*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
197e01b6 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
777ea8f1
DJ
4 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
5 Free Software Foundation, Inc.
8926118c 6
c906108c
SS
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b
JM
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
197e01b6
EZ
23 Foundation, Inc., 51 Franklin Street, Fifth Floor,
24 Boston, MA 02110-1301, USA. */
c906108c
SS
25
26#include "defs.h"
086df311 27#include "bfdlink.h"
c906108c
SS
28#include "symtab.h"
29#include "gdbtypes.h"
30#include "gdbcore.h"
31#include "frame.h"
32#include "target.h"
33#include "value.h"
34#include "symfile.h"
35#include "objfiles.h"
0378c332 36#include "source.h"
c906108c
SS
37#include "gdbcmd.h"
38#include "breakpoint.h"
39#include "language.h"
40#include "complaints.h"
41#include "demangle.h"
c5aa993b 42#include "inferior.h" /* for write_pc */
5b5d99cf 43#include "filenames.h" /* for DOSish file names */
c906108c 44#include "gdb-stabs.h"
04ea0df1 45#include "gdb_obstack.h"
d75b5104 46#include "completer.h"
af5f3db6 47#include "bcache.h"
2de7ced7 48#include "hashtab.h"
dbda9972 49#include "readline/readline.h"
7e8580c1 50#include "gdb_assert.h"
fe898f56 51#include "block.h"
ea53e89f 52#include "observer.h"
c1bd25fd 53#include "exec.h"
9bdcbae7 54#include "parser-defs.h"
c906108c 55
c906108c
SS
56#include <sys/types.h>
57#include <fcntl.h>
58#include "gdb_string.h"
59#include "gdb_stat.h"
60#include <ctype.h>
61#include <time.h>
2b71414d 62#include <sys/time.h>
c906108c 63
c906108c 64
9a4105ab
AC
65int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
66void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
67 unsigned long section_sent,
68 unsigned long section_size,
69 unsigned long total_sent,
c2d11a7d 70 unsigned long total_size);
769d7dc4
AC
71void (*deprecated_pre_add_symbol_hook) (const char *);
72void (*deprecated_post_add_symbol_hook) (void);
9a4105ab 73void (*deprecated_target_new_objfile_hook) (struct objfile *);
c906108c 74
74b7792f
AC
75static void clear_symtab_users_cleanup (void *ignore);
76
c906108c 77/* Global variables owned by this file */
c5aa993b 78int readnow_symbol_files; /* Read full symbols immediately */
c906108c 79
c906108c
SS
80/* External variables and functions referenced. */
81
a14ed312 82extern void report_transfer_performance (unsigned long, time_t, time_t);
c906108c
SS
83
84/* Functions this file defines */
85
86#if 0
a14ed312
KB
87static int simple_read_overlay_region_table (void);
88static void simple_free_overlay_region_table (void);
c906108c
SS
89#endif
90
a14ed312 91static void set_initial_language (void);
c906108c 92
a14ed312 93static void load_command (char *, int);
c906108c 94
d7db6da9
FN
95static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
96
a14ed312 97static void add_symbol_file_command (char *, int);
c906108c 98
a14ed312 99static void add_shared_symbol_files_command (char *, int);
c906108c 100
5b5d99cf
JB
101static void reread_separate_symbols (struct objfile *objfile);
102
a14ed312 103static void cashier_psymtab (struct partial_symtab *);
c906108c 104
a14ed312 105bfd *symfile_bfd_open (char *);
c906108c 106
0e931cf0
JB
107int get_section_index (struct objfile *, char *);
108
a14ed312 109static void find_sym_fns (struct objfile *);
c906108c 110
a14ed312 111static void decrement_reading_symtab (void *);
c906108c 112
a14ed312 113static void overlay_invalidate_all (void);
c906108c 114
a14ed312 115static int overlay_is_mapped (struct obj_section *);
c906108c 116
a14ed312 117void list_overlays_command (char *, int);
c906108c 118
a14ed312 119void map_overlay_command (char *, int);
c906108c 120
a14ed312 121void unmap_overlay_command (char *, int);
c906108c 122
a14ed312 123static void overlay_auto_command (char *, int);
c906108c 124
a14ed312 125static void overlay_manual_command (char *, int);
c906108c 126
a14ed312 127static void overlay_off_command (char *, int);
c906108c 128
a14ed312 129static void overlay_load_command (char *, int);
c906108c 130
a14ed312 131static void overlay_command (char *, int);
c906108c 132
a14ed312 133static void simple_free_overlay_table (void);
c906108c 134
a14ed312 135static void read_target_long_array (CORE_ADDR, unsigned int *, int);
c906108c 136
a14ed312 137static int simple_read_overlay_table (void);
c906108c 138
a14ed312 139static int simple_overlay_update_1 (struct obj_section *);
c906108c 140
a14ed312 141static void add_filename_language (char *ext, enum language lang);
392a587b 142
a14ed312 143static void info_ext_lang_command (char *args, int from_tty);
392a587b 144
5b5d99cf
JB
145static char *find_separate_debug_file (struct objfile *objfile);
146
a14ed312 147static void init_filename_language_table (void);
392a587b 148
a14ed312 149void _initialize_symfile (void);
c906108c
SS
150
151/* List of all available sym_fns. On gdb startup, each object file reader
152 calls add_symtab_fns() to register information on each format it is
153 prepared to read. */
154
155static struct sym_fns *symtab_fns = NULL;
156
157/* Flag for whether user will be reloading symbols multiple times.
158 Defaults to ON for VxWorks, otherwise OFF. */
159
160#ifdef SYMBOL_RELOADING_DEFAULT
161int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
162#else
163int symbol_reloading = 0;
164#endif
920d2a44
AC
165static void
166show_symbol_reloading (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
168{
169 fprintf_filtered (file, _("\
170Dynamic symbol table reloading multiple times in one run is %s.\n"),
171 value);
172}
173
c906108c 174
b7209cb4
FF
175/* If non-zero, shared library symbols will be added automatically
176 when the inferior is created, new libraries are loaded, or when
177 attaching to the inferior. This is almost always what users will
178 want to have happen; but for very large programs, the startup time
179 will be excessive, and so if this is a problem, the user can clear
180 this flag and then add the shared library symbols as needed. Note
181 that there is a potential for confusion, since if the shared
c906108c 182 library symbols are not loaded, commands like "info fun" will *not*
b7209cb4 183 report all the functions that are actually present. */
c906108c
SS
184
185int auto_solib_add = 1;
b7209cb4
FF
186
187/* For systems that support it, a threshold size in megabytes. If
188 automatically adding a new library's symbol table to those already
189 known to the debugger would cause the total shared library symbol
190 size to exceed this threshhold, then the shlib's symbols are not
191 added. The threshold is ignored if the user explicitly asks for a
192 shlib to be added, such as when using the "sharedlibrary"
193 command. */
194
195int auto_solib_limit;
c906108c 196\f
c5aa993b 197
0fe19209
DC
198/* This compares two partial symbols by names, using strcmp_iw_ordered
199 for the comparison. */
c906108c
SS
200
201static int
0cd64fe2 202compare_psymbols (const void *s1p, const void *s2p)
c906108c 203{
0fe19209
DC
204 struct partial_symbol *const *s1 = s1p;
205 struct partial_symbol *const *s2 = s2p;
206
4725b721
PH
207 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
208 SYMBOL_SEARCH_NAME (*s2));
c906108c
SS
209}
210
211void
fba45db2 212sort_pst_symbols (struct partial_symtab *pst)
c906108c
SS
213{
214 /* Sort the global list; don't sort the static list */
215
c5aa993b
JM
216 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
217 pst->n_global_syms, sizeof (struct partial_symbol *),
c906108c
SS
218 compare_psymbols);
219}
220
c906108c
SS
221/* Make a null terminated copy of the string at PTR with SIZE characters in
222 the obstack pointed to by OBSTACKP . Returns the address of the copy.
223 Note that the string at PTR does not have to be null terminated, I.E. it
224 may be part of a larger string and we are only saving a substring. */
225
226char *
63ca651f 227obsavestring (const char *ptr, int size, struct obstack *obstackp)
c906108c 228{
52f0bd74 229 char *p = (char *) obstack_alloc (obstackp, size + 1);
c906108c
SS
230 /* Open-coded memcpy--saves function call time. These strings are usually
231 short. FIXME: Is this really still true with a compiler that can
232 inline memcpy? */
233 {
aa1ee363
AC
234 const char *p1 = ptr;
235 char *p2 = p;
63ca651f 236 const char *end = ptr + size;
c906108c
SS
237 while (p1 != end)
238 *p2++ = *p1++;
239 }
240 p[size] = 0;
241 return p;
242}
243
244/* Concatenate strings S1, S2 and S3; return the new string. Space is found
245 in the obstack pointed to by OBSTACKP. */
246
247char *
fba45db2
KB
248obconcat (struct obstack *obstackp, const char *s1, const char *s2,
249 const char *s3)
c906108c 250{
52f0bd74
AC
251 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
252 char *val = (char *) obstack_alloc (obstackp, len);
c906108c
SS
253 strcpy (val, s1);
254 strcat (val, s2);
255 strcat (val, s3);
256 return val;
257}
258
259/* True if we are nested inside psymtab_to_symtab. */
260
261int currently_reading_symtab = 0;
262
263static void
fba45db2 264decrement_reading_symtab (void *dummy)
c906108c
SS
265{
266 currently_reading_symtab--;
267}
268
269/* Get the symbol table that corresponds to a partial_symtab.
270 This is fast after the first time you do it. In fact, there
271 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
272 case inline. */
273
274struct symtab *
aa1ee363 275psymtab_to_symtab (struct partial_symtab *pst)
c906108c
SS
276{
277 /* If it's been looked up before, return it. */
278 if (pst->symtab)
279 return pst->symtab;
280
281 /* If it has not yet been read in, read it. */
282 if (!pst->readin)
c5aa993b 283 {
c906108c
SS
284 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
285 currently_reading_symtab++;
286 (*pst->read_symtab) (pst);
287 do_cleanups (back_to);
288 }
289
290 return pst->symtab;
291}
292
5417f6dc
RM
293/* Remember the lowest-addressed loadable section we've seen.
294 This function is called via bfd_map_over_sections.
c906108c
SS
295
296 In case of equal vmas, the section with the largest size becomes the
297 lowest-addressed loadable section.
298
299 If the vmas and sizes are equal, the last section is considered the
300 lowest-addressed loadable section. */
301
302void
4efb68b1 303find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 304{
c5aa993b 305 asection **lowest = (asection **) obj;
c906108c
SS
306
307 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
308 return;
309 if (!*lowest)
310 *lowest = sect; /* First loadable section */
311 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
312 *lowest = sect; /* A lower loadable section */
313 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
314 && (bfd_section_size (abfd, (*lowest))
315 <= bfd_section_size (abfd, sect)))
316 *lowest = sect;
317}
318
a39a16c4
MM
319/* Create a new section_addr_info, with room for NUM_SECTIONS. */
320
321struct section_addr_info *
322alloc_section_addr_info (size_t num_sections)
323{
324 struct section_addr_info *sap;
325 size_t size;
326
327 size = (sizeof (struct section_addr_info)
328 + sizeof (struct other_sections) * (num_sections - 1));
329 sap = (struct section_addr_info *) xmalloc (size);
330 memset (sap, 0, size);
331 sap->num_sections = num_sections;
332
333 return sap;
334}
62557bbc 335
7b90c3f9
JB
336
337/* Return a freshly allocated copy of ADDRS. The section names, if
338 any, are also freshly allocated copies of those in ADDRS. */
339struct section_addr_info *
340copy_section_addr_info (struct section_addr_info *addrs)
341{
342 struct section_addr_info *copy
343 = alloc_section_addr_info (addrs->num_sections);
344 int i;
345
346 copy->num_sections = addrs->num_sections;
347 for (i = 0; i < addrs->num_sections; i++)
348 {
349 copy->other[i].addr = addrs->other[i].addr;
350 if (addrs->other[i].name)
351 copy->other[i].name = xstrdup (addrs->other[i].name);
352 else
353 copy->other[i].name = NULL;
354 copy->other[i].sectindex = addrs->other[i].sectindex;
355 }
356
357 return copy;
358}
359
360
361
62557bbc
KB
362/* Build (allocate and populate) a section_addr_info struct from
363 an existing section table. */
364
365extern struct section_addr_info *
366build_section_addr_info_from_section_table (const struct section_table *start,
367 const struct section_table *end)
368{
369 struct section_addr_info *sap;
370 const struct section_table *stp;
371 int oidx;
372
a39a16c4 373 sap = alloc_section_addr_info (end - start);
62557bbc
KB
374
375 for (stp = start, oidx = 0; stp != end; stp++)
376 {
5417f6dc 377 if (bfd_get_section_flags (stp->bfd,
fbd35540 378 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 379 && oidx < end - start)
62557bbc
KB
380 {
381 sap->other[oidx].addr = stp->addr;
5417f6dc 382 sap->other[oidx].name
fbd35540 383 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
62557bbc
KB
384 sap->other[oidx].sectindex = stp->the_bfd_section->index;
385 oidx++;
386 }
387 }
388
389 return sap;
390}
391
392
393/* Free all memory allocated by build_section_addr_info_from_section_table. */
394
395extern void
396free_section_addr_info (struct section_addr_info *sap)
397{
398 int idx;
399
a39a16c4 400 for (idx = 0; idx < sap->num_sections; idx++)
62557bbc 401 if (sap->other[idx].name)
b8c9b27d
KB
402 xfree (sap->other[idx].name);
403 xfree (sap);
62557bbc
KB
404}
405
406
e8289572
JB
407/* Initialize OBJFILE's sect_index_* members. */
408static void
409init_objfile_sect_indices (struct objfile *objfile)
c906108c 410{
e8289572 411 asection *sect;
c906108c 412 int i;
5417f6dc 413
b8fbeb18 414 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 415 if (sect)
b8fbeb18
EZ
416 objfile->sect_index_text = sect->index;
417
418 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 419 if (sect)
b8fbeb18
EZ
420 objfile->sect_index_data = sect->index;
421
422 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 423 if (sect)
b8fbeb18
EZ
424 objfile->sect_index_bss = sect->index;
425
426 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 427 if (sect)
b8fbeb18
EZ
428 objfile->sect_index_rodata = sect->index;
429
bbcd32ad
FF
430 /* This is where things get really weird... We MUST have valid
431 indices for the various sect_index_* members or gdb will abort.
432 So if for example, there is no ".text" section, we have to
433 accomodate that. Except when explicitly adding symbol files at
434 some address, section_offsets contains nothing but zeros, so it
435 doesn't matter which slot in section_offsets the individual
436 sect_index_* members index into. So if they are all zero, it is
437 safe to just point all the currently uninitialized indices to the
438 first slot. */
439
440 for (i = 0; i < objfile->num_sections; i++)
441 {
442 if (ANOFFSET (objfile->section_offsets, i) != 0)
443 {
444 break;
445 }
446 }
447 if (i == objfile->num_sections)
448 {
449 if (objfile->sect_index_text == -1)
450 objfile->sect_index_text = 0;
451 if (objfile->sect_index_data == -1)
452 objfile->sect_index_data = 0;
453 if (objfile->sect_index_bss == -1)
454 objfile->sect_index_bss = 0;
455 if (objfile->sect_index_rodata == -1)
456 objfile->sect_index_rodata = 0;
457 }
b8fbeb18 458}
c906108c 459
c1bd25fd
DJ
460/* The arguments to place_section. */
461
462struct place_section_arg
463{
464 struct section_offsets *offsets;
465 CORE_ADDR lowest;
466};
467
468/* Find a unique offset to use for loadable section SECT if
469 the user did not provide an offset. */
470
471void
472place_section (bfd *abfd, asection *sect, void *obj)
473{
474 struct place_section_arg *arg = obj;
475 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
476 int done;
3bd72c6f 477 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd
DJ
478
479 /* We are only interested in loadable sections. */
480 if ((bfd_get_section_flags (abfd, sect) & SEC_LOAD) == 0)
481 return;
482
483 /* If the user specified an offset, honor it. */
484 if (offsets[sect->index] != 0)
485 return;
486
487 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
488 start_addr = (arg->lowest + align - 1) & -align;
489
c1bd25fd
DJ
490 do {
491 asection *cur_sec;
c1bd25fd 492
c1bd25fd
DJ
493 done = 1;
494
495 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
496 {
497 int indx = cur_sec->index;
498 CORE_ADDR cur_offset;
499
500 /* We don't need to compare against ourself. */
501 if (cur_sec == sect)
502 continue;
503
504 /* We can only conflict with loadable sections. */
505 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_LOAD) == 0)
506 continue;
507
508 /* We do not expect this to happen; just ignore sections in a
509 relocatable file with an assigned VMA. */
510 if (bfd_section_vma (abfd, cur_sec) != 0)
511 continue;
512
513 /* If the section offset is 0, either the section has not been placed
514 yet, or it was the lowest section placed (in which case LOWEST
515 will be past its end). */
516 if (offsets[indx] == 0)
517 continue;
518
519 /* If this section would overlap us, then we must move up. */
520 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
521 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
522 {
523 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
524 start_addr = (start_addr + align - 1) & -align;
525 done = 0;
3bd72c6f 526 break;
c1bd25fd
DJ
527 }
528
529 /* Otherwise, we appear to be OK. So far. */
530 }
531 }
532 while (!done);
533
534 offsets[sect->index] = start_addr;
535 arg->lowest = start_addr + bfd_get_section_size (sect);
536
537 exec_set_section_address (bfd_get_filename (abfd), sect->index, start_addr);
538}
e8289572
JB
539
540/* Parse the user's idea of an offset for dynamic linking, into our idea
5417f6dc 541 of how to represent it for fast symbol reading. This is the default
e8289572
JB
542 version of the sym_fns.sym_offsets function for symbol readers that
543 don't need to do anything special. It allocates a section_offsets table
544 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
545
546void
547default_symfile_offsets (struct objfile *objfile,
548 struct section_addr_info *addrs)
549{
550 int i;
551
a39a16c4 552 objfile->num_sections = bfd_count_sections (objfile->obfd);
e8289572 553 objfile->section_offsets = (struct section_offsets *)
5417f6dc 554 obstack_alloc (&objfile->objfile_obstack,
a39a16c4 555 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
5417f6dc 556 memset (objfile->section_offsets, 0,
a39a16c4 557 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
e8289572
JB
558
559 /* Now calculate offsets for section that were specified by the
560 caller. */
a39a16c4 561 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
e8289572
JB
562 {
563 struct other_sections *osp ;
564
565 osp = &addrs->other[i] ;
566 if (osp->addr == 0)
567 continue;
568
569 /* Record all sections in offsets */
570 /* The section_offsets in the objfile are here filled in using
571 the BFD index. */
572 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
573 }
574
c1bd25fd
DJ
575 /* For relocatable files, all loadable sections will start at zero.
576 The zero is meaningless, so try to pick arbitrary addresses such
577 that no loadable sections overlap. This algorithm is quadratic,
578 but the number of sections in a single object file is generally
579 small. */
580 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
581 {
582 struct place_section_arg arg;
583 arg.offsets = objfile->section_offsets;
584 arg.lowest = 0;
585 bfd_map_over_sections (objfile->obfd, place_section, &arg);
586 }
587
e8289572
JB
588 /* Remember the bfd indexes for the .text, .data, .bss and
589 .rodata sections. */
590 init_objfile_sect_indices (objfile);
591}
592
593
c906108c
SS
594/* Process a symbol file, as either the main file or as a dynamically
595 loaded file.
596
96baa820
JM
597 OBJFILE is where the symbols are to be read from.
598
7e8580c1
JB
599 ADDRS is the list of section load addresses. If the user has given
600 an 'add-symbol-file' command, then this is the list of offsets and
601 addresses he or she provided as arguments to the command; or, if
602 we're handling a shared library, these are the actual addresses the
603 sections are loaded at, according to the inferior's dynamic linker
604 (as gleaned by GDB's shared library code). We convert each address
605 into an offset from the section VMA's as it appears in the object
606 file, and then call the file's sym_offsets function to convert this
607 into a format-specific offset table --- a `struct section_offsets'.
608 If ADDRS is non-zero, OFFSETS must be zero.
609
610 OFFSETS is a table of section offsets already in the right
611 format-specific representation. NUM_OFFSETS is the number of
612 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
613 assume this is the proper table the call to sym_offsets described
614 above would produce. Instead of calling sym_offsets, we just dump
615 it right into objfile->section_offsets. (When we're re-reading
616 symbols from an objfile, we don't have the original load address
617 list any more; all we have is the section offset table.) If
618 OFFSETS is non-zero, ADDRS must be zero.
96baa820
JM
619
620 MAINLINE is nonzero if this is the main symbol file, or zero if
621 it's an extra symbol file such as dynamically loaded code.
622
623 VERBO is nonzero if the caller has printed a verbose message about
624 the symbol reading (and complaints can be more terse about it). */
c906108c
SS
625
626void
7e8580c1
JB
627syms_from_objfile (struct objfile *objfile,
628 struct section_addr_info *addrs,
629 struct section_offsets *offsets,
630 int num_offsets,
631 int mainline,
632 int verbo)
c906108c 633{
a39a16c4 634 struct section_addr_info *local_addr = NULL;
c906108c 635 struct cleanup *old_chain;
2acceee2 636
7e8580c1 637 gdb_assert (! (addrs && offsets));
2acceee2 638
c906108c
SS
639 init_entry_point_info (objfile);
640 find_sym_fns (objfile);
641
75245b24
MS
642 if (objfile->sf == NULL)
643 return; /* No symbols. */
644
c906108c
SS
645 /* Make sure that partially constructed symbol tables will be cleaned up
646 if an error occurs during symbol reading. */
74b7792f 647 old_chain = make_cleanup_free_objfile (objfile);
c906108c 648
a39a16c4
MM
649 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
650 list. We now establish the convention that an addr of zero means
651 no load address was specified. */
652 if (! addrs && ! offsets)
653 {
5417f6dc 654 local_addr
a39a16c4
MM
655 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
656 make_cleanup (xfree, local_addr);
657 addrs = local_addr;
658 }
659
660 /* Now either addrs or offsets is non-zero. */
661
c5aa993b 662 if (mainline)
c906108c
SS
663 {
664 /* We will modify the main symbol table, make sure that all its users
c5aa993b 665 will be cleaned up if an error occurs during symbol reading. */
74b7792f 666 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
667
668 /* Since no error yet, throw away the old symbol table. */
669
670 if (symfile_objfile != NULL)
671 {
672 free_objfile (symfile_objfile);
673 symfile_objfile = NULL;
674 }
675
676 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
677 If the user wants to get rid of them, they should do "symbol-file"
678 without arguments first. Not sure this is the best behavior
679 (PR 2207). */
c906108c 680
c5aa993b 681 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
682 }
683
684 /* Convert addr into an offset rather than an absolute address.
685 We find the lowest address of a loaded segment in the objfile,
53a5351d 686 and assume that <addr> is where that got loaded.
c906108c 687
53a5351d
JM
688 We no longer warn if the lowest section is not a text segment (as
689 happens for the PA64 port. */
1549f619 690 if (!mainline && addrs && addrs->other[0].name)
c906108c 691 {
1549f619
EZ
692 asection *lower_sect;
693 asection *sect;
694 CORE_ADDR lower_offset;
695 int i;
696
5417f6dc 697 /* Find lowest loadable section to be used as starting point for
2acceee2
JM
698 continguous sections. FIXME!! won't work without call to find
699 .text first, but this assumes text is lowest section. */
700 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
701 if (lower_sect == NULL)
c906108c 702 bfd_map_over_sections (objfile->obfd, find_lowest_section,
4efb68b1 703 &lower_sect);
2acceee2 704 if (lower_sect == NULL)
8a3fe4f8 705 warning (_("no loadable sections found in added symbol-file %s"),
c906108c 706 objfile->name);
5417f6dc 707 else
b8fbeb18 708 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
8a3fe4f8 709 warning (_("Lowest section in %s is %s at %s"),
b8fbeb18
EZ
710 objfile->name,
711 bfd_section_name (objfile->obfd, lower_sect),
712 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
2acceee2
JM
713 if (lower_sect != NULL)
714 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
715 else
716 lower_offset = 0;
5417f6dc 717
13de58df 718 /* Calculate offsets for the loadable sections.
2acceee2
JM
719 FIXME! Sections must be in order of increasing loadable section
720 so that contiguous sections can use the lower-offset!!!
5417f6dc 721
13de58df
JB
722 Adjust offsets if the segments are not contiguous.
723 If the section is contiguous, its offset should be set to
2acceee2
JM
724 the offset of the highest loadable section lower than it
725 (the loadable section directly below it in memory).
726 this_offset = lower_offset = lower_addr - lower_orig_addr */
727
1549f619 728 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
7e8580c1
JB
729 {
730 if (addrs->other[i].addr != 0)
731 {
732 sect = bfd_get_section_by_name (objfile->obfd,
733 addrs->other[i].name);
734 if (sect)
735 {
736 addrs->other[i].addr
737 -= bfd_section_vma (objfile->obfd, sect);
738 lower_offset = addrs->other[i].addr;
739 /* This is the index used by BFD. */
740 addrs->other[i].sectindex = sect->index ;
741 }
742 else
743 {
8a3fe4f8 744 warning (_("section %s not found in %s"),
5417f6dc 745 addrs->other[i].name,
7e8580c1
JB
746 objfile->name);
747 addrs->other[i].addr = 0;
748 }
749 }
750 else
751 addrs->other[i].addr = lower_offset;
752 }
c906108c
SS
753 }
754
755 /* Initialize symbol reading routines for this objfile, allow complaints to
756 appear for this new file, and record how verbose to be, then do the
757 initial symbol reading for this file. */
758
c5aa993b 759 (*objfile->sf->sym_init) (objfile);
b9caf505 760 clear_complaints (&symfile_complaints, 1, verbo);
c906108c 761
7e8580c1
JB
762 if (addrs)
763 (*objfile->sf->sym_offsets) (objfile, addrs);
764 else
765 {
766 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
767
768 /* Just copy in the offset table directly as given to us. */
769 objfile->num_sections = num_offsets;
770 objfile->section_offsets
771 = ((struct section_offsets *)
8b92e4d5 772 obstack_alloc (&objfile->objfile_obstack, size));
7e8580c1
JB
773 memcpy (objfile->section_offsets, offsets, size);
774
775 init_objfile_sect_indices (objfile);
776 }
c906108c 777
52d16ba8 778#ifndef DEPRECATED_IBM6000_TARGET
c906108c
SS
779 /* This is a SVR4/SunOS specific hack, I think. In any event, it
780 screws RS/6000. sym_offsets should be doing this sort of thing,
781 because it knows the mapping between bfd sections and
782 section_offsets. */
783 /* This is a hack. As far as I can tell, section offsets are not
784 target dependent. They are all set to addr with a couple of
785 exceptions. The exceptions are sysvr4 shared libraries, whose
786 offsets are kept in solib structures anyway and rs6000 xcoff
787 which handles shared libraries in a completely unique way.
788
789 Section offsets are built similarly, except that they are built
790 by adding addr in all cases because there is no clear mapping
791 from section_offsets into actual sections. Note that solib.c
96baa820 792 has a different algorithm for finding section offsets.
c906108c
SS
793
794 These should probably all be collapsed into some target
795 independent form of shared library support. FIXME. */
796
2acceee2 797 if (addrs)
c906108c
SS
798 {
799 struct obj_section *s;
800
5417f6dc
RM
801 /* Map section offsets in "addr" back to the object's
802 sections by comparing the section names with bfd's
2acceee2
JM
803 section names. Then adjust the section address by
804 the offset. */ /* for gdb/13815 */
5417f6dc 805
96baa820 806 ALL_OBJFILE_OSECTIONS (objfile, s)
c906108c 807 {
2acceee2
JM
808 CORE_ADDR s_addr = 0;
809 int i;
810
5417f6dc 811 for (i = 0;
a39a16c4 812 !s_addr && i < addrs->num_sections && addrs->other[i].name;
62557bbc 813 i++)
5417f6dc
RM
814 if (strcmp (bfd_section_name (s->objfile->obfd,
815 s->the_bfd_section),
fbd35540 816 addrs->other[i].name) == 0)
2acceee2 817 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
5417f6dc 818
c906108c 819 s->addr -= s->offset;
2acceee2 820 s->addr += s_addr;
c906108c 821 s->endaddr -= s->offset;
2acceee2
JM
822 s->endaddr += s_addr;
823 s->offset += s_addr;
c906108c
SS
824 }
825 }
52d16ba8 826#endif /* not DEPRECATED_IBM6000_TARGET */
c906108c 827
96baa820 828 (*objfile->sf->sym_read) (objfile, mainline);
c906108c 829
c906108c
SS
830 /* Don't allow char * to have a typename (else would get caddr_t).
831 Ditto void *. FIXME: Check whether this is now done by all the
832 symbol readers themselves (many of them now do), and if so remove
833 it from here. */
834
835 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
836 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
837
838 /* Mark the objfile has having had initial symbol read attempted. Note
839 that this does not mean we found any symbols... */
840
c5aa993b 841 objfile->flags |= OBJF_SYMS;
c906108c
SS
842
843 /* Discard cleanups as symbol reading was successful. */
844
845 discard_cleanups (old_chain);
c906108c
SS
846}
847
848/* Perform required actions after either reading in the initial
849 symbols for a new objfile, or mapping in the symbols from a reusable
850 objfile. */
c5aa993b 851
c906108c 852void
fba45db2 853new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
c906108c
SS
854{
855
856 /* If this is the main symbol file we have to clean up all users of the
857 old main symbol file. Otherwise it is sufficient to fixup all the
858 breakpoints that may have been redefined by this symbol file. */
859 if (mainline)
860 {
861 /* OK, make it the "real" symbol file. */
862 symfile_objfile = objfile;
863
864 clear_symtab_users ();
865 }
866 else
867 {
868 breakpoint_re_set ();
869 }
870
871 /* We're done reading the symbol file; finish off complaints. */
b9caf505 872 clear_complaints (&symfile_complaints, 0, verbo);
c906108c
SS
873}
874
875/* Process a symbol file, as either the main file or as a dynamically
876 loaded file.
877
5417f6dc
RM
878 ABFD is a BFD already open on the file, as from symfile_bfd_open.
879 This BFD will be closed on error, and is always consumed by this function.
7904e09f
JB
880
881 FROM_TTY says how verbose to be.
882
883 MAINLINE specifies whether this is the main symbol file, or whether
884 it's an extra symbol file such as dynamically loaded code.
885
886 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
887 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
888 non-zero.
c906108c 889
c906108c
SS
890 Upon success, returns a pointer to the objfile that was added.
891 Upon failure, jumps back to command level (never returns). */
7904e09f 892static struct objfile *
5417f6dc 893symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
7904e09f
JB
894 struct section_addr_info *addrs,
895 struct section_offsets *offsets,
896 int num_offsets,
897 int mainline, int flags)
c906108c
SS
898{
899 struct objfile *objfile;
900 struct partial_symtab *psymtab;
5b5d99cf 901 char *debugfile;
7b90c3f9 902 struct section_addr_info *orig_addrs = NULL;
a39a16c4 903 struct cleanup *my_cleanups;
5417f6dc 904 const char *name = bfd_get_filename (abfd);
c906108c 905
5417f6dc 906 my_cleanups = make_cleanup_bfd_close (abfd);
c906108c 907
5417f6dc
RM
908 /* Give user a chance to burp if we'd be
909 interactively wiping out any existing symbols. */
c906108c
SS
910
911 if ((have_full_symbols () || have_partial_symbols ())
912 && mainline
913 && from_tty
914 && !query ("Load new symbol table from \"%s\"? ", name))
8a3fe4f8 915 error (_("Not confirmed."));
c906108c 916
2df3850c 917 objfile = allocate_objfile (abfd, flags);
5417f6dc 918 discard_cleanups (my_cleanups);
c906108c 919
a39a16c4 920 if (addrs)
63cd24fe 921 {
7b90c3f9
JB
922 orig_addrs = copy_section_addr_info (addrs);
923 make_cleanup_free_section_addr_info (orig_addrs);
63cd24fe 924 }
a39a16c4 925
78a4a9b9
AC
926 /* We either created a new mapped symbol table, mapped an existing
927 symbol table file which has not had initial symbol reading
928 performed, or need to read an unmapped symbol table. */
929 if (from_tty || info_verbose)
c906108c 930 {
769d7dc4
AC
931 if (deprecated_pre_add_symbol_hook)
932 deprecated_pre_add_symbol_hook (name);
78a4a9b9 933 else
c906108c 934 {
a3f17187 935 printf_unfiltered (_("Reading symbols from %s..."), name);
c906108c
SS
936 wrap_here ("");
937 gdb_flush (gdb_stdout);
938 }
c906108c 939 }
78a4a9b9
AC
940 syms_from_objfile (objfile, addrs, offsets, num_offsets,
941 mainline, from_tty);
c906108c
SS
942
943 /* We now have at least a partial symbol table. Check to see if the
944 user requested that all symbols be read on initial access via either
945 the gdb startup command line or on a per symbol file basis. Expand
946 all partial symbol tables for this objfile if so. */
947
2acceee2 948 if ((flags & OBJF_READNOW) || readnow_symbol_files)
c906108c
SS
949 {
950 if (from_tty || info_verbose)
951 {
a3f17187 952 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
953 wrap_here ("");
954 gdb_flush (gdb_stdout);
955 }
956
c5aa993b 957 for (psymtab = objfile->psymtabs;
c906108c 958 psymtab != NULL;
c5aa993b 959 psymtab = psymtab->next)
c906108c
SS
960 {
961 psymtab_to_symtab (psymtab);
962 }
963 }
964
5b5d99cf
JB
965 debugfile = find_separate_debug_file (objfile);
966 if (debugfile)
967 {
5b5d99cf
JB
968 if (addrs != NULL)
969 {
970 objfile->separate_debug_objfile
a39a16c4 971 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
5b5d99cf
JB
972 }
973 else
974 {
975 objfile->separate_debug_objfile
976 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
977 }
978 objfile->separate_debug_objfile->separate_debug_objfile_backlink
979 = objfile;
5417f6dc 980
5b5d99cf
JB
981 /* Put the separate debug object before the normal one, this is so that
982 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
983 put_objfile_before (objfile->separate_debug_objfile, objfile);
5417f6dc 984
5b5d99cf
JB
985 xfree (debugfile);
986 }
5417f6dc 987
cb3c37b2
JB
988 if (!have_partial_symbols () && !have_full_symbols ())
989 {
990 wrap_here ("");
a3f17187 991 printf_filtered (_("(no debugging symbols found)"));
8f5ba92b
JG
992 if (from_tty || info_verbose)
993 printf_filtered ("...");
994 else
995 printf_filtered ("\n");
cb3c37b2
JB
996 wrap_here ("");
997 }
998
c906108c
SS
999 if (from_tty || info_verbose)
1000 {
769d7dc4
AC
1001 if (deprecated_post_add_symbol_hook)
1002 deprecated_post_add_symbol_hook ();
c906108c 1003 else
c5aa993b 1004 {
a3f17187 1005 printf_unfiltered (_("done.\n"));
c5aa993b 1006 }
c906108c
SS
1007 }
1008
481d0f41
JB
1009 /* We print some messages regardless of whether 'from_tty ||
1010 info_verbose' is true, so make sure they go out at the right
1011 time. */
1012 gdb_flush (gdb_stdout);
1013
a39a16c4
MM
1014 do_cleanups (my_cleanups);
1015
109f874e
MS
1016 if (objfile->sf == NULL)
1017 return objfile; /* No symbols. */
1018
c906108c
SS
1019 new_symfile_objfile (objfile, mainline, from_tty);
1020
9a4105ab
AC
1021 if (deprecated_target_new_objfile_hook)
1022 deprecated_target_new_objfile_hook (objfile);
c906108c 1023
ce7d4522 1024 bfd_cache_close_all ();
c906108c
SS
1025 return (objfile);
1026}
1027
7904e09f 1028
eb4556d7
JB
1029/* Process the symbol file ABFD, as either the main file or as a
1030 dynamically loaded file.
1031
1032 See symbol_file_add_with_addrs_or_offsets's comments for
1033 details. */
1034struct objfile *
1035symbol_file_add_from_bfd (bfd *abfd, int from_tty,
1036 struct section_addr_info *addrs,
1037 int mainline, int flags)
1038{
1039 return symbol_file_add_with_addrs_or_offsets (abfd,
1040 from_tty, addrs, 0, 0,
1041 mainline, flags);
1042}
1043
1044
7904e09f
JB
1045/* Process a symbol file, as either the main file or as a dynamically
1046 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1047 for details. */
1048struct objfile *
1049symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1050 int mainline, int flags)
1051{
eb4556d7
JB
1052 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
1053 addrs, mainline, flags);
7904e09f
JB
1054}
1055
1056
d7db6da9
FN
1057/* Call symbol_file_add() with default values and update whatever is
1058 affected by the loading of a new main().
1059 Used when the file is supplied in the gdb command line
1060 and by some targets with special loading requirements.
1061 The auxiliary function, symbol_file_add_main_1(), has the flags
1062 argument for the switches that can only be specified in the symbol_file
1063 command itself. */
5417f6dc 1064
1adeb98a
FN
1065void
1066symbol_file_add_main (char *args, int from_tty)
1067{
d7db6da9
FN
1068 symbol_file_add_main_1 (args, from_tty, 0);
1069}
1070
1071static void
1072symbol_file_add_main_1 (char *args, int from_tty, int flags)
1073{
1074 symbol_file_add (args, from_tty, NULL, 1, flags);
1075
d7db6da9
FN
1076 /* Getting new symbols may change our opinion about
1077 what is frameless. */
1078 reinit_frame_cache ();
1079
1080 set_initial_language ();
1adeb98a
FN
1081}
1082
1083void
1084symbol_file_clear (int from_tty)
1085{
1086 if ((have_full_symbols () || have_partial_symbols ())
1087 && from_tty
0430b0d6
AS
1088 && (symfile_objfile
1089 ? !query (_("Discard symbol table from `%s'? "),
1090 symfile_objfile->name)
1091 : !query (_("Discard symbol table? "))))
8a3fe4f8 1092 error (_("Not confirmed."));
1adeb98a
FN
1093 free_all_objfiles ();
1094
1095 /* solib descriptors may have handles to objfiles. Since their
1096 storage has just been released, we'd better wipe the solib
1097 descriptors as well.
1098 */
1099#if defined(SOLIB_RESTART)
1100 SOLIB_RESTART ();
1101#endif
1102
1103 symfile_objfile = NULL;
1104 if (from_tty)
a3f17187 1105 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1106}
1107
5b5d99cf
JB
1108static char *
1109get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1110{
1111 asection *sect;
1112 bfd_size_type debuglink_size;
1113 unsigned long crc32;
1114 char *contents;
1115 int crc_offset;
1116 unsigned char *p;
5417f6dc 1117
5b5d99cf
JB
1118 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1119
1120 if (sect == NULL)
1121 return NULL;
1122
1123 debuglink_size = bfd_section_size (objfile->obfd, sect);
5417f6dc 1124
5b5d99cf
JB
1125 contents = xmalloc (debuglink_size);
1126 bfd_get_section_contents (objfile->obfd, sect, contents,
1127 (file_ptr)0, (bfd_size_type)debuglink_size);
1128
1129 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1130 crc_offset = strlen (contents) + 1;
1131 crc_offset = (crc_offset + 3) & ~3;
1132
1133 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
5417f6dc 1134
5b5d99cf
JB
1135 *crc32_out = crc32;
1136 return contents;
1137}
1138
1139static int
1140separate_debug_file_exists (const char *name, unsigned long crc)
1141{
1142 unsigned long file_crc = 0;
1143 int fd;
777ea8f1 1144 gdb_byte buffer[8*1024];
5b5d99cf
JB
1145 int count;
1146
1147 fd = open (name, O_RDONLY | O_BINARY);
1148 if (fd < 0)
1149 return 0;
1150
1151 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1152 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1153
1154 close (fd);
1155
1156 return crc == file_crc;
1157}
1158
1159static char *debug_file_directory = NULL;
920d2a44
AC
1160static void
1161show_debug_file_directory (struct ui_file *file, int from_tty,
1162 struct cmd_list_element *c, const char *value)
1163{
1164 fprintf_filtered (file, _("\
1165The directory where separate debug symbols are searched for is \"%s\".\n"),
1166 value);
1167}
5b5d99cf
JB
1168
1169#if ! defined (DEBUG_SUBDIRECTORY)
1170#define DEBUG_SUBDIRECTORY ".debug"
1171#endif
1172
1173static char *
1174find_separate_debug_file (struct objfile *objfile)
1175{
1176 asection *sect;
1177 char *basename;
1178 char *dir;
1179 char *debugfile;
1180 char *name_copy;
1181 bfd_size_type debuglink_size;
1182 unsigned long crc32;
1183 int i;
1184
1185 basename = get_debug_link_info (objfile, &crc32);
1186
1187 if (basename == NULL)
1188 return NULL;
5417f6dc 1189
5b5d99cf
JB
1190 dir = xstrdup (objfile->name);
1191
fe36c4f4
JB
1192 /* Strip off the final filename part, leaving the directory name,
1193 followed by a slash. Objfile names should always be absolute and
1194 tilde-expanded, so there should always be a slash in there
1195 somewhere. */
5b5d99cf
JB
1196 for (i = strlen(dir) - 1; i >= 0; i--)
1197 {
1198 if (IS_DIR_SEPARATOR (dir[i]))
1199 break;
1200 }
fe36c4f4 1201 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
5b5d99cf 1202 dir[i+1] = '\0';
5417f6dc 1203
5b5d99cf
JB
1204 debugfile = alloca (strlen (debug_file_directory) + 1
1205 + strlen (dir)
1206 + strlen (DEBUG_SUBDIRECTORY)
1207 + strlen ("/")
5417f6dc 1208 + strlen (basename)
5b5d99cf
JB
1209 + 1);
1210
1211 /* First try in the same directory as the original file. */
1212 strcpy (debugfile, dir);
1213 strcat (debugfile, basename);
1214
1215 if (separate_debug_file_exists (debugfile, crc32))
1216 {
1217 xfree (basename);
1218 xfree (dir);
1219 return xstrdup (debugfile);
1220 }
5417f6dc 1221
5b5d99cf
JB
1222 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1223 strcpy (debugfile, dir);
1224 strcat (debugfile, DEBUG_SUBDIRECTORY);
1225 strcat (debugfile, "/");
1226 strcat (debugfile, basename);
1227
1228 if (separate_debug_file_exists (debugfile, crc32))
1229 {
1230 xfree (basename);
1231 xfree (dir);
1232 return xstrdup (debugfile);
1233 }
5417f6dc 1234
5b5d99cf
JB
1235 /* Then try in the global debugfile directory. */
1236 strcpy (debugfile, debug_file_directory);
1237 strcat (debugfile, "/");
1238 strcat (debugfile, dir);
5b5d99cf
JB
1239 strcat (debugfile, basename);
1240
1241 if (separate_debug_file_exists (debugfile, crc32))
1242 {
1243 xfree (basename);
1244 xfree (dir);
1245 return xstrdup (debugfile);
1246 }
5417f6dc 1247
5b5d99cf
JB
1248 xfree (basename);
1249 xfree (dir);
1250 return NULL;
1251}
1252
1253
c906108c
SS
1254/* This is the symbol-file command. Read the file, analyze its
1255 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1256 the command is rather bizarre:
1257
1258 1. The function buildargv implements various quoting conventions
1259 which are undocumented and have little or nothing in common with
1260 the way things are quoted (or not quoted) elsewhere in GDB.
1261
1262 2. Options are used, which are not generally used in GDB (perhaps
1263 "set mapped on", "set readnow on" would be better)
1264
1265 3. The order of options matters, which is contrary to GNU
c906108c
SS
1266 conventions (because it is confusing and inconvenient). */
1267
1268void
fba45db2 1269symbol_file_command (char *args, int from_tty)
c906108c 1270{
c906108c
SS
1271 dont_repeat ();
1272
1273 if (args == NULL)
1274 {
1adeb98a 1275 symbol_file_clear (from_tty);
c906108c
SS
1276 }
1277 else
1278 {
cb2f3a29
MK
1279 char **argv = buildargv (args);
1280 int flags = OBJF_USERLOADED;
1281 struct cleanup *cleanups;
1282 char *name = NULL;
1283
1284 if (argv == NULL)
1285 nomem (0);
1286
7a292a7a 1287 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1288 while (*argv != NULL)
1289 {
78a4a9b9
AC
1290 if (strcmp (*argv, "-readnow") == 0)
1291 flags |= OBJF_READNOW;
1292 else if (**argv == '-')
8a3fe4f8 1293 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1294 else
1295 {
cb2f3a29 1296 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1297 name = *argv;
78a4a9b9 1298 }
cb2f3a29 1299
c906108c
SS
1300 argv++;
1301 }
1302
1303 if (name == NULL)
cb2f3a29
MK
1304 error (_("no symbol file name was specified"));
1305
c906108c
SS
1306 do_cleanups (cleanups);
1307 }
1308}
1309
1310/* Set the initial language.
1311
cb2f3a29
MK
1312 FIXME: A better solution would be to record the language in the
1313 psymtab when reading partial symbols, and then use it (if known) to
1314 set the language. This would be a win for formats that encode the
1315 language in an easily discoverable place, such as DWARF. For
1316 stabs, we can jump through hoops looking for specially named
1317 symbols or try to intuit the language from the specific type of
1318 stabs we find, but we can't do that until later when we read in
1319 full symbols. */
c906108c
SS
1320
1321static void
fba45db2 1322set_initial_language (void)
c906108c
SS
1323{
1324 struct partial_symtab *pst;
c5aa993b 1325 enum language lang = language_unknown;
c906108c
SS
1326
1327 pst = find_main_psymtab ();
1328 if (pst != NULL)
1329 {
c5aa993b 1330 if (pst->filename != NULL)
cb2f3a29
MK
1331 lang = deduce_language_from_filename (pst->filename);
1332
c906108c
SS
1333 if (lang == language_unknown)
1334 {
c5aa993b
JM
1335 /* Make C the default language */
1336 lang = language_c;
c906108c 1337 }
cb2f3a29 1338
c906108c 1339 set_language (lang);
cb2f3a29 1340 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1341 }
1342}
1343
cb2f3a29
MK
1344/* Open the file specified by NAME and hand it off to BFD for
1345 preliminary analysis. Return a newly initialized bfd *, which
1346 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1347 absolute). In case of trouble, error() is called. */
c906108c
SS
1348
1349bfd *
fba45db2 1350symfile_bfd_open (char *name)
c906108c
SS
1351{
1352 bfd *sym_bfd;
1353 int desc;
1354 char *absolute_name;
1355
cb2f3a29 1356 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c
SS
1357
1358 /* Look down path for it, allocate 2nd new malloc'd copy. */
cb2f3a29
MK
1359 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1360 O_RDONLY | O_BINARY, 0, &absolute_name);
608506ed 1361#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1362 if (desc < 0)
1363 {
1364 char *exename = alloca (strlen (name) + 5);
1365 strcat (strcpy (exename, name), ".exe");
014d698b
EZ
1366 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1367 O_RDONLY | O_BINARY, 0, &absolute_name);
c906108c
SS
1368 }
1369#endif
1370 if (desc < 0)
1371 {
b8c9b27d 1372 make_cleanup (xfree, name);
c906108c
SS
1373 perror_with_name (name);
1374 }
cb2f3a29
MK
1375
1376 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1377 bfd. It'll be freed in free_objfile(). */
1378 xfree (name);
1379 name = absolute_name;
c906108c 1380
9f76c2cd 1381 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
c906108c
SS
1382 if (!sym_bfd)
1383 {
1384 close (desc);
b8c9b27d 1385 make_cleanup (xfree, name);
8a3fe4f8 1386 error (_("\"%s\": can't open to read symbols: %s."), name,
c906108c
SS
1387 bfd_errmsg (bfd_get_error ()));
1388 }
549c1eea 1389 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1390
1391 if (!bfd_check_format (sym_bfd, bfd_object))
1392 {
cb2f3a29
MK
1393 /* FIXME: should be checking for errors from bfd_close (for one
1394 thing, on error it does not free all the storage associated
1395 with the bfd). */
1396 bfd_close (sym_bfd); /* This also closes desc. */
b8c9b27d 1397 make_cleanup (xfree, name);
8a3fe4f8 1398 error (_("\"%s\": can't read symbols: %s."), name,
c906108c
SS
1399 bfd_errmsg (bfd_get_error ()));
1400 }
cb2f3a29
MK
1401
1402 return sym_bfd;
c906108c
SS
1403}
1404
cb2f3a29
MK
1405/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1406 the section was not found. */
1407
0e931cf0
JB
1408int
1409get_section_index (struct objfile *objfile, char *section_name)
1410{
1411 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1412
0e931cf0
JB
1413 if (sect)
1414 return sect->index;
1415 else
1416 return -1;
1417}
1418
cb2f3a29
MK
1419/* Link SF into the global symtab_fns list. Called on startup by the
1420 _initialize routine in each object file format reader, to register
1421 information about each format the the reader is prepared to
1422 handle. */
c906108c
SS
1423
1424void
fba45db2 1425add_symtab_fns (struct sym_fns *sf)
c906108c
SS
1426{
1427 sf->next = symtab_fns;
1428 symtab_fns = sf;
1429}
1430
cb2f3a29
MK
1431/* Initialize OBJFILE to read symbols from its associated BFD. It
1432 either returns or calls error(). The result is an initialized
1433 struct sym_fns in the objfile structure, that contains cached
1434 information about the symbol file. */
c906108c
SS
1435
1436static void
fba45db2 1437find_sym_fns (struct objfile *objfile)
c906108c
SS
1438{
1439 struct sym_fns *sf;
c5aa993b
JM
1440 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1441 char *our_target = bfd_get_target (objfile->obfd);
c906108c 1442
75245b24
MS
1443 if (our_flavour == bfd_target_srec_flavour
1444 || our_flavour == bfd_target_ihex_flavour
1445 || our_flavour == bfd_target_tekhex_flavour)
cb2f3a29 1446 return; /* No symbols. */
75245b24 1447
c5aa993b 1448 for (sf = symtab_fns; sf != NULL; sf = sf->next)
c906108c 1449 {
c5aa993b 1450 if (our_flavour == sf->sym_flavour)
c906108c 1451 {
c5aa993b 1452 objfile->sf = sf;
c906108c
SS
1453 return;
1454 }
1455 }
cb2f3a29 1456
8a3fe4f8 1457 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
c5aa993b 1458 bfd_get_target (objfile->obfd));
c906108c
SS
1459}
1460\f
cb2f3a29 1461
c906108c
SS
1462/* This function runs the load command of our current target. */
1463
1464static void
fba45db2 1465load_command (char *arg, int from_tty)
c906108c
SS
1466{
1467 if (arg == NULL)
1986bccd
AS
1468 {
1469 char *parg;
1470 int count = 0;
1471
1472 parg = arg = get_exec_file (1);
1473
1474 /* Count how many \ " ' tab space there are in the name. */
1475 while ((parg = strpbrk (parg, "\\\"'\t ")))
1476 {
1477 parg++;
1478 count++;
1479 }
1480
1481 if (count)
1482 {
1483 /* We need to quote this string so buildargv can pull it apart. */
1484 char *temp = xmalloc (strlen (arg) + count + 1 );
1485 char *ptemp = temp;
1486 char *prev;
1487
1488 make_cleanup (xfree, temp);
1489
1490 prev = parg = arg;
1491 while ((parg = strpbrk (parg, "\\\"'\t ")))
1492 {
1493 strncpy (ptemp, prev, parg - prev);
1494 ptemp += parg - prev;
1495 prev = parg++;
1496 *ptemp++ = '\\';
1497 }
1498 strcpy (ptemp, prev);
1499
1500 arg = temp;
1501 }
1502 }
1503
6490cafe
DJ
1504 /* The user might be reloading because the binary has changed. Take
1505 this opportunity to check. */
1506 reopen_exec_file ();
1507 reread_symbols ();
1508
c906108c 1509 target_load (arg, from_tty);
2889e661
JB
1510
1511 /* After re-loading the executable, we don't really know which
1512 overlays are mapped any more. */
1513 overlay_cache_invalid = 1;
c906108c
SS
1514}
1515
1516/* This version of "load" should be usable for any target. Currently
1517 it is just used for remote targets, not inftarg.c or core files,
1518 on the theory that only in that case is it useful.
1519
1520 Avoiding xmodem and the like seems like a win (a) because we don't have
1521 to worry about finding it, and (b) On VMS, fork() is very slow and so
1522 we don't want to run a subprocess. On the other hand, I'm not sure how
1523 performance compares. */
917317f4 1524
917317f4
JM
1525static int validate_download = 0;
1526
e4f9b4d5
MS
1527/* Callback service function for generic_load (bfd_map_over_sections). */
1528
1529static void
1530add_section_size_callback (bfd *abfd, asection *asec, void *data)
1531{
1532 bfd_size_type *sum = data;
1533
2c500098 1534 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1535}
1536
1537/* Opaque data for load_section_callback. */
1538struct load_section_data {
1539 unsigned long load_offset;
1540 unsigned long write_count;
1541 unsigned long data_count;
1542 bfd_size_type total_size;
cf7a04e8
DJ
1543
1544 /* Per-section data for load_progress. */
1545 const char *section_name;
1546 ULONGEST section_sent;
1547 ULONGEST section_size;
1548 CORE_ADDR lma;
1549 gdb_byte *buffer;
e4f9b4d5
MS
1550};
1551
cf7a04e8
DJ
1552/* Target write callback routine for load_section_callback. */
1553
1554static void
1555load_progress (ULONGEST bytes, void *untyped_arg)
1556{
1557 struct load_section_data *args = untyped_arg;
1558
1559 if (validate_download)
1560 {
1561 /* Broken memories and broken monitors manifest themselves here
1562 when bring new computers to life. This doubles already slow
1563 downloads. */
1564 /* NOTE: cagney/1999-10-18: A more efficient implementation
1565 might add a verify_memory() method to the target vector and
1566 then use that. remote.c could implement that method using
1567 the ``qCRC'' packet. */
1568 gdb_byte *check = xmalloc (bytes);
1569 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1570
1571 if (target_read_memory (args->lma, check, bytes) != 0)
1572 error (_("Download verify read failed at 0x%s"),
1573 paddr (args->lma));
1574 if (memcmp (args->buffer, check, bytes) != 0)
1575 error (_("Download verify compare failed at 0x%s"),
1576 paddr (args->lma));
1577 do_cleanups (verify_cleanups);
1578 }
1579 args->data_count += bytes;
1580 args->lma += bytes;
1581 args->buffer += bytes;
1582 args->write_count += 1;
1583 args->section_sent += bytes;
1584 if (quit_flag
1585 || (deprecated_ui_load_progress_hook != NULL
1586 && deprecated_ui_load_progress_hook (args->section_name,
1587 args->section_sent)))
1588 error (_("Canceled the download"));
1589
1590 if (deprecated_show_load_progress != NULL)
1591 deprecated_show_load_progress (args->section_name,
1592 args->section_sent,
1593 args->section_size,
1594 args->data_count,
1595 args->total_size);
1596}
1597
e4f9b4d5
MS
1598/* Callback service function for generic_load (bfd_map_over_sections). */
1599
1600static void
1601load_section_callback (bfd *abfd, asection *asec, void *data)
1602{
1603 struct load_section_data *args = data;
cf7a04e8
DJ
1604 bfd_size_type size = bfd_get_section_size (asec);
1605 gdb_byte *buffer;
1606 struct cleanup *old_chain;
1607 const char *sect_name = bfd_get_section_name (abfd, asec);
1608 LONGEST transferred;
e4f9b4d5 1609
cf7a04e8
DJ
1610 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1611 return;
e4f9b4d5 1612
cf7a04e8
DJ
1613 if (size == 0)
1614 return;
e4f9b4d5 1615
cf7a04e8
DJ
1616 buffer = xmalloc (size);
1617 old_chain = make_cleanup (xfree, buffer);
1618
1619 args->section_name = sect_name;
1620 args->section_sent = 0;
1621 args->section_size = size;
1622 args->lma = bfd_section_lma (abfd, asec) + args->load_offset;
1623 args->buffer = buffer;
1624
1625 /* Is this really necessary? I guess it gives the user something
1626 to look at during a long download. */
1627 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1628 sect_name, paddr_nz (size), paddr_nz (args->lma));
1629
1630 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1631
1632 transferred = target_write_with_progress (&current_target,
1633 TARGET_OBJECT_MEMORY,
1634 NULL, buffer, args->lma,
1635 size, load_progress, args);
1636 if (transferred < size)
1637 error (_("Memory access error while loading section %s."),
1638 sect_name);
1639
1640 do_cleanups (old_chain);
e4f9b4d5
MS
1641}
1642
c906108c 1643void
917317f4 1644generic_load (char *args, int from_tty)
c906108c 1645{
c906108c
SS
1646 asection *s;
1647 bfd *loadfile_bfd;
2b71414d 1648 struct timeval start_time, end_time;
917317f4 1649 char *filename;
1986bccd 1650 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5
MS
1651 struct load_section_data cbdata;
1652 CORE_ADDR entry;
1986bccd 1653 char **argv;
e4f9b4d5
MS
1654
1655 cbdata.load_offset = 0; /* Offset to add to vma for each section. */
1656 cbdata.write_count = 0; /* Number of writes needed. */
1657 cbdata.data_count = 0; /* Number of bytes written to target memory. */
1658 cbdata.total_size = 0; /* Total size of all bfd sectors. */
917317f4 1659
1986bccd
AS
1660 argv = buildargv (args);
1661
1662 if (argv == NULL)
1663 nomem(0);
1664
1665 make_cleanup_freeargv (argv);
1666
1667 filename = tilde_expand (argv[0]);
1668 make_cleanup (xfree, filename);
1669
1670 if (argv[1] != NULL)
917317f4
JM
1671 {
1672 char *endptr;
ba5f2f8a 1673
1986bccd
AS
1674 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1675
1676 /* If the last word was not a valid number then
1677 treat it as a file name with spaces in. */
1678 if (argv[1] == endptr)
1679 error (_("Invalid download offset:%s."), argv[1]);
1680
1681 if (argv[2] != NULL)
1682 error (_("Too many parameters."));
917317f4 1683 }
c906108c 1684
917317f4 1685 /* Open the file for loading. */
c906108c
SS
1686 loadfile_bfd = bfd_openr (filename, gnutarget);
1687 if (loadfile_bfd == NULL)
1688 {
1689 perror_with_name (filename);
1690 return;
1691 }
917317f4 1692
c906108c
SS
1693 /* FIXME: should be checking for errors from bfd_close (for one thing,
1694 on error it does not free all the storage associated with the
1695 bfd). */
5c65bbb6 1696 make_cleanup_bfd_close (loadfile_bfd);
c906108c 1697
c5aa993b 1698 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 1699 {
8a3fe4f8 1700 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
1701 bfd_errmsg (bfd_get_error ()));
1702 }
c5aa993b 1703
5417f6dc 1704 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
e4f9b4d5 1705 (void *) &cbdata.total_size);
c2d11a7d 1706
2b71414d 1707 gettimeofday (&start_time, NULL);
c906108c 1708
e4f9b4d5 1709 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c906108c 1710
2b71414d 1711 gettimeofday (&end_time, NULL);
ba5f2f8a 1712
e4f9b4d5 1713 entry = bfd_get_start_address (loadfile_bfd);
e4f9b4d5
MS
1714 ui_out_text (uiout, "Start address ");
1715 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1716 ui_out_text (uiout, ", load size ");
1717 ui_out_field_fmt (uiout, "load-size", "%lu", cbdata.data_count);
1718 ui_out_text (uiout, "\n");
e4f9b4d5
MS
1719 /* We were doing this in remote-mips.c, I suspect it is right
1720 for other targets too. */
1721 write_pc (entry);
c906108c 1722
7ca9f392
AC
1723 /* FIXME: are we supposed to call symbol_file_add or not? According
1724 to a comment from remote-mips.c (where a call to symbol_file_add
1725 was commented out), making the call confuses GDB if more than one
1726 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 1727 others don't (or didn't - perhaps they have all been deleted). */
c906108c 1728
5417f6dc 1729 print_transfer_performance (gdb_stdout, cbdata.data_count,
2b71414d 1730 cbdata.write_count, &start_time, &end_time);
c906108c
SS
1731
1732 do_cleanups (old_cleanups);
1733}
1734
1735/* Report how fast the transfer went. */
1736
917317f4
JM
1737/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1738 replaced by print_transfer_performance (with a very different
1739 function signature). */
1740
c906108c 1741void
fba45db2
KB
1742report_transfer_performance (unsigned long data_count, time_t start_time,
1743 time_t end_time)
c906108c 1744{
2b71414d
DJ
1745 struct timeval start, end;
1746
1747 start.tv_sec = start_time;
1748 start.tv_usec = 0;
1749 end.tv_sec = end_time;
1750 end.tv_usec = 0;
1751
1752 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
917317f4
JM
1753}
1754
1755void
d9fcf2fb 1756print_transfer_performance (struct ui_file *stream,
917317f4
JM
1757 unsigned long data_count,
1758 unsigned long write_count,
2b71414d
DJ
1759 const struct timeval *start_time,
1760 const struct timeval *end_time)
917317f4 1761{
2b71414d
DJ
1762 unsigned long time_count;
1763
1764 /* Compute the elapsed time in milliseconds, as a tradeoff between
1765 accuracy and overflow. */
1766 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
1767 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
1768
8b93c638
JM
1769 ui_out_text (uiout, "Transfer rate: ");
1770 if (time_count > 0)
1771 {
5417f6dc 1772 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
2b71414d 1773 1000 * (data_count * 8) / time_count);
8b93c638
JM
1774 ui_out_text (uiout, " bits/sec");
1775 }
1776 else
1777 {
ba5f2f8a 1778 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 1779 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
1780 }
1781 if (write_count > 0)
1782 {
1783 ui_out_text (uiout, ", ");
ba5f2f8a 1784 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
1785 ui_out_text (uiout, " bytes/write");
1786 }
1787 ui_out_text (uiout, ".\n");
c906108c
SS
1788}
1789
1790/* This function allows the addition of incrementally linked object files.
1791 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
1792/* Note: ezannoni 2000-04-13 This function/command used to have a
1793 special case syntax for the rombug target (Rombug is the boot
1794 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1795 rombug case, the user doesn't need to supply a text address,
1796 instead a call to target_link() (in target.c) would supply the
1797 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 1798
c906108c 1799static void
fba45db2 1800add_symbol_file_command (char *args, int from_tty)
c906108c 1801{
db162d44 1802 char *filename = NULL;
2df3850c 1803 int flags = OBJF_USERLOADED;
c906108c 1804 char *arg;
2acceee2 1805 int expecting_option = 0;
db162d44 1806 int section_index = 0;
2acceee2
JM
1807 int argcnt = 0;
1808 int sec_num = 0;
1809 int i;
db162d44
EZ
1810 int expecting_sec_name = 0;
1811 int expecting_sec_addr = 0;
5b96932b 1812 char **argv;
db162d44 1813
a39a16c4 1814 struct sect_opt
2acceee2 1815 {
2acceee2
JM
1816 char *name;
1817 char *value;
a39a16c4 1818 };
db162d44 1819
a39a16c4
MM
1820 struct section_addr_info *section_addrs;
1821 struct sect_opt *sect_opts = NULL;
1822 size_t num_sect_opts = 0;
3017564a 1823 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 1824
a39a16c4 1825 num_sect_opts = 16;
5417f6dc 1826 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
1827 * sizeof (struct sect_opt));
1828
c906108c
SS
1829 dont_repeat ();
1830
1831 if (args == NULL)
8a3fe4f8 1832 error (_("add-symbol-file takes a file name and an address"));
c906108c 1833
5b96932b
AS
1834 argv = buildargv (args);
1835 make_cleanup_freeargv (argv);
db162d44 1836
5b96932b
AS
1837 if (argv == NULL)
1838 nomem (0);
db162d44 1839
5b96932b
AS
1840 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
1841 {
1842 /* Process the argument. */
db162d44 1843 if (argcnt == 0)
c906108c 1844 {
db162d44
EZ
1845 /* The first argument is the file name. */
1846 filename = tilde_expand (arg);
3017564a 1847 make_cleanup (xfree, filename);
c906108c 1848 }
db162d44 1849 else
7a78ae4e
ND
1850 if (argcnt == 1)
1851 {
1852 /* The second argument is always the text address at which
1853 to load the program. */
1854 sect_opts[section_index].name = ".text";
1855 sect_opts[section_index].value = arg;
5417f6dc 1856 if (++section_index > num_sect_opts)
a39a16c4
MM
1857 {
1858 num_sect_opts *= 2;
5417f6dc 1859 sect_opts = ((struct sect_opt *)
a39a16c4 1860 xrealloc (sect_opts,
5417f6dc 1861 num_sect_opts
a39a16c4
MM
1862 * sizeof (struct sect_opt)));
1863 }
7a78ae4e
ND
1864 }
1865 else
1866 {
1867 /* It's an option (starting with '-') or it's an argument
1868 to an option */
1869
1870 if (*arg == '-')
1871 {
78a4a9b9
AC
1872 if (strcmp (arg, "-readnow") == 0)
1873 flags |= OBJF_READNOW;
1874 else if (strcmp (arg, "-s") == 0)
1875 {
1876 expecting_sec_name = 1;
1877 expecting_sec_addr = 1;
1878 }
7a78ae4e
ND
1879 }
1880 else
1881 {
1882 if (expecting_sec_name)
db162d44 1883 {
7a78ae4e
ND
1884 sect_opts[section_index].name = arg;
1885 expecting_sec_name = 0;
db162d44
EZ
1886 }
1887 else
7a78ae4e
ND
1888 if (expecting_sec_addr)
1889 {
1890 sect_opts[section_index].value = arg;
1891 expecting_sec_addr = 0;
5417f6dc 1892 if (++section_index > num_sect_opts)
a39a16c4
MM
1893 {
1894 num_sect_opts *= 2;
5417f6dc 1895 sect_opts = ((struct sect_opt *)
a39a16c4 1896 xrealloc (sect_opts,
5417f6dc 1897 num_sect_opts
a39a16c4
MM
1898 * sizeof (struct sect_opt)));
1899 }
7a78ae4e
ND
1900 }
1901 else
8a3fe4f8 1902 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
7a78ae4e
ND
1903 }
1904 }
c906108c 1905 }
c906108c 1906
927890d0
JB
1907 /* This command takes at least two arguments. The first one is a
1908 filename, and the second is the address where this file has been
1909 loaded. Abort now if this address hasn't been provided by the
1910 user. */
1911 if (section_index < 1)
1912 error (_("The address where %s has been loaded is missing"), filename);
1913
db162d44
EZ
1914 /* Print the prompt for the query below. And save the arguments into
1915 a sect_addr_info structure to be passed around to other
1916 functions. We have to split this up into separate print
bb599908 1917 statements because hex_string returns a local static
db162d44 1918 string. */
5417f6dc 1919
a3f17187 1920 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
1921 section_addrs = alloc_section_addr_info (section_index);
1922 make_cleanup (xfree, section_addrs);
db162d44 1923 for (i = 0; i < section_index; i++)
c906108c 1924 {
db162d44
EZ
1925 CORE_ADDR addr;
1926 char *val = sect_opts[i].value;
1927 char *sec = sect_opts[i].name;
5417f6dc 1928
ae822768 1929 addr = parse_and_eval_address (val);
db162d44 1930
db162d44
EZ
1931 /* Here we store the section offsets in the order they were
1932 entered on the command line. */
a39a16c4
MM
1933 section_addrs->other[sec_num].name = sec;
1934 section_addrs->other[sec_num].addr = addr;
46f45a4a 1935 printf_unfiltered ("\t%s_addr = %s\n",
bb599908 1936 sec, hex_string ((unsigned long)addr));
db162d44
EZ
1937 sec_num++;
1938
5417f6dc 1939 /* The object's sections are initialized when a
db162d44 1940 call is made to build_objfile_section_table (objfile).
5417f6dc 1941 This happens in reread_symbols.
db162d44
EZ
1942 At this point, we don't know what file type this is,
1943 so we can't determine what section names are valid. */
2acceee2 1944 }
db162d44 1945
2acceee2 1946 if (from_tty && (!query ("%s", "")))
8a3fe4f8 1947 error (_("Not confirmed."));
c906108c 1948
a39a16c4 1949 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
c906108c
SS
1950
1951 /* Getting new symbols may change our opinion about what is
1952 frameless. */
1953 reinit_frame_cache ();
db162d44 1954 do_cleanups (my_cleanups);
c906108c
SS
1955}
1956\f
1957static void
fba45db2 1958add_shared_symbol_files_command (char *args, int from_tty)
c906108c
SS
1959{
1960#ifdef ADD_SHARED_SYMBOL_FILES
1961 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1962#else
8a3fe4f8 1963 error (_("This command is not available in this configuration of GDB."));
c5aa993b 1964#endif
c906108c
SS
1965}
1966\f
1967/* Re-read symbols if a symbol-file has changed. */
1968void
fba45db2 1969reread_symbols (void)
c906108c
SS
1970{
1971 struct objfile *objfile;
1972 long new_modtime;
1973 int reread_one = 0;
1974 struct stat new_statbuf;
1975 int res;
1976
1977 /* With the addition of shared libraries, this should be modified,
1978 the load time should be saved in the partial symbol tables, since
1979 different tables may come from different source files. FIXME.
1980 This routine should then walk down each partial symbol table
1981 and see if the symbol table that it originates from has been changed */
1982
c5aa993b
JM
1983 for (objfile = object_files; objfile; objfile = objfile->next)
1984 {
1985 if (objfile->obfd)
1986 {
52d16ba8 1987#ifdef DEPRECATED_IBM6000_TARGET
c5aa993b
JM
1988 /* If this object is from a shared library, then you should
1989 stat on the library name, not member name. */
c906108c 1990
c5aa993b
JM
1991 if (objfile->obfd->my_archive)
1992 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1993 else
c906108c 1994#endif
c5aa993b
JM
1995 res = stat (objfile->name, &new_statbuf);
1996 if (res != 0)
c906108c 1997 {
c5aa993b 1998 /* FIXME, should use print_sys_errmsg but it's not filtered. */
a3f17187 1999 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
c5aa993b
JM
2000 objfile->name);
2001 continue;
c906108c 2002 }
c5aa993b
JM
2003 new_modtime = new_statbuf.st_mtime;
2004 if (new_modtime != objfile->mtime)
c906108c 2005 {
c5aa993b
JM
2006 struct cleanup *old_cleanups;
2007 struct section_offsets *offsets;
2008 int num_offsets;
c5aa993b
JM
2009 char *obfd_filename;
2010
a3f17187 2011 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
c5aa993b
JM
2012 objfile->name);
2013
2014 /* There are various functions like symbol_file_add,
2015 symfile_bfd_open, syms_from_objfile, etc., which might
2016 appear to do what we want. But they have various other
2017 effects which we *don't* want. So we just do stuff
2018 ourselves. We don't worry about mapped files (for one thing,
2019 any mapped file will be out of date). */
2020
2021 /* If we get an error, blow away this objfile (not sure if
2022 that is the correct response for things like shared
2023 libraries). */
74b7792f 2024 old_cleanups = make_cleanup_free_objfile (objfile);
c5aa993b 2025 /* We need to do this whenever any symbols go away. */
74b7792f 2026 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c5aa993b
JM
2027
2028 /* Clean up any state BFD has sitting around. We don't need
2029 to close the descriptor but BFD lacks a way of closing the
2030 BFD without closing the descriptor. */
2031 obfd_filename = bfd_get_filename (objfile->obfd);
2032 if (!bfd_close (objfile->obfd))
8a3fe4f8 2033 error (_("Can't close BFD for %s: %s"), objfile->name,
c5aa993b
JM
2034 bfd_errmsg (bfd_get_error ()));
2035 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2036 if (objfile->obfd == NULL)
8a3fe4f8 2037 error (_("Can't open %s to read symbols."), objfile->name);
c5aa993b
JM
2038 /* bfd_openr sets cacheable to true, which is what we want. */
2039 if (!bfd_check_format (objfile->obfd, bfd_object))
8a3fe4f8 2040 error (_("Can't read symbols from %s: %s."), objfile->name,
c5aa993b
JM
2041 bfd_errmsg (bfd_get_error ()));
2042
2043 /* Save the offsets, we will nuke them with the rest of the
8b92e4d5 2044 objfile_obstack. */
c5aa993b 2045 num_offsets = objfile->num_sections;
5417f6dc 2046 offsets = ((struct section_offsets *)
a39a16c4 2047 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
5417f6dc 2048 memcpy (offsets, objfile->section_offsets,
a39a16c4 2049 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b 2050
ae5a43e0
DJ
2051 /* Remove any references to this objfile in the global
2052 value lists. */
2053 preserve_values (objfile);
2054
c5aa993b
JM
2055 /* Nuke all the state that we will re-read. Much of the following
2056 code which sets things to NULL really is necessary to tell
2057 other parts of GDB that there is nothing currently there. */
2058
2059 /* FIXME: Do we have to free a whole linked list, or is this
2060 enough? */
2061 if (objfile->global_psymbols.list)
2dc74dc1 2062 xfree (objfile->global_psymbols.list);
c5aa993b
JM
2063 memset (&objfile->global_psymbols, 0,
2064 sizeof (objfile->global_psymbols));
2065 if (objfile->static_psymbols.list)
2dc74dc1 2066 xfree (objfile->static_psymbols.list);
c5aa993b
JM
2067 memset (&objfile->static_psymbols, 0,
2068 sizeof (objfile->static_psymbols));
2069
2070 /* Free the obstacks for non-reusable objfiles */
af5f3db6
AC
2071 bcache_xfree (objfile->psymbol_cache);
2072 objfile->psymbol_cache = bcache_xmalloc ();
2073 bcache_xfree (objfile->macro_cache);
2074 objfile->macro_cache = bcache_xmalloc ();
2de7ced7
DJ
2075 if (objfile->demangled_names_hash != NULL)
2076 {
2077 htab_delete (objfile->demangled_names_hash);
2078 objfile->demangled_names_hash = NULL;
2079 }
b99607ea 2080 obstack_free (&objfile->objfile_obstack, 0);
c5aa993b
JM
2081 objfile->sections = NULL;
2082 objfile->symtabs = NULL;
2083 objfile->psymtabs = NULL;
2084 objfile->free_psymtabs = NULL;
a1b8c067 2085 objfile->cp_namespace_symtab = NULL;
c5aa993b 2086 objfile->msymbols = NULL;
0a6ddd08 2087 objfile->deprecated_sym_private = NULL;
c5aa993b 2088 objfile->minimal_symbol_count = 0;
0a83117a
MS
2089 memset (&objfile->msymbol_hash, 0,
2090 sizeof (objfile->msymbol_hash));
2091 memset (&objfile->msymbol_demangled_hash, 0,
2092 sizeof (objfile->msymbol_demangled_hash));
c5aa993b 2093 objfile->fundamental_types = NULL;
7b097ae3 2094 clear_objfile_data (objfile);
c5aa993b
JM
2095 if (objfile->sf != NULL)
2096 {
2097 (*objfile->sf->sym_finish) (objfile);
2098 }
2099
2100 /* We never make this a mapped file. */
2101 objfile->md = NULL;
af5f3db6
AC
2102 objfile->psymbol_cache = bcache_xmalloc ();
2103 objfile->macro_cache = bcache_xmalloc ();
1ab21617
EZ
2104 /* obstack_init also initializes the obstack so it is
2105 empty. We could use obstack_specify_allocation but
2106 gdb_obstack.h specifies the alloc/dealloc
2107 functions. */
2108 obstack_init (&objfile->objfile_obstack);
c5aa993b
JM
2109 if (build_objfile_section_table (objfile))
2110 {
8a3fe4f8 2111 error (_("Can't find the file sections in `%s': %s"),
c5aa993b
JM
2112 objfile->name, bfd_errmsg (bfd_get_error ()));
2113 }
15831452 2114 terminate_minimal_symbol_table (objfile);
c5aa993b
JM
2115
2116 /* We use the same section offsets as from last time. I'm not
2117 sure whether that is always correct for shared libraries. */
2118 objfile->section_offsets = (struct section_offsets *)
5417f6dc 2119 obstack_alloc (&objfile->objfile_obstack,
a39a16c4 2120 SIZEOF_N_SECTION_OFFSETS (num_offsets));
5417f6dc 2121 memcpy (objfile->section_offsets, offsets,
a39a16c4 2122 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b
JM
2123 objfile->num_sections = num_offsets;
2124
2125 /* What the hell is sym_new_init for, anyway? The concept of
2126 distinguishing between the main file and additional files
2127 in this way seems rather dubious. */
2128 if (objfile == symfile_objfile)
2129 {
2130 (*objfile->sf->sym_new_init) (objfile);
c5aa993b
JM
2131 }
2132
2133 (*objfile->sf->sym_init) (objfile);
b9caf505 2134 clear_complaints (&symfile_complaints, 1, 1);
c5aa993b
JM
2135 /* The "mainline" parameter is a hideous hack; I think leaving it
2136 zero is OK since dbxread.c also does what it needs to do if
2137 objfile->global_psymbols.size is 0. */
96baa820 2138 (*objfile->sf->sym_read) (objfile, 0);
c5aa993b
JM
2139 if (!have_partial_symbols () && !have_full_symbols ())
2140 {
2141 wrap_here ("");
a3f17187 2142 printf_unfiltered (_("(no debugging symbols found)\n"));
c5aa993b
JM
2143 wrap_here ("");
2144 }
2145 objfile->flags |= OBJF_SYMS;
2146
2147 /* We're done reading the symbol file; finish off complaints. */
b9caf505 2148 clear_complaints (&symfile_complaints, 0, 1);
c906108c 2149
c5aa993b
JM
2150 /* Getting new symbols may change our opinion about what is
2151 frameless. */
c906108c 2152
c5aa993b 2153 reinit_frame_cache ();
c906108c 2154
c5aa993b
JM
2155 /* Discard cleanups as symbol reading was successful. */
2156 discard_cleanups (old_cleanups);
c906108c 2157
c5aa993b
JM
2158 /* If the mtime has changed between the time we set new_modtime
2159 and now, we *want* this to be out of date, so don't call stat
2160 again now. */
2161 objfile->mtime = new_modtime;
2162 reread_one = 1;
5b5d99cf 2163 reread_separate_symbols (objfile);
c5aa993b 2164 }
c906108c
SS
2165 }
2166 }
c906108c
SS
2167
2168 if (reread_one)
ea53e89f
JB
2169 {
2170 clear_symtab_users ();
2171 /* At least one objfile has changed, so we can consider that
2172 the executable we're debugging has changed too. */
2173 observer_notify_executable_changed (NULL);
2174 }
2175
c906108c 2176}
5b5d99cf
JB
2177
2178
2179/* Handle separate debug info for OBJFILE, which has just been
2180 re-read:
2181 - If we had separate debug info before, but now we don't, get rid
2182 of the separated objfile.
2183 - If we didn't have separated debug info before, but now we do,
2184 read in the new separated debug info file.
2185 - If the debug link points to a different file, toss the old one
2186 and read the new one.
2187 This function does *not* handle the case where objfile is still
2188 using the same separate debug info file, but that file's timestamp
2189 has changed. That case should be handled by the loop in
2190 reread_symbols already. */
2191static void
2192reread_separate_symbols (struct objfile *objfile)
2193{
2194 char *debug_file;
2195 unsigned long crc32;
2196
2197 /* Does the updated objfile's debug info live in a
2198 separate file? */
2199 debug_file = find_separate_debug_file (objfile);
2200
2201 if (objfile->separate_debug_objfile)
2202 {
2203 /* There are two cases where we need to get rid of
2204 the old separated debug info objfile:
2205 - if the new primary objfile doesn't have
2206 separated debug info, or
2207 - if the new primary objfile has separate debug
2208 info, but it's under a different filename.
5417f6dc 2209
5b5d99cf
JB
2210 If the old and new objfiles both have separate
2211 debug info, under the same filename, then we're
2212 okay --- if the separated file's contents have
2213 changed, we will have caught that when we
2214 visited it in this function's outermost
2215 loop. */
2216 if (! debug_file
2217 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2218 free_objfile (objfile->separate_debug_objfile);
2219 }
2220
2221 /* If the new objfile has separate debug info, and we
2222 haven't loaded it already, do so now. */
2223 if (debug_file
2224 && ! objfile->separate_debug_objfile)
2225 {
2226 /* Use the same section offset table as objfile itself.
2227 Preserve the flags from objfile that make sense. */
2228 objfile->separate_debug_objfile
2229 = (symbol_file_add_with_addrs_or_offsets
5417f6dc 2230 (symfile_bfd_open (debug_file),
5b5d99cf
JB
2231 info_verbose, /* from_tty: Don't override the default. */
2232 0, /* No addr table. */
2233 objfile->section_offsets, objfile->num_sections,
2234 0, /* Not mainline. See comments about this above. */
78a4a9b9 2235 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
5b5d99cf
JB
2236 | OBJF_USERLOADED)));
2237 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2238 = objfile;
2239 }
2240}
2241
2242
c906108c
SS
2243\f
2244
c5aa993b
JM
2245
2246typedef struct
2247{
2248 char *ext;
c906108c 2249 enum language lang;
c5aa993b
JM
2250}
2251filename_language;
c906108c 2252
c5aa993b 2253static filename_language *filename_language_table;
c906108c
SS
2254static int fl_table_size, fl_table_next;
2255
2256static void
fba45db2 2257add_filename_language (char *ext, enum language lang)
c906108c
SS
2258{
2259 if (fl_table_next >= fl_table_size)
2260 {
2261 fl_table_size += 10;
5417f6dc 2262 filename_language_table =
25bf3106
PM
2263 xrealloc (filename_language_table,
2264 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2265 }
2266
4fcf66da 2267 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2268 filename_language_table[fl_table_next].lang = lang;
2269 fl_table_next++;
2270}
2271
2272static char *ext_args;
920d2a44
AC
2273static void
2274show_ext_args (struct ui_file *file, int from_tty,
2275 struct cmd_list_element *c, const char *value)
2276{
2277 fprintf_filtered (file, _("\
2278Mapping between filename extension and source language is \"%s\".\n"),
2279 value);
2280}
c906108c
SS
2281
2282static void
26c41df3 2283set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2284{
2285 int i;
2286 char *cp = ext_args;
2287 enum language lang;
2288
2289 /* First arg is filename extension, starting with '.' */
2290 if (*cp != '.')
8a3fe4f8 2291 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2292
2293 /* Find end of first arg. */
c5aa993b 2294 while (*cp && !isspace (*cp))
c906108c
SS
2295 cp++;
2296
2297 if (*cp == '\0')
8a3fe4f8 2298 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2299 ext_args);
2300
2301 /* Null-terminate first arg */
c5aa993b 2302 *cp++ = '\0';
c906108c
SS
2303
2304 /* Find beginning of second arg, which should be a source language. */
2305 while (*cp && isspace (*cp))
2306 cp++;
2307
2308 if (*cp == '\0')
8a3fe4f8 2309 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2310 ext_args);
2311
2312 /* Lookup the language from among those we know. */
2313 lang = language_enum (cp);
2314
2315 /* Now lookup the filename extension: do we already know it? */
2316 for (i = 0; i < fl_table_next; i++)
2317 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2318 break;
2319
2320 if (i >= fl_table_next)
2321 {
2322 /* new file extension */
2323 add_filename_language (ext_args, lang);
2324 }
2325 else
2326 {
2327 /* redefining a previously known filename extension */
2328
2329 /* if (from_tty) */
2330 /* query ("Really make files of type %s '%s'?", */
2331 /* ext_args, language_str (lang)); */
2332
b8c9b27d 2333 xfree (filename_language_table[i].ext);
4fcf66da 2334 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2335 filename_language_table[i].lang = lang;
2336 }
2337}
2338
2339static void
fba45db2 2340info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2341{
2342 int i;
2343
a3f17187 2344 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2345 printf_filtered ("\n\n");
2346 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2347 printf_filtered ("\t%s\t- %s\n",
2348 filename_language_table[i].ext,
c906108c
SS
2349 language_str (filename_language_table[i].lang));
2350}
2351
2352static void
fba45db2 2353init_filename_language_table (void)
c906108c
SS
2354{
2355 if (fl_table_size == 0) /* protect against repetition */
2356 {
2357 fl_table_size = 20;
2358 fl_table_next = 0;
c5aa993b 2359 filename_language_table =
c906108c 2360 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b
JM
2361 add_filename_language (".c", language_c);
2362 add_filename_language (".C", language_cplus);
2363 add_filename_language (".cc", language_cplus);
2364 add_filename_language (".cp", language_cplus);
2365 add_filename_language (".cpp", language_cplus);
2366 add_filename_language (".cxx", language_cplus);
2367 add_filename_language (".c++", language_cplus);
2368 add_filename_language (".java", language_java);
c906108c 2369 add_filename_language (".class", language_java);
da2cf7e0 2370 add_filename_language (".m", language_objc);
c5aa993b
JM
2371 add_filename_language (".f", language_fortran);
2372 add_filename_language (".F", language_fortran);
2373 add_filename_language (".s", language_asm);
2374 add_filename_language (".S", language_asm);
c6fd39cd
PM
2375 add_filename_language (".pas", language_pascal);
2376 add_filename_language (".p", language_pascal);
2377 add_filename_language (".pp", language_pascal);
963a6417
PH
2378 add_filename_language (".adb", language_ada);
2379 add_filename_language (".ads", language_ada);
2380 add_filename_language (".a", language_ada);
2381 add_filename_language (".ada", language_ada);
c906108c
SS
2382 }
2383}
2384
2385enum language
fba45db2 2386deduce_language_from_filename (char *filename)
c906108c
SS
2387{
2388 int i;
2389 char *cp;
2390
2391 if (filename != NULL)
2392 if ((cp = strrchr (filename, '.')) != NULL)
2393 for (i = 0; i < fl_table_next; i++)
2394 if (strcmp (cp, filename_language_table[i].ext) == 0)
2395 return filename_language_table[i].lang;
2396
2397 return language_unknown;
2398}
2399\f
2400/* allocate_symtab:
2401
2402 Allocate and partly initialize a new symbol table. Return a pointer
2403 to it. error() if no space.
2404
2405 Caller must set these fields:
c5aa993b
JM
2406 LINETABLE(symtab)
2407 symtab->blockvector
2408 symtab->dirname
2409 symtab->free_code
2410 symtab->free_ptr
2411 possibly free_named_symtabs (symtab->filename);
c906108c
SS
2412 */
2413
2414struct symtab *
fba45db2 2415allocate_symtab (char *filename, struct objfile *objfile)
c906108c 2416{
52f0bd74 2417 struct symtab *symtab;
c906108c
SS
2418
2419 symtab = (struct symtab *)
4a146b47 2420 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2421 memset (symtab, 0, sizeof (*symtab));
c5aa993b 2422 symtab->filename = obsavestring (filename, strlen (filename),
4a146b47 2423 &objfile->objfile_obstack);
c5aa993b
JM
2424 symtab->fullname = NULL;
2425 symtab->language = deduce_language_from_filename (filename);
2426 symtab->debugformat = obsavestring ("unknown", 7,
4a146b47 2427 &objfile->objfile_obstack);
c906108c
SS
2428
2429 /* Hook it to the objfile it comes from */
2430
c5aa993b
JM
2431 symtab->objfile = objfile;
2432 symtab->next = objfile->symtabs;
2433 objfile->symtabs = symtab;
c906108c
SS
2434
2435 /* FIXME: This should go away. It is only defined for the Z8000,
2436 and the Z8000 definition of this macro doesn't have anything to
2437 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
2438 here for convenience. */
2439#ifdef INIT_EXTRA_SYMTAB_INFO
2440 INIT_EXTRA_SYMTAB_INFO (symtab);
2441#endif
2442
2443 return (symtab);
2444}
2445
2446struct partial_symtab *
fba45db2 2447allocate_psymtab (char *filename, struct objfile *objfile)
c906108c
SS
2448{
2449 struct partial_symtab *psymtab;
2450
c5aa993b 2451 if (objfile->free_psymtabs)
c906108c 2452 {
c5aa993b
JM
2453 psymtab = objfile->free_psymtabs;
2454 objfile->free_psymtabs = psymtab->next;
c906108c
SS
2455 }
2456 else
2457 psymtab = (struct partial_symtab *)
8b92e4d5 2458 obstack_alloc (&objfile->objfile_obstack,
c906108c
SS
2459 sizeof (struct partial_symtab));
2460
2461 memset (psymtab, 0, sizeof (struct partial_symtab));
c5aa993b 2462 psymtab->filename = obsavestring (filename, strlen (filename),
8b92e4d5 2463 &objfile->objfile_obstack);
c5aa993b 2464 psymtab->symtab = NULL;
c906108c
SS
2465
2466 /* Prepend it to the psymtab list for the objfile it belongs to.
2467 Psymtabs are searched in most recent inserted -> least recent
2468 inserted order. */
2469
c5aa993b
JM
2470 psymtab->objfile = objfile;
2471 psymtab->next = objfile->psymtabs;
2472 objfile->psymtabs = psymtab;
c906108c
SS
2473#if 0
2474 {
2475 struct partial_symtab **prev_pst;
c5aa993b
JM
2476 psymtab->objfile = objfile;
2477 psymtab->next = NULL;
2478 prev_pst = &(objfile->psymtabs);
c906108c 2479 while ((*prev_pst) != NULL)
c5aa993b 2480 prev_pst = &((*prev_pst)->next);
c906108c 2481 (*prev_pst) = psymtab;
c5aa993b 2482 }
c906108c 2483#endif
c5aa993b 2484
c906108c
SS
2485 return (psymtab);
2486}
2487
2488void
fba45db2 2489discard_psymtab (struct partial_symtab *pst)
c906108c
SS
2490{
2491 struct partial_symtab **prev_pst;
2492
2493 /* From dbxread.c:
2494 Empty psymtabs happen as a result of header files which don't
2495 have any symbols in them. There can be a lot of them. But this
2496 check is wrong, in that a psymtab with N_SLINE entries but
2497 nothing else is not empty, but we don't realize that. Fixing
2498 that without slowing things down might be tricky. */
2499
2500 /* First, snip it out of the psymtab chain */
2501
2502 prev_pst = &(pst->objfile->psymtabs);
2503 while ((*prev_pst) != pst)
2504 prev_pst = &((*prev_pst)->next);
2505 (*prev_pst) = pst->next;
2506
2507 /* Next, put it on a free list for recycling */
2508
2509 pst->next = pst->objfile->free_psymtabs;
2510 pst->objfile->free_psymtabs = pst;
2511}
c906108c 2512\f
c5aa993b 2513
c906108c
SS
2514/* Reset all data structures in gdb which may contain references to symbol
2515 table data. */
2516
2517void
fba45db2 2518clear_symtab_users (void)
c906108c
SS
2519{
2520 /* Someday, we should do better than this, by only blowing away
2521 the things that really need to be blown. */
c0501be5
DJ
2522
2523 /* Clear the "current" symtab first, because it is no longer valid.
2524 breakpoint_re_set may try to access the current symtab. */
2525 clear_current_source_symtab_and_line ();
2526
c906108c 2527 clear_displays ();
c906108c
SS
2528 breakpoint_re_set ();
2529 set_default_breakpoint (0, 0, 0, 0);
c906108c 2530 clear_pc_function_cache ();
9a4105ab
AC
2531 if (deprecated_target_new_objfile_hook)
2532 deprecated_target_new_objfile_hook (NULL);
9bdcbae7
DJ
2533
2534 /* Clear globals which might have pointed into a removed objfile.
2535 FIXME: It's not clear which of these are supposed to persist
2536 between expressions and which ought to be reset each time. */
2537 expression_context_block = NULL;
2538 innermost_block = NULL;
c906108c
SS
2539}
2540
74b7792f
AC
2541static void
2542clear_symtab_users_cleanup (void *ignore)
2543{
2544 clear_symtab_users ();
2545}
2546
c906108c
SS
2547/* clear_symtab_users_once:
2548
2549 This function is run after symbol reading, or from a cleanup.
2550 If an old symbol table was obsoleted, the old symbol table
5417f6dc 2551 has been blown away, but the other GDB data structures that may
c906108c
SS
2552 reference it have not yet been cleared or re-directed. (The old
2553 symtab was zapped, and the cleanup queued, in free_named_symtab()
2554 below.)
2555
2556 This function can be queued N times as a cleanup, or called
2557 directly; it will do all the work the first time, and then will be a
2558 no-op until the next time it is queued. This works by bumping a
2559 counter at queueing time. Much later when the cleanup is run, or at
2560 the end of symbol processing (in case the cleanup is discarded), if
2561 the queued count is greater than the "done-count", we do the work
2562 and set the done-count to the queued count. If the queued count is
2563 less than or equal to the done-count, we just ignore the call. This
2564 is needed because reading a single .o file will often replace many
2565 symtabs (one per .h file, for example), and we don't want to reset
2566 the breakpoints N times in the user's face.
2567
2568 The reason we both queue a cleanup, and call it directly after symbol
2569 reading, is because the cleanup protects us in case of errors, but is
2570 discarded if symbol reading is successful. */
2571
2572#if 0
2573/* FIXME: As free_named_symtabs is currently a big noop this function
2574 is no longer needed. */
a14ed312 2575static void clear_symtab_users_once (void);
c906108c
SS
2576
2577static int clear_symtab_users_queued;
2578static int clear_symtab_users_done;
2579
2580static void
fba45db2 2581clear_symtab_users_once (void)
c906108c
SS
2582{
2583 /* Enforce once-per-`do_cleanups'-semantics */
2584 if (clear_symtab_users_queued <= clear_symtab_users_done)
2585 return;
2586 clear_symtab_users_done = clear_symtab_users_queued;
2587
2588 clear_symtab_users ();
2589}
2590#endif
2591
2592/* Delete the specified psymtab, and any others that reference it. */
2593
2594static void
fba45db2 2595cashier_psymtab (struct partial_symtab *pst)
c906108c
SS
2596{
2597 struct partial_symtab *ps, *pprev = NULL;
2598 int i;
2599
2600 /* Find its previous psymtab in the chain */
c5aa993b
JM
2601 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2602 {
2603 if (ps == pst)
2604 break;
2605 pprev = ps;
2606 }
c906108c 2607
c5aa993b
JM
2608 if (ps)
2609 {
2610 /* Unhook it from the chain. */
2611 if (ps == pst->objfile->psymtabs)
2612 pst->objfile->psymtabs = ps->next;
2613 else
2614 pprev->next = ps->next;
2615
2616 /* FIXME, we can't conveniently deallocate the entries in the
2617 partial_symbol lists (global_psymbols/static_psymbols) that
2618 this psymtab points to. These just take up space until all
2619 the psymtabs are reclaimed. Ditto the dependencies list and
8b92e4d5 2620 filename, which are all in the objfile_obstack. */
c5aa993b
JM
2621
2622 /* We need to cashier any psymtab that has this one as a dependency... */
2623 again:
2624 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2625 {
2626 for (i = 0; i < ps->number_of_dependencies; i++)
2627 {
2628 if (ps->dependencies[i] == pst)
2629 {
2630 cashier_psymtab (ps);
2631 goto again; /* Must restart, chain has been munged. */
2632 }
2633 }
c906108c 2634 }
c906108c 2635 }
c906108c
SS
2636}
2637
2638/* If a symtab or psymtab for filename NAME is found, free it along
2639 with any dependent breakpoints, displays, etc.
2640 Used when loading new versions of object modules with the "add-file"
2641 command. This is only called on the top-level symtab or psymtab's name;
2642 it is not called for subsidiary files such as .h files.
2643
2644 Return value is 1 if we blew away the environment, 0 if not.
7e73cedf 2645 FIXME. The return value appears to never be used.
c906108c
SS
2646
2647 FIXME. I think this is not the best way to do this. We should
2648 work on being gentler to the environment while still cleaning up
2649 all stray pointers into the freed symtab. */
2650
2651int
fba45db2 2652free_named_symtabs (char *name)
c906108c
SS
2653{
2654#if 0
2655 /* FIXME: With the new method of each objfile having it's own
2656 psymtab list, this function needs serious rethinking. In particular,
2657 why was it ever necessary to toss psymtabs with specific compilation
2658 unit filenames, as opposed to all psymtabs from a particular symbol
2659 file? -- fnf
2660 Well, the answer is that some systems permit reloading of particular
2661 compilation units. We want to blow away any old info about these
2662 compilation units, regardless of which objfiles they arrived in. --gnu. */
2663
52f0bd74
AC
2664 struct symtab *s;
2665 struct symtab *prev;
2666 struct partial_symtab *ps;
c906108c
SS
2667 struct blockvector *bv;
2668 int blewit = 0;
2669
2670 /* We only wack things if the symbol-reload switch is set. */
2671 if (!symbol_reloading)
2672 return 0;
2673
2674 /* Some symbol formats have trouble providing file names... */
2675 if (name == 0 || *name == '\0')
2676 return 0;
2677
2678 /* Look for a psymtab with the specified name. */
2679
2680again2:
c5aa993b
JM
2681 for (ps = partial_symtab_list; ps; ps = ps->next)
2682 {
6314a349 2683 if (strcmp (name, ps->filename) == 0)
c5aa993b
JM
2684 {
2685 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2686 goto again2; /* Must restart, chain has been munged */
2687 }
c906108c 2688 }
c906108c
SS
2689
2690 /* Look for a symtab with the specified name. */
2691
2692 for (s = symtab_list; s; s = s->next)
2693 {
6314a349 2694 if (strcmp (name, s->filename) == 0)
c906108c
SS
2695 break;
2696 prev = s;
2697 }
2698
2699 if (s)
2700 {
2701 if (s == symtab_list)
2702 symtab_list = s->next;
2703 else
2704 prev->next = s->next;
2705
2706 /* For now, queue a delete for all breakpoints, displays, etc., whether
c5aa993b
JM
2707 or not they depend on the symtab being freed. This should be
2708 changed so that only those data structures affected are deleted. */
c906108c
SS
2709
2710 /* But don't delete anything if the symtab is empty.
c5aa993b
JM
2711 This test is necessary due to a bug in "dbxread.c" that
2712 causes empty symtabs to be created for N_SO symbols that
2713 contain the pathname of the object file. (This problem
2714 has been fixed in GDB 3.9x). */
c906108c
SS
2715
2716 bv = BLOCKVECTOR (s);
2717 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2718 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2719 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2720 {
e2e0b3e5 2721 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
b9caf505 2722 name);
c906108c
SS
2723 clear_symtab_users_queued++;
2724 make_cleanup (clear_symtab_users_once, 0);
2725 blewit = 1;
c5aa993b
JM
2726 }
2727 else
e2e0b3e5
AC
2728 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
2729 name);
c906108c
SS
2730
2731 free_symtab (s);
2732 }
2733 else
2734 {
2735 /* It is still possible that some breakpoints will be affected
c5aa993b
JM
2736 even though no symtab was found, since the file might have
2737 been compiled without debugging, and hence not be associated
2738 with a symtab. In order to handle this correctly, we would need
2739 to keep a list of text address ranges for undebuggable files.
2740 For now, we do nothing, since this is a fairly obscure case. */
c906108c
SS
2741 ;
2742 }
2743
2744 /* FIXME, what about the minimal symbol table? */
2745 return blewit;
2746#else
2747 return (0);
2748#endif
2749}
2750\f
2751/* Allocate and partially fill a partial symtab. It will be
2752 completely filled at the end of the symbol list.
2753
d4f3574e 2754 FILENAME is the name of the symbol-file we are reading from. */
c906108c
SS
2755
2756struct partial_symtab *
fba45db2
KB
2757start_psymtab_common (struct objfile *objfile,
2758 struct section_offsets *section_offsets, char *filename,
2759 CORE_ADDR textlow, struct partial_symbol **global_syms,
2760 struct partial_symbol **static_syms)
c906108c
SS
2761{
2762 struct partial_symtab *psymtab;
2763
2764 psymtab = allocate_psymtab (filename, objfile);
c5aa993b
JM
2765 psymtab->section_offsets = section_offsets;
2766 psymtab->textlow = textlow;
2767 psymtab->texthigh = psymtab->textlow; /* default */
2768 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2769 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
c906108c
SS
2770 return (psymtab);
2771}
2772\f
2773/* Add a symbol with a long value to a psymtab.
5417f6dc 2774 Since one arg is a struct, we pass in a ptr and deref it (sigh).
5c4e30ca
DC
2775 Return the partial symbol that has been added. */
2776
2777/* NOTE: carlton/2003-09-11: The reason why we return the partial
2778 symbol is so that callers can get access to the symbol's demangled
2779 name, which they don't have any cheap way to determine otherwise.
2780 (Currenly, dwarf2read.c is the only file who uses that information,
2781 though it's possible that other readers might in the future.)
2782 Elena wasn't thrilled about that, and I don't blame her, but we
2783 couldn't come up with a better way to get that information. If
2784 it's needed in other situations, we could consider breaking up
2785 SYMBOL_SET_NAMES to provide access to the demangled name lookup
2786 cache. */
2787
2788const struct partial_symbol *
176620f1 2789add_psymbol_to_list (char *name, int namelength, domain_enum domain,
fba45db2
KB
2790 enum address_class class,
2791 struct psymbol_allocation_list *list, long val, /* Value as a long */
2792 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2793 enum language language, struct objfile *objfile)
c906108c 2794{
52f0bd74 2795 struct partial_symbol *psym;
c906108c
SS
2796 char *buf = alloca (namelength + 1);
2797 /* psymbol is static so that there will be no uninitialized gaps in the
2798 structure which might contain random data, causing cache misses in
2799 bcache. */
2800 static struct partial_symbol psymbol;
2801
2802 /* Create local copy of the partial symbol */
2803 memcpy (buf, name, namelength);
2804 buf[namelength] = '\0';
c906108c
SS
2805 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2806 if (val != 0)
2807 {
2808 SYMBOL_VALUE (&psymbol) = val;
2809 }
2810 else
2811 {
2812 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2813 }
2814 SYMBOL_SECTION (&psymbol) = 0;
2815 SYMBOL_LANGUAGE (&psymbol) = language;
176620f1 2816 PSYMBOL_DOMAIN (&psymbol) = domain;
c906108c 2817 PSYMBOL_CLASS (&psymbol) = class;
2de7ced7
DJ
2818
2819 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
c906108c
SS
2820
2821 /* Stash the partial symbol away in the cache */
3a16a68c
AC
2822 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2823 objfile->psymbol_cache);
c906108c
SS
2824
2825 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2826 if (list->next >= list->list + list->size)
2827 {
2828 extend_psymbol_list (list, objfile);
2829 }
2830 *list->next++ = psym;
2831 OBJSTAT (objfile, n_psyms++);
5c4e30ca
DC
2832
2833 return psym;
c906108c
SS
2834}
2835
2836/* Add a symbol with a long value to a psymtab. This differs from
2837 * add_psymbol_to_list above in taking both a mangled and a demangled
2838 * name. */
2839
2840void
fba45db2 2841add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
176620f1 2842 int dem_namelength, domain_enum domain,
fba45db2
KB
2843 enum address_class class,
2844 struct psymbol_allocation_list *list, long val, /* Value as a long */
2845 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2846 enum language language,
2847 struct objfile *objfile)
c906108c 2848{
52f0bd74 2849 struct partial_symbol *psym;
c906108c
SS
2850 char *buf = alloca (namelength + 1);
2851 /* psymbol is static so that there will be no uninitialized gaps in the
2852 structure which might contain random data, causing cache misses in
2853 bcache. */
2854 static struct partial_symbol psymbol;
2855
2856 /* Create local copy of the partial symbol */
2857
2858 memcpy (buf, name, namelength);
2859 buf[namelength] = '\0';
3a16a68c
AC
2860 DEPRECATED_SYMBOL_NAME (&psymbol) = deprecated_bcache (buf, namelength + 1,
2861 objfile->psymbol_cache);
c906108c
SS
2862
2863 buf = alloca (dem_namelength + 1);
2864 memcpy (buf, dem_name, dem_namelength);
2865 buf[dem_namelength] = '\0';
c5aa993b 2866
c906108c
SS
2867 switch (language)
2868 {
c5aa993b
JM
2869 case language_c:
2870 case language_cplus:
2871 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
3a16a68c 2872 deprecated_bcache (buf, dem_namelength + 1, objfile->psymbol_cache);
c5aa993b 2873 break;
c906108c
SS
2874 /* FIXME What should be done for the default case? Ignoring for now. */
2875 }
2876
2877 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2878 if (val != 0)
2879 {
2880 SYMBOL_VALUE (&psymbol) = val;
2881 }
2882 else
2883 {
2884 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2885 }
2886 SYMBOL_SECTION (&psymbol) = 0;
2887 SYMBOL_LANGUAGE (&psymbol) = language;
176620f1 2888 PSYMBOL_DOMAIN (&psymbol) = domain;
c906108c
SS
2889 PSYMBOL_CLASS (&psymbol) = class;
2890 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2891
2892 /* Stash the partial symbol away in the cache */
3a16a68c
AC
2893 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2894 objfile->psymbol_cache);
c906108c
SS
2895
2896 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2897 if (list->next >= list->list + list->size)
2898 {
2899 extend_psymbol_list (list, objfile);
2900 }
2901 *list->next++ = psym;
2902 OBJSTAT (objfile, n_psyms++);
2903}
2904
2905/* Initialize storage for partial symbols. */
2906
2907void
fba45db2 2908init_psymbol_list (struct objfile *objfile, int total_symbols)
c906108c
SS
2909{
2910 /* Free any previously allocated psymbol lists. */
c5aa993b
JM
2911
2912 if (objfile->global_psymbols.list)
c906108c 2913 {
2dc74dc1 2914 xfree (objfile->global_psymbols.list);
c906108c 2915 }
c5aa993b 2916 if (objfile->static_psymbols.list)
c906108c 2917 {
2dc74dc1 2918 xfree (objfile->static_psymbols.list);
c906108c 2919 }
c5aa993b 2920
c906108c
SS
2921 /* Current best guess is that approximately a twentieth
2922 of the total symbols (in a debugging file) are global or static
2923 oriented symbols */
c906108c 2924
c5aa993b
JM
2925 objfile->global_psymbols.size = total_symbols / 10;
2926 objfile->static_psymbols.size = total_symbols / 10;
2927
2928 if (objfile->global_psymbols.size > 0)
c906108c 2929 {
c5aa993b
JM
2930 objfile->global_psymbols.next =
2931 objfile->global_psymbols.list = (struct partial_symbol **)
7936743b
AC
2932 xmalloc ((objfile->global_psymbols.size
2933 * sizeof (struct partial_symbol *)));
c906108c 2934 }
c5aa993b 2935 if (objfile->static_psymbols.size > 0)
c906108c 2936 {
c5aa993b
JM
2937 objfile->static_psymbols.next =
2938 objfile->static_psymbols.list = (struct partial_symbol **)
7936743b
AC
2939 xmalloc ((objfile->static_psymbols.size
2940 * sizeof (struct partial_symbol *)));
c906108c
SS
2941 }
2942}
2943
2944/* OVERLAYS:
2945 The following code implements an abstraction for debugging overlay sections.
2946
2947 The target model is as follows:
2948 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2949 same VMA, each with its own unique LMA (or load address).
c906108c 2950 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2951 sections, one by one, from the load address into the VMA address.
5417f6dc 2952 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2953 sections should be considered to be mapped from the VMA to the LMA.
2954 This information is used for symbol lookup, and memory read/write.
5417f6dc 2955 For instance, if a section has been mapped then its contents
c5aa993b 2956 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2957
2958 Two levels of debugger support for overlays are available. One is
2959 "manual", in which the debugger relies on the user to tell it which
2960 overlays are currently mapped. This level of support is
2961 implemented entirely in the core debugger, and the information about
2962 whether a section is mapped is kept in the objfile->obj_section table.
2963
2964 The second level of support is "automatic", and is only available if
2965 the target-specific code provides functionality to read the target's
2966 overlay mapping table, and translate its contents for the debugger
2967 (by updating the mapped state information in the obj_section tables).
2968
2969 The interface is as follows:
c5aa993b
JM
2970 User commands:
2971 overlay map <name> -- tell gdb to consider this section mapped
2972 overlay unmap <name> -- tell gdb to consider this section unmapped
2973 overlay list -- list the sections that GDB thinks are mapped
2974 overlay read-target -- get the target's state of what's mapped
2975 overlay off/manual/auto -- set overlay debugging state
2976 Functional interface:
2977 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2978 section, return that section.
5417f6dc 2979 find_pc_overlay(pc): find any overlay section that contains
c5aa993b
JM
2980 the pc, either in its VMA or its LMA
2981 overlay_is_mapped(sect): true if overlay is marked as mapped
2982 section_is_overlay(sect): true if section's VMA != LMA
2983 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2984 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2985 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2986 overlay_mapped_address(...): map an address from section's LMA to VMA
2987 overlay_unmapped_address(...): map an address from section's VMA to LMA
2988 symbol_overlayed_address(...): Return a "current" address for symbol:
2989 either in VMA or LMA depending on whether
2990 the symbol's section is currently mapped
c906108c
SS
2991 */
2992
2993/* Overlay debugging state: */
2994
d874f1e2 2995enum overlay_debugging_state overlay_debugging = ovly_off;
c906108c
SS
2996int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2997
2998/* Target vector for refreshing overlay mapped state */
a14ed312 2999static void simple_overlay_update (struct obj_section *);
507f3c78 3000void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
c906108c
SS
3001
3002/* Function: section_is_overlay (SECTION)
5417f6dc 3003 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
3004 SECTION is loaded at an address different from where it will "run". */
3005
3006int
fba45db2 3007section_is_overlay (asection *section)
c906108c 3008{
fbd35540
MS
3009 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3010
c906108c
SS
3011 if (overlay_debugging)
3012 if (section && section->lma != 0 &&
3013 section->vma != section->lma)
3014 return 1;
3015
3016 return 0;
3017}
3018
3019/* Function: overlay_invalidate_all (void)
3020 Invalidate the mapped state of all overlay sections (mark it as stale). */
3021
3022static void
fba45db2 3023overlay_invalidate_all (void)
c906108c 3024{
c5aa993b 3025 struct objfile *objfile;
c906108c
SS
3026 struct obj_section *sect;
3027
3028 ALL_OBJSECTIONS (objfile, sect)
3029 if (section_is_overlay (sect->the_bfd_section))
c5aa993b 3030 sect->ovly_mapped = -1;
c906108c
SS
3031}
3032
3033/* Function: overlay_is_mapped (SECTION)
5417f6dc 3034 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3035 Private: public access is thru function section_is_mapped.
3036
3037 Access to the ovly_mapped flag is restricted to this function, so
3038 that we can do automatic update. If the global flag
3039 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3040 overlay_invalidate_all. If the mapped state of the particular
3041 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3042
c5aa993b 3043static int
fba45db2 3044overlay_is_mapped (struct obj_section *osect)
c906108c
SS
3045{
3046 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
3047 return 0;
3048
c5aa993b 3049 switch (overlay_debugging)
c906108c
SS
3050 {
3051 default:
d874f1e2 3052 case ovly_off:
c5aa993b 3053 return 0; /* overlay debugging off */
d874f1e2 3054 case ovly_auto: /* overlay debugging automatic */
5417f6dc 3055 /* Unles there is a target_overlay_update function,
c5aa993b 3056 there's really nothing useful to do here (can't really go auto) */
c906108c
SS
3057 if (target_overlay_update)
3058 {
3059 if (overlay_cache_invalid)
3060 {
3061 overlay_invalidate_all ();
3062 overlay_cache_invalid = 0;
3063 }
3064 if (osect->ovly_mapped == -1)
3065 (*target_overlay_update) (osect);
3066 }
3067 /* fall thru to manual case */
d874f1e2 3068 case ovly_on: /* overlay debugging manual */
c906108c
SS
3069 return osect->ovly_mapped == 1;
3070 }
3071}
3072
3073/* Function: section_is_mapped
3074 Returns true if section is an overlay, and is currently mapped. */
3075
3076int
fba45db2 3077section_is_mapped (asection *section)
c906108c 3078{
c5aa993b 3079 struct objfile *objfile;
c906108c
SS
3080 struct obj_section *osect;
3081
3082 if (overlay_debugging)
3083 if (section && section_is_overlay (section))
3084 ALL_OBJSECTIONS (objfile, osect)
3085 if (osect->the_bfd_section == section)
c5aa993b 3086 return overlay_is_mapped (osect);
c906108c
SS
3087
3088 return 0;
3089}
3090
3091/* Function: pc_in_unmapped_range
3092 If PC falls into the lma range of SECTION, return true, else false. */
3093
3094CORE_ADDR
fba45db2 3095pc_in_unmapped_range (CORE_ADDR pc, asection *section)
c906108c 3096{
fbd35540
MS
3097 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3098
c906108c
SS
3099 int size;
3100
3101 if (overlay_debugging)
3102 if (section && section_is_overlay (section))
3103 {
2c500098 3104 size = bfd_get_section_size (section);
c906108c
SS
3105 if (section->lma <= pc && pc < section->lma + size)
3106 return 1;
3107 }
3108 return 0;
3109}
3110
3111/* Function: pc_in_mapped_range
3112 If PC falls into the vma range of SECTION, return true, else false. */
3113
3114CORE_ADDR
fba45db2 3115pc_in_mapped_range (CORE_ADDR pc, asection *section)
c906108c 3116{
fbd35540
MS
3117 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3118
c906108c
SS
3119 int size;
3120
3121 if (overlay_debugging)
3122 if (section && section_is_overlay (section))
3123 {
2c500098 3124 size = bfd_get_section_size (section);
c906108c
SS
3125 if (section->vma <= pc && pc < section->vma + size)
3126 return 1;
3127 }
3128 return 0;
3129}
3130
9ec8e6a0
JB
3131
3132/* Return true if the mapped ranges of sections A and B overlap, false
3133 otherwise. */
b9362cc7 3134static int
9ec8e6a0
JB
3135sections_overlap (asection *a, asection *b)
3136{
fbd35540
MS
3137 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3138
9ec8e6a0 3139 CORE_ADDR a_start = a->vma;
2c500098 3140 CORE_ADDR a_end = a->vma + bfd_get_section_size (a);
9ec8e6a0 3141 CORE_ADDR b_start = b->vma;
2c500098 3142 CORE_ADDR b_end = b->vma + bfd_get_section_size (b);
9ec8e6a0
JB
3143
3144 return (a_start < b_end && b_start < a_end);
3145}
3146
c906108c
SS
3147/* Function: overlay_unmapped_address (PC, SECTION)
3148 Returns the address corresponding to PC in the unmapped (load) range.
3149 May be the same as PC. */
3150
3151CORE_ADDR
fba45db2 3152overlay_unmapped_address (CORE_ADDR pc, asection *section)
c906108c 3153{
fbd35540
MS
3154 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3155
c906108c
SS
3156 if (overlay_debugging)
3157 if (section && section_is_overlay (section) &&
3158 pc_in_mapped_range (pc, section))
3159 return pc + section->lma - section->vma;
3160
3161 return pc;
3162}
3163
3164/* Function: overlay_mapped_address (PC, SECTION)
3165 Returns the address corresponding to PC in the mapped (runtime) range.
3166 May be the same as PC. */
3167
3168CORE_ADDR
fba45db2 3169overlay_mapped_address (CORE_ADDR pc, asection *section)
c906108c 3170{
fbd35540
MS
3171 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3172
c906108c
SS
3173 if (overlay_debugging)
3174 if (section && section_is_overlay (section) &&
3175 pc_in_unmapped_range (pc, section))
3176 return pc + section->vma - section->lma;
3177
3178 return pc;
3179}
3180
3181
5417f6dc 3182/* Function: symbol_overlayed_address
c906108c
SS
3183 Return one of two addresses (relative to the VMA or to the LMA),
3184 depending on whether the section is mapped or not. */
3185
c5aa993b 3186CORE_ADDR
fba45db2 3187symbol_overlayed_address (CORE_ADDR address, asection *section)
c906108c
SS
3188{
3189 if (overlay_debugging)
3190 {
3191 /* If the symbol has no section, just return its regular address. */
3192 if (section == 0)
3193 return address;
3194 /* If the symbol's section is not an overlay, just return its address */
3195 if (!section_is_overlay (section))
3196 return address;
3197 /* If the symbol's section is mapped, just return its address */
3198 if (section_is_mapped (section))
3199 return address;
3200 /*
3201 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3202 * then return its LOADED address rather than its vma address!!
3203 */
3204 return overlay_unmapped_address (address, section);
3205 }
3206 return address;
3207}
3208
5417f6dc 3209/* Function: find_pc_overlay (PC)
c906108c
SS
3210 Return the best-match overlay section for PC:
3211 If PC matches a mapped overlay section's VMA, return that section.
3212 Else if PC matches an unmapped section's VMA, return that section.
3213 Else if PC matches an unmapped section's LMA, return that section. */
3214
3215asection *
fba45db2 3216find_pc_overlay (CORE_ADDR pc)
c906108c 3217{
c5aa993b 3218 struct objfile *objfile;
c906108c
SS
3219 struct obj_section *osect, *best_match = NULL;
3220
3221 if (overlay_debugging)
3222 ALL_OBJSECTIONS (objfile, osect)
3223 if (section_is_overlay (osect->the_bfd_section))
c5aa993b
JM
3224 {
3225 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3226 {
3227 if (overlay_is_mapped (osect))
3228 return osect->the_bfd_section;
3229 else
3230 best_match = osect;
3231 }
3232 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3233 best_match = osect;
3234 }
c906108c
SS
3235 return best_match ? best_match->the_bfd_section : NULL;
3236}
3237
3238/* Function: find_pc_mapped_section (PC)
5417f6dc 3239 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3240 currently marked as MAPPED, return that section. Else return NULL. */
3241
3242asection *
fba45db2 3243find_pc_mapped_section (CORE_ADDR pc)
c906108c 3244{
c5aa993b 3245 struct objfile *objfile;
c906108c
SS
3246 struct obj_section *osect;
3247
3248 if (overlay_debugging)
3249 ALL_OBJSECTIONS (objfile, osect)
3250 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3251 overlay_is_mapped (osect))
c5aa993b 3252 return osect->the_bfd_section;
c906108c
SS
3253
3254 return NULL;
3255}
3256
3257/* Function: list_overlays_command
3258 Print a list of mapped sections and their PC ranges */
3259
3260void
fba45db2 3261list_overlays_command (char *args, int from_tty)
c906108c 3262{
c5aa993b
JM
3263 int nmapped = 0;
3264 struct objfile *objfile;
c906108c
SS
3265 struct obj_section *osect;
3266
3267 if (overlay_debugging)
3268 ALL_OBJSECTIONS (objfile, osect)
3269 if (overlay_is_mapped (osect))
c5aa993b
JM
3270 {
3271 const char *name;
3272 bfd_vma lma, vma;
3273 int size;
3274
3275 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3276 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3277 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3278 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3279
3280 printf_filtered ("Section %s, loaded at ", name);
66bf4b3a 3281 deprecated_print_address_numeric (lma, 1, gdb_stdout);
c5aa993b 3282 puts_filtered (" - ");
66bf4b3a 3283 deprecated_print_address_numeric (lma + size, 1, gdb_stdout);
c5aa993b 3284 printf_filtered (", mapped at ");
66bf4b3a 3285 deprecated_print_address_numeric (vma, 1, gdb_stdout);
c5aa993b 3286 puts_filtered (" - ");
66bf4b3a 3287 deprecated_print_address_numeric (vma + size, 1, gdb_stdout);
c5aa993b
JM
3288 puts_filtered ("\n");
3289
3290 nmapped++;
3291 }
c906108c 3292 if (nmapped == 0)
a3f17187 3293 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3294}
3295
3296/* Function: map_overlay_command
3297 Mark the named section as mapped (ie. residing at its VMA address). */
3298
3299void
fba45db2 3300map_overlay_command (char *args, int from_tty)
c906108c 3301{
c5aa993b
JM
3302 struct objfile *objfile, *objfile2;
3303 struct obj_section *sec, *sec2;
3304 asection *bfdsec;
c906108c
SS
3305
3306 if (!overlay_debugging)
8a3fe4f8 3307 error (_("\
515ad16c 3308Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3309the 'overlay manual' command."));
c906108c
SS
3310
3311 if (args == 0 || *args == 0)
8a3fe4f8 3312 error (_("Argument required: name of an overlay section"));
c906108c
SS
3313
3314 /* First, find a section matching the user supplied argument */
3315 ALL_OBJSECTIONS (objfile, sec)
3316 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3317 {
3318 /* Now, check to see if the section is an overlay. */
3319 bfdsec = sec->the_bfd_section;
3320 if (!section_is_overlay (bfdsec))
3321 continue; /* not an overlay section */
3322
3323 /* Mark the overlay as "mapped" */
3324 sec->ovly_mapped = 1;
3325
3326 /* Next, make a pass and unmap any sections that are
3327 overlapped by this new section: */
3328 ALL_OBJSECTIONS (objfile2, sec2)
9ec8e6a0
JB
3329 if (sec2->ovly_mapped
3330 && sec != sec2
3331 && sec->the_bfd_section != sec2->the_bfd_section
3332 && sections_overlap (sec->the_bfd_section,
3333 sec2->the_bfd_section))
c5aa993b
JM
3334 {
3335 if (info_verbose)
a3f17187 3336 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3337 bfd_section_name (objfile->obfd,
3338 sec2->the_bfd_section));
3339 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3340 }
3341 return;
3342 }
8a3fe4f8 3343 error (_("No overlay section called %s"), args);
c906108c
SS
3344}
3345
3346/* Function: unmap_overlay_command
5417f6dc 3347 Mark the overlay section as unmapped
c906108c
SS
3348 (ie. resident in its LMA address range, rather than the VMA range). */
3349
3350void
fba45db2 3351unmap_overlay_command (char *args, int from_tty)
c906108c 3352{
c5aa993b 3353 struct objfile *objfile;
c906108c
SS
3354 struct obj_section *sec;
3355
3356 if (!overlay_debugging)
8a3fe4f8 3357 error (_("\
515ad16c 3358Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3359the 'overlay manual' command."));
c906108c
SS
3360
3361 if (args == 0 || *args == 0)
8a3fe4f8 3362 error (_("Argument required: name of an overlay section"));
c906108c
SS
3363
3364 /* First, find a section matching the user supplied argument */
3365 ALL_OBJSECTIONS (objfile, sec)
3366 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3367 {
3368 if (!sec->ovly_mapped)
8a3fe4f8 3369 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3370 sec->ovly_mapped = 0;
3371 return;
3372 }
8a3fe4f8 3373 error (_("No overlay section called %s"), args);
c906108c
SS
3374}
3375
3376/* Function: overlay_auto_command
3377 A utility command to turn on overlay debugging.
3378 Possibly this should be done via a set/show command. */
3379
3380static void
fba45db2 3381overlay_auto_command (char *args, int from_tty)
c906108c 3382{
d874f1e2 3383 overlay_debugging = ovly_auto;
1900040c 3384 enable_overlay_breakpoints ();
c906108c 3385 if (info_verbose)
a3f17187 3386 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3387}
3388
3389/* Function: overlay_manual_command
3390 A utility command to turn on overlay debugging.
3391 Possibly this should be done via a set/show command. */
3392
3393static void
fba45db2 3394overlay_manual_command (char *args, int from_tty)
c906108c 3395{
d874f1e2 3396 overlay_debugging = ovly_on;
1900040c 3397 disable_overlay_breakpoints ();
c906108c 3398 if (info_verbose)
a3f17187 3399 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3400}
3401
3402/* Function: overlay_off_command
3403 A utility command to turn on overlay debugging.
3404 Possibly this should be done via a set/show command. */
3405
3406static void
fba45db2 3407overlay_off_command (char *args, int from_tty)
c906108c 3408{
d874f1e2 3409 overlay_debugging = ovly_off;
1900040c 3410 disable_overlay_breakpoints ();
c906108c 3411 if (info_verbose)
a3f17187 3412 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3413}
3414
3415static void
fba45db2 3416overlay_load_command (char *args, int from_tty)
c906108c
SS
3417{
3418 if (target_overlay_update)
3419 (*target_overlay_update) (NULL);
3420 else
8a3fe4f8 3421 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3422}
3423
3424/* Function: overlay_command
3425 A place-holder for a mis-typed command */
3426
3427/* Command list chain containing all defined "overlay" subcommands. */
3428struct cmd_list_element *overlaylist;
3429
3430static void
fba45db2 3431overlay_command (char *args, int from_tty)
c906108c 3432{
c5aa993b 3433 printf_unfiltered
c906108c
SS
3434 ("\"overlay\" must be followed by the name of an overlay command.\n");
3435 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3436}
3437
3438
3439/* Target Overlays for the "Simplest" overlay manager:
3440
5417f6dc
RM
3441 This is GDB's default target overlay layer. It works with the
3442 minimal overlay manager supplied as an example by Cygnus. The
3443 entry point is via a function pointer "target_overlay_update",
3444 so targets that use a different runtime overlay manager can
c906108c
SS
3445 substitute their own overlay_update function and take over the
3446 function pointer.
3447
3448 The overlay_update function pokes around in the target's data structures
3449 to see what overlays are mapped, and updates GDB's overlay mapping with
3450 this information.
3451
3452 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3453 unsigned _novlys; /# number of overlay sections #/
3454 unsigned _ovly_table[_novlys][4] = {
3455 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3456 {..., ..., ..., ...},
3457 }
3458 unsigned _novly_regions; /# number of overlay regions #/
3459 unsigned _ovly_region_table[_novly_regions][3] = {
3460 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3461 {..., ..., ...},
3462 }
c906108c
SS
3463 These functions will attempt to update GDB's mappedness state in the
3464 symbol section table, based on the target's mappedness state.
3465
3466 To do this, we keep a cached copy of the target's _ovly_table, and
3467 attempt to detect when the cached copy is invalidated. The main
3468 entry point is "simple_overlay_update(SECT), which looks up SECT in
3469 the cached table and re-reads only the entry for that section from
3470 the target (whenever possible).
3471 */
3472
3473/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3474static unsigned (*cache_ovly_table)[4] = 0;
c906108c 3475#if 0
c5aa993b 3476static unsigned (*cache_ovly_region_table)[3] = 0;
c906108c 3477#endif
c5aa993b 3478static unsigned cache_novlys = 0;
c906108c 3479#if 0
c5aa993b 3480static unsigned cache_novly_regions = 0;
c906108c
SS
3481#endif
3482static CORE_ADDR cache_ovly_table_base = 0;
3483#if 0
3484static CORE_ADDR cache_ovly_region_table_base = 0;
3485#endif
c5aa993b
JM
3486enum ovly_index
3487 {
3488 VMA, SIZE, LMA, MAPPED
3489 };
c906108c
SS
3490#define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3491
3492/* Throw away the cached copy of _ovly_table */
3493static void
fba45db2 3494simple_free_overlay_table (void)
c906108c
SS
3495{
3496 if (cache_ovly_table)
b8c9b27d 3497 xfree (cache_ovly_table);
c5aa993b 3498 cache_novlys = 0;
c906108c
SS
3499 cache_ovly_table = NULL;
3500 cache_ovly_table_base = 0;
3501}
3502
3503#if 0
3504/* Throw away the cached copy of _ovly_region_table */
3505static void
fba45db2 3506simple_free_overlay_region_table (void)
c906108c
SS
3507{
3508 if (cache_ovly_region_table)
b8c9b27d 3509 xfree (cache_ovly_region_table);
c5aa993b 3510 cache_novly_regions = 0;
c906108c
SS
3511 cache_ovly_region_table = NULL;
3512 cache_ovly_region_table_base = 0;
3513}
3514#endif
3515
3516/* Read an array of ints from the target into a local buffer.
3517 Convert to host order. int LEN is number of ints */
3518static void
fba45db2 3519read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
c906108c 3520{
34c0bd93 3521 /* FIXME (alloca): Not safe if array is very large. */
777ea8f1 3522 gdb_byte *buf = alloca (len * TARGET_LONG_BYTES);
c5aa993b 3523 int i;
c906108c
SS
3524
3525 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3526 for (i = 0; i < len; i++)
c5aa993b 3527 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
c906108c
SS
3528 TARGET_LONG_BYTES);
3529}
3530
3531/* Find and grab a copy of the target _ovly_table
3532 (and _novlys, which is needed for the table's size) */
c5aa993b 3533static int
fba45db2 3534simple_read_overlay_table (void)
c906108c 3535{
0d43edd1 3536 struct minimal_symbol *novlys_msym, *ovly_table_msym;
c906108c
SS
3537
3538 simple_free_overlay_table ();
9b27852e 3539 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3540 if (! novlys_msym)
c906108c 3541 {
8a3fe4f8 3542 error (_("Error reading inferior's overlay table: "
0d43edd1 3543 "couldn't find `_novlys' variable\n"
8a3fe4f8 3544 "in inferior. Use `overlay manual' mode."));
0d43edd1 3545 return 0;
c906108c 3546 }
0d43edd1 3547
9b27852e 3548 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3549 if (! ovly_table_msym)
3550 {
8a3fe4f8 3551 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3552 "`_ovly_table' array\n"
8a3fe4f8 3553 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3554 return 0;
3555 }
3556
3557 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3558 cache_ovly_table
3559 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3560 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3561 read_target_long_array (cache_ovly_table_base,
777ea8f1 3562 (unsigned int *) cache_ovly_table,
0d43edd1
JB
3563 cache_novlys * 4);
3564
c5aa993b 3565 return 1; /* SUCCESS */
c906108c
SS
3566}
3567
3568#if 0
3569/* Find and grab a copy of the target _ovly_region_table
3570 (and _novly_regions, which is needed for the table's size) */
c5aa993b 3571static int
fba45db2 3572simple_read_overlay_region_table (void)
c906108c
SS
3573{
3574 struct minimal_symbol *msym;
3575
3576 simple_free_overlay_region_table ();
9b27852e 3577 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
c906108c
SS
3578 if (msym != NULL)
3579 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
c5aa993b
JM
3580 else
3581 return 0; /* failure */
c906108c
SS
3582 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3583 if (cache_ovly_region_table != NULL)
3584 {
9b27852e 3585 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
c906108c
SS
3586 if (msym != NULL)
3587 {
3588 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
c5aa993b 3589 read_target_long_array (cache_ovly_region_table_base,
777ea8f1 3590 (unsigned int *) cache_ovly_region_table,
c906108c
SS
3591 cache_novly_regions * 3);
3592 }
c5aa993b
JM
3593 else
3594 return 0; /* failure */
c906108c 3595 }
c5aa993b
JM
3596 else
3597 return 0; /* failure */
3598 return 1; /* SUCCESS */
c906108c
SS
3599}
3600#endif
3601
5417f6dc 3602/* Function: simple_overlay_update_1
c906108c
SS
3603 A helper function for simple_overlay_update. Assuming a cached copy
3604 of _ovly_table exists, look through it to find an entry whose vma,
3605 lma and size match those of OSECT. Re-read the entry and make sure
3606 it still matches OSECT (else the table may no longer be valid).
3607 Set OSECT's mapped state to match the entry. Return: 1 for
3608 success, 0 for failure. */
3609
3610static int
fba45db2 3611simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3612{
3613 int i, size;
fbd35540
MS
3614 bfd *obfd = osect->objfile->obfd;
3615 asection *bsect = osect->the_bfd_section;
c906108c 3616
2c500098 3617 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3618 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3619 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3620 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3621 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3622 {
3623 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
777ea8f1 3624 (unsigned int *) cache_ovly_table[i], 4);
fbd35540
MS
3625 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3626 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3627 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3628 {
3629 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3630 return 1;
3631 }
fbd35540 3632 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3633 return 0;
3634 }
3635 return 0;
3636}
3637
3638/* Function: simple_overlay_update
5417f6dc
RM
3639 If OSECT is NULL, then update all sections' mapped state
3640 (after re-reading the entire target _ovly_table).
3641 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3642 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3643 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3644 re-read the entire cache, and go ahead and update all sections. */
3645
3646static void
fba45db2 3647simple_overlay_update (struct obj_section *osect)
c906108c 3648{
c5aa993b 3649 struct objfile *objfile;
c906108c
SS
3650
3651 /* Were we given an osect to look up? NULL means do all of them. */
3652 if (osect)
3653 /* Have we got a cached copy of the target's overlay table? */
3654 if (cache_ovly_table != NULL)
3655 /* Does its cached location match what's currently in the symtab? */
c5aa993b 3656 if (cache_ovly_table_base ==
9b27852e 3657 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
c906108c
SS
3658 /* Then go ahead and try to look up this single section in the cache */
3659 if (simple_overlay_update_1 (osect))
3660 /* Found it! We're done. */
3661 return;
3662
3663 /* Cached table no good: need to read the entire table anew.
3664 Or else we want all the sections, in which case it's actually
3665 more efficient to read the whole table in one block anyway. */
3666
0d43edd1
JB
3667 if (! simple_read_overlay_table ())
3668 return;
3669
c906108c
SS
3670 /* Now may as well update all sections, even if only one was requested. */
3671 ALL_OBJSECTIONS (objfile, osect)
3672 if (section_is_overlay (osect->the_bfd_section))
c5aa993b
JM
3673 {
3674 int i, size;
fbd35540
MS
3675 bfd *obfd = osect->objfile->obfd;
3676 asection *bsect = osect->the_bfd_section;
c5aa993b 3677
2c500098 3678 size = bfd_get_section_size (bsect);
c5aa993b 3679 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3680 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3681 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3682 /* && cache_ovly_table[i][SIZE] == size */ )
3683 { /* obj_section matches i'th entry in ovly_table */
c5aa993b
JM
3684 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3685 break; /* finished with inner for loop: break out */
3686 }
3687 }
c906108c
SS
3688}
3689
086df311
DJ
3690/* Set the output sections and output offsets for section SECTP in
3691 ABFD. The relocation code in BFD will read these offsets, so we
3692 need to be sure they're initialized. We map each section to itself,
3693 with no offset; this means that SECTP->vma will be honored. */
3694
3695static void
3696symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3697{
3698 sectp->output_section = sectp;
3699 sectp->output_offset = 0;
3700}
3701
3702/* Relocate the contents of a debug section SECTP in ABFD. The
3703 contents are stored in BUF if it is non-NULL, or returned in a
3704 malloc'd buffer otherwise.
3705
3706 For some platforms and debug info formats, shared libraries contain
3707 relocations against the debug sections (particularly for DWARF-2;
3708 one affected platform is PowerPC GNU/Linux, although it depends on
3709 the version of the linker in use). Also, ELF object files naturally
3710 have unresolved relocations for their debug sections. We need to apply
3711 the relocations in order to get the locations of symbols correct. */
3712
3713bfd_byte *
3714symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3715{
3716 /* We're only interested in debugging sections with relocation
3717 information. */
3718 if ((sectp->flags & SEC_RELOC) == 0)
3719 return NULL;
3720 if ((sectp->flags & SEC_DEBUGGING) == 0)
3721 return NULL;
3722
3723 /* We will handle section offsets properly elsewhere, so relocate as if
3724 all sections begin at 0. */
3725 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3726
97606a13 3727 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
086df311 3728}
c906108c
SS
3729
3730void
fba45db2 3731_initialize_symfile (void)
c906108c
SS
3732{
3733 struct cmd_list_element *c;
c5aa993b 3734
1a966eab
AC
3735 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3736Load symbol table from executable file FILE.\n\
c906108c 3737The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3738to execute."), &cmdlist);
5ba2abeb 3739 set_cmd_completer (c, filename_completer);
c906108c 3740
1a966eab 3741 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3742Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
1a966eab 3743Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
2acceee2 3744ADDR is the starting address of the file's text.\n\
db162d44
EZ
3745The optional arguments are section-name section-address pairs and\n\
3746should be specified if the data and bss segments are not contiguous\n\
1a966eab 3747with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3748 &cmdlist);
5ba2abeb 3749 set_cmd_completer (c, filename_completer);
c906108c
SS
3750
3751 c = add_cmd ("add-shared-symbol-files", class_files,
1a966eab
AC
3752 add_shared_symbol_files_command, _("\
3753Load the symbols from shared objects in the dynamic linker's link map."),
c5aa993b 3754 &cmdlist);
c906108c
SS
3755 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3756 &cmdlist);
3757
1a966eab
AC
3758 c = add_cmd ("load", class_files, load_command, _("\
3759Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
3760for access from GDB.\n\
3761A load OFFSET may also be given."), &cmdlist);
5ba2abeb 3762 set_cmd_completer (c, filename_completer);
c906108c 3763
5bf193a2
AC
3764 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3765 &symbol_reloading, _("\
3766Set dynamic symbol table reloading multiple times in one run."), _("\
3767Show dynamic symbol table reloading multiple times in one run."), NULL,
3768 NULL,
920d2a44 3769 show_symbol_reloading,
5bf193a2 3770 &setlist, &showlist);
c906108c 3771
c5aa993b 3772 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3773 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3774 "overlay ", 0, &cmdlist);
3775
3776 add_com_alias ("ovly", "overlay", class_alias, 1);
3777 add_com_alias ("ov", "overlay", class_alias, 1);
3778
c5aa993b 3779 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3780 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3781
c5aa993b 3782 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3783 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3784
c5aa993b 3785 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3786 _("List mappings of overlay sections."), &overlaylist);
c906108c 3787
c5aa993b 3788 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3789 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3790 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3791 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3792 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3793 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3794 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3795 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3796
3797 /* Filename extension to source language lookup table: */
3798 init_filename_language_table ();
26c41df3
AC
3799 add_setshow_string_noescape_cmd ("extension-language", class_files,
3800 &ext_args, _("\
3801Set mapping between filename extension and source language."), _("\
3802Show mapping between filename extension and source language."), _("\
3803Usage: set extension-language .foo bar"),
3804 set_ext_lang_command,
920d2a44 3805 show_ext_args,
26c41df3 3806 &setlist, &showlist);
c906108c 3807
c5aa993b 3808 add_info ("extensions", info_ext_lang_command,
1bedd215 3809 _("All filename extensions associated with a source language."));
917317f4 3810
5b5d99cf 3811 debug_file_directory = xstrdup (DEBUGDIR);
525226b5
AC
3812 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3813 &debug_file_directory, _("\
3814Set the directory where separate debug symbols are searched for."), _("\
3815Show the directory where separate debug symbols are searched for."), _("\
3816Separate debug symbols are first searched for in the same\n\
3817directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3818and lastly at the path of the directory of the binary with\n\
3819the global debug-file directory prepended."),
3820 NULL,
920d2a44 3821 show_debug_file_directory,
525226b5 3822 &setlist, &showlist);
c906108c 3823}
This page took 0.935445 seconds and 4 git commands to generate.