daily update
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
28e7fd62 3 Copyright (C) 1990-2013 Free Software Foundation, Inc.
8926118c 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
086df311 24#include "bfdlink.h"
c906108c
SS
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "target.h"
30#include "value.h"
31#include "symfile.h"
32#include "objfiles.h"
0378c332 33#include "source.h"
c906108c
SS
34#include "gdbcmd.h"
35#include "breakpoint.h"
36#include "language.h"
37#include "complaints.h"
38#include "demangle.h"
fb14de7b
UW
39#include "inferior.h"
40#include "regcache.h"
5b5d99cf 41#include "filenames.h" /* for DOSish file names */
c906108c 42#include "gdb-stabs.h"
04ea0df1 43#include "gdb_obstack.h"
d75b5104 44#include "completer.h"
af5f3db6 45#include "bcache.h"
2de7ced7 46#include "hashtab.h"
dbda9972 47#include "readline/readline.h"
7e8580c1 48#include "gdb_assert.h"
fe898f56 49#include "block.h"
ea53e89f 50#include "observer.h"
c1bd25fd 51#include "exec.h"
9bdcbae7 52#include "parser-defs.h"
8756216b 53#include "varobj.h"
77069918 54#include "elf-bfd.h"
e85a822c 55#include "solib.h"
f1838a98 56#include "remote.h"
1bfeeb0f 57#include "stack.h"
cbb099e8 58#include "gdb_bfd.h"
529480d0 59#include "cli/cli-utils.h"
c906108c 60
c906108c
SS
61#include <sys/types.h>
62#include <fcntl.h>
63#include "gdb_string.h"
64#include "gdb_stat.h"
65#include <ctype.h>
66#include <time.h>
2b71414d 67#include <sys/time.h>
c906108c 68
ccefe4c4 69#include "psymtab.h"
c906108c 70
3e43a32a
MS
71int (*deprecated_ui_load_progress_hook) (const char *section,
72 unsigned long num);
9a4105ab 73void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
74 unsigned long section_sent,
75 unsigned long section_size,
76 unsigned long total_sent,
c2d11a7d 77 unsigned long total_size);
769d7dc4
AC
78void (*deprecated_pre_add_symbol_hook) (const char *);
79void (*deprecated_post_add_symbol_hook) (void);
c906108c 80
74b7792f
AC
81static void clear_symtab_users_cleanup (void *ignore);
82
c378eb4e
MS
83/* Global variables owned by this file. */
84int readnow_symbol_files; /* Read full symbols immediately. */
c906108c 85
c378eb4e 86/* Functions this file defines. */
c906108c 87
a14ed312 88static void load_command (char *, int);
c906108c 89
d7db6da9
FN
90static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
91
a14ed312 92static void add_symbol_file_command (char *, int);
c906108c 93
00b5771c 94static const struct sym_fns *find_sym_fns (bfd *);
c906108c 95
a14ed312 96static void decrement_reading_symtab (void *);
c906108c 97
a14ed312 98static void overlay_invalidate_all (void);
c906108c 99
a14ed312 100static void overlay_auto_command (char *, int);
c906108c 101
a14ed312 102static void overlay_manual_command (char *, int);
c906108c 103
a14ed312 104static void overlay_off_command (char *, int);
c906108c 105
a14ed312 106static void overlay_load_command (char *, int);
c906108c 107
a14ed312 108static void overlay_command (char *, int);
c906108c 109
a14ed312 110static void simple_free_overlay_table (void);
c906108c 111
e17a4113
UW
112static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
113 enum bfd_endian);
c906108c 114
a14ed312 115static int simple_read_overlay_table (void);
c906108c 116
a14ed312 117static int simple_overlay_update_1 (struct obj_section *);
c906108c 118
a14ed312 119static void add_filename_language (char *ext, enum language lang);
392a587b 120
a14ed312 121static void info_ext_lang_command (char *args, int from_tty);
392a587b 122
a14ed312 123static void init_filename_language_table (void);
392a587b 124
31d99776
DJ
125static void symfile_find_segment_sections (struct objfile *objfile);
126
a14ed312 127void _initialize_symfile (void);
c906108c
SS
128
129/* List of all available sym_fns. On gdb startup, each object file reader
130 calls add_symtab_fns() to register information on each format it is
c378eb4e 131 prepared to read. */
c906108c 132
00b5771c
TT
133typedef const struct sym_fns *sym_fns_ptr;
134DEF_VEC_P (sym_fns_ptr);
135
136static VEC (sym_fns_ptr) *symtab_fns = NULL;
c906108c 137
b7209cb4
FF
138/* If non-zero, shared library symbols will be added automatically
139 when the inferior is created, new libraries are loaded, or when
140 attaching to the inferior. This is almost always what users will
141 want to have happen; but for very large programs, the startup time
142 will be excessive, and so if this is a problem, the user can clear
143 this flag and then add the shared library symbols as needed. Note
144 that there is a potential for confusion, since if the shared
c906108c 145 library symbols are not loaded, commands like "info fun" will *not*
0d14a781 146 report all the functions that are actually present. */
c906108c
SS
147
148int auto_solib_add = 1;
c906108c 149\f
c5aa993b 150
0d14a781 151/* True if we are reading a symbol table. */
c906108c
SS
152
153int currently_reading_symtab = 0;
154
155static void
fba45db2 156decrement_reading_symtab (void *dummy)
c906108c
SS
157{
158 currently_reading_symtab--;
2cb9c859 159 gdb_assert (currently_reading_symtab >= 0);
c906108c
SS
160}
161
ccefe4c4
TT
162/* Increment currently_reading_symtab and return a cleanup that can be
163 used to decrement it. */
3b7bacac 164
ccefe4c4
TT
165struct cleanup *
166increment_reading_symtab (void)
c906108c 167{
ccefe4c4 168 ++currently_reading_symtab;
2cb9c859 169 gdb_assert (currently_reading_symtab > 0);
ccefe4c4 170 return make_cleanup (decrement_reading_symtab, NULL);
c906108c
SS
171}
172
5417f6dc
RM
173/* Remember the lowest-addressed loadable section we've seen.
174 This function is called via bfd_map_over_sections.
c906108c
SS
175
176 In case of equal vmas, the section with the largest size becomes the
177 lowest-addressed loadable section.
178
179 If the vmas and sizes are equal, the last section is considered the
180 lowest-addressed loadable section. */
181
182void
4efb68b1 183find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 184{
c5aa993b 185 asection **lowest = (asection **) obj;
c906108c 186
eb73e134 187 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
188 return;
189 if (!*lowest)
190 *lowest = sect; /* First loadable section */
191 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
192 *lowest = sect; /* A lower loadable section */
193 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
194 && (bfd_section_size (abfd, (*lowest))
195 <= bfd_section_size (abfd, sect)))
196 *lowest = sect;
197}
198
d76488d8
TT
199/* Create a new section_addr_info, with room for NUM_SECTIONS. The
200 new object's 'num_sections' field is set to 0; it must be updated
201 by the caller. */
a39a16c4
MM
202
203struct section_addr_info *
204alloc_section_addr_info (size_t num_sections)
205{
206 struct section_addr_info *sap;
207 size_t size;
208
209 size = (sizeof (struct section_addr_info)
210 + sizeof (struct other_sections) * (num_sections - 1));
211 sap = (struct section_addr_info *) xmalloc (size);
212 memset (sap, 0, size);
a39a16c4
MM
213
214 return sap;
215}
62557bbc
KB
216
217/* Build (allocate and populate) a section_addr_info struct from
c378eb4e 218 an existing section table. */
62557bbc
KB
219
220extern struct section_addr_info *
0542c86d
PA
221build_section_addr_info_from_section_table (const struct target_section *start,
222 const struct target_section *end)
62557bbc
KB
223{
224 struct section_addr_info *sap;
0542c86d 225 const struct target_section *stp;
62557bbc
KB
226 int oidx;
227
a39a16c4 228 sap = alloc_section_addr_info (end - start);
62557bbc
KB
229
230 for (stp = start, oidx = 0; stp != end; stp++)
231 {
2b2848e2
DE
232 struct bfd_section *asect = stp->the_bfd_section;
233 bfd *abfd = asect->owner;
234
235 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 236 && oidx < end - start)
62557bbc
KB
237 {
238 sap->other[oidx].addr = stp->addr;
2b2848e2
DE
239 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
240 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
62557bbc
KB
241 oidx++;
242 }
243 }
244
d76488d8
TT
245 sap->num_sections = oidx;
246
62557bbc
KB
247 return sap;
248}
249
82ccf5a5 250/* Create a section_addr_info from section offsets in ABFD. */
089b4803 251
82ccf5a5
JK
252static struct section_addr_info *
253build_section_addr_info_from_bfd (bfd *abfd)
089b4803
TG
254{
255 struct section_addr_info *sap;
256 int i;
257 struct bfd_section *sec;
258
82ccf5a5
JK
259 sap = alloc_section_addr_info (bfd_count_sections (abfd));
260 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
261 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
012836ea 262 {
82ccf5a5
JK
263 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
264 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
65cf3563 265 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
012836ea
JK
266 i++;
267 }
d76488d8
TT
268
269 sap->num_sections = i;
270
089b4803
TG
271 return sap;
272}
273
82ccf5a5
JK
274/* Create a section_addr_info from section offsets in OBJFILE. */
275
276struct section_addr_info *
277build_section_addr_info_from_objfile (const struct objfile *objfile)
278{
279 struct section_addr_info *sap;
280 int i;
281
282 /* Before reread_symbols gets rewritten it is not safe to call:
283 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
284 */
285 sap = build_section_addr_info_from_bfd (objfile->obfd);
d76488d8 286 for (i = 0; i < sap->num_sections; i++)
82ccf5a5
JK
287 {
288 int sectindex = sap->other[i].sectindex;
289
290 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
291 }
292 return sap;
293}
62557bbc 294
c378eb4e 295/* Free all memory allocated by build_section_addr_info_from_section_table. */
62557bbc
KB
296
297extern void
298free_section_addr_info (struct section_addr_info *sap)
299{
300 int idx;
301
a39a16c4 302 for (idx = 0; idx < sap->num_sections; idx++)
d76488d8 303 xfree (sap->other[idx].name);
b8c9b27d 304 xfree (sap);
62557bbc
KB
305}
306
e8289572 307/* Initialize OBJFILE's sect_index_* members. */
3b7bacac 308
e8289572
JB
309static void
310init_objfile_sect_indices (struct objfile *objfile)
c906108c 311{
e8289572 312 asection *sect;
c906108c 313 int i;
5417f6dc 314
b8fbeb18 315 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 316 if (sect)
b8fbeb18
EZ
317 objfile->sect_index_text = sect->index;
318
319 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 320 if (sect)
b8fbeb18
EZ
321 objfile->sect_index_data = sect->index;
322
323 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 324 if (sect)
b8fbeb18
EZ
325 objfile->sect_index_bss = sect->index;
326
327 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 328 if (sect)
b8fbeb18
EZ
329 objfile->sect_index_rodata = sect->index;
330
bbcd32ad
FF
331 /* This is where things get really weird... We MUST have valid
332 indices for the various sect_index_* members or gdb will abort.
333 So if for example, there is no ".text" section, we have to
31d99776
DJ
334 accomodate that. First, check for a file with the standard
335 one or two segments. */
336
337 symfile_find_segment_sections (objfile);
338
339 /* Except when explicitly adding symbol files at some address,
340 section_offsets contains nothing but zeros, so it doesn't matter
341 which slot in section_offsets the individual sect_index_* members
342 index into. So if they are all zero, it is safe to just point
343 all the currently uninitialized indices to the first slot. But
344 beware: if this is the main executable, it may be relocated
345 later, e.g. by the remote qOffsets packet, and then this will
346 be wrong! That's why we try segments first. */
bbcd32ad
FF
347
348 for (i = 0; i < objfile->num_sections; i++)
349 {
350 if (ANOFFSET (objfile->section_offsets, i) != 0)
351 {
352 break;
353 }
354 }
355 if (i == objfile->num_sections)
356 {
357 if (objfile->sect_index_text == -1)
358 objfile->sect_index_text = 0;
359 if (objfile->sect_index_data == -1)
360 objfile->sect_index_data = 0;
361 if (objfile->sect_index_bss == -1)
362 objfile->sect_index_bss = 0;
363 if (objfile->sect_index_rodata == -1)
364 objfile->sect_index_rodata = 0;
365 }
b8fbeb18 366}
c906108c 367
c1bd25fd
DJ
368/* The arguments to place_section. */
369
370struct place_section_arg
371{
372 struct section_offsets *offsets;
373 CORE_ADDR lowest;
374};
375
376/* Find a unique offset to use for loadable section SECT if
377 the user did not provide an offset. */
378
2c0b251b 379static void
c1bd25fd
DJ
380place_section (bfd *abfd, asection *sect, void *obj)
381{
382 struct place_section_arg *arg = obj;
383 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
384 int done;
3bd72c6f 385 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 386
2711e456
DJ
387 /* We are only interested in allocated sections. */
388 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
389 return;
390
391 /* If the user specified an offset, honor it. */
65cf3563 392 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
c1bd25fd
DJ
393 return;
394
395 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
396 start_addr = (arg->lowest + align - 1) & -align;
397
c1bd25fd
DJ
398 do {
399 asection *cur_sec;
c1bd25fd 400
c1bd25fd
DJ
401 done = 1;
402
403 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
404 {
405 int indx = cur_sec->index;
c1bd25fd
DJ
406
407 /* We don't need to compare against ourself. */
408 if (cur_sec == sect)
409 continue;
410
2711e456
DJ
411 /* We can only conflict with allocated sections. */
412 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
413 continue;
414
415 /* If the section offset is 0, either the section has not been placed
416 yet, or it was the lowest section placed (in which case LOWEST
417 will be past its end). */
418 if (offsets[indx] == 0)
419 continue;
420
421 /* If this section would overlap us, then we must move up. */
422 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
423 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
424 {
425 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
426 start_addr = (start_addr + align - 1) & -align;
427 done = 0;
3bd72c6f 428 break;
c1bd25fd
DJ
429 }
430
431 /* Otherwise, we appear to be OK. So far. */
432 }
433 }
434 while (!done);
435
65cf3563 436 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
c1bd25fd 437 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 438}
e8289572 439
75242ef4
JK
440/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
441 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
442 entries. */
e8289572
JB
443
444void
75242ef4
JK
445relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
446 int num_sections,
3189cb12 447 const struct section_addr_info *addrs)
e8289572
JB
448{
449 int i;
450
75242ef4 451 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 452
c378eb4e 453 /* Now calculate offsets for section that were specified by the caller. */
d76488d8 454 for (i = 0; i < addrs->num_sections; i++)
e8289572 455 {
3189cb12 456 const struct other_sections *osp;
e8289572 457
75242ef4 458 osp = &addrs->other[i];
5488dafb 459 if (osp->sectindex == -1)
e8289572
JB
460 continue;
461
c378eb4e 462 /* Record all sections in offsets. */
e8289572 463 /* The section_offsets in the objfile are here filled in using
c378eb4e 464 the BFD index. */
75242ef4
JK
465 section_offsets->offsets[osp->sectindex] = osp->addr;
466 }
467}
468
1276c759
JK
469/* Transform section name S for a name comparison. prelink can split section
470 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
471 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
472 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
473 (`.sbss') section has invalid (increased) virtual address. */
474
475static const char *
476addr_section_name (const char *s)
477{
478 if (strcmp (s, ".dynbss") == 0)
479 return ".bss";
480 if (strcmp (s, ".sdynbss") == 0)
481 return ".sbss";
482
483 return s;
484}
485
82ccf5a5
JK
486/* qsort comparator for addrs_section_sort. Sort entries in ascending order by
487 their (name, sectindex) pair. sectindex makes the sort by name stable. */
488
489static int
490addrs_section_compar (const void *ap, const void *bp)
491{
492 const struct other_sections *a = *((struct other_sections **) ap);
493 const struct other_sections *b = *((struct other_sections **) bp);
22e048c9 494 int retval;
82ccf5a5 495
1276c759 496 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
82ccf5a5
JK
497 if (retval)
498 return retval;
499
5488dafb 500 return a->sectindex - b->sectindex;
82ccf5a5
JK
501}
502
503/* Provide sorted array of pointers to sections of ADDRS. The array is
504 terminated by NULL. Caller is responsible to call xfree for it. */
505
506static struct other_sections **
507addrs_section_sort (struct section_addr_info *addrs)
508{
509 struct other_sections **array;
510 int i;
511
512 /* `+ 1' for the NULL terminator. */
513 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
d76488d8 514 for (i = 0; i < addrs->num_sections; i++)
82ccf5a5
JK
515 array[i] = &addrs->other[i];
516 array[i] = NULL;
517
518 qsort (array, i, sizeof (*array), addrs_section_compar);
519
520 return array;
521}
522
75242ef4 523/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
524 also SECTINDEXes specific to ABFD there. This function can be used to
525 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
526
527void
528addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
529{
530 asection *lower_sect;
75242ef4
JK
531 CORE_ADDR lower_offset;
532 int i;
82ccf5a5
JK
533 struct cleanup *my_cleanup;
534 struct section_addr_info *abfd_addrs;
535 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
536 struct other_sections **addrs_to_abfd_addrs;
75242ef4
JK
537
538 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
539 continguous sections. */
540 lower_sect = NULL;
541 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
542 if (lower_sect == NULL)
543 {
544 warning (_("no loadable sections found in added symbol-file %s"),
545 bfd_get_filename (abfd));
546 lower_offset = 0;
e8289572 547 }
75242ef4
JK
548 else
549 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
550
82ccf5a5
JK
551 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
552 in ABFD. Section names are not unique - there can be multiple sections of
553 the same name. Also the sections of the same name do not have to be
554 adjacent to each other. Some sections may be present only in one of the
555 files. Even sections present in both files do not have to be in the same
556 order.
557
558 Use stable sort by name for the sections in both files. Then linearly
559 scan both lists matching as most of the entries as possible. */
560
561 addrs_sorted = addrs_section_sort (addrs);
562 my_cleanup = make_cleanup (xfree, addrs_sorted);
563
564 abfd_addrs = build_section_addr_info_from_bfd (abfd);
565 make_cleanup_free_section_addr_info (abfd_addrs);
566 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
567 make_cleanup (xfree, abfd_addrs_sorted);
568
c378eb4e
MS
569 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
570 ABFD_ADDRS_SORTED. */
82ccf5a5
JK
571
572 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
573 * addrs->num_sections);
574 make_cleanup (xfree, addrs_to_abfd_addrs);
575
576 while (*addrs_sorted)
577 {
1276c759 578 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
82ccf5a5
JK
579
580 while (*abfd_addrs_sorted
1276c759
JK
581 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
582 sect_name) < 0)
82ccf5a5
JK
583 abfd_addrs_sorted++;
584
585 if (*abfd_addrs_sorted
1276c759
JK
586 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
587 sect_name) == 0)
82ccf5a5
JK
588 {
589 int index_in_addrs;
590
591 /* Make the found item directly addressable from ADDRS. */
592 index_in_addrs = *addrs_sorted - addrs->other;
593 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
594 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
595
596 /* Never use the same ABFD entry twice. */
597 abfd_addrs_sorted++;
598 }
599
600 addrs_sorted++;
601 }
602
75242ef4
JK
603 /* Calculate offsets for the loadable sections.
604 FIXME! Sections must be in order of increasing loadable section
605 so that contiguous sections can use the lower-offset!!!
606
607 Adjust offsets if the segments are not contiguous.
608 If the section is contiguous, its offset should be set to
609 the offset of the highest loadable section lower than it
610 (the loadable section directly below it in memory).
611 this_offset = lower_offset = lower_addr - lower_orig_addr */
612
d76488d8 613 for (i = 0; i < addrs->num_sections; i++)
75242ef4 614 {
82ccf5a5 615 struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
616
617 if (sect)
75242ef4 618 {
c378eb4e 619 /* This is the index used by BFD. */
82ccf5a5 620 addrs->other[i].sectindex = sect->sectindex;
672d9c23
JK
621
622 if (addrs->other[i].addr != 0)
75242ef4 623 {
82ccf5a5 624 addrs->other[i].addr -= sect->addr;
75242ef4 625 lower_offset = addrs->other[i].addr;
75242ef4
JK
626 }
627 else
672d9c23 628 addrs->other[i].addr = lower_offset;
75242ef4
JK
629 }
630 else
672d9c23 631 {
1276c759
JK
632 /* addr_section_name transformation is not used for SECT_NAME. */
633 const char *sect_name = addrs->other[i].name;
634
b0fcb67f
JK
635 /* This section does not exist in ABFD, which is normally
636 unexpected and we want to issue a warning.
637
4d9743af
JK
638 However, the ELF prelinker does create a few sections which are
639 marked in the main executable as loadable (they are loaded in
640 memory from the DYNAMIC segment) and yet are not present in
641 separate debug info files. This is fine, and should not cause
642 a warning. Shared libraries contain just the section
643 ".gnu.liblist" but it is not marked as loadable there. There is
644 no other way to identify them than by their name as the sections
1276c759
JK
645 created by prelink have no special flags.
646
647 For the sections `.bss' and `.sbss' see addr_section_name. */
b0fcb67f
JK
648
649 if (!(strcmp (sect_name, ".gnu.liblist") == 0
4d9743af 650 || strcmp (sect_name, ".gnu.conflict") == 0
1276c759
JK
651 || (strcmp (sect_name, ".bss") == 0
652 && i > 0
653 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
654 && addrs_to_abfd_addrs[i - 1] != NULL)
655 || (strcmp (sect_name, ".sbss") == 0
656 && i > 0
657 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
658 && addrs_to_abfd_addrs[i - 1] != NULL)))
b0fcb67f
JK
659 warning (_("section %s not found in %s"), sect_name,
660 bfd_get_filename (abfd));
661
672d9c23 662 addrs->other[i].addr = 0;
5488dafb 663 addrs->other[i].sectindex = -1;
672d9c23 664 }
75242ef4 665 }
82ccf5a5
JK
666
667 do_cleanups (my_cleanup);
75242ef4
JK
668}
669
670/* Parse the user's idea of an offset for dynamic linking, into our idea
671 of how to represent it for fast symbol reading. This is the default
672 version of the sym_fns.sym_offsets function for symbol readers that
673 don't need to do anything special. It allocates a section_offsets table
674 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
675
676void
677default_symfile_offsets (struct objfile *objfile,
3189cb12 678 const struct section_addr_info *addrs)
75242ef4 679{
d445b2f6 680 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
75242ef4
JK
681 objfile->section_offsets = (struct section_offsets *)
682 obstack_alloc (&objfile->objfile_obstack,
683 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
684 relative_addr_info_to_section_offsets (objfile->section_offsets,
685 objfile->num_sections, addrs);
e8289572 686
c1bd25fd
DJ
687 /* For relocatable files, all loadable sections will start at zero.
688 The zero is meaningless, so try to pick arbitrary addresses such
689 that no loadable sections overlap. This algorithm is quadratic,
690 but the number of sections in a single object file is generally
691 small. */
692 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
693 {
694 struct place_section_arg arg;
2711e456
DJ
695 bfd *abfd = objfile->obfd;
696 asection *cur_sec;
2711e456
DJ
697
698 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
699 /* We do not expect this to happen; just skip this step if the
700 relocatable file has a section with an assigned VMA. */
701 if (bfd_section_vma (abfd, cur_sec) != 0)
702 break;
703
704 if (cur_sec == NULL)
705 {
706 CORE_ADDR *offsets = objfile->section_offsets->offsets;
707
708 /* Pick non-overlapping offsets for sections the user did not
709 place explicitly. */
710 arg.offsets = objfile->section_offsets;
711 arg.lowest = 0;
712 bfd_map_over_sections (objfile->obfd, place_section, &arg);
713
714 /* Correctly filling in the section offsets is not quite
715 enough. Relocatable files have two properties that
716 (most) shared objects do not:
717
718 - Their debug information will contain relocations. Some
719 shared libraries do also, but many do not, so this can not
720 be assumed.
721
722 - If there are multiple code sections they will be loaded
723 at different relative addresses in memory than they are
724 in the objfile, since all sections in the file will start
725 at address zero.
726
727 Because GDB has very limited ability to map from an
728 address in debug info to the correct code section,
729 it relies on adding SECT_OFF_TEXT to things which might be
730 code. If we clear all the section offsets, and set the
731 section VMAs instead, then symfile_relocate_debug_section
732 will return meaningful debug information pointing at the
733 correct sections.
734
735 GDB has too many different data structures for section
736 addresses - a bfd, objfile, and so_list all have section
737 tables, as does exec_ops. Some of these could probably
738 be eliminated. */
739
740 for (cur_sec = abfd->sections; cur_sec != NULL;
741 cur_sec = cur_sec->next)
742 {
743 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
744 continue;
745
746 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
3e43a32a
MS
747 exec_set_section_address (bfd_get_filename (abfd),
748 cur_sec->index,
30510692 749 offsets[cur_sec->index]);
2711e456
DJ
750 offsets[cur_sec->index] = 0;
751 }
752 }
c1bd25fd
DJ
753 }
754
e8289572 755 /* Remember the bfd indexes for the .text, .data, .bss and
c378eb4e 756 .rodata sections. */
e8289572
JB
757 init_objfile_sect_indices (objfile);
758}
759
31d99776
DJ
760/* Divide the file into segments, which are individual relocatable units.
761 This is the default version of the sym_fns.sym_segments function for
762 symbol readers that do not have an explicit representation of segments.
763 It assumes that object files do not have segments, and fully linked
764 files have a single segment. */
765
766struct symfile_segment_data *
767default_symfile_segments (bfd *abfd)
768{
769 int num_sections, i;
770 asection *sect;
771 struct symfile_segment_data *data;
772 CORE_ADDR low, high;
773
774 /* Relocatable files contain enough information to position each
775 loadable section independently; they should not be relocated
776 in segments. */
777 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
778 return NULL;
779
780 /* Make sure there is at least one loadable section in the file. */
781 for (sect = abfd->sections; sect != NULL; sect = sect->next)
782 {
783 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
784 continue;
785
786 break;
787 }
788 if (sect == NULL)
789 return NULL;
790
791 low = bfd_get_section_vma (abfd, sect);
792 high = low + bfd_get_section_size (sect);
793
794 data = XZALLOC (struct symfile_segment_data);
795 data->num_segments = 1;
796 data->segment_bases = XCALLOC (1, CORE_ADDR);
797 data->segment_sizes = XCALLOC (1, CORE_ADDR);
798
799 num_sections = bfd_count_sections (abfd);
800 data->segment_info = XCALLOC (num_sections, int);
801
802 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
803 {
804 CORE_ADDR vma;
805
806 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
807 continue;
808
809 vma = bfd_get_section_vma (abfd, sect);
810 if (vma < low)
811 low = vma;
812 if (vma + bfd_get_section_size (sect) > high)
813 high = vma + bfd_get_section_size (sect);
814
815 data->segment_info[i] = 1;
816 }
817
818 data->segment_bases[0] = low;
819 data->segment_sizes[0] = high - low;
820
821 return data;
822}
823
608e2dbb
TT
824/* This is a convenience function to call sym_read for OBJFILE and
825 possibly force the partial symbols to be read. */
826
827static void
828read_symbols (struct objfile *objfile, int add_flags)
829{
830 (*objfile->sf->sym_read) (objfile, add_flags);
8a92335b
JK
831
832 /* find_separate_debug_file_in_section should be called only if there is
833 single binary with no existing separate debug info file. */
834 if (!objfile_has_partial_symbols (objfile)
835 && objfile->separate_debug_objfile == NULL
836 && objfile->separate_debug_objfile_backlink == NULL)
608e2dbb
TT
837 {
838 bfd *abfd = find_separate_debug_file_in_section (objfile);
839 struct cleanup *cleanup = make_cleanup_bfd_unref (abfd);
840
841 if (abfd != NULL)
842 symbol_file_add_separate (abfd, add_flags, objfile);
843
844 do_cleanups (cleanup);
845 }
846 if ((add_flags & SYMFILE_NO_READ) == 0)
847 require_partial_symbols (objfile, 0);
848}
849
3d6e24f0
JB
850/* Initialize entry point information for this objfile. */
851
852static void
853init_entry_point_info (struct objfile *objfile)
854{
855 /* Save startup file's range of PC addresses to help blockframe.c
856 decide where the bottom of the stack is. */
857
858 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
859 {
860 /* Executable file -- record its entry point so we'll recognize
861 the startup file because it contains the entry point. */
862 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
863 objfile->ei.entry_point_p = 1;
864 }
865 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
866 && bfd_get_start_address (objfile->obfd) != 0)
867 {
868 /* Some shared libraries may have entry points set and be
869 runnable. There's no clear way to indicate this, so just check
870 for values other than zero. */
871 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
872 objfile->ei.entry_point_p = 1;
873 }
874 else
875 {
876 /* Examination of non-executable.o files. Short-circuit this stuff. */
877 objfile->ei.entry_point_p = 0;
878 }
879
880 if (objfile->ei.entry_point_p)
881 {
882 CORE_ADDR entry_point = objfile->ei.entry_point;
883
884 /* Make certain that the address points at real code, and not a
885 function descriptor. */
886 entry_point
df6d5441 887 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
3d6e24f0
JB
888 entry_point,
889 &current_target);
890
891 /* Remove any ISA markers, so that this matches entries in the
892 symbol table. */
893 objfile->ei.entry_point
df6d5441 894 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
3d6e24f0
JB
895 }
896}
897
c906108c
SS
898/* Process a symbol file, as either the main file or as a dynamically
899 loaded file.
900
36e4d068
JB
901 This function does not set the OBJFILE's entry-point info.
902
96baa820
JM
903 OBJFILE is where the symbols are to be read from.
904
7e8580c1
JB
905 ADDRS is the list of section load addresses. If the user has given
906 an 'add-symbol-file' command, then this is the list of offsets and
907 addresses he or she provided as arguments to the command; or, if
908 we're handling a shared library, these are the actual addresses the
909 sections are loaded at, according to the inferior's dynamic linker
910 (as gleaned by GDB's shared library code). We convert each address
911 into an offset from the section VMA's as it appears in the object
912 file, and then call the file's sym_offsets function to convert this
913 into a format-specific offset table --- a `struct section_offsets'.
96baa820 914
7eedccfa
PP
915 ADD_FLAGS encodes verbosity level, whether this is main symbol or
916 an extra symbol file such as dynamically loaded code, and wether
917 breakpoint reset should be deferred. */
c906108c 918
36e4d068
JB
919static void
920syms_from_objfile_1 (struct objfile *objfile,
921 struct section_addr_info *addrs,
36e4d068 922 int add_flags)
c906108c 923{
a39a16c4 924 struct section_addr_info *local_addr = NULL;
c906108c 925 struct cleanup *old_chain;
7eedccfa 926 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 927
31d99776 928 objfile->sf = find_sym_fns (objfile->obfd);
c906108c 929
75245b24 930 if (objfile->sf == NULL)
36e4d068
JB
931 {
932 /* No symbols to load, but we still need to make sure
933 that the section_offsets table is allocated. */
d445b2f6 934 int num_sections = gdb_bfd_count_sections (objfile->obfd);
a7bfba49 935 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
36e4d068
JB
936
937 objfile->num_sections = num_sections;
938 objfile->section_offsets
939 = obstack_alloc (&objfile->objfile_obstack, size);
940 memset (objfile->section_offsets, 0, size);
941 return;
942 }
75245b24 943
c906108c
SS
944 /* Make sure that partially constructed symbol tables will be cleaned up
945 if an error occurs during symbol reading. */
74b7792f 946 old_chain = make_cleanup_free_objfile (objfile);
c906108c 947
6bf667bb
DE
948 /* If ADDRS is NULL, put together a dummy address list.
949 We now establish the convention that an addr of zero means
c378eb4e 950 no load address was specified. */
6bf667bb 951 if (! addrs)
a39a16c4 952 {
d445b2f6 953 local_addr = alloc_section_addr_info (1);
a39a16c4
MM
954 make_cleanup (xfree, local_addr);
955 addrs = local_addr;
956 }
957
c5aa993b 958 if (mainline)
c906108c
SS
959 {
960 /* We will modify the main symbol table, make sure that all its users
c5aa993b 961 will be cleaned up if an error occurs during symbol reading. */
74b7792f 962 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
963
964 /* Since no error yet, throw away the old symbol table. */
965
966 if (symfile_objfile != NULL)
967 {
968 free_objfile (symfile_objfile);
adb7f338 969 gdb_assert (symfile_objfile == NULL);
c906108c
SS
970 }
971
972 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
973 If the user wants to get rid of them, they should do "symbol-file"
974 without arguments first. Not sure this is the best behavior
975 (PR 2207). */
c906108c 976
c5aa993b 977 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
978 }
979
980 /* Convert addr into an offset rather than an absolute address.
981 We find the lowest address of a loaded segment in the objfile,
53a5351d 982 and assume that <addr> is where that got loaded.
c906108c 983
53a5351d
JM
984 We no longer warn if the lowest section is not a text segment (as
985 happens for the PA64 port. */
6bf667bb 986 if (addrs->num_sections > 0)
75242ef4 987 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
988
989 /* Initialize symbol reading routines for this objfile, allow complaints to
990 appear for this new file, and record how verbose to be, then do the
c378eb4e 991 initial symbol reading for this file. */
c906108c 992
c5aa993b 993 (*objfile->sf->sym_init) (objfile);
7eedccfa 994 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 995
6bf667bb 996 (*objfile->sf->sym_offsets) (objfile, addrs);
c906108c 997
608e2dbb 998 read_symbols (objfile, add_flags);
b11896a5 999
c906108c
SS
1000 /* Discard cleanups as symbol reading was successful. */
1001
1002 discard_cleanups (old_chain);
f7545552 1003 xfree (local_addr);
c906108c
SS
1004}
1005
36e4d068
JB
1006/* Same as syms_from_objfile_1, but also initializes the objfile
1007 entry-point info. */
1008
6bf667bb 1009static void
36e4d068
JB
1010syms_from_objfile (struct objfile *objfile,
1011 struct section_addr_info *addrs,
36e4d068
JB
1012 int add_flags)
1013{
6bf667bb 1014 syms_from_objfile_1 (objfile, addrs, add_flags);
36e4d068
JB
1015 init_entry_point_info (objfile);
1016}
1017
c906108c
SS
1018/* Perform required actions after either reading in the initial
1019 symbols for a new objfile, or mapping in the symbols from a reusable
c1e56572 1020 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c5aa993b 1021
c906108c 1022void
7eedccfa 1023new_symfile_objfile (struct objfile *objfile, int add_flags)
c906108c 1024{
c906108c 1025 /* If this is the main symbol file we have to clean up all users of the
c378eb4e 1026 old main symbol file. Otherwise it is sufficient to fixup all the
c906108c 1027 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1028 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1029 {
1030 /* OK, make it the "real" symbol file. */
1031 symfile_objfile = objfile;
1032
c1e56572 1033 clear_symtab_users (add_flags);
c906108c 1034 }
7eedccfa 1035 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1036 {
69de3c6a 1037 breakpoint_re_set ();
c906108c
SS
1038 }
1039
1040 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 1041 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
1042}
1043
1044/* Process a symbol file, as either the main file or as a dynamically
1045 loaded file.
1046
5417f6dc 1047 ABFD is a BFD already open on the file, as from symfile_bfd_open.
8ac244b4 1048 A new reference is acquired by this function.
7904e09f 1049
7eedccfa
PP
1050 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1051 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f 1052
6bf667bb 1053 ADDRS is as described for syms_from_objfile_1, above.
7eedccfa 1054 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1055
63524580
JK
1056 PARENT is the original objfile if ABFD is a separate debug info file.
1057 Otherwise PARENT is NULL.
1058
c906108c 1059 Upon success, returns a pointer to the objfile that was added.
c378eb4e 1060 Upon failure, jumps back to command level (never returns). */
7eedccfa 1061
7904e09f 1062static struct objfile *
6bf667bb
DE
1063symbol_file_add_with_addrs (bfd *abfd, int add_flags,
1064 struct section_addr_info *addrs,
1065 int flags, struct objfile *parent)
c906108c
SS
1066{
1067 struct objfile *objfile;
5417f6dc 1068 const char *name = bfd_get_filename (abfd);
7eedccfa 1069 const int from_tty = add_flags & SYMFILE_VERBOSE;
0838fb57 1070 const int mainline = add_flags & SYMFILE_MAINLINE;
b11896a5
TT
1071 const int should_print = ((from_tty || info_verbose)
1072 && (readnow_symbol_files
1073 || (add_flags & SYMFILE_NO_READ) == 0));
c906108c 1074
9291a0cd 1075 if (readnow_symbol_files)
b11896a5
TT
1076 {
1077 flags |= OBJF_READNOW;
1078 add_flags &= ~SYMFILE_NO_READ;
1079 }
9291a0cd 1080
5417f6dc
RM
1081 /* Give user a chance to burp if we'd be
1082 interactively wiping out any existing symbols. */
c906108c
SS
1083
1084 if ((have_full_symbols () || have_partial_symbols ())
0838fb57 1085 && mainline
c906108c 1086 && from_tty
9e2f0ad4 1087 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1088 error (_("Not confirmed."));
c906108c 1089
0838fb57 1090 objfile = allocate_objfile (abfd, flags | (mainline ? OBJF_MAINLINE : 0));
c906108c 1091
63524580
JK
1092 if (parent)
1093 add_separate_debug_objfile (objfile, parent);
1094
78a4a9b9
AC
1095 /* We either created a new mapped symbol table, mapped an existing
1096 symbol table file which has not had initial symbol reading
c378eb4e 1097 performed, or need to read an unmapped symbol table. */
b11896a5 1098 if (should_print)
c906108c 1099 {
769d7dc4
AC
1100 if (deprecated_pre_add_symbol_hook)
1101 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1102 else
c906108c 1103 {
55333a84
DE
1104 printf_unfiltered (_("Reading symbols from %s..."), name);
1105 wrap_here ("");
1106 gdb_flush (gdb_stdout);
c906108c 1107 }
c906108c 1108 }
6bf667bb 1109 syms_from_objfile (objfile, addrs, add_flags);
c906108c
SS
1110
1111 /* We now have at least a partial symbol table. Check to see if the
1112 user requested that all symbols be read on initial access via either
1113 the gdb startup command line or on a per symbol file basis. Expand
c378eb4e 1114 all partial symbol tables for this objfile if so. */
c906108c 1115
9291a0cd 1116 if ((flags & OBJF_READNOW))
c906108c 1117 {
b11896a5 1118 if (should_print)
c906108c 1119 {
a3f17187 1120 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1121 wrap_here ("");
1122 gdb_flush (gdb_stdout);
1123 }
1124
ccefe4c4
TT
1125 if (objfile->sf)
1126 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1127 }
1128
b11896a5 1129 if (should_print && !objfile_has_symbols (objfile))
cb3c37b2
JB
1130 {
1131 wrap_here ("");
55333a84 1132 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1133 wrap_here ("");
1134 }
1135
b11896a5 1136 if (should_print)
c906108c 1137 {
769d7dc4
AC
1138 if (deprecated_post_add_symbol_hook)
1139 deprecated_post_add_symbol_hook ();
c906108c 1140 else
55333a84 1141 printf_unfiltered (_("done.\n"));
c906108c
SS
1142 }
1143
481d0f41
JB
1144 /* We print some messages regardless of whether 'from_tty ||
1145 info_verbose' is true, so make sure they go out at the right
1146 time. */
1147 gdb_flush (gdb_stdout);
1148
109f874e 1149 if (objfile->sf == NULL)
8caee43b
PP
1150 {
1151 observer_notify_new_objfile (objfile);
c378eb4e 1152 return objfile; /* No symbols. */
8caee43b 1153 }
109f874e 1154
7eedccfa 1155 new_symfile_objfile (objfile, add_flags);
c906108c 1156
06d3b283 1157 observer_notify_new_objfile (objfile);
c906108c 1158
ce7d4522 1159 bfd_cache_close_all ();
c906108c
SS
1160 return (objfile);
1161}
1162
9cce227f
TG
1163/* Add BFD as a separate debug file for OBJFILE. */
1164
1165void
1166symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1167{
15d123c9 1168 struct objfile *new_objfile;
089b4803
TG
1169 struct section_addr_info *sap;
1170 struct cleanup *my_cleanup;
1171
1172 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1173 because sections of BFD may not match sections of OBJFILE and because
1174 vma may have been modified by tools such as prelink. */
1175 sap = build_section_addr_info_from_objfile (objfile);
1176 my_cleanup = make_cleanup_free_section_addr_info (sap);
9cce227f 1177
6bf667bb
DE
1178 new_objfile = symbol_file_add_with_addrs
1179 (bfd, symfile_flags, sap,
9cce227f 1180 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
63524580
JK
1181 | OBJF_USERLOADED),
1182 objfile);
089b4803
TG
1183
1184 do_cleanups (my_cleanup);
9cce227f 1185}
7904e09f 1186
eb4556d7
JB
1187/* Process the symbol file ABFD, as either the main file or as a
1188 dynamically loaded file.
6bf667bb 1189 See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1190
eb4556d7 1191struct objfile *
7eedccfa 1192symbol_file_add_from_bfd (bfd *abfd, int add_flags,
eb4556d7 1193 struct section_addr_info *addrs,
63524580 1194 int flags, struct objfile *parent)
eb4556d7 1195{
6bf667bb 1196 return symbol_file_add_with_addrs (abfd, add_flags, addrs, flags, parent);
eb4556d7
JB
1197}
1198
7904e09f 1199/* Process a symbol file, as either the main file or as a dynamically
6bf667bb 1200 loaded file. See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1201
7904e09f 1202struct objfile *
7eedccfa
PP
1203symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1204 int flags)
7904e09f 1205{
8ac244b4
TT
1206 bfd *bfd = symfile_bfd_open (name);
1207 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1208 struct objfile *objf;
1209
882f447f 1210 objf = symbol_file_add_from_bfd (bfd, add_flags, addrs, flags, NULL);
8ac244b4
TT
1211 do_cleanups (cleanup);
1212 return objf;
7904e09f
JB
1213}
1214
d7db6da9
FN
1215/* Call symbol_file_add() with default values and update whatever is
1216 affected by the loading of a new main().
1217 Used when the file is supplied in the gdb command line
1218 and by some targets with special loading requirements.
1219 The auxiliary function, symbol_file_add_main_1(), has the flags
1220 argument for the switches that can only be specified in the symbol_file
1221 command itself. */
5417f6dc 1222
1adeb98a
FN
1223void
1224symbol_file_add_main (char *args, int from_tty)
1225{
d7db6da9
FN
1226 symbol_file_add_main_1 (args, from_tty, 0);
1227}
1228
1229static void
1230symbol_file_add_main_1 (char *args, int from_tty, int flags)
1231{
7dcd53a0
TT
1232 const int add_flags = (current_inferior ()->symfile_flags
1233 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1234
7eedccfa 1235 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1236
d7db6da9
FN
1237 /* Getting new symbols may change our opinion about
1238 what is frameless. */
1239 reinit_frame_cache ();
1240
7dcd53a0
TT
1241 if ((flags & SYMFILE_NO_READ) == 0)
1242 set_initial_language ();
1adeb98a
FN
1243}
1244
1245void
1246symbol_file_clear (int from_tty)
1247{
1248 if ((have_full_symbols () || have_partial_symbols ())
1249 && from_tty
0430b0d6
AS
1250 && (symfile_objfile
1251 ? !query (_("Discard symbol table from `%s'? "),
1252 symfile_objfile->name)
1253 : !query (_("Discard symbol table? "))))
8a3fe4f8 1254 error (_("Not confirmed."));
1adeb98a 1255
0133421a
JK
1256 /* solib descriptors may have handles to objfiles. Wipe them before their
1257 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1258 no_shared_libraries (NULL, from_tty);
1259
0133421a
JK
1260 free_all_objfiles ();
1261
adb7f338 1262 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1263 if (from_tty)
1264 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1265}
1266
5b5d99cf 1267static int
287ccc17 1268separate_debug_file_exists (const char *name, unsigned long crc,
32a0e547 1269 struct objfile *parent_objfile)
5b5d99cf 1270{
904578ed
JK
1271 unsigned long file_crc;
1272 int file_crc_p;
f1838a98 1273 bfd *abfd;
32a0e547 1274 struct stat parent_stat, abfd_stat;
904578ed 1275 int verified_as_different;
32a0e547
JK
1276
1277 /* Find a separate debug info file as if symbols would be present in
1278 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1279 section can contain just the basename of PARENT_OBJFILE without any
1280 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
c378eb4e 1281 the separate debug infos with the same basename can exist. */
32a0e547 1282
0ba1096a 1283 if (filename_cmp (name, parent_objfile->name) == 0)
32a0e547 1284 return 0;
5b5d99cf 1285
08d2cd74 1286 abfd = gdb_bfd_open_maybe_remote (name);
f1838a98
UW
1287
1288 if (!abfd)
5b5d99cf
JB
1289 return 0;
1290
0ba1096a 1291 /* Verify symlinks were not the cause of filename_cmp name difference above.
32a0e547
JK
1292
1293 Some operating systems, e.g. Windows, do not provide a meaningful
1294 st_ino; they always set it to zero. (Windows does provide a
1295 meaningful st_dev.) Do not indicate a duplicate library in that
1296 case. While there is no guarantee that a system that provides
1297 meaningful inode numbers will never set st_ino to zero, this is
1298 merely an optimization, so we do not need to worry about false
1299 negatives. */
1300
1301 if (bfd_stat (abfd, &abfd_stat) == 0
904578ed
JK
1302 && abfd_stat.st_ino != 0
1303 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
32a0e547 1304 {
904578ed
JK
1305 if (abfd_stat.st_dev == parent_stat.st_dev
1306 && abfd_stat.st_ino == parent_stat.st_ino)
1307 {
cbb099e8 1308 gdb_bfd_unref (abfd);
904578ed
JK
1309 return 0;
1310 }
1311 verified_as_different = 1;
32a0e547 1312 }
904578ed
JK
1313 else
1314 verified_as_different = 0;
32a0e547 1315
dccee2de 1316 file_crc_p = gdb_bfd_crc (abfd, &file_crc);
5b5d99cf 1317
cbb099e8 1318 gdb_bfd_unref (abfd);
5b5d99cf 1319
904578ed
JK
1320 if (!file_crc_p)
1321 return 0;
1322
287ccc17
JK
1323 if (crc != file_crc)
1324 {
dccee2de
TT
1325 unsigned long parent_crc;
1326
904578ed
JK
1327 /* If one (or both) the files are accessed for example the via "remote:"
1328 gdbserver way it does not support the bfd_stat operation. Verify
1329 whether those two files are not the same manually. */
1330
dccee2de 1331 if (!verified_as_different)
904578ed 1332 {
dccee2de 1333 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
904578ed
JK
1334 return 0;
1335 }
1336
dccee2de 1337 if (verified_as_different || parent_crc != file_crc)
904578ed
JK
1338 warning (_("the debug information found in \"%s\""
1339 " does not match \"%s\" (CRC mismatch).\n"),
1340 name, parent_objfile->name);
1341
287ccc17
JK
1342 return 0;
1343 }
1344
1345 return 1;
5b5d99cf
JB
1346}
1347
aa28a74e 1348char *debug_file_directory = NULL;
920d2a44
AC
1349static void
1350show_debug_file_directory (struct ui_file *file, int from_tty,
1351 struct cmd_list_element *c, const char *value)
1352{
3e43a32a
MS
1353 fprintf_filtered (file,
1354 _("The directory where separate debug "
1355 "symbols are searched for is \"%s\".\n"),
920d2a44
AC
1356 value);
1357}
5b5d99cf
JB
1358
1359#if ! defined (DEBUG_SUBDIRECTORY)
1360#define DEBUG_SUBDIRECTORY ".debug"
1361#endif
1362
1db33378
PP
1363/* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1364 where the original file resides (may not be the same as
1365 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
7edbb660
DE
1366 looking for. CANON_DIR is the "realpath" form of DIR.
1367 DIR must contain a trailing '/'.
1368 Returns the path of the file with separate debug info, of NULL. */
1db33378
PP
1369
1370static char *
1371find_separate_debug_file (const char *dir,
1372 const char *canon_dir,
1373 const char *debuglink,
1374 unsigned long crc32, struct objfile *objfile)
9cce227f 1375{
1db33378
PP
1376 char *debugdir;
1377 char *debugfile;
9cce227f 1378 int i;
e4ab2fad
JK
1379 VEC (char_ptr) *debugdir_vec;
1380 struct cleanup *back_to;
1381 int ix;
5b5d99cf 1382
1db33378 1383 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1ffa32ee 1384 i = strlen (dir);
1db33378
PP
1385 if (canon_dir != NULL && strlen (canon_dir) > i)
1386 i = strlen (canon_dir);
1ffa32ee 1387
25522fae
JK
1388 debugfile = xmalloc (strlen (debug_file_directory) + 1
1389 + i
1390 + strlen (DEBUG_SUBDIRECTORY)
1391 + strlen ("/")
1db33378 1392 + strlen (debuglink)
25522fae 1393 + 1);
5b5d99cf
JB
1394
1395 /* First try in the same directory as the original file. */
1396 strcpy (debugfile, dir);
1db33378 1397 strcat (debugfile, debuglink);
5b5d99cf 1398
32a0e547 1399 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1400 return debugfile;
5417f6dc 1401
5b5d99cf
JB
1402 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1403 strcpy (debugfile, dir);
1404 strcat (debugfile, DEBUG_SUBDIRECTORY);
1405 strcat (debugfile, "/");
1db33378 1406 strcat (debugfile, debuglink);
5b5d99cf 1407
32a0e547 1408 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1409 return debugfile;
5417f6dc 1410
24ddea62 1411 /* Then try in the global debugfile directories.
f888f159 1412
24ddea62
JK
1413 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1414 cause "/..." lookups. */
5417f6dc 1415
e4ab2fad
JK
1416 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1417 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
24ddea62 1418
e4ab2fad
JK
1419 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1420 {
1421 strcpy (debugfile, debugdir);
aa28a74e 1422 strcat (debugfile, "/");
24ddea62 1423 strcat (debugfile, dir);
1db33378 1424 strcat (debugfile, debuglink);
aa28a74e 1425
32a0e547 1426 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1427 {
1428 do_cleanups (back_to);
1429 return debugfile;
1430 }
24ddea62
JK
1431
1432 /* If the file is in the sysroot, try using its base path in the
1433 global debugfile directory. */
1db33378
PP
1434 if (canon_dir != NULL
1435 && filename_ncmp (canon_dir, gdb_sysroot,
0ba1096a 1436 strlen (gdb_sysroot)) == 0
1db33378 1437 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
24ddea62 1438 {
e4ab2fad 1439 strcpy (debugfile, debugdir);
1db33378 1440 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
24ddea62 1441 strcat (debugfile, "/");
1db33378 1442 strcat (debugfile, debuglink);
24ddea62 1443
32a0e547 1444 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1445 {
1446 do_cleanups (back_to);
1447 return debugfile;
1448 }
24ddea62 1449 }
aa28a74e 1450 }
f888f159 1451
e4ab2fad 1452 do_cleanups (back_to);
25522fae 1453 xfree (debugfile);
1db33378
PP
1454 return NULL;
1455}
1456
7edbb660 1457/* Modify PATH to contain only "[/]directory/" part of PATH.
1db33378
PP
1458 If there were no directory separators in PATH, PATH will be empty
1459 string on return. */
1460
1461static void
1462terminate_after_last_dir_separator (char *path)
1463{
1464 int i;
1465
1466 /* Strip off the final filename part, leaving the directory name,
1467 followed by a slash. The directory can be relative or absolute. */
1468 for (i = strlen(path) - 1; i >= 0; i--)
1469 if (IS_DIR_SEPARATOR (path[i]))
1470 break;
1471
1472 /* If I is -1 then no directory is present there and DIR will be "". */
1473 path[i + 1] = '\0';
1474}
1475
1476/* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1477 Returns pathname, or NULL. */
1478
1479char *
1480find_separate_debug_file_by_debuglink (struct objfile *objfile)
1481{
1482 char *debuglink;
1483 char *dir, *canon_dir;
1484 char *debugfile;
1485 unsigned long crc32;
1486 struct cleanup *cleanups;
1487
cc0ea93c 1488 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1db33378
PP
1489
1490 if (debuglink == NULL)
1491 {
1492 /* There's no separate debug info, hence there's no way we could
1493 load it => no warning. */
1494 return NULL;
1495 }
1496
71bdabee 1497 cleanups = make_cleanup (xfree, debuglink);
1db33378 1498 dir = xstrdup (objfile->name);
71bdabee 1499 make_cleanup (xfree, dir);
1db33378
PP
1500 terminate_after_last_dir_separator (dir);
1501 canon_dir = lrealpath (dir);
1502
1503 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1504 crc32, objfile);
1505 xfree (canon_dir);
1506
1507 if (debugfile == NULL)
1508 {
1509#ifdef HAVE_LSTAT
1510 /* For PR gdb/9538, try again with realpath (if different from the
1511 original). */
1512
1513 struct stat st_buf;
1514
1515 if (lstat (objfile->name, &st_buf) == 0 && S_ISLNK(st_buf.st_mode))
1516 {
1517 char *symlink_dir;
1518
1519 symlink_dir = lrealpath (objfile->name);
1520 if (symlink_dir != NULL)
1521 {
1522 make_cleanup (xfree, symlink_dir);
1523 terminate_after_last_dir_separator (symlink_dir);
1524 if (strcmp (dir, symlink_dir) != 0)
1525 {
1526 /* Different directory, so try using it. */
1527 debugfile = find_separate_debug_file (symlink_dir,
1528 symlink_dir,
1529 debuglink,
1530 crc32,
1531 objfile);
1532 }
1533 }
1534 }
1535#endif /* HAVE_LSTAT */
1536 }
aa28a74e 1537
1db33378 1538 do_cleanups (cleanups);
25522fae 1539 return debugfile;
5b5d99cf
JB
1540}
1541
c906108c
SS
1542/* This is the symbol-file command. Read the file, analyze its
1543 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1544 the command is rather bizarre:
1545
1546 1. The function buildargv implements various quoting conventions
1547 which are undocumented and have little or nothing in common with
1548 the way things are quoted (or not quoted) elsewhere in GDB.
1549
1550 2. Options are used, which are not generally used in GDB (perhaps
1551 "set mapped on", "set readnow on" would be better)
1552
1553 3. The order of options matters, which is contrary to GNU
c906108c
SS
1554 conventions (because it is confusing and inconvenient). */
1555
1556void
fba45db2 1557symbol_file_command (char *args, int from_tty)
c906108c 1558{
c906108c
SS
1559 dont_repeat ();
1560
1561 if (args == NULL)
1562 {
1adeb98a 1563 symbol_file_clear (from_tty);
c906108c
SS
1564 }
1565 else
1566 {
d1a41061 1567 char **argv = gdb_buildargv (args);
cb2f3a29
MK
1568 int flags = OBJF_USERLOADED;
1569 struct cleanup *cleanups;
1570 char *name = NULL;
1571
7a292a7a 1572 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1573 while (*argv != NULL)
1574 {
78a4a9b9
AC
1575 if (strcmp (*argv, "-readnow") == 0)
1576 flags |= OBJF_READNOW;
1577 else if (**argv == '-')
8a3fe4f8 1578 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1579 else
1580 {
cb2f3a29 1581 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1582 name = *argv;
78a4a9b9 1583 }
cb2f3a29 1584
c906108c
SS
1585 argv++;
1586 }
1587
1588 if (name == NULL)
cb2f3a29
MK
1589 error (_("no symbol file name was specified"));
1590
c906108c
SS
1591 do_cleanups (cleanups);
1592 }
1593}
1594
1595/* Set the initial language.
1596
cb2f3a29
MK
1597 FIXME: A better solution would be to record the language in the
1598 psymtab when reading partial symbols, and then use it (if known) to
1599 set the language. This would be a win for formats that encode the
1600 language in an easily discoverable place, such as DWARF. For
1601 stabs, we can jump through hoops looking for specially named
1602 symbols or try to intuit the language from the specific type of
1603 stabs we find, but we can't do that until later when we read in
1604 full symbols. */
c906108c 1605
8b60591b 1606void
fba45db2 1607set_initial_language (void)
c906108c 1608{
c5aa993b 1609 enum language lang = language_unknown;
c906108c 1610
01f8c46d
JK
1611 if (language_of_main != language_unknown)
1612 lang = language_of_main;
1613 else
1614 {
bf6d8a91
TT
1615 char *name = main_name ();
1616 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL);
f888f159 1617
bf6d8a91
TT
1618 if (sym != NULL)
1619 lang = SYMBOL_LANGUAGE (sym);
01f8c46d 1620 }
cb2f3a29 1621
ccefe4c4
TT
1622 if (lang == language_unknown)
1623 {
1624 /* Make C the default language */
1625 lang = language_c;
c906108c 1626 }
ccefe4c4
TT
1627
1628 set_language (lang);
1629 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1630}
1631
874f5765 1632/* If NAME is a remote name open the file using remote protocol, otherwise
cbb099e8
TT
1633 open it normally. Returns a new reference to the BFD. On error,
1634 returns NULL with the BFD error set. */
874f5765
TG
1635
1636bfd *
08d2cd74 1637gdb_bfd_open_maybe_remote (const char *name)
874f5765 1638{
520b0001
TT
1639 bfd *result;
1640
874f5765 1641 if (remote_filename_p (name))
520b0001 1642 result = remote_bfd_open (name, gnutarget);
874f5765 1643 else
1c00ec6b 1644 result = gdb_bfd_open (name, gnutarget, -1);
520b0001 1645
520b0001 1646 return result;
874f5765
TG
1647}
1648
cb2f3a29
MK
1649/* Open the file specified by NAME and hand it off to BFD for
1650 preliminary analysis. Return a newly initialized bfd *, which
1651 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1652 absolute). In case of trouble, error() is called. */
c906108c
SS
1653
1654bfd *
fba45db2 1655symfile_bfd_open (char *name)
c906108c
SS
1656{
1657 bfd *sym_bfd;
1658 int desc;
1659 char *absolute_name;
faab9922 1660 struct cleanup *back_to;
c906108c 1661
f1838a98
UW
1662 if (remote_filename_p (name))
1663 {
520b0001 1664 sym_bfd = remote_bfd_open (name, gnutarget);
f1838a98 1665 if (!sym_bfd)
a4453b7e
TT
1666 error (_("`%s': can't open to read symbols: %s."), name,
1667 bfd_errmsg (bfd_get_error ()));
f1838a98
UW
1668
1669 if (!bfd_check_format (sym_bfd, bfd_object))
1670 {
f9a062ff 1671 make_cleanup_bfd_unref (sym_bfd);
f1838a98
UW
1672 error (_("`%s': can't read symbols: %s."), name,
1673 bfd_errmsg (bfd_get_error ()));
1674 }
1675
1676 return sym_bfd;
1677 }
1678
cb2f3a29 1679 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c
SS
1680
1681 /* Look down path for it, allocate 2nd new malloc'd copy. */
492c0ab7 1682 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH, name,
fbdebf46 1683 O_RDONLY | O_BINARY, &absolute_name);
608506ed 1684#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1685 if (desc < 0)
1686 {
1687 char *exename = alloca (strlen (name) + 5);
433759f7 1688
c906108c 1689 strcat (strcpy (exename, name), ".exe");
492c0ab7
JK
1690 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1691 exename, O_RDONLY | O_BINARY, &absolute_name);
c906108c
SS
1692 }
1693#endif
1694 if (desc < 0)
1695 {
b8c9b27d 1696 make_cleanup (xfree, name);
c906108c
SS
1697 perror_with_name (name);
1698 }
cb2f3a29 1699
cb2f3a29
MK
1700 xfree (name);
1701 name = absolute_name;
faab9922 1702 back_to = make_cleanup (xfree, name);
c906108c 1703
1c00ec6b 1704 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
c906108c 1705 if (!sym_bfd)
faab9922
JK
1706 error (_("`%s': can't open to read symbols: %s."), name,
1707 bfd_errmsg (bfd_get_error ()));
549c1eea 1708 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1709
1710 if (!bfd_check_format (sym_bfd, bfd_object))
1711 {
f9a062ff 1712 make_cleanup_bfd_unref (sym_bfd);
f1838a98 1713 error (_("`%s': can't read symbols: %s."), name,
c906108c
SS
1714 bfd_errmsg (bfd_get_error ()));
1715 }
cb2f3a29 1716
faab9922
JK
1717 do_cleanups (back_to);
1718
cb2f3a29 1719 return sym_bfd;
c906108c
SS
1720}
1721
cb2f3a29
MK
1722/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1723 the section was not found. */
1724
0e931cf0
JB
1725int
1726get_section_index (struct objfile *objfile, char *section_name)
1727{
1728 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1729
0e931cf0
JB
1730 if (sect)
1731 return sect->index;
1732 else
1733 return -1;
1734}
1735
cb2f3a29
MK
1736/* Link SF into the global symtab_fns list. Called on startup by the
1737 _initialize routine in each object file format reader, to register
b021a221 1738 information about each format the reader is prepared to handle. */
c906108c
SS
1739
1740void
00b5771c 1741add_symtab_fns (const struct sym_fns *sf)
c906108c 1742{
00b5771c 1743 VEC_safe_push (sym_fns_ptr, symtab_fns, sf);
c906108c
SS
1744}
1745
cb2f3a29
MK
1746/* Initialize OBJFILE to read symbols from its associated BFD. It
1747 either returns or calls error(). The result is an initialized
1748 struct sym_fns in the objfile structure, that contains cached
1749 information about the symbol file. */
c906108c 1750
00b5771c 1751static const struct sym_fns *
31d99776 1752find_sym_fns (bfd *abfd)
c906108c 1753{
00b5771c 1754 const struct sym_fns *sf;
31d99776 1755 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
00b5771c 1756 int i;
c906108c 1757
75245b24
MS
1758 if (our_flavour == bfd_target_srec_flavour
1759 || our_flavour == bfd_target_ihex_flavour
1760 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1761 return NULL; /* No symbols. */
75245b24 1762
00b5771c 1763 for (i = 0; VEC_iterate (sym_fns_ptr, symtab_fns, i, sf); ++i)
31d99776
DJ
1764 if (our_flavour == sf->sym_flavour)
1765 return sf;
cb2f3a29 1766
8a3fe4f8 1767 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1768 bfd_get_target (abfd));
c906108c
SS
1769}
1770\f
cb2f3a29 1771
c906108c
SS
1772/* This function runs the load command of our current target. */
1773
1774static void
fba45db2 1775load_command (char *arg, int from_tty)
c906108c 1776{
5b3fca71
TT
1777 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1778
e5cc9f32
JB
1779 dont_repeat ();
1780
4487aabf
PA
1781 /* The user might be reloading because the binary has changed. Take
1782 this opportunity to check. */
1783 reopen_exec_file ();
1784 reread_symbols ();
1785
c906108c 1786 if (arg == NULL)
1986bccd
AS
1787 {
1788 char *parg;
1789 int count = 0;
1790
1791 parg = arg = get_exec_file (1);
1792
1793 /* Count how many \ " ' tab space there are in the name. */
1794 while ((parg = strpbrk (parg, "\\\"'\t ")))
1795 {
1796 parg++;
1797 count++;
1798 }
1799
1800 if (count)
1801 {
1802 /* We need to quote this string so buildargv can pull it apart. */
1803 char *temp = xmalloc (strlen (arg) + count + 1 );
1804 char *ptemp = temp;
1805 char *prev;
1806
1807 make_cleanup (xfree, temp);
1808
1809 prev = parg = arg;
1810 while ((parg = strpbrk (parg, "\\\"'\t ")))
1811 {
1812 strncpy (ptemp, prev, parg - prev);
1813 ptemp += parg - prev;
1814 prev = parg++;
1815 *ptemp++ = '\\';
1816 }
1817 strcpy (ptemp, prev);
1818
1819 arg = temp;
1820 }
1821 }
1822
c906108c 1823 target_load (arg, from_tty);
2889e661
JB
1824
1825 /* After re-loading the executable, we don't really know which
1826 overlays are mapped any more. */
1827 overlay_cache_invalid = 1;
5b3fca71
TT
1828
1829 do_cleanups (cleanup);
c906108c
SS
1830}
1831
1832/* This version of "load" should be usable for any target. Currently
1833 it is just used for remote targets, not inftarg.c or core files,
1834 on the theory that only in that case is it useful.
1835
1836 Avoiding xmodem and the like seems like a win (a) because we don't have
1837 to worry about finding it, and (b) On VMS, fork() is very slow and so
1838 we don't want to run a subprocess. On the other hand, I'm not sure how
1839 performance compares. */
917317f4 1840
917317f4
JM
1841static int validate_download = 0;
1842
e4f9b4d5
MS
1843/* Callback service function for generic_load (bfd_map_over_sections). */
1844
1845static void
1846add_section_size_callback (bfd *abfd, asection *asec, void *data)
1847{
1848 bfd_size_type *sum = data;
1849
2c500098 1850 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1851}
1852
1853/* Opaque data for load_section_callback. */
1854struct load_section_data {
f698ca8e 1855 CORE_ADDR load_offset;
a76d924d
DJ
1856 struct load_progress_data *progress_data;
1857 VEC(memory_write_request_s) *requests;
1858};
1859
1860/* Opaque data for load_progress. */
1861struct load_progress_data {
1862 /* Cumulative data. */
e4f9b4d5
MS
1863 unsigned long write_count;
1864 unsigned long data_count;
1865 bfd_size_type total_size;
a76d924d
DJ
1866};
1867
1868/* Opaque data for load_progress for a single section. */
1869struct load_progress_section_data {
1870 struct load_progress_data *cumulative;
cf7a04e8 1871
a76d924d 1872 /* Per-section data. */
cf7a04e8
DJ
1873 const char *section_name;
1874 ULONGEST section_sent;
1875 ULONGEST section_size;
1876 CORE_ADDR lma;
1877 gdb_byte *buffer;
e4f9b4d5
MS
1878};
1879
a76d924d 1880/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1881
1882static void
1883load_progress (ULONGEST bytes, void *untyped_arg)
1884{
a76d924d
DJ
1885 struct load_progress_section_data *args = untyped_arg;
1886 struct load_progress_data *totals;
1887
1888 if (args == NULL)
1889 /* Writing padding data. No easy way to get at the cumulative
1890 stats, so just ignore this. */
1891 return;
1892
1893 totals = args->cumulative;
1894
1895 if (bytes == 0 && args->section_sent == 0)
1896 {
1897 /* The write is just starting. Let the user know we've started
1898 this section. */
79a45e25 1899 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
5af949e3 1900 args->section_name, hex_string (args->section_size),
f5656ead 1901 paddress (target_gdbarch (), args->lma));
a76d924d
DJ
1902 return;
1903 }
cf7a04e8
DJ
1904
1905 if (validate_download)
1906 {
1907 /* Broken memories and broken monitors manifest themselves here
1908 when bring new computers to life. This doubles already slow
1909 downloads. */
1910 /* NOTE: cagney/1999-10-18: A more efficient implementation
1911 might add a verify_memory() method to the target vector and
1912 then use that. remote.c could implement that method using
1913 the ``qCRC'' packet. */
1914 gdb_byte *check = xmalloc (bytes);
1915 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1916
1917 if (target_read_memory (args->lma, check, bytes) != 0)
5af949e3 1918 error (_("Download verify read failed at %s"),
f5656ead 1919 paddress (target_gdbarch (), args->lma));
cf7a04e8 1920 if (memcmp (args->buffer, check, bytes) != 0)
5af949e3 1921 error (_("Download verify compare failed at %s"),
f5656ead 1922 paddress (target_gdbarch (), args->lma));
cf7a04e8
DJ
1923 do_cleanups (verify_cleanups);
1924 }
a76d924d 1925 totals->data_count += bytes;
cf7a04e8
DJ
1926 args->lma += bytes;
1927 args->buffer += bytes;
a76d924d 1928 totals->write_count += 1;
cf7a04e8 1929 args->section_sent += bytes;
522002f9 1930 if (check_quit_flag ()
cf7a04e8
DJ
1931 || (deprecated_ui_load_progress_hook != NULL
1932 && deprecated_ui_load_progress_hook (args->section_name,
1933 args->section_sent)))
1934 error (_("Canceled the download"));
1935
1936 if (deprecated_show_load_progress != NULL)
1937 deprecated_show_load_progress (args->section_name,
1938 args->section_sent,
1939 args->section_size,
a76d924d
DJ
1940 totals->data_count,
1941 totals->total_size);
cf7a04e8
DJ
1942}
1943
e4f9b4d5
MS
1944/* Callback service function for generic_load (bfd_map_over_sections). */
1945
1946static void
1947load_section_callback (bfd *abfd, asection *asec, void *data)
1948{
a76d924d 1949 struct memory_write_request *new_request;
e4f9b4d5 1950 struct load_section_data *args = data;
a76d924d 1951 struct load_progress_section_data *section_data;
cf7a04e8
DJ
1952 bfd_size_type size = bfd_get_section_size (asec);
1953 gdb_byte *buffer;
cf7a04e8 1954 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 1955
cf7a04e8
DJ
1956 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1957 return;
e4f9b4d5 1958
cf7a04e8
DJ
1959 if (size == 0)
1960 return;
e4f9b4d5 1961
a76d924d
DJ
1962 new_request = VEC_safe_push (memory_write_request_s,
1963 args->requests, NULL);
1964 memset (new_request, 0, sizeof (struct memory_write_request));
1965 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1966 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
3e43a32a
MS
1967 new_request->end = new_request->begin + size; /* FIXME Should size
1968 be in instead? */
a76d924d
DJ
1969 new_request->data = xmalloc (size);
1970 new_request->baton = section_data;
cf7a04e8 1971
a76d924d 1972 buffer = new_request->data;
cf7a04e8 1973
a76d924d
DJ
1974 section_data->cumulative = args->progress_data;
1975 section_data->section_name = sect_name;
1976 section_data->section_size = size;
1977 section_data->lma = new_request->begin;
1978 section_data->buffer = buffer;
cf7a04e8
DJ
1979
1980 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
1981}
1982
1983/* Clean up an entire memory request vector, including load
1984 data and progress records. */
cf7a04e8 1985
a76d924d
DJ
1986static void
1987clear_memory_write_data (void *arg)
1988{
1989 VEC(memory_write_request_s) **vec_p = arg;
1990 VEC(memory_write_request_s) *vec = *vec_p;
1991 int i;
1992 struct memory_write_request *mr;
cf7a04e8 1993
a76d924d
DJ
1994 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1995 {
1996 xfree (mr->data);
1997 xfree (mr->baton);
1998 }
1999 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
2000}
2001
c906108c 2002void
917317f4 2003generic_load (char *args, int from_tty)
c906108c 2004{
c906108c 2005 bfd *loadfile_bfd;
2b71414d 2006 struct timeval start_time, end_time;
917317f4 2007 char *filename;
1986bccd 2008 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 2009 struct load_section_data cbdata;
a76d924d 2010 struct load_progress_data total_progress;
79a45e25 2011 struct ui_out *uiout = current_uiout;
a76d924d 2012
e4f9b4d5 2013 CORE_ADDR entry;
1986bccd 2014 char **argv;
e4f9b4d5 2015
a76d924d
DJ
2016 memset (&cbdata, 0, sizeof (cbdata));
2017 memset (&total_progress, 0, sizeof (total_progress));
2018 cbdata.progress_data = &total_progress;
2019
2020 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 2021
d1a41061
PP
2022 if (args == NULL)
2023 error_no_arg (_("file to load"));
1986bccd 2024
d1a41061 2025 argv = gdb_buildargv (args);
1986bccd
AS
2026 make_cleanup_freeargv (argv);
2027
2028 filename = tilde_expand (argv[0]);
2029 make_cleanup (xfree, filename);
2030
2031 if (argv[1] != NULL)
917317f4 2032 {
f698ca8e 2033 const char *endptr;
ba5f2f8a 2034
f698ca8e 2035 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
1986bccd
AS
2036
2037 /* If the last word was not a valid number then
2038 treat it as a file name with spaces in. */
2039 if (argv[1] == endptr)
2040 error (_("Invalid download offset:%s."), argv[1]);
2041
2042 if (argv[2] != NULL)
2043 error (_("Too many parameters."));
917317f4 2044 }
c906108c 2045
c378eb4e 2046 /* Open the file for loading. */
1c00ec6b 2047 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
c906108c
SS
2048 if (loadfile_bfd == NULL)
2049 {
2050 perror_with_name (filename);
2051 return;
2052 }
917317f4 2053
f9a062ff 2054 make_cleanup_bfd_unref (loadfile_bfd);
c906108c 2055
c5aa993b 2056 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 2057 {
8a3fe4f8 2058 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
2059 bfd_errmsg (bfd_get_error ()));
2060 }
c5aa993b 2061
5417f6dc 2062 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
2063 (void *) &total_progress.total_size);
2064
2065 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 2066
2b71414d 2067 gettimeofday (&start_time, NULL);
c906108c 2068
a76d924d
DJ
2069 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2070 load_progress) != 0)
2071 error (_("Load failed"));
c906108c 2072
2b71414d 2073 gettimeofday (&end_time, NULL);
ba5f2f8a 2074
e4f9b4d5 2075 entry = bfd_get_start_address (loadfile_bfd);
8c2b9656 2076 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
e4f9b4d5 2077 ui_out_text (uiout, "Start address ");
f5656ead 2078 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch (), entry));
e4f9b4d5 2079 ui_out_text (uiout, ", load size ");
a76d924d 2080 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 2081 ui_out_text (uiout, "\n");
e4f9b4d5
MS
2082 /* We were doing this in remote-mips.c, I suspect it is right
2083 for other targets too. */
fb14de7b 2084 regcache_write_pc (get_current_regcache (), entry);
c906108c 2085
38963c97
DJ
2086 /* Reset breakpoints, now that we have changed the load image. For
2087 instance, breakpoints may have been set (or reset, by
2088 post_create_inferior) while connected to the target but before we
2089 loaded the program. In that case, the prologue analyzer could
2090 have read instructions from the target to find the right
2091 breakpoint locations. Loading has changed the contents of that
2092 memory. */
2093
2094 breakpoint_re_set ();
2095
7ca9f392
AC
2096 /* FIXME: are we supposed to call symbol_file_add or not? According
2097 to a comment from remote-mips.c (where a call to symbol_file_add
2098 was commented out), making the call confuses GDB if more than one
2099 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 2100 others don't (or didn't - perhaps they have all been deleted). */
c906108c 2101
a76d924d
DJ
2102 print_transfer_performance (gdb_stdout, total_progress.data_count,
2103 total_progress.write_count,
2104 &start_time, &end_time);
c906108c
SS
2105
2106 do_cleanups (old_cleanups);
2107}
2108
c378eb4e 2109/* Report how fast the transfer went. */
c906108c 2110
917317f4 2111void
d9fcf2fb 2112print_transfer_performance (struct ui_file *stream,
917317f4
JM
2113 unsigned long data_count,
2114 unsigned long write_count,
2b71414d
DJ
2115 const struct timeval *start_time,
2116 const struct timeval *end_time)
917317f4 2117{
9f43d28c 2118 ULONGEST time_count;
79a45e25 2119 struct ui_out *uiout = current_uiout;
2b71414d
DJ
2120
2121 /* Compute the elapsed time in milliseconds, as a tradeoff between
2122 accuracy and overflow. */
2123 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2124 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2125
8b93c638
JM
2126 ui_out_text (uiout, "Transfer rate: ");
2127 if (time_count > 0)
2128 {
9f43d28c
DJ
2129 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2130
2131 if (ui_out_is_mi_like_p (uiout))
2132 {
2133 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2134 ui_out_text (uiout, " bits/sec");
2135 }
2136 else if (rate < 1024)
2137 {
2138 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2139 ui_out_text (uiout, " bytes/sec");
2140 }
2141 else
2142 {
2143 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2144 ui_out_text (uiout, " KB/sec");
2145 }
8b93c638
JM
2146 }
2147 else
2148 {
ba5f2f8a 2149 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 2150 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
2151 }
2152 if (write_count > 0)
2153 {
2154 ui_out_text (uiout, ", ");
ba5f2f8a 2155 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
2156 ui_out_text (uiout, " bytes/write");
2157 }
2158 ui_out_text (uiout, ".\n");
c906108c
SS
2159}
2160
2161/* This function allows the addition of incrementally linked object files.
2162 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2163/* Note: ezannoni 2000-04-13 This function/command used to have a
2164 special case syntax for the rombug target (Rombug is the boot
2165 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2166 rombug case, the user doesn't need to supply a text address,
2167 instead a call to target_link() (in target.c) would supply the
c378eb4e 2168 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2169
c906108c 2170static void
fba45db2 2171add_symbol_file_command (char *args, int from_tty)
c906108c 2172{
5af949e3 2173 struct gdbarch *gdbarch = get_current_arch ();
db162d44 2174 char *filename = NULL;
2df3850c 2175 int flags = OBJF_USERLOADED;
c906108c 2176 char *arg;
db162d44 2177 int section_index = 0;
2acceee2
JM
2178 int argcnt = 0;
2179 int sec_num = 0;
2180 int i;
db162d44
EZ
2181 int expecting_sec_name = 0;
2182 int expecting_sec_addr = 0;
5b96932b 2183 char **argv;
db162d44 2184
a39a16c4 2185 struct sect_opt
2acceee2 2186 {
2acceee2
JM
2187 char *name;
2188 char *value;
a39a16c4 2189 };
db162d44 2190
a39a16c4
MM
2191 struct section_addr_info *section_addrs;
2192 struct sect_opt *sect_opts = NULL;
2193 size_t num_sect_opts = 0;
3017564a 2194 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2195
a39a16c4 2196 num_sect_opts = 16;
5417f6dc 2197 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
2198 * sizeof (struct sect_opt));
2199
c906108c
SS
2200 dont_repeat ();
2201
2202 if (args == NULL)
8a3fe4f8 2203 error (_("add-symbol-file takes a file name and an address"));
c906108c 2204
d1a41061 2205 argv = gdb_buildargv (args);
5b96932b 2206 make_cleanup_freeargv (argv);
db162d44 2207
5b96932b
AS
2208 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2209 {
c378eb4e 2210 /* Process the argument. */
db162d44 2211 if (argcnt == 0)
c906108c 2212 {
c378eb4e 2213 /* The first argument is the file name. */
db162d44 2214 filename = tilde_expand (arg);
3017564a 2215 make_cleanup (xfree, filename);
c906108c 2216 }
41dc8db8
MB
2217 else if (argcnt == 1)
2218 {
2219 /* The second argument is always the text address at which
2220 to load the program. */
2221 sect_opts[section_index].name = ".text";
2222 sect_opts[section_index].value = arg;
2223 if (++section_index >= num_sect_opts)
2224 {
2225 num_sect_opts *= 2;
2226 sect_opts = ((struct sect_opt *)
2227 xrealloc (sect_opts,
2228 num_sect_opts
2229 * sizeof (struct sect_opt)));
2230 }
2231 }
db162d44 2232 else
41dc8db8
MB
2233 {
2234 /* It's an option (starting with '-') or it's an argument
2235 to an option. */
41dc8db8
MB
2236 if (expecting_sec_name)
2237 {
2238 sect_opts[section_index].name = arg;
2239 expecting_sec_name = 0;
2240 }
2241 else if (expecting_sec_addr)
2242 {
2243 sect_opts[section_index].value = arg;
2244 expecting_sec_addr = 0;
2245 if (++section_index >= num_sect_opts)
2246 {
2247 num_sect_opts *= 2;
2248 sect_opts = ((struct sect_opt *)
2249 xrealloc (sect_opts,
2250 num_sect_opts
2251 * sizeof (struct sect_opt)));
2252 }
2253 }
2254 else if (strcmp (arg, "-readnow") == 0)
2255 flags |= OBJF_READNOW;
2256 else if (strcmp (arg, "-s") == 0)
2257 {
2258 expecting_sec_name = 1;
2259 expecting_sec_addr = 1;
2260 }
2261 else
2262 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2263 " [-readnow] [-s <secname> <addr>]*"));
2264 }
c906108c 2265 }
c906108c 2266
927890d0
JB
2267 /* This command takes at least two arguments. The first one is a
2268 filename, and the second is the address where this file has been
2269 loaded. Abort now if this address hasn't been provided by the
2270 user. */
2271 if (section_index < 1)
2272 error (_("The address where %s has been loaded is missing"), filename);
2273
c378eb4e 2274 /* Print the prompt for the query below. And save the arguments into
db162d44
EZ
2275 a sect_addr_info structure to be passed around to other
2276 functions. We have to split this up into separate print
bb599908 2277 statements because hex_string returns a local static
c378eb4e 2278 string. */
5417f6dc 2279
a3f17187 2280 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2281 section_addrs = alloc_section_addr_info (section_index);
2282 make_cleanup (xfree, section_addrs);
db162d44 2283 for (i = 0; i < section_index; i++)
c906108c 2284 {
db162d44
EZ
2285 CORE_ADDR addr;
2286 char *val = sect_opts[i].value;
2287 char *sec = sect_opts[i].name;
5417f6dc 2288
ae822768 2289 addr = parse_and_eval_address (val);
db162d44 2290
db162d44 2291 /* Here we store the section offsets in the order they were
c378eb4e 2292 entered on the command line. */
a39a16c4
MM
2293 section_addrs->other[sec_num].name = sec;
2294 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2295 printf_unfiltered ("\t%s_addr = %s\n", sec,
2296 paddress (gdbarch, addr));
db162d44
EZ
2297 sec_num++;
2298
5417f6dc 2299 /* The object's sections are initialized when a
db162d44 2300 call is made to build_objfile_section_table (objfile).
5417f6dc 2301 This happens in reread_symbols.
db162d44
EZ
2302 At this point, we don't know what file type this is,
2303 so we can't determine what section names are valid. */
2acceee2 2304 }
d76488d8 2305 section_addrs->num_sections = sec_num;
db162d44 2306
2acceee2 2307 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2308 error (_("Not confirmed."));
c906108c 2309
7eedccfa
PP
2310 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2311 section_addrs, flags);
c906108c
SS
2312
2313 /* Getting new symbols may change our opinion about what is
2314 frameless. */
2315 reinit_frame_cache ();
db162d44 2316 do_cleanups (my_cleanups);
c906108c
SS
2317}
2318\f
70992597 2319
4ac39b97
JK
2320typedef struct objfile *objfilep;
2321
2322DEF_VEC_P (objfilep);
2323
c906108c 2324/* Re-read symbols if a symbol-file has changed. */
3b7bacac 2325
c906108c 2326void
fba45db2 2327reread_symbols (void)
c906108c
SS
2328{
2329 struct objfile *objfile;
2330 long new_modtime;
c906108c
SS
2331 struct stat new_statbuf;
2332 int res;
4ac39b97
JK
2333 VEC (objfilep) *new_objfiles = NULL;
2334 struct cleanup *all_cleanups;
2335
2336 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
c906108c
SS
2337
2338 /* With the addition of shared libraries, this should be modified,
2339 the load time should be saved in the partial symbol tables, since
2340 different tables may come from different source files. FIXME.
2341 This routine should then walk down each partial symbol table
c378eb4e 2342 and see if the symbol table that it originates from has been changed. */
c906108c 2343
c5aa993b
JM
2344 for (objfile = object_files; objfile; objfile = objfile->next)
2345 {
9cce227f
TG
2346 /* solib-sunos.c creates one objfile with obfd. */
2347 if (objfile->obfd == NULL)
2348 continue;
2349
2350 /* Separate debug objfiles are handled in the main objfile. */
2351 if (objfile->separate_debug_objfile_backlink)
2352 continue;
2353
02aeec7b
JB
2354 /* If this object is from an archive (what you usually create with
2355 `ar', often called a `static library' on most systems, though
2356 a `shared library' on AIX is also an archive), then you should
2357 stat on the archive name, not member name. */
9cce227f
TG
2358 if (objfile->obfd->my_archive)
2359 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2360 else
9cce227f
TG
2361 res = stat (objfile->name, &new_statbuf);
2362 if (res != 0)
2363 {
c378eb4e 2364 /* FIXME, should use print_sys_errmsg but it's not filtered. */
9cce227f
TG
2365 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2366 objfile->name);
2367 continue;
2368 }
2369 new_modtime = new_statbuf.st_mtime;
2370 if (new_modtime != objfile->mtime)
2371 {
2372 struct cleanup *old_cleanups;
2373 struct section_offsets *offsets;
2374 int num_offsets;
9cce227f
TG
2375
2376 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2377 objfile->name);
2378
2379 /* There are various functions like symbol_file_add,
2380 symfile_bfd_open, syms_from_objfile, etc., which might
2381 appear to do what we want. But they have various other
2382 effects which we *don't* want. So we just do stuff
2383 ourselves. We don't worry about mapped files (for one thing,
2384 any mapped file will be out of date). */
2385
2386 /* If we get an error, blow away this objfile (not sure if
2387 that is the correct response for things like shared
2388 libraries). */
2389 old_cleanups = make_cleanup_free_objfile (objfile);
2390 /* We need to do this whenever any symbols go away. */
2391 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2392
0ba1096a
KT
2393 if (exec_bfd != NULL
2394 && filename_cmp (bfd_get_filename (objfile->obfd),
2395 bfd_get_filename (exec_bfd)) == 0)
9cce227f
TG
2396 {
2397 /* Reload EXEC_BFD without asking anything. */
2398
2399 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2400 }
2401
f6eeced0
JK
2402 /* Keep the calls order approx. the same as in free_objfile. */
2403
2404 /* Free the separate debug objfiles. It will be
2405 automatically recreated by sym_read. */
2406 free_objfile_separate_debug (objfile);
2407
2408 /* Remove any references to this objfile in the global
2409 value lists. */
2410 preserve_values (objfile);
2411
2412 /* Nuke all the state that we will re-read. Much of the following
2413 code which sets things to NULL really is necessary to tell
2414 other parts of GDB that there is nothing currently there.
2415
2416 Try to keep the freeing order compatible with free_objfile. */
2417
2418 if (objfile->sf != NULL)
2419 {
2420 (*objfile->sf->sym_finish) (objfile);
2421 }
2422
2423 clear_objfile_data (objfile);
2424
e1507e95 2425 /* Clean up any state BFD has sitting around. */
a4453b7e
TT
2426 {
2427 struct bfd *obfd = objfile->obfd;
d3846e71 2428 char *obfd_filename;
a4453b7e
TT
2429
2430 obfd_filename = bfd_get_filename (objfile->obfd);
2431 /* Open the new BFD before freeing the old one, so that
2432 the filename remains live. */
08d2cd74 2433 objfile->obfd = gdb_bfd_open_maybe_remote (obfd_filename);
e1507e95
TT
2434 if (objfile->obfd == NULL)
2435 {
2436 /* We have to make a cleanup and error here, rather
2437 than erroring later, because once we unref OBFD,
2438 OBFD_FILENAME will be freed. */
2439 make_cleanup_bfd_unref (obfd);
2440 error (_("Can't open %s to read symbols."), obfd_filename);
2441 }
a4453b7e
TT
2442 gdb_bfd_unref (obfd);
2443 }
2444
e1507e95 2445 objfile->name = bfd_get_filename (objfile->obfd);
9cce227f
TG
2446 /* bfd_openr sets cacheable to true, which is what we want. */
2447 if (!bfd_check_format (objfile->obfd, bfd_object))
2448 error (_("Can't read symbols from %s: %s."), objfile->name,
2449 bfd_errmsg (bfd_get_error ()));
2450
2451 /* Save the offsets, we will nuke them with the rest of the
2452 objfile_obstack. */
2453 num_offsets = objfile->num_sections;
2454 offsets = ((struct section_offsets *)
2455 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2456 memcpy (offsets, objfile->section_offsets,
2457 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2458
9cce227f
TG
2459 /* FIXME: Do we have to free a whole linked list, or is this
2460 enough? */
2461 if (objfile->global_psymbols.list)
2462 xfree (objfile->global_psymbols.list);
2463 memset (&objfile->global_psymbols, 0,
2464 sizeof (objfile->global_psymbols));
2465 if (objfile->static_psymbols.list)
2466 xfree (objfile->static_psymbols.list);
2467 memset (&objfile->static_psymbols, 0,
2468 sizeof (objfile->static_psymbols));
2469
c378eb4e 2470 /* Free the obstacks for non-reusable objfiles. */
710e1a31
SW
2471 psymbol_bcache_free (objfile->psymbol_cache);
2472 objfile->psymbol_cache = psymbol_bcache_init ();
9cce227f
TG
2473 if (objfile->demangled_names_hash != NULL)
2474 {
2475 htab_delete (objfile->demangled_names_hash);
2476 objfile->demangled_names_hash = NULL;
2477 }
2478 obstack_free (&objfile->objfile_obstack, 0);
2479 objfile->sections = NULL;
2480 objfile->symtabs = NULL;
2481 objfile->psymtabs = NULL;
2482 objfile->psymtabs_addrmap = NULL;
2483 objfile->free_psymtabs = NULL;
34eaf542 2484 objfile->template_symbols = NULL;
9cce227f 2485 objfile->msymbols = NULL;
9cce227f
TG
2486 objfile->minimal_symbol_count = 0;
2487 memset (&objfile->msymbol_hash, 0,
2488 sizeof (objfile->msymbol_hash));
2489 memset (&objfile->msymbol_demangled_hash, 0,
2490 sizeof (objfile->msymbol_demangled_hash));
2491
706e3705
TT
2492 set_objfile_per_bfd (objfile);
2493
9cce227f
TG
2494 /* obstack_init also initializes the obstack so it is
2495 empty. We could use obstack_specify_allocation but
d82ea6a8 2496 gdb_obstack.h specifies the alloc/dealloc functions. */
9cce227f 2497 obstack_init (&objfile->objfile_obstack);
779bd270
DE
2498
2499 /* Reset the sym_fns pointer. The ELF reader can change it
2500 based on whether .gdb_index is present, and we need it to
2501 start over. PR symtab/15885 */
2502 objfile->sf = find_sym_fns (objfile->obfd);
2503
d82ea6a8 2504 build_objfile_section_table (objfile);
9cce227f
TG
2505 terminate_minimal_symbol_table (objfile);
2506
2507 /* We use the same section offsets as from last time. I'm not
2508 sure whether that is always correct for shared libraries. */
2509 objfile->section_offsets = (struct section_offsets *)
2510 obstack_alloc (&objfile->objfile_obstack,
2511 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2512 memcpy (objfile->section_offsets, offsets,
2513 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2514 objfile->num_sections = num_offsets;
2515
2516 /* What the hell is sym_new_init for, anyway? The concept of
2517 distinguishing between the main file and additional files
2518 in this way seems rather dubious. */
2519 if (objfile == symfile_objfile)
c906108c 2520 {
9cce227f 2521 (*objfile->sf->sym_new_init) (objfile);
c906108c 2522 }
9cce227f
TG
2523
2524 (*objfile->sf->sym_init) (objfile);
2525 clear_complaints (&symfile_complaints, 1, 1);
608e2dbb
TT
2526
2527 objfile->flags &= ~OBJF_PSYMTABS_READ;
2528 read_symbols (objfile, 0);
b11896a5 2529
9cce227f 2530 if (!objfile_has_symbols (objfile))
c906108c 2531 {
9cce227f
TG
2532 wrap_here ("");
2533 printf_unfiltered (_("(no debugging symbols found)\n"));
2534 wrap_here ("");
c5aa993b 2535 }
9cce227f
TG
2536
2537 /* We're done reading the symbol file; finish off complaints. */
2538 clear_complaints (&symfile_complaints, 0, 1);
2539
2540 /* Getting new symbols may change our opinion about what is
2541 frameless. */
2542
2543 reinit_frame_cache ();
2544
2545 /* Discard cleanups as symbol reading was successful. */
2546 discard_cleanups (old_cleanups);
2547
2548 /* If the mtime has changed between the time we set new_modtime
2549 and now, we *want* this to be out of date, so don't call stat
2550 again now. */
2551 objfile->mtime = new_modtime;
9cce227f 2552 init_entry_point_info (objfile);
4ac39b97
JK
2553
2554 VEC_safe_push (objfilep, new_objfiles, objfile);
c906108c
SS
2555 }
2556 }
c906108c 2557
4ac39b97 2558 if (new_objfiles)
ea53e89f 2559 {
4ac39b97
JK
2560 int ix;
2561
ff3536bc
UW
2562 /* Notify objfiles that we've modified objfile sections. */
2563 objfiles_changed ();
2564
c1e56572 2565 clear_symtab_users (0);
4ac39b97
JK
2566
2567 /* clear_objfile_data for each objfile was called before freeing it and
2568 observer_notify_new_objfile (NULL) has been called by
2569 clear_symtab_users above. Notify the new files now. */
2570 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2571 observer_notify_new_objfile (objfile);
2572
ea53e89f
JB
2573 /* At least one objfile has changed, so we can consider that
2574 the executable we're debugging has changed too. */
781b42b0 2575 observer_notify_executable_changed ();
ea53e89f 2576 }
4ac39b97
JK
2577
2578 do_cleanups (all_cleanups);
c906108c 2579}
c906108c
SS
2580\f
2581
c5aa993b
JM
2582typedef struct
2583{
2584 char *ext;
c906108c 2585 enum language lang;
c5aa993b
JM
2586}
2587filename_language;
c906108c 2588
c5aa993b 2589static filename_language *filename_language_table;
c906108c
SS
2590static int fl_table_size, fl_table_next;
2591
2592static void
fba45db2 2593add_filename_language (char *ext, enum language lang)
c906108c
SS
2594{
2595 if (fl_table_next >= fl_table_size)
2596 {
2597 fl_table_size += 10;
5417f6dc 2598 filename_language_table =
25bf3106
PM
2599 xrealloc (filename_language_table,
2600 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2601 }
2602
4fcf66da 2603 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2604 filename_language_table[fl_table_next].lang = lang;
2605 fl_table_next++;
2606}
2607
2608static char *ext_args;
920d2a44
AC
2609static void
2610show_ext_args (struct ui_file *file, int from_tty,
2611 struct cmd_list_element *c, const char *value)
2612{
3e43a32a
MS
2613 fprintf_filtered (file,
2614 _("Mapping between filename extension "
2615 "and source language is \"%s\".\n"),
920d2a44
AC
2616 value);
2617}
c906108c
SS
2618
2619static void
26c41df3 2620set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2621{
2622 int i;
2623 char *cp = ext_args;
2624 enum language lang;
2625
c378eb4e 2626 /* First arg is filename extension, starting with '.' */
c906108c 2627 if (*cp != '.')
8a3fe4f8 2628 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2629
2630 /* Find end of first arg. */
c5aa993b 2631 while (*cp && !isspace (*cp))
c906108c
SS
2632 cp++;
2633
2634 if (*cp == '\0')
3e43a32a
MS
2635 error (_("'%s': two arguments required -- "
2636 "filename extension and language"),
c906108c
SS
2637 ext_args);
2638
c378eb4e 2639 /* Null-terminate first arg. */
c5aa993b 2640 *cp++ = '\0';
c906108c
SS
2641
2642 /* Find beginning of second arg, which should be a source language. */
529480d0 2643 cp = skip_spaces (cp);
c906108c
SS
2644
2645 if (*cp == '\0')
3e43a32a
MS
2646 error (_("'%s': two arguments required -- "
2647 "filename extension and language"),
c906108c
SS
2648 ext_args);
2649
2650 /* Lookup the language from among those we know. */
2651 lang = language_enum (cp);
2652
2653 /* Now lookup the filename extension: do we already know it? */
2654 for (i = 0; i < fl_table_next; i++)
2655 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2656 break;
2657
2658 if (i >= fl_table_next)
2659 {
c378eb4e 2660 /* New file extension. */
c906108c
SS
2661 add_filename_language (ext_args, lang);
2662 }
2663 else
2664 {
c378eb4e 2665 /* Redefining a previously known filename extension. */
c906108c
SS
2666
2667 /* if (from_tty) */
2668 /* query ("Really make files of type %s '%s'?", */
2669 /* ext_args, language_str (lang)); */
2670
b8c9b27d 2671 xfree (filename_language_table[i].ext);
4fcf66da 2672 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2673 filename_language_table[i].lang = lang;
2674 }
2675}
2676
2677static void
fba45db2 2678info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2679{
2680 int i;
2681
a3f17187 2682 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2683 printf_filtered ("\n\n");
2684 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2685 printf_filtered ("\t%s\t- %s\n",
2686 filename_language_table[i].ext,
c906108c
SS
2687 language_str (filename_language_table[i].lang));
2688}
2689
2690static void
fba45db2 2691init_filename_language_table (void)
c906108c 2692{
c378eb4e 2693 if (fl_table_size == 0) /* Protect against repetition. */
c906108c
SS
2694 {
2695 fl_table_size = 20;
2696 fl_table_next = 0;
c5aa993b 2697 filename_language_table =
c906108c 2698 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b 2699 add_filename_language (".c", language_c);
6aecb9c2 2700 add_filename_language (".d", language_d);
c5aa993b
JM
2701 add_filename_language (".C", language_cplus);
2702 add_filename_language (".cc", language_cplus);
2703 add_filename_language (".cp", language_cplus);
2704 add_filename_language (".cpp", language_cplus);
2705 add_filename_language (".cxx", language_cplus);
2706 add_filename_language (".c++", language_cplus);
2707 add_filename_language (".java", language_java);
c906108c 2708 add_filename_language (".class", language_java);
da2cf7e0 2709 add_filename_language (".m", language_objc);
c5aa993b
JM
2710 add_filename_language (".f", language_fortran);
2711 add_filename_language (".F", language_fortran);
fd5700c7
JK
2712 add_filename_language (".for", language_fortran);
2713 add_filename_language (".FOR", language_fortran);
2714 add_filename_language (".ftn", language_fortran);
2715 add_filename_language (".FTN", language_fortran);
2716 add_filename_language (".fpp", language_fortran);
2717 add_filename_language (".FPP", language_fortran);
2718 add_filename_language (".f90", language_fortran);
2719 add_filename_language (".F90", language_fortran);
2720 add_filename_language (".f95", language_fortran);
2721 add_filename_language (".F95", language_fortran);
2722 add_filename_language (".f03", language_fortran);
2723 add_filename_language (".F03", language_fortran);
2724 add_filename_language (".f08", language_fortran);
2725 add_filename_language (".F08", language_fortran);
c5aa993b 2726 add_filename_language (".s", language_asm);
aa707ed0 2727 add_filename_language (".sx", language_asm);
c5aa993b 2728 add_filename_language (".S", language_asm);
c6fd39cd
PM
2729 add_filename_language (".pas", language_pascal);
2730 add_filename_language (".p", language_pascal);
2731 add_filename_language (".pp", language_pascal);
963a6417
PH
2732 add_filename_language (".adb", language_ada);
2733 add_filename_language (".ads", language_ada);
2734 add_filename_language (".a", language_ada);
2735 add_filename_language (".ada", language_ada);
dde59185 2736 add_filename_language (".dg", language_ada);
c906108c
SS
2737 }
2738}
2739
2740enum language
dd786858 2741deduce_language_from_filename (const char *filename)
c906108c
SS
2742{
2743 int i;
2744 char *cp;
2745
2746 if (filename != NULL)
2747 if ((cp = strrchr (filename, '.')) != NULL)
2748 for (i = 0; i < fl_table_next; i++)
2749 if (strcmp (cp, filename_language_table[i].ext) == 0)
2750 return filename_language_table[i].lang;
2751
2752 return language_unknown;
2753}
2754\f
2755/* allocate_symtab:
2756
2757 Allocate and partly initialize a new symbol table. Return a pointer
2758 to it. error() if no space.
2759
2760 Caller must set these fields:
c5aa993b
JM
2761 LINETABLE(symtab)
2762 symtab->blockvector
2763 symtab->dirname
2764 symtab->free_code
2765 symtab->free_ptr
c906108c
SS
2766 */
2767
2768struct symtab *
72b9f47f 2769allocate_symtab (const char *filename, struct objfile *objfile)
c906108c 2770{
52f0bd74 2771 struct symtab *symtab;
c906108c
SS
2772
2773 symtab = (struct symtab *)
4a146b47 2774 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2775 memset (symtab, 0, sizeof (*symtab));
10abe6bf 2776 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
706e3705 2777 objfile->per_bfd->filename_cache);
c5aa993b
JM
2778 symtab->fullname = NULL;
2779 symtab->language = deduce_language_from_filename (filename);
1c9e8358 2780 symtab->debugformat = "unknown";
c906108c 2781
c378eb4e 2782 /* Hook it to the objfile it comes from. */
c906108c 2783
c5aa993b
JM
2784 symtab->objfile = objfile;
2785 symtab->next = objfile->symtabs;
2786 objfile->symtabs = symtab;
c906108c 2787
45cfd468
DE
2788 if (symtab_create_debug)
2789 {
2790 /* Be a bit clever with debugging messages, and don't print objfile
2791 every time, only when it changes. */
2792 static char *last_objfile_name = NULL;
2793
2794 if (last_objfile_name == NULL
2795 || strcmp (last_objfile_name, objfile->name) != 0)
2796 {
2797 xfree (last_objfile_name);
2798 last_objfile_name = xstrdup (objfile->name);
2799 fprintf_unfiltered (gdb_stdlog,
2800 "Creating one or more symtabs for objfile %s ...\n",
2801 last_objfile_name);
2802 }
2803 fprintf_unfiltered (gdb_stdlog,
b3dbbd6f
PM
2804 "Created symtab %s for module %s.\n",
2805 host_address_to_string (symtab), filename);
45cfd468
DE
2806 }
2807
c906108c
SS
2808 return (symtab);
2809}
c906108c 2810\f
c5aa993b 2811
c906108c 2812/* Reset all data structures in gdb which may contain references to symbol
c1e56572 2813 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c906108c
SS
2814
2815void
c1e56572 2816clear_symtab_users (int add_flags)
c906108c
SS
2817{
2818 /* Someday, we should do better than this, by only blowing away
2819 the things that really need to be blown. */
c0501be5
DJ
2820
2821 /* Clear the "current" symtab first, because it is no longer valid.
2822 breakpoint_re_set may try to access the current symtab. */
2823 clear_current_source_symtab_and_line ();
2824
c906108c 2825 clear_displays ();
c1e56572
JK
2826 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2827 breakpoint_re_set ();
1bfeeb0f 2828 clear_last_displayed_sal ();
c906108c 2829 clear_pc_function_cache ();
06d3b283 2830 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2831
2832 /* Clear globals which might have pointed into a removed objfile.
2833 FIXME: It's not clear which of these are supposed to persist
2834 between expressions and which ought to be reset each time. */
2835 expression_context_block = NULL;
2836 innermost_block = NULL;
8756216b
DP
2837
2838 /* Varobj may refer to old symbols, perform a cleanup. */
2839 varobj_invalidate ();
2840
c906108c
SS
2841}
2842
74b7792f
AC
2843static void
2844clear_symtab_users_cleanup (void *ignore)
2845{
c1e56572 2846 clear_symtab_users (0);
74b7792f 2847}
c906108c 2848\f
c906108c
SS
2849/* OVERLAYS:
2850 The following code implements an abstraction for debugging overlay sections.
2851
2852 The target model is as follows:
2853 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2854 same VMA, each with its own unique LMA (or load address).
c906108c 2855 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2856 sections, one by one, from the load address into the VMA address.
5417f6dc 2857 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2858 sections should be considered to be mapped from the VMA to the LMA.
2859 This information is used for symbol lookup, and memory read/write.
5417f6dc 2860 For instance, if a section has been mapped then its contents
c5aa993b 2861 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2862
2863 Two levels of debugger support for overlays are available. One is
2864 "manual", in which the debugger relies on the user to tell it which
2865 overlays are currently mapped. This level of support is
2866 implemented entirely in the core debugger, and the information about
2867 whether a section is mapped is kept in the objfile->obj_section table.
2868
2869 The second level of support is "automatic", and is only available if
2870 the target-specific code provides functionality to read the target's
2871 overlay mapping table, and translate its contents for the debugger
2872 (by updating the mapped state information in the obj_section tables).
2873
2874 The interface is as follows:
c5aa993b
JM
2875 User commands:
2876 overlay map <name> -- tell gdb to consider this section mapped
2877 overlay unmap <name> -- tell gdb to consider this section unmapped
2878 overlay list -- list the sections that GDB thinks are mapped
2879 overlay read-target -- get the target's state of what's mapped
2880 overlay off/manual/auto -- set overlay debugging state
2881 Functional interface:
2882 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2883 section, return that section.
5417f6dc 2884 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 2885 the pc, either in its VMA or its LMA
714835d5 2886 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
2887 section_is_overlay(sect): true if section's VMA != LMA
2888 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2889 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2890 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2891 overlay_mapped_address(...): map an address from section's LMA to VMA
2892 overlay_unmapped_address(...): map an address from section's VMA to LMA
2893 symbol_overlayed_address(...): Return a "current" address for symbol:
2894 either in VMA or LMA depending on whether
c378eb4e 2895 the symbol's section is currently mapped. */
c906108c
SS
2896
2897/* Overlay debugging state: */
2898
d874f1e2 2899enum overlay_debugging_state overlay_debugging = ovly_off;
c378eb4e 2900int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
c906108c 2901
c906108c 2902/* Function: section_is_overlay (SECTION)
5417f6dc 2903 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
2904 SECTION is loaded at an address different from where it will "run". */
2905
2906int
714835d5 2907section_is_overlay (struct obj_section *section)
c906108c 2908{
714835d5
UW
2909 if (overlay_debugging && section)
2910 {
2911 bfd *abfd = section->objfile->obfd;
2912 asection *bfd_section = section->the_bfd_section;
f888f159 2913
714835d5
UW
2914 if (bfd_section_lma (abfd, bfd_section) != 0
2915 && bfd_section_lma (abfd, bfd_section)
2916 != bfd_section_vma (abfd, bfd_section))
2917 return 1;
2918 }
c906108c
SS
2919
2920 return 0;
2921}
2922
2923/* Function: overlay_invalidate_all (void)
2924 Invalidate the mapped state of all overlay sections (mark it as stale). */
2925
2926static void
fba45db2 2927overlay_invalidate_all (void)
c906108c 2928{
c5aa993b 2929 struct objfile *objfile;
c906108c
SS
2930 struct obj_section *sect;
2931
2932 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
2933 if (section_is_overlay (sect))
2934 sect->ovly_mapped = -1;
c906108c
SS
2935}
2936
714835d5 2937/* Function: section_is_mapped (SECTION)
5417f6dc 2938 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
2939
2940 Access to the ovly_mapped flag is restricted to this function, so
2941 that we can do automatic update. If the global flag
2942 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2943 overlay_invalidate_all. If the mapped state of the particular
2944 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2945
714835d5
UW
2946int
2947section_is_mapped (struct obj_section *osect)
c906108c 2948{
9216df95
UW
2949 struct gdbarch *gdbarch;
2950
714835d5 2951 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
2952 return 0;
2953
c5aa993b 2954 switch (overlay_debugging)
c906108c
SS
2955 {
2956 default:
d874f1e2 2957 case ovly_off:
c5aa993b 2958 return 0; /* overlay debugging off */
d874f1e2 2959 case ovly_auto: /* overlay debugging automatic */
1c772458 2960 /* Unles there is a gdbarch_overlay_update function,
c378eb4e 2961 there's really nothing useful to do here (can't really go auto). */
9216df95
UW
2962 gdbarch = get_objfile_arch (osect->objfile);
2963 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
2964 {
2965 if (overlay_cache_invalid)
2966 {
2967 overlay_invalidate_all ();
2968 overlay_cache_invalid = 0;
2969 }
2970 if (osect->ovly_mapped == -1)
9216df95 2971 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
2972 }
2973 /* fall thru to manual case */
d874f1e2 2974 case ovly_on: /* overlay debugging manual */
c906108c
SS
2975 return osect->ovly_mapped == 1;
2976 }
2977}
2978
c906108c
SS
2979/* Function: pc_in_unmapped_range
2980 If PC falls into the lma range of SECTION, return true, else false. */
2981
2982CORE_ADDR
714835d5 2983pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 2984{
714835d5
UW
2985 if (section_is_overlay (section))
2986 {
2987 bfd *abfd = section->objfile->obfd;
2988 asection *bfd_section = section->the_bfd_section;
fbd35540 2989
714835d5
UW
2990 /* We assume the LMA is relocated by the same offset as the VMA. */
2991 bfd_vma size = bfd_get_section_size (bfd_section);
2992 CORE_ADDR offset = obj_section_offset (section);
2993
2994 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
2995 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
2996 return 1;
2997 }
c906108c 2998
c906108c
SS
2999 return 0;
3000}
3001
3002/* Function: pc_in_mapped_range
3003 If PC falls into the vma range of SECTION, return true, else false. */
3004
3005CORE_ADDR
714835d5 3006pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3007{
714835d5
UW
3008 if (section_is_overlay (section))
3009 {
3010 if (obj_section_addr (section) <= pc
3011 && pc < obj_section_endaddr (section))
3012 return 1;
3013 }
c906108c 3014
c906108c
SS
3015 return 0;
3016}
3017
9ec8e6a0
JB
3018/* Return true if the mapped ranges of sections A and B overlap, false
3019 otherwise. */
3b7bacac 3020
b9362cc7 3021static int
714835d5 3022sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3023{
714835d5
UW
3024 CORE_ADDR a_start = obj_section_addr (a);
3025 CORE_ADDR a_end = obj_section_endaddr (a);
3026 CORE_ADDR b_start = obj_section_addr (b);
3027 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3028
3029 return (a_start < b_end && b_start < a_end);
3030}
3031
c906108c
SS
3032/* Function: overlay_unmapped_address (PC, SECTION)
3033 Returns the address corresponding to PC in the unmapped (load) range.
3034 May be the same as PC. */
3035
3036CORE_ADDR
714835d5 3037overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3038{
714835d5
UW
3039 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3040 {
3041 bfd *abfd = section->objfile->obfd;
3042 asection *bfd_section = section->the_bfd_section;
fbd35540 3043
714835d5
UW
3044 return pc + bfd_section_lma (abfd, bfd_section)
3045 - bfd_section_vma (abfd, bfd_section);
3046 }
c906108c
SS
3047
3048 return pc;
3049}
3050
3051/* Function: overlay_mapped_address (PC, SECTION)
3052 Returns the address corresponding to PC in the mapped (runtime) range.
3053 May be the same as PC. */
3054
3055CORE_ADDR
714835d5 3056overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3057{
714835d5
UW
3058 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3059 {
3060 bfd *abfd = section->objfile->obfd;
3061 asection *bfd_section = section->the_bfd_section;
fbd35540 3062
714835d5
UW
3063 return pc + bfd_section_vma (abfd, bfd_section)
3064 - bfd_section_lma (abfd, bfd_section);
3065 }
c906108c
SS
3066
3067 return pc;
3068}
3069
5417f6dc 3070/* Function: symbol_overlayed_address
c906108c
SS
3071 Return one of two addresses (relative to the VMA or to the LMA),
3072 depending on whether the section is mapped or not. */
3073
c5aa993b 3074CORE_ADDR
714835d5 3075symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3076{
3077 if (overlay_debugging)
3078 {
c378eb4e 3079 /* If the symbol has no section, just return its regular address. */
c906108c
SS
3080 if (section == 0)
3081 return address;
c378eb4e
MS
3082 /* If the symbol's section is not an overlay, just return its
3083 address. */
c906108c
SS
3084 if (!section_is_overlay (section))
3085 return address;
c378eb4e 3086 /* If the symbol's section is mapped, just return its address. */
c906108c
SS
3087 if (section_is_mapped (section))
3088 return address;
3089 /*
3090 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3091 * then return its LOADED address rather than its vma address!!
3092 */
3093 return overlay_unmapped_address (address, section);
3094 }
3095 return address;
3096}
3097
5417f6dc 3098/* Function: find_pc_overlay (PC)
c906108c
SS
3099 Return the best-match overlay section for PC:
3100 If PC matches a mapped overlay section's VMA, return that section.
3101 Else if PC matches an unmapped section's VMA, return that section.
3102 Else if PC matches an unmapped section's LMA, return that section. */
3103
714835d5 3104struct obj_section *
fba45db2 3105find_pc_overlay (CORE_ADDR pc)
c906108c 3106{
c5aa993b 3107 struct objfile *objfile;
c906108c
SS
3108 struct obj_section *osect, *best_match = NULL;
3109
3110 if (overlay_debugging)
3111 ALL_OBJSECTIONS (objfile, osect)
714835d5 3112 if (section_is_overlay (osect))
c5aa993b 3113 {
714835d5 3114 if (pc_in_mapped_range (pc, osect))
c5aa993b 3115 {
714835d5
UW
3116 if (section_is_mapped (osect))
3117 return osect;
c5aa993b
JM
3118 else
3119 best_match = osect;
3120 }
714835d5 3121 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3122 best_match = osect;
3123 }
714835d5 3124 return best_match;
c906108c
SS
3125}
3126
3127/* Function: find_pc_mapped_section (PC)
5417f6dc 3128 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3129 currently marked as MAPPED, return that section. Else return NULL. */
3130
714835d5 3131struct obj_section *
fba45db2 3132find_pc_mapped_section (CORE_ADDR pc)
c906108c 3133{
c5aa993b 3134 struct objfile *objfile;
c906108c
SS
3135 struct obj_section *osect;
3136
3137 if (overlay_debugging)
3138 ALL_OBJSECTIONS (objfile, osect)
714835d5
UW
3139 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3140 return osect;
c906108c
SS
3141
3142 return NULL;
3143}
3144
3145/* Function: list_overlays_command
c378eb4e 3146 Print a list of mapped sections and their PC ranges. */
c906108c 3147
5d3055ad 3148static void
fba45db2 3149list_overlays_command (char *args, int from_tty)
c906108c 3150{
c5aa993b
JM
3151 int nmapped = 0;
3152 struct objfile *objfile;
c906108c
SS
3153 struct obj_section *osect;
3154
3155 if (overlay_debugging)
3156 ALL_OBJSECTIONS (objfile, osect)
714835d5 3157 if (section_is_mapped (osect))
c5aa993b 3158 {
5af949e3 3159 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c5aa993b
JM
3160 const char *name;
3161 bfd_vma lma, vma;
3162 int size;
3163
3164 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3165 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3166 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3167 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3168
3169 printf_filtered ("Section %s, loaded at ", name);
5af949e3 3170 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
c5aa993b 3171 puts_filtered (" - ");
5af949e3 3172 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
c5aa993b 3173 printf_filtered (", mapped at ");
5af949e3 3174 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
c5aa993b 3175 puts_filtered (" - ");
5af949e3 3176 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
c5aa993b
JM
3177 puts_filtered ("\n");
3178
3179 nmapped++;
3180 }
c906108c 3181 if (nmapped == 0)
a3f17187 3182 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3183}
3184
3185/* Function: map_overlay_command
3186 Mark the named section as mapped (ie. residing at its VMA address). */
3187
5d3055ad 3188static void
fba45db2 3189map_overlay_command (char *args, int from_tty)
c906108c 3190{
c5aa993b
JM
3191 struct objfile *objfile, *objfile2;
3192 struct obj_section *sec, *sec2;
c906108c
SS
3193
3194 if (!overlay_debugging)
3e43a32a
MS
3195 error (_("Overlay debugging not enabled. Use "
3196 "either the 'overlay auto' or\n"
3197 "the 'overlay manual' command."));
c906108c
SS
3198
3199 if (args == 0 || *args == 0)
8a3fe4f8 3200 error (_("Argument required: name of an overlay section"));
c906108c 3201
c378eb4e 3202 /* First, find a section matching the user supplied argument. */
c906108c
SS
3203 ALL_OBJSECTIONS (objfile, sec)
3204 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b 3205 {
c378eb4e 3206 /* Now, check to see if the section is an overlay. */
714835d5 3207 if (!section_is_overlay (sec))
c5aa993b
JM
3208 continue; /* not an overlay section */
3209
c378eb4e 3210 /* Mark the overlay as "mapped". */
c5aa993b
JM
3211 sec->ovly_mapped = 1;
3212
3213 /* Next, make a pass and unmap any sections that are
3214 overlapped by this new section: */
3215 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3216 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3217 {
3218 if (info_verbose)
a3f17187 3219 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3220 bfd_section_name (objfile->obfd,
3221 sec2->the_bfd_section));
c378eb4e 3222 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
c5aa993b
JM
3223 }
3224 return;
3225 }
8a3fe4f8 3226 error (_("No overlay section called %s"), args);
c906108c
SS
3227}
3228
3229/* Function: unmap_overlay_command
5417f6dc 3230 Mark the overlay section as unmapped
c906108c
SS
3231 (ie. resident in its LMA address range, rather than the VMA range). */
3232
5d3055ad 3233static void
fba45db2 3234unmap_overlay_command (char *args, int from_tty)
c906108c 3235{
c5aa993b 3236 struct objfile *objfile;
c906108c
SS
3237 struct obj_section *sec;
3238
3239 if (!overlay_debugging)
3e43a32a
MS
3240 error (_("Overlay debugging not enabled. "
3241 "Use either the 'overlay auto' or\n"
3242 "the 'overlay manual' command."));
c906108c
SS
3243
3244 if (args == 0 || *args == 0)
8a3fe4f8 3245 error (_("Argument required: name of an overlay section"));
c906108c 3246
c378eb4e 3247 /* First, find a section matching the user supplied argument. */
c906108c
SS
3248 ALL_OBJSECTIONS (objfile, sec)
3249 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3250 {
3251 if (!sec->ovly_mapped)
8a3fe4f8 3252 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3253 sec->ovly_mapped = 0;
3254 return;
3255 }
8a3fe4f8 3256 error (_("No overlay section called %s"), args);
c906108c
SS
3257}
3258
3259/* Function: overlay_auto_command
3260 A utility command to turn on overlay debugging.
c378eb4e 3261 Possibly this should be done via a set/show command. */
c906108c
SS
3262
3263static void
fba45db2 3264overlay_auto_command (char *args, int from_tty)
c906108c 3265{
d874f1e2 3266 overlay_debugging = ovly_auto;
1900040c 3267 enable_overlay_breakpoints ();
c906108c 3268 if (info_verbose)
a3f17187 3269 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3270}
3271
3272/* Function: overlay_manual_command
3273 A utility command to turn on overlay debugging.
c378eb4e 3274 Possibly this should be done via a set/show command. */
c906108c
SS
3275
3276static void
fba45db2 3277overlay_manual_command (char *args, int from_tty)
c906108c 3278{
d874f1e2 3279 overlay_debugging = ovly_on;
1900040c 3280 disable_overlay_breakpoints ();
c906108c 3281 if (info_verbose)
a3f17187 3282 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3283}
3284
3285/* Function: overlay_off_command
3286 A utility command to turn on overlay debugging.
c378eb4e 3287 Possibly this should be done via a set/show command. */
c906108c
SS
3288
3289static void
fba45db2 3290overlay_off_command (char *args, int from_tty)
c906108c 3291{
d874f1e2 3292 overlay_debugging = ovly_off;
1900040c 3293 disable_overlay_breakpoints ();
c906108c 3294 if (info_verbose)
a3f17187 3295 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3296}
3297
3298static void
fba45db2 3299overlay_load_command (char *args, int from_tty)
c906108c 3300{
e17c207e
UW
3301 struct gdbarch *gdbarch = get_current_arch ();
3302
3303 if (gdbarch_overlay_update_p (gdbarch))
3304 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3305 else
8a3fe4f8 3306 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3307}
3308
3309/* Function: overlay_command
c378eb4e 3310 A place-holder for a mis-typed command. */
c906108c 3311
c378eb4e 3312/* Command list chain containing all defined "overlay" subcommands. */
28578e6b 3313static struct cmd_list_element *overlaylist;
c906108c
SS
3314
3315static void
fba45db2 3316overlay_command (char *args, int from_tty)
c906108c 3317{
c5aa993b 3318 printf_unfiltered
c906108c
SS
3319 ("\"overlay\" must be followed by the name of an overlay command.\n");
3320 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3321}
3322
c906108c
SS
3323/* Target Overlays for the "Simplest" overlay manager:
3324
5417f6dc
RM
3325 This is GDB's default target overlay layer. It works with the
3326 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3327 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3328 so targets that use a different runtime overlay manager can
c906108c
SS
3329 substitute their own overlay_update function and take over the
3330 function pointer.
3331
3332 The overlay_update function pokes around in the target's data structures
3333 to see what overlays are mapped, and updates GDB's overlay mapping with
3334 this information.
3335
3336 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3337 unsigned _novlys; /# number of overlay sections #/
3338 unsigned _ovly_table[_novlys][4] = {
3339 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3340 {..., ..., ..., ...},
3341 }
3342 unsigned _novly_regions; /# number of overlay regions #/
3343 unsigned _ovly_region_table[_novly_regions][3] = {
3344 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3345 {..., ..., ...},
3346 }
c906108c
SS
3347 These functions will attempt to update GDB's mappedness state in the
3348 symbol section table, based on the target's mappedness state.
3349
3350 To do this, we keep a cached copy of the target's _ovly_table, and
3351 attempt to detect when the cached copy is invalidated. The main
3352 entry point is "simple_overlay_update(SECT), which looks up SECT in
3353 the cached table and re-reads only the entry for that section from
c378eb4e 3354 the target (whenever possible). */
c906108c
SS
3355
3356/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3357static unsigned (*cache_ovly_table)[4] = 0;
c5aa993b 3358static unsigned cache_novlys = 0;
c906108c 3359static CORE_ADDR cache_ovly_table_base = 0;
c5aa993b
JM
3360enum ovly_index
3361 {
3362 VMA, SIZE, LMA, MAPPED
3363 };
c906108c 3364
c378eb4e 3365/* Throw away the cached copy of _ovly_table. */
3b7bacac 3366
c906108c 3367static void
fba45db2 3368simple_free_overlay_table (void)
c906108c
SS
3369{
3370 if (cache_ovly_table)
b8c9b27d 3371 xfree (cache_ovly_table);
c5aa993b 3372 cache_novlys = 0;
c906108c
SS
3373 cache_ovly_table = NULL;
3374 cache_ovly_table_base = 0;
3375}
3376
9216df95 3377/* Read an array of ints of size SIZE from the target into a local buffer.
c378eb4e 3378 Convert to host order. int LEN is number of ints. */
3b7bacac 3379
c906108c 3380static void
9216df95 3381read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3382 int len, int size, enum bfd_endian byte_order)
c906108c 3383{
c378eb4e 3384 /* FIXME (alloca): Not safe if array is very large. */
9216df95 3385 gdb_byte *buf = alloca (len * size);
c5aa993b 3386 int i;
c906108c 3387
9216df95 3388 read_memory (memaddr, buf, len * size);
c906108c 3389 for (i = 0; i < len; i++)
e17a4113 3390 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3391}
3392
3393/* Find and grab a copy of the target _ovly_table
c378eb4e 3394 (and _novlys, which is needed for the table's size). */
3b7bacac 3395
c5aa993b 3396static int
fba45db2 3397simple_read_overlay_table (void)
c906108c 3398{
7c7b6655
TT
3399 struct minimal_symbol *novlys_msym;
3400 struct bound_minimal_symbol ovly_table_msym;
9216df95
UW
3401 struct gdbarch *gdbarch;
3402 int word_size;
e17a4113 3403 enum bfd_endian byte_order;
c906108c
SS
3404
3405 simple_free_overlay_table ();
9b27852e 3406 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3407 if (! novlys_msym)
c906108c 3408 {
8a3fe4f8 3409 error (_("Error reading inferior's overlay table: "
0d43edd1 3410 "couldn't find `_novlys' variable\n"
8a3fe4f8 3411 "in inferior. Use `overlay manual' mode."));
0d43edd1 3412 return 0;
c906108c 3413 }
0d43edd1 3414
7c7b6655
TT
3415 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3416 if (! ovly_table_msym.minsym)
0d43edd1 3417 {
8a3fe4f8 3418 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3419 "`_ovly_table' array\n"
8a3fe4f8 3420 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3421 return 0;
3422 }
3423
7c7b6655 3424 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
9216df95 3425 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3426 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3427
e17a4113
UW
3428 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3429 4, byte_order);
0d43edd1
JB
3430 cache_ovly_table
3431 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
7c7b6655 3432 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym.minsym);
0d43edd1 3433 read_target_long_array (cache_ovly_table_base,
777ea8f1 3434 (unsigned int *) cache_ovly_table,
e17a4113 3435 cache_novlys * 4, word_size, byte_order);
0d43edd1 3436
c5aa993b 3437 return 1; /* SUCCESS */
c906108c
SS
3438}
3439
5417f6dc 3440/* Function: simple_overlay_update_1
c906108c
SS
3441 A helper function for simple_overlay_update. Assuming a cached copy
3442 of _ovly_table exists, look through it to find an entry whose vma,
3443 lma and size match those of OSECT. Re-read the entry and make sure
3444 it still matches OSECT (else the table may no longer be valid).
3445 Set OSECT's mapped state to match the entry. Return: 1 for
3446 success, 0 for failure. */
3447
3448static int
fba45db2 3449simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3450{
3451 int i, size;
fbd35540
MS
3452 bfd *obfd = osect->objfile->obfd;
3453 asection *bsect = osect->the_bfd_section;
9216df95
UW
3454 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3455 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3456 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3457
2c500098 3458 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3459 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3460 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3461 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3462 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c 3463 {
9216df95
UW
3464 read_target_long_array (cache_ovly_table_base + i * word_size,
3465 (unsigned int *) cache_ovly_table[i],
e17a4113 3466 4, word_size, byte_order);
fbd35540
MS
3467 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3468 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3469 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3470 {
3471 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3472 return 1;
3473 }
c378eb4e 3474 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3475 return 0;
3476 }
3477 return 0;
3478}
3479
3480/* Function: simple_overlay_update
5417f6dc
RM
3481 If OSECT is NULL, then update all sections' mapped state
3482 (after re-reading the entire target _ovly_table).
3483 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3484 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3485 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3486 re-read the entire cache, and go ahead and update all sections. */
3487
1c772458 3488void
fba45db2 3489simple_overlay_update (struct obj_section *osect)
c906108c 3490{
c5aa993b 3491 struct objfile *objfile;
c906108c 3492
c378eb4e 3493 /* Were we given an osect to look up? NULL means do all of them. */
c906108c 3494 if (osect)
c378eb4e 3495 /* Have we got a cached copy of the target's overlay table? */
c906108c 3496 if (cache_ovly_table != NULL)
9cc89665
MS
3497 {
3498 /* Does its cached location match what's currently in the
3499 symtab? */
3500 struct minimal_symbol *minsym
3501 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3502
3503 if (minsym == NULL)
3504 error (_("Error reading inferior's overlay table: couldn't "
3505 "find `_ovly_table' array\n"
3506 "in inferior. Use `overlay manual' mode."));
3507
3508 if (cache_ovly_table_base == SYMBOL_VALUE_ADDRESS (minsym))
3509 /* Then go ahead and try to look up this single section in
3510 the cache. */
3511 if (simple_overlay_update_1 (osect))
3512 /* Found it! We're done. */
3513 return;
3514 }
c906108c
SS
3515
3516 /* Cached table no good: need to read the entire table anew.
3517 Or else we want all the sections, in which case it's actually
3518 more efficient to read the whole table in one block anyway. */
3519
0d43edd1
JB
3520 if (! simple_read_overlay_table ())
3521 return;
3522
c378eb4e 3523 /* Now may as well update all sections, even if only one was requested. */
c906108c 3524 ALL_OBJSECTIONS (objfile, osect)
714835d5 3525 if (section_is_overlay (osect))
c5aa993b
JM
3526 {
3527 int i, size;
fbd35540
MS
3528 bfd *obfd = osect->objfile->obfd;
3529 asection *bsect = osect->the_bfd_section;
c5aa993b 3530
2c500098 3531 size = bfd_get_section_size (bsect);
c5aa993b 3532 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3533 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3534 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3535 /* && cache_ovly_table[i][SIZE] == size */ )
c378eb4e 3536 { /* obj_section matches i'th entry in ovly_table. */
c5aa993b 3537 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
c378eb4e 3538 break; /* finished with inner for loop: break out. */
c5aa993b
JM
3539 }
3540 }
c906108c
SS
3541}
3542
086df311
DJ
3543/* Set the output sections and output offsets for section SECTP in
3544 ABFD. The relocation code in BFD will read these offsets, so we
3545 need to be sure they're initialized. We map each section to itself,
3546 with no offset; this means that SECTP->vma will be honored. */
3547
3548static void
3549symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3550{
3551 sectp->output_section = sectp;
3552 sectp->output_offset = 0;
3553}
3554
ac8035ab
TG
3555/* Default implementation for sym_relocate. */
3556
ac8035ab
TG
3557bfd_byte *
3558default_symfile_relocate (struct objfile *objfile, asection *sectp,
3559 bfd_byte *buf)
3560{
3019eac3
DE
3561 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3562 DWO file. */
3563 bfd *abfd = sectp->owner;
ac8035ab
TG
3564
3565 /* We're only interested in sections with relocation
3566 information. */
3567 if ((sectp->flags & SEC_RELOC) == 0)
3568 return NULL;
3569
3570 /* We will handle section offsets properly elsewhere, so relocate as if
3571 all sections begin at 0. */
3572 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3573
3574 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3575}
3576
086df311
DJ
3577/* Relocate the contents of a debug section SECTP in ABFD. The
3578 contents are stored in BUF if it is non-NULL, or returned in a
3579 malloc'd buffer otherwise.
3580
3581 For some platforms and debug info formats, shared libraries contain
3582 relocations against the debug sections (particularly for DWARF-2;
3583 one affected platform is PowerPC GNU/Linux, although it depends on
3584 the version of the linker in use). Also, ELF object files naturally
3585 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3586 the relocations in order to get the locations of symbols correct.
3587 Another example that may require relocation processing, is the
3588 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3589 debug section. */
086df311
DJ
3590
3591bfd_byte *
ac8035ab
TG
3592symfile_relocate_debug_section (struct objfile *objfile,
3593 asection *sectp, bfd_byte *buf)
086df311 3594{
ac8035ab 3595 gdb_assert (objfile->sf->sym_relocate);
086df311 3596
ac8035ab 3597 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3598}
c906108c 3599
31d99776
DJ
3600struct symfile_segment_data *
3601get_symfile_segment_data (bfd *abfd)
3602{
00b5771c 3603 const struct sym_fns *sf = find_sym_fns (abfd);
31d99776
DJ
3604
3605 if (sf == NULL)
3606 return NULL;
3607
3608 return sf->sym_segments (abfd);
3609}
3610
3611void
3612free_symfile_segment_data (struct symfile_segment_data *data)
3613{
3614 xfree (data->segment_bases);
3615 xfree (data->segment_sizes);
3616 xfree (data->segment_info);
3617 xfree (data);
3618}
3619
28c32713
JB
3620/* Given:
3621 - DATA, containing segment addresses from the object file ABFD, and
3622 the mapping from ABFD's sections onto the segments that own them,
3623 and
3624 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3625 segment addresses reported by the target,
3626 store the appropriate offsets for each section in OFFSETS.
3627
3628 If there are fewer entries in SEGMENT_BASES than there are segments
3629 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3630
8d385431
DJ
3631 If there are more entries, then ignore the extra. The target may
3632 not be able to distinguish between an empty data segment and a
3633 missing data segment; a missing text segment is less plausible. */
3b7bacac 3634
31d99776 3635int
3189cb12
DE
3636symfile_map_offsets_to_segments (bfd *abfd,
3637 const struct symfile_segment_data *data,
31d99776
DJ
3638 struct section_offsets *offsets,
3639 int num_segment_bases,
3640 const CORE_ADDR *segment_bases)
3641{
3642 int i;
3643 asection *sect;
3644
28c32713
JB
3645 /* It doesn't make sense to call this function unless you have some
3646 segment base addresses. */
202b96c1 3647 gdb_assert (num_segment_bases > 0);
28c32713 3648
31d99776
DJ
3649 /* If we do not have segment mappings for the object file, we
3650 can not relocate it by segments. */
3651 gdb_assert (data != NULL);
3652 gdb_assert (data->num_segments > 0);
3653
31d99776
DJ
3654 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3655 {
31d99776
DJ
3656 int which = data->segment_info[i];
3657
28c32713
JB
3658 gdb_assert (0 <= which && which <= data->num_segments);
3659
3660 /* Don't bother computing offsets for sections that aren't
3661 loaded as part of any segment. */
3662 if (! which)
3663 continue;
3664
3665 /* Use the last SEGMENT_BASES entry as the address of any extra
3666 segments mentioned in DATA->segment_info. */
31d99776 3667 if (which > num_segment_bases)
28c32713 3668 which = num_segment_bases;
31d99776 3669
28c32713
JB
3670 offsets->offsets[i] = (segment_bases[which - 1]
3671 - data->segment_bases[which - 1]);
31d99776
DJ
3672 }
3673
3674 return 1;
3675}
3676
3677static void
3678symfile_find_segment_sections (struct objfile *objfile)
3679{
3680 bfd *abfd = objfile->obfd;
3681 int i;
3682 asection *sect;
3683 struct symfile_segment_data *data;
3684
3685 data = get_symfile_segment_data (objfile->obfd);
3686 if (data == NULL)
3687 return;
3688
3689 if (data->num_segments != 1 && data->num_segments != 2)
3690 {
3691 free_symfile_segment_data (data);
3692 return;
3693 }
3694
3695 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3696 {
31d99776
DJ
3697 int which = data->segment_info[i];
3698
3699 if (which == 1)
3700 {
3701 if (objfile->sect_index_text == -1)
3702 objfile->sect_index_text = sect->index;
3703
3704 if (objfile->sect_index_rodata == -1)
3705 objfile->sect_index_rodata = sect->index;
3706 }
3707 else if (which == 2)
3708 {
3709 if (objfile->sect_index_data == -1)
3710 objfile->sect_index_data = sect->index;
3711
3712 if (objfile->sect_index_bss == -1)
3713 objfile->sect_index_bss = sect->index;
3714 }
3715 }
3716
3717 free_symfile_segment_data (data);
3718}
3719
c906108c 3720void
fba45db2 3721_initialize_symfile (void)
c906108c
SS
3722{
3723 struct cmd_list_element *c;
c5aa993b 3724
1a966eab
AC
3725 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3726Load symbol table from executable file FILE.\n\
c906108c 3727The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3728to execute."), &cmdlist);
5ba2abeb 3729 set_cmd_completer (c, filename_completer);
c906108c 3730
1a966eab 3731 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3732Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3e43a32a
MS
3733Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3734 ...]\nADDR is the starting address of the file's text.\n\
db162d44
EZ
3735The optional arguments are section-name section-address pairs and\n\
3736should be specified if the data and bss segments are not contiguous\n\
1a966eab 3737with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3738 &cmdlist);
5ba2abeb 3739 set_cmd_completer (c, filename_completer);
c906108c 3740
1a966eab
AC
3741 c = add_cmd ("load", class_files, load_command, _("\
3742Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
3743for access from GDB.\n\
3744A load OFFSET may also be given."), &cmdlist);
5ba2abeb 3745 set_cmd_completer (c, filename_completer);
c906108c 3746
c5aa993b 3747 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3748 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3749 "overlay ", 0, &cmdlist);
3750
3751 add_com_alias ("ovly", "overlay", class_alias, 1);
3752 add_com_alias ("ov", "overlay", class_alias, 1);
3753
c5aa993b 3754 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3755 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3756
c5aa993b 3757 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3758 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3759
c5aa993b 3760 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3761 _("List mappings of overlay sections."), &overlaylist);
c906108c 3762
c5aa993b 3763 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3764 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3765 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3766 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3767 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3768 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3769 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3770 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3771
3772 /* Filename extension to source language lookup table: */
3773 init_filename_language_table ();
26c41df3
AC
3774 add_setshow_string_noescape_cmd ("extension-language", class_files,
3775 &ext_args, _("\
3776Set mapping between filename extension and source language."), _("\
3777Show mapping between filename extension and source language."), _("\
3778Usage: set extension-language .foo bar"),
3779 set_ext_lang_command,
920d2a44 3780 show_ext_args,
26c41df3 3781 &setlist, &showlist);
c906108c 3782
c5aa993b 3783 add_info ("extensions", info_ext_lang_command,
1bedd215 3784 _("All filename extensions associated with a source language."));
917317f4 3785
525226b5
AC
3786 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3787 &debug_file_directory, _("\
24ddea62
JK
3788Set the directories where separate debug symbols are searched for."), _("\
3789Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
3790Separate debug symbols are first searched for in the same\n\
3791directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3792and lastly at the path of the directory of the binary with\n\
24ddea62 3793each global debug-file-directory component prepended."),
525226b5 3794 NULL,
920d2a44 3795 show_debug_file_directory,
525226b5 3796 &setlist, &showlist);
c906108c 3797}
This page took 3.463233 seconds and 4 git commands to generate.