2009-08-03 H.J. Lu <hongjiu.lu@intel.com>
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
6aba47ca 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
0fb0cc75 4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
777ea8f1 5 Free Software Foundation, Inc.
8926118c 6
c906108c
SS
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
a9762ec7 13 the Free Software Foundation; either version 3 of the License, or
c5aa993b 14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b 21 You should have received a copy of the GNU General Public License
a9762ec7 22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
23
24#include "defs.h"
e17c207e 25#include "arch-utils.h"
086df311 26#include "bfdlink.h"
c906108c
SS
27#include "symtab.h"
28#include "gdbtypes.h"
29#include "gdbcore.h"
30#include "frame.h"
31#include "target.h"
32#include "value.h"
33#include "symfile.h"
34#include "objfiles.h"
0378c332 35#include "source.h"
c906108c
SS
36#include "gdbcmd.h"
37#include "breakpoint.h"
38#include "language.h"
39#include "complaints.h"
40#include "demangle.h"
fb14de7b
UW
41#include "inferior.h"
42#include "regcache.h"
5b5d99cf 43#include "filenames.h" /* for DOSish file names */
c906108c 44#include "gdb-stabs.h"
04ea0df1 45#include "gdb_obstack.h"
d75b5104 46#include "completer.h"
af5f3db6 47#include "bcache.h"
2de7ced7 48#include "hashtab.h"
dbda9972 49#include "readline/readline.h"
7e8580c1 50#include "gdb_assert.h"
fe898f56 51#include "block.h"
ea53e89f 52#include "observer.h"
c1bd25fd 53#include "exec.h"
9bdcbae7 54#include "parser-defs.h"
8756216b 55#include "varobj.h"
77069918 56#include "elf-bfd.h"
e85a822c 57#include "solib.h"
f1838a98 58#include "remote.h"
c906108c 59
c906108c
SS
60#include <sys/types.h>
61#include <fcntl.h>
62#include "gdb_string.h"
63#include "gdb_stat.h"
64#include <ctype.h>
65#include <time.h>
2b71414d 66#include <sys/time.h>
c906108c 67
c906108c 68
9a4105ab
AC
69int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
70void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
71 unsigned long section_sent,
72 unsigned long section_size,
73 unsigned long total_sent,
c2d11a7d 74 unsigned long total_size);
769d7dc4
AC
75void (*deprecated_pre_add_symbol_hook) (const char *);
76void (*deprecated_post_add_symbol_hook) (void);
c906108c 77
74b7792f
AC
78static void clear_symtab_users_cleanup (void *ignore);
79
c906108c 80/* Global variables owned by this file */
c5aa993b 81int readnow_symbol_files; /* Read full symbols immediately */
c906108c 82
c906108c
SS
83/* External variables and functions referenced. */
84
a14ed312 85extern void report_transfer_performance (unsigned long, time_t, time_t);
c906108c
SS
86
87/* Functions this file defines */
88
89#if 0
a14ed312
KB
90static int simple_read_overlay_region_table (void);
91static void simple_free_overlay_region_table (void);
c906108c
SS
92#endif
93
a14ed312 94static void load_command (char *, int);
c906108c 95
d7db6da9
FN
96static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
97
a14ed312 98static void add_symbol_file_command (char *, int);
c906108c 99
5b5d99cf
JB
100static void reread_separate_symbols (struct objfile *objfile);
101
a14ed312 102static void cashier_psymtab (struct partial_symtab *);
c906108c 103
a14ed312 104bfd *symfile_bfd_open (char *);
c906108c 105
0e931cf0
JB
106int get_section_index (struct objfile *, char *);
107
31d99776 108static struct sym_fns *find_sym_fns (bfd *);
c906108c 109
a14ed312 110static void decrement_reading_symtab (void *);
c906108c 111
a14ed312 112static void overlay_invalidate_all (void);
c906108c 113
a14ed312 114void list_overlays_command (char *, int);
c906108c 115
a14ed312 116void map_overlay_command (char *, int);
c906108c 117
a14ed312 118void unmap_overlay_command (char *, int);
c906108c 119
a14ed312 120static void overlay_auto_command (char *, int);
c906108c 121
a14ed312 122static void overlay_manual_command (char *, int);
c906108c 123
a14ed312 124static void overlay_off_command (char *, int);
c906108c 125
a14ed312 126static void overlay_load_command (char *, int);
c906108c 127
a14ed312 128static void overlay_command (char *, int);
c906108c 129
a14ed312 130static void simple_free_overlay_table (void);
c906108c 131
e17a4113
UW
132static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
133 enum bfd_endian);
c906108c 134
a14ed312 135static int simple_read_overlay_table (void);
c906108c 136
a14ed312 137static int simple_overlay_update_1 (struct obj_section *);
c906108c 138
a14ed312 139static void add_filename_language (char *ext, enum language lang);
392a587b 140
a14ed312 141static void info_ext_lang_command (char *args, int from_tty);
392a587b 142
5b5d99cf
JB
143static char *find_separate_debug_file (struct objfile *objfile);
144
a14ed312 145static void init_filename_language_table (void);
392a587b 146
31d99776
DJ
147static void symfile_find_segment_sections (struct objfile *objfile);
148
a14ed312 149void _initialize_symfile (void);
c906108c
SS
150
151/* List of all available sym_fns. On gdb startup, each object file reader
152 calls add_symtab_fns() to register information on each format it is
153 prepared to read. */
154
155static struct sym_fns *symtab_fns = NULL;
156
157/* Flag for whether user will be reloading symbols multiple times.
158 Defaults to ON for VxWorks, otherwise OFF. */
159
160#ifdef SYMBOL_RELOADING_DEFAULT
161int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
162#else
163int symbol_reloading = 0;
164#endif
920d2a44
AC
165static void
166show_symbol_reloading (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
168{
169 fprintf_filtered (file, _("\
170Dynamic symbol table reloading multiple times in one run is %s.\n"),
171 value);
172}
173
bf250677
DE
174/* If non-zero, gdb will notify the user when it is loading symbols
175 from a file. This is almost always what users will want to have happen;
176 but for programs with lots of dynamically linked libraries, the output
177 can be more noise than signal. */
178
179int print_symbol_loading = 1;
c906108c 180
b7209cb4
FF
181/* If non-zero, shared library symbols will be added automatically
182 when the inferior is created, new libraries are loaded, or when
183 attaching to the inferior. This is almost always what users will
184 want to have happen; but for very large programs, the startup time
185 will be excessive, and so if this is a problem, the user can clear
186 this flag and then add the shared library symbols as needed. Note
187 that there is a potential for confusion, since if the shared
c906108c 188 library symbols are not loaded, commands like "info fun" will *not*
b7209cb4 189 report all the functions that are actually present. */
c906108c
SS
190
191int auto_solib_add = 1;
b7209cb4
FF
192
193/* For systems that support it, a threshold size in megabytes. If
194 automatically adding a new library's symbol table to those already
195 known to the debugger would cause the total shared library symbol
196 size to exceed this threshhold, then the shlib's symbols are not
197 added. The threshold is ignored if the user explicitly asks for a
198 shlib to be added, such as when using the "sharedlibrary"
199 command. */
200
201int auto_solib_limit;
c906108c 202\f
c5aa993b 203
0fe19209
DC
204/* This compares two partial symbols by names, using strcmp_iw_ordered
205 for the comparison. */
c906108c
SS
206
207static int
0cd64fe2 208compare_psymbols (const void *s1p, const void *s2p)
c906108c 209{
0fe19209
DC
210 struct partial_symbol *const *s1 = s1p;
211 struct partial_symbol *const *s2 = s2p;
212
4725b721
PH
213 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
214 SYMBOL_SEARCH_NAME (*s2));
c906108c
SS
215}
216
217void
fba45db2 218sort_pst_symbols (struct partial_symtab *pst)
c906108c
SS
219{
220 /* Sort the global list; don't sort the static list */
221
c5aa993b
JM
222 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
223 pst->n_global_syms, sizeof (struct partial_symbol *),
c906108c
SS
224 compare_psymbols);
225}
226
c906108c
SS
227/* Make a null terminated copy of the string at PTR with SIZE characters in
228 the obstack pointed to by OBSTACKP . Returns the address of the copy.
229 Note that the string at PTR does not have to be null terminated, I.E. it
230 may be part of a larger string and we are only saving a substring. */
231
232char *
63ca651f 233obsavestring (const char *ptr, int size, struct obstack *obstackp)
c906108c 234{
52f0bd74 235 char *p = (char *) obstack_alloc (obstackp, size + 1);
c906108c
SS
236 /* Open-coded memcpy--saves function call time. These strings are usually
237 short. FIXME: Is this really still true with a compiler that can
238 inline memcpy? */
239 {
aa1ee363
AC
240 const char *p1 = ptr;
241 char *p2 = p;
63ca651f 242 const char *end = ptr + size;
c906108c
SS
243 while (p1 != end)
244 *p2++ = *p1++;
245 }
246 p[size] = 0;
247 return p;
248}
249
250/* Concatenate strings S1, S2 and S3; return the new string. Space is found
251 in the obstack pointed to by OBSTACKP. */
252
253char *
fba45db2
KB
254obconcat (struct obstack *obstackp, const char *s1, const char *s2,
255 const char *s3)
c906108c 256{
52f0bd74
AC
257 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
258 char *val = (char *) obstack_alloc (obstackp, len);
c906108c
SS
259 strcpy (val, s1);
260 strcat (val, s2);
261 strcat (val, s3);
262 return val;
263}
264
265/* True if we are nested inside psymtab_to_symtab. */
266
267int currently_reading_symtab = 0;
268
269static void
fba45db2 270decrement_reading_symtab (void *dummy)
c906108c
SS
271{
272 currently_reading_symtab--;
273}
274
275/* Get the symbol table that corresponds to a partial_symtab.
276 This is fast after the first time you do it. In fact, there
277 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
278 case inline. */
279
280struct symtab *
aa1ee363 281psymtab_to_symtab (struct partial_symtab *pst)
c906108c
SS
282{
283 /* If it's been looked up before, return it. */
284 if (pst->symtab)
285 return pst->symtab;
286
287 /* If it has not yet been read in, read it. */
288 if (!pst->readin)
c5aa993b 289 {
c906108c
SS
290 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
291 currently_reading_symtab++;
292 (*pst->read_symtab) (pst);
293 do_cleanups (back_to);
294 }
295
296 return pst->symtab;
297}
298
5417f6dc
RM
299/* Remember the lowest-addressed loadable section we've seen.
300 This function is called via bfd_map_over_sections.
c906108c
SS
301
302 In case of equal vmas, the section with the largest size becomes the
303 lowest-addressed loadable section.
304
305 If the vmas and sizes are equal, the last section is considered the
306 lowest-addressed loadable section. */
307
308void
4efb68b1 309find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 310{
c5aa993b 311 asection **lowest = (asection **) obj;
c906108c
SS
312
313 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
314 return;
315 if (!*lowest)
316 *lowest = sect; /* First loadable section */
317 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
318 *lowest = sect; /* A lower loadable section */
319 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
320 && (bfd_section_size (abfd, (*lowest))
321 <= bfd_section_size (abfd, sect)))
322 *lowest = sect;
323}
324
a39a16c4
MM
325/* Create a new section_addr_info, with room for NUM_SECTIONS. */
326
327struct section_addr_info *
328alloc_section_addr_info (size_t num_sections)
329{
330 struct section_addr_info *sap;
331 size_t size;
332
333 size = (sizeof (struct section_addr_info)
334 + sizeof (struct other_sections) * (num_sections - 1));
335 sap = (struct section_addr_info *) xmalloc (size);
336 memset (sap, 0, size);
337 sap->num_sections = num_sections;
338
339 return sap;
340}
62557bbc 341
7b90c3f9
JB
342
343/* Return a freshly allocated copy of ADDRS. The section names, if
344 any, are also freshly allocated copies of those in ADDRS. */
345struct section_addr_info *
346copy_section_addr_info (struct section_addr_info *addrs)
347{
348 struct section_addr_info *copy
349 = alloc_section_addr_info (addrs->num_sections);
350 int i;
351
352 copy->num_sections = addrs->num_sections;
353 for (i = 0; i < addrs->num_sections; i++)
354 {
355 copy->other[i].addr = addrs->other[i].addr;
356 if (addrs->other[i].name)
357 copy->other[i].name = xstrdup (addrs->other[i].name);
358 else
359 copy->other[i].name = NULL;
360 copy->other[i].sectindex = addrs->other[i].sectindex;
361 }
362
363 return copy;
364}
365
366
367
62557bbc
KB
368/* Build (allocate and populate) a section_addr_info struct from
369 an existing section table. */
370
371extern struct section_addr_info *
0542c86d
PA
372build_section_addr_info_from_section_table (const struct target_section *start,
373 const struct target_section *end)
62557bbc
KB
374{
375 struct section_addr_info *sap;
0542c86d 376 const struct target_section *stp;
62557bbc
KB
377 int oidx;
378
a39a16c4 379 sap = alloc_section_addr_info (end - start);
62557bbc
KB
380
381 for (stp = start, oidx = 0; stp != end; stp++)
382 {
5417f6dc 383 if (bfd_get_section_flags (stp->bfd,
fbd35540 384 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 385 && oidx < end - start)
62557bbc
KB
386 {
387 sap->other[oidx].addr = stp->addr;
5417f6dc 388 sap->other[oidx].name
fbd35540 389 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
62557bbc
KB
390 sap->other[oidx].sectindex = stp->the_bfd_section->index;
391 oidx++;
392 }
393 }
394
395 return sap;
396}
397
398
399/* Free all memory allocated by build_section_addr_info_from_section_table. */
400
401extern void
402free_section_addr_info (struct section_addr_info *sap)
403{
404 int idx;
405
a39a16c4 406 for (idx = 0; idx < sap->num_sections; idx++)
62557bbc 407 if (sap->other[idx].name)
b8c9b27d
KB
408 xfree (sap->other[idx].name);
409 xfree (sap);
62557bbc
KB
410}
411
412
e8289572
JB
413/* Initialize OBJFILE's sect_index_* members. */
414static void
415init_objfile_sect_indices (struct objfile *objfile)
c906108c 416{
e8289572 417 asection *sect;
c906108c 418 int i;
5417f6dc 419
b8fbeb18 420 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 421 if (sect)
b8fbeb18
EZ
422 objfile->sect_index_text = sect->index;
423
424 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 425 if (sect)
b8fbeb18
EZ
426 objfile->sect_index_data = sect->index;
427
428 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 429 if (sect)
b8fbeb18
EZ
430 objfile->sect_index_bss = sect->index;
431
432 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 433 if (sect)
b8fbeb18
EZ
434 objfile->sect_index_rodata = sect->index;
435
bbcd32ad
FF
436 /* This is where things get really weird... We MUST have valid
437 indices for the various sect_index_* members or gdb will abort.
438 So if for example, there is no ".text" section, we have to
31d99776
DJ
439 accomodate that. First, check for a file with the standard
440 one or two segments. */
441
442 symfile_find_segment_sections (objfile);
443
444 /* Except when explicitly adding symbol files at some address,
445 section_offsets contains nothing but zeros, so it doesn't matter
446 which slot in section_offsets the individual sect_index_* members
447 index into. So if they are all zero, it is safe to just point
448 all the currently uninitialized indices to the first slot. But
449 beware: if this is the main executable, it may be relocated
450 later, e.g. by the remote qOffsets packet, and then this will
451 be wrong! That's why we try segments first. */
bbcd32ad
FF
452
453 for (i = 0; i < objfile->num_sections; i++)
454 {
455 if (ANOFFSET (objfile->section_offsets, i) != 0)
456 {
457 break;
458 }
459 }
460 if (i == objfile->num_sections)
461 {
462 if (objfile->sect_index_text == -1)
463 objfile->sect_index_text = 0;
464 if (objfile->sect_index_data == -1)
465 objfile->sect_index_data = 0;
466 if (objfile->sect_index_bss == -1)
467 objfile->sect_index_bss = 0;
468 if (objfile->sect_index_rodata == -1)
469 objfile->sect_index_rodata = 0;
470 }
b8fbeb18 471}
c906108c 472
c1bd25fd
DJ
473/* The arguments to place_section. */
474
475struct place_section_arg
476{
477 struct section_offsets *offsets;
478 CORE_ADDR lowest;
479};
480
481/* Find a unique offset to use for loadable section SECT if
482 the user did not provide an offset. */
483
2c0b251b 484static void
c1bd25fd
DJ
485place_section (bfd *abfd, asection *sect, void *obj)
486{
487 struct place_section_arg *arg = obj;
488 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
489 int done;
3bd72c6f 490 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 491
2711e456
DJ
492 /* We are only interested in allocated sections. */
493 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
494 return;
495
496 /* If the user specified an offset, honor it. */
497 if (offsets[sect->index] != 0)
498 return;
499
500 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
501 start_addr = (arg->lowest + align - 1) & -align;
502
c1bd25fd
DJ
503 do {
504 asection *cur_sec;
c1bd25fd 505
c1bd25fd
DJ
506 done = 1;
507
508 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
509 {
510 int indx = cur_sec->index;
511 CORE_ADDR cur_offset;
512
513 /* We don't need to compare against ourself. */
514 if (cur_sec == sect)
515 continue;
516
2711e456
DJ
517 /* We can only conflict with allocated sections. */
518 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
519 continue;
520
521 /* If the section offset is 0, either the section has not been placed
522 yet, or it was the lowest section placed (in which case LOWEST
523 will be past its end). */
524 if (offsets[indx] == 0)
525 continue;
526
527 /* If this section would overlap us, then we must move up. */
528 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
529 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
530 {
531 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
532 start_addr = (start_addr + align - 1) & -align;
533 done = 0;
3bd72c6f 534 break;
c1bd25fd
DJ
535 }
536
537 /* Otherwise, we appear to be OK. So far. */
538 }
539 }
540 while (!done);
541
542 offsets[sect->index] = start_addr;
543 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 544}
e8289572
JB
545
546/* Parse the user's idea of an offset for dynamic linking, into our idea
5417f6dc 547 of how to represent it for fast symbol reading. This is the default
e8289572
JB
548 version of the sym_fns.sym_offsets function for symbol readers that
549 don't need to do anything special. It allocates a section_offsets table
550 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
551
552void
553default_symfile_offsets (struct objfile *objfile,
554 struct section_addr_info *addrs)
555{
556 int i;
557
a39a16c4 558 objfile->num_sections = bfd_count_sections (objfile->obfd);
e8289572 559 objfile->section_offsets = (struct section_offsets *)
5417f6dc 560 obstack_alloc (&objfile->objfile_obstack,
a39a16c4 561 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
5417f6dc 562 memset (objfile->section_offsets, 0,
a39a16c4 563 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
e8289572
JB
564
565 /* Now calculate offsets for section that were specified by the
566 caller. */
a39a16c4 567 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
e8289572
JB
568 {
569 struct other_sections *osp ;
570
571 osp = &addrs->other[i] ;
572 if (osp->addr == 0)
573 continue;
574
575 /* Record all sections in offsets */
576 /* The section_offsets in the objfile are here filled in using
577 the BFD index. */
578 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
579 }
580
c1bd25fd
DJ
581 /* For relocatable files, all loadable sections will start at zero.
582 The zero is meaningless, so try to pick arbitrary addresses such
583 that no loadable sections overlap. This algorithm is quadratic,
584 but the number of sections in a single object file is generally
585 small. */
586 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
587 {
588 struct place_section_arg arg;
2711e456
DJ
589 bfd *abfd = objfile->obfd;
590 asection *cur_sec;
591 CORE_ADDR lowest = 0;
592
593 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
594 /* We do not expect this to happen; just skip this step if the
595 relocatable file has a section with an assigned VMA. */
596 if (bfd_section_vma (abfd, cur_sec) != 0)
597 break;
598
599 if (cur_sec == NULL)
600 {
601 CORE_ADDR *offsets = objfile->section_offsets->offsets;
602
603 /* Pick non-overlapping offsets for sections the user did not
604 place explicitly. */
605 arg.offsets = objfile->section_offsets;
606 arg.lowest = 0;
607 bfd_map_over_sections (objfile->obfd, place_section, &arg);
608
609 /* Correctly filling in the section offsets is not quite
610 enough. Relocatable files have two properties that
611 (most) shared objects do not:
612
613 - Their debug information will contain relocations. Some
614 shared libraries do also, but many do not, so this can not
615 be assumed.
616
617 - If there are multiple code sections they will be loaded
618 at different relative addresses in memory than they are
619 in the objfile, since all sections in the file will start
620 at address zero.
621
622 Because GDB has very limited ability to map from an
623 address in debug info to the correct code section,
624 it relies on adding SECT_OFF_TEXT to things which might be
625 code. If we clear all the section offsets, and set the
626 section VMAs instead, then symfile_relocate_debug_section
627 will return meaningful debug information pointing at the
628 correct sections.
629
630 GDB has too many different data structures for section
631 addresses - a bfd, objfile, and so_list all have section
632 tables, as does exec_ops. Some of these could probably
633 be eliminated. */
634
635 for (cur_sec = abfd->sections; cur_sec != NULL;
636 cur_sec = cur_sec->next)
637 {
638 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
639 continue;
640
641 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
30510692
DJ
642 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
643 offsets[cur_sec->index]);
2711e456
DJ
644 offsets[cur_sec->index] = 0;
645 }
646 }
c1bd25fd
DJ
647 }
648
e8289572
JB
649 /* Remember the bfd indexes for the .text, .data, .bss and
650 .rodata sections. */
651 init_objfile_sect_indices (objfile);
652}
653
654
31d99776
DJ
655/* Divide the file into segments, which are individual relocatable units.
656 This is the default version of the sym_fns.sym_segments function for
657 symbol readers that do not have an explicit representation of segments.
658 It assumes that object files do not have segments, and fully linked
659 files have a single segment. */
660
661struct symfile_segment_data *
662default_symfile_segments (bfd *abfd)
663{
664 int num_sections, i;
665 asection *sect;
666 struct symfile_segment_data *data;
667 CORE_ADDR low, high;
668
669 /* Relocatable files contain enough information to position each
670 loadable section independently; they should not be relocated
671 in segments. */
672 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
673 return NULL;
674
675 /* Make sure there is at least one loadable section in the file. */
676 for (sect = abfd->sections; sect != NULL; sect = sect->next)
677 {
678 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
679 continue;
680
681 break;
682 }
683 if (sect == NULL)
684 return NULL;
685
686 low = bfd_get_section_vma (abfd, sect);
687 high = low + bfd_get_section_size (sect);
688
689 data = XZALLOC (struct symfile_segment_data);
690 data->num_segments = 1;
691 data->segment_bases = XCALLOC (1, CORE_ADDR);
692 data->segment_sizes = XCALLOC (1, CORE_ADDR);
693
694 num_sections = bfd_count_sections (abfd);
695 data->segment_info = XCALLOC (num_sections, int);
696
697 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
698 {
699 CORE_ADDR vma;
700
701 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
702 continue;
703
704 vma = bfd_get_section_vma (abfd, sect);
705 if (vma < low)
706 low = vma;
707 if (vma + bfd_get_section_size (sect) > high)
708 high = vma + bfd_get_section_size (sect);
709
710 data->segment_info[i] = 1;
711 }
712
713 data->segment_bases[0] = low;
714 data->segment_sizes[0] = high - low;
715
716 return data;
717}
718
c906108c
SS
719/* Process a symbol file, as either the main file or as a dynamically
720 loaded file.
721
96baa820
JM
722 OBJFILE is where the symbols are to be read from.
723
7e8580c1
JB
724 ADDRS is the list of section load addresses. If the user has given
725 an 'add-symbol-file' command, then this is the list of offsets and
726 addresses he or she provided as arguments to the command; or, if
727 we're handling a shared library, these are the actual addresses the
728 sections are loaded at, according to the inferior's dynamic linker
729 (as gleaned by GDB's shared library code). We convert each address
730 into an offset from the section VMA's as it appears in the object
731 file, and then call the file's sym_offsets function to convert this
732 into a format-specific offset table --- a `struct section_offsets'.
733 If ADDRS is non-zero, OFFSETS must be zero.
734
735 OFFSETS is a table of section offsets already in the right
736 format-specific representation. NUM_OFFSETS is the number of
737 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
738 assume this is the proper table the call to sym_offsets described
739 above would produce. Instead of calling sym_offsets, we just dump
740 it right into objfile->section_offsets. (When we're re-reading
741 symbols from an objfile, we don't have the original load address
742 list any more; all we have is the section offset table.) If
743 OFFSETS is non-zero, ADDRS must be zero.
96baa820 744
7eedccfa
PP
745 ADD_FLAGS encodes verbosity level, whether this is main symbol or
746 an extra symbol file such as dynamically loaded code, and wether
747 breakpoint reset should be deferred. */
c906108c
SS
748
749void
7e8580c1
JB
750syms_from_objfile (struct objfile *objfile,
751 struct section_addr_info *addrs,
752 struct section_offsets *offsets,
753 int num_offsets,
7eedccfa 754 int add_flags)
c906108c 755{
a39a16c4 756 struct section_addr_info *local_addr = NULL;
c906108c 757 struct cleanup *old_chain;
7eedccfa 758 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 759
7e8580c1 760 gdb_assert (! (addrs && offsets));
2acceee2 761
c906108c 762 init_entry_point_info (objfile);
31d99776 763 objfile->sf = find_sym_fns (objfile->obfd);
c906108c 764
75245b24
MS
765 if (objfile->sf == NULL)
766 return; /* No symbols. */
767
c906108c
SS
768 /* Make sure that partially constructed symbol tables will be cleaned up
769 if an error occurs during symbol reading. */
74b7792f 770 old_chain = make_cleanup_free_objfile (objfile);
c906108c 771
a39a16c4
MM
772 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
773 list. We now establish the convention that an addr of zero means
774 no load address was specified. */
775 if (! addrs && ! offsets)
776 {
5417f6dc 777 local_addr
a39a16c4
MM
778 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
779 make_cleanup (xfree, local_addr);
780 addrs = local_addr;
781 }
782
783 /* Now either addrs or offsets is non-zero. */
784
c5aa993b 785 if (mainline)
c906108c
SS
786 {
787 /* We will modify the main symbol table, make sure that all its users
c5aa993b 788 will be cleaned up if an error occurs during symbol reading. */
74b7792f 789 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
790
791 /* Since no error yet, throw away the old symbol table. */
792
793 if (symfile_objfile != NULL)
794 {
795 free_objfile (symfile_objfile);
796 symfile_objfile = NULL;
797 }
798
799 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
800 If the user wants to get rid of them, they should do "symbol-file"
801 without arguments first. Not sure this is the best behavior
802 (PR 2207). */
c906108c 803
c5aa993b 804 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
805 }
806
807 /* Convert addr into an offset rather than an absolute address.
808 We find the lowest address of a loaded segment in the objfile,
53a5351d 809 and assume that <addr> is where that got loaded.
c906108c 810
53a5351d
JM
811 We no longer warn if the lowest section is not a text segment (as
812 happens for the PA64 port. */
1549f619 813 if (!mainline && addrs && addrs->other[0].name)
c906108c 814 {
1549f619
EZ
815 asection *lower_sect;
816 asection *sect;
817 CORE_ADDR lower_offset;
818 int i;
819
5417f6dc 820 /* Find lowest loadable section to be used as starting point for
2acceee2
JM
821 continguous sections. FIXME!! won't work without call to find
822 .text first, but this assumes text is lowest section. */
823 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
824 if (lower_sect == NULL)
c906108c 825 bfd_map_over_sections (objfile->obfd, find_lowest_section,
4efb68b1 826 &lower_sect);
2acceee2 827 if (lower_sect == NULL)
ff8e85c3
PA
828 {
829 warning (_("no loadable sections found in added symbol-file %s"),
830 objfile->name);
831 lower_offset = 0;
832 }
2acceee2 833 else
ff8e85c3 834 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
5417f6dc 835
13de58df 836 /* Calculate offsets for the loadable sections.
2acceee2
JM
837 FIXME! Sections must be in order of increasing loadable section
838 so that contiguous sections can use the lower-offset!!!
5417f6dc 839
13de58df
JB
840 Adjust offsets if the segments are not contiguous.
841 If the section is contiguous, its offset should be set to
2acceee2
JM
842 the offset of the highest loadable section lower than it
843 (the loadable section directly below it in memory).
844 this_offset = lower_offset = lower_addr - lower_orig_addr */
845
1549f619 846 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
7e8580c1
JB
847 {
848 if (addrs->other[i].addr != 0)
849 {
850 sect = bfd_get_section_by_name (objfile->obfd,
851 addrs->other[i].name);
852 if (sect)
853 {
854 addrs->other[i].addr
855 -= bfd_section_vma (objfile->obfd, sect);
856 lower_offset = addrs->other[i].addr;
857 /* This is the index used by BFD. */
858 addrs->other[i].sectindex = sect->index ;
859 }
860 else
861 {
8a3fe4f8 862 warning (_("section %s not found in %s"),
5417f6dc 863 addrs->other[i].name,
7e8580c1
JB
864 objfile->name);
865 addrs->other[i].addr = 0;
866 }
867 }
868 else
869 addrs->other[i].addr = lower_offset;
870 }
c906108c
SS
871 }
872
873 /* Initialize symbol reading routines for this objfile, allow complaints to
874 appear for this new file, and record how verbose to be, then do the
875 initial symbol reading for this file. */
876
c5aa993b 877 (*objfile->sf->sym_init) (objfile);
7eedccfa 878 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 879
7e8580c1
JB
880 if (addrs)
881 (*objfile->sf->sym_offsets) (objfile, addrs);
882 else
883 {
884 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
885
886 /* Just copy in the offset table directly as given to us. */
887 objfile->num_sections = num_offsets;
888 objfile->section_offsets
889 = ((struct section_offsets *)
8b92e4d5 890 obstack_alloc (&objfile->objfile_obstack, size));
7e8580c1
JB
891 memcpy (objfile->section_offsets, offsets, size);
892
893 init_objfile_sect_indices (objfile);
894 }
c906108c 895
96baa820 896 (*objfile->sf->sym_read) (objfile, mainline);
c906108c 897
c906108c
SS
898 /* Discard cleanups as symbol reading was successful. */
899
900 discard_cleanups (old_chain);
f7545552 901 xfree (local_addr);
c906108c
SS
902}
903
904/* Perform required actions after either reading in the initial
905 symbols for a new objfile, or mapping in the symbols from a reusable
906 objfile. */
c5aa993b 907
c906108c 908void
7eedccfa 909new_symfile_objfile (struct objfile *objfile, int add_flags)
c906108c
SS
910{
911
912 /* If this is the main symbol file we have to clean up all users of the
913 old main symbol file. Otherwise it is sufficient to fixup all the
914 breakpoints that may have been redefined by this symbol file. */
7eedccfa 915 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
916 {
917 /* OK, make it the "real" symbol file. */
918 symfile_objfile = objfile;
919
920 clear_symtab_users ();
921 }
7eedccfa 922 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 923 {
69de3c6a 924 breakpoint_re_set ();
c906108c
SS
925 }
926
927 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 928 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
929}
930
931/* Process a symbol file, as either the main file or as a dynamically
932 loaded file.
933
5417f6dc
RM
934 ABFD is a BFD already open on the file, as from symfile_bfd_open.
935 This BFD will be closed on error, and is always consumed by this function.
7904e09f 936
7eedccfa
PP
937 ADD_FLAGS encodes verbosity, whether this is main symbol file or
938 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f
JB
939
940 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
7eedccfa
PP
941 syms_from_objfile, above.
942 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 943
c906108c
SS
944 Upon success, returns a pointer to the objfile that was added.
945 Upon failure, jumps back to command level (never returns). */
7eedccfa 946
7904e09f 947static struct objfile *
7eedccfa
PP
948symbol_file_add_with_addrs_or_offsets (bfd *abfd,
949 int add_flags,
7904e09f
JB
950 struct section_addr_info *addrs,
951 struct section_offsets *offsets,
952 int num_offsets,
7eedccfa 953 int flags)
c906108c
SS
954{
955 struct objfile *objfile;
956 struct partial_symtab *psymtab;
77069918 957 char *debugfile = NULL;
7b90c3f9 958 struct section_addr_info *orig_addrs = NULL;
a39a16c4 959 struct cleanup *my_cleanups;
5417f6dc 960 const char *name = bfd_get_filename (abfd);
7eedccfa 961 const int from_tty = add_flags & SYMFILE_VERBOSE;
c906108c 962
5417f6dc 963 my_cleanups = make_cleanup_bfd_close (abfd);
c906108c 964
5417f6dc
RM
965 /* Give user a chance to burp if we'd be
966 interactively wiping out any existing symbols. */
c906108c
SS
967
968 if ((have_full_symbols () || have_partial_symbols ())
7eedccfa 969 && (add_flags & SYMFILE_MAINLINE)
c906108c 970 && from_tty
9e2f0ad4 971 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 972 error (_("Not confirmed."));
c906108c 973
2df3850c 974 objfile = allocate_objfile (abfd, flags);
5417f6dc 975 discard_cleanups (my_cleanups);
c906108c 976
a39a16c4 977 if (addrs)
63cd24fe 978 {
7b90c3f9
JB
979 orig_addrs = copy_section_addr_info (addrs);
980 make_cleanup_free_section_addr_info (orig_addrs);
63cd24fe 981 }
a39a16c4 982
78a4a9b9
AC
983 /* We either created a new mapped symbol table, mapped an existing
984 symbol table file which has not had initial symbol reading
985 performed, or need to read an unmapped symbol table. */
986 if (from_tty || info_verbose)
c906108c 987 {
769d7dc4
AC
988 if (deprecated_pre_add_symbol_hook)
989 deprecated_pre_add_symbol_hook (name);
78a4a9b9 990 else
c906108c 991 {
bf250677
DE
992 if (print_symbol_loading)
993 {
994 printf_unfiltered (_("Reading symbols from %s..."), name);
995 wrap_here ("");
996 gdb_flush (gdb_stdout);
997 }
c906108c 998 }
c906108c 999 }
78a4a9b9 1000 syms_from_objfile (objfile, addrs, offsets, num_offsets,
7eedccfa 1001 add_flags);
c906108c
SS
1002
1003 /* We now have at least a partial symbol table. Check to see if the
1004 user requested that all symbols be read on initial access via either
1005 the gdb startup command line or on a per symbol file basis. Expand
1006 all partial symbol tables for this objfile if so. */
1007
2acceee2 1008 if ((flags & OBJF_READNOW) || readnow_symbol_files)
c906108c 1009 {
bf250677 1010 if ((from_tty || info_verbose) && print_symbol_loading)
c906108c 1011 {
a3f17187 1012 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1013 wrap_here ("");
1014 gdb_flush (gdb_stdout);
1015 }
1016
c5aa993b 1017 for (psymtab = objfile->psymtabs;
c906108c 1018 psymtab != NULL;
c5aa993b 1019 psymtab = psymtab->next)
c906108c
SS
1020 {
1021 psymtab_to_symtab (psymtab);
1022 }
1023 }
1024
77069918
JK
1025 /* If the file has its own symbol tables it has no separate debug info.
1026 `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to SYMTABS/PSYMTABS.
1027 `.gnu_debuglink' may no longer be present with `.note.gnu.build-id'. */
1028 if (objfile->psymtabs == NULL)
1029 debugfile = find_separate_debug_file (objfile);
5b5d99cf
JB
1030 if (debugfile)
1031 {
5b5d99cf
JB
1032 if (addrs != NULL)
1033 {
1034 objfile->separate_debug_objfile
7eedccfa 1035 = symbol_file_add (debugfile, add_flags, orig_addrs, flags);
5b5d99cf
JB
1036 }
1037 else
1038 {
1039 objfile->separate_debug_objfile
7eedccfa 1040 = symbol_file_add (debugfile, add_flags, NULL, flags);
5b5d99cf
JB
1041 }
1042 objfile->separate_debug_objfile->separate_debug_objfile_backlink
1043 = objfile;
5417f6dc 1044
5b5d99cf
JB
1045 /* Put the separate debug object before the normal one, this is so that
1046 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
1047 put_objfile_before (objfile->separate_debug_objfile, objfile);
5417f6dc 1048
5b5d99cf
JB
1049 xfree (debugfile);
1050 }
5417f6dc 1051
bf250677
DE
1052 if (!have_partial_symbols () && !have_full_symbols ()
1053 && print_symbol_loading)
cb3c37b2
JB
1054 {
1055 wrap_here ("");
d4c0a7a0 1056 printf_unfiltered (_("(no debugging symbols found)"));
8f5ba92b 1057 if (from_tty || info_verbose)
d4c0a7a0 1058 printf_unfiltered ("...");
8f5ba92b 1059 else
d4c0a7a0 1060 printf_unfiltered ("\n");
cb3c37b2
JB
1061 wrap_here ("");
1062 }
1063
c906108c
SS
1064 if (from_tty || info_verbose)
1065 {
769d7dc4
AC
1066 if (deprecated_post_add_symbol_hook)
1067 deprecated_post_add_symbol_hook ();
c906108c 1068 else
c5aa993b 1069 {
bf250677
DE
1070 if (print_symbol_loading)
1071 printf_unfiltered (_("done.\n"));
c5aa993b 1072 }
c906108c
SS
1073 }
1074
481d0f41
JB
1075 /* We print some messages regardless of whether 'from_tty ||
1076 info_verbose' is true, so make sure they go out at the right
1077 time. */
1078 gdb_flush (gdb_stdout);
1079
a39a16c4
MM
1080 do_cleanups (my_cleanups);
1081
109f874e 1082 if (objfile->sf == NULL)
8caee43b
PP
1083 {
1084 observer_notify_new_objfile (objfile);
1085 return objfile; /* No symbols. */
1086 }
109f874e 1087
7eedccfa 1088 new_symfile_objfile (objfile, add_flags);
c906108c 1089
06d3b283 1090 observer_notify_new_objfile (objfile);
c906108c 1091
ce7d4522 1092 bfd_cache_close_all ();
c906108c
SS
1093 return (objfile);
1094}
1095
7904e09f 1096
eb4556d7
JB
1097/* Process the symbol file ABFD, as either the main file or as a
1098 dynamically loaded file.
1099
1100 See symbol_file_add_with_addrs_or_offsets's comments for
1101 details. */
1102struct objfile *
7eedccfa 1103symbol_file_add_from_bfd (bfd *abfd, int add_flags,
eb4556d7 1104 struct section_addr_info *addrs,
7eedccfa 1105 int flags)
eb4556d7 1106{
7eedccfa
PP
1107 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1108 flags);
eb4556d7
JB
1109}
1110
1111
7904e09f
JB
1112/* Process a symbol file, as either the main file or as a dynamically
1113 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1114 for details. */
1115struct objfile *
7eedccfa
PP
1116symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1117 int flags)
7904e09f 1118{
7eedccfa
PP
1119 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1120 flags);
7904e09f
JB
1121}
1122
1123
d7db6da9
FN
1124/* Call symbol_file_add() with default values and update whatever is
1125 affected by the loading of a new main().
1126 Used when the file is supplied in the gdb command line
1127 and by some targets with special loading requirements.
1128 The auxiliary function, symbol_file_add_main_1(), has the flags
1129 argument for the switches that can only be specified in the symbol_file
1130 command itself. */
5417f6dc 1131
1adeb98a
FN
1132void
1133symbol_file_add_main (char *args, int from_tty)
1134{
d7db6da9
FN
1135 symbol_file_add_main_1 (args, from_tty, 0);
1136}
1137
1138static void
1139symbol_file_add_main_1 (char *args, int from_tty, int flags)
1140{
7eedccfa
PP
1141 const int add_flags = SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0);
1142 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1143
d7db6da9
FN
1144 /* Getting new symbols may change our opinion about
1145 what is frameless. */
1146 reinit_frame_cache ();
1147
1148 set_initial_language ();
1adeb98a
FN
1149}
1150
1151void
1152symbol_file_clear (int from_tty)
1153{
1154 if ((have_full_symbols () || have_partial_symbols ())
1155 && from_tty
0430b0d6
AS
1156 && (symfile_objfile
1157 ? !query (_("Discard symbol table from `%s'? "),
1158 symfile_objfile->name)
1159 : !query (_("Discard symbol table? "))))
8a3fe4f8 1160 error (_("Not confirmed."));
1adeb98a 1161
d10c338d 1162 free_all_objfiles ();
1adeb98a 1163
d10c338d
DE
1164 /* solib descriptors may have handles to objfiles. Since their
1165 storage has just been released, we'd better wipe the solib
1166 descriptors as well. */
1167 no_shared_libraries (NULL, from_tty);
1168
1169 symfile_objfile = NULL;
1170 if (from_tty)
1171 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1172}
1173
77069918
JK
1174struct build_id
1175 {
1176 size_t size;
1177 gdb_byte data[1];
1178 };
1179
1180/* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
1181
1182static struct build_id *
1183build_id_bfd_get (bfd *abfd)
1184{
1185 struct build_id *retval;
1186
1187 if (!bfd_check_format (abfd, bfd_object)
1188 || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1189 || elf_tdata (abfd)->build_id == NULL)
1190 return NULL;
1191
1192 retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size);
1193 retval->size = elf_tdata (abfd)->build_id_size;
1194 memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size);
1195
1196 return retval;
1197}
1198
1199/* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
1200
1201static int
1202build_id_verify (const char *filename, struct build_id *check)
1203{
1204 bfd *abfd;
1205 struct build_id *found = NULL;
1206 int retval = 0;
1207
1208 /* We expect to be silent on the non-existing files. */
f1838a98
UW
1209 if (remote_filename_p (filename))
1210 abfd = remote_bfd_open (filename, gnutarget);
1211 else
1212 abfd = bfd_openr (filename, gnutarget);
77069918
JK
1213 if (abfd == NULL)
1214 return 0;
1215
1216 found = build_id_bfd_get (abfd);
1217
1218 if (found == NULL)
1219 warning (_("File \"%s\" has no build-id, file skipped"), filename);
1220 else if (found->size != check->size
1221 || memcmp (found->data, check->data, found->size) != 0)
1222 warning (_("File \"%s\" has a different build-id, file skipped"), filename);
1223 else
1224 retval = 1;
1225
1226 if (!bfd_close (abfd))
1227 warning (_("cannot close \"%s\": %s"), filename,
1228 bfd_errmsg (bfd_get_error ()));
bb01da77
TT
1229
1230 xfree (found);
1231
77069918
JK
1232 return retval;
1233}
1234
1235static char *
1236build_id_to_debug_filename (struct build_id *build_id)
1237{
1238 char *link, *s, *retval = NULL;
1239 gdb_byte *data = build_id->data;
1240 size_t size = build_id->size;
1241
1242 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1243 link = xmalloc (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1244 + 2 * size + (sizeof ".debug" - 1) + 1);
1245 s = link + sprintf (link, "%s/.build-id/", debug_file_directory);
1246 if (size > 0)
1247 {
1248 size--;
1249 s += sprintf (s, "%02x", (unsigned) *data++);
1250 }
1251 if (size > 0)
1252 *s++ = '/';
1253 while (size-- > 0)
1254 s += sprintf (s, "%02x", (unsigned) *data++);
1255 strcpy (s, ".debug");
1256
1257 /* lrealpath() is expensive even for the usually non-existent files. */
1258 if (access (link, F_OK) == 0)
1259 retval = lrealpath (link);
1260 xfree (link);
1261
1262 if (retval != NULL && !build_id_verify (retval, build_id))
1263 {
1264 xfree (retval);
1265 retval = NULL;
1266 }
1267
1268 return retval;
1269}
1270
5b5d99cf
JB
1271static char *
1272get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1273{
1274 asection *sect;
1275 bfd_size_type debuglink_size;
1276 unsigned long crc32;
1277 char *contents;
1278 int crc_offset;
1279 unsigned char *p;
5417f6dc 1280
5b5d99cf
JB
1281 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1282
1283 if (sect == NULL)
1284 return NULL;
1285
1286 debuglink_size = bfd_section_size (objfile->obfd, sect);
5417f6dc 1287
5b5d99cf
JB
1288 contents = xmalloc (debuglink_size);
1289 bfd_get_section_contents (objfile->obfd, sect, contents,
1290 (file_ptr)0, (bfd_size_type)debuglink_size);
1291
1292 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1293 crc_offset = strlen (contents) + 1;
1294 crc_offset = (crc_offset + 3) & ~3;
1295
1296 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
5417f6dc 1297
5b5d99cf
JB
1298 *crc32_out = crc32;
1299 return contents;
1300}
1301
1302static int
1303separate_debug_file_exists (const char *name, unsigned long crc)
1304{
1305 unsigned long file_crc = 0;
f1838a98 1306 bfd *abfd;
777ea8f1 1307 gdb_byte buffer[8*1024];
5b5d99cf
JB
1308 int count;
1309
f1838a98
UW
1310 if (remote_filename_p (name))
1311 abfd = remote_bfd_open (name, gnutarget);
1312 else
1313 abfd = bfd_openr (name, gnutarget);
1314
1315 if (!abfd)
5b5d99cf
JB
1316 return 0;
1317
f1838a98 1318 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
5b5d99cf
JB
1319 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1320
f1838a98 1321 bfd_close (abfd);
5b5d99cf
JB
1322
1323 return crc == file_crc;
1324}
1325
aa28a74e 1326char *debug_file_directory = NULL;
920d2a44
AC
1327static void
1328show_debug_file_directory (struct ui_file *file, int from_tty,
1329 struct cmd_list_element *c, const char *value)
1330{
1331 fprintf_filtered (file, _("\
1332The directory where separate debug symbols are searched for is \"%s\".\n"),
1333 value);
1334}
5b5d99cf
JB
1335
1336#if ! defined (DEBUG_SUBDIRECTORY)
1337#define DEBUG_SUBDIRECTORY ".debug"
1338#endif
1339
1340static char *
1341find_separate_debug_file (struct objfile *objfile)
1342{
1343 asection *sect;
1344 char *basename;
1345 char *dir;
1346 char *debugfile;
1347 char *name_copy;
aa28a74e 1348 char *canon_name;
5b5d99cf
JB
1349 bfd_size_type debuglink_size;
1350 unsigned long crc32;
1351 int i;
77069918
JK
1352 struct build_id *build_id;
1353
1354 build_id = build_id_bfd_get (objfile->obfd);
1355 if (build_id != NULL)
1356 {
1357 char *build_id_name;
1358
1359 build_id_name = build_id_to_debug_filename (build_id);
bb01da77 1360 xfree (build_id);
77069918
JK
1361 /* Prevent looping on a stripped .debug file. */
1362 if (build_id_name != NULL && strcmp (build_id_name, objfile->name) == 0)
1363 {
1364 warning (_("\"%s\": separate debug info file has no debug info"),
1365 build_id_name);
1366 xfree (build_id_name);
1367 }
1368 else if (build_id_name != NULL)
1369 return build_id_name;
1370 }
5b5d99cf
JB
1371
1372 basename = get_debug_link_info (objfile, &crc32);
1373
1374 if (basename == NULL)
1375 return NULL;
5417f6dc 1376
5b5d99cf
JB
1377 dir = xstrdup (objfile->name);
1378
fe36c4f4
JB
1379 /* Strip off the final filename part, leaving the directory name,
1380 followed by a slash. Objfile names should always be absolute and
1381 tilde-expanded, so there should always be a slash in there
1382 somewhere. */
5b5d99cf
JB
1383 for (i = strlen(dir) - 1; i >= 0; i--)
1384 {
1385 if (IS_DIR_SEPARATOR (dir[i]))
1386 break;
1387 }
fe36c4f4 1388 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
5b5d99cf 1389 dir[i+1] = '\0';
5417f6dc 1390
5b5d99cf
JB
1391 debugfile = alloca (strlen (debug_file_directory) + 1
1392 + strlen (dir)
1393 + strlen (DEBUG_SUBDIRECTORY)
1394 + strlen ("/")
5417f6dc 1395 + strlen (basename)
5b5d99cf
JB
1396 + 1);
1397
1398 /* First try in the same directory as the original file. */
1399 strcpy (debugfile, dir);
1400 strcat (debugfile, basename);
1401
1402 if (separate_debug_file_exists (debugfile, crc32))
1403 {
1404 xfree (basename);
1405 xfree (dir);
1406 return xstrdup (debugfile);
1407 }
5417f6dc 1408
5b5d99cf
JB
1409 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1410 strcpy (debugfile, dir);
1411 strcat (debugfile, DEBUG_SUBDIRECTORY);
1412 strcat (debugfile, "/");
1413 strcat (debugfile, basename);
1414
1415 if (separate_debug_file_exists (debugfile, crc32))
1416 {
1417 xfree (basename);
1418 xfree (dir);
1419 return xstrdup (debugfile);
1420 }
5417f6dc 1421
5b5d99cf
JB
1422 /* Then try in the global debugfile directory. */
1423 strcpy (debugfile, debug_file_directory);
1424 strcat (debugfile, "/");
1425 strcat (debugfile, dir);
5b5d99cf
JB
1426 strcat (debugfile, basename);
1427
1428 if (separate_debug_file_exists (debugfile, crc32))
1429 {
1430 xfree (basename);
1431 xfree (dir);
1432 return xstrdup (debugfile);
1433 }
5417f6dc 1434
aa28a74e
DJ
1435 /* If the file is in the sysroot, try using its base path in the
1436 global debugfile directory. */
1437 canon_name = lrealpath (dir);
1438 if (canon_name
1439 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1440 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1441 {
1442 strcpy (debugfile, debug_file_directory);
1443 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1444 strcat (debugfile, "/");
1445 strcat (debugfile, basename);
1446
1447 if (separate_debug_file_exists (debugfile, crc32))
1448 {
1449 xfree (canon_name);
1450 xfree (basename);
1451 xfree (dir);
1452 return xstrdup (debugfile);
1453 }
1454 }
1455
1456 if (canon_name)
1457 xfree (canon_name);
1458
5b5d99cf
JB
1459 xfree (basename);
1460 xfree (dir);
1461 return NULL;
1462}
1463
1464
c906108c
SS
1465/* This is the symbol-file command. Read the file, analyze its
1466 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1467 the command is rather bizarre:
1468
1469 1. The function buildargv implements various quoting conventions
1470 which are undocumented and have little or nothing in common with
1471 the way things are quoted (or not quoted) elsewhere in GDB.
1472
1473 2. Options are used, which are not generally used in GDB (perhaps
1474 "set mapped on", "set readnow on" would be better)
1475
1476 3. The order of options matters, which is contrary to GNU
c906108c
SS
1477 conventions (because it is confusing and inconvenient). */
1478
1479void
fba45db2 1480symbol_file_command (char *args, int from_tty)
c906108c 1481{
c906108c
SS
1482 dont_repeat ();
1483
1484 if (args == NULL)
1485 {
1adeb98a 1486 symbol_file_clear (from_tty);
c906108c
SS
1487 }
1488 else
1489 {
d1a41061 1490 char **argv = gdb_buildargv (args);
cb2f3a29
MK
1491 int flags = OBJF_USERLOADED;
1492 struct cleanup *cleanups;
1493 char *name = NULL;
1494
7a292a7a 1495 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1496 while (*argv != NULL)
1497 {
78a4a9b9
AC
1498 if (strcmp (*argv, "-readnow") == 0)
1499 flags |= OBJF_READNOW;
1500 else if (**argv == '-')
8a3fe4f8 1501 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1502 else
1503 {
cb2f3a29 1504 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1505 name = *argv;
78a4a9b9 1506 }
cb2f3a29 1507
c906108c
SS
1508 argv++;
1509 }
1510
1511 if (name == NULL)
cb2f3a29
MK
1512 error (_("no symbol file name was specified"));
1513
c906108c
SS
1514 do_cleanups (cleanups);
1515 }
1516}
1517
1518/* Set the initial language.
1519
cb2f3a29
MK
1520 FIXME: A better solution would be to record the language in the
1521 psymtab when reading partial symbols, and then use it (if known) to
1522 set the language. This would be a win for formats that encode the
1523 language in an easily discoverable place, such as DWARF. For
1524 stabs, we can jump through hoops looking for specially named
1525 symbols or try to intuit the language from the specific type of
1526 stabs we find, but we can't do that until later when we read in
1527 full symbols. */
c906108c 1528
8b60591b 1529void
fba45db2 1530set_initial_language (void)
c906108c
SS
1531{
1532 struct partial_symtab *pst;
c5aa993b 1533 enum language lang = language_unknown;
c906108c
SS
1534
1535 pst = find_main_psymtab ();
1536 if (pst != NULL)
1537 {
c5aa993b 1538 if (pst->filename != NULL)
cb2f3a29
MK
1539 lang = deduce_language_from_filename (pst->filename);
1540
c906108c
SS
1541 if (lang == language_unknown)
1542 {
c5aa993b
JM
1543 /* Make C the default language */
1544 lang = language_c;
c906108c 1545 }
cb2f3a29 1546
c906108c 1547 set_language (lang);
cb2f3a29 1548 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1549 }
1550}
1551
cb2f3a29
MK
1552/* Open the file specified by NAME and hand it off to BFD for
1553 preliminary analysis. Return a newly initialized bfd *, which
1554 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1555 absolute). In case of trouble, error() is called. */
c906108c
SS
1556
1557bfd *
fba45db2 1558symfile_bfd_open (char *name)
c906108c
SS
1559{
1560 bfd *sym_bfd;
1561 int desc;
1562 char *absolute_name;
1563
f1838a98
UW
1564 if (remote_filename_p (name))
1565 {
1566 name = xstrdup (name);
1567 sym_bfd = remote_bfd_open (name, gnutarget);
1568 if (!sym_bfd)
1569 {
1570 make_cleanup (xfree, name);
1571 error (_("`%s': can't open to read symbols: %s."), name,
1572 bfd_errmsg (bfd_get_error ()));
1573 }
1574
1575 if (!bfd_check_format (sym_bfd, bfd_object))
1576 {
1577 bfd_close (sym_bfd);
1578 make_cleanup (xfree, name);
1579 error (_("`%s': can't read symbols: %s."), name,
1580 bfd_errmsg (bfd_get_error ()));
1581 }
1582
1583 return sym_bfd;
1584 }
1585
cb2f3a29 1586 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c
SS
1587
1588 /* Look down path for it, allocate 2nd new malloc'd copy. */
cb2f3a29 1589 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
fbdebf46 1590 O_RDONLY | O_BINARY, &absolute_name);
608506ed 1591#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1592 if (desc < 0)
1593 {
1594 char *exename = alloca (strlen (name) + 5);
1595 strcat (strcpy (exename, name), ".exe");
014d698b 1596 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
fbdebf46 1597 O_RDONLY | O_BINARY, &absolute_name);
c906108c
SS
1598 }
1599#endif
1600 if (desc < 0)
1601 {
b8c9b27d 1602 make_cleanup (xfree, name);
c906108c
SS
1603 perror_with_name (name);
1604 }
cb2f3a29
MK
1605
1606 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1607 bfd. It'll be freed in free_objfile(). */
1608 xfree (name);
1609 name = absolute_name;
c906108c 1610
9f76c2cd 1611 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
c906108c
SS
1612 if (!sym_bfd)
1613 {
1614 close (desc);
b8c9b27d 1615 make_cleanup (xfree, name);
f1838a98 1616 error (_("`%s': can't open to read symbols: %s."), name,
c906108c
SS
1617 bfd_errmsg (bfd_get_error ()));
1618 }
549c1eea 1619 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1620
1621 if (!bfd_check_format (sym_bfd, bfd_object))
1622 {
cb2f3a29
MK
1623 /* FIXME: should be checking for errors from bfd_close (for one
1624 thing, on error it does not free all the storage associated
1625 with the bfd). */
1626 bfd_close (sym_bfd); /* This also closes desc. */
b8c9b27d 1627 make_cleanup (xfree, name);
f1838a98 1628 error (_("`%s': can't read symbols: %s."), name,
c906108c
SS
1629 bfd_errmsg (bfd_get_error ()));
1630 }
cb2f3a29
MK
1631
1632 return sym_bfd;
c906108c
SS
1633}
1634
cb2f3a29
MK
1635/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1636 the section was not found. */
1637
0e931cf0
JB
1638int
1639get_section_index (struct objfile *objfile, char *section_name)
1640{
1641 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1642
0e931cf0
JB
1643 if (sect)
1644 return sect->index;
1645 else
1646 return -1;
1647}
1648
cb2f3a29
MK
1649/* Link SF into the global symtab_fns list. Called on startup by the
1650 _initialize routine in each object file format reader, to register
1651 information about each format the the reader is prepared to
1652 handle. */
c906108c
SS
1653
1654void
fba45db2 1655add_symtab_fns (struct sym_fns *sf)
c906108c
SS
1656{
1657 sf->next = symtab_fns;
1658 symtab_fns = sf;
1659}
1660
cb2f3a29
MK
1661/* Initialize OBJFILE to read symbols from its associated BFD. It
1662 either returns or calls error(). The result is an initialized
1663 struct sym_fns in the objfile structure, that contains cached
1664 information about the symbol file. */
c906108c 1665
31d99776
DJ
1666static struct sym_fns *
1667find_sym_fns (bfd *abfd)
c906108c
SS
1668{
1669 struct sym_fns *sf;
31d99776 1670 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
c906108c 1671
75245b24
MS
1672 if (our_flavour == bfd_target_srec_flavour
1673 || our_flavour == bfd_target_ihex_flavour
1674 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1675 return NULL; /* No symbols. */
75245b24 1676
c5aa993b 1677 for (sf = symtab_fns; sf != NULL; sf = sf->next)
31d99776
DJ
1678 if (our_flavour == sf->sym_flavour)
1679 return sf;
cb2f3a29 1680
8a3fe4f8 1681 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1682 bfd_get_target (abfd));
c906108c
SS
1683}
1684\f
cb2f3a29 1685
c906108c
SS
1686/* This function runs the load command of our current target. */
1687
1688static void
fba45db2 1689load_command (char *arg, int from_tty)
c906108c 1690{
4487aabf
PA
1691 /* The user might be reloading because the binary has changed. Take
1692 this opportunity to check. */
1693 reopen_exec_file ();
1694 reread_symbols ();
1695
c906108c 1696 if (arg == NULL)
1986bccd
AS
1697 {
1698 char *parg;
1699 int count = 0;
1700
1701 parg = arg = get_exec_file (1);
1702
1703 /* Count how many \ " ' tab space there are in the name. */
1704 while ((parg = strpbrk (parg, "\\\"'\t ")))
1705 {
1706 parg++;
1707 count++;
1708 }
1709
1710 if (count)
1711 {
1712 /* We need to quote this string so buildargv can pull it apart. */
1713 char *temp = xmalloc (strlen (arg) + count + 1 );
1714 char *ptemp = temp;
1715 char *prev;
1716
1717 make_cleanup (xfree, temp);
1718
1719 prev = parg = arg;
1720 while ((parg = strpbrk (parg, "\\\"'\t ")))
1721 {
1722 strncpy (ptemp, prev, parg - prev);
1723 ptemp += parg - prev;
1724 prev = parg++;
1725 *ptemp++ = '\\';
1726 }
1727 strcpy (ptemp, prev);
1728
1729 arg = temp;
1730 }
1731 }
1732
c906108c 1733 target_load (arg, from_tty);
2889e661
JB
1734
1735 /* After re-loading the executable, we don't really know which
1736 overlays are mapped any more. */
1737 overlay_cache_invalid = 1;
c906108c
SS
1738}
1739
1740/* This version of "load" should be usable for any target. Currently
1741 it is just used for remote targets, not inftarg.c or core files,
1742 on the theory that only in that case is it useful.
1743
1744 Avoiding xmodem and the like seems like a win (a) because we don't have
1745 to worry about finding it, and (b) On VMS, fork() is very slow and so
1746 we don't want to run a subprocess. On the other hand, I'm not sure how
1747 performance compares. */
917317f4 1748
917317f4
JM
1749static int validate_download = 0;
1750
e4f9b4d5
MS
1751/* Callback service function for generic_load (bfd_map_over_sections). */
1752
1753static void
1754add_section_size_callback (bfd *abfd, asection *asec, void *data)
1755{
1756 bfd_size_type *sum = data;
1757
2c500098 1758 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1759}
1760
1761/* Opaque data for load_section_callback. */
1762struct load_section_data {
1763 unsigned long load_offset;
a76d924d
DJ
1764 struct load_progress_data *progress_data;
1765 VEC(memory_write_request_s) *requests;
1766};
1767
1768/* Opaque data for load_progress. */
1769struct load_progress_data {
1770 /* Cumulative data. */
e4f9b4d5
MS
1771 unsigned long write_count;
1772 unsigned long data_count;
1773 bfd_size_type total_size;
a76d924d
DJ
1774};
1775
1776/* Opaque data for load_progress for a single section. */
1777struct load_progress_section_data {
1778 struct load_progress_data *cumulative;
cf7a04e8 1779
a76d924d 1780 /* Per-section data. */
cf7a04e8
DJ
1781 const char *section_name;
1782 ULONGEST section_sent;
1783 ULONGEST section_size;
1784 CORE_ADDR lma;
1785 gdb_byte *buffer;
e4f9b4d5
MS
1786};
1787
a76d924d 1788/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1789
1790static void
1791load_progress (ULONGEST bytes, void *untyped_arg)
1792{
a76d924d
DJ
1793 struct load_progress_section_data *args = untyped_arg;
1794 struct load_progress_data *totals;
1795
1796 if (args == NULL)
1797 /* Writing padding data. No easy way to get at the cumulative
1798 stats, so just ignore this. */
1799 return;
1800
1801 totals = args->cumulative;
1802
1803 if (bytes == 0 && args->section_sent == 0)
1804 {
1805 /* The write is just starting. Let the user know we've started
1806 this section. */
5af949e3
UW
1807 ui_out_message (uiout, 0, "Loading section %s, size %s lma %s\n",
1808 args->section_name, hex_string (args->section_size),
1809 paddress (target_gdbarch, args->lma));
a76d924d
DJ
1810 return;
1811 }
cf7a04e8
DJ
1812
1813 if (validate_download)
1814 {
1815 /* Broken memories and broken monitors manifest themselves here
1816 when bring new computers to life. This doubles already slow
1817 downloads. */
1818 /* NOTE: cagney/1999-10-18: A more efficient implementation
1819 might add a verify_memory() method to the target vector and
1820 then use that. remote.c could implement that method using
1821 the ``qCRC'' packet. */
1822 gdb_byte *check = xmalloc (bytes);
1823 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1824
1825 if (target_read_memory (args->lma, check, bytes) != 0)
5af949e3
UW
1826 error (_("Download verify read failed at %s"),
1827 paddress (target_gdbarch, args->lma));
cf7a04e8 1828 if (memcmp (args->buffer, check, bytes) != 0)
5af949e3
UW
1829 error (_("Download verify compare failed at %s"),
1830 paddress (target_gdbarch, args->lma));
cf7a04e8
DJ
1831 do_cleanups (verify_cleanups);
1832 }
a76d924d 1833 totals->data_count += bytes;
cf7a04e8
DJ
1834 args->lma += bytes;
1835 args->buffer += bytes;
a76d924d 1836 totals->write_count += 1;
cf7a04e8
DJ
1837 args->section_sent += bytes;
1838 if (quit_flag
1839 || (deprecated_ui_load_progress_hook != NULL
1840 && deprecated_ui_load_progress_hook (args->section_name,
1841 args->section_sent)))
1842 error (_("Canceled the download"));
1843
1844 if (deprecated_show_load_progress != NULL)
1845 deprecated_show_load_progress (args->section_name,
1846 args->section_sent,
1847 args->section_size,
a76d924d
DJ
1848 totals->data_count,
1849 totals->total_size);
cf7a04e8
DJ
1850}
1851
e4f9b4d5
MS
1852/* Callback service function for generic_load (bfd_map_over_sections). */
1853
1854static void
1855load_section_callback (bfd *abfd, asection *asec, void *data)
1856{
a76d924d 1857 struct memory_write_request *new_request;
e4f9b4d5 1858 struct load_section_data *args = data;
a76d924d 1859 struct load_progress_section_data *section_data;
cf7a04e8
DJ
1860 bfd_size_type size = bfd_get_section_size (asec);
1861 gdb_byte *buffer;
cf7a04e8 1862 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 1863
cf7a04e8
DJ
1864 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1865 return;
e4f9b4d5 1866
cf7a04e8
DJ
1867 if (size == 0)
1868 return;
e4f9b4d5 1869
a76d924d
DJ
1870 new_request = VEC_safe_push (memory_write_request_s,
1871 args->requests, NULL);
1872 memset (new_request, 0, sizeof (struct memory_write_request));
1873 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1874 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1875 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1876 new_request->data = xmalloc (size);
1877 new_request->baton = section_data;
cf7a04e8 1878
a76d924d 1879 buffer = new_request->data;
cf7a04e8 1880
a76d924d
DJ
1881 section_data->cumulative = args->progress_data;
1882 section_data->section_name = sect_name;
1883 section_data->section_size = size;
1884 section_data->lma = new_request->begin;
1885 section_data->buffer = buffer;
cf7a04e8
DJ
1886
1887 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
1888}
1889
1890/* Clean up an entire memory request vector, including load
1891 data and progress records. */
cf7a04e8 1892
a76d924d
DJ
1893static void
1894clear_memory_write_data (void *arg)
1895{
1896 VEC(memory_write_request_s) **vec_p = arg;
1897 VEC(memory_write_request_s) *vec = *vec_p;
1898 int i;
1899 struct memory_write_request *mr;
cf7a04e8 1900
a76d924d
DJ
1901 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1902 {
1903 xfree (mr->data);
1904 xfree (mr->baton);
1905 }
1906 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
1907}
1908
c906108c 1909void
917317f4 1910generic_load (char *args, int from_tty)
c906108c 1911{
c906108c 1912 bfd *loadfile_bfd;
2b71414d 1913 struct timeval start_time, end_time;
917317f4 1914 char *filename;
1986bccd 1915 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 1916 struct load_section_data cbdata;
a76d924d
DJ
1917 struct load_progress_data total_progress;
1918
e4f9b4d5 1919 CORE_ADDR entry;
1986bccd 1920 char **argv;
e4f9b4d5 1921
a76d924d
DJ
1922 memset (&cbdata, 0, sizeof (cbdata));
1923 memset (&total_progress, 0, sizeof (total_progress));
1924 cbdata.progress_data = &total_progress;
1925
1926 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 1927
d1a41061
PP
1928 if (args == NULL)
1929 error_no_arg (_("file to load"));
1986bccd 1930
d1a41061 1931 argv = gdb_buildargv (args);
1986bccd
AS
1932 make_cleanup_freeargv (argv);
1933
1934 filename = tilde_expand (argv[0]);
1935 make_cleanup (xfree, filename);
1936
1937 if (argv[1] != NULL)
917317f4
JM
1938 {
1939 char *endptr;
ba5f2f8a 1940
1986bccd
AS
1941 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1942
1943 /* If the last word was not a valid number then
1944 treat it as a file name with spaces in. */
1945 if (argv[1] == endptr)
1946 error (_("Invalid download offset:%s."), argv[1]);
1947
1948 if (argv[2] != NULL)
1949 error (_("Too many parameters."));
917317f4 1950 }
c906108c 1951
917317f4 1952 /* Open the file for loading. */
c906108c
SS
1953 loadfile_bfd = bfd_openr (filename, gnutarget);
1954 if (loadfile_bfd == NULL)
1955 {
1956 perror_with_name (filename);
1957 return;
1958 }
917317f4 1959
c906108c
SS
1960 /* FIXME: should be checking for errors from bfd_close (for one thing,
1961 on error it does not free all the storage associated with the
1962 bfd). */
5c65bbb6 1963 make_cleanup_bfd_close (loadfile_bfd);
c906108c 1964
c5aa993b 1965 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 1966 {
8a3fe4f8 1967 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
1968 bfd_errmsg (bfd_get_error ()));
1969 }
c5aa993b 1970
5417f6dc 1971 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
1972 (void *) &total_progress.total_size);
1973
1974 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 1975
2b71414d 1976 gettimeofday (&start_time, NULL);
c906108c 1977
a76d924d
DJ
1978 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1979 load_progress) != 0)
1980 error (_("Load failed"));
c906108c 1981
2b71414d 1982 gettimeofday (&end_time, NULL);
ba5f2f8a 1983
e4f9b4d5 1984 entry = bfd_get_start_address (loadfile_bfd);
e4f9b4d5 1985 ui_out_text (uiout, "Start address ");
5af949e3 1986 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
e4f9b4d5 1987 ui_out_text (uiout, ", load size ");
a76d924d 1988 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 1989 ui_out_text (uiout, "\n");
e4f9b4d5
MS
1990 /* We were doing this in remote-mips.c, I suspect it is right
1991 for other targets too. */
fb14de7b 1992 regcache_write_pc (get_current_regcache (), entry);
c906108c 1993
7ca9f392
AC
1994 /* FIXME: are we supposed to call symbol_file_add or not? According
1995 to a comment from remote-mips.c (where a call to symbol_file_add
1996 was commented out), making the call confuses GDB if more than one
1997 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 1998 others don't (or didn't - perhaps they have all been deleted). */
c906108c 1999
a76d924d
DJ
2000 print_transfer_performance (gdb_stdout, total_progress.data_count,
2001 total_progress.write_count,
2002 &start_time, &end_time);
c906108c
SS
2003
2004 do_cleanups (old_cleanups);
2005}
2006
2007/* Report how fast the transfer went. */
2008
917317f4
JM
2009/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2010 replaced by print_transfer_performance (with a very different
2011 function signature). */
2012
c906108c 2013void
fba45db2
KB
2014report_transfer_performance (unsigned long data_count, time_t start_time,
2015 time_t end_time)
c906108c 2016{
2b71414d
DJ
2017 struct timeval start, end;
2018
2019 start.tv_sec = start_time;
2020 start.tv_usec = 0;
2021 end.tv_sec = end_time;
2022 end.tv_usec = 0;
2023
2024 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
917317f4
JM
2025}
2026
2027void
d9fcf2fb 2028print_transfer_performance (struct ui_file *stream,
917317f4
JM
2029 unsigned long data_count,
2030 unsigned long write_count,
2b71414d
DJ
2031 const struct timeval *start_time,
2032 const struct timeval *end_time)
917317f4 2033{
9f43d28c 2034 ULONGEST time_count;
2b71414d
DJ
2035
2036 /* Compute the elapsed time in milliseconds, as a tradeoff between
2037 accuracy and overflow. */
2038 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2039 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2040
8b93c638
JM
2041 ui_out_text (uiout, "Transfer rate: ");
2042 if (time_count > 0)
2043 {
9f43d28c
DJ
2044 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2045
2046 if (ui_out_is_mi_like_p (uiout))
2047 {
2048 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2049 ui_out_text (uiout, " bits/sec");
2050 }
2051 else if (rate < 1024)
2052 {
2053 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2054 ui_out_text (uiout, " bytes/sec");
2055 }
2056 else
2057 {
2058 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2059 ui_out_text (uiout, " KB/sec");
2060 }
8b93c638
JM
2061 }
2062 else
2063 {
ba5f2f8a 2064 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 2065 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
2066 }
2067 if (write_count > 0)
2068 {
2069 ui_out_text (uiout, ", ");
ba5f2f8a 2070 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
2071 ui_out_text (uiout, " bytes/write");
2072 }
2073 ui_out_text (uiout, ".\n");
c906108c
SS
2074}
2075
2076/* This function allows the addition of incrementally linked object files.
2077 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2078/* Note: ezannoni 2000-04-13 This function/command used to have a
2079 special case syntax for the rombug target (Rombug is the boot
2080 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2081 rombug case, the user doesn't need to supply a text address,
2082 instead a call to target_link() (in target.c) would supply the
2083 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2084
c906108c 2085static void
fba45db2 2086add_symbol_file_command (char *args, int from_tty)
c906108c 2087{
5af949e3 2088 struct gdbarch *gdbarch = get_current_arch ();
db162d44 2089 char *filename = NULL;
2df3850c 2090 int flags = OBJF_USERLOADED;
c906108c 2091 char *arg;
2acceee2 2092 int expecting_option = 0;
db162d44 2093 int section_index = 0;
2acceee2
JM
2094 int argcnt = 0;
2095 int sec_num = 0;
2096 int i;
db162d44
EZ
2097 int expecting_sec_name = 0;
2098 int expecting_sec_addr = 0;
5b96932b 2099 char **argv;
db162d44 2100
a39a16c4 2101 struct sect_opt
2acceee2 2102 {
2acceee2
JM
2103 char *name;
2104 char *value;
a39a16c4 2105 };
db162d44 2106
a39a16c4
MM
2107 struct section_addr_info *section_addrs;
2108 struct sect_opt *sect_opts = NULL;
2109 size_t num_sect_opts = 0;
3017564a 2110 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2111
a39a16c4 2112 num_sect_opts = 16;
5417f6dc 2113 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
2114 * sizeof (struct sect_opt));
2115
c906108c
SS
2116 dont_repeat ();
2117
2118 if (args == NULL)
8a3fe4f8 2119 error (_("add-symbol-file takes a file name and an address"));
c906108c 2120
d1a41061 2121 argv = gdb_buildargv (args);
5b96932b 2122 make_cleanup_freeargv (argv);
db162d44 2123
5b96932b
AS
2124 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2125 {
2126 /* Process the argument. */
db162d44 2127 if (argcnt == 0)
c906108c 2128 {
db162d44
EZ
2129 /* The first argument is the file name. */
2130 filename = tilde_expand (arg);
3017564a 2131 make_cleanup (xfree, filename);
c906108c 2132 }
db162d44 2133 else
7a78ae4e
ND
2134 if (argcnt == 1)
2135 {
2136 /* The second argument is always the text address at which
2137 to load the program. */
2138 sect_opts[section_index].name = ".text";
2139 sect_opts[section_index].value = arg;
f414f22f 2140 if (++section_index >= num_sect_opts)
a39a16c4
MM
2141 {
2142 num_sect_opts *= 2;
5417f6dc 2143 sect_opts = ((struct sect_opt *)
a39a16c4 2144 xrealloc (sect_opts,
5417f6dc 2145 num_sect_opts
a39a16c4
MM
2146 * sizeof (struct sect_opt)));
2147 }
7a78ae4e
ND
2148 }
2149 else
2150 {
2151 /* It's an option (starting with '-') or it's an argument
2152 to an option */
2153
2154 if (*arg == '-')
2155 {
78a4a9b9
AC
2156 if (strcmp (arg, "-readnow") == 0)
2157 flags |= OBJF_READNOW;
2158 else if (strcmp (arg, "-s") == 0)
2159 {
2160 expecting_sec_name = 1;
2161 expecting_sec_addr = 1;
2162 }
7a78ae4e
ND
2163 }
2164 else
2165 {
2166 if (expecting_sec_name)
db162d44 2167 {
7a78ae4e
ND
2168 sect_opts[section_index].name = arg;
2169 expecting_sec_name = 0;
db162d44
EZ
2170 }
2171 else
7a78ae4e
ND
2172 if (expecting_sec_addr)
2173 {
2174 sect_opts[section_index].value = arg;
2175 expecting_sec_addr = 0;
f414f22f 2176 if (++section_index >= num_sect_opts)
a39a16c4
MM
2177 {
2178 num_sect_opts *= 2;
5417f6dc 2179 sect_opts = ((struct sect_opt *)
a39a16c4 2180 xrealloc (sect_opts,
5417f6dc 2181 num_sect_opts
a39a16c4
MM
2182 * sizeof (struct sect_opt)));
2183 }
7a78ae4e
ND
2184 }
2185 else
8a3fe4f8 2186 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
7a78ae4e
ND
2187 }
2188 }
c906108c 2189 }
c906108c 2190
927890d0
JB
2191 /* This command takes at least two arguments. The first one is a
2192 filename, and the second is the address where this file has been
2193 loaded. Abort now if this address hasn't been provided by the
2194 user. */
2195 if (section_index < 1)
2196 error (_("The address where %s has been loaded is missing"), filename);
2197
db162d44
EZ
2198 /* Print the prompt for the query below. And save the arguments into
2199 a sect_addr_info structure to be passed around to other
2200 functions. We have to split this up into separate print
bb599908 2201 statements because hex_string returns a local static
db162d44 2202 string. */
5417f6dc 2203
a3f17187 2204 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2205 section_addrs = alloc_section_addr_info (section_index);
2206 make_cleanup (xfree, section_addrs);
db162d44 2207 for (i = 0; i < section_index; i++)
c906108c 2208 {
db162d44
EZ
2209 CORE_ADDR addr;
2210 char *val = sect_opts[i].value;
2211 char *sec = sect_opts[i].name;
5417f6dc 2212
ae822768 2213 addr = parse_and_eval_address (val);
db162d44 2214
db162d44
EZ
2215 /* Here we store the section offsets in the order they were
2216 entered on the command line. */
a39a16c4
MM
2217 section_addrs->other[sec_num].name = sec;
2218 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2219 printf_unfiltered ("\t%s_addr = %s\n", sec,
2220 paddress (gdbarch, addr));
db162d44
EZ
2221 sec_num++;
2222
5417f6dc 2223 /* The object's sections are initialized when a
db162d44 2224 call is made to build_objfile_section_table (objfile).
5417f6dc 2225 This happens in reread_symbols.
db162d44
EZ
2226 At this point, we don't know what file type this is,
2227 so we can't determine what section names are valid. */
2acceee2 2228 }
db162d44 2229
2acceee2 2230 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2231 error (_("Not confirmed."));
c906108c 2232
7eedccfa
PP
2233 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2234 section_addrs, flags);
c906108c
SS
2235
2236 /* Getting new symbols may change our opinion about what is
2237 frameless. */
2238 reinit_frame_cache ();
db162d44 2239 do_cleanups (my_cleanups);
c906108c
SS
2240}
2241\f
70992597 2242
c906108c
SS
2243/* Re-read symbols if a symbol-file has changed. */
2244void
fba45db2 2245reread_symbols (void)
c906108c
SS
2246{
2247 struct objfile *objfile;
2248 long new_modtime;
2249 int reread_one = 0;
2250 struct stat new_statbuf;
2251 int res;
2252
2253 /* With the addition of shared libraries, this should be modified,
2254 the load time should be saved in the partial symbol tables, since
2255 different tables may come from different source files. FIXME.
2256 This routine should then walk down each partial symbol table
2257 and see if the symbol table that it originates from has been changed */
2258
c5aa993b
JM
2259 for (objfile = object_files; objfile; objfile = objfile->next)
2260 {
2261 if (objfile->obfd)
2262 {
52d16ba8 2263#ifdef DEPRECATED_IBM6000_TARGET
c5aa993b
JM
2264 /* If this object is from a shared library, then you should
2265 stat on the library name, not member name. */
c906108c 2266
c5aa993b
JM
2267 if (objfile->obfd->my_archive)
2268 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2269 else
c906108c 2270#endif
c5aa993b
JM
2271 res = stat (objfile->name, &new_statbuf);
2272 if (res != 0)
c906108c 2273 {
c5aa993b 2274 /* FIXME, should use print_sys_errmsg but it's not filtered. */
a3f17187 2275 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
c5aa993b
JM
2276 objfile->name);
2277 continue;
c906108c 2278 }
c5aa993b
JM
2279 new_modtime = new_statbuf.st_mtime;
2280 if (new_modtime != objfile->mtime)
c906108c 2281 {
c5aa993b
JM
2282 struct cleanup *old_cleanups;
2283 struct section_offsets *offsets;
2284 int num_offsets;
c5aa993b
JM
2285 char *obfd_filename;
2286
a3f17187 2287 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
c5aa993b
JM
2288 objfile->name);
2289
2290 /* There are various functions like symbol_file_add,
2291 symfile_bfd_open, syms_from_objfile, etc., which might
2292 appear to do what we want. But they have various other
2293 effects which we *don't* want. So we just do stuff
2294 ourselves. We don't worry about mapped files (for one thing,
2295 any mapped file will be out of date). */
2296
2297 /* If we get an error, blow away this objfile (not sure if
2298 that is the correct response for things like shared
2299 libraries). */
74b7792f 2300 old_cleanups = make_cleanup_free_objfile (objfile);
c5aa993b 2301 /* We need to do this whenever any symbols go away. */
74b7792f 2302 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c5aa993b 2303
b2de52bb
JK
2304 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2305 bfd_get_filename (exec_bfd)) == 0)
2306 {
2307 /* Reload EXEC_BFD without asking anything. */
2308
2309 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2310 }
2311
c5aa993b
JM
2312 /* Clean up any state BFD has sitting around. We don't need
2313 to close the descriptor but BFD lacks a way of closing the
2314 BFD without closing the descriptor. */
2315 obfd_filename = bfd_get_filename (objfile->obfd);
2316 if (!bfd_close (objfile->obfd))
8a3fe4f8 2317 error (_("Can't close BFD for %s: %s"), objfile->name,
c5aa993b 2318 bfd_errmsg (bfd_get_error ()));
f1838a98
UW
2319 if (remote_filename_p (obfd_filename))
2320 objfile->obfd = remote_bfd_open (obfd_filename, gnutarget);
2321 else
2322 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
c5aa993b 2323 if (objfile->obfd == NULL)
8a3fe4f8 2324 error (_("Can't open %s to read symbols."), objfile->name);
c5aa993b
JM
2325 /* bfd_openr sets cacheable to true, which is what we want. */
2326 if (!bfd_check_format (objfile->obfd, bfd_object))
8a3fe4f8 2327 error (_("Can't read symbols from %s: %s."), objfile->name,
c5aa993b
JM
2328 bfd_errmsg (bfd_get_error ()));
2329
2330 /* Save the offsets, we will nuke them with the rest of the
8b92e4d5 2331 objfile_obstack. */
c5aa993b 2332 num_offsets = objfile->num_sections;
5417f6dc 2333 offsets = ((struct section_offsets *)
a39a16c4 2334 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
5417f6dc 2335 memcpy (offsets, objfile->section_offsets,
a39a16c4 2336 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b 2337
ae5a43e0
DJ
2338 /* Remove any references to this objfile in the global
2339 value lists. */
2340 preserve_values (objfile);
2341
c5aa993b
JM
2342 /* Nuke all the state that we will re-read. Much of the following
2343 code which sets things to NULL really is necessary to tell
5b2ab461
JK
2344 other parts of GDB that there is nothing currently there.
2345
2346 Try to keep the freeing order compatible with free_objfile. */
2347
2348 if (objfile->sf != NULL)
2349 {
2350 (*objfile->sf->sym_finish) (objfile);
2351 }
2352
2353 clear_objfile_data (objfile);
c5aa993b
JM
2354
2355 /* FIXME: Do we have to free a whole linked list, or is this
2356 enough? */
2357 if (objfile->global_psymbols.list)
2dc74dc1 2358 xfree (objfile->global_psymbols.list);
c5aa993b
JM
2359 memset (&objfile->global_psymbols, 0,
2360 sizeof (objfile->global_psymbols));
2361 if (objfile->static_psymbols.list)
2dc74dc1 2362 xfree (objfile->static_psymbols.list);
c5aa993b
JM
2363 memset (&objfile->static_psymbols, 0,
2364 sizeof (objfile->static_psymbols));
2365
2366 /* Free the obstacks for non-reusable objfiles */
af5f3db6
AC
2367 bcache_xfree (objfile->psymbol_cache);
2368 objfile->psymbol_cache = bcache_xmalloc ();
2369 bcache_xfree (objfile->macro_cache);
2370 objfile->macro_cache = bcache_xmalloc ();
2de7ced7
DJ
2371 if (objfile->demangled_names_hash != NULL)
2372 {
2373 htab_delete (objfile->demangled_names_hash);
2374 objfile->demangled_names_hash = NULL;
2375 }
b99607ea 2376 obstack_free (&objfile->objfile_obstack, 0);
c5aa993b
JM
2377 objfile->sections = NULL;
2378 objfile->symtabs = NULL;
2379 objfile->psymtabs = NULL;
930123b7 2380 objfile->psymtabs_addrmap = NULL;
c5aa993b 2381 objfile->free_psymtabs = NULL;
a1b8c067 2382 objfile->cp_namespace_symtab = NULL;
c5aa993b 2383 objfile->msymbols = NULL;
0a6ddd08 2384 objfile->deprecated_sym_private = NULL;
c5aa993b 2385 objfile->minimal_symbol_count = 0;
0a83117a
MS
2386 memset (&objfile->msymbol_hash, 0,
2387 sizeof (objfile->msymbol_hash));
2388 memset (&objfile->msymbol_demangled_hash, 0,
2389 sizeof (objfile->msymbol_demangled_hash));
c5aa993b 2390
af5f3db6
AC
2391 objfile->psymbol_cache = bcache_xmalloc ();
2392 objfile->macro_cache = bcache_xmalloc ();
1ab21617
EZ
2393 /* obstack_init also initializes the obstack so it is
2394 empty. We could use obstack_specify_allocation but
2395 gdb_obstack.h specifies the alloc/dealloc
2396 functions. */
2397 obstack_init (&objfile->objfile_obstack);
c5aa993b
JM
2398 if (build_objfile_section_table (objfile))
2399 {
8a3fe4f8 2400 error (_("Can't find the file sections in `%s': %s"),
c5aa993b
JM
2401 objfile->name, bfd_errmsg (bfd_get_error ()));
2402 }
15831452 2403 terminate_minimal_symbol_table (objfile);
c5aa993b
JM
2404
2405 /* We use the same section offsets as from last time. I'm not
2406 sure whether that is always correct for shared libraries. */
2407 objfile->section_offsets = (struct section_offsets *)
5417f6dc 2408 obstack_alloc (&objfile->objfile_obstack,
a39a16c4 2409 SIZEOF_N_SECTION_OFFSETS (num_offsets));
5417f6dc 2410 memcpy (objfile->section_offsets, offsets,
a39a16c4 2411 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b
JM
2412 objfile->num_sections = num_offsets;
2413
2414 /* What the hell is sym_new_init for, anyway? The concept of
2415 distinguishing between the main file and additional files
2416 in this way seems rather dubious. */
2417 if (objfile == symfile_objfile)
2418 {
2419 (*objfile->sf->sym_new_init) (objfile);
c5aa993b
JM
2420 }
2421
2422 (*objfile->sf->sym_init) (objfile);
b9caf505 2423 clear_complaints (&symfile_complaints, 1, 1);
c5aa993b
JM
2424 /* The "mainline" parameter is a hideous hack; I think leaving it
2425 zero is OK since dbxread.c also does what it needs to do if
2426 objfile->global_psymbols.size is 0. */
96baa820 2427 (*objfile->sf->sym_read) (objfile, 0);
c5aa993b
JM
2428 if (!have_partial_symbols () && !have_full_symbols ())
2429 {
2430 wrap_here ("");
a3f17187 2431 printf_unfiltered (_("(no debugging symbols found)\n"));
c5aa993b
JM
2432 wrap_here ("");
2433 }
c5aa993b
JM
2434
2435 /* We're done reading the symbol file; finish off complaints. */
b9caf505 2436 clear_complaints (&symfile_complaints, 0, 1);
c906108c 2437
c5aa993b
JM
2438 /* Getting new symbols may change our opinion about what is
2439 frameless. */
c906108c 2440
c5aa993b 2441 reinit_frame_cache ();
c906108c 2442
c5aa993b
JM
2443 /* Discard cleanups as symbol reading was successful. */
2444 discard_cleanups (old_cleanups);
c906108c 2445
c5aa993b
JM
2446 /* If the mtime has changed between the time we set new_modtime
2447 and now, we *want* this to be out of date, so don't call stat
2448 again now. */
2449 objfile->mtime = new_modtime;
2450 reread_one = 1;
5b5d99cf 2451 reread_separate_symbols (objfile);
6528a9ea 2452 init_entry_point_info (objfile);
c5aa993b 2453 }
c906108c
SS
2454 }
2455 }
c906108c
SS
2456
2457 if (reread_one)
ea53e89f
JB
2458 {
2459 clear_symtab_users ();
2460 /* At least one objfile has changed, so we can consider that
2461 the executable we're debugging has changed too. */
781b42b0 2462 observer_notify_executable_changed ();
bb272892
PP
2463
2464 /* Notify objfiles that we've modified objfile sections. */
2465 objfiles_changed ();
ea53e89f 2466 }
c906108c 2467}
5b5d99cf
JB
2468
2469
2470/* Handle separate debug info for OBJFILE, which has just been
2471 re-read:
2472 - If we had separate debug info before, but now we don't, get rid
2473 of the separated objfile.
2474 - If we didn't have separated debug info before, but now we do,
2475 read in the new separated debug info file.
2476 - If the debug link points to a different file, toss the old one
2477 and read the new one.
2478 This function does *not* handle the case where objfile is still
2479 using the same separate debug info file, but that file's timestamp
2480 has changed. That case should be handled by the loop in
2481 reread_symbols already. */
2482static void
2483reread_separate_symbols (struct objfile *objfile)
2484{
2485 char *debug_file;
2486 unsigned long crc32;
2487
2488 /* Does the updated objfile's debug info live in a
2489 separate file? */
2490 debug_file = find_separate_debug_file (objfile);
2491
2492 if (objfile->separate_debug_objfile)
2493 {
2494 /* There are two cases where we need to get rid of
2495 the old separated debug info objfile:
2496 - if the new primary objfile doesn't have
2497 separated debug info, or
2498 - if the new primary objfile has separate debug
2499 info, but it's under a different filename.
5417f6dc 2500
5b5d99cf
JB
2501 If the old and new objfiles both have separate
2502 debug info, under the same filename, then we're
2503 okay --- if the separated file's contents have
2504 changed, we will have caught that when we
2505 visited it in this function's outermost
2506 loop. */
2507 if (! debug_file
2508 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2509 free_objfile (objfile->separate_debug_objfile);
2510 }
2511
2512 /* If the new objfile has separate debug info, and we
2513 haven't loaded it already, do so now. */
2514 if (debug_file
2515 && ! objfile->separate_debug_objfile)
2516 {
2517 /* Use the same section offset table as objfile itself.
2518 Preserve the flags from objfile that make sense. */
2519 objfile->separate_debug_objfile
2520 = (symbol_file_add_with_addrs_or_offsets
5417f6dc 2521 (symfile_bfd_open (debug_file),
7eedccfa 2522 info_verbose ? SYMFILE_VERBOSE : 0,
5b5d99cf
JB
2523 0, /* No addr table. */
2524 objfile->section_offsets, objfile->num_sections,
78a4a9b9 2525 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
5b5d99cf
JB
2526 | OBJF_USERLOADED)));
2527 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2528 = objfile;
2529 }
73780b3c
MS
2530 if (debug_file)
2531 xfree (debug_file);
5b5d99cf
JB
2532}
2533
2534
c906108c
SS
2535\f
2536
c5aa993b
JM
2537
2538typedef struct
2539{
2540 char *ext;
c906108c 2541 enum language lang;
c5aa993b
JM
2542}
2543filename_language;
c906108c 2544
c5aa993b 2545static filename_language *filename_language_table;
c906108c
SS
2546static int fl_table_size, fl_table_next;
2547
2548static void
fba45db2 2549add_filename_language (char *ext, enum language lang)
c906108c
SS
2550{
2551 if (fl_table_next >= fl_table_size)
2552 {
2553 fl_table_size += 10;
5417f6dc 2554 filename_language_table =
25bf3106
PM
2555 xrealloc (filename_language_table,
2556 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2557 }
2558
4fcf66da 2559 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2560 filename_language_table[fl_table_next].lang = lang;
2561 fl_table_next++;
2562}
2563
2564static char *ext_args;
920d2a44
AC
2565static void
2566show_ext_args (struct ui_file *file, int from_tty,
2567 struct cmd_list_element *c, const char *value)
2568{
2569 fprintf_filtered (file, _("\
2570Mapping between filename extension and source language is \"%s\".\n"),
2571 value);
2572}
c906108c
SS
2573
2574static void
26c41df3 2575set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2576{
2577 int i;
2578 char *cp = ext_args;
2579 enum language lang;
2580
2581 /* First arg is filename extension, starting with '.' */
2582 if (*cp != '.')
8a3fe4f8 2583 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2584
2585 /* Find end of first arg. */
c5aa993b 2586 while (*cp && !isspace (*cp))
c906108c
SS
2587 cp++;
2588
2589 if (*cp == '\0')
8a3fe4f8 2590 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2591 ext_args);
2592
2593 /* Null-terminate first arg */
c5aa993b 2594 *cp++ = '\0';
c906108c
SS
2595
2596 /* Find beginning of second arg, which should be a source language. */
2597 while (*cp && isspace (*cp))
2598 cp++;
2599
2600 if (*cp == '\0')
8a3fe4f8 2601 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2602 ext_args);
2603
2604 /* Lookup the language from among those we know. */
2605 lang = language_enum (cp);
2606
2607 /* Now lookup the filename extension: do we already know it? */
2608 for (i = 0; i < fl_table_next; i++)
2609 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2610 break;
2611
2612 if (i >= fl_table_next)
2613 {
2614 /* new file extension */
2615 add_filename_language (ext_args, lang);
2616 }
2617 else
2618 {
2619 /* redefining a previously known filename extension */
2620
2621 /* if (from_tty) */
2622 /* query ("Really make files of type %s '%s'?", */
2623 /* ext_args, language_str (lang)); */
2624
b8c9b27d 2625 xfree (filename_language_table[i].ext);
4fcf66da 2626 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2627 filename_language_table[i].lang = lang;
2628 }
2629}
2630
2631static void
fba45db2 2632info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2633{
2634 int i;
2635
a3f17187 2636 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2637 printf_filtered ("\n\n");
2638 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2639 printf_filtered ("\t%s\t- %s\n",
2640 filename_language_table[i].ext,
c906108c
SS
2641 language_str (filename_language_table[i].lang));
2642}
2643
2644static void
fba45db2 2645init_filename_language_table (void)
c906108c
SS
2646{
2647 if (fl_table_size == 0) /* protect against repetition */
2648 {
2649 fl_table_size = 20;
2650 fl_table_next = 0;
c5aa993b 2651 filename_language_table =
c906108c 2652 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b
JM
2653 add_filename_language (".c", language_c);
2654 add_filename_language (".C", language_cplus);
2655 add_filename_language (".cc", language_cplus);
2656 add_filename_language (".cp", language_cplus);
2657 add_filename_language (".cpp", language_cplus);
2658 add_filename_language (".cxx", language_cplus);
2659 add_filename_language (".c++", language_cplus);
2660 add_filename_language (".java", language_java);
c906108c 2661 add_filename_language (".class", language_java);
da2cf7e0 2662 add_filename_language (".m", language_objc);
c5aa993b
JM
2663 add_filename_language (".f", language_fortran);
2664 add_filename_language (".F", language_fortran);
2665 add_filename_language (".s", language_asm);
aa707ed0 2666 add_filename_language (".sx", language_asm);
c5aa993b 2667 add_filename_language (".S", language_asm);
c6fd39cd
PM
2668 add_filename_language (".pas", language_pascal);
2669 add_filename_language (".p", language_pascal);
2670 add_filename_language (".pp", language_pascal);
963a6417
PH
2671 add_filename_language (".adb", language_ada);
2672 add_filename_language (".ads", language_ada);
2673 add_filename_language (".a", language_ada);
2674 add_filename_language (".ada", language_ada);
c906108c
SS
2675 }
2676}
2677
2678enum language
fba45db2 2679deduce_language_from_filename (char *filename)
c906108c
SS
2680{
2681 int i;
2682 char *cp;
2683
2684 if (filename != NULL)
2685 if ((cp = strrchr (filename, '.')) != NULL)
2686 for (i = 0; i < fl_table_next; i++)
2687 if (strcmp (cp, filename_language_table[i].ext) == 0)
2688 return filename_language_table[i].lang;
2689
2690 return language_unknown;
2691}
2692\f
2693/* allocate_symtab:
2694
2695 Allocate and partly initialize a new symbol table. Return a pointer
2696 to it. error() if no space.
2697
2698 Caller must set these fields:
c5aa993b
JM
2699 LINETABLE(symtab)
2700 symtab->blockvector
2701 symtab->dirname
2702 symtab->free_code
2703 symtab->free_ptr
2704 possibly free_named_symtabs (symtab->filename);
c906108c
SS
2705 */
2706
2707struct symtab *
fba45db2 2708allocate_symtab (char *filename, struct objfile *objfile)
c906108c 2709{
52f0bd74 2710 struct symtab *symtab;
c906108c
SS
2711
2712 symtab = (struct symtab *)
4a146b47 2713 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2714 memset (symtab, 0, sizeof (*symtab));
c5aa993b 2715 symtab->filename = obsavestring (filename, strlen (filename),
4a146b47 2716 &objfile->objfile_obstack);
c5aa993b
JM
2717 symtab->fullname = NULL;
2718 symtab->language = deduce_language_from_filename (filename);
2719 symtab->debugformat = obsavestring ("unknown", 7,
4a146b47 2720 &objfile->objfile_obstack);
c906108c
SS
2721
2722 /* Hook it to the objfile it comes from */
2723
c5aa993b
JM
2724 symtab->objfile = objfile;
2725 symtab->next = objfile->symtabs;
2726 objfile->symtabs = symtab;
c906108c 2727
c906108c
SS
2728 return (symtab);
2729}
2730
2731struct partial_symtab *
fba45db2 2732allocate_psymtab (char *filename, struct objfile *objfile)
c906108c
SS
2733{
2734 struct partial_symtab *psymtab;
2735
c5aa993b 2736 if (objfile->free_psymtabs)
c906108c 2737 {
c5aa993b
JM
2738 psymtab = objfile->free_psymtabs;
2739 objfile->free_psymtabs = psymtab->next;
c906108c
SS
2740 }
2741 else
2742 psymtab = (struct partial_symtab *)
8b92e4d5 2743 obstack_alloc (&objfile->objfile_obstack,
c906108c
SS
2744 sizeof (struct partial_symtab));
2745
2746 memset (psymtab, 0, sizeof (struct partial_symtab));
c5aa993b 2747 psymtab->filename = obsavestring (filename, strlen (filename),
8b92e4d5 2748 &objfile->objfile_obstack);
c5aa993b 2749 psymtab->symtab = NULL;
c906108c
SS
2750
2751 /* Prepend it to the psymtab list for the objfile it belongs to.
2752 Psymtabs are searched in most recent inserted -> least recent
2753 inserted order. */
2754
c5aa993b
JM
2755 psymtab->objfile = objfile;
2756 psymtab->next = objfile->psymtabs;
2757 objfile->psymtabs = psymtab;
c906108c
SS
2758#if 0
2759 {
2760 struct partial_symtab **prev_pst;
c5aa993b
JM
2761 psymtab->objfile = objfile;
2762 psymtab->next = NULL;
2763 prev_pst = &(objfile->psymtabs);
c906108c 2764 while ((*prev_pst) != NULL)
c5aa993b 2765 prev_pst = &((*prev_pst)->next);
c906108c 2766 (*prev_pst) = psymtab;
c5aa993b 2767 }
c906108c 2768#endif
c5aa993b 2769
c906108c
SS
2770 return (psymtab);
2771}
2772
2773void
fba45db2 2774discard_psymtab (struct partial_symtab *pst)
c906108c
SS
2775{
2776 struct partial_symtab **prev_pst;
2777
2778 /* From dbxread.c:
2779 Empty psymtabs happen as a result of header files which don't
2780 have any symbols in them. There can be a lot of them. But this
2781 check is wrong, in that a psymtab with N_SLINE entries but
2782 nothing else is not empty, but we don't realize that. Fixing
2783 that without slowing things down might be tricky. */
2784
2785 /* First, snip it out of the psymtab chain */
2786
2787 prev_pst = &(pst->objfile->psymtabs);
2788 while ((*prev_pst) != pst)
2789 prev_pst = &((*prev_pst)->next);
2790 (*prev_pst) = pst->next;
2791
2792 /* Next, put it on a free list for recycling */
2793
2794 pst->next = pst->objfile->free_psymtabs;
2795 pst->objfile->free_psymtabs = pst;
2796}
c906108c 2797\f
c5aa993b 2798
c906108c
SS
2799/* Reset all data structures in gdb which may contain references to symbol
2800 table data. */
2801
2802void
fba45db2 2803clear_symtab_users (void)
c906108c
SS
2804{
2805 /* Someday, we should do better than this, by only blowing away
2806 the things that really need to be blown. */
c0501be5
DJ
2807
2808 /* Clear the "current" symtab first, because it is no longer valid.
2809 breakpoint_re_set may try to access the current symtab. */
2810 clear_current_source_symtab_and_line ();
2811
c906108c 2812 clear_displays ();
c906108c
SS
2813 breakpoint_re_set ();
2814 set_default_breakpoint (0, 0, 0, 0);
c906108c 2815 clear_pc_function_cache ();
06d3b283 2816 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2817
2818 /* Clear globals which might have pointed into a removed objfile.
2819 FIXME: It's not clear which of these are supposed to persist
2820 between expressions and which ought to be reset each time. */
2821 expression_context_block = NULL;
2822 innermost_block = NULL;
8756216b
DP
2823
2824 /* Varobj may refer to old symbols, perform a cleanup. */
2825 varobj_invalidate ();
2826
c906108c
SS
2827}
2828
74b7792f
AC
2829static void
2830clear_symtab_users_cleanup (void *ignore)
2831{
2832 clear_symtab_users ();
2833}
2834
c906108c
SS
2835/* clear_symtab_users_once:
2836
2837 This function is run after symbol reading, or from a cleanup.
2838 If an old symbol table was obsoleted, the old symbol table
5417f6dc 2839 has been blown away, but the other GDB data structures that may
c906108c
SS
2840 reference it have not yet been cleared or re-directed. (The old
2841 symtab was zapped, and the cleanup queued, in free_named_symtab()
2842 below.)
2843
2844 This function can be queued N times as a cleanup, or called
2845 directly; it will do all the work the first time, and then will be a
2846 no-op until the next time it is queued. This works by bumping a
2847 counter at queueing time. Much later when the cleanup is run, or at
2848 the end of symbol processing (in case the cleanup is discarded), if
2849 the queued count is greater than the "done-count", we do the work
2850 and set the done-count to the queued count. If the queued count is
2851 less than or equal to the done-count, we just ignore the call. This
2852 is needed because reading a single .o file will often replace many
2853 symtabs (one per .h file, for example), and we don't want to reset
2854 the breakpoints N times in the user's face.
2855
2856 The reason we both queue a cleanup, and call it directly after symbol
2857 reading, is because the cleanup protects us in case of errors, but is
2858 discarded if symbol reading is successful. */
2859
2860#if 0
2861/* FIXME: As free_named_symtabs is currently a big noop this function
2862 is no longer needed. */
a14ed312 2863static void clear_symtab_users_once (void);
c906108c
SS
2864
2865static int clear_symtab_users_queued;
2866static int clear_symtab_users_done;
2867
2868static void
fba45db2 2869clear_symtab_users_once (void)
c906108c
SS
2870{
2871 /* Enforce once-per-`do_cleanups'-semantics */
2872 if (clear_symtab_users_queued <= clear_symtab_users_done)
2873 return;
2874 clear_symtab_users_done = clear_symtab_users_queued;
2875
2876 clear_symtab_users ();
2877}
2878#endif
2879
2880/* Delete the specified psymtab, and any others that reference it. */
2881
2882static void
fba45db2 2883cashier_psymtab (struct partial_symtab *pst)
c906108c
SS
2884{
2885 struct partial_symtab *ps, *pprev = NULL;
2886 int i;
2887
2888 /* Find its previous psymtab in the chain */
c5aa993b
JM
2889 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2890 {
2891 if (ps == pst)
2892 break;
2893 pprev = ps;
2894 }
c906108c 2895
c5aa993b
JM
2896 if (ps)
2897 {
2898 /* Unhook it from the chain. */
2899 if (ps == pst->objfile->psymtabs)
2900 pst->objfile->psymtabs = ps->next;
2901 else
2902 pprev->next = ps->next;
2903
2904 /* FIXME, we can't conveniently deallocate the entries in the
2905 partial_symbol lists (global_psymbols/static_psymbols) that
2906 this psymtab points to. These just take up space until all
2907 the psymtabs are reclaimed. Ditto the dependencies list and
8b92e4d5 2908 filename, which are all in the objfile_obstack. */
c5aa993b
JM
2909
2910 /* We need to cashier any psymtab that has this one as a dependency... */
2911 again:
2912 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2913 {
2914 for (i = 0; i < ps->number_of_dependencies; i++)
2915 {
2916 if (ps->dependencies[i] == pst)
2917 {
2918 cashier_psymtab (ps);
2919 goto again; /* Must restart, chain has been munged. */
2920 }
2921 }
c906108c 2922 }
c906108c 2923 }
c906108c
SS
2924}
2925
2926/* If a symtab or psymtab for filename NAME is found, free it along
2927 with any dependent breakpoints, displays, etc.
2928 Used when loading new versions of object modules with the "add-file"
2929 command. This is only called on the top-level symtab or psymtab's name;
2930 it is not called for subsidiary files such as .h files.
2931
2932 Return value is 1 if we blew away the environment, 0 if not.
7e73cedf 2933 FIXME. The return value appears to never be used.
c906108c
SS
2934
2935 FIXME. I think this is not the best way to do this. We should
2936 work on being gentler to the environment while still cleaning up
2937 all stray pointers into the freed symtab. */
2938
2939int
fba45db2 2940free_named_symtabs (char *name)
c906108c
SS
2941{
2942#if 0
2943 /* FIXME: With the new method of each objfile having it's own
2944 psymtab list, this function needs serious rethinking. In particular,
2945 why was it ever necessary to toss psymtabs with specific compilation
2946 unit filenames, as opposed to all psymtabs from a particular symbol
2947 file? -- fnf
2948 Well, the answer is that some systems permit reloading of particular
2949 compilation units. We want to blow away any old info about these
2950 compilation units, regardless of which objfiles they arrived in. --gnu. */
2951
52f0bd74
AC
2952 struct symtab *s;
2953 struct symtab *prev;
2954 struct partial_symtab *ps;
c906108c
SS
2955 struct blockvector *bv;
2956 int blewit = 0;
2957
2958 /* We only wack things if the symbol-reload switch is set. */
2959 if (!symbol_reloading)
2960 return 0;
2961
2962 /* Some symbol formats have trouble providing file names... */
2963 if (name == 0 || *name == '\0')
2964 return 0;
2965
2966 /* Look for a psymtab with the specified name. */
2967
2968again2:
c5aa993b
JM
2969 for (ps = partial_symtab_list; ps; ps = ps->next)
2970 {
6314a349 2971 if (strcmp (name, ps->filename) == 0)
c5aa993b
JM
2972 {
2973 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2974 goto again2; /* Must restart, chain has been munged */
2975 }
c906108c 2976 }
c906108c
SS
2977
2978 /* Look for a symtab with the specified name. */
2979
2980 for (s = symtab_list; s; s = s->next)
2981 {
6314a349 2982 if (strcmp (name, s->filename) == 0)
c906108c
SS
2983 break;
2984 prev = s;
2985 }
2986
2987 if (s)
2988 {
2989 if (s == symtab_list)
2990 symtab_list = s->next;
2991 else
2992 prev->next = s->next;
2993
2994 /* For now, queue a delete for all breakpoints, displays, etc., whether
c5aa993b
JM
2995 or not they depend on the symtab being freed. This should be
2996 changed so that only those data structures affected are deleted. */
c906108c
SS
2997
2998 /* But don't delete anything if the symtab is empty.
c5aa993b
JM
2999 This test is necessary due to a bug in "dbxread.c" that
3000 causes empty symtabs to be created for N_SO symbols that
3001 contain the pathname of the object file. (This problem
3002 has been fixed in GDB 3.9x). */
c906108c
SS
3003
3004 bv = BLOCKVECTOR (s);
3005 if (BLOCKVECTOR_NBLOCKS (bv) > 2
3006 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
3007 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
3008 {
e2e0b3e5 3009 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
b9caf505 3010 name);
c906108c
SS
3011 clear_symtab_users_queued++;
3012 make_cleanup (clear_symtab_users_once, 0);
3013 blewit = 1;
c5aa993b
JM
3014 }
3015 else
e2e0b3e5
AC
3016 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
3017 name);
c906108c
SS
3018
3019 free_symtab (s);
3020 }
3021 else
3022 {
3023 /* It is still possible that some breakpoints will be affected
c5aa993b
JM
3024 even though no symtab was found, since the file might have
3025 been compiled without debugging, and hence not be associated
3026 with a symtab. In order to handle this correctly, we would need
3027 to keep a list of text address ranges for undebuggable files.
3028 For now, we do nothing, since this is a fairly obscure case. */
c906108c
SS
3029 ;
3030 }
3031
3032 /* FIXME, what about the minimal symbol table? */
3033 return blewit;
3034#else
3035 return (0);
3036#endif
3037}
3038\f
3039/* Allocate and partially fill a partial symtab. It will be
3040 completely filled at the end of the symbol list.
3041
d4f3574e 3042 FILENAME is the name of the symbol-file we are reading from. */
c906108c
SS
3043
3044struct partial_symtab *
fba45db2
KB
3045start_psymtab_common (struct objfile *objfile,
3046 struct section_offsets *section_offsets, char *filename,
3047 CORE_ADDR textlow, struct partial_symbol **global_syms,
3048 struct partial_symbol **static_syms)
c906108c
SS
3049{
3050 struct partial_symtab *psymtab;
3051
3052 psymtab = allocate_psymtab (filename, objfile);
c5aa993b
JM
3053 psymtab->section_offsets = section_offsets;
3054 psymtab->textlow = textlow;
3055 psymtab->texthigh = psymtab->textlow; /* default */
3056 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
3057 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
c906108c
SS
3058 return (psymtab);
3059}
3060\f
2e618c13
AR
3061/* Helper function, initialises partial symbol structure and stashes
3062 it into objfile's bcache. Note that our caching mechanism will
3063 use all fields of struct partial_symbol to determine hash value of the
3064 structure. In other words, having two symbols with the same name but
3065 different domain (or address) is possible and correct. */
3066
11d31d94 3067static const struct partial_symbol *
2e618c13
AR
3068add_psymbol_to_bcache (char *name, int namelength, domain_enum domain,
3069 enum address_class class,
3070 long val, /* Value as a long */
3071 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3072 enum language language, struct objfile *objfile,
3073 int *added)
3074{
3075 char *buf = name;
3076 /* psymbol is static so that there will be no uninitialized gaps in the
3077 structure which might contain random data, causing cache misses in
3078 bcache. */
3079 static struct partial_symbol psymbol;
3080
3081 if (name[namelength] != '\0')
3082 {
3083 buf = alloca (namelength + 1);
3084 /* Create local copy of the partial symbol */
3085 memcpy (buf, name, namelength);
3086 buf[namelength] = '\0';
3087 }
3088 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
3089 if (val != 0)
3090 {
3091 SYMBOL_VALUE (&psymbol) = val;
3092 }
3093 else
3094 {
3095 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
3096 }
3097 SYMBOL_SECTION (&psymbol) = 0;
3098 SYMBOL_LANGUAGE (&psymbol) = language;
3099 PSYMBOL_DOMAIN (&psymbol) = domain;
3100 PSYMBOL_CLASS (&psymbol) = class;
3101
3102 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
3103
3104 /* Stash the partial symbol away in the cache */
11d31d94
TT
3105 return bcache_full (&psymbol, sizeof (struct partial_symbol),
3106 objfile->psymbol_cache, added);
2e618c13
AR
3107}
3108
3109/* Helper function, adds partial symbol to the given partial symbol
3110 list. */
3111
3112static void
3113append_psymbol_to_list (struct psymbol_allocation_list *list,
11d31d94 3114 const struct partial_symbol *psym,
2e618c13
AR
3115 struct objfile *objfile)
3116{
3117 if (list->next >= list->list + list->size)
3118 extend_psymbol_list (list, objfile);
11d31d94 3119 *list->next++ = (struct partial_symbol *) psym;
2e618c13
AR
3120 OBJSTAT (objfile, n_psyms++);
3121}
3122
c906108c 3123/* Add a symbol with a long value to a psymtab.
5417f6dc 3124 Since one arg is a struct, we pass in a ptr and deref it (sigh).
5c4e30ca
DC
3125 Return the partial symbol that has been added. */
3126
3127/* NOTE: carlton/2003-09-11: The reason why we return the partial
3128 symbol is so that callers can get access to the symbol's demangled
3129 name, which they don't have any cheap way to determine otherwise.
3130 (Currenly, dwarf2read.c is the only file who uses that information,
3131 though it's possible that other readers might in the future.)
3132 Elena wasn't thrilled about that, and I don't blame her, but we
3133 couldn't come up with a better way to get that information. If
3134 it's needed in other situations, we could consider breaking up
3135 SYMBOL_SET_NAMES to provide access to the demangled name lookup
3136 cache. */
3137
3138const struct partial_symbol *
176620f1 3139add_psymbol_to_list (char *name, int namelength, domain_enum domain,
fba45db2 3140 enum address_class class,
2e618c13
AR
3141 struct psymbol_allocation_list *list,
3142 long val, /* Value as a long */
fba45db2
KB
3143 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3144 enum language language, struct objfile *objfile)
c906108c 3145{
11d31d94 3146 const struct partial_symbol *psym;
2de7ced7 3147
2e618c13 3148 int added;
c906108c
SS
3149
3150 /* Stash the partial symbol away in the cache */
2e618c13
AR
3151 psym = add_psymbol_to_bcache (name, namelength, domain, class,
3152 val, coreaddr, language, objfile, &added);
c906108c 3153
2e618c13
AR
3154 /* Do not duplicate global partial symbols. */
3155 if (list == &objfile->global_psymbols
3156 && !added)
3157 return psym;
5c4e30ca 3158
2e618c13
AR
3159 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
3160 append_psymbol_to_list (list, psym, objfile);
5c4e30ca 3161 return psym;
c906108c
SS
3162}
3163
c906108c
SS
3164/* Initialize storage for partial symbols. */
3165
3166void
fba45db2 3167init_psymbol_list (struct objfile *objfile, int total_symbols)
c906108c
SS
3168{
3169 /* Free any previously allocated psymbol lists. */
c5aa993b
JM
3170
3171 if (objfile->global_psymbols.list)
c906108c 3172 {
2dc74dc1 3173 xfree (objfile->global_psymbols.list);
c906108c 3174 }
c5aa993b 3175 if (objfile->static_psymbols.list)
c906108c 3176 {
2dc74dc1 3177 xfree (objfile->static_psymbols.list);
c906108c 3178 }
c5aa993b 3179
c906108c
SS
3180 /* Current best guess is that approximately a twentieth
3181 of the total symbols (in a debugging file) are global or static
3182 oriented symbols */
c906108c 3183
c5aa993b
JM
3184 objfile->global_psymbols.size = total_symbols / 10;
3185 objfile->static_psymbols.size = total_symbols / 10;
3186
3187 if (objfile->global_psymbols.size > 0)
c906108c 3188 {
c5aa993b
JM
3189 objfile->global_psymbols.next =
3190 objfile->global_psymbols.list = (struct partial_symbol **)
7936743b
AC
3191 xmalloc ((objfile->global_psymbols.size
3192 * sizeof (struct partial_symbol *)));
c906108c 3193 }
c5aa993b 3194 if (objfile->static_psymbols.size > 0)
c906108c 3195 {
c5aa993b
JM
3196 objfile->static_psymbols.next =
3197 objfile->static_psymbols.list = (struct partial_symbol **)
7936743b
AC
3198 xmalloc ((objfile->static_psymbols.size
3199 * sizeof (struct partial_symbol *)));
c906108c
SS
3200 }
3201}
3202
3203/* OVERLAYS:
3204 The following code implements an abstraction for debugging overlay sections.
3205
3206 The target model is as follows:
3207 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 3208 same VMA, each with its own unique LMA (or load address).
c906108c 3209 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 3210 sections, one by one, from the load address into the VMA address.
5417f6dc 3211 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
3212 sections should be considered to be mapped from the VMA to the LMA.
3213 This information is used for symbol lookup, and memory read/write.
5417f6dc 3214 For instance, if a section has been mapped then its contents
c5aa993b 3215 should be read from the VMA, otherwise from the LMA.
c906108c
SS
3216
3217 Two levels of debugger support for overlays are available. One is
3218 "manual", in which the debugger relies on the user to tell it which
3219 overlays are currently mapped. This level of support is
3220 implemented entirely in the core debugger, and the information about
3221 whether a section is mapped is kept in the objfile->obj_section table.
3222
3223 The second level of support is "automatic", and is only available if
3224 the target-specific code provides functionality to read the target's
3225 overlay mapping table, and translate its contents for the debugger
3226 (by updating the mapped state information in the obj_section tables).
3227
3228 The interface is as follows:
c5aa993b
JM
3229 User commands:
3230 overlay map <name> -- tell gdb to consider this section mapped
3231 overlay unmap <name> -- tell gdb to consider this section unmapped
3232 overlay list -- list the sections that GDB thinks are mapped
3233 overlay read-target -- get the target's state of what's mapped
3234 overlay off/manual/auto -- set overlay debugging state
3235 Functional interface:
3236 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3237 section, return that section.
5417f6dc 3238 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 3239 the pc, either in its VMA or its LMA
714835d5 3240 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
3241 section_is_overlay(sect): true if section's VMA != LMA
3242 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3243 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 3244 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
3245 overlay_mapped_address(...): map an address from section's LMA to VMA
3246 overlay_unmapped_address(...): map an address from section's VMA to LMA
3247 symbol_overlayed_address(...): Return a "current" address for symbol:
3248 either in VMA or LMA depending on whether
3249 the symbol's section is currently mapped
c906108c
SS
3250 */
3251
3252/* Overlay debugging state: */
3253
d874f1e2 3254enum overlay_debugging_state overlay_debugging = ovly_off;
c906108c
SS
3255int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
3256
c906108c 3257/* Function: section_is_overlay (SECTION)
5417f6dc 3258 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
3259 SECTION is loaded at an address different from where it will "run". */
3260
3261int
714835d5 3262section_is_overlay (struct obj_section *section)
c906108c 3263{
714835d5
UW
3264 if (overlay_debugging && section)
3265 {
3266 bfd *abfd = section->objfile->obfd;
3267 asection *bfd_section = section->the_bfd_section;
3268
3269 if (bfd_section_lma (abfd, bfd_section) != 0
3270 && bfd_section_lma (abfd, bfd_section)
3271 != bfd_section_vma (abfd, bfd_section))
3272 return 1;
3273 }
c906108c
SS
3274
3275 return 0;
3276}
3277
3278/* Function: overlay_invalidate_all (void)
3279 Invalidate the mapped state of all overlay sections (mark it as stale). */
3280
3281static void
fba45db2 3282overlay_invalidate_all (void)
c906108c 3283{
c5aa993b 3284 struct objfile *objfile;
c906108c
SS
3285 struct obj_section *sect;
3286
3287 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
3288 if (section_is_overlay (sect))
3289 sect->ovly_mapped = -1;
c906108c
SS
3290}
3291
714835d5 3292/* Function: section_is_mapped (SECTION)
5417f6dc 3293 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3294
3295 Access to the ovly_mapped flag is restricted to this function, so
3296 that we can do automatic update. If the global flag
3297 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3298 overlay_invalidate_all. If the mapped state of the particular
3299 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3300
714835d5
UW
3301int
3302section_is_mapped (struct obj_section *osect)
c906108c 3303{
9216df95
UW
3304 struct gdbarch *gdbarch;
3305
714835d5 3306 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
3307 return 0;
3308
c5aa993b 3309 switch (overlay_debugging)
c906108c
SS
3310 {
3311 default:
d874f1e2 3312 case ovly_off:
c5aa993b 3313 return 0; /* overlay debugging off */
d874f1e2 3314 case ovly_auto: /* overlay debugging automatic */
1c772458 3315 /* Unles there is a gdbarch_overlay_update function,
c5aa993b 3316 there's really nothing useful to do here (can't really go auto) */
9216df95
UW
3317 gdbarch = get_objfile_arch (osect->objfile);
3318 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
3319 {
3320 if (overlay_cache_invalid)
3321 {
3322 overlay_invalidate_all ();
3323 overlay_cache_invalid = 0;
3324 }
3325 if (osect->ovly_mapped == -1)
9216df95 3326 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
3327 }
3328 /* fall thru to manual case */
d874f1e2 3329 case ovly_on: /* overlay debugging manual */
c906108c
SS
3330 return osect->ovly_mapped == 1;
3331 }
3332}
3333
c906108c
SS
3334/* Function: pc_in_unmapped_range
3335 If PC falls into the lma range of SECTION, return true, else false. */
3336
3337CORE_ADDR
714835d5 3338pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3339{
714835d5
UW
3340 if (section_is_overlay (section))
3341 {
3342 bfd *abfd = section->objfile->obfd;
3343 asection *bfd_section = section->the_bfd_section;
fbd35540 3344
714835d5
UW
3345 /* We assume the LMA is relocated by the same offset as the VMA. */
3346 bfd_vma size = bfd_get_section_size (bfd_section);
3347 CORE_ADDR offset = obj_section_offset (section);
3348
3349 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3350 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3351 return 1;
3352 }
c906108c 3353
c906108c
SS
3354 return 0;
3355}
3356
3357/* Function: pc_in_mapped_range
3358 If PC falls into the vma range of SECTION, return true, else false. */
3359
3360CORE_ADDR
714835d5 3361pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3362{
714835d5
UW
3363 if (section_is_overlay (section))
3364 {
3365 if (obj_section_addr (section) <= pc
3366 && pc < obj_section_endaddr (section))
3367 return 1;
3368 }
c906108c 3369
c906108c
SS
3370 return 0;
3371}
3372
9ec8e6a0
JB
3373
3374/* Return true if the mapped ranges of sections A and B overlap, false
3375 otherwise. */
b9362cc7 3376static int
714835d5 3377sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3378{
714835d5
UW
3379 CORE_ADDR a_start = obj_section_addr (a);
3380 CORE_ADDR a_end = obj_section_endaddr (a);
3381 CORE_ADDR b_start = obj_section_addr (b);
3382 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3383
3384 return (a_start < b_end && b_start < a_end);
3385}
3386
c906108c
SS
3387/* Function: overlay_unmapped_address (PC, SECTION)
3388 Returns the address corresponding to PC in the unmapped (load) range.
3389 May be the same as PC. */
3390
3391CORE_ADDR
714835d5 3392overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3393{
714835d5
UW
3394 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3395 {
3396 bfd *abfd = section->objfile->obfd;
3397 asection *bfd_section = section->the_bfd_section;
fbd35540 3398
714835d5
UW
3399 return pc + bfd_section_lma (abfd, bfd_section)
3400 - bfd_section_vma (abfd, bfd_section);
3401 }
c906108c
SS
3402
3403 return pc;
3404}
3405
3406/* Function: overlay_mapped_address (PC, SECTION)
3407 Returns the address corresponding to PC in the mapped (runtime) range.
3408 May be the same as PC. */
3409
3410CORE_ADDR
714835d5 3411overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3412{
714835d5
UW
3413 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3414 {
3415 bfd *abfd = section->objfile->obfd;
3416 asection *bfd_section = section->the_bfd_section;
fbd35540 3417
714835d5
UW
3418 return pc + bfd_section_vma (abfd, bfd_section)
3419 - bfd_section_lma (abfd, bfd_section);
3420 }
c906108c
SS
3421
3422 return pc;
3423}
3424
3425
5417f6dc 3426/* Function: symbol_overlayed_address
c906108c
SS
3427 Return one of two addresses (relative to the VMA or to the LMA),
3428 depending on whether the section is mapped or not. */
3429
c5aa993b 3430CORE_ADDR
714835d5 3431symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3432{
3433 if (overlay_debugging)
3434 {
3435 /* If the symbol has no section, just return its regular address. */
3436 if (section == 0)
3437 return address;
3438 /* If the symbol's section is not an overlay, just return its address */
3439 if (!section_is_overlay (section))
3440 return address;
3441 /* If the symbol's section is mapped, just return its address */
3442 if (section_is_mapped (section))
3443 return address;
3444 /*
3445 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3446 * then return its LOADED address rather than its vma address!!
3447 */
3448 return overlay_unmapped_address (address, section);
3449 }
3450 return address;
3451}
3452
5417f6dc 3453/* Function: find_pc_overlay (PC)
c906108c
SS
3454 Return the best-match overlay section for PC:
3455 If PC matches a mapped overlay section's VMA, return that section.
3456 Else if PC matches an unmapped section's VMA, return that section.
3457 Else if PC matches an unmapped section's LMA, return that section. */
3458
714835d5 3459struct obj_section *
fba45db2 3460find_pc_overlay (CORE_ADDR pc)
c906108c 3461{
c5aa993b 3462 struct objfile *objfile;
c906108c
SS
3463 struct obj_section *osect, *best_match = NULL;
3464
3465 if (overlay_debugging)
3466 ALL_OBJSECTIONS (objfile, osect)
714835d5 3467 if (section_is_overlay (osect))
c5aa993b 3468 {
714835d5 3469 if (pc_in_mapped_range (pc, osect))
c5aa993b 3470 {
714835d5
UW
3471 if (section_is_mapped (osect))
3472 return osect;
c5aa993b
JM
3473 else
3474 best_match = osect;
3475 }
714835d5 3476 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3477 best_match = osect;
3478 }
714835d5 3479 return best_match;
c906108c
SS
3480}
3481
3482/* Function: find_pc_mapped_section (PC)
5417f6dc 3483 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3484 currently marked as MAPPED, return that section. Else return NULL. */
3485
714835d5 3486struct obj_section *
fba45db2 3487find_pc_mapped_section (CORE_ADDR pc)
c906108c 3488{
c5aa993b 3489 struct objfile *objfile;
c906108c
SS
3490 struct obj_section *osect;
3491
3492 if (overlay_debugging)
3493 ALL_OBJSECTIONS (objfile, osect)
714835d5
UW
3494 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3495 return osect;
c906108c
SS
3496
3497 return NULL;
3498}
3499
3500/* Function: list_overlays_command
3501 Print a list of mapped sections and their PC ranges */
3502
3503void
fba45db2 3504list_overlays_command (char *args, int from_tty)
c906108c 3505{
c5aa993b
JM
3506 int nmapped = 0;
3507 struct objfile *objfile;
c906108c
SS
3508 struct obj_section *osect;
3509
3510 if (overlay_debugging)
3511 ALL_OBJSECTIONS (objfile, osect)
714835d5 3512 if (section_is_mapped (osect))
c5aa993b 3513 {
5af949e3 3514 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c5aa993b
JM
3515 const char *name;
3516 bfd_vma lma, vma;
3517 int size;
3518
3519 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3520 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3521 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3522 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3523
3524 printf_filtered ("Section %s, loaded at ", name);
5af949e3 3525 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
c5aa993b 3526 puts_filtered (" - ");
5af949e3 3527 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
c5aa993b 3528 printf_filtered (", mapped at ");
5af949e3 3529 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
c5aa993b 3530 puts_filtered (" - ");
5af949e3 3531 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
c5aa993b
JM
3532 puts_filtered ("\n");
3533
3534 nmapped++;
3535 }
c906108c 3536 if (nmapped == 0)
a3f17187 3537 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3538}
3539
3540/* Function: map_overlay_command
3541 Mark the named section as mapped (ie. residing at its VMA address). */
3542
3543void
fba45db2 3544map_overlay_command (char *args, int from_tty)
c906108c 3545{
c5aa993b
JM
3546 struct objfile *objfile, *objfile2;
3547 struct obj_section *sec, *sec2;
c906108c
SS
3548
3549 if (!overlay_debugging)
8a3fe4f8 3550 error (_("\
515ad16c 3551Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3552the 'overlay manual' command."));
c906108c
SS
3553
3554 if (args == 0 || *args == 0)
8a3fe4f8 3555 error (_("Argument required: name of an overlay section"));
c906108c
SS
3556
3557 /* First, find a section matching the user supplied argument */
3558 ALL_OBJSECTIONS (objfile, sec)
3559 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3560 {
3561 /* Now, check to see if the section is an overlay. */
714835d5 3562 if (!section_is_overlay (sec))
c5aa993b
JM
3563 continue; /* not an overlay section */
3564
3565 /* Mark the overlay as "mapped" */
3566 sec->ovly_mapped = 1;
3567
3568 /* Next, make a pass and unmap any sections that are
3569 overlapped by this new section: */
3570 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3571 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3572 {
3573 if (info_verbose)
a3f17187 3574 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3575 bfd_section_name (objfile->obfd,
3576 sec2->the_bfd_section));
3577 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3578 }
3579 return;
3580 }
8a3fe4f8 3581 error (_("No overlay section called %s"), args);
c906108c
SS
3582}
3583
3584/* Function: unmap_overlay_command
5417f6dc 3585 Mark the overlay section as unmapped
c906108c
SS
3586 (ie. resident in its LMA address range, rather than the VMA range). */
3587
3588void
fba45db2 3589unmap_overlay_command (char *args, int from_tty)
c906108c 3590{
c5aa993b 3591 struct objfile *objfile;
c906108c
SS
3592 struct obj_section *sec;
3593
3594 if (!overlay_debugging)
8a3fe4f8 3595 error (_("\
515ad16c 3596Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3597the 'overlay manual' command."));
c906108c
SS
3598
3599 if (args == 0 || *args == 0)
8a3fe4f8 3600 error (_("Argument required: name of an overlay section"));
c906108c
SS
3601
3602 /* First, find a section matching the user supplied argument */
3603 ALL_OBJSECTIONS (objfile, sec)
3604 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3605 {
3606 if (!sec->ovly_mapped)
8a3fe4f8 3607 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3608 sec->ovly_mapped = 0;
3609 return;
3610 }
8a3fe4f8 3611 error (_("No overlay section called %s"), args);
c906108c
SS
3612}
3613
3614/* Function: overlay_auto_command
3615 A utility command to turn on overlay debugging.
3616 Possibly this should be done via a set/show command. */
3617
3618static void
fba45db2 3619overlay_auto_command (char *args, int from_tty)
c906108c 3620{
d874f1e2 3621 overlay_debugging = ovly_auto;
1900040c 3622 enable_overlay_breakpoints ();
c906108c 3623 if (info_verbose)
a3f17187 3624 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3625}
3626
3627/* Function: overlay_manual_command
3628 A utility command to turn on overlay debugging.
3629 Possibly this should be done via a set/show command. */
3630
3631static void
fba45db2 3632overlay_manual_command (char *args, int from_tty)
c906108c 3633{
d874f1e2 3634 overlay_debugging = ovly_on;
1900040c 3635 disable_overlay_breakpoints ();
c906108c 3636 if (info_verbose)
a3f17187 3637 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3638}
3639
3640/* Function: overlay_off_command
3641 A utility command to turn on overlay debugging.
3642 Possibly this should be done via a set/show command. */
3643
3644static void
fba45db2 3645overlay_off_command (char *args, int from_tty)
c906108c 3646{
d874f1e2 3647 overlay_debugging = ovly_off;
1900040c 3648 disable_overlay_breakpoints ();
c906108c 3649 if (info_verbose)
a3f17187 3650 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3651}
3652
3653static void
fba45db2 3654overlay_load_command (char *args, int from_tty)
c906108c 3655{
e17c207e
UW
3656 struct gdbarch *gdbarch = get_current_arch ();
3657
3658 if (gdbarch_overlay_update_p (gdbarch))
3659 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3660 else
8a3fe4f8 3661 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3662}
3663
3664/* Function: overlay_command
3665 A place-holder for a mis-typed command */
3666
3667/* Command list chain containing all defined "overlay" subcommands. */
3668struct cmd_list_element *overlaylist;
3669
3670static void
fba45db2 3671overlay_command (char *args, int from_tty)
c906108c 3672{
c5aa993b 3673 printf_unfiltered
c906108c
SS
3674 ("\"overlay\" must be followed by the name of an overlay command.\n");
3675 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3676}
3677
3678
3679/* Target Overlays for the "Simplest" overlay manager:
3680
5417f6dc
RM
3681 This is GDB's default target overlay layer. It works with the
3682 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3683 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3684 so targets that use a different runtime overlay manager can
c906108c
SS
3685 substitute their own overlay_update function and take over the
3686 function pointer.
3687
3688 The overlay_update function pokes around in the target's data structures
3689 to see what overlays are mapped, and updates GDB's overlay mapping with
3690 this information.
3691
3692 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3693 unsigned _novlys; /# number of overlay sections #/
3694 unsigned _ovly_table[_novlys][4] = {
3695 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3696 {..., ..., ..., ...},
3697 }
3698 unsigned _novly_regions; /# number of overlay regions #/
3699 unsigned _ovly_region_table[_novly_regions][3] = {
3700 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3701 {..., ..., ...},
3702 }
c906108c
SS
3703 These functions will attempt to update GDB's mappedness state in the
3704 symbol section table, based on the target's mappedness state.
3705
3706 To do this, we keep a cached copy of the target's _ovly_table, and
3707 attempt to detect when the cached copy is invalidated. The main
3708 entry point is "simple_overlay_update(SECT), which looks up SECT in
3709 the cached table and re-reads only the entry for that section from
3710 the target (whenever possible).
3711 */
3712
3713/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3714static unsigned (*cache_ovly_table)[4] = 0;
c906108c 3715#if 0
c5aa993b 3716static unsigned (*cache_ovly_region_table)[3] = 0;
c906108c 3717#endif
c5aa993b 3718static unsigned cache_novlys = 0;
c906108c 3719#if 0
c5aa993b 3720static unsigned cache_novly_regions = 0;
c906108c
SS
3721#endif
3722static CORE_ADDR cache_ovly_table_base = 0;
3723#if 0
3724static CORE_ADDR cache_ovly_region_table_base = 0;
3725#endif
c5aa993b
JM
3726enum ovly_index
3727 {
3728 VMA, SIZE, LMA, MAPPED
3729 };
c906108c
SS
3730
3731/* Throw away the cached copy of _ovly_table */
3732static void
fba45db2 3733simple_free_overlay_table (void)
c906108c
SS
3734{
3735 if (cache_ovly_table)
b8c9b27d 3736 xfree (cache_ovly_table);
c5aa993b 3737 cache_novlys = 0;
c906108c
SS
3738 cache_ovly_table = NULL;
3739 cache_ovly_table_base = 0;
3740}
3741
3742#if 0
3743/* Throw away the cached copy of _ovly_region_table */
3744static void
fba45db2 3745simple_free_overlay_region_table (void)
c906108c
SS
3746{
3747 if (cache_ovly_region_table)
b8c9b27d 3748 xfree (cache_ovly_region_table);
c5aa993b 3749 cache_novly_regions = 0;
c906108c
SS
3750 cache_ovly_region_table = NULL;
3751 cache_ovly_region_table_base = 0;
3752}
3753#endif
3754
9216df95 3755/* Read an array of ints of size SIZE from the target into a local buffer.
c906108c
SS
3756 Convert to host order. int LEN is number of ints */
3757static void
9216df95 3758read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3759 int len, int size, enum bfd_endian byte_order)
c906108c 3760{
34c0bd93 3761 /* FIXME (alloca): Not safe if array is very large. */
9216df95 3762 gdb_byte *buf = alloca (len * size);
c5aa993b 3763 int i;
c906108c 3764
9216df95 3765 read_memory (memaddr, buf, len * size);
c906108c 3766 for (i = 0; i < len; i++)
e17a4113 3767 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3768}
3769
3770/* Find and grab a copy of the target _ovly_table
3771 (and _novlys, which is needed for the table's size) */
c5aa993b 3772static int
fba45db2 3773simple_read_overlay_table (void)
c906108c 3774{
0d43edd1 3775 struct minimal_symbol *novlys_msym, *ovly_table_msym;
9216df95
UW
3776 struct gdbarch *gdbarch;
3777 int word_size;
e17a4113 3778 enum bfd_endian byte_order;
c906108c
SS
3779
3780 simple_free_overlay_table ();
9b27852e 3781 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3782 if (! novlys_msym)
c906108c 3783 {
8a3fe4f8 3784 error (_("Error reading inferior's overlay table: "
0d43edd1 3785 "couldn't find `_novlys' variable\n"
8a3fe4f8 3786 "in inferior. Use `overlay manual' mode."));
0d43edd1 3787 return 0;
c906108c 3788 }
0d43edd1 3789
9b27852e 3790 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3791 if (! ovly_table_msym)
3792 {
8a3fe4f8 3793 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3794 "`_ovly_table' array\n"
8a3fe4f8 3795 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3796 return 0;
3797 }
3798
9216df95
UW
3799 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3800 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3801 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3802
e17a4113
UW
3803 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3804 4, byte_order);
0d43edd1
JB
3805 cache_ovly_table
3806 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3807 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3808 read_target_long_array (cache_ovly_table_base,
777ea8f1 3809 (unsigned int *) cache_ovly_table,
e17a4113 3810 cache_novlys * 4, word_size, byte_order);
0d43edd1 3811
c5aa993b 3812 return 1; /* SUCCESS */
c906108c
SS
3813}
3814
3815#if 0
3816/* Find and grab a copy of the target _ovly_region_table
3817 (and _novly_regions, which is needed for the table's size) */
c5aa993b 3818static int
fba45db2 3819simple_read_overlay_region_table (void)
c906108c
SS
3820{
3821 struct minimal_symbol *msym;
e17a4113
UW
3822 struct gdbarch *gdbarch;
3823 int word_size;
3824 enum bfd_endian byte_order;
c906108c
SS
3825
3826 simple_free_overlay_region_table ();
9b27852e 3827 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
e17a4113 3828 if (msym == NULL)
c5aa993b 3829 return 0; /* failure */
e17a4113
UW
3830
3831 gdbarch = get_objfile_arch (msymbol_objfile (msym));
3832 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3833 byte_order = gdbarch_byte_order (gdbarch);
3834
3835 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym),
3836 4, byte_order);
3837
c906108c
SS
3838 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3839 if (cache_ovly_region_table != NULL)
3840 {
9b27852e 3841 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
c906108c
SS
3842 if (msym != NULL)
3843 {
3844 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
c5aa993b 3845 read_target_long_array (cache_ovly_region_table_base,
777ea8f1 3846 (unsigned int *) cache_ovly_region_table,
e17a4113
UW
3847 cache_novly_regions * 3,
3848 word_size, byte_order);
c906108c 3849 }
c5aa993b
JM
3850 else
3851 return 0; /* failure */
c906108c 3852 }
c5aa993b
JM
3853 else
3854 return 0; /* failure */
3855 return 1; /* SUCCESS */
c906108c
SS
3856}
3857#endif
3858
5417f6dc 3859/* Function: simple_overlay_update_1
c906108c
SS
3860 A helper function for simple_overlay_update. Assuming a cached copy
3861 of _ovly_table exists, look through it to find an entry whose vma,
3862 lma and size match those of OSECT. Re-read the entry and make sure
3863 it still matches OSECT (else the table may no longer be valid).
3864 Set OSECT's mapped state to match the entry. Return: 1 for
3865 success, 0 for failure. */
3866
3867static int
fba45db2 3868simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3869{
3870 int i, size;
fbd35540
MS
3871 bfd *obfd = osect->objfile->obfd;
3872 asection *bsect = osect->the_bfd_section;
9216df95
UW
3873 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3874 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3875 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3876
2c500098 3877 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3878 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3879 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3880 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3881 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c 3882 {
9216df95
UW
3883 read_target_long_array (cache_ovly_table_base + i * word_size,
3884 (unsigned int *) cache_ovly_table[i],
e17a4113 3885 4, word_size, byte_order);
fbd35540
MS
3886 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3887 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3888 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3889 {
3890 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3891 return 1;
3892 }
fbd35540 3893 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3894 return 0;
3895 }
3896 return 0;
3897}
3898
3899/* Function: simple_overlay_update
5417f6dc
RM
3900 If OSECT is NULL, then update all sections' mapped state
3901 (after re-reading the entire target _ovly_table).
3902 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3903 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3904 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3905 re-read the entire cache, and go ahead and update all sections. */
3906
1c772458 3907void
fba45db2 3908simple_overlay_update (struct obj_section *osect)
c906108c 3909{
c5aa993b 3910 struct objfile *objfile;
c906108c
SS
3911
3912 /* Were we given an osect to look up? NULL means do all of them. */
3913 if (osect)
3914 /* Have we got a cached copy of the target's overlay table? */
3915 if (cache_ovly_table != NULL)
3916 /* Does its cached location match what's currently in the symtab? */
c5aa993b 3917 if (cache_ovly_table_base ==
9b27852e 3918 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
c906108c
SS
3919 /* Then go ahead and try to look up this single section in the cache */
3920 if (simple_overlay_update_1 (osect))
3921 /* Found it! We're done. */
3922 return;
3923
3924 /* Cached table no good: need to read the entire table anew.
3925 Or else we want all the sections, in which case it's actually
3926 more efficient to read the whole table in one block anyway. */
3927
0d43edd1
JB
3928 if (! simple_read_overlay_table ())
3929 return;
3930
c906108c
SS
3931 /* Now may as well update all sections, even if only one was requested. */
3932 ALL_OBJSECTIONS (objfile, osect)
714835d5 3933 if (section_is_overlay (osect))
c5aa993b
JM
3934 {
3935 int i, size;
fbd35540
MS
3936 bfd *obfd = osect->objfile->obfd;
3937 asection *bsect = osect->the_bfd_section;
c5aa993b 3938
2c500098 3939 size = bfd_get_section_size (bsect);
c5aa993b 3940 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3941 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3942 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3943 /* && cache_ovly_table[i][SIZE] == size */ )
3944 { /* obj_section matches i'th entry in ovly_table */
c5aa993b
JM
3945 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3946 break; /* finished with inner for loop: break out */
3947 }
3948 }
c906108c
SS
3949}
3950
086df311
DJ
3951/* Set the output sections and output offsets for section SECTP in
3952 ABFD. The relocation code in BFD will read these offsets, so we
3953 need to be sure they're initialized. We map each section to itself,
3954 with no offset; this means that SECTP->vma will be honored. */
3955
3956static void
3957symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3958{
3959 sectp->output_section = sectp;
3960 sectp->output_offset = 0;
3961}
3962
3963/* Relocate the contents of a debug section SECTP in ABFD. The
3964 contents are stored in BUF if it is non-NULL, or returned in a
3965 malloc'd buffer otherwise.
3966
3967 For some platforms and debug info formats, shared libraries contain
3968 relocations against the debug sections (particularly for DWARF-2;
3969 one affected platform is PowerPC GNU/Linux, although it depends on
3970 the version of the linker in use). Also, ELF object files naturally
3971 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3972 the relocations in order to get the locations of symbols correct.
3973 Another example that may require relocation processing, is the
3974 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3975 debug section. */
086df311
DJ
3976
3977bfd_byte *
3978symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3979{
065a2c74 3980 /* We're only interested in sections with relocation
086df311
DJ
3981 information. */
3982 if ((sectp->flags & SEC_RELOC) == 0)
3983 return NULL;
086df311
DJ
3984
3985 /* We will handle section offsets properly elsewhere, so relocate as if
3986 all sections begin at 0. */
3987 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3988
97606a13 3989 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
086df311 3990}
c906108c 3991
31d99776
DJ
3992struct symfile_segment_data *
3993get_symfile_segment_data (bfd *abfd)
3994{
3995 struct sym_fns *sf = find_sym_fns (abfd);
3996
3997 if (sf == NULL)
3998 return NULL;
3999
4000 return sf->sym_segments (abfd);
4001}
4002
4003void
4004free_symfile_segment_data (struct symfile_segment_data *data)
4005{
4006 xfree (data->segment_bases);
4007 xfree (data->segment_sizes);
4008 xfree (data->segment_info);
4009 xfree (data);
4010}
4011
28c32713
JB
4012
4013/* Given:
4014 - DATA, containing segment addresses from the object file ABFD, and
4015 the mapping from ABFD's sections onto the segments that own them,
4016 and
4017 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
4018 segment addresses reported by the target,
4019 store the appropriate offsets for each section in OFFSETS.
4020
4021 If there are fewer entries in SEGMENT_BASES than there are segments
4022 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
4023
8d385431
DJ
4024 If there are more entries, then ignore the extra. The target may
4025 not be able to distinguish between an empty data segment and a
4026 missing data segment; a missing text segment is less plausible. */
31d99776
DJ
4027int
4028symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
4029 struct section_offsets *offsets,
4030 int num_segment_bases,
4031 const CORE_ADDR *segment_bases)
4032{
4033 int i;
4034 asection *sect;
4035
28c32713
JB
4036 /* It doesn't make sense to call this function unless you have some
4037 segment base addresses. */
4038 gdb_assert (segment_bases > 0);
4039
31d99776
DJ
4040 /* If we do not have segment mappings for the object file, we
4041 can not relocate it by segments. */
4042 gdb_assert (data != NULL);
4043 gdb_assert (data->num_segments > 0);
4044
31d99776
DJ
4045 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4046 {
31d99776
DJ
4047 int which = data->segment_info[i];
4048
28c32713
JB
4049 gdb_assert (0 <= which && which <= data->num_segments);
4050
4051 /* Don't bother computing offsets for sections that aren't
4052 loaded as part of any segment. */
4053 if (! which)
4054 continue;
4055
4056 /* Use the last SEGMENT_BASES entry as the address of any extra
4057 segments mentioned in DATA->segment_info. */
31d99776 4058 if (which > num_segment_bases)
28c32713 4059 which = num_segment_bases;
31d99776 4060
28c32713
JB
4061 offsets->offsets[i] = (segment_bases[which - 1]
4062 - data->segment_bases[which - 1]);
31d99776
DJ
4063 }
4064
4065 return 1;
4066}
4067
4068static void
4069symfile_find_segment_sections (struct objfile *objfile)
4070{
4071 bfd *abfd = objfile->obfd;
4072 int i;
4073 asection *sect;
4074 struct symfile_segment_data *data;
4075
4076 data = get_symfile_segment_data (objfile->obfd);
4077 if (data == NULL)
4078 return;
4079
4080 if (data->num_segments != 1 && data->num_segments != 2)
4081 {
4082 free_symfile_segment_data (data);
4083 return;
4084 }
4085
4086 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4087 {
4088 CORE_ADDR vma;
4089 int which = data->segment_info[i];
4090
4091 if (which == 1)
4092 {
4093 if (objfile->sect_index_text == -1)
4094 objfile->sect_index_text = sect->index;
4095
4096 if (objfile->sect_index_rodata == -1)
4097 objfile->sect_index_rodata = sect->index;
4098 }
4099 else if (which == 2)
4100 {
4101 if (objfile->sect_index_data == -1)
4102 objfile->sect_index_data = sect->index;
4103
4104 if (objfile->sect_index_bss == -1)
4105 objfile->sect_index_bss = sect->index;
4106 }
4107 }
4108
4109 free_symfile_segment_data (data);
4110}
4111
c906108c 4112void
fba45db2 4113_initialize_symfile (void)
c906108c
SS
4114{
4115 struct cmd_list_element *c;
c5aa993b 4116
1a966eab
AC
4117 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
4118Load symbol table from executable file FILE.\n\
c906108c 4119The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 4120to execute."), &cmdlist);
5ba2abeb 4121 set_cmd_completer (c, filename_completer);
c906108c 4122
1a966eab 4123 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 4124Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
1a966eab 4125Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
2acceee2 4126ADDR is the starting address of the file's text.\n\
db162d44
EZ
4127The optional arguments are section-name section-address pairs and\n\
4128should be specified if the data and bss segments are not contiguous\n\
1a966eab 4129with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 4130 &cmdlist);
5ba2abeb 4131 set_cmd_completer (c, filename_completer);
c906108c 4132
1a966eab
AC
4133 c = add_cmd ("load", class_files, load_command, _("\
4134Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
4135for access from GDB.\n\
4136A load OFFSET may also be given."), &cmdlist);
5ba2abeb 4137 set_cmd_completer (c, filename_completer);
c906108c 4138
5bf193a2
AC
4139 add_setshow_boolean_cmd ("symbol-reloading", class_support,
4140 &symbol_reloading, _("\
4141Set dynamic symbol table reloading multiple times in one run."), _("\
4142Show dynamic symbol table reloading multiple times in one run."), NULL,
4143 NULL,
920d2a44 4144 show_symbol_reloading,
5bf193a2 4145 &setlist, &showlist);
c906108c 4146
c5aa993b 4147 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 4148 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
4149 "overlay ", 0, &cmdlist);
4150
4151 add_com_alias ("ovly", "overlay", class_alias, 1);
4152 add_com_alias ("ov", "overlay", class_alias, 1);
4153
c5aa993b 4154 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 4155 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 4156
c5aa993b 4157 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 4158 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 4159
c5aa993b 4160 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 4161 _("List mappings of overlay sections."), &overlaylist);
c906108c 4162
c5aa993b 4163 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 4164 _("Enable overlay debugging."), &overlaylist);
c5aa993b 4165 add_cmd ("off", class_support, overlay_off_command,
1a966eab 4166 _("Disable overlay debugging."), &overlaylist);
c5aa993b 4167 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 4168 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 4169 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 4170 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
4171
4172 /* Filename extension to source language lookup table: */
4173 init_filename_language_table ();
26c41df3
AC
4174 add_setshow_string_noescape_cmd ("extension-language", class_files,
4175 &ext_args, _("\
4176Set mapping between filename extension and source language."), _("\
4177Show mapping between filename extension and source language."), _("\
4178Usage: set extension-language .foo bar"),
4179 set_ext_lang_command,
920d2a44 4180 show_ext_args,
26c41df3 4181 &setlist, &showlist);
c906108c 4182
c5aa993b 4183 add_info ("extensions", info_ext_lang_command,
1bedd215 4184 _("All filename extensions associated with a source language."));
917317f4 4185
525226b5
AC
4186 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4187 &debug_file_directory, _("\
4188Set the directory where separate debug symbols are searched for."), _("\
4189Show the directory where separate debug symbols are searched for."), _("\
4190Separate debug symbols are first searched for in the same\n\
4191directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4192and lastly at the path of the directory of the binary with\n\
4193the global debug-file directory prepended."),
4194 NULL,
920d2a44 4195 show_debug_file_directory,
525226b5 4196 &setlist, &showlist);
bf250677
DE
4197
4198 add_setshow_boolean_cmd ("symbol-loading", no_class,
4199 &print_symbol_loading, _("\
4200Set printing of symbol loading messages."), _("\
4201Show printing of symbol loading messages."), NULL,
4202 NULL,
4203 NULL,
4204 &setprintlist, &showprintlist);
c906108c 4205}
This page took 1.298991 seconds and 4 git commands to generate.