp, &endp, 10);
607 tmp = endp;
608 }
55aa24fb
SDJ
609
610 if (!reg_ind_prefix
611 || strncmp (tmp, reg_ind_prefix, reg_ind_prefix_len) != 0)
612 {
613 /* This is not a displacement. We skip the operator, and deal
614 with it later. */
615 ++p->arg;
616 stap_parse_argument_conditionally (p);
617 if (c == '-')
618 write_exp_elt_opcode (UNOP_NEG);
619 else if (c == '~')
620 write_exp_elt_opcode (UNOP_COMPLEMENT);
621 }
622 else
623 {
624 /* If we are here, it means it is a displacement. The only
625 operations allowed here are `-' and `+'. */
626 if (c == '~')
627 error (_("Invalid operator `%c' for register displacement "
628 "on expression `%s'."), c, p->saved_arg);
629
630 stap_parse_register_operand (p);
631 }
632 }
633 else if (isdigit (*p->arg))
634 {
635 /* A temporary variable, needed for lookahead. */
636 const char *tmp = p->arg;
a0bcdaa7 637 char *endp;
55aa24fb
SDJ
638 long number;
639
640 /* We can be dealing with a numeric constant (if `const_prefix' is
641 NULL), or with a register displacement. */
a0bcdaa7
PA
642 number = strtol (tmp, &endp, 10);
643 tmp = endp;
55aa24fb
SDJ
644
645 if (p->inside_paren_p)
646 tmp = skip_spaces_const (tmp);
647 if (!const_prefix && reg_ind_prefix
648 && strncmp (tmp, reg_ind_prefix, reg_ind_prefix_len) != 0)
649 {
650 /* We are dealing with a numeric constant. */
651 write_exp_elt_opcode (OP_LONG);
652 write_exp_elt_type (builtin_type (gdbarch)->builtin_long);
653 write_exp_elt_longcst (number);
654 write_exp_elt_opcode (OP_LONG);
655
656 p->arg = tmp;
657
658 if (const_suffix)
659 {
660 if (strncmp (p->arg, const_suffix, const_suffix_len) == 0)
661 p->arg += const_suffix_len;
662 else
663 error (_("Invalid constant suffix on expression `%s'."),
664 p->saved_arg);
665 }
666 }
667 else if (reg_ind_prefix
668 && strncmp (tmp, reg_ind_prefix, reg_ind_prefix_len) == 0)
669 stap_parse_register_operand (p);
670 else
671 error (_("Unknown numeric token on expression `%s'."),
672 p->saved_arg);
673 }
674 else if (const_prefix
675 && strncmp (p->arg, const_prefix, const_prefix_len) == 0)
676 {
677 /* We are dealing with a numeric constant. */
678 long number;
a0bcdaa7 679 char *endp;
55aa24fb
SDJ
680
681 p->arg += const_prefix_len;
a0bcdaa7
PA
682 number = strtol (p->arg, &endp, 10);
683 p->arg = endp;
55aa24fb
SDJ
684
685 write_exp_elt_opcode (OP_LONG);
686 write_exp_elt_type (builtin_type (gdbarch)->builtin_long);
687 write_exp_elt_longcst (number);
688 write_exp_elt_opcode (OP_LONG);
689
690 if (const_suffix)
691 {
692 if (strncmp (p->arg, const_suffix, const_suffix_len) == 0)
693 p->arg += const_suffix_len;
694 else
695 error (_("Invalid constant suffix on expression `%s'."),
696 p->saved_arg);
697 }
698 }
699 else if ((reg_prefix
700 && strncmp (p->arg, reg_prefix, reg_prefix_len) == 0)
701 || (reg_ind_prefix
702 && strncmp (p->arg, reg_ind_prefix, reg_ind_prefix_len) == 0))
703 stap_parse_register_operand (p);
704 else
705 error (_("Operator `%c' not recognized on expression `%s'."),
706 *p->arg, p->saved_arg);
707}
708
709/* This function parses an argument conditionally, based on single or
710 non-single operands. A non-single operand would be a parenthesized
711 expression (e.g., `(2 + 1)'), and a single operand is anything that
712 starts with `-', `~', `+' (i.e., unary operators), a digit, or
713 something recognized by `gdbarch_stap_is_single_operand'. */
714
715static void
716stap_parse_argument_conditionally (struct stap_parse_info *p)
717{
718 if (*p->arg == '-' || *p->arg == '~' || *p->arg == '+' /* Unary. */
719 || isdigit (*p->arg)
720 || gdbarch_stap_is_single_operand (p->gdbarch, p->arg))
721 stap_parse_single_operand (p);
722 else if (*p->arg == '(')
723 {
724 /* We are dealing with a parenthesized operand. It means we
725 have to parse it as it was a separate expression, without
726 left-side or precedence. */
727 ++p->arg;
728 p->arg = skip_spaces_const (p->arg);
729 ++p->inside_paren_p;
730
731 stap_parse_argument_1 (p, 0, STAP_OPERAND_PREC_NONE);
732
733 --p->inside_paren_p;
734 if (*p->arg != ')')
735 error (_("Missign close-paren on expression `%s'."),
736 p->saved_arg);
737
738 ++p->arg;
739 if (p->inside_paren_p)
740 p->arg = skip_spaces_const (p->arg);
741 }
742 else
743 error (_("Cannot parse expression `%s'."), p->saved_arg);
744}
745
746/* Helper function for `stap_parse_argument'. Please, see its comments to
747 better understand what this function does. */
748
749static void
750stap_parse_argument_1 (struct stap_parse_info *p, int has_lhs,
751 enum stap_operand_prec prec)
752{
753 /* This is an operator-precedence parser.
754
755 We work with left- and right-sides of expressions, and
756 parse them depending on the precedence of the operators
757 we find. */
758
759 if (p->inside_paren_p)
760 p->arg = skip_spaces_const (p->arg);
761
762 if (!has_lhs)
763 {
764 /* We were called without a left-side, either because this is the
765 first call, or because we were called to parse a parenthesized
766 expression. It doesn't really matter; we have to parse the
767 left-side in order to continue the process. */
768 stap_parse_argument_conditionally (p);
769 }
770
771 /* Start to parse the right-side, and to "join" left and right sides
772 depending on the operation specified.
773
774 This loop shall continue until we run out of characters in the input,
775 or until we find a close-parenthesis, which means that we've reached
776 the end of a sub-expression. */
777 while (p->arg && *p->arg && *p->arg != ')' && !isspace (*p->arg))
778 {
779 const char *tmp_exp_buf;
780 enum exp_opcode opcode;
781 enum stap_operand_prec cur_prec;
782
fcf57f19 783 if (!stap_is_operator (p->arg))
55aa24fb
SDJ
784 error (_("Invalid operator `%c' on expression `%s'."), *p->arg,
785 p->saved_arg);
786
787 /* We have to save the current value of the expression buffer because
788 the `stap_get_opcode' modifies it in order to get the current
789 operator. If this operator's precedence is lower than PREC, we
790 should return and not advance the expression buffer pointer. */
791 tmp_exp_buf = p->arg;
fcf57f19 792 opcode = stap_get_opcode (&tmp_exp_buf);
55aa24fb
SDJ
793
794 cur_prec = stap_get_operator_prec (opcode);
795 if (cur_prec < prec)
796 {
797 /* If the precedence of the operator that we are seeing now is
798 lower than the precedence of the first operator seen before
799 this parsing process began, it means we should stop parsing
800 and return. */
801 break;
802 }
803
804 p->arg = tmp_exp_buf;
805 if (p->inside_paren_p)
806 p->arg = skip_spaces_const (p->arg);
807
808 /* Parse the right-side of the expression. */
809 stap_parse_argument_conditionally (p);
810
811 /* While we still have operators, try to parse another
812 right-side, but using the current right-side as a left-side. */
fcf57f19 813 while (*p->arg && stap_is_operator (p->arg))
55aa24fb
SDJ
814 {
815 enum exp_opcode lookahead_opcode;
816 enum stap_operand_prec lookahead_prec;
817
818 /* Saving the current expression buffer position. The explanation
819 is the same as above. */
820 tmp_exp_buf = p->arg;
fcf57f19 821 lookahead_opcode = stap_get_opcode (&tmp_exp_buf);
55aa24fb
SDJ
822 lookahead_prec = stap_get_operator_prec (lookahead_opcode);
823
824 if (lookahead_prec <= prec)
825 {
826 /* If we are dealing with an operator whose precedence is lower
827 than the first one, just abandon the attempt. */
828 break;
829 }
830
831 /* Parse the right-side of the expression, but since we already
832 have a left-side at this point, set `has_lhs' to 1. */
833 stap_parse_argument_1 (p, 1, lookahead_prec);
834 }
835
836 write_exp_elt_opcode (opcode);
837 }
838}
839
840/* Parse a probe's argument.
841
842 Assuming that:
843
844 LP = literal integer prefix
845 LS = literal integer suffix
846
847 RP = register prefix
848 RS = register suffix
849
850 RIP = register indirection prefix
851 RIS = register indirection suffix
852
853 This routine assumes that arguments' tokens are of the form:
854
855 - [LP] NUMBER [LS]
856 - [RP] REGISTER [RS]
857 - [RIP] [RP] REGISTER [RS] [RIS]
858 - If we find a number without LP, we try to parse it as a literal integer
859 constant (if LP == NULL), or as a register displacement.
860 - We count parenthesis, and only skip whitespaces if we are inside them.
861 - If we find an operator, we skip it.
862
863 This function can also call a special function that will try to match
864 unknown tokens. It will return 1 if the argument has been parsed
865 successfully, or zero otherwise. */
866
867static struct expression *
868stap_parse_argument (const char **arg, struct type *atype,
869 struct gdbarch *gdbarch)
870{
871 struct stap_parse_info p;
55aa24fb
SDJ
872 struct cleanup *back_to;
873
874 /* We need to initialize the expression buffer, in order to begin
875 our parsing efforts. The language here does not matter, since we
876 are using our own parser. */
877 initialize_expout (10, current_language, gdbarch);
878 back_to = make_cleanup (free_current_contents, &expout);
879
880 p.saved_arg = *arg;
881 p.arg = *arg;
882 p.arg_type = atype;
883 p.gdbarch = gdbarch;
884 p.inside_paren_p = 0;
885
886 stap_parse_argument_1 (&p, 0, STAP_OPERAND_PREC_NONE);
887
888 discard_cleanups (back_to);
889
890 gdb_assert (p.inside_paren_p == 0);
891
892 /* Casting the final expression to the appropriate type. */
893 write_exp_elt_opcode (UNOP_CAST);
894 write_exp_elt_type (atype);
895 write_exp_elt_opcode (UNOP_CAST);
896
897 reallocate_expout ();
898
899 p.arg = skip_spaces_const (p.arg);
900 *arg = p.arg;
901
902 return expout;
903}
904
905/* Function which parses an argument string from PROBE, correctly splitting
906 the arguments and storing their information in properly ways.
907
908 Consider the following argument string (x86 syntax):
909
910 `4@%eax 4@$10'
911
912 We have two arguments, `%eax' and `$10', both with 32-bit unsigned bitness.
913 This function basically handles them, properly filling some structures with
914 this information. */
915
916static void
6bac7473 917stap_parse_probe_arguments (struct stap_probe *probe)
55aa24fb
SDJ
918{
919 const char *cur;
6bac7473 920 struct gdbarch *gdbarch = get_objfile_arch (probe->p.objfile);
55aa24fb
SDJ
921
922 gdb_assert (!probe->args_parsed);
923 cur = probe->args_u.text;
924 probe->args_parsed = 1;
925 probe->args_u.vec = NULL;
926
927 if (!cur || !*cur || *cur == ':')
928 return;
929
930 while (*cur)
931 {
932 struct stap_probe_arg arg;
933 enum stap_arg_bitness b;
934 int got_minus = 0;
935 struct expression *expr;
936
937 memset (&arg, 0, sizeof (arg));
938
939 /* We expect to find something like:
940
941 N@OP
942
943 Where `N' can be [+,-][4,8]. This is not mandatory, so
944 we check it here. If we don't find it, go to the next
945 state. */
946 if ((*cur == '-' && cur[1] && cur[2] != '@')
947 && cur[1] != '@')
948 arg.bitness = STAP_ARG_BITNESS_UNDEFINED;
949 else
950 {
951 if (*cur == '-')
952 {
953 /* Discard the `-'. */
954 ++cur;
955 got_minus = 1;
956 }
957
958 if (*cur == '4')
959 b = (got_minus ? STAP_ARG_BITNESS_32BIT_SIGNED
960 : STAP_ARG_BITNESS_32BIT_UNSIGNED);
961 else if (*cur == '8')
962 b = (got_minus ? STAP_ARG_BITNESS_64BIT_SIGNED
963 : STAP_ARG_BITNESS_64BIT_UNSIGNED);
964 else
965 {
966 /* We have an error, because we don't expect anything
967 except 4 and 8. */
968 complaint (&symfile_complaints,
969 _("unrecognized bitness `%c' for probe `%s'"),
970 *cur, probe->p.name);
971 return;
972 }
973
974 arg.bitness = b;
975 arg.atype = stap_get_expected_argument_type (gdbarch, b);
976
977 /* Discard the number and the `@' sign. */
978 cur += 2;
979 }
980
981 expr = stap_parse_argument (&cur, arg.atype, gdbarch);
982
983 if (stap_expression_debug)
984 dump_raw_expression (expr, gdb_stdlog,
985 "before conversion to prefix form");
986
987 prefixify_expression (expr);
988
989 if (stap_expression_debug)
990 dump_prefix_expression (expr, gdb_stdlog);
991
992 arg.aexpr = expr;
993
994 /* Start it over again. */
995 cur = skip_spaces_const (cur);
996
997 VEC_safe_push (stap_probe_arg_s, probe->args_u.vec, &arg);
998 }
999}
1000
1001/* Given PROBE, returns the number of arguments present in that probe's
1002 argument string. */
1003
1004static unsigned
6bac7473 1005stap_get_probe_argument_count (struct probe *probe_generic)
55aa24fb
SDJ
1006{
1007 struct stap_probe *probe = (struct stap_probe *) probe_generic;
1008
1009 gdb_assert (probe_generic->pops == &stap_probe_ops);
1010
1011 if (!probe->args_parsed)
6bac7473 1012 stap_parse_probe_arguments (probe);
55aa24fb
SDJ
1013
1014 gdb_assert (probe->args_parsed);
1015 return VEC_length (stap_probe_arg_s, probe->args_u.vec);
1016}
1017
1018/* Return 1 if OP is a valid operator inside a probe argument, or zero
1019 otherwise. */
1020
1021static int
fcf57f19 1022stap_is_operator (const char *op)
55aa24fb 1023{
fcf57f19
SDJ
1024 int ret = 1;
1025
1026 switch (*op)
1027 {
1028 case '*':
1029 case '/':
1030 case '%':
1031 case '^':
1032 case '!':
1033 case '+':
1034 case '-':
1035 case '<':
1036 case '>':
1037 case '|':
1038 case '&':
1039 break;
1040
1041 case '=':
1042 if (op[1] != '=')
1043 ret = 0;
1044 break;
1045
1046 default:
1047 /* We didn't find any operator. */
1048 ret = 0;
1049 }
1050
1051 return ret;
55aa24fb
SDJ
1052}
1053
1054static struct stap_probe_arg *
6bac7473 1055stap_get_arg (struct stap_probe *probe, unsigned n)
55aa24fb
SDJ
1056{
1057 if (!probe->args_parsed)
6bac7473 1058 stap_parse_probe_arguments (probe);
55aa24fb
SDJ
1059
1060 return VEC_index (stap_probe_arg_s, probe->args_u.vec, n);
1061}
1062
1063/* Evaluate the probe's argument N (indexed from 0), returning a value
1064 corresponding to it. Assertion is thrown if N does not exist. */
1065
1066static struct value *
6bac7473 1067stap_evaluate_probe_argument (struct probe *probe_generic, unsigned n)
55aa24fb
SDJ
1068{
1069 struct stap_probe *stap_probe = (struct stap_probe *) probe_generic;
1070 struct stap_probe_arg *arg;
1071 int pos = 0;
1072
1073 gdb_assert (probe_generic->pops == &stap_probe_ops);
1074
6bac7473 1075 arg = stap_get_arg (stap_probe, n);
55aa24fb
SDJ
1076 return evaluate_subexp_standard (arg->atype, arg->aexpr, &pos, EVAL_NORMAL);
1077}
1078
1079/* Compile the probe's argument N (indexed from 0) to agent expression.
1080 Assertion is thrown if N does not exist. */
1081
1082static void
6bac7473
SDJ
1083stap_compile_to_ax (struct probe *probe_generic, struct agent_expr *expr,
1084 struct axs_value *value, unsigned n)
55aa24fb
SDJ
1085{
1086 struct stap_probe *stap_probe = (struct stap_probe *) probe_generic;
1087 struct stap_probe_arg *arg;
1088 union exp_element *pc;
1089
1090 gdb_assert (probe_generic->pops == &stap_probe_ops);
1091
6bac7473 1092 arg = stap_get_arg (stap_probe, n);
55aa24fb
SDJ
1093
1094 pc = arg->aexpr->elts;
1095 gen_expr (arg->aexpr, &pc, expr, value);
1096
1097 require_rvalue (expr, value);
1098 value->type = arg->atype;
1099}
1100
1101/* Destroy (free) the data related to PROBE. PROBE memory itself is not feed
1102 as it is allocated from OBJFILE_OBSTACK. */
1103
1104static void
1105stap_probe_destroy (struct probe *probe_generic)
1106{
1107 struct stap_probe *probe = (struct stap_probe *) probe_generic;
1108
1109 gdb_assert (probe_generic->pops == &stap_probe_ops);
1110
1111 if (probe->args_parsed)
1112 {
1113 struct stap_probe_arg *arg;
1114 int ix;
1115
1116 for (ix = 0; VEC_iterate (stap_probe_arg_s, probe->args_u.vec, ix, arg);
1117 ++ix)
1118 xfree (arg->aexpr);
1119 VEC_free (stap_probe_arg_s, probe->args_u.vec);
1120 }
1121}
1122
1123\f
1124
1125/* This is called to compute the value of one of the $_probe_arg*
1126 convenience variables. */
1127
1128static struct value *
1129compute_probe_arg (struct gdbarch *arch, struct internalvar *ivar,
1130 void *data)
1131{
1132 struct frame_info *frame = get_selected_frame (_("No frame selected"));
1133 CORE_ADDR pc = get_frame_pc (frame);
1134 int sel = (int) (uintptr_t) data;
55aa24fb 1135 struct probe *pc_probe;
6bac7473 1136 const struct sym_probe_fns *pc_probe_fns;
55aa24fb
SDJ
1137 unsigned n_args;
1138
1139 /* SEL == -1 means "_probe_argc". */
1140 gdb_assert (sel >= -1);
1141
6bac7473 1142 pc_probe = find_probe_by_pc (pc);
55aa24fb
SDJ
1143 if (pc_probe == NULL)
1144 error (_("No SystemTap probe at PC %s"), core_addr_to_string (pc));
1145
6bac7473
SDJ
1146 gdb_assert (pc_probe->objfile != NULL);
1147 gdb_assert (pc_probe->objfile->sf != NULL);
1148 gdb_assert (pc_probe->objfile->sf->sym_probe_fns != NULL);
1149
1150 pc_probe_fns = pc_probe->objfile->sf->sym_probe_fns;
1151
1152 n_args = pc_probe_fns->sym_get_probe_argument_count (pc_probe);
55aa24fb
SDJ
1153 if (sel == -1)
1154 return value_from_longest (builtin_type (arch)->builtin_int, n_args);
1155
1156 if (sel >= n_args)
1157 error (_("Invalid probe argument %d -- probe has %u arguments available"),
1158 sel, n_args);
1159
6bac7473 1160 return pc_probe_fns->sym_evaluate_probe_argument (pc_probe, sel);
55aa24fb
SDJ
1161}
1162
1163/* This is called to compile one of the $_probe_arg* convenience
1164 variables into an agent expression. */
1165
1166static void
1167compile_probe_arg (struct internalvar *ivar, struct agent_expr *expr,
1168 struct axs_value *value, void *data)
1169{
1170 CORE_ADDR pc = expr->scope;
1171 int sel = (int) (uintptr_t) data;
55aa24fb 1172 struct probe *pc_probe;
6bac7473 1173 const struct sym_probe_fns *pc_probe_fns;
2b963b68 1174 int n_args;
55aa24fb
SDJ
1175
1176 /* SEL == -1 means "_probe_argc". */
1177 gdb_assert (sel >= -1);
1178
6bac7473 1179 pc_probe = find_probe_by_pc (pc);
55aa24fb
SDJ
1180 if (pc_probe == NULL)
1181 error (_("No SystemTap probe at PC %s"), core_addr_to_string (pc));
1182
6bac7473
SDJ
1183 gdb_assert (pc_probe->objfile != NULL);
1184 gdb_assert (pc_probe->objfile->sf != NULL);
1185 gdb_assert (pc_probe->objfile->sf->sym_probe_fns != NULL);
1186
1187 pc_probe_fns = pc_probe->objfile->sf->sym_probe_fns;
1188
2b963b68 1189 n_args = pc_probe_fns->sym_get_probe_argument_count (pc_probe);
6bac7473 1190
55aa24fb
SDJ
1191 if (sel == -1)
1192 {
1193 value->kind = axs_rvalue;
1194 value->type = builtin_type (expr->gdbarch)->builtin_int;
2b963b68 1195 ax_const_l (expr, n_args);
55aa24fb
SDJ
1196 return;
1197 }
1198
1199 gdb_assert (sel >= 0);
2b963b68 1200 if (sel >= n_args)
55aa24fb 1201 error (_("Invalid probe argument %d -- probe has %d arguments available"),
2b963b68 1202 sel, n_args);
55aa24fb 1203
6bac7473 1204 pc_probe_fns->sym_compile_to_ax (pc_probe, expr, value, sel);
55aa24fb
SDJ
1205}
1206
1207\f
1208
1209/* Set or clear a SystemTap semaphore. ADDRESS is the semaphore's
1210 address. SET is zero if the semaphore should be cleared, or one
1211 if it should be set. This is a helper function for `stap_semaphore_down'
1212 and `stap_semaphore_up'. */
1213
1214static void
1215stap_modify_semaphore (CORE_ADDR address, int set, struct gdbarch *gdbarch)
1216{
1217 gdb_byte bytes[sizeof (LONGEST)];
1218 /* The ABI specifies "unsigned short". */
1219 struct type *type = builtin_type (gdbarch)->builtin_unsigned_short;
1220 ULONGEST value;
1221
1222 if (address == 0)
1223 return;
1224
1225 /* Swallow errors. */
1226 if (target_read_memory (address, bytes, TYPE_LENGTH (type)) != 0)
1227 {
1228 warning (_("Could not read the value of a SystemTap semaphore."));
1229 return;
1230 }
1231
1232 value = extract_unsigned_integer (bytes, TYPE_LENGTH (type),
1233 gdbarch_byte_order (gdbarch));
1234 /* Note that we explicitly don't worry about overflow or
1235 underflow. */
1236 if (set)
1237 ++value;
1238 else
1239 --value;
1240
1241 store_unsigned_integer (bytes, TYPE_LENGTH (type),
1242 gdbarch_byte_order (gdbarch), value);
1243
1244 if (target_write_memory (address, bytes, TYPE_LENGTH (type)) != 0)
1245 warning (_("Could not write the value of a SystemTap semaphore."));
1246}
1247
1248/* Set a SystemTap semaphore. SEM is the semaphore's address. Semaphores
1249 act as reference counters, so calls to this function must be paired with
1250 calls to `stap_semaphore_down'.
1251
1252 This function and `stap_semaphore_down' race with another tool changing
1253 the probes, but that is too rare to care. */
1254
1255static void
1256stap_set_semaphore (struct probe *probe_generic, struct gdbarch *gdbarch)
1257{
1258 struct stap_probe *probe = (struct stap_probe *) probe_generic;
1259
1260 gdb_assert (probe_generic->pops == &stap_probe_ops);
1261
1262 stap_modify_semaphore (probe->sem_addr, 1, gdbarch);
1263}
1264
1265/* Clear a SystemTap semaphore. SEM is the semaphore's address. */
1266
1267static void
1268stap_clear_semaphore (struct probe *probe_generic, struct gdbarch *gdbarch)
1269{
1270 struct stap_probe *probe = (struct stap_probe *) probe_generic;
1271
1272 gdb_assert (probe_generic->pops == &stap_probe_ops);
1273
1274 stap_modify_semaphore (probe->sem_addr, 0, gdbarch);
1275}
1276
1277/* Implementation of `$_probe_arg*' set of variables. */
1278
1279static const struct internalvar_funcs probe_funcs =
1280{
1281 compute_probe_arg,
1282 compile_probe_arg,
1283 NULL
1284};
1285
1286/* Helper function that parses the information contained in a
1287 SystemTap's probe. Basically, the information consists in:
1288
1289 - Probe's PC address;
1290 - Link-time section address of `.stapsdt.base' section;
1291 - Link-time address of the semaphore variable, or ZERO if the
1292 probe doesn't have an associated semaphore;
1293 - Probe's provider name;
1294 - Probe's name;
1295 - Probe's argument format
1296
1297 This function returns 1 if the handling was successful, and zero
1298 otherwise. */
1299
1300static void
1301handle_stap_probe (struct objfile *objfile, struct sdt_note *el,
1302 VEC (probe_p) **probesp, CORE_ADDR base)
1303{
1304 bfd *abfd = objfile->obfd;
1305 int size = bfd_get_arch_size (abfd) / 8;
1306 struct gdbarch *gdbarch = get_objfile_arch (objfile);
55aa24fb
SDJ
1307 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
1308 CORE_ADDR base_ref;
1309 const char *probe_args = NULL;
1310 struct stap_probe *ret;
1311
1312 ret = obstack_alloc (&objfile->objfile_obstack, sizeof (*ret));
1313 ret->p.pops = &stap_probe_ops;
6bac7473 1314 ret->p.objfile = objfile;
55aa24fb
SDJ
1315
1316 /* Provider and the name of the probe. */
fe106009 1317 ret->p.provider = (char *) &el->data[3 * size];
55aa24fb
SDJ
1318 ret->p.name = memchr (ret->p.provider, '\0',
1319 (char *) el->data + el->size - ret->p.provider);
1320 /* Making sure there is a name. */
1321 if (!ret->p.name)
1322 {
1323 complaint (&symfile_complaints, _("corrupt probe name when "
1324 "reading `%s'"), objfile->name);
1325
1326 /* There is no way to use a probe without a name or a provider, so
1327 returning zero here makes sense. */
1328 return;
1329 }
1330 else
1331 ++ret->p.name;
1332
1333 /* Retrieving the probe's address. */
1334 ret->p.address = extract_typed_address (&el->data[0], ptr_type);
1335
1336 /* Link-time sh_addr of `.stapsdt.base' section. */
1337 base_ref = extract_typed_address (&el->data[size], ptr_type);
1338
1339 /* Semaphore address. */
1340 ret->sem_addr = extract_typed_address (&el->data[2 * size], ptr_type);
1341
1342 ret->p.address += (ANOFFSET (objfile->section_offsets,
1343 SECT_OFF_TEXT (objfile))
1344 + base - base_ref);
1345 if (ret->sem_addr)
1346 ret->sem_addr += (ANOFFSET (objfile->section_offsets,
1347 SECT_OFF_DATA (objfile))
1348 + base - base_ref);
1349
1350 /* Arguments. We can only extract the argument format if there is a valid
1351 name for this probe. */
1352 probe_args = memchr (ret->p.name, '\0',
1353 (char *) el->data + el->size - ret->p.name);
1354
1355 if (probe_args != NULL)
1356 ++probe_args;
1357
1358 if (probe_args == NULL || (memchr (probe_args, '\0',
1359 (char *) el->data + el->size - ret->p.name)
1360 != el->data + el->size - 1))
1361 {
1362 complaint (&symfile_complaints, _("corrupt probe argument when "
1363 "reading `%s'"), objfile->name);
1364 /* If the argument string is NULL, it means some problem happened with
1365 it. So we return 0. */
1366 return;
1367 }
1368
1369 ret->args_parsed = 0;
1370 ret->args_u.text = (void *) probe_args;
1371
1372 /* Successfully created probe. */
1373 VEC_safe_push (probe_p, *probesp, (struct probe *) ret);
1374}
1375
1376/* Helper function which tries to find the base address of the SystemTap
1377 base section named STAP_BASE_SECTION_NAME. */
1378
1379static void
1380get_stap_base_address_1 (bfd *abfd, asection *sect, void *obj)
1381{
1382 asection **ret = obj;
1383
1384 if ((sect->flags & (SEC_DATA | SEC_ALLOC | SEC_HAS_CONTENTS))
1385 && sect->name && !strcmp (sect->name, STAP_BASE_SECTION_NAME))
1386 *ret = sect;
1387}
1388
1389/* Helper function which iterates over every section in the BFD file,
1390 trying to find the base address of the SystemTap base section.
1391 Returns 1 if found (setting BASE to the proper value), zero otherwise. */
1392
1393static int
1394get_stap_base_address (bfd *obfd, bfd_vma *base)
1395{
1396 asection *ret = NULL;
1397
1398 bfd_map_over_sections (obfd, get_stap_base_address_1, (void *) &ret);
1399
1400 if (!ret)
1401 {
1402 complaint (&symfile_complaints, _("could not obtain base address for "
1403 "SystemTap section on objfile `%s'."),
1404 obfd->filename);
1405 return 0;
1406 }
1407
1408 if (base)
1409 *base = ret->vma;
1410
1411 return 1;
1412}
1413
1414/* Helper function for `elf_get_probes', which gathers information about all
1415 SystemTap probes from OBJFILE. */
1416
1417static void
1418stap_get_probes (VEC (probe_p) **probesp, struct objfile *objfile)
1419{
1420 /* If we are here, then this is the first time we are parsing the
1421 SystemTap probe's information. We basically have to count how many
1422 probes the objfile has, and then fill in the necessary information
1423 for each one. */
1424 bfd *obfd = objfile->obfd;
1425 bfd_vma base;
1426 struct sdt_note *iter;
1427 unsigned save_probesp_len = VEC_length (probe_p, *probesp);
1428
d7333987
SDJ
1429 if (objfile->separate_debug_objfile_backlink != NULL)
1430 {
1431 /* This is a .debug file, not the objfile itself. */
1432 return;
1433 }
1434
55aa24fb
SDJ
1435 if (!elf_tdata (obfd)->sdt_note_head)
1436 {
1437 /* There isn't any probe here. */
1438 return;
1439 }
1440
1441 if (!get_stap_base_address (obfd, &base))
1442 {
1443 /* There was an error finding the base address for the section.
1444 Just return NULL. */
1445 return;
1446 }
1447
1448 /* Parsing each probe's information. */
1449 for (iter = elf_tdata (obfd)->sdt_note_head; iter; iter = iter->next)
1450 {
1451 /* We first have to handle all the information about the
1452 probe which is present in the section. */
1453 handle_stap_probe (objfile, iter, probesp, base);
1454 }
1455
1456 if (save_probesp_len == VEC_length (probe_p, *probesp))
1457 {
1458 /* If we are here, it means we have failed to parse every known
1459 probe. */
1460 complaint (&symfile_complaints, _("could not parse SystemTap probe(s) "
1461 "from inferior"));
1462 return;
1463 }
1464}
1465
1466static void
1467stap_relocate (struct probe *probe_generic, CORE_ADDR delta)
1468{
1469 struct stap_probe *probe = (struct stap_probe *) probe_generic;
1470
1471 gdb_assert (probe_generic->pops == &stap_probe_ops);
1472
1473 probe->p.address += delta;
1474 if (probe->sem_addr)
1475 probe->sem_addr += delta;
1476}
1477
1478static int
1479stap_probe_is_linespec (const char **linespecp)
1480{
1481 static const char *const keywords[] = { "-pstap", "-probe-stap", NULL };
1482
1483 return probe_is_linespec_by_keyword (linespecp, keywords);
1484}
1485
1486static void
1487stap_gen_info_probes_table_header (VEC (info_probe_column_s) **heads)
1488{
1489 info_probe_column_s stap_probe_column;
1490
1491 stap_probe_column.field_name = "semaphore";
1492 stap_probe_column.print_name = _("Semaphore");
1493
1494 VEC_safe_push (info_probe_column_s, *heads, &stap_probe_column);
1495}
1496
1497static void
1498stap_gen_info_probes_table_values (struct probe *probe_generic,
55aa24fb
SDJ
1499 VEC (const_char_ptr) **ret)
1500{
1501 struct stap_probe *probe = (struct stap_probe *) probe_generic;
6bac7473 1502 struct gdbarch *gdbarch;
55aa24fb
SDJ
1503 const char *val = NULL;
1504
1505 gdb_assert (probe_generic->pops == &stap_probe_ops);
1506
6bac7473
SDJ
1507 gdbarch = get_objfile_arch (probe->p.objfile);
1508
55aa24fb
SDJ
1509 if (probe->sem_addr)
1510 val = print_core_address (gdbarch, probe->sem_addr);
1511
1512 VEC_safe_push (const_char_ptr, *ret, val);
1513}
1514
1515/* SystemTap probe_ops. */
1516
1517static const struct probe_ops stap_probe_ops =
1518{
1519 stap_probe_is_linespec,
1520 stap_get_probes,
1521 stap_relocate,
1522 stap_get_probe_argument_count,
1523 stap_evaluate_probe_argument,
1524 stap_compile_to_ax,
1525 stap_set_semaphore,
1526 stap_clear_semaphore,
1527 stap_probe_destroy,
1528 stap_gen_info_probes_table_header,
1529 stap_gen_info_probes_table_values,
1530};
1531
1532/* Implementation of the `info probes stap' command. */
1533
1534static void
1535info_probes_stap_command (char *arg, int from_tty)
1536{
1537 info_probes_for_ops (arg, from_tty, &stap_probe_ops);
1538}
1539
1540void _initialize_stap_probe (void);
1541
1542void
1543_initialize_stap_probe (void)
1544{
1545 VEC_safe_push (probe_ops_cp, all_probe_ops, &stap_probe_ops);
1546
ccce17b0
YQ
1547 add_setshow_zuinteger_cmd ("stap-expression", class_maintenance,
1548 &stap_expression_debug,
1549 _("Set SystemTap expression debugging."),
1550 _("Show SystemTap expression debugging."),
1551 _("When non-zero, the internal representation "
1552 "of SystemTap expressions will be printed."),
1553 NULL,
1554 show_stapexpressiondebug,
1555 &setdebuglist, &showdebuglist);
55aa24fb
SDJ
1556
1557 create_internalvar_type_lazy ("_probe_argc", &probe_funcs,
1558 (void *) (uintptr_t) -1);
1559 create_internalvar_type_lazy ("_probe_arg0", &probe_funcs,
1560 (void *) (uintptr_t) 0);
1561 create_internalvar_type_lazy ("_probe_arg1", &probe_funcs,
1562 (void *) (uintptr_t) 1);
1563 create_internalvar_type_lazy ("_probe_arg2", &probe_funcs,
1564 (void *) (uintptr_t) 2);
1565 create_internalvar_type_lazy ("_probe_arg3", &probe_funcs,
1566 (void *) (uintptr_t) 3);
1567 create_internalvar_type_lazy ("_probe_arg4", &probe_funcs,
1568 (void *) (uintptr_t) 4);
1569 create_internalvar_type_lazy ("_probe_arg5", &probe_funcs,
1570 (void *) (uintptr_t) 5);
1571 create_internalvar_type_lazy ("_probe_arg6", &probe_funcs,
1572 (void *) (uintptr_t) 6);
1573 create_internalvar_type_lazy ("_probe_arg7", &probe_funcs,
1574 (void *) (uintptr_t) 7);
1575 create_internalvar_type_lazy ("_probe_arg8", &probe_funcs,
1576 (void *) (uintptr_t) 8);
1577 create_internalvar_type_lazy ("_probe_arg9", &probe_funcs,
1578 (void *) (uintptr_t) 9);
1579 create_internalvar_type_lazy ("_probe_arg10", &probe_funcs,
1580 (void *) (uintptr_t) 10);
1581 create_internalvar_type_lazy ("_probe_arg11", &probe_funcs,
1582 (void *) (uintptr_t) 11);
1583
1584 add_cmd ("stap", class_info, info_probes_stap_command,
1585 _("\
1586Show information about SystemTap static probes.\n\
1587Usage: info probes stap [PROVIDER [NAME [OBJECT]]]\n\
1588Each argument is a regular expression, used to select probes.\n\
1589PROVIDER matches probe provider names.\n\
1590NAME matches the probe names.\n\
1591OBJECT matches the executable or shared library name."),
1592 info_probes_cmdlist_get ());
1593
1594}
This page took 0.245978 seconds and 4 git commands to generate.