change minsyms not to be relocated at read-time
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
ecd75fc8 3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
8926118c 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
086df311 24#include "bfdlink.h"
c906108c
SS
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "target.h"
30#include "value.h"
31#include "symfile.h"
32#include "objfiles.h"
0378c332 33#include "source.h"
c906108c
SS
34#include "gdbcmd.h"
35#include "breakpoint.h"
36#include "language.h"
37#include "complaints.h"
38#include "demangle.h"
fb14de7b
UW
39#include "inferior.h"
40#include "regcache.h"
5b5d99cf 41#include "filenames.h" /* for DOSish file names */
c906108c 42#include "gdb-stabs.h"
04ea0df1 43#include "gdb_obstack.h"
d75b5104 44#include "completer.h"
af5f3db6 45#include "bcache.h"
2de7ced7 46#include "hashtab.h"
dbda9972 47#include "readline/readline.h"
7e8580c1 48#include "gdb_assert.h"
fe898f56 49#include "block.h"
ea53e89f 50#include "observer.h"
c1bd25fd 51#include "exec.h"
9bdcbae7 52#include "parser-defs.h"
8756216b 53#include "varobj.h"
77069918 54#include "elf-bfd.h"
e85a822c 55#include "solib.h"
f1838a98 56#include "remote.h"
1bfeeb0f 57#include "stack.h"
cbb099e8 58#include "gdb_bfd.h"
529480d0 59#include "cli/cli-utils.h"
c906108c 60
c906108c
SS
61#include <sys/types.h>
62#include <fcntl.h>
0e9f083f 63#include <string.h>
53ce3c39 64#include <sys/stat.h>
c906108c
SS
65#include <ctype.h>
66#include <time.h>
2b71414d 67#include <sys/time.h>
c906108c 68
ccefe4c4 69#include "psymtab.h"
c906108c 70
3e43a32a
MS
71int (*deprecated_ui_load_progress_hook) (const char *section,
72 unsigned long num);
9a4105ab 73void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
74 unsigned long section_sent,
75 unsigned long section_size,
76 unsigned long total_sent,
c2d11a7d 77 unsigned long total_size);
769d7dc4
AC
78void (*deprecated_pre_add_symbol_hook) (const char *);
79void (*deprecated_post_add_symbol_hook) (void);
c906108c 80
74b7792f
AC
81static void clear_symtab_users_cleanup (void *ignore);
82
c378eb4e
MS
83/* Global variables owned by this file. */
84int readnow_symbol_files; /* Read full symbols immediately. */
c906108c 85
c378eb4e 86/* Functions this file defines. */
c906108c 87
a14ed312 88static void load_command (char *, int);
c906108c 89
69150c3d 90static void symbol_file_add_main_1 (const char *args, int from_tty, int flags);
d7db6da9 91
a14ed312 92static void add_symbol_file_command (char *, int);
c906108c 93
00b5771c 94static const struct sym_fns *find_sym_fns (bfd *);
c906108c 95
a14ed312 96static void decrement_reading_symtab (void *);
c906108c 97
a14ed312 98static void overlay_invalidate_all (void);
c906108c 99
a14ed312 100static void overlay_auto_command (char *, int);
c906108c 101
a14ed312 102static void overlay_manual_command (char *, int);
c906108c 103
a14ed312 104static void overlay_off_command (char *, int);
c906108c 105
a14ed312 106static void overlay_load_command (char *, int);
c906108c 107
a14ed312 108static void overlay_command (char *, int);
c906108c 109
a14ed312 110static void simple_free_overlay_table (void);
c906108c 111
e17a4113
UW
112static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
113 enum bfd_endian);
c906108c 114
a14ed312 115static int simple_read_overlay_table (void);
c906108c 116
a14ed312 117static int simple_overlay_update_1 (struct obj_section *);
c906108c 118
a14ed312 119static void add_filename_language (char *ext, enum language lang);
392a587b 120
a14ed312 121static void info_ext_lang_command (char *args, int from_tty);
392a587b 122
a14ed312 123static void init_filename_language_table (void);
392a587b 124
31d99776
DJ
125static void symfile_find_segment_sections (struct objfile *objfile);
126
a14ed312 127void _initialize_symfile (void);
c906108c
SS
128
129/* List of all available sym_fns. On gdb startup, each object file reader
130 calls add_symtab_fns() to register information on each format it is
c378eb4e 131 prepared to read. */
c906108c 132
c256e171
DE
133typedef struct
134{
135 /* BFD flavour that we handle. */
136 enum bfd_flavour sym_flavour;
137
138 /* The "vtable" of symbol functions. */
139 const struct sym_fns *sym_fns;
140} registered_sym_fns;
00b5771c 141
c256e171
DE
142DEF_VEC_O (registered_sym_fns);
143
144static VEC (registered_sym_fns) *symtab_fns = NULL;
c906108c 145
b7209cb4
FF
146/* If non-zero, shared library symbols will be added automatically
147 when the inferior is created, new libraries are loaded, or when
148 attaching to the inferior. This is almost always what users will
149 want to have happen; but for very large programs, the startup time
150 will be excessive, and so if this is a problem, the user can clear
151 this flag and then add the shared library symbols as needed. Note
152 that there is a potential for confusion, since if the shared
c906108c 153 library symbols are not loaded, commands like "info fun" will *not*
0d14a781 154 report all the functions that are actually present. */
c906108c
SS
155
156int auto_solib_add = 1;
c906108c 157\f
c5aa993b 158
0d14a781 159/* True if we are reading a symbol table. */
c906108c
SS
160
161int currently_reading_symtab = 0;
162
163static void
fba45db2 164decrement_reading_symtab (void *dummy)
c906108c
SS
165{
166 currently_reading_symtab--;
2cb9c859 167 gdb_assert (currently_reading_symtab >= 0);
c906108c
SS
168}
169
ccefe4c4
TT
170/* Increment currently_reading_symtab and return a cleanup that can be
171 used to decrement it. */
3b7bacac 172
ccefe4c4
TT
173struct cleanup *
174increment_reading_symtab (void)
c906108c 175{
ccefe4c4 176 ++currently_reading_symtab;
2cb9c859 177 gdb_assert (currently_reading_symtab > 0);
ccefe4c4 178 return make_cleanup (decrement_reading_symtab, NULL);
c906108c
SS
179}
180
5417f6dc
RM
181/* Remember the lowest-addressed loadable section we've seen.
182 This function is called via bfd_map_over_sections.
c906108c
SS
183
184 In case of equal vmas, the section with the largest size becomes the
185 lowest-addressed loadable section.
186
187 If the vmas and sizes are equal, the last section is considered the
188 lowest-addressed loadable section. */
189
190void
4efb68b1 191find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 192{
c5aa993b 193 asection **lowest = (asection **) obj;
c906108c 194
eb73e134 195 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
196 return;
197 if (!*lowest)
198 *lowest = sect; /* First loadable section */
199 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
200 *lowest = sect; /* A lower loadable section */
201 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
202 && (bfd_section_size (abfd, (*lowest))
203 <= bfd_section_size (abfd, sect)))
204 *lowest = sect;
205}
206
d76488d8
TT
207/* Create a new section_addr_info, with room for NUM_SECTIONS. The
208 new object's 'num_sections' field is set to 0; it must be updated
209 by the caller. */
a39a16c4
MM
210
211struct section_addr_info *
212alloc_section_addr_info (size_t num_sections)
213{
214 struct section_addr_info *sap;
215 size_t size;
216
217 size = (sizeof (struct section_addr_info)
218 + sizeof (struct other_sections) * (num_sections - 1));
219 sap = (struct section_addr_info *) xmalloc (size);
220 memset (sap, 0, size);
a39a16c4
MM
221
222 return sap;
223}
62557bbc
KB
224
225/* Build (allocate and populate) a section_addr_info struct from
c378eb4e 226 an existing section table. */
62557bbc
KB
227
228extern struct section_addr_info *
0542c86d
PA
229build_section_addr_info_from_section_table (const struct target_section *start,
230 const struct target_section *end)
62557bbc
KB
231{
232 struct section_addr_info *sap;
0542c86d 233 const struct target_section *stp;
62557bbc
KB
234 int oidx;
235
a39a16c4 236 sap = alloc_section_addr_info (end - start);
62557bbc
KB
237
238 for (stp = start, oidx = 0; stp != end; stp++)
239 {
2b2848e2
DE
240 struct bfd_section *asect = stp->the_bfd_section;
241 bfd *abfd = asect->owner;
242
243 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 244 && oidx < end - start)
62557bbc
KB
245 {
246 sap->other[oidx].addr = stp->addr;
2b2848e2
DE
247 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
248 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
62557bbc
KB
249 oidx++;
250 }
251 }
252
d76488d8
TT
253 sap->num_sections = oidx;
254
62557bbc
KB
255 return sap;
256}
257
82ccf5a5 258/* Create a section_addr_info from section offsets in ABFD. */
089b4803 259
82ccf5a5
JK
260static struct section_addr_info *
261build_section_addr_info_from_bfd (bfd *abfd)
089b4803
TG
262{
263 struct section_addr_info *sap;
264 int i;
265 struct bfd_section *sec;
266
82ccf5a5
JK
267 sap = alloc_section_addr_info (bfd_count_sections (abfd));
268 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
269 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
012836ea 270 {
82ccf5a5
JK
271 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
272 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
65cf3563 273 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
012836ea
JK
274 i++;
275 }
d76488d8
TT
276
277 sap->num_sections = i;
278
089b4803
TG
279 return sap;
280}
281
82ccf5a5
JK
282/* Create a section_addr_info from section offsets in OBJFILE. */
283
284struct section_addr_info *
285build_section_addr_info_from_objfile (const struct objfile *objfile)
286{
287 struct section_addr_info *sap;
288 int i;
289
290 /* Before reread_symbols gets rewritten it is not safe to call:
291 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
292 */
293 sap = build_section_addr_info_from_bfd (objfile->obfd);
d76488d8 294 for (i = 0; i < sap->num_sections; i++)
82ccf5a5
JK
295 {
296 int sectindex = sap->other[i].sectindex;
297
298 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
299 }
300 return sap;
301}
62557bbc 302
c378eb4e 303/* Free all memory allocated by build_section_addr_info_from_section_table. */
62557bbc
KB
304
305extern void
306free_section_addr_info (struct section_addr_info *sap)
307{
308 int idx;
309
a39a16c4 310 for (idx = 0; idx < sap->num_sections; idx++)
d76488d8 311 xfree (sap->other[idx].name);
b8c9b27d 312 xfree (sap);
62557bbc
KB
313}
314
e8289572 315/* Initialize OBJFILE's sect_index_* members. */
3b7bacac 316
e8289572
JB
317static void
318init_objfile_sect_indices (struct objfile *objfile)
c906108c 319{
e8289572 320 asection *sect;
c906108c 321 int i;
5417f6dc 322
b8fbeb18 323 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 324 if (sect)
b8fbeb18
EZ
325 objfile->sect_index_text = sect->index;
326
327 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 328 if (sect)
b8fbeb18
EZ
329 objfile->sect_index_data = sect->index;
330
331 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 332 if (sect)
b8fbeb18
EZ
333 objfile->sect_index_bss = sect->index;
334
335 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 336 if (sect)
b8fbeb18
EZ
337 objfile->sect_index_rodata = sect->index;
338
bbcd32ad
FF
339 /* This is where things get really weird... We MUST have valid
340 indices for the various sect_index_* members or gdb will abort.
341 So if for example, there is no ".text" section, we have to
31d99776
DJ
342 accomodate that. First, check for a file with the standard
343 one or two segments. */
344
345 symfile_find_segment_sections (objfile);
346
347 /* Except when explicitly adding symbol files at some address,
348 section_offsets contains nothing but zeros, so it doesn't matter
349 which slot in section_offsets the individual sect_index_* members
350 index into. So if they are all zero, it is safe to just point
351 all the currently uninitialized indices to the first slot. But
352 beware: if this is the main executable, it may be relocated
353 later, e.g. by the remote qOffsets packet, and then this will
354 be wrong! That's why we try segments first. */
bbcd32ad
FF
355
356 for (i = 0; i < objfile->num_sections; i++)
357 {
358 if (ANOFFSET (objfile->section_offsets, i) != 0)
359 {
360 break;
361 }
362 }
363 if (i == objfile->num_sections)
364 {
365 if (objfile->sect_index_text == -1)
366 objfile->sect_index_text = 0;
367 if (objfile->sect_index_data == -1)
368 objfile->sect_index_data = 0;
369 if (objfile->sect_index_bss == -1)
370 objfile->sect_index_bss = 0;
371 if (objfile->sect_index_rodata == -1)
372 objfile->sect_index_rodata = 0;
373 }
b8fbeb18 374}
c906108c 375
c1bd25fd
DJ
376/* The arguments to place_section. */
377
378struct place_section_arg
379{
380 struct section_offsets *offsets;
381 CORE_ADDR lowest;
382};
383
384/* Find a unique offset to use for loadable section SECT if
385 the user did not provide an offset. */
386
2c0b251b 387static void
c1bd25fd
DJ
388place_section (bfd *abfd, asection *sect, void *obj)
389{
390 struct place_section_arg *arg = obj;
391 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
392 int done;
3bd72c6f 393 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 394
2711e456
DJ
395 /* We are only interested in allocated sections. */
396 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
397 return;
398
399 /* If the user specified an offset, honor it. */
65cf3563 400 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
c1bd25fd
DJ
401 return;
402
403 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
404 start_addr = (arg->lowest + align - 1) & -align;
405
c1bd25fd
DJ
406 do {
407 asection *cur_sec;
c1bd25fd 408
c1bd25fd
DJ
409 done = 1;
410
411 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
412 {
413 int indx = cur_sec->index;
c1bd25fd
DJ
414
415 /* We don't need to compare against ourself. */
416 if (cur_sec == sect)
417 continue;
418
2711e456
DJ
419 /* We can only conflict with allocated sections. */
420 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
421 continue;
422
423 /* If the section offset is 0, either the section has not been placed
424 yet, or it was the lowest section placed (in which case LOWEST
425 will be past its end). */
426 if (offsets[indx] == 0)
427 continue;
428
429 /* If this section would overlap us, then we must move up. */
430 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
431 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
432 {
433 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
434 start_addr = (start_addr + align - 1) & -align;
435 done = 0;
3bd72c6f 436 break;
c1bd25fd
DJ
437 }
438
439 /* Otherwise, we appear to be OK. So far. */
440 }
441 }
442 while (!done);
443
65cf3563 444 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
c1bd25fd 445 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 446}
e8289572 447
75242ef4
JK
448/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
449 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
450 entries. */
e8289572
JB
451
452void
75242ef4
JK
453relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
454 int num_sections,
3189cb12 455 const struct section_addr_info *addrs)
e8289572
JB
456{
457 int i;
458
75242ef4 459 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 460
c378eb4e 461 /* Now calculate offsets for section that were specified by the caller. */
d76488d8 462 for (i = 0; i < addrs->num_sections; i++)
e8289572 463 {
3189cb12 464 const struct other_sections *osp;
e8289572 465
75242ef4 466 osp = &addrs->other[i];
5488dafb 467 if (osp->sectindex == -1)
e8289572
JB
468 continue;
469
c378eb4e 470 /* Record all sections in offsets. */
e8289572 471 /* The section_offsets in the objfile are here filled in using
c378eb4e 472 the BFD index. */
75242ef4
JK
473 section_offsets->offsets[osp->sectindex] = osp->addr;
474 }
475}
476
1276c759
JK
477/* Transform section name S for a name comparison. prelink can split section
478 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
479 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
480 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
481 (`.sbss') section has invalid (increased) virtual address. */
482
483static const char *
484addr_section_name (const char *s)
485{
486 if (strcmp (s, ".dynbss") == 0)
487 return ".bss";
488 if (strcmp (s, ".sdynbss") == 0)
489 return ".sbss";
490
491 return s;
492}
493
82ccf5a5
JK
494/* qsort comparator for addrs_section_sort. Sort entries in ascending order by
495 their (name, sectindex) pair. sectindex makes the sort by name stable. */
496
497static int
498addrs_section_compar (const void *ap, const void *bp)
499{
500 const struct other_sections *a = *((struct other_sections **) ap);
501 const struct other_sections *b = *((struct other_sections **) bp);
22e048c9 502 int retval;
82ccf5a5 503
1276c759 504 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
82ccf5a5
JK
505 if (retval)
506 return retval;
507
5488dafb 508 return a->sectindex - b->sectindex;
82ccf5a5
JK
509}
510
511/* Provide sorted array of pointers to sections of ADDRS. The array is
512 terminated by NULL. Caller is responsible to call xfree for it. */
513
514static struct other_sections **
515addrs_section_sort (struct section_addr_info *addrs)
516{
517 struct other_sections **array;
518 int i;
519
520 /* `+ 1' for the NULL terminator. */
521 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
d76488d8 522 for (i = 0; i < addrs->num_sections; i++)
82ccf5a5
JK
523 array[i] = &addrs->other[i];
524 array[i] = NULL;
525
526 qsort (array, i, sizeof (*array), addrs_section_compar);
527
528 return array;
529}
530
75242ef4 531/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
532 also SECTINDEXes specific to ABFD there. This function can be used to
533 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
534
535void
536addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
537{
538 asection *lower_sect;
75242ef4
JK
539 CORE_ADDR lower_offset;
540 int i;
82ccf5a5
JK
541 struct cleanup *my_cleanup;
542 struct section_addr_info *abfd_addrs;
543 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
544 struct other_sections **addrs_to_abfd_addrs;
75242ef4
JK
545
546 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
547 continguous sections. */
548 lower_sect = NULL;
549 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
550 if (lower_sect == NULL)
551 {
552 warning (_("no loadable sections found in added symbol-file %s"),
553 bfd_get_filename (abfd));
554 lower_offset = 0;
e8289572 555 }
75242ef4
JK
556 else
557 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
558
82ccf5a5
JK
559 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
560 in ABFD. Section names are not unique - there can be multiple sections of
561 the same name. Also the sections of the same name do not have to be
562 adjacent to each other. Some sections may be present only in one of the
563 files. Even sections present in both files do not have to be in the same
564 order.
565
566 Use stable sort by name for the sections in both files. Then linearly
567 scan both lists matching as most of the entries as possible. */
568
569 addrs_sorted = addrs_section_sort (addrs);
570 my_cleanup = make_cleanup (xfree, addrs_sorted);
571
572 abfd_addrs = build_section_addr_info_from_bfd (abfd);
573 make_cleanup_free_section_addr_info (abfd_addrs);
574 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
575 make_cleanup (xfree, abfd_addrs_sorted);
576
c378eb4e
MS
577 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
578 ABFD_ADDRS_SORTED. */
82ccf5a5
JK
579
580 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
581 * addrs->num_sections);
582 make_cleanup (xfree, addrs_to_abfd_addrs);
583
584 while (*addrs_sorted)
585 {
1276c759 586 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
82ccf5a5
JK
587
588 while (*abfd_addrs_sorted
1276c759
JK
589 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
590 sect_name) < 0)
82ccf5a5
JK
591 abfd_addrs_sorted++;
592
593 if (*abfd_addrs_sorted
1276c759
JK
594 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
595 sect_name) == 0)
82ccf5a5
JK
596 {
597 int index_in_addrs;
598
599 /* Make the found item directly addressable from ADDRS. */
600 index_in_addrs = *addrs_sorted - addrs->other;
601 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
602 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
603
604 /* Never use the same ABFD entry twice. */
605 abfd_addrs_sorted++;
606 }
607
608 addrs_sorted++;
609 }
610
75242ef4
JK
611 /* Calculate offsets for the loadable sections.
612 FIXME! Sections must be in order of increasing loadable section
613 so that contiguous sections can use the lower-offset!!!
614
615 Adjust offsets if the segments are not contiguous.
616 If the section is contiguous, its offset should be set to
617 the offset of the highest loadable section lower than it
618 (the loadable section directly below it in memory).
619 this_offset = lower_offset = lower_addr - lower_orig_addr */
620
d76488d8 621 for (i = 0; i < addrs->num_sections; i++)
75242ef4 622 {
82ccf5a5 623 struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
624
625 if (sect)
75242ef4 626 {
c378eb4e 627 /* This is the index used by BFD. */
82ccf5a5 628 addrs->other[i].sectindex = sect->sectindex;
672d9c23
JK
629
630 if (addrs->other[i].addr != 0)
75242ef4 631 {
82ccf5a5 632 addrs->other[i].addr -= sect->addr;
75242ef4 633 lower_offset = addrs->other[i].addr;
75242ef4
JK
634 }
635 else
672d9c23 636 addrs->other[i].addr = lower_offset;
75242ef4
JK
637 }
638 else
672d9c23 639 {
1276c759
JK
640 /* addr_section_name transformation is not used for SECT_NAME. */
641 const char *sect_name = addrs->other[i].name;
642
b0fcb67f
JK
643 /* This section does not exist in ABFD, which is normally
644 unexpected and we want to issue a warning.
645
4d9743af
JK
646 However, the ELF prelinker does create a few sections which are
647 marked in the main executable as loadable (they are loaded in
648 memory from the DYNAMIC segment) and yet are not present in
649 separate debug info files. This is fine, and should not cause
650 a warning. Shared libraries contain just the section
651 ".gnu.liblist" but it is not marked as loadable there. There is
652 no other way to identify them than by their name as the sections
1276c759
JK
653 created by prelink have no special flags.
654
655 For the sections `.bss' and `.sbss' see addr_section_name. */
b0fcb67f
JK
656
657 if (!(strcmp (sect_name, ".gnu.liblist") == 0
4d9743af 658 || strcmp (sect_name, ".gnu.conflict") == 0
1276c759
JK
659 || (strcmp (sect_name, ".bss") == 0
660 && i > 0
661 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
662 && addrs_to_abfd_addrs[i - 1] != NULL)
663 || (strcmp (sect_name, ".sbss") == 0
664 && i > 0
665 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
666 && addrs_to_abfd_addrs[i - 1] != NULL)))
b0fcb67f
JK
667 warning (_("section %s not found in %s"), sect_name,
668 bfd_get_filename (abfd));
669
672d9c23 670 addrs->other[i].addr = 0;
5488dafb 671 addrs->other[i].sectindex = -1;
672d9c23 672 }
75242ef4 673 }
82ccf5a5
JK
674
675 do_cleanups (my_cleanup);
75242ef4
JK
676}
677
678/* Parse the user's idea of an offset for dynamic linking, into our idea
679 of how to represent it for fast symbol reading. This is the default
680 version of the sym_fns.sym_offsets function for symbol readers that
681 don't need to do anything special. It allocates a section_offsets table
682 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
683
684void
685default_symfile_offsets (struct objfile *objfile,
3189cb12 686 const struct section_addr_info *addrs)
75242ef4 687{
d445b2f6 688 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
75242ef4
JK
689 objfile->section_offsets = (struct section_offsets *)
690 obstack_alloc (&objfile->objfile_obstack,
691 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
692 relative_addr_info_to_section_offsets (objfile->section_offsets,
693 objfile->num_sections, addrs);
e8289572 694
c1bd25fd
DJ
695 /* For relocatable files, all loadable sections will start at zero.
696 The zero is meaningless, so try to pick arbitrary addresses such
697 that no loadable sections overlap. This algorithm is quadratic,
698 but the number of sections in a single object file is generally
699 small. */
700 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
701 {
702 struct place_section_arg arg;
2711e456
DJ
703 bfd *abfd = objfile->obfd;
704 asection *cur_sec;
2711e456
DJ
705
706 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
707 /* We do not expect this to happen; just skip this step if the
708 relocatable file has a section with an assigned VMA. */
709 if (bfd_section_vma (abfd, cur_sec) != 0)
710 break;
711
712 if (cur_sec == NULL)
713 {
714 CORE_ADDR *offsets = objfile->section_offsets->offsets;
715
716 /* Pick non-overlapping offsets for sections the user did not
717 place explicitly. */
718 arg.offsets = objfile->section_offsets;
719 arg.lowest = 0;
720 bfd_map_over_sections (objfile->obfd, place_section, &arg);
721
722 /* Correctly filling in the section offsets is not quite
723 enough. Relocatable files have two properties that
724 (most) shared objects do not:
725
726 - Their debug information will contain relocations. Some
727 shared libraries do also, but many do not, so this can not
728 be assumed.
729
730 - If there are multiple code sections they will be loaded
731 at different relative addresses in memory than they are
732 in the objfile, since all sections in the file will start
733 at address zero.
734
735 Because GDB has very limited ability to map from an
736 address in debug info to the correct code section,
737 it relies on adding SECT_OFF_TEXT to things which might be
738 code. If we clear all the section offsets, and set the
739 section VMAs instead, then symfile_relocate_debug_section
740 will return meaningful debug information pointing at the
741 correct sections.
742
743 GDB has too many different data structures for section
744 addresses - a bfd, objfile, and so_list all have section
745 tables, as does exec_ops. Some of these could probably
746 be eliminated. */
747
748 for (cur_sec = abfd->sections; cur_sec != NULL;
749 cur_sec = cur_sec->next)
750 {
751 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
752 continue;
753
754 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
3e43a32a
MS
755 exec_set_section_address (bfd_get_filename (abfd),
756 cur_sec->index,
30510692 757 offsets[cur_sec->index]);
2711e456
DJ
758 offsets[cur_sec->index] = 0;
759 }
760 }
c1bd25fd
DJ
761 }
762
e8289572 763 /* Remember the bfd indexes for the .text, .data, .bss and
c378eb4e 764 .rodata sections. */
e8289572
JB
765 init_objfile_sect_indices (objfile);
766}
767
31d99776
DJ
768/* Divide the file into segments, which are individual relocatable units.
769 This is the default version of the sym_fns.sym_segments function for
770 symbol readers that do not have an explicit representation of segments.
771 It assumes that object files do not have segments, and fully linked
772 files have a single segment. */
773
774struct symfile_segment_data *
775default_symfile_segments (bfd *abfd)
776{
777 int num_sections, i;
778 asection *sect;
779 struct symfile_segment_data *data;
780 CORE_ADDR low, high;
781
782 /* Relocatable files contain enough information to position each
783 loadable section independently; they should not be relocated
784 in segments. */
785 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
786 return NULL;
787
788 /* Make sure there is at least one loadable section in the file. */
789 for (sect = abfd->sections; sect != NULL; sect = sect->next)
790 {
791 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
792 continue;
793
794 break;
795 }
796 if (sect == NULL)
797 return NULL;
798
799 low = bfd_get_section_vma (abfd, sect);
800 high = low + bfd_get_section_size (sect);
801
41bf6aca 802 data = XCNEW (struct symfile_segment_data);
31d99776 803 data->num_segments = 1;
fc270c35
TT
804 data->segment_bases = XCNEW (CORE_ADDR);
805 data->segment_sizes = XCNEW (CORE_ADDR);
31d99776
DJ
806
807 num_sections = bfd_count_sections (abfd);
fc270c35 808 data->segment_info = XCNEWVEC (int, num_sections);
31d99776
DJ
809
810 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
811 {
812 CORE_ADDR vma;
813
814 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
815 continue;
816
817 vma = bfd_get_section_vma (abfd, sect);
818 if (vma < low)
819 low = vma;
820 if (vma + bfd_get_section_size (sect) > high)
821 high = vma + bfd_get_section_size (sect);
822
823 data->segment_info[i] = 1;
824 }
825
826 data->segment_bases[0] = low;
827 data->segment_sizes[0] = high - low;
828
829 return data;
830}
831
608e2dbb
TT
832/* This is a convenience function to call sym_read for OBJFILE and
833 possibly force the partial symbols to be read. */
834
835static void
836read_symbols (struct objfile *objfile, int add_flags)
837{
838 (*objfile->sf->sym_read) (objfile, add_flags);
8a92335b
JK
839
840 /* find_separate_debug_file_in_section should be called only if there is
841 single binary with no existing separate debug info file. */
842 if (!objfile_has_partial_symbols (objfile)
843 && objfile->separate_debug_objfile == NULL
844 && objfile->separate_debug_objfile_backlink == NULL)
608e2dbb
TT
845 {
846 bfd *abfd = find_separate_debug_file_in_section (objfile);
847 struct cleanup *cleanup = make_cleanup_bfd_unref (abfd);
848
849 if (abfd != NULL)
24ba069a
JK
850 {
851 /* find_separate_debug_file_in_section uses the same filename for the
852 virtual section-as-bfd like the bfd filename containing the
853 section. Therefore use also non-canonical name form for the same
854 file containing the section. */
855 symbol_file_add_separate (abfd, objfile->original_name, add_flags,
856 objfile);
857 }
608e2dbb
TT
858
859 do_cleanups (cleanup);
860 }
861 if ((add_flags & SYMFILE_NO_READ) == 0)
862 require_partial_symbols (objfile, 0);
863}
864
3d6e24f0
JB
865/* Initialize entry point information for this objfile. */
866
867static void
868init_entry_point_info (struct objfile *objfile)
869{
6ef55de7
TT
870 struct entry_info *ei = &objfile->per_bfd->ei;
871
872 if (ei->initialized)
873 return;
874 ei->initialized = 1;
875
3d6e24f0
JB
876 /* Save startup file's range of PC addresses to help blockframe.c
877 decide where the bottom of the stack is. */
878
879 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
880 {
881 /* Executable file -- record its entry point so we'll recognize
882 the startup file because it contains the entry point. */
6ef55de7
TT
883 ei->entry_point = bfd_get_start_address (objfile->obfd);
884 ei->entry_point_p = 1;
3d6e24f0
JB
885 }
886 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
887 && bfd_get_start_address (objfile->obfd) != 0)
888 {
889 /* Some shared libraries may have entry points set and be
890 runnable. There's no clear way to indicate this, so just check
891 for values other than zero. */
6ef55de7
TT
892 ei->entry_point = bfd_get_start_address (objfile->obfd);
893 ei->entry_point_p = 1;
3d6e24f0
JB
894 }
895 else
896 {
897 /* Examination of non-executable.o files. Short-circuit this stuff. */
6ef55de7 898 ei->entry_point_p = 0;
3d6e24f0
JB
899 }
900
6ef55de7 901 if (ei->entry_point_p)
3d6e24f0 902 {
53eddfa6 903 struct obj_section *osect;
6ef55de7 904 CORE_ADDR entry_point = ei->entry_point;
53eddfa6 905 int found;
3d6e24f0
JB
906
907 /* Make certain that the address points at real code, and not a
908 function descriptor. */
909 entry_point
df6d5441 910 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
3d6e24f0
JB
911 entry_point,
912 &current_target);
913
914 /* Remove any ISA markers, so that this matches entries in the
915 symbol table. */
6ef55de7 916 ei->entry_point
df6d5441 917 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
53eddfa6
TT
918
919 found = 0;
920 ALL_OBJFILE_OSECTIONS (objfile, osect)
921 {
922 struct bfd_section *sect = osect->the_bfd_section;
923
924 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
925 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
926 + bfd_get_section_size (sect)))
927 {
6ef55de7 928 ei->the_bfd_section_index
53eddfa6
TT
929 = gdb_bfd_section_index (objfile->obfd, sect);
930 found = 1;
931 break;
932 }
933 }
934
935 if (!found)
6ef55de7 936 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
3d6e24f0
JB
937 }
938}
939
c906108c
SS
940/* Process a symbol file, as either the main file or as a dynamically
941 loaded file.
942
36e4d068
JB
943 This function does not set the OBJFILE's entry-point info.
944
96baa820
JM
945 OBJFILE is where the symbols are to be read from.
946
7e8580c1
JB
947 ADDRS is the list of section load addresses. If the user has given
948 an 'add-symbol-file' command, then this is the list of offsets and
949 addresses he or she provided as arguments to the command; or, if
950 we're handling a shared library, these are the actual addresses the
951 sections are loaded at, according to the inferior's dynamic linker
952 (as gleaned by GDB's shared library code). We convert each address
953 into an offset from the section VMA's as it appears in the object
954 file, and then call the file's sym_offsets function to convert this
955 into a format-specific offset table --- a `struct section_offsets'.
96baa820 956
7eedccfa
PP
957 ADD_FLAGS encodes verbosity level, whether this is main symbol or
958 an extra symbol file such as dynamically loaded code, and wether
959 breakpoint reset should be deferred. */
c906108c 960
36e4d068
JB
961static void
962syms_from_objfile_1 (struct objfile *objfile,
963 struct section_addr_info *addrs,
36e4d068 964 int add_flags)
c906108c 965{
a39a16c4 966 struct section_addr_info *local_addr = NULL;
c906108c 967 struct cleanup *old_chain;
7eedccfa 968 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 969
8fb8eb5c 970 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
c906108c 971
75245b24 972 if (objfile->sf == NULL)
36e4d068
JB
973 {
974 /* No symbols to load, but we still need to make sure
975 that the section_offsets table is allocated. */
d445b2f6 976 int num_sections = gdb_bfd_count_sections (objfile->obfd);
a7bfba49 977 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
36e4d068
JB
978
979 objfile->num_sections = num_sections;
980 objfile->section_offsets
981 = obstack_alloc (&objfile->objfile_obstack, size);
982 memset (objfile->section_offsets, 0, size);
983 return;
984 }
75245b24 985
c906108c
SS
986 /* Make sure that partially constructed symbol tables will be cleaned up
987 if an error occurs during symbol reading. */
74b7792f 988 old_chain = make_cleanup_free_objfile (objfile);
c906108c 989
6bf667bb
DE
990 /* If ADDRS is NULL, put together a dummy address list.
991 We now establish the convention that an addr of zero means
c378eb4e 992 no load address was specified. */
6bf667bb 993 if (! addrs)
a39a16c4 994 {
d445b2f6 995 local_addr = alloc_section_addr_info (1);
a39a16c4
MM
996 make_cleanup (xfree, local_addr);
997 addrs = local_addr;
998 }
999
c5aa993b 1000 if (mainline)
c906108c
SS
1001 {
1002 /* We will modify the main symbol table, make sure that all its users
c5aa993b 1003 will be cleaned up if an error occurs during symbol reading. */
74b7792f 1004 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
1005
1006 /* Since no error yet, throw away the old symbol table. */
1007
1008 if (symfile_objfile != NULL)
1009 {
1010 free_objfile (symfile_objfile);
adb7f338 1011 gdb_assert (symfile_objfile == NULL);
c906108c
SS
1012 }
1013
1014 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
1015 If the user wants to get rid of them, they should do "symbol-file"
1016 without arguments first. Not sure this is the best behavior
1017 (PR 2207). */
c906108c 1018
c5aa993b 1019 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
1020 }
1021
1022 /* Convert addr into an offset rather than an absolute address.
1023 We find the lowest address of a loaded segment in the objfile,
53a5351d 1024 and assume that <addr> is where that got loaded.
c906108c 1025
53a5351d
JM
1026 We no longer warn if the lowest section is not a text segment (as
1027 happens for the PA64 port. */
6bf667bb 1028 if (addrs->num_sections > 0)
75242ef4 1029 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
1030
1031 /* Initialize symbol reading routines for this objfile, allow complaints to
1032 appear for this new file, and record how verbose to be, then do the
c378eb4e 1033 initial symbol reading for this file. */
c906108c 1034
c5aa993b 1035 (*objfile->sf->sym_init) (objfile);
7eedccfa 1036 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 1037
6bf667bb 1038 (*objfile->sf->sym_offsets) (objfile, addrs);
c906108c 1039
608e2dbb 1040 read_symbols (objfile, add_flags);
b11896a5 1041
c906108c
SS
1042 /* Discard cleanups as symbol reading was successful. */
1043
1044 discard_cleanups (old_chain);
f7545552 1045 xfree (local_addr);
c906108c
SS
1046}
1047
36e4d068
JB
1048/* Same as syms_from_objfile_1, but also initializes the objfile
1049 entry-point info. */
1050
6bf667bb 1051static void
36e4d068
JB
1052syms_from_objfile (struct objfile *objfile,
1053 struct section_addr_info *addrs,
36e4d068
JB
1054 int add_flags)
1055{
6bf667bb 1056 syms_from_objfile_1 (objfile, addrs, add_flags);
36e4d068
JB
1057 init_entry_point_info (objfile);
1058}
1059
c906108c
SS
1060/* Perform required actions after either reading in the initial
1061 symbols for a new objfile, or mapping in the symbols from a reusable
c1e56572 1062 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c5aa993b 1063
c906108c 1064void
7eedccfa 1065new_symfile_objfile (struct objfile *objfile, int add_flags)
c906108c 1066{
c906108c 1067 /* If this is the main symbol file we have to clean up all users of the
c378eb4e 1068 old main symbol file. Otherwise it is sufficient to fixup all the
c906108c 1069 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1070 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1071 {
1072 /* OK, make it the "real" symbol file. */
1073 symfile_objfile = objfile;
1074
c1e56572 1075 clear_symtab_users (add_flags);
c906108c 1076 }
7eedccfa 1077 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1078 {
69de3c6a 1079 breakpoint_re_set ();
c906108c
SS
1080 }
1081
1082 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 1083 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
1084}
1085
1086/* Process a symbol file, as either the main file or as a dynamically
1087 loaded file.
1088
5417f6dc 1089 ABFD is a BFD already open on the file, as from symfile_bfd_open.
8ac244b4 1090 A new reference is acquired by this function.
7904e09f 1091
24ba069a
JK
1092 For NAME description see allocate_objfile's definition.
1093
7eedccfa
PP
1094 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1095 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f 1096
6bf667bb 1097 ADDRS is as described for syms_from_objfile_1, above.
7eedccfa 1098 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1099
63524580
JK
1100 PARENT is the original objfile if ABFD is a separate debug info file.
1101 Otherwise PARENT is NULL.
1102
c906108c 1103 Upon success, returns a pointer to the objfile that was added.
c378eb4e 1104 Upon failure, jumps back to command level (never returns). */
7eedccfa 1105
7904e09f 1106static struct objfile *
24ba069a 1107symbol_file_add_with_addrs (bfd *abfd, const char *name, int add_flags,
6bf667bb
DE
1108 struct section_addr_info *addrs,
1109 int flags, struct objfile *parent)
c906108c
SS
1110{
1111 struct objfile *objfile;
7eedccfa 1112 const int from_tty = add_flags & SYMFILE_VERBOSE;
0838fb57 1113 const int mainline = add_flags & SYMFILE_MAINLINE;
b11896a5
TT
1114 const int should_print = ((from_tty || info_verbose)
1115 && (readnow_symbol_files
1116 || (add_flags & SYMFILE_NO_READ) == 0));
c906108c 1117
9291a0cd 1118 if (readnow_symbol_files)
b11896a5
TT
1119 {
1120 flags |= OBJF_READNOW;
1121 add_flags &= ~SYMFILE_NO_READ;
1122 }
9291a0cd 1123
5417f6dc
RM
1124 /* Give user a chance to burp if we'd be
1125 interactively wiping out any existing symbols. */
c906108c
SS
1126
1127 if ((have_full_symbols () || have_partial_symbols ())
0838fb57 1128 && mainline
c906108c 1129 && from_tty
9e2f0ad4 1130 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1131 error (_("Not confirmed."));
c906108c 1132
24ba069a
JK
1133 objfile = allocate_objfile (abfd, name,
1134 flags | (mainline ? OBJF_MAINLINE : 0));
c906108c 1135
63524580
JK
1136 if (parent)
1137 add_separate_debug_objfile (objfile, parent);
1138
78a4a9b9
AC
1139 /* We either created a new mapped symbol table, mapped an existing
1140 symbol table file which has not had initial symbol reading
c378eb4e 1141 performed, or need to read an unmapped symbol table. */
b11896a5 1142 if (should_print)
c906108c 1143 {
769d7dc4
AC
1144 if (deprecated_pre_add_symbol_hook)
1145 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1146 else
c906108c 1147 {
55333a84
DE
1148 printf_unfiltered (_("Reading symbols from %s..."), name);
1149 wrap_here ("");
1150 gdb_flush (gdb_stdout);
c906108c 1151 }
c906108c 1152 }
6bf667bb 1153 syms_from_objfile (objfile, addrs, add_flags);
c906108c
SS
1154
1155 /* We now have at least a partial symbol table. Check to see if the
1156 user requested that all symbols be read on initial access via either
1157 the gdb startup command line or on a per symbol file basis. Expand
c378eb4e 1158 all partial symbol tables for this objfile if so. */
c906108c 1159
9291a0cd 1160 if ((flags & OBJF_READNOW))
c906108c 1161 {
b11896a5 1162 if (should_print)
c906108c 1163 {
a3f17187 1164 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1165 wrap_here ("");
1166 gdb_flush (gdb_stdout);
1167 }
1168
ccefe4c4
TT
1169 if (objfile->sf)
1170 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1171 }
1172
b11896a5 1173 if (should_print && !objfile_has_symbols (objfile))
cb3c37b2
JB
1174 {
1175 wrap_here ("");
55333a84 1176 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1177 wrap_here ("");
1178 }
1179
b11896a5 1180 if (should_print)
c906108c 1181 {
769d7dc4
AC
1182 if (deprecated_post_add_symbol_hook)
1183 deprecated_post_add_symbol_hook ();
c906108c 1184 else
55333a84 1185 printf_unfiltered (_("done.\n"));
c906108c
SS
1186 }
1187
481d0f41
JB
1188 /* We print some messages regardless of whether 'from_tty ||
1189 info_verbose' is true, so make sure they go out at the right
1190 time. */
1191 gdb_flush (gdb_stdout);
1192
109f874e 1193 if (objfile->sf == NULL)
8caee43b
PP
1194 {
1195 observer_notify_new_objfile (objfile);
c378eb4e 1196 return objfile; /* No symbols. */
8caee43b 1197 }
109f874e 1198
7eedccfa 1199 new_symfile_objfile (objfile, add_flags);
c906108c 1200
06d3b283 1201 observer_notify_new_objfile (objfile);
c906108c 1202
ce7d4522 1203 bfd_cache_close_all ();
c906108c
SS
1204 return (objfile);
1205}
1206
24ba069a
JK
1207/* Add BFD as a separate debug file for OBJFILE. For NAME description
1208 see allocate_objfile's definition. */
9cce227f
TG
1209
1210void
24ba069a
JK
1211symbol_file_add_separate (bfd *bfd, const char *name, int symfile_flags,
1212 struct objfile *objfile)
9cce227f 1213{
15d123c9 1214 struct objfile *new_objfile;
089b4803
TG
1215 struct section_addr_info *sap;
1216 struct cleanup *my_cleanup;
1217
1218 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1219 because sections of BFD may not match sections of OBJFILE and because
1220 vma may have been modified by tools such as prelink. */
1221 sap = build_section_addr_info_from_objfile (objfile);
1222 my_cleanup = make_cleanup_free_section_addr_info (sap);
9cce227f 1223
6bf667bb 1224 new_objfile = symbol_file_add_with_addrs
24ba069a 1225 (bfd, name, symfile_flags, sap,
9cce227f 1226 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
63524580
JK
1227 | OBJF_USERLOADED),
1228 objfile);
089b4803
TG
1229
1230 do_cleanups (my_cleanup);
9cce227f 1231}
7904e09f 1232
eb4556d7
JB
1233/* Process the symbol file ABFD, as either the main file or as a
1234 dynamically loaded file.
6bf667bb 1235 See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1236
eb4556d7 1237struct objfile *
24ba069a 1238symbol_file_add_from_bfd (bfd *abfd, const char *name, int add_flags,
eb4556d7 1239 struct section_addr_info *addrs,
63524580 1240 int flags, struct objfile *parent)
eb4556d7 1241{
24ba069a
JK
1242 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1243 parent);
eb4556d7
JB
1244}
1245
7904e09f 1246/* Process a symbol file, as either the main file or as a dynamically
6bf667bb 1247 loaded file. See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1248
7904e09f 1249struct objfile *
69150c3d
JK
1250symbol_file_add (const char *name, int add_flags,
1251 struct section_addr_info *addrs, int flags)
7904e09f 1252{
8ac244b4
TT
1253 bfd *bfd = symfile_bfd_open (name);
1254 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1255 struct objfile *objf;
1256
24ba069a 1257 objf = symbol_file_add_from_bfd (bfd, name, add_flags, addrs, flags, NULL);
8ac244b4
TT
1258 do_cleanups (cleanup);
1259 return objf;
7904e09f
JB
1260}
1261
d7db6da9
FN
1262/* Call symbol_file_add() with default values and update whatever is
1263 affected by the loading of a new main().
1264 Used when the file is supplied in the gdb command line
1265 and by some targets with special loading requirements.
1266 The auxiliary function, symbol_file_add_main_1(), has the flags
1267 argument for the switches that can only be specified in the symbol_file
1268 command itself. */
5417f6dc 1269
1adeb98a 1270void
69150c3d 1271symbol_file_add_main (const char *args, int from_tty)
1adeb98a 1272{
d7db6da9
FN
1273 symbol_file_add_main_1 (args, from_tty, 0);
1274}
1275
1276static void
69150c3d 1277symbol_file_add_main_1 (const char *args, int from_tty, int flags)
d7db6da9 1278{
7dcd53a0
TT
1279 const int add_flags = (current_inferior ()->symfile_flags
1280 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1281
7eedccfa 1282 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1283
d7db6da9
FN
1284 /* Getting new symbols may change our opinion about
1285 what is frameless. */
1286 reinit_frame_cache ();
1287
7dcd53a0
TT
1288 if ((flags & SYMFILE_NO_READ) == 0)
1289 set_initial_language ();
1adeb98a
FN
1290}
1291
1292void
1293symbol_file_clear (int from_tty)
1294{
1295 if ((have_full_symbols () || have_partial_symbols ())
1296 && from_tty
0430b0d6
AS
1297 && (symfile_objfile
1298 ? !query (_("Discard symbol table from `%s'? "),
4262abfb 1299 objfile_name (symfile_objfile))
0430b0d6 1300 : !query (_("Discard symbol table? "))))
8a3fe4f8 1301 error (_("Not confirmed."));
1adeb98a 1302
0133421a
JK
1303 /* solib descriptors may have handles to objfiles. Wipe them before their
1304 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1305 no_shared_libraries (NULL, from_tty);
1306
0133421a
JK
1307 free_all_objfiles ();
1308
adb7f338 1309 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1310 if (from_tty)
1311 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1312}
1313
5b5d99cf 1314static int
287ccc17 1315separate_debug_file_exists (const char *name, unsigned long crc,
32a0e547 1316 struct objfile *parent_objfile)
5b5d99cf 1317{
904578ed
JK
1318 unsigned long file_crc;
1319 int file_crc_p;
f1838a98 1320 bfd *abfd;
32a0e547 1321 struct stat parent_stat, abfd_stat;
904578ed 1322 int verified_as_different;
32a0e547
JK
1323
1324 /* Find a separate debug info file as if symbols would be present in
1325 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1326 section can contain just the basename of PARENT_OBJFILE without any
1327 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
c378eb4e 1328 the separate debug infos with the same basename can exist. */
32a0e547 1329
4262abfb 1330 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
32a0e547 1331 return 0;
5b5d99cf 1332
08d2cd74 1333 abfd = gdb_bfd_open_maybe_remote (name);
f1838a98
UW
1334
1335 if (!abfd)
5b5d99cf
JB
1336 return 0;
1337
0ba1096a 1338 /* Verify symlinks were not the cause of filename_cmp name difference above.
32a0e547
JK
1339
1340 Some operating systems, e.g. Windows, do not provide a meaningful
1341 st_ino; they always set it to zero. (Windows does provide a
1342 meaningful st_dev.) Do not indicate a duplicate library in that
1343 case. While there is no guarantee that a system that provides
1344 meaningful inode numbers will never set st_ino to zero, this is
1345 merely an optimization, so we do not need to worry about false
1346 negatives. */
1347
1348 if (bfd_stat (abfd, &abfd_stat) == 0
904578ed
JK
1349 && abfd_stat.st_ino != 0
1350 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
32a0e547 1351 {
904578ed
JK
1352 if (abfd_stat.st_dev == parent_stat.st_dev
1353 && abfd_stat.st_ino == parent_stat.st_ino)
1354 {
cbb099e8 1355 gdb_bfd_unref (abfd);
904578ed
JK
1356 return 0;
1357 }
1358 verified_as_different = 1;
32a0e547 1359 }
904578ed
JK
1360 else
1361 verified_as_different = 0;
32a0e547 1362
dccee2de 1363 file_crc_p = gdb_bfd_crc (abfd, &file_crc);
5b5d99cf 1364
cbb099e8 1365 gdb_bfd_unref (abfd);
5b5d99cf 1366
904578ed
JK
1367 if (!file_crc_p)
1368 return 0;
1369
287ccc17
JK
1370 if (crc != file_crc)
1371 {
dccee2de
TT
1372 unsigned long parent_crc;
1373
904578ed
JK
1374 /* If one (or both) the files are accessed for example the via "remote:"
1375 gdbserver way it does not support the bfd_stat operation. Verify
1376 whether those two files are not the same manually. */
1377
dccee2de 1378 if (!verified_as_different)
904578ed 1379 {
dccee2de 1380 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
904578ed
JK
1381 return 0;
1382 }
1383
dccee2de 1384 if (verified_as_different || parent_crc != file_crc)
904578ed
JK
1385 warning (_("the debug information found in \"%s\""
1386 " does not match \"%s\" (CRC mismatch).\n"),
4262abfb 1387 name, objfile_name (parent_objfile));
904578ed 1388
287ccc17
JK
1389 return 0;
1390 }
1391
1392 return 1;
5b5d99cf
JB
1393}
1394
aa28a74e 1395char *debug_file_directory = NULL;
920d2a44
AC
1396static void
1397show_debug_file_directory (struct ui_file *file, int from_tty,
1398 struct cmd_list_element *c, const char *value)
1399{
3e43a32a
MS
1400 fprintf_filtered (file,
1401 _("The directory where separate debug "
1402 "symbols are searched for is \"%s\".\n"),
920d2a44
AC
1403 value);
1404}
5b5d99cf
JB
1405
1406#if ! defined (DEBUG_SUBDIRECTORY)
1407#define DEBUG_SUBDIRECTORY ".debug"
1408#endif
1409
1db33378
PP
1410/* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1411 where the original file resides (may not be the same as
1412 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
7edbb660
DE
1413 looking for. CANON_DIR is the "realpath" form of DIR.
1414 DIR must contain a trailing '/'.
1415 Returns the path of the file with separate debug info, of NULL. */
1db33378
PP
1416
1417static char *
1418find_separate_debug_file (const char *dir,
1419 const char *canon_dir,
1420 const char *debuglink,
1421 unsigned long crc32, struct objfile *objfile)
9cce227f 1422{
1db33378
PP
1423 char *debugdir;
1424 char *debugfile;
9cce227f 1425 int i;
e4ab2fad
JK
1426 VEC (char_ptr) *debugdir_vec;
1427 struct cleanup *back_to;
1428 int ix;
5b5d99cf 1429
1db33378 1430 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1ffa32ee 1431 i = strlen (dir);
1db33378
PP
1432 if (canon_dir != NULL && strlen (canon_dir) > i)
1433 i = strlen (canon_dir);
1ffa32ee 1434
25522fae
JK
1435 debugfile = xmalloc (strlen (debug_file_directory) + 1
1436 + i
1437 + strlen (DEBUG_SUBDIRECTORY)
1438 + strlen ("/")
1db33378 1439 + strlen (debuglink)
25522fae 1440 + 1);
5b5d99cf
JB
1441
1442 /* First try in the same directory as the original file. */
1443 strcpy (debugfile, dir);
1db33378 1444 strcat (debugfile, debuglink);
5b5d99cf 1445
32a0e547 1446 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1447 return debugfile;
5417f6dc 1448
5b5d99cf
JB
1449 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1450 strcpy (debugfile, dir);
1451 strcat (debugfile, DEBUG_SUBDIRECTORY);
1452 strcat (debugfile, "/");
1db33378 1453 strcat (debugfile, debuglink);
5b5d99cf 1454
32a0e547 1455 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1456 return debugfile;
5417f6dc 1457
24ddea62 1458 /* Then try in the global debugfile directories.
f888f159 1459
24ddea62
JK
1460 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1461 cause "/..." lookups. */
5417f6dc 1462
e4ab2fad
JK
1463 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1464 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
24ddea62 1465
e4ab2fad
JK
1466 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1467 {
1468 strcpy (debugfile, debugdir);
aa28a74e 1469 strcat (debugfile, "/");
24ddea62 1470 strcat (debugfile, dir);
1db33378 1471 strcat (debugfile, debuglink);
aa28a74e 1472
32a0e547 1473 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1474 {
1475 do_cleanups (back_to);
1476 return debugfile;
1477 }
24ddea62
JK
1478
1479 /* If the file is in the sysroot, try using its base path in the
1480 global debugfile directory. */
1db33378
PP
1481 if (canon_dir != NULL
1482 && filename_ncmp (canon_dir, gdb_sysroot,
0ba1096a 1483 strlen (gdb_sysroot)) == 0
1db33378 1484 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
24ddea62 1485 {
e4ab2fad 1486 strcpy (debugfile, debugdir);
1db33378 1487 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
24ddea62 1488 strcat (debugfile, "/");
1db33378 1489 strcat (debugfile, debuglink);
24ddea62 1490
32a0e547 1491 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1492 {
1493 do_cleanups (back_to);
1494 return debugfile;
1495 }
24ddea62 1496 }
aa28a74e 1497 }
f888f159 1498
e4ab2fad 1499 do_cleanups (back_to);
25522fae 1500 xfree (debugfile);
1db33378
PP
1501 return NULL;
1502}
1503
7edbb660 1504/* Modify PATH to contain only "[/]directory/" part of PATH.
1db33378
PP
1505 If there were no directory separators in PATH, PATH will be empty
1506 string on return. */
1507
1508static void
1509terminate_after_last_dir_separator (char *path)
1510{
1511 int i;
1512
1513 /* Strip off the final filename part, leaving the directory name,
1514 followed by a slash. The directory can be relative or absolute. */
1515 for (i = strlen(path) - 1; i >= 0; i--)
1516 if (IS_DIR_SEPARATOR (path[i]))
1517 break;
1518
1519 /* If I is -1 then no directory is present there and DIR will be "". */
1520 path[i + 1] = '\0';
1521}
1522
1523/* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1524 Returns pathname, or NULL. */
1525
1526char *
1527find_separate_debug_file_by_debuglink (struct objfile *objfile)
1528{
1529 char *debuglink;
1530 char *dir, *canon_dir;
1531 char *debugfile;
1532 unsigned long crc32;
1533 struct cleanup *cleanups;
1534
cc0ea93c 1535 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1db33378
PP
1536
1537 if (debuglink == NULL)
1538 {
1539 /* There's no separate debug info, hence there's no way we could
1540 load it => no warning. */
1541 return NULL;
1542 }
1543
71bdabee 1544 cleanups = make_cleanup (xfree, debuglink);
4262abfb 1545 dir = xstrdup (objfile_name (objfile));
71bdabee 1546 make_cleanup (xfree, dir);
1db33378
PP
1547 terminate_after_last_dir_separator (dir);
1548 canon_dir = lrealpath (dir);
1549
1550 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1551 crc32, objfile);
1552 xfree (canon_dir);
1553
1554 if (debugfile == NULL)
1555 {
1556#ifdef HAVE_LSTAT
1557 /* For PR gdb/9538, try again with realpath (if different from the
1558 original). */
1559
1560 struct stat st_buf;
1561
4262abfb
JK
1562 if (lstat (objfile_name (objfile), &st_buf) == 0
1563 && S_ISLNK (st_buf.st_mode))
1db33378
PP
1564 {
1565 char *symlink_dir;
1566
4262abfb 1567 symlink_dir = lrealpath (objfile_name (objfile));
1db33378
PP
1568 if (symlink_dir != NULL)
1569 {
1570 make_cleanup (xfree, symlink_dir);
1571 terminate_after_last_dir_separator (symlink_dir);
1572 if (strcmp (dir, symlink_dir) != 0)
1573 {
1574 /* Different directory, so try using it. */
1575 debugfile = find_separate_debug_file (symlink_dir,
1576 symlink_dir,
1577 debuglink,
1578 crc32,
1579 objfile);
1580 }
1581 }
1582 }
1583#endif /* HAVE_LSTAT */
1584 }
aa28a74e 1585
1db33378 1586 do_cleanups (cleanups);
25522fae 1587 return debugfile;
5b5d99cf
JB
1588}
1589
c906108c
SS
1590/* This is the symbol-file command. Read the file, analyze its
1591 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1592 the command is rather bizarre:
1593
1594 1. The function buildargv implements various quoting conventions
1595 which are undocumented and have little or nothing in common with
1596 the way things are quoted (or not quoted) elsewhere in GDB.
1597
1598 2. Options are used, which are not generally used in GDB (perhaps
1599 "set mapped on", "set readnow on" would be better)
1600
1601 3. The order of options matters, which is contrary to GNU
c906108c
SS
1602 conventions (because it is confusing and inconvenient). */
1603
1604void
fba45db2 1605symbol_file_command (char *args, int from_tty)
c906108c 1606{
c906108c
SS
1607 dont_repeat ();
1608
1609 if (args == NULL)
1610 {
1adeb98a 1611 symbol_file_clear (from_tty);
c906108c
SS
1612 }
1613 else
1614 {
d1a41061 1615 char **argv = gdb_buildargv (args);
cb2f3a29
MK
1616 int flags = OBJF_USERLOADED;
1617 struct cleanup *cleanups;
1618 char *name = NULL;
1619
7a292a7a 1620 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1621 while (*argv != NULL)
1622 {
78a4a9b9
AC
1623 if (strcmp (*argv, "-readnow") == 0)
1624 flags |= OBJF_READNOW;
1625 else if (**argv == '-')
8a3fe4f8 1626 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1627 else
1628 {
cb2f3a29 1629 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1630 name = *argv;
78a4a9b9 1631 }
cb2f3a29 1632
c906108c
SS
1633 argv++;
1634 }
1635
1636 if (name == NULL)
cb2f3a29
MK
1637 error (_("no symbol file name was specified"));
1638
c906108c
SS
1639 do_cleanups (cleanups);
1640 }
1641}
1642
1643/* Set the initial language.
1644
cb2f3a29
MK
1645 FIXME: A better solution would be to record the language in the
1646 psymtab when reading partial symbols, and then use it (if known) to
1647 set the language. This would be a win for formats that encode the
1648 language in an easily discoverable place, such as DWARF. For
1649 stabs, we can jump through hoops looking for specially named
1650 symbols or try to intuit the language from the specific type of
1651 stabs we find, but we can't do that until later when we read in
1652 full symbols. */
c906108c 1653
8b60591b 1654void
fba45db2 1655set_initial_language (void)
c906108c 1656{
9e6c82ad 1657 enum language lang = main_language ();
c906108c 1658
9e6c82ad 1659 if (lang == language_unknown)
01f8c46d 1660 {
bf6d8a91
TT
1661 char *name = main_name ();
1662 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL);
f888f159 1663
bf6d8a91
TT
1664 if (sym != NULL)
1665 lang = SYMBOL_LANGUAGE (sym);
01f8c46d 1666 }
cb2f3a29 1667
ccefe4c4
TT
1668 if (lang == language_unknown)
1669 {
1670 /* Make C the default language */
1671 lang = language_c;
c906108c 1672 }
ccefe4c4
TT
1673
1674 set_language (lang);
1675 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1676}
1677
874f5765 1678/* If NAME is a remote name open the file using remote protocol, otherwise
cbb099e8
TT
1679 open it normally. Returns a new reference to the BFD. On error,
1680 returns NULL with the BFD error set. */
874f5765
TG
1681
1682bfd *
08d2cd74 1683gdb_bfd_open_maybe_remote (const char *name)
874f5765 1684{
520b0001
TT
1685 bfd *result;
1686
874f5765 1687 if (remote_filename_p (name))
520b0001 1688 result = remote_bfd_open (name, gnutarget);
874f5765 1689 else
1c00ec6b 1690 result = gdb_bfd_open (name, gnutarget, -1);
520b0001 1691
520b0001 1692 return result;
874f5765
TG
1693}
1694
cb2f3a29
MK
1695/* Open the file specified by NAME and hand it off to BFD for
1696 preliminary analysis. Return a newly initialized bfd *, which
1697 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1698 absolute). In case of trouble, error() is called. */
c906108c
SS
1699
1700bfd *
69150c3d 1701symfile_bfd_open (const char *cname)
c906108c
SS
1702{
1703 bfd *sym_bfd;
1704 int desc;
69150c3d 1705 char *name, *absolute_name;
faab9922 1706 struct cleanup *back_to;
c906108c 1707
69150c3d 1708 if (remote_filename_p (cname))
f1838a98 1709 {
69150c3d 1710 sym_bfd = remote_bfd_open (cname, gnutarget);
f1838a98 1711 if (!sym_bfd)
69150c3d 1712 error (_("`%s': can't open to read symbols: %s."), cname,
a4453b7e 1713 bfd_errmsg (bfd_get_error ()));
f1838a98
UW
1714
1715 if (!bfd_check_format (sym_bfd, bfd_object))
1716 {
f9a062ff 1717 make_cleanup_bfd_unref (sym_bfd);
69150c3d 1718 error (_("`%s': can't read symbols: %s."), cname,
f1838a98
UW
1719 bfd_errmsg (bfd_get_error ()));
1720 }
1721
1722 return sym_bfd;
1723 }
1724
69150c3d 1725 name = tilde_expand (cname); /* Returns 1st new malloc'd copy. */
c906108c
SS
1726
1727 /* Look down path for it, allocate 2nd new malloc'd copy. */
492c0ab7 1728 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH, name,
fbdebf46 1729 O_RDONLY | O_BINARY, &absolute_name);
608506ed 1730#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1731 if (desc < 0)
1732 {
1733 char *exename = alloca (strlen (name) + 5);
433759f7 1734
c906108c 1735 strcat (strcpy (exename, name), ".exe");
492c0ab7
JK
1736 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1737 exename, O_RDONLY | O_BINARY, &absolute_name);
c906108c
SS
1738 }
1739#endif
1740 if (desc < 0)
1741 {
b8c9b27d 1742 make_cleanup (xfree, name);
c906108c
SS
1743 perror_with_name (name);
1744 }
cb2f3a29 1745
cb2f3a29
MK
1746 xfree (name);
1747 name = absolute_name;
faab9922 1748 back_to = make_cleanup (xfree, name);
c906108c 1749
1c00ec6b 1750 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
c906108c 1751 if (!sym_bfd)
faab9922
JK
1752 error (_("`%s': can't open to read symbols: %s."), name,
1753 bfd_errmsg (bfd_get_error ()));
549c1eea 1754 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1755
1756 if (!bfd_check_format (sym_bfd, bfd_object))
1757 {
f9a062ff 1758 make_cleanup_bfd_unref (sym_bfd);
f1838a98 1759 error (_("`%s': can't read symbols: %s."), name,
c906108c
SS
1760 bfd_errmsg (bfd_get_error ()));
1761 }
cb2f3a29 1762
faab9922
JK
1763 do_cleanups (back_to);
1764
cb2f3a29 1765 return sym_bfd;
c906108c
SS
1766}
1767
cb2f3a29
MK
1768/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1769 the section was not found. */
1770
0e931cf0
JB
1771int
1772get_section_index (struct objfile *objfile, char *section_name)
1773{
1774 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1775
0e931cf0
JB
1776 if (sect)
1777 return sect->index;
1778 else
1779 return -1;
1780}
1781
c256e171
DE
1782/* Link SF into the global symtab_fns list.
1783 FLAVOUR is the file format that SF handles.
1784 Called on startup by the _initialize routine in each object file format
1785 reader, to register information about each format the reader is prepared
1786 to handle. */
c906108c
SS
1787
1788void
c256e171 1789add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
c906108c 1790{
c256e171
DE
1791 registered_sym_fns fns = { flavour, sf };
1792
1793 VEC_safe_push (registered_sym_fns, symtab_fns, &fns);
c906108c
SS
1794}
1795
cb2f3a29
MK
1796/* Initialize OBJFILE to read symbols from its associated BFD. It
1797 either returns or calls error(). The result is an initialized
1798 struct sym_fns in the objfile structure, that contains cached
1799 information about the symbol file. */
c906108c 1800
00b5771c 1801static const struct sym_fns *
31d99776 1802find_sym_fns (bfd *abfd)
c906108c 1803{
c256e171 1804 registered_sym_fns *rsf;
31d99776 1805 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
00b5771c 1806 int i;
c906108c 1807
75245b24
MS
1808 if (our_flavour == bfd_target_srec_flavour
1809 || our_flavour == bfd_target_ihex_flavour
1810 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1811 return NULL; /* No symbols. */
75245b24 1812
c256e171
DE
1813 for (i = 0; VEC_iterate (registered_sym_fns, symtab_fns, i, rsf); ++i)
1814 if (our_flavour == rsf->sym_flavour)
1815 return rsf->sym_fns;
cb2f3a29 1816
8a3fe4f8 1817 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1818 bfd_get_target (abfd));
c906108c
SS
1819}
1820\f
cb2f3a29 1821
c906108c
SS
1822/* This function runs the load command of our current target. */
1823
1824static void
fba45db2 1825load_command (char *arg, int from_tty)
c906108c 1826{
5b3fca71
TT
1827 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1828
e5cc9f32
JB
1829 dont_repeat ();
1830
4487aabf
PA
1831 /* The user might be reloading because the binary has changed. Take
1832 this opportunity to check. */
1833 reopen_exec_file ();
1834 reread_symbols ();
1835
c906108c 1836 if (arg == NULL)
1986bccd
AS
1837 {
1838 char *parg;
1839 int count = 0;
1840
1841 parg = arg = get_exec_file (1);
1842
1843 /* Count how many \ " ' tab space there are in the name. */
1844 while ((parg = strpbrk (parg, "\\\"'\t ")))
1845 {
1846 parg++;
1847 count++;
1848 }
1849
1850 if (count)
1851 {
1852 /* We need to quote this string so buildargv can pull it apart. */
1853 char *temp = xmalloc (strlen (arg) + count + 1 );
1854 char *ptemp = temp;
1855 char *prev;
1856
1857 make_cleanup (xfree, temp);
1858
1859 prev = parg = arg;
1860 while ((parg = strpbrk (parg, "\\\"'\t ")))
1861 {
1862 strncpy (ptemp, prev, parg - prev);
1863 ptemp += parg - prev;
1864 prev = parg++;
1865 *ptemp++ = '\\';
1866 }
1867 strcpy (ptemp, prev);
1868
1869 arg = temp;
1870 }
1871 }
1872
c906108c 1873 target_load (arg, from_tty);
2889e661
JB
1874
1875 /* After re-loading the executable, we don't really know which
1876 overlays are mapped any more. */
1877 overlay_cache_invalid = 1;
5b3fca71
TT
1878
1879 do_cleanups (cleanup);
c906108c
SS
1880}
1881
1882/* This version of "load" should be usable for any target. Currently
1883 it is just used for remote targets, not inftarg.c or core files,
1884 on the theory that only in that case is it useful.
1885
1886 Avoiding xmodem and the like seems like a win (a) because we don't have
1887 to worry about finding it, and (b) On VMS, fork() is very slow and so
1888 we don't want to run a subprocess. On the other hand, I'm not sure how
1889 performance compares. */
917317f4 1890
917317f4
JM
1891static int validate_download = 0;
1892
e4f9b4d5
MS
1893/* Callback service function for generic_load (bfd_map_over_sections). */
1894
1895static void
1896add_section_size_callback (bfd *abfd, asection *asec, void *data)
1897{
1898 bfd_size_type *sum = data;
1899
2c500098 1900 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1901}
1902
1903/* Opaque data for load_section_callback. */
1904struct load_section_data {
f698ca8e 1905 CORE_ADDR load_offset;
a76d924d
DJ
1906 struct load_progress_data *progress_data;
1907 VEC(memory_write_request_s) *requests;
1908};
1909
1910/* Opaque data for load_progress. */
1911struct load_progress_data {
1912 /* Cumulative data. */
e4f9b4d5
MS
1913 unsigned long write_count;
1914 unsigned long data_count;
1915 bfd_size_type total_size;
a76d924d
DJ
1916};
1917
1918/* Opaque data for load_progress for a single section. */
1919struct load_progress_section_data {
1920 struct load_progress_data *cumulative;
cf7a04e8 1921
a76d924d 1922 /* Per-section data. */
cf7a04e8
DJ
1923 const char *section_name;
1924 ULONGEST section_sent;
1925 ULONGEST section_size;
1926 CORE_ADDR lma;
1927 gdb_byte *buffer;
e4f9b4d5
MS
1928};
1929
a76d924d 1930/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1931
1932static void
1933load_progress (ULONGEST bytes, void *untyped_arg)
1934{
a76d924d
DJ
1935 struct load_progress_section_data *args = untyped_arg;
1936 struct load_progress_data *totals;
1937
1938 if (args == NULL)
1939 /* Writing padding data. No easy way to get at the cumulative
1940 stats, so just ignore this. */
1941 return;
1942
1943 totals = args->cumulative;
1944
1945 if (bytes == 0 && args->section_sent == 0)
1946 {
1947 /* The write is just starting. Let the user know we've started
1948 this section. */
79a45e25 1949 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
5af949e3 1950 args->section_name, hex_string (args->section_size),
f5656ead 1951 paddress (target_gdbarch (), args->lma));
a76d924d
DJ
1952 return;
1953 }
cf7a04e8
DJ
1954
1955 if (validate_download)
1956 {
1957 /* Broken memories and broken monitors manifest themselves here
1958 when bring new computers to life. This doubles already slow
1959 downloads. */
1960 /* NOTE: cagney/1999-10-18: A more efficient implementation
1961 might add a verify_memory() method to the target vector and
1962 then use that. remote.c could implement that method using
1963 the ``qCRC'' packet. */
1964 gdb_byte *check = xmalloc (bytes);
1965 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1966
1967 if (target_read_memory (args->lma, check, bytes) != 0)
5af949e3 1968 error (_("Download verify read failed at %s"),
f5656ead 1969 paddress (target_gdbarch (), args->lma));
cf7a04e8 1970 if (memcmp (args->buffer, check, bytes) != 0)
5af949e3 1971 error (_("Download verify compare failed at %s"),
f5656ead 1972 paddress (target_gdbarch (), args->lma));
cf7a04e8
DJ
1973 do_cleanups (verify_cleanups);
1974 }
a76d924d 1975 totals->data_count += bytes;
cf7a04e8
DJ
1976 args->lma += bytes;
1977 args->buffer += bytes;
a76d924d 1978 totals->write_count += 1;
cf7a04e8 1979 args->section_sent += bytes;
522002f9 1980 if (check_quit_flag ()
cf7a04e8
DJ
1981 || (deprecated_ui_load_progress_hook != NULL
1982 && deprecated_ui_load_progress_hook (args->section_name,
1983 args->section_sent)))
1984 error (_("Canceled the download"));
1985
1986 if (deprecated_show_load_progress != NULL)
1987 deprecated_show_load_progress (args->section_name,
1988 args->section_sent,
1989 args->section_size,
a76d924d
DJ
1990 totals->data_count,
1991 totals->total_size);
cf7a04e8
DJ
1992}
1993
e4f9b4d5
MS
1994/* Callback service function for generic_load (bfd_map_over_sections). */
1995
1996static void
1997load_section_callback (bfd *abfd, asection *asec, void *data)
1998{
a76d924d 1999 struct memory_write_request *new_request;
e4f9b4d5 2000 struct load_section_data *args = data;
a76d924d 2001 struct load_progress_section_data *section_data;
cf7a04e8
DJ
2002 bfd_size_type size = bfd_get_section_size (asec);
2003 gdb_byte *buffer;
cf7a04e8 2004 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 2005
cf7a04e8
DJ
2006 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2007 return;
e4f9b4d5 2008
cf7a04e8
DJ
2009 if (size == 0)
2010 return;
e4f9b4d5 2011
a76d924d
DJ
2012 new_request = VEC_safe_push (memory_write_request_s,
2013 args->requests, NULL);
2014 memset (new_request, 0, sizeof (struct memory_write_request));
2015 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
2016 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
3e43a32a
MS
2017 new_request->end = new_request->begin + size; /* FIXME Should size
2018 be in instead? */
a76d924d
DJ
2019 new_request->data = xmalloc (size);
2020 new_request->baton = section_data;
cf7a04e8 2021
a76d924d 2022 buffer = new_request->data;
cf7a04e8 2023
a76d924d
DJ
2024 section_data->cumulative = args->progress_data;
2025 section_data->section_name = sect_name;
2026 section_data->section_size = size;
2027 section_data->lma = new_request->begin;
2028 section_data->buffer = buffer;
cf7a04e8
DJ
2029
2030 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
2031}
2032
2033/* Clean up an entire memory request vector, including load
2034 data and progress records. */
cf7a04e8 2035
a76d924d
DJ
2036static void
2037clear_memory_write_data (void *arg)
2038{
2039 VEC(memory_write_request_s) **vec_p = arg;
2040 VEC(memory_write_request_s) *vec = *vec_p;
2041 int i;
2042 struct memory_write_request *mr;
cf7a04e8 2043
a76d924d
DJ
2044 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2045 {
2046 xfree (mr->data);
2047 xfree (mr->baton);
2048 }
2049 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
2050}
2051
c906108c 2052void
917317f4 2053generic_load (char *args, int from_tty)
c906108c 2054{
c906108c 2055 bfd *loadfile_bfd;
2b71414d 2056 struct timeval start_time, end_time;
917317f4 2057 char *filename;
1986bccd 2058 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 2059 struct load_section_data cbdata;
a76d924d 2060 struct load_progress_data total_progress;
79a45e25 2061 struct ui_out *uiout = current_uiout;
a76d924d 2062
e4f9b4d5 2063 CORE_ADDR entry;
1986bccd 2064 char **argv;
e4f9b4d5 2065
a76d924d
DJ
2066 memset (&cbdata, 0, sizeof (cbdata));
2067 memset (&total_progress, 0, sizeof (total_progress));
2068 cbdata.progress_data = &total_progress;
2069
2070 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 2071
d1a41061
PP
2072 if (args == NULL)
2073 error_no_arg (_("file to load"));
1986bccd 2074
d1a41061 2075 argv = gdb_buildargv (args);
1986bccd
AS
2076 make_cleanup_freeargv (argv);
2077
2078 filename = tilde_expand (argv[0]);
2079 make_cleanup (xfree, filename);
2080
2081 if (argv[1] != NULL)
917317f4 2082 {
f698ca8e 2083 const char *endptr;
ba5f2f8a 2084
f698ca8e 2085 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
1986bccd
AS
2086
2087 /* If the last word was not a valid number then
2088 treat it as a file name with spaces in. */
2089 if (argv[1] == endptr)
2090 error (_("Invalid download offset:%s."), argv[1]);
2091
2092 if (argv[2] != NULL)
2093 error (_("Too many parameters."));
917317f4 2094 }
c906108c 2095
c378eb4e 2096 /* Open the file for loading. */
1c00ec6b 2097 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
c906108c
SS
2098 if (loadfile_bfd == NULL)
2099 {
2100 perror_with_name (filename);
2101 return;
2102 }
917317f4 2103
f9a062ff 2104 make_cleanup_bfd_unref (loadfile_bfd);
c906108c 2105
c5aa993b 2106 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 2107 {
8a3fe4f8 2108 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
2109 bfd_errmsg (bfd_get_error ()));
2110 }
c5aa993b 2111
5417f6dc 2112 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
2113 (void *) &total_progress.total_size);
2114
2115 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 2116
2b71414d 2117 gettimeofday (&start_time, NULL);
c906108c 2118
a76d924d
DJ
2119 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2120 load_progress) != 0)
2121 error (_("Load failed"));
c906108c 2122
2b71414d 2123 gettimeofday (&end_time, NULL);
ba5f2f8a 2124
e4f9b4d5 2125 entry = bfd_get_start_address (loadfile_bfd);
8c2b9656 2126 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
e4f9b4d5 2127 ui_out_text (uiout, "Start address ");
f5656ead 2128 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch (), entry));
e4f9b4d5 2129 ui_out_text (uiout, ", load size ");
a76d924d 2130 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 2131 ui_out_text (uiout, "\n");
e4f9b4d5
MS
2132 /* We were doing this in remote-mips.c, I suspect it is right
2133 for other targets too. */
fb14de7b 2134 regcache_write_pc (get_current_regcache (), entry);
c906108c 2135
38963c97
DJ
2136 /* Reset breakpoints, now that we have changed the load image. For
2137 instance, breakpoints may have been set (or reset, by
2138 post_create_inferior) while connected to the target but before we
2139 loaded the program. In that case, the prologue analyzer could
2140 have read instructions from the target to find the right
2141 breakpoint locations. Loading has changed the contents of that
2142 memory. */
2143
2144 breakpoint_re_set ();
2145
7ca9f392
AC
2146 /* FIXME: are we supposed to call symbol_file_add or not? According
2147 to a comment from remote-mips.c (where a call to symbol_file_add
2148 was commented out), making the call confuses GDB if more than one
2149 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 2150 others don't (or didn't - perhaps they have all been deleted). */
c906108c 2151
a76d924d
DJ
2152 print_transfer_performance (gdb_stdout, total_progress.data_count,
2153 total_progress.write_count,
2154 &start_time, &end_time);
c906108c
SS
2155
2156 do_cleanups (old_cleanups);
2157}
2158
c378eb4e 2159/* Report how fast the transfer went. */
c906108c 2160
917317f4 2161void
d9fcf2fb 2162print_transfer_performance (struct ui_file *stream,
917317f4
JM
2163 unsigned long data_count,
2164 unsigned long write_count,
2b71414d
DJ
2165 const struct timeval *start_time,
2166 const struct timeval *end_time)
917317f4 2167{
9f43d28c 2168 ULONGEST time_count;
79a45e25 2169 struct ui_out *uiout = current_uiout;
2b71414d
DJ
2170
2171 /* Compute the elapsed time in milliseconds, as a tradeoff between
2172 accuracy and overflow. */
2173 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2174 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2175
8b93c638
JM
2176 ui_out_text (uiout, "Transfer rate: ");
2177 if (time_count > 0)
2178 {
9f43d28c
DJ
2179 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2180
2181 if (ui_out_is_mi_like_p (uiout))
2182 {
2183 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2184 ui_out_text (uiout, " bits/sec");
2185 }
2186 else if (rate < 1024)
2187 {
2188 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2189 ui_out_text (uiout, " bytes/sec");
2190 }
2191 else
2192 {
2193 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2194 ui_out_text (uiout, " KB/sec");
2195 }
8b93c638
JM
2196 }
2197 else
2198 {
ba5f2f8a 2199 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 2200 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
2201 }
2202 if (write_count > 0)
2203 {
2204 ui_out_text (uiout, ", ");
ba5f2f8a 2205 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
2206 ui_out_text (uiout, " bytes/write");
2207 }
2208 ui_out_text (uiout, ".\n");
c906108c
SS
2209}
2210
2211/* This function allows the addition of incrementally linked object files.
2212 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2213/* Note: ezannoni 2000-04-13 This function/command used to have a
2214 special case syntax for the rombug target (Rombug is the boot
2215 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2216 rombug case, the user doesn't need to supply a text address,
2217 instead a call to target_link() (in target.c) would supply the
c378eb4e 2218 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2219
c906108c 2220static void
fba45db2 2221add_symbol_file_command (char *args, int from_tty)
c906108c 2222{
5af949e3 2223 struct gdbarch *gdbarch = get_current_arch ();
db162d44 2224 char *filename = NULL;
2df3850c 2225 int flags = OBJF_USERLOADED;
c906108c 2226 char *arg;
db162d44 2227 int section_index = 0;
2acceee2
JM
2228 int argcnt = 0;
2229 int sec_num = 0;
2230 int i;
db162d44
EZ
2231 int expecting_sec_name = 0;
2232 int expecting_sec_addr = 0;
5b96932b 2233 char **argv;
76ad5e1e 2234 struct objfile *objf;
db162d44 2235
a39a16c4 2236 struct sect_opt
2acceee2 2237 {
2acceee2
JM
2238 char *name;
2239 char *value;
a39a16c4 2240 };
db162d44 2241
a39a16c4
MM
2242 struct section_addr_info *section_addrs;
2243 struct sect_opt *sect_opts = NULL;
2244 size_t num_sect_opts = 0;
3017564a 2245 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2246
a39a16c4 2247 num_sect_opts = 16;
5417f6dc 2248 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
2249 * sizeof (struct sect_opt));
2250
c906108c
SS
2251 dont_repeat ();
2252
2253 if (args == NULL)
8a3fe4f8 2254 error (_("add-symbol-file takes a file name and an address"));
c906108c 2255
d1a41061 2256 argv = gdb_buildargv (args);
5b96932b 2257 make_cleanup_freeargv (argv);
db162d44 2258
5b96932b
AS
2259 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2260 {
c378eb4e 2261 /* Process the argument. */
db162d44 2262 if (argcnt == 0)
c906108c 2263 {
c378eb4e 2264 /* The first argument is the file name. */
db162d44 2265 filename = tilde_expand (arg);
3017564a 2266 make_cleanup (xfree, filename);
c906108c 2267 }
41dc8db8
MB
2268 else if (argcnt == 1)
2269 {
2270 /* The second argument is always the text address at which
2271 to load the program. */
2272 sect_opts[section_index].name = ".text";
2273 sect_opts[section_index].value = arg;
2274 if (++section_index >= num_sect_opts)
2275 {
2276 num_sect_opts *= 2;
2277 sect_opts = ((struct sect_opt *)
2278 xrealloc (sect_opts,
2279 num_sect_opts
2280 * sizeof (struct sect_opt)));
2281 }
2282 }
db162d44 2283 else
41dc8db8
MB
2284 {
2285 /* It's an option (starting with '-') or it's an argument
2286 to an option. */
41dc8db8
MB
2287 if (expecting_sec_name)
2288 {
2289 sect_opts[section_index].name = arg;
2290 expecting_sec_name = 0;
2291 }
2292 else if (expecting_sec_addr)
2293 {
2294 sect_opts[section_index].value = arg;
2295 expecting_sec_addr = 0;
2296 if (++section_index >= num_sect_opts)
2297 {
2298 num_sect_opts *= 2;
2299 sect_opts = ((struct sect_opt *)
2300 xrealloc (sect_opts,
2301 num_sect_opts
2302 * sizeof (struct sect_opt)));
2303 }
2304 }
2305 else if (strcmp (arg, "-readnow") == 0)
2306 flags |= OBJF_READNOW;
2307 else if (strcmp (arg, "-s") == 0)
2308 {
2309 expecting_sec_name = 1;
2310 expecting_sec_addr = 1;
2311 }
2312 else
2313 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2314 " [-readnow] [-s <secname> <addr>]*"));
2315 }
c906108c 2316 }
c906108c 2317
927890d0
JB
2318 /* This command takes at least two arguments. The first one is a
2319 filename, and the second is the address where this file has been
2320 loaded. Abort now if this address hasn't been provided by the
2321 user. */
2322 if (section_index < 1)
2323 error (_("The address where %s has been loaded is missing"), filename);
2324
c378eb4e 2325 /* Print the prompt for the query below. And save the arguments into
db162d44
EZ
2326 a sect_addr_info structure to be passed around to other
2327 functions. We have to split this up into separate print
bb599908 2328 statements because hex_string returns a local static
c378eb4e 2329 string. */
5417f6dc 2330
a3f17187 2331 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2332 section_addrs = alloc_section_addr_info (section_index);
2333 make_cleanup (xfree, section_addrs);
db162d44 2334 for (i = 0; i < section_index; i++)
c906108c 2335 {
db162d44
EZ
2336 CORE_ADDR addr;
2337 char *val = sect_opts[i].value;
2338 char *sec = sect_opts[i].name;
5417f6dc 2339
ae822768 2340 addr = parse_and_eval_address (val);
db162d44 2341
db162d44 2342 /* Here we store the section offsets in the order they were
c378eb4e 2343 entered on the command line. */
a39a16c4
MM
2344 section_addrs->other[sec_num].name = sec;
2345 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2346 printf_unfiltered ("\t%s_addr = %s\n", sec,
2347 paddress (gdbarch, addr));
db162d44
EZ
2348 sec_num++;
2349
5417f6dc 2350 /* The object's sections are initialized when a
db162d44 2351 call is made to build_objfile_section_table (objfile).
5417f6dc 2352 This happens in reread_symbols.
db162d44
EZ
2353 At this point, we don't know what file type this is,
2354 so we can't determine what section names are valid. */
2acceee2 2355 }
d76488d8 2356 section_addrs->num_sections = sec_num;
db162d44 2357
2acceee2 2358 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2359 error (_("Not confirmed."));
c906108c 2360
76ad5e1e
NB
2361 objf = symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2362 section_addrs, flags);
2363
2364 add_target_sections_of_objfile (objf);
c906108c
SS
2365
2366 /* Getting new symbols may change our opinion about what is
2367 frameless. */
2368 reinit_frame_cache ();
db162d44 2369 do_cleanups (my_cleanups);
c906108c
SS
2370}
2371\f
70992597 2372
63644780
NB
2373/* This function removes a symbol file that was added via add-symbol-file. */
2374
2375static void
2376remove_symbol_file_command (char *args, int from_tty)
2377{
2378 char **argv;
2379 struct objfile *objf = NULL;
2380 struct cleanup *my_cleanups;
2381 struct program_space *pspace = current_program_space;
2382 struct gdbarch *gdbarch = get_current_arch ();
2383
2384 dont_repeat ();
2385
2386 if (args == NULL)
2387 error (_("remove-symbol-file: no symbol file provided"));
2388
2389 my_cleanups = make_cleanup (null_cleanup, NULL);
2390
2391 argv = gdb_buildargv (args);
2392
2393 if (strcmp (argv[0], "-a") == 0)
2394 {
2395 /* Interpret the next argument as an address. */
2396 CORE_ADDR addr;
2397
2398 if (argv[1] == NULL)
2399 error (_("Missing address argument"));
2400
2401 if (argv[2] != NULL)
2402 error (_("Junk after %s"), argv[1]);
2403
2404 addr = parse_and_eval_address (argv[1]);
2405
2406 ALL_OBJFILES (objf)
2407 {
2408 if (objf != 0
2409 && objf->flags & OBJF_USERLOADED
2410 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2411 break;
2412 }
2413 }
2414 else if (argv[0] != NULL)
2415 {
2416 /* Interpret the current argument as a file name. */
2417 char *filename;
2418
2419 if (argv[1] != NULL)
2420 error (_("Junk after %s"), argv[0]);
2421
2422 filename = tilde_expand (argv[0]);
2423 make_cleanup (xfree, filename);
2424
2425 ALL_OBJFILES (objf)
2426 {
2427 if (objf != 0
2428 && objf->flags & OBJF_USERLOADED
2429 && objf->pspace == pspace
2430 && filename_cmp (filename, objfile_name (objf)) == 0)
2431 break;
2432 }
2433 }
2434
2435 if (objf == NULL)
2436 error (_("No symbol file found"));
2437
2438 if (from_tty
2439 && !query (_("Remove symbol table from file \"%s\"? "),
2440 objfile_name (objf)))
2441 error (_("Not confirmed."));
2442
2443 free_objfile (objf);
2444 clear_symtab_users (0);
2445
2446 do_cleanups (my_cleanups);
2447}
2448
4ac39b97
JK
2449typedef struct objfile *objfilep;
2450
2451DEF_VEC_P (objfilep);
2452
c906108c 2453/* Re-read symbols if a symbol-file has changed. */
3b7bacac 2454
c906108c 2455void
fba45db2 2456reread_symbols (void)
c906108c
SS
2457{
2458 struct objfile *objfile;
2459 long new_modtime;
c906108c
SS
2460 struct stat new_statbuf;
2461 int res;
4ac39b97
JK
2462 VEC (objfilep) *new_objfiles = NULL;
2463 struct cleanup *all_cleanups;
2464
2465 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
c906108c
SS
2466
2467 /* With the addition of shared libraries, this should be modified,
2468 the load time should be saved in the partial symbol tables, since
2469 different tables may come from different source files. FIXME.
2470 This routine should then walk down each partial symbol table
c378eb4e 2471 and see if the symbol table that it originates from has been changed. */
c906108c 2472
c5aa993b
JM
2473 for (objfile = object_files; objfile; objfile = objfile->next)
2474 {
9cce227f
TG
2475 if (objfile->obfd == NULL)
2476 continue;
2477
2478 /* Separate debug objfiles are handled in the main objfile. */
2479 if (objfile->separate_debug_objfile_backlink)
2480 continue;
2481
02aeec7b
JB
2482 /* If this object is from an archive (what you usually create with
2483 `ar', often called a `static library' on most systems, though
2484 a `shared library' on AIX is also an archive), then you should
2485 stat on the archive name, not member name. */
9cce227f
TG
2486 if (objfile->obfd->my_archive)
2487 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2488 else
4262abfb 2489 res = stat (objfile_name (objfile), &new_statbuf);
9cce227f
TG
2490 if (res != 0)
2491 {
c378eb4e 2492 /* FIXME, should use print_sys_errmsg but it's not filtered. */
9cce227f 2493 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
4262abfb 2494 objfile_name (objfile));
9cce227f
TG
2495 continue;
2496 }
2497 new_modtime = new_statbuf.st_mtime;
2498 if (new_modtime != objfile->mtime)
2499 {
2500 struct cleanup *old_cleanups;
2501 struct section_offsets *offsets;
2502 int num_offsets;
24ba069a 2503 char *original_name;
9cce227f
TG
2504
2505 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
4262abfb 2506 objfile_name (objfile));
9cce227f
TG
2507
2508 /* There are various functions like symbol_file_add,
2509 symfile_bfd_open, syms_from_objfile, etc., which might
2510 appear to do what we want. But they have various other
2511 effects which we *don't* want. So we just do stuff
2512 ourselves. We don't worry about mapped files (for one thing,
2513 any mapped file will be out of date). */
2514
2515 /* If we get an error, blow away this objfile (not sure if
2516 that is the correct response for things like shared
2517 libraries). */
2518 old_cleanups = make_cleanup_free_objfile (objfile);
2519 /* We need to do this whenever any symbols go away. */
2520 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2521
0ba1096a
KT
2522 if (exec_bfd != NULL
2523 && filename_cmp (bfd_get_filename (objfile->obfd),
2524 bfd_get_filename (exec_bfd)) == 0)
9cce227f
TG
2525 {
2526 /* Reload EXEC_BFD without asking anything. */
2527
2528 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2529 }
2530
f6eeced0
JK
2531 /* Keep the calls order approx. the same as in free_objfile. */
2532
2533 /* Free the separate debug objfiles. It will be
2534 automatically recreated by sym_read. */
2535 free_objfile_separate_debug (objfile);
2536
2537 /* Remove any references to this objfile in the global
2538 value lists. */
2539 preserve_values (objfile);
2540
2541 /* Nuke all the state that we will re-read. Much of the following
2542 code which sets things to NULL really is necessary to tell
2543 other parts of GDB that there is nothing currently there.
2544
2545 Try to keep the freeing order compatible with free_objfile. */
2546
2547 if (objfile->sf != NULL)
2548 {
2549 (*objfile->sf->sym_finish) (objfile);
2550 }
2551
2552 clear_objfile_data (objfile);
2553
e1507e95 2554 /* Clean up any state BFD has sitting around. */
a4453b7e
TT
2555 {
2556 struct bfd *obfd = objfile->obfd;
d3846e71 2557 char *obfd_filename;
a4453b7e
TT
2558
2559 obfd_filename = bfd_get_filename (objfile->obfd);
2560 /* Open the new BFD before freeing the old one, so that
2561 the filename remains live. */
08d2cd74 2562 objfile->obfd = gdb_bfd_open_maybe_remote (obfd_filename);
e1507e95
TT
2563 if (objfile->obfd == NULL)
2564 {
2565 /* We have to make a cleanup and error here, rather
2566 than erroring later, because once we unref OBFD,
2567 OBFD_FILENAME will be freed. */
2568 make_cleanup_bfd_unref (obfd);
2569 error (_("Can't open %s to read symbols."), obfd_filename);
2570 }
a4453b7e
TT
2571 gdb_bfd_unref (obfd);
2572 }
2573
24ba069a
JK
2574 original_name = xstrdup (objfile->original_name);
2575 make_cleanup (xfree, original_name);
2576
9cce227f
TG
2577 /* bfd_openr sets cacheable to true, which is what we want. */
2578 if (!bfd_check_format (objfile->obfd, bfd_object))
4262abfb 2579 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
9cce227f
TG
2580 bfd_errmsg (bfd_get_error ()));
2581
2582 /* Save the offsets, we will nuke them with the rest of the
2583 objfile_obstack. */
2584 num_offsets = objfile->num_sections;
2585 offsets = ((struct section_offsets *)
2586 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2587 memcpy (offsets, objfile->section_offsets,
2588 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2589
9cce227f
TG
2590 /* FIXME: Do we have to free a whole linked list, or is this
2591 enough? */
2592 if (objfile->global_psymbols.list)
2593 xfree (objfile->global_psymbols.list);
2594 memset (&objfile->global_psymbols, 0,
2595 sizeof (objfile->global_psymbols));
2596 if (objfile->static_psymbols.list)
2597 xfree (objfile->static_psymbols.list);
2598 memset (&objfile->static_psymbols, 0,
2599 sizeof (objfile->static_psymbols));
2600
c378eb4e 2601 /* Free the obstacks for non-reusable objfiles. */
710e1a31
SW
2602 psymbol_bcache_free (objfile->psymbol_cache);
2603 objfile->psymbol_cache = psymbol_bcache_init ();
9cce227f
TG
2604 obstack_free (&objfile->objfile_obstack, 0);
2605 objfile->sections = NULL;
2606 objfile->symtabs = NULL;
2607 objfile->psymtabs = NULL;
2608 objfile->psymtabs_addrmap = NULL;
2609 objfile->free_psymtabs = NULL;
34eaf542 2610 objfile->template_symbols = NULL;
9cce227f 2611 objfile->msymbols = NULL;
9cce227f
TG
2612 objfile->minimal_symbol_count = 0;
2613 memset (&objfile->msymbol_hash, 0,
2614 sizeof (objfile->msymbol_hash));
2615 memset (&objfile->msymbol_demangled_hash, 0,
2616 sizeof (objfile->msymbol_demangled_hash));
2617
9cce227f
TG
2618 /* obstack_init also initializes the obstack so it is
2619 empty. We could use obstack_specify_allocation but
d82ea6a8 2620 gdb_obstack.h specifies the alloc/dealloc functions. */
9cce227f 2621 obstack_init (&objfile->objfile_obstack);
779bd270 2622
846060df
JB
2623 /* set_objfile_per_bfd potentially allocates the per-bfd
2624 data on the objfile's obstack (if sharing data across
2625 multiple users is not possible), so it's important to
2626 do it *after* the obstack has been initialized. */
2627 set_objfile_per_bfd (objfile);
2628
24ba069a
JK
2629 objfile->original_name = obstack_copy0 (&objfile->objfile_obstack,
2630 original_name,
2631 strlen (original_name));
2632
779bd270
DE
2633 /* Reset the sym_fns pointer. The ELF reader can change it
2634 based on whether .gdb_index is present, and we need it to
2635 start over. PR symtab/15885 */
8fb8eb5c 2636 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
779bd270 2637
d82ea6a8 2638 build_objfile_section_table (objfile);
9cce227f
TG
2639 terminate_minimal_symbol_table (objfile);
2640
2641 /* We use the same section offsets as from last time. I'm not
2642 sure whether that is always correct for shared libraries. */
2643 objfile->section_offsets = (struct section_offsets *)
2644 obstack_alloc (&objfile->objfile_obstack,
2645 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2646 memcpy (objfile->section_offsets, offsets,
2647 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2648 objfile->num_sections = num_offsets;
2649
2650 /* What the hell is sym_new_init for, anyway? The concept of
2651 distinguishing between the main file and additional files
2652 in this way seems rather dubious. */
2653 if (objfile == symfile_objfile)
c906108c 2654 {
9cce227f 2655 (*objfile->sf->sym_new_init) (objfile);
c906108c 2656 }
9cce227f
TG
2657
2658 (*objfile->sf->sym_init) (objfile);
2659 clear_complaints (&symfile_complaints, 1, 1);
608e2dbb
TT
2660
2661 objfile->flags &= ~OBJF_PSYMTABS_READ;
2662 read_symbols (objfile, 0);
b11896a5 2663
9cce227f 2664 if (!objfile_has_symbols (objfile))
c906108c 2665 {
9cce227f
TG
2666 wrap_here ("");
2667 printf_unfiltered (_("(no debugging symbols found)\n"));
2668 wrap_here ("");
c5aa993b 2669 }
9cce227f
TG
2670
2671 /* We're done reading the symbol file; finish off complaints. */
2672 clear_complaints (&symfile_complaints, 0, 1);
2673
2674 /* Getting new symbols may change our opinion about what is
2675 frameless. */
2676
2677 reinit_frame_cache ();
2678
2679 /* Discard cleanups as symbol reading was successful. */
2680 discard_cleanups (old_cleanups);
2681
2682 /* If the mtime has changed between the time we set new_modtime
2683 and now, we *want* this to be out of date, so don't call stat
2684 again now. */
2685 objfile->mtime = new_modtime;
9cce227f 2686 init_entry_point_info (objfile);
4ac39b97
JK
2687
2688 VEC_safe_push (objfilep, new_objfiles, objfile);
c906108c
SS
2689 }
2690 }
c906108c 2691
4ac39b97 2692 if (new_objfiles)
ea53e89f 2693 {
4ac39b97
JK
2694 int ix;
2695
ff3536bc
UW
2696 /* Notify objfiles that we've modified objfile sections. */
2697 objfiles_changed ();
2698
c1e56572 2699 clear_symtab_users (0);
4ac39b97
JK
2700
2701 /* clear_objfile_data for each objfile was called before freeing it and
2702 observer_notify_new_objfile (NULL) has been called by
2703 clear_symtab_users above. Notify the new files now. */
2704 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2705 observer_notify_new_objfile (objfile);
2706
ea53e89f
JB
2707 /* At least one objfile has changed, so we can consider that
2708 the executable we're debugging has changed too. */
781b42b0 2709 observer_notify_executable_changed ();
ea53e89f 2710 }
4ac39b97
JK
2711
2712 do_cleanups (all_cleanups);
c906108c 2713}
c906108c
SS
2714\f
2715
c5aa993b
JM
2716typedef struct
2717{
2718 char *ext;
c906108c 2719 enum language lang;
c5aa993b
JM
2720}
2721filename_language;
c906108c 2722
c5aa993b 2723static filename_language *filename_language_table;
c906108c
SS
2724static int fl_table_size, fl_table_next;
2725
2726static void
fba45db2 2727add_filename_language (char *ext, enum language lang)
c906108c
SS
2728{
2729 if (fl_table_next >= fl_table_size)
2730 {
2731 fl_table_size += 10;
5417f6dc 2732 filename_language_table =
25bf3106
PM
2733 xrealloc (filename_language_table,
2734 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2735 }
2736
4fcf66da 2737 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2738 filename_language_table[fl_table_next].lang = lang;
2739 fl_table_next++;
2740}
2741
2742static char *ext_args;
920d2a44
AC
2743static void
2744show_ext_args (struct ui_file *file, int from_tty,
2745 struct cmd_list_element *c, const char *value)
2746{
3e43a32a
MS
2747 fprintf_filtered (file,
2748 _("Mapping between filename extension "
2749 "and source language is \"%s\".\n"),
920d2a44
AC
2750 value);
2751}
c906108c
SS
2752
2753static void
26c41df3 2754set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2755{
2756 int i;
2757 char *cp = ext_args;
2758 enum language lang;
2759
c378eb4e 2760 /* First arg is filename extension, starting with '.' */
c906108c 2761 if (*cp != '.')
8a3fe4f8 2762 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2763
2764 /* Find end of first arg. */
c5aa993b 2765 while (*cp && !isspace (*cp))
c906108c
SS
2766 cp++;
2767
2768 if (*cp == '\0')
3e43a32a
MS
2769 error (_("'%s': two arguments required -- "
2770 "filename extension and language"),
c906108c
SS
2771 ext_args);
2772
c378eb4e 2773 /* Null-terminate first arg. */
c5aa993b 2774 *cp++ = '\0';
c906108c
SS
2775
2776 /* Find beginning of second arg, which should be a source language. */
529480d0 2777 cp = skip_spaces (cp);
c906108c
SS
2778
2779 if (*cp == '\0')
3e43a32a
MS
2780 error (_("'%s': two arguments required -- "
2781 "filename extension and language"),
c906108c
SS
2782 ext_args);
2783
2784 /* Lookup the language from among those we know. */
2785 lang = language_enum (cp);
2786
2787 /* Now lookup the filename extension: do we already know it? */
2788 for (i = 0; i < fl_table_next; i++)
2789 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2790 break;
2791
2792 if (i >= fl_table_next)
2793 {
c378eb4e 2794 /* New file extension. */
c906108c
SS
2795 add_filename_language (ext_args, lang);
2796 }
2797 else
2798 {
c378eb4e 2799 /* Redefining a previously known filename extension. */
c906108c
SS
2800
2801 /* if (from_tty) */
2802 /* query ("Really make files of type %s '%s'?", */
2803 /* ext_args, language_str (lang)); */
2804
b8c9b27d 2805 xfree (filename_language_table[i].ext);
4fcf66da 2806 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2807 filename_language_table[i].lang = lang;
2808 }
2809}
2810
2811static void
fba45db2 2812info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2813{
2814 int i;
2815
a3f17187 2816 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2817 printf_filtered ("\n\n");
2818 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2819 printf_filtered ("\t%s\t- %s\n",
2820 filename_language_table[i].ext,
c906108c
SS
2821 language_str (filename_language_table[i].lang));
2822}
2823
2824static void
fba45db2 2825init_filename_language_table (void)
c906108c 2826{
c378eb4e 2827 if (fl_table_size == 0) /* Protect against repetition. */
c906108c
SS
2828 {
2829 fl_table_size = 20;
2830 fl_table_next = 0;
c5aa993b 2831 filename_language_table =
c906108c 2832 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b 2833 add_filename_language (".c", language_c);
6aecb9c2 2834 add_filename_language (".d", language_d);
c5aa993b
JM
2835 add_filename_language (".C", language_cplus);
2836 add_filename_language (".cc", language_cplus);
2837 add_filename_language (".cp", language_cplus);
2838 add_filename_language (".cpp", language_cplus);
2839 add_filename_language (".cxx", language_cplus);
2840 add_filename_language (".c++", language_cplus);
2841 add_filename_language (".java", language_java);
c906108c 2842 add_filename_language (".class", language_java);
da2cf7e0 2843 add_filename_language (".m", language_objc);
c5aa993b
JM
2844 add_filename_language (".f", language_fortran);
2845 add_filename_language (".F", language_fortran);
fd5700c7
JK
2846 add_filename_language (".for", language_fortran);
2847 add_filename_language (".FOR", language_fortran);
2848 add_filename_language (".ftn", language_fortran);
2849 add_filename_language (".FTN", language_fortran);
2850 add_filename_language (".fpp", language_fortran);
2851 add_filename_language (".FPP", language_fortran);
2852 add_filename_language (".f90", language_fortran);
2853 add_filename_language (".F90", language_fortran);
2854 add_filename_language (".f95", language_fortran);
2855 add_filename_language (".F95", language_fortran);
2856 add_filename_language (".f03", language_fortran);
2857 add_filename_language (".F03", language_fortran);
2858 add_filename_language (".f08", language_fortran);
2859 add_filename_language (".F08", language_fortran);
c5aa993b 2860 add_filename_language (".s", language_asm);
aa707ed0 2861 add_filename_language (".sx", language_asm);
c5aa993b 2862 add_filename_language (".S", language_asm);
c6fd39cd
PM
2863 add_filename_language (".pas", language_pascal);
2864 add_filename_language (".p", language_pascal);
2865 add_filename_language (".pp", language_pascal);
963a6417
PH
2866 add_filename_language (".adb", language_ada);
2867 add_filename_language (".ads", language_ada);
2868 add_filename_language (".a", language_ada);
2869 add_filename_language (".ada", language_ada);
dde59185 2870 add_filename_language (".dg", language_ada);
c906108c
SS
2871 }
2872}
2873
2874enum language
dd786858 2875deduce_language_from_filename (const char *filename)
c906108c
SS
2876{
2877 int i;
2878 char *cp;
2879
2880 if (filename != NULL)
2881 if ((cp = strrchr (filename, '.')) != NULL)
2882 for (i = 0; i < fl_table_next; i++)
2883 if (strcmp (cp, filename_language_table[i].ext) == 0)
2884 return filename_language_table[i].lang;
2885
2886 return language_unknown;
2887}
2888\f
2889/* allocate_symtab:
2890
2891 Allocate and partly initialize a new symbol table. Return a pointer
2892 to it. error() if no space.
2893
2894 Caller must set these fields:
c5aa993b
JM
2895 LINETABLE(symtab)
2896 symtab->blockvector
2897 symtab->dirname
2898 symtab->free_code
2899 symtab->free_ptr
c906108c
SS
2900 */
2901
2902struct symtab *
72b9f47f 2903allocate_symtab (const char *filename, struct objfile *objfile)
c906108c 2904{
52f0bd74 2905 struct symtab *symtab;
c906108c
SS
2906
2907 symtab = (struct symtab *)
4a146b47 2908 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2909 memset (symtab, 0, sizeof (*symtab));
21ea9eec
TT
2910 symtab->filename = bcache (filename, strlen (filename) + 1,
2911 objfile->per_bfd->filename_cache);
c5aa993b
JM
2912 symtab->fullname = NULL;
2913 symtab->language = deduce_language_from_filename (filename);
1c9e8358 2914 symtab->debugformat = "unknown";
c906108c 2915
c378eb4e 2916 /* Hook it to the objfile it comes from. */
c906108c 2917
c5aa993b
JM
2918 symtab->objfile = objfile;
2919 symtab->next = objfile->symtabs;
2920 objfile->symtabs = symtab;
c906108c 2921
db0fec5c
DE
2922 /* This can be very verbose with lots of headers.
2923 Only print at higher debug levels. */
2924 if (symtab_create_debug >= 2)
45cfd468
DE
2925 {
2926 /* Be a bit clever with debugging messages, and don't print objfile
2927 every time, only when it changes. */
2928 static char *last_objfile_name = NULL;
2929
2930 if (last_objfile_name == NULL
4262abfb 2931 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
45cfd468
DE
2932 {
2933 xfree (last_objfile_name);
4262abfb 2934 last_objfile_name = xstrdup (objfile_name (objfile));
45cfd468
DE
2935 fprintf_unfiltered (gdb_stdlog,
2936 "Creating one or more symtabs for objfile %s ...\n",
2937 last_objfile_name);
2938 }
2939 fprintf_unfiltered (gdb_stdlog,
b3dbbd6f
PM
2940 "Created symtab %s for module %s.\n",
2941 host_address_to_string (symtab), filename);
45cfd468
DE
2942 }
2943
c906108c
SS
2944 return (symtab);
2945}
c906108c 2946\f
c5aa993b 2947
c906108c 2948/* Reset all data structures in gdb which may contain references to symbol
c1e56572 2949 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c906108c
SS
2950
2951void
c1e56572 2952clear_symtab_users (int add_flags)
c906108c
SS
2953{
2954 /* Someday, we should do better than this, by only blowing away
2955 the things that really need to be blown. */
c0501be5
DJ
2956
2957 /* Clear the "current" symtab first, because it is no longer valid.
2958 breakpoint_re_set may try to access the current symtab. */
2959 clear_current_source_symtab_and_line ();
2960
c906108c 2961 clear_displays ();
c1e56572
JK
2962 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2963 breakpoint_re_set ();
1bfeeb0f 2964 clear_last_displayed_sal ();
c906108c 2965 clear_pc_function_cache ();
06d3b283 2966 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2967
2968 /* Clear globals which might have pointed into a removed objfile.
2969 FIXME: It's not clear which of these are supposed to persist
2970 between expressions and which ought to be reset each time. */
2971 expression_context_block = NULL;
2972 innermost_block = NULL;
8756216b
DP
2973
2974 /* Varobj may refer to old symbols, perform a cleanup. */
2975 varobj_invalidate ();
2976
c906108c
SS
2977}
2978
74b7792f
AC
2979static void
2980clear_symtab_users_cleanup (void *ignore)
2981{
c1e56572 2982 clear_symtab_users (0);
74b7792f 2983}
c906108c 2984\f
c906108c
SS
2985/* OVERLAYS:
2986 The following code implements an abstraction for debugging overlay sections.
2987
2988 The target model is as follows:
2989 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2990 same VMA, each with its own unique LMA (or load address).
c906108c 2991 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2992 sections, one by one, from the load address into the VMA address.
5417f6dc 2993 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2994 sections should be considered to be mapped from the VMA to the LMA.
2995 This information is used for symbol lookup, and memory read/write.
5417f6dc 2996 For instance, if a section has been mapped then its contents
c5aa993b 2997 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2998
2999 Two levels of debugger support for overlays are available. One is
3000 "manual", in which the debugger relies on the user to tell it which
3001 overlays are currently mapped. This level of support is
3002 implemented entirely in the core debugger, and the information about
3003 whether a section is mapped is kept in the objfile->obj_section table.
3004
3005 The second level of support is "automatic", and is only available if
3006 the target-specific code provides functionality to read the target's
3007 overlay mapping table, and translate its contents for the debugger
3008 (by updating the mapped state information in the obj_section tables).
3009
3010 The interface is as follows:
c5aa993b
JM
3011 User commands:
3012 overlay map <name> -- tell gdb to consider this section mapped
3013 overlay unmap <name> -- tell gdb to consider this section unmapped
3014 overlay list -- list the sections that GDB thinks are mapped
3015 overlay read-target -- get the target's state of what's mapped
3016 overlay off/manual/auto -- set overlay debugging state
3017 Functional interface:
3018 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3019 section, return that section.
5417f6dc 3020 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 3021 the pc, either in its VMA or its LMA
714835d5 3022 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
3023 section_is_overlay(sect): true if section's VMA != LMA
3024 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3025 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 3026 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
3027 overlay_mapped_address(...): map an address from section's LMA to VMA
3028 overlay_unmapped_address(...): map an address from section's VMA to LMA
3029 symbol_overlayed_address(...): Return a "current" address for symbol:
3030 either in VMA or LMA depending on whether
c378eb4e 3031 the symbol's section is currently mapped. */
c906108c
SS
3032
3033/* Overlay debugging state: */
3034
d874f1e2 3035enum overlay_debugging_state overlay_debugging = ovly_off;
c378eb4e 3036int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
c906108c 3037
c906108c 3038/* Function: section_is_overlay (SECTION)
5417f6dc 3039 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
3040 SECTION is loaded at an address different from where it will "run". */
3041
3042int
714835d5 3043section_is_overlay (struct obj_section *section)
c906108c 3044{
714835d5
UW
3045 if (overlay_debugging && section)
3046 {
3047 bfd *abfd = section->objfile->obfd;
3048 asection *bfd_section = section->the_bfd_section;
f888f159 3049
714835d5
UW
3050 if (bfd_section_lma (abfd, bfd_section) != 0
3051 && bfd_section_lma (abfd, bfd_section)
3052 != bfd_section_vma (abfd, bfd_section))
3053 return 1;
3054 }
c906108c
SS
3055
3056 return 0;
3057}
3058
3059/* Function: overlay_invalidate_all (void)
3060 Invalidate the mapped state of all overlay sections (mark it as stale). */
3061
3062static void
fba45db2 3063overlay_invalidate_all (void)
c906108c 3064{
c5aa993b 3065 struct objfile *objfile;
c906108c
SS
3066 struct obj_section *sect;
3067
3068 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
3069 if (section_is_overlay (sect))
3070 sect->ovly_mapped = -1;
c906108c
SS
3071}
3072
714835d5 3073/* Function: section_is_mapped (SECTION)
5417f6dc 3074 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3075
3076 Access to the ovly_mapped flag is restricted to this function, so
3077 that we can do automatic update. If the global flag
3078 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3079 overlay_invalidate_all. If the mapped state of the particular
3080 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3081
714835d5
UW
3082int
3083section_is_mapped (struct obj_section *osect)
c906108c 3084{
9216df95
UW
3085 struct gdbarch *gdbarch;
3086
714835d5 3087 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
3088 return 0;
3089
c5aa993b 3090 switch (overlay_debugging)
c906108c
SS
3091 {
3092 default:
d874f1e2 3093 case ovly_off:
c5aa993b 3094 return 0; /* overlay debugging off */
d874f1e2 3095 case ovly_auto: /* overlay debugging automatic */
1c772458 3096 /* Unles there is a gdbarch_overlay_update function,
c378eb4e 3097 there's really nothing useful to do here (can't really go auto). */
9216df95
UW
3098 gdbarch = get_objfile_arch (osect->objfile);
3099 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
3100 {
3101 if (overlay_cache_invalid)
3102 {
3103 overlay_invalidate_all ();
3104 overlay_cache_invalid = 0;
3105 }
3106 if (osect->ovly_mapped == -1)
9216df95 3107 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
3108 }
3109 /* fall thru to manual case */
d874f1e2 3110 case ovly_on: /* overlay debugging manual */
c906108c
SS
3111 return osect->ovly_mapped == 1;
3112 }
3113}
3114
c906108c
SS
3115/* Function: pc_in_unmapped_range
3116 If PC falls into the lma range of SECTION, return true, else false. */
3117
3118CORE_ADDR
714835d5 3119pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3120{
714835d5
UW
3121 if (section_is_overlay (section))
3122 {
3123 bfd *abfd = section->objfile->obfd;
3124 asection *bfd_section = section->the_bfd_section;
fbd35540 3125
714835d5
UW
3126 /* We assume the LMA is relocated by the same offset as the VMA. */
3127 bfd_vma size = bfd_get_section_size (bfd_section);
3128 CORE_ADDR offset = obj_section_offset (section);
3129
3130 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3131 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3132 return 1;
3133 }
c906108c 3134
c906108c
SS
3135 return 0;
3136}
3137
3138/* Function: pc_in_mapped_range
3139 If PC falls into the vma range of SECTION, return true, else false. */
3140
3141CORE_ADDR
714835d5 3142pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3143{
714835d5
UW
3144 if (section_is_overlay (section))
3145 {
3146 if (obj_section_addr (section) <= pc
3147 && pc < obj_section_endaddr (section))
3148 return 1;
3149 }
c906108c 3150
c906108c
SS
3151 return 0;
3152}
3153
9ec8e6a0
JB
3154/* Return true if the mapped ranges of sections A and B overlap, false
3155 otherwise. */
3b7bacac 3156
b9362cc7 3157static int
714835d5 3158sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3159{
714835d5
UW
3160 CORE_ADDR a_start = obj_section_addr (a);
3161 CORE_ADDR a_end = obj_section_endaddr (a);
3162 CORE_ADDR b_start = obj_section_addr (b);
3163 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3164
3165 return (a_start < b_end && b_start < a_end);
3166}
3167
c906108c
SS
3168/* Function: overlay_unmapped_address (PC, SECTION)
3169 Returns the address corresponding to PC in the unmapped (load) range.
3170 May be the same as PC. */
3171
3172CORE_ADDR
714835d5 3173overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3174{
714835d5
UW
3175 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3176 {
3177 bfd *abfd = section->objfile->obfd;
3178 asection *bfd_section = section->the_bfd_section;
fbd35540 3179
714835d5
UW
3180 return pc + bfd_section_lma (abfd, bfd_section)
3181 - bfd_section_vma (abfd, bfd_section);
3182 }
c906108c
SS
3183
3184 return pc;
3185}
3186
3187/* Function: overlay_mapped_address (PC, SECTION)
3188 Returns the address corresponding to PC in the mapped (runtime) range.
3189 May be the same as PC. */
3190
3191CORE_ADDR
714835d5 3192overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3193{
714835d5
UW
3194 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3195 {
3196 bfd *abfd = section->objfile->obfd;
3197 asection *bfd_section = section->the_bfd_section;
fbd35540 3198
714835d5
UW
3199 return pc + bfd_section_vma (abfd, bfd_section)
3200 - bfd_section_lma (abfd, bfd_section);
3201 }
c906108c
SS
3202
3203 return pc;
3204}
3205
5417f6dc 3206/* Function: symbol_overlayed_address
c906108c
SS
3207 Return one of two addresses (relative to the VMA or to the LMA),
3208 depending on whether the section is mapped or not. */
3209
c5aa993b 3210CORE_ADDR
714835d5 3211symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3212{
3213 if (overlay_debugging)
3214 {
c378eb4e 3215 /* If the symbol has no section, just return its regular address. */
c906108c
SS
3216 if (section == 0)
3217 return address;
c378eb4e
MS
3218 /* If the symbol's section is not an overlay, just return its
3219 address. */
c906108c
SS
3220 if (!section_is_overlay (section))
3221 return address;
c378eb4e 3222 /* If the symbol's section is mapped, just return its address. */
c906108c
SS
3223 if (section_is_mapped (section))
3224 return address;
3225 /*
3226 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3227 * then return its LOADED address rather than its vma address!!
3228 */
3229 return overlay_unmapped_address (address, section);
3230 }
3231 return address;
3232}
3233
5417f6dc 3234/* Function: find_pc_overlay (PC)
c906108c
SS
3235 Return the best-match overlay section for PC:
3236 If PC matches a mapped overlay section's VMA, return that section.
3237 Else if PC matches an unmapped section's VMA, return that section.
3238 Else if PC matches an unmapped section's LMA, return that section. */
3239
714835d5 3240struct obj_section *
fba45db2 3241find_pc_overlay (CORE_ADDR pc)
c906108c 3242{
c5aa993b 3243 struct objfile *objfile;
c906108c
SS
3244 struct obj_section *osect, *best_match = NULL;
3245
3246 if (overlay_debugging)
3247 ALL_OBJSECTIONS (objfile, osect)
714835d5 3248 if (section_is_overlay (osect))
c5aa993b 3249 {
714835d5 3250 if (pc_in_mapped_range (pc, osect))
c5aa993b 3251 {
714835d5
UW
3252 if (section_is_mapped (osect))
3253 return osect;
c5aa993b
JM
3254 else
3255 best_match = osect;
3256 }
714835d5 3257 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3258 best_match = osect;
3259 }
714835d5 3260 return best_match;
c906108c
SS
3261}
3262
3263/* Function: find_pc_mapped_section (PC)
5417f6dc 3264 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3265 currently marked as MAPPED, return that section. Else return NULL. */
3266
714835d5 3267struct obj_section *
fba45db2 3268find_pc_mapped_section (CORE_ADDR pc)
c906108c 3269{
c5aa993b 3270 struct objfile *objfile;
c906108c
SS
3271 struct obj_section *osect;
3272
3273 if (overlay_debugging)
3274 ALL_OBJSECTIONS (objfile, osect)
714835d5
UW
3275 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3276 return osect;
c906108c
SS
3277
3278 return NULL;
3279}
3280
3281/* Function: list_overlays_command
c378eb4e 3282 Print a list of mapped sections and their PC ranges. */
c906108c 3283
5d3055ad 3284static void
fba45db2 3285list_overlays_command (char *args, int from_tty)
c906108c 3286{
c5aa993b
JM
3287 int nmapped = 0;
3288 struct objfile *objfile;
c906108c
SS
3289 struct obj_section *osect;
3290
3291 if (overlay_debugging)
3292 ALL_OBJSECTIONS (objfile, osect)
714835d5 3293 if (section_is_mapped (osect))
c5aa993b 3294 {
5af949e3 3295 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c5aa993b
JM
3296 const char *name;
3297 bfd_vma lma, vma;
3298 int size;
3299
3300 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3301 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3302 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3303 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3304
3305 printf_filtered ("Section %s, loaded at ", name);
5af949e3 3306 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
c5aa993b 3307 puts_filtered (" - ");
5af949e3 3308 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
c5aa993b 3309 printf_filtered (", mapped at ");
5af949e3 3310 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
c5aa993b 3311 puts_filtered (" - ");
5af949e3 3312 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
c5aa993b
JM
3313 puts_filtered ("\n");
3314
3315 nmapped++;
3316 }
c906108c 3317 if (nmapped == 0)
a3f17187 3318 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3319}
3320
3321/* Function: map_overlay_command
3322 Mark the named section as mapped (ie. residing at its VMA address). */
3323
5d3055ad 3324static void
fba45db2 3325map_overlay_command (char *args, int from_tty)
c906108c 3326{
c5aa993b
JM
3327 struct objfile *objfile, *objfile2;
3328 struct obj_section *sec, *sec2;
c906108c
SS
3329
3330 if (!overlay_debugging)
3e43a32a
MS
3331 error (_("Overlay debugging not enabled. Use "
3332 "either the 'overlay auto' or\n"
3333 "the 'overlay manual' command."));
c906108c
SS
3334
3335 if (args == 0 || *args == 0)
8a3fe4f8 3336 error (_("Argument required: name of an overlay section"));
c906108c 3337
c378eb4e 3338 /* First, find a section matching the user supplied argument. */
c906108c
SS
3339 ALL_OBJSECTIONS (objfile, sec)
3340 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b 3341 {
c378eb4e 3342 /* Now, check to see if the section is an overlay. */
714835d5 3343 if (!section_is_overlay (sec))
c5aa993b
JM
3344 continue; /* not an overlay section */
3345
c378eb4e 3346 /* Mark the overlay as "mapped". */
c5aa993b
JM
3347 sec->ovly_mapped = 1;
3348
3349 /* Next, make a pass and unmap any sections that are
3350 overlapped by this new section: */
3351 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3352 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3353 {
3354 if (info_verbose)
a3f17187 3355 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3356 bfd_section_name (objfile->obfd,
3357 sec2->the_bfd_section));
c378eb4e 3358 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
c5aa993b
JM
3359 }
3360 return;
3361 }
8a3fe4f8 3362 error (_("No overlay section called %s"), args);
c906108c
SS
3363}
3364
3365/* Function: unmap_overlay_command
5417f6dc 3366 Mark the overlay section as unmapped
c906108c
SS
3367 (ie. resident in its LMA address range, rather than the VMA range). */
3368
5d3055ad 3369static void
fba45db2 3370unmap_overlay_command (char *args, int from_tty)
c906108c 3371{
c5aa993b 3372 struct objfile *objfile;
c906108c
SS
3373 struct obj_section *sec;
3374
3375 if (!overlay_debugging)
3e43a32a
MS
3376 error (_("Overlay debugging not enabled. "
3377 "Use either the 'overlay auto' or\n"
3378 "the 'overlay manual' command."));
c906108c
SS
3379
3380 if (args == 0 || *args == 0)
8a3fe4f8 3381 error (_("Argument required: name of an overlay section"));
c906108c 3382
c378eb4e 3383 /* First, find a section matching the user supplied argument. */
c906108c
SS
3384 ALL_OBJSECTIONS (objfile, sec)
3385 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3386 {
3387 if (!sec->ovly_mapped)
8a3fe4f8 3388 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3389 sec->ovly_mapped = 0;
3390 return;
3391 }
8a3fe4f8 3392 error (_("No overlay section called %s"), args);
c906108c
SS
3393}
3394
3395/* Function: overlay_auto_command
3396 A utility command to turn on overlay debugging.
c378eb4e 3397 Possibly this should be done via a set/show command. */
c906108c
SS
3398
3399static void
fba45db2 3400overlay_auto_command (char *args, int from_tty)
c906108c 3401{
d874f1e2 3402 overlay_debugging = ovly_auto;
1900040c 3403 enable_overlay_breakpoints ();
c906108c 3404 if (info_verbose)
a3f17187 3405 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3406}
3407
3408/* Function: overlay_manual_command
3409 A utility command to turn on overlay debugging.
c378eb4e 3410 Possibly this should be done via a set/show command. */
c906108c
SS
3411
3412static void
fba45db2 3413overlay_manual_command (char *args, int from_tty)
c906108c 3414{
d874f1e2 3415 overlay_debugging = ovly_on;
1900040c 3416 disable_overlay_breakpoints ();
c906108c 3417 if (info_verbose)
a3f17187 3418 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3419}
3420
3421/* Function: overlay_off_command
3422 A utility command to turn on overlay debugging.
c378eb4e 3423 Possibly this should be done via a set/show command. */
c906108c
SS
3424
3425static void
fba45db2 3426overlay_off_command (char *args, int from_tty)
c906108c 3427{
d874f1e2 3428 overlay_debugging = ovly_off;
1900040c 3429 disable_overlay_breakpoints ();
c906108c 3430 if (info_verbose)
a3f17187 3431 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3432}
3433
3434static void
fba45db2 3435overlay_load_command (char *args, int from_tty)
c906108c 3436{
e17c207e
UW
3437 struct gdbarch *gdbarch = get_current_arch ();
3438
3439 if (gdbarch_overlay_update_p (gdbarch))
3440 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3441 else
8a3fe4f8 3442 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3443}
3444
3445/* Function: overlay_command
c378eb4e 3446 A place-holder for a mis-typed command. */
c906108c 3447
c378eb4e 3448/* Command list chain containing all defined "overlay" subcommands. */
28578e6b 3449static struct cmd_list_element *overlaylist;
c906108c
SS
3450
3451static void
fba45db2 3452overlay_command (char *args, int from_tty)
c906108c 3453{
c5aa993b 3454 printf_unfiltered
c906108c
SS
3455 ("\"overlay\" must be followed by the name of an overlay command.\n");
3456 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3457}
3458
c906108c
SS
3459/* Target Overlays for the "Simplest" overlay manager:
3460
5417f6dc
RM
3461 This is GDB's default target overlay layer. It works with the
3462 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3463 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3464 so targets that use a different runtime overlay manager can
c906108c
SS
3465 substitute their own overlay_update function and take over the
3466 function pointer.
3467
3468 The overlay_update function pokes around in the target's data structures
3469 to see what overlays are mapped, and updates GDB's overlay mapping with
3470 this information.
3471
3472 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3473 unsigned _novlys; /# number of overlay sections #/
3474 unsigned _ovly_table[_novlys][4] = {
3475 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3476 {..., ..., ..., ...},
3477 }
3478 unsigned _novly_regions; /# number of overlay regions #/
3479 unsigned _ovly_region_table[_novly_regions][3] = {
3480 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3481 {..., ..., ...},
3482 }
c906108c
SS
3483 These functions will attempt to update GDB's mappedness state in the
3484 symbol section table, based on the target's mappedness state.
3485
3486 To do this, we keep a cached copy of the target's _ovly_table, and
3487 attempt to detect when the cached copy is invalidated. The main
3488 entry point is "simple_overlay_update(SECT), which looks up SECT in
3489 the cached table and re-reads only the entry for that section from
c378eb4e 3490 the target (whenever possible). */
c906108c
SS
3491
3492/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3493static unsigned (*cache_ovly_table)[4] = 0;
c5aa993b 3494static unsigned cache_novlys = 0;
c906108c 3495static CORE_ADDR cache_ovly_table_base = 0;
c5aa993b
JM
3496enum ovly_index
3497 {
3498 VMA, SIZE, LMA, MAPPED
3499 };
c906108c 3500
c378eb4e 3501/* Throw away the cached copy of _ovly_table. */
3b7bacac 3502
c906108c 3503static void
fba45db2 3504simple_free_overlay_table (void)
c906108c
SS
3505{
3506 if (cache_ovly_table)
b8c9b27d 3507 xfree (cache_ovly_table);
c5aa993b 3508 cache_novlys = 0;
c906108c
SS
3509 cache_ovly_table = NULL;
3510 cache_ovly_table_base = 0;
3511}
3512
9216df95 3513/* Read an array of ints of size SIZE from the target into a local buffer.
c378eb4e 3514 Convert to host order. int LEN is number of ints. */
3b7bacac 3515
c906108c 3516static void
9216df95 3517read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3518 int len, int size, enum bfd_endian byte_order)
c906108c 3519{
c378eb4e 3520 /* FIXME (alloca): Not safe if array is very large. */
9216df95 3521 gdb_byte *buf = alloca (len * size);
c5aa993b 3522 int i;
c906108c 3523
9216df95 3524 read_memory (memaddr, buf, len * size);
c906108c 3525 for (i = 0; i < len; i++)
e17a4113 3526 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3527}
3528
3529/* Find and grab a copy of the target _ovly_table
c378eb4e 3530 (and _novlys, which is needed for the table's size). */
3b7bacac 3531
c5aa993b 3532static int
fba45db2 3533simple_read_overlay_table (void)
c906108c 3534{
3b7344d5 3535 struct bound_minimal_symbol novlys_msym;
7c7b6655 3536 struct bound_minimal_symbol ovly_table_msym;
9216df95
UW
3537 struct gdbarch *gdbarch;
3538 int word_size;
e17a4113 3539 enum bfd_endian byte_order;
c906108c
SS
3540
3541 simple_free_overlay_table ();
9b27852e 3542 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3b7344d5 3543 if (! novlys_msym.minsym)
c906108c 3544 {
8a3fe4f8 3545 error (_("Error reading inferior's overlay table: "
0d43edd1 3546 "couldn't find `_novlys' variable\n"
8a3fe4f8 3547 "in inferior. Use `overlay manual' mode."));
0d43edd1 3548 return 0;
c906108c 3549 }
0d43edd1 3550
7c7b6655
TT
3551 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3552 if (! ovly_table_msym.minsym)
0d43edd1 3553 {
8a3fe4f8 3554 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3555 "`_ovly_table' array\n"
8a3fe4f8 3556 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3557 return 0;
3558 }
3559
7c7b6655 3560 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
9216df95 3561 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3562 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3563
77e371c0
TT
3564 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3565 4, byte_order);
0d43edd1
JB
3566 cache_ovly_table
3567 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
77e371c0 3568 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
0d43edd1 3569 read_target_long_array (cache_ovly_table_base,
777ea8f1 3570 (unsigned int *) cache_ovly_table,
e17a4113 3571 cache_novlys * 4, word_size, byte_order);
0d43edd1 3572
c5aa993b 3573 return 1; /* SUCCESS */
c906108c
SS
3574}
3575
5417f6dc 3576/* Function: simple_overlay_update_1
c906108c
SS
3577 A helper function for simple_overlay_update. Assuming a cached copy
3578 of _ovly_table exists, look through it to find an entry whose vma,
3579 lma and size match those of OSECT. Re-read the entry and make sure
3580 it still matches OSECT (else the table may no longer be valid).
3581 Set OSECT's mapped state to match the entry. Return: 1 for
3582 success, 0 for failure. */
3583
3584static int
fba45db2 3585simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3586{
3587 int i, size;
fbd35540
MS
3588 bfd *obfd = osect->objfile->obfd;
3589 asection *bsect = osect->the_bfd_section;
9216df95
UW
3590 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3591 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3592 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3593
2c500098 3594 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3595 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3596 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3597 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3598 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c 3599 {
9216df95
UW
3600 read_target_long_array (cache_ovly_table_base + i * word_size,
3601 (unsigned int *) cache_ovly_table[i],
e17a4113 3602 4, word_size, byte_order);
fbd35540
MS
3603 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3604 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3605 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3606 {
3607 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3608 return 1;
3609 }
c378eb4e 3610 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3611 return 0;
3612 }
3613 return 0;
3614}
3615
3616/* Function: simple_overlay_update
5417f6dc
RM
3617 If OSECT is NULL, then update all sections' mapped state
3618 (after re-reading the entire target _ovly_table).
3619 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3620 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3621 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3622 re-read the entire cache, and go ahead and update all sections. */
3623
1c772458 3624void
fba45db2 3625simple_overlay_update (struct obj_section *osect)
c906108c 3626{
c5aa993b 3627 struct objfile *objfile;
c906108c 3628
c378eb4e 3629 /* Were we given an osect to look up? NULL means do all of them. */
c906108c 3630 if (osect)
c378eb4e 3631 /* Have we got a cached copy of the target's overlay table? */
c906108c 3632 if (cache_ovly_table != NULL)
9cc89665
MS
3633 {
3634 /* Does its cached location match what's currently in the
3635 symtab? */
3b7344d5 3636 struct bound_minimal_symbol minsym
9cc89665
MS
3637 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3638
3b7344d5 3639 if (minsym.minsym == NULL)
9cc89665
MS
3640 error (_("Error reading inferior's overlay table: couldn't "
3641 "find `_ovly_table' array\n"
3642 "in inferior. Use `overlay manual' mode."));
3643
77e371c0 3644 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
9cc89665
MS
3645 /* Then go ahead and try to look up this single section in
3646 the cache. */
3647 if (simple_overlay_update_1 (osect))
3648 /* Found it! We're done. */
3649 return;
3650 }
c906108c
SS
3651
3652 /* Cached table no good: need to read the entire table anew.
3653 Or else we want all the sections, in which case it's actually
3654 more efficient to read the whole table in one block anyway. */
3655
0d43edd1
JB
3656 if (! simple_read_overlay_table ())
3657 return;
3658
c378eb4e 3659 /* Now may as well update all sections, even if only one was requested. */
c906108c 3660 ALL_OBJSECTIONS (objfile, osect)
714835d5 3661 if (section_is_overlay (osect))
c5aa993b
JM
3662 {
3663 int i, size;
fbd35540
MS
3664 bfd *obfd = osect->objfile->obfd;
3665 asection *bsect = osect->the_bfd_section;
c5aa993b 3666
2c500098 3667 size = bfd_get_section_size (bsect);
c5aa993b 3668 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3669 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3670 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3671 /* && cache_ovly_table[i][SIZE] == size */ )
c378eb4e 3672 { /* obj_section matches i'th entry in ovly_table. */
c5aa993b 3673 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
c378eb4e 3674 break; /* finished with inner for loop: break out. */
c5aa993b
JM
3675 }
3676 }
c906108c
SS
3677}
3678
086df311
DJ
3679/* Set the output sections and output offsets for section SECTP in
3680 ABFD. The relocation code in BFD will read these offsets, so we
3681 need to be sure they're initialized. We map each section to itself,
3682 with no offset; this means that SECTP->vma will be honored. */
3683
3684static void
3685symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3686{
3687 sectp->output_section = sectp;
3688 sectp->output_offset = 0;
3689}
3690
ac8035ab
TG
3691/* Default implementation for sym_relocate. */
3692
ac8035ab
TG
3693bfd_byte *
3694default_symfile_relocate (struct objfile *objfile, asection *sectp,
3695 bfd_byte *buf)
3696{
3019eac3
DE
3697 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3698 DWO file. */
3699 bfd *abfd = sectp->owner;
ac8035ab
TG
3700
3701 /* We're only interested in sections with relocation
3702 information. */
3703 if ((sectp->flags & SEC_RELOC) == 0)
3704 return NULL;
3705
3706 /* We will handle section offsets properly elsewhere, so relocate as if
3707 all sections begin at 0. */
3708 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3709
3710 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3711}
3712
086df311
DJ
3713/* Relocate the contents of a debug section SECTP in ABFD. The
3714 contents are stored in BUF if it is non-NULL, or returned in a
3715 malloc'd buffer otherwise.
3716
3717 For some platforms and debug info formats, shared libraries contain
3718 relocations against the debug sections (particularly for DWARF-2;
3719 one affected platform is PowerPC GNU/Linux, although it depends on
3720 the version of the linker in use). Also, ELF object files naturally
3721 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3722 the relocations in order to get the locations of symbols correct.
3723 Another example that may require relocation processing, is the
3724 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3725 debug section. */
086df311
DJ
3726
3727bfd_byte *
ac8035ab
TG
3728symfile_relocate_debug_section (struct objfile *objfile,
3729 asection *sectp, bfd_byte *buf)
086df311 3730{
ac8035ab 3731 gdb_assert (objfile->sf->sym_relocate);
086df311 3732
ac8035ab 3733 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3734}
c906108c 3735
31d99776
DJ
3736struct symfile_segment_data *
3737get_symfile_segment_data (bfd *abfd)
3738{
00b5771c 3739 const struct sym_fns *sf = find_sym_fns (abfd);
31d99776
DJ
3740
3741 if (sf == NULL)
3742 return NULL;
3743
3744 return sf->sym_segments (abfd);
3745}
3746
3747void
3748free_symfile_segment_data (struct symfile_segment_data *data)
3749{
3750 xfree (data->segment_bases);
3751 xfree (data->segment_sizes);
3752 xfree (data->segment_info);
3753 xfree (data);
3754}
3755
28c32713
JB
3756/* Given:
3757 - DATA, containing segment addresses from the object file ABFD, and
3758 the mapping from ABFD's sections onto the segments that own them,
3759 and
3760 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3761 segment addresses reported by the target,
3762 store the appropriate offsets for each section in OFFSETS.
3763
3764 If there are fewer entries in SEGMENT_BASES than there are segments
3765 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3766
8d385431
DJ
3767 If there are more entries, then ignore the extra. The target may
3768 not be able to distinguish between an empty data segment and a
3769 missing data segment; a missing text segment is less plausible. */
3b7bacac 3770
31d99776 3771int
3189cb12
DE
3772symfile_map_offsets_to_segments (bfd *abfd,
3773 const struct symfile_segment_data *data,
31d99776
DJ
3774 struct section_offsets *offsets,
3775 int num_segment_bases,
3776 const CORE_ADDR *segment_bases)
3777{
3778 int i;
3779 asection *sect;
3780
28c32713
JB
3781 /* It doesn't make sense to call this function unless you have some
3782 segment base addresses. */
202b96c1 3783 gdb_assert (num_segment_bases > 0);
28c32713 3784
31d99776
DJ
3785 /* If we do not have segment mappings for the object file, we
3786 can not relocate it by segments. */
3787 gdb_assert (data != NULL);
3788 gdb_assert (data->num_segments > 0);
3789
31d99776
DJ
3790 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3791 {
31d99776
DJ
3792 int which = data->segment_info[i];
3793
28c32713
JB
3794 gdb_assert (0 <= which && which <= data->num_segments);
3795
3796 /* Don't bother computing offsets for sections that aren't
3797 loaded as part of any segment. */
3798 if (! which)
3799 continue;
3800
3801 /* Use the last SEGMENT_BASES entry as the address of any extra
3802 segments mentioned in DATA->segment_info. */
31d99776 3803 if (which > num_segment_bases)
28c32713 3804 which = num_segment_bases;
31d99776 3805
28c32713
JB
3806 offsets->offsets[i] = (segment_bases[which - 1]
3807 - data->segment_bases[which - 1]);
31d99776
DJ
3808 }
3809
3810 return 1;
3811}
3812
3813static void
3814symfile_find_segment_sections (struct objfile *objfile)
3815{
3816 bfd *abfd = objfile->obfd;
3817 int i;
3818 asection *sect;
3819 struct symfile_segment_data *data;
3820
3821 data = get_symfile_segment_data (objfile->obfd);
3822 if (data == NULL)
3823 return;
3824
3825 if (data->num_segments != 1 && data->num_segments != 2)
3826 {
3827 free_symfile_segment_data (data);
3828 return;
3829 }
3830
3831 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3832 {
31d99776
DJ
3833 int which = data->segment_info[i];
3834
3835 if (which == 1)
3836 {
3837 if (objfile->sect_index_text == -1)
3838 objfile->sect_index_text = sect->index;
3839
3840 if (objfile->sect_index_rodata == -1)
3841 objfile->sect_index_rodata = sect->index;
3842 }
3843 else if (which == 2)
3844 {
3845 if (objfile->sect_index_data == -1)
3846 objfile->sect_index_data = sect->index;
3847
3848 if (objfile->sect_index_bss == -1)
3849 objfile->sect_index_bss = sect->index;
3850 }
3851 }
3852
3853 free_symfile_segment_data (data);
3854}
3855
76ad5e1e
NB
3856/* Listen for free_objfile events. */
3857
3858static void
3859symfile_free_objfile (struct objfile *objfile)
3860{
3861 /* Remove the target sections of user-added objfiles. */
3862 if (objfile != 0 && objfile->flags & OBJF_USERLOADED)
3863 remove_target_sections ((void *) objfile);
3864}
3865
540c2971
DE
3866/* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3867 Expand all symtabs that match the specified criteria.
3868 See quick_symbol_functions.expand_symtabs_matching for details. */
3869
3870void
bb4142cf
DE
3871expand_symtabs_matching (expand_symtabs_file_matcher_ftype *file_matcher,
3872 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3873 enum search_domain kind,
3874 void *data)
540c2971
DE
3875{
3876 struct objfile *objfile;
3877
3878 ALL_OBJFILES (objfile)
3879 {
3880 if (objfile->sf)
bb4142cf
DE
3881 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3882 symbol_matcher, kind,
3883 data);
540c2971
DE
3884 }
3885}
3886
3887/* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3888 Map function FUN over every file.
3889 See quick_symbol_functions.map_symbol_filenames for details. */
3890
3891void
bb4142cf
DE
3892map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3893 int need_fullname)
540c2971
DE
3894{
3895 struct objfile *objfile;
3896
3897 ALL_OBJFILES (objfile)
3898 {
3899 if (objfile->sf)
3900 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3901 need_fullname);
3902 }
3903}
3904
c906108c 3905void
fba45db2 3906_initialize_symfile (void)
c906108c
SS
3907{
3908 struct cmd_list_element *c;
c5aa993b 3909
76ad5e1e
NB
3910 observer_attach_free_objfile (symfile_free_objfile);
3911
1a966eab
AC
3912 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3913Load symbol table from executable file FILE.\n\
c906108c 3914The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3915to execute."), &cmdlist);
5ba2abeb 3916 set_cmd_completer (c, filename_completer);
c906108c 3917
1a966eab 3918 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3919Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3e43a32a
MS
3920Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3921 ...]\nADDR is the starting address of the file's text.\n\
db162d44
EZ
3922The optional arguments are section-name section-address pairs and\n\
3923should be specified if the data and bss segments are not contiguous\n\
1a966eab 3924with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3925 &cmdlist);
5ba2abeb 3926 set_cmd_completer (c, filename_completer);
c906108c 3927
63644780
NB
3928 c = add_cmd ("remove-symbol-file", class_files,
3929 remove_symbol_file_command, _("\
3930Remove a symbol file added via the add-symbol-file command.\n\
3931Usage: remove-symbol-file FILENAME\n\
3932 remove-symbol-file -a ADDRESS\n\
3933The file to remove can be identified by its filename or by an address\n\
3934that lies within the boundaries of this symbol file in memory."),
3935 &cmdlist);
3936
1a966eab
AC
3937 c = add_cmd ("load", class_files, load_command, _("\
3938Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
3939for access from GDB.\n\
3940A load OFFSET may also be given."), &cmdlist);
5ba2abeb 3941 set_cmd_completer (c, filename_completer);
c906108c 3942
c5aa993b 3943 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3944 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3945 "overlay ", 0, &cmdlist);
3946
3947 add_com_alias ("ovly", "overlay", class_alias, 1);
3948 add_com_alias ("ov", "overlay", class_alias, 1);
3949
c5aa993b 3950 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3951 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3952
c5aa993b 3953 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3954 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3955
c5aa993b 3956 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3957 _("List mappings of overlay sections."), &overlaylist);
c906108c 3958
c5aa993b 3959 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3960 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3961 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3962 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3963 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3964 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3965 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3966 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3967
3968 /* Filename extension to source language lookup table: */
3969 init_filename_language_table ();
26c41df3
AC
3970 add_setshow_string_noescape_cmd ("extension-language", class_files,
3971 &ext_args, _("\
3972Set mapping between filename extension and source language."), _("\
3973Show mapping between filename extension and source language."), _("\
3974Usage: set extension-language .foo bar"),
3975 set_ext_lang_command,
920d2a44 3976 show_ext_args,
26c41df3 3977 &setlist, &showlist);
c906108c 3978
c5aa993b 3979 add_info ("extensions", info_ext_lang_command,
1bedd215 3980 _("All filename extensions associated with a source language."));
917317f4 3981
525226b5
AC
3982 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3983 &debug_file_directory, _("\
24ddea62
JK
3984Set the directories where separate debug symbols are searched for."), _("\
3985Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
3986Separate debug symbols are first searched for in the same\n\
3987directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3988and lastly at the path of the directory of the binary with\n\
24ddea62 3989each global debug-file-directory component prepended."),
525226b5 3990 NULL,
920d2a44 3991 show_debug_file_directory,
525226b5 3992 &setlist, &showlist);
c906108c 3993}
This page took 1.912665 seconds and 4 git commands to generate.