* config/tc-mips.c (HAVE_64BIT_ADDRESS_CONSTANTS): Remove.
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c
AC
2
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
1bac305b 4 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
8926118c 5
c906108c
SS
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b
JM
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
c906108c
SS
24
25#include "defs.h"
086df311 26#include "bfdlink.h"
c906108c
SS
27#include "symtab.h"
28#include "gdbtypes.h"
29#include "gdbcore.h"
30#include "frame.h"
31#include "target.h"
32#include "value.h"
33#include "symfile.h"
34#include "objfiles.h"
0378c332 35#include "source.h"
c906108c
SS
36#include "gdbcmd.h"
37#include "breakpoint.h"
38#include "language.h"
39#include "complaints.h"
40#include "demangle.h"
c5aa993b 41#include "inferior.h" /* for write_pc */
5b5d99cf 42#include "filenames.h" /* for DOSish file names */
c906108c 43#include "gdb-stabs.h"
04ea0df1 44#include "gdb_obstack.h"
d75b5104 45#include "completer.h"
af5f3db6 46#include "bcache.h"
2de7ced7 47#include "hashtab.h"
38017ce8 48#include <readline/readline.h>
7e8580c1 49#include "gdb_assert.h"
fe898f56 50#include "block.h"
c906108c 51
c906108c
SS
52#include <sys/types.h>
53#include <fcntl.h>
54#include "gdb_string.h"
55#include "gdb_stat.h"
56#include <ctype.h>
57#include <time.h>
c906108c
SS
58
59#ifndef O_BINARY
60#define O_BINARY 0
61#endif
62
63#ifdef HPUXHPPA
64
65/* Some HP-UX related globals to clear when a new "main"
66 symbol file is loaded. HP-specific. */
67
68extern int hp_som_som_object_present;
69extern int hp_cxx_exception_support_initialized;
70#define RESET_HP_UX_GLOBALS() do {\
71 hp_som_som_object_present = 0; /* indicates HP-compiled code */ \
72 hp_cxx_exception_support_initialized = 0; /* must reinitialize exception stuff */ \
73 } while (0)
74#endif
75
917317f4 76int (*ui_load_progress_hook) (const char *section, unsigned long num);
c2d11a7d
JM
77void (*show_load_progress) (const char *section,
78 unsigned long section_sent,
79 unsigned long section_size,
80 unsigned long total_sent,
81 unsigned long total_size);
507f3c78
KB
82void (*pre_add_symbol_hook) (char *);
83void (*post_add_symbol_hook) (void);
84void (*target_new_objfile_hook) (struct objfile *);
c906108c 85
74b7792f
AC
86static void clear_symtab_users_cleanup (void *ignore);
87
c906108c 88/* Global variables owned by this file */
c5aa993b 89int readnow_symbol_files; /* Read full symbols immediately */
c906108c 90
c906108c
SS
91/* External variables and functions referenced. */
92
a14ed312 93extern void report_transfer_performance (unsigned long, time_t, time_t);
c906108c
SS
94
95/* Functions this file defines */
96
97#if 0
a14ed312
KB
98static int simple_read_overlay_region_table (void);
99static void simple_free_overlay_region_table (void);
c906108c
SS
100#endif
101
a14ed312 102static void set_initial_language (void);
c906108c 103
a14ed312 104static void load_command (char *, int);
c906108c 105
d7db6da9
FN
106static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
107
a14ed312 108static void add_symbol_file_command (char *, int);
c906108c 109
a14ed312 110static void add_shared_symbol_files_command (char *, int);
c906108c 111
5b5d99cf
JB
112static void reread_separate_symbols (struct objfile *objfile);
113
a14ed312 114static void cashier_psymtab (struct partial_symtab *);
c906108c 115
a14ed312 116bfd *symfile_bfd_open (char *);
c906108c 117
0e931cf0
JB
118int get_section_index (struct objfile *, char *);
119
a14ed312 120static void find_sym_fns (struct objfile *);
c906108c 121
a14ed312 122static void decrement_reading_symtab (void *);
c906108c 123
a14ed312 124static void overlay_invalidate_all (void);
c906108c 125
a14ed312 126static int overlay_is_mapped (struct obj_section *);
c906108c 127
a14ed312 128void list_overlays_command (char *, int);
c906108c 129
a14ed312 130void map_overlay_command (char *, int);
c906108c 131
a14ed312 132void unmap_overlay_command (char *, int);
c906108c 133
a14ed312 134static void overlay_auto_command (char *, int);
c906108c 135
a14ed312 136static void overlay_manual_command (char *, int);
c906108c 137
a14ed312 138static void overlay_off_command (char *, int);
c906108c 139
a14ed312 140static void overlay_load_command (char *, int);
c906108c 141
a14ed312 142static void overlay_command (char *, int);
c906108c 143
a14ed312 144static void simple_free_overlay_table (void);
c906108c 145
a14ed312 146static void read_target_long_array (CORE_ADDR, unsigned int *, int);
c906108c 147
a14ed312 148static int simple_read_overlay_table (void);
c906108c 149
a14ed312 150static int simple_overlay_update_1 (struct obj_section *);
c906108c 151
a14ed312 152static void add_filename_language (char *ext, enum language lang);
392a587b 153
a14ed312 154static void set_ext_lang_command (char *args, int from_tty);
392a587b 155
a14ed312 156static void info_ext_lang_command (char *args, int from_tty);
392a587b 157
5b5d99cf
JB
158static char *find_separate_debug_file (struct objfile *objfile);
159
a14ed312 160static void init_filename_language_table (void);
392a587b 161
a14ed312 162void _initialize_symfile (void);
c906108c
SS
163
164/* List of all available sym_fns. On gdb startup, each object file reader
165 calls add_symtab_fns() to register information on each format it is
166 prepared to read. */
167
168static struct sym_fns *symtab_fns = NULL;
169
170/* Flag for whether user will be reloading symbols multiple times.
171 Defaults to ON for VxWorks, otherwise OFF. */
172
173#ifdef SYMBOL_RELOADING_DEFAULT
174int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
175#else
176int symbol_reloading = 0;
177#endif
178
b7209cb4
FF
179/* If non-zero, shared library symbols will be added automatically
180 when the inferior is created, new libraries are loaded, or when
181 attaching to the inferior. This is almost always what users will
182 want to have happen; but for very large programs, the startup time
183 will be excessive, and so if this is a problem, the user can clear
184 this flag and then add the shared library symbols as needed. Note
185 that there is a potential for confusion, since if the shared
c906108c 186 library symbols are not loaded, commands like "info fun" will *not*
b7209cb4 187 report all the functions that are actually present. */
c906108c
SS
188
189int auto_solib_add = 1;
b7209cb4
FF
190
191/* For systems that support it, a threshold size in megabytes. If
192 automatically adding a new library's symbol table to those already
193 known to the debugger would cause the total shared library symbol
194 size to exceed this threshhold, then the shlib's symbols are not
195 added. The threshold is ignored if the user explicitly asks for a
196 shlib to be added, such as when using the "sharedlibrary"
197 command. */
198
199int auto_solib_limit;
c906108c 200\f
c5aa993b 201
c906108c
SS
202/* Since this function is called from within qsort, in an ANSI environment
203 it must conform to the prototype for qsort, which specifies that the
204 comparison function takes two "void *" pointers. */
205
206static int
0cd64fe2 207compare_symbols (const void *s1p, const void *s2p)
c906108c
SS
208{
209 register struct symbol **s1, **s2;
210
211 s1 = (struct symbol **) s1p;
212 s2 = (struct symbol **) s2p;
c8be8951 213 return (strcmp (SYMBOL_NATURAL_NAME (*s1), SYMBOL_NATURAL_NAME (*s2)));
c906108c
SS
214}
215
0fe19209
DC
216/* This compares two partial symbols by names, using strcmp_iw_ordered
217 for the comparison. */
c906108c
SS
218
219static int
0cd64fe2 220compare_psymbols (const void *s1p, const void *s2p)
c906108c 221{
0fe19209
DC
222 struct partial_symbol *const *s1 = s1p;
223 struct partial_symbol *const *s2 = s2p;
224
c8be8951
DC
225 return strcmp_iw_ordered (SYMBOL_NATURAL_NAME (*s1),
226 SYMBOL_NATURAL_NAME (*s2));
c906108c
SS
227}
228
229void
fba45db2 230sort_pst_symbols (struct partial_symtab *pst)
c906108c
SS
231{
232 /* Sort the global list; don't sort the static list */
233
c5aa993b
JM
234 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
235 pst->n_global_syms, sizeof (struct partial_symbol *),
c906108c
SS
236 compare_psymbols);
237}
238
c906108c
SS
239/* Make a null terminated copy of the string at PTR with SIZE characters in
240 the obstack pointed to by OBSTACKP . Returns the address of the copy.
241 Note that the string at PTR does not have to be null terminated, I.E. it
242 may be part of a larger string and we are only saving a substring. */
243
244char *
63ca651f 245obsavestring (const char *ptr, int size, struct obstack *obstackp)
c906108c
SS
246{
247 register char *p = (char *) obstack_alloc (obstackp, size + 1);
248 /* Open-coded memcpy--saves function call time. These strings are usually
249 short. FIXME: Is this really still true with a compiler that can
250 inline memcpy? */
251 {
63ca651f 252 register const char *p1 = ptr;
c906108c 253 register char *p2 = p;
63ca651f 254 const char *end = ptr + size;
c906108c
SS
255 while (p1 != end)
256 *p2++ = *p1++;
257 }
258 p[size] = 0;
259 return p;
260}
261
262/* Concatenate strings S1, S2 and S3; return the new string. Space is found
263 in the obstack pointed to by OBSTACKP. */
264
265char *
fba45db2
KB
266obconcat (struct obstack *obstackp, const char *s1, const char *s2,
267 const char *s3)
c906108c
SS
268{
269 register int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
270 register char *val = (char *) obstack_alloc (obstackp, len);
271 strcpy (val, s1);
272 strcat (val, s2);
273 strcat (val, s3);
274 return val;
275}
276
277/* True if we are nested inside psymtab_to_symtab. */
278
279int currently_reading_symtab = 0;
280
281static void
fba45db2 282decrement_reading_symtab (void *dummy)
c906108c
SS
283{
284 currently_reading_symtab--;
285}
286
287/* Get the symbol table that corresponds to a partial_symtab.
288 This is fast after the first time you do it. In fact, there
289 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
290 case inline. */
291
292struct symtab *
fba45db2 293psymtab_to_symtab (register struct partial_symtab *pst)
c906108c
SS
294{
295 /* If it's been looked up before, return it. */
296 if (pst->symtab)
297 return pst->symtab;
298
299 /* If it has not yet been read in, read it. */
300 if (!pst->readin)
c5aa993b 301 {
c906108c
SS
302 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
303 currently_reading_symtab++;
304 (*pst->read_symtab) (pst);
305 do_cleanups (back_to);
306 }
307
308 return pst->symtab;
309}
310
311/* Initialize entry point information for this objfile. */
312
313void
fba45db2 314init_entry_point_info (struct objfile *objfile)
c906108c
SS
315{
316 /* Save startup file's range of PC addresses to help blockframe.c
317 decide where the bottom of the stack is. */
318
c5aa993b 319 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
c906108c
SS
320 {
321 /* Executable file -- record its entry point so we'll recognize
c5aa993b
JM
322 the startup file because it contains the entry point. */
323 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
c906108c
SS
324 }
325 else
326 {
327 /* Examination of non-executable.o files. Short-circuit this stuff. */
c5aa993b 328 objfile->ei.entry_point = INVALID_ENTRY_POINT;
c906108c 329 }
627b3ba2
AC
330 objfile->ei.deprecated_entry_file_lowpc = INVALID_ENTRY_LOWPC;
331 objfile->ei.deprecated_entry_file_highpc = INVALID_ENTRY_HIGHPC;
c5aa993b
JM
332 objfile->ei.entry_func_lowpc = INVALID_ENTRY_LOWPC;
333 objfile->ei.entry_func_highpc = INVALID_ENTRY_HIGHPC;
334 objfile->ei.main_func_lowpc = INVALID_ENTRY_LOWPC;
335 objfile->ei.main_func_highpc = INVALID_ENTRY_HIGHPC;
c906108c
SS
336}
337
338/* Get current entry point address. */
339
340CORE_ADDR
fba45db2 341entry_point_address (void)
c906108c
SS
342{
343 return symfile_objfile ? symfile_objfile->ei.entry_point : 0;
344}
345
346/* Remember the lowest-addressed loadable section we've seen.
347 This function is called via bfd_map_over_sections.
348
349 In case of equal vmas, the section with the largest size becomes the
350 lowest-addressed loadable section.
351
352 If the vmas and sizes are equal, the last section is considered the
353 lowest-addressed loadable section. */
354
355void
4efb68b1 356find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 357{
c5aa993b 358 asection **lowest = (asection **) obj;
c906108c
SS
359
360 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
361 return;
362 if (!*lowest)
363 *lowest = sect; /* First loadable section */
364 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
365 *lowest = sect; /* A lower loadable section */
366 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
367 && (bfd_section_size (abfd, (*lowest))
368 <= bfd_section_size (abfd, sect)))
369 *lowest = sect;
370}
371
a39a16c4
MM
372/* Create a new section_addr_info, with room for NUM_SECTIONS. */
373
374struct section_addr_info *
375alloc_section_addr_info (size_t num_sections)
376{
377 struct section_addr_info *sap;
378 size_t size;
379
380 size = (sizeof (struct section_addr_info)
381 + sizeof (struct other_sections) * (num_sections - 1));
382 sap = (struct section_addr_info *) xmalloc (size);
383 memset (sap, 0, size);
384 sap->num_sections = num_sections;
385
386 return sap;
387}
62557bbc
KB
388
389/* Build (allocate and populate) a section_addr_info struct from
390 an existing section table. */
391
392extern struct section_addr_info *
393build_section_addr_info_from_section_table (const struct section_table *start,
394 const struct section_table *end)
395{
396 struct section_addr_info *sap;
397 const struct section_table *stp;
398 int oidx;
399
a39a16c4 400 sap = alloc_section_addr_info (end - start);
62557bbc
KB
401
402 for (stp = start, oidx = 0; stp != end; stp++)
403 {
fbd35540
MS
404 if (bfd_get_section_flags (stp->bfd,
405 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 406 && oidx < end - start)
62557bbc
KB
407 {
408 sap->other[oidx].addr = stp->addr;
fbd35540
MS
409 sap->other[oidx].name
410 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
62557bbc
KB
411 sap->other[oidx].sectindex = stp->the_bfd_section->index;
412 oidx++;
413 }
414 }
415
416 return sap;
417}
418
419
420/* Free all memory allocated by build_section_addr_info_from_section_table. */
421
422extern void
423free_section_addr_info (struct section_addr_info *sap)
424{
425 int idx;
426
a39a16c4 427 for (idx = 0; idx < sap->num_sections; idx++)
62557bbc 428 if (sap->other[idx].name)
b8c9b27d
KB
429 xfree (sap->other[idx].name);
430 xfree (sap);
62557bbc
KB
431}
432
433
e8289572
JB
434/* Initialize OBJFILE's sect_index_* members. */
435static void
436init_objfile_sect_indices (struct objfile *objfile)
c906108c 437{
e8289572 438 asection *sect;
c906108c 439 int i;
e8289572 440
b8fbeb18
EZ
441 sect = bfd_get_section_by_name (objfile->obfd, ".text");
442 if (sect)
443 objfile->sect_index_text = sect->index;
444
445 sect = bfd_get_section_by_name (objfile->obfd, ".data");
446 if (sect)
447 objfile->sect_index_data = sect->index;
448
449 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
450 if (sect)
451 objfile->sect_index_bss = sect->index;
452
453 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
454 if (sect)
455 objfile->sect_index_rodata = sect->index;
456
bbcd32ad
FF
457 /* This is where things get really weird... We MUST have valid
458 indices for the various sect_index_* members or gdb will abort.
459 So if for example, there is no ".text" section, we have to
460 accomodate that. Except when explicitly adding symbol files at
461 some address, section_offsets contains nothing but zeros, so it
462 doesn't matter which slot in section_offsets the individual
463 sect_index_* members index into. So if they are all zero, it is
464 safe to just point all the currently uninitialized indices to the
465 first slot. */
466
467 for (i = 0; i < objfile->num_sections; i++)
468 {
469 if (ANOFFSET (objfile->section_offsets, i) != 0)
470 {
471 break;
472 }
473 }
474 if (i == objfile->num_sections)
475 {
476 if (objfile->sect_index_text == -1)
477 objfile->sect_index_text = 0;
478 if (objfile->sect_index_data == -1)
479 objfile->sect_index_data = 0;
480 if (objfile->sect_index_bss == -1)
481 objfile->sect_index_bss = 0;
482 if (objfile->sect_index_rodata == -1)
483 objfile->sect_index_rodata = 0;
484 }
b8fbeb18 485}
c906108c 486
e8289572
JB
487
488/* Parse the user's idea of an offset for dynamic linking, into our idea
489 of how to represent it for fast symbol reading. This is the default
490 version of the sym_fns.sym_offsets function for symbol readers that
491 don't need to do anything special. It allocates a section_offsets table
492 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
493
494void
495default_symfile_offsets (struct objfile *objfile,
496 struct section_addr_info *addrs)
497{
498 int i;
499
a39a16c4 500 objfile->num_sections = bfd_count_sections (objfile->obfd);
e8289572 501 objfile->section_offsets = (struct section_offsets *)
a39a16c4
MM
502 obstack_alloc (&objfile->psymbol_obstack,
503 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
504 memset (objfile->section_offsets, 0,
505 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
e8289572
JB
506
507 /* Now calculate offsets for section that were specified by the
508 caller. */
a39a16c4 509 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
e8289572
JB
510 {
511 struct other_sections *osp ;
512
513 osp = &addrs->other[i] ;
514 if (osp->addr == 0)
515 continue;
516
517 /* Record all sections in offsets */
518 /* The section_offsets in the objfile are here filled in using
519 the BFD index. */
520 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
521 }
522
523 /* Remember the bfd indexes for the .text, .data, .bss and
524 .rodata sections. */
525 init_objfile_sect_indices (objfile);
526}
527
528
c906108c
SS
529/* Process a symbol file, as either the main file or as a dynamically
530 loaded file.
531
96baa820
JM
532 OBJFILE is where the symbols are to be read from.
533
7e8580c1
JB
534 ADDRS is the list of section load addresses. If the user has given
535 an 'add-symbol-file' command, then this is the list of offsets and
536 addresses he or she provided as arguments to the command; or, if
537 we're handling a shared library, these are the actual addresses the
538 sections are loaded at, according to the inferior's dynamic linker
539 (as gleaned by GDB's shared library code). We convert each address
540 into an offset from the section VMA's as it appears in the object
541 file, and then call the file's sym_offsets function to convert this
542 into a format-specific offset table --- a `struct section_offsets'.
543 If ADDRS is non-zero, OFFSETS must be zero.
544
545 OFFSETS is a table of section offsets already in the right
546 format-specific representation. NUM_OFFSETS is the number of
547 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
548 assume this is the proper table the call to sym_offsets described
549 above would produce. Instead of calling sym_offsets, we just dump
550 it right into objfile->section_offsets. (When we're re-reading
551 symbols from an objfile, we don't have the original load address
552 list any more; all we have is the section offset table.) If
553 OFFSETS is non-zero, ADDRS must be zero.
96baa820
JM
554
555 MAINLINE is nonzero if this is the main symbol file, or zero if
556 it's an extra symbol file such as dynamically loaded code.
557
558 VERBO is nonzero if the caller has printed a verbose message about
559 the symbol reading (and complaints can be more terse about it). */
c906108c
SS
560
561void
7e8580c1
JB
562syms_from_objfile (struct objfile *objfile,
563 struct section_addr_info *addrs,
564 struct section_offsets *offsets,
565 int num_offsets,
566 int mainline,
567 int verbo)
c906108c 568{
a39a16c4 569 struct section_addr_info *local_addr = NULL;
c906108c 570 struct cleanup *old_chain;
2acceee2 571
7e8580c1 572 gdb_assert (! (addrs && offsets));
2acceee2 573
c906108c
SS
574 init_entry_point_info (objfile);
575 find_sym_fns (objfile);
576
75245b24
MS
577 if (objfile->sf == NULL)
578 return; /* No symbols. */
579
c906108c
SS
580 /* Make sure that partially constructed symbol tables will be cleaned up
581 if an error occurs during symbol reading. */
74b7792f 582 old_chain = make_cleanup_free_objfile (objfile);
c906108c 583
a39a16c4
MM
584 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
585 list. We now establish the convention that an addr of zero means
586 no load address was specified. */
587 if (! addrs && ! offsets)
588 {
589 local_addr
590 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
591 make_cleanup (xfree, local_addr);
592 addrs = local_addr;
593 }
594
595 /* Now either addrs or offsets is non-zero. */
596
c5aa993b 597 if (mainline)
c906108c
SS
598 {
599 /* We will modify the main symbol table, make sure that all its users
c5aa993b 600 will be cleaned up if an error occurs during symbol reading. */
74b7792f 601 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
602
603 /* Since no error yet, throw away the old symbol table. */
604
605 if (symfile_objfile != NULL)
606 {
607 free_objfile (symfile_objfile);
608 symfile_objfile = NULL;
609 }
610
611 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
612 If the user wants to get rid of them, they should do "symbol-file"
613 without arguments first. Not sure this is the best behavior
614 (PR 2207). */
c906108c 615
c5aa993b 616 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
617 }
618
619 /* Convert addr into an offset rather than an absolute address.
620 We find the lowest address of a loaded segment in the objfile,
53a5351d 621 and assume that <addr> is where that got loaded.
c906108c 622
53a5351d
JM
623 We no longer warn if the lowest section is not a text segment (as
624 happens for the PA64 port. */
1549f619 625 if (!mainline && addrs && addrs->other[0].name)
c906108c 626 {
1549f619
EZ
627 asection *lower_sect;
628 asection *sect;
629 CORE_ADDR lower_offset;
630 int i;
631
2acceee2
JM
632 /* Find lowest loadable section to be used as starting point for
633 continguous sections. FIXME!! won't work without call to find
634 .text first, but this assumes text is lowest section. */
635 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
636 if (lower_sect == NULL)
c906108c 637 bfd_map_over_sections (objfile->obfd, find_lowest_section,
4efb68b1 638 &lower_sect);
2acceee2 639 if (lower_sect == NULL)
c906108c
SS
640 warning ("no loadable sections found in added symbol-file %s",
641 objfile->name);
b8fbeb18
EZ
642 else
643 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
644 warning ("Lowest section in %s is %s at %s",
645 objfile->name,
646 bfd_section_name (objfile->obfd, lower_sect),
647 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
2acceee2
JM
648 if (lower_sect != NULL)
649 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
650 else
651 lower_offset = 0;
652
13de58df 653 /* Calculate offsets for the loadable sections.
2acceee2
JM
654 FIXME! Sections must be in order of increasing loadable section
655 so that contiguous sections can use the lower-offset!!!
656
13de58df
JB
657 Adjust offsets if the segments are not contiguous.
658 If the section is contiguous, its offset should be set to
2acceee2
JM
659 the offset of the highest loadable section lower than it
660 (the loadable section directly below it in memory).
661 this_offset = lower_offset = lower_addr - lower_orig_addr */
662
1549f619 663 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
7e8580c1
JB
664 {
665 if (addrs->other[i].addr != 0)
666 {
667 sect = bfd_get_section_by_name (objfile->obfd,
668 addrs->other[i].name);
669 if (sect)
670 {
671 addrs->other[i].addr
672 -= bfd_section_vma (objfile->obfd, sect);
673 lower_offset = addrs->other[i].addr;
674 /* This is the index used by BFD. */
675 addrs->other[i].sectindex = sect->index ;
676 }
677 else
678 {
679 warning ("section %s not found in %s",
680 addrs->other[i].name,
681 objfile->name);
682 addrs->other[i].addr = 0;
683 }
684 }
685 else
686 addrs->other[i].addr = lower_offset;
687 }
c906108c
SS
688 }
689
690 /* Initialize symbol reading routines for this objfile, allow complaints to
691 appear for this new file, and record how verbose to be, then do the
692 initial symbol reading for this file. */
693
c5aa993b 694 (*objfile->sf->sym_init) (objfile);
b9caf505 695 clear_complaints (&symfile_complaints, 1, verbo);
c906108c 696
7e8580c1
JB
697 if (addrs)
698 (*objfile->sf->sym_offsets) (objfile, addrs);
699 else
700 {
701 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
702
703 /* Just copy in the offset table directly as given to us. */
704 objfile->num_sections = num_offsets;
705 objfile->section_offsets
706 = ((struct section_offsets *)
707 obstack_alloc (&objfile->psymbol_obstack, size));
708 memcpy (objfile->section_offsets, offsets, size);
709
710 init_objfile_sect_indices (objfile);
711 }
c906108c 712
52d16ba8 713#ifndef DEPRECATED_IBM6000_TARGET
c906108c
SS
714 /* This is a SVR4/SunOS specific hack, I think. In any event, it
715 screws RS/6000. sym_offsets should be doing this sort of thing,
716 because it knows the mapping between bfd sections and
717 section_offsets. */
718 /* This is a hack. As far as I can tell, section offsets are not
719 target dependent. They are all set to addr with a couple of
720 exceptions. The exceptions are sysvr4 shared libraries, whose
721 offsets are kept in solib structures anyway and rs6000 xcoff
722 which handles shared libraries in a completely unique way.
723
724 Section offsets are built similarly, except that they are built
725 by adding addr in all cases because there is no clear mapping
726 from section_offsets into actual sections. Note that solib.c
96baa820 727 has a different algorithm for finding section offsets.
c906108c
SS
728
729 These should probably all be collapsed into some target
730 independent form of shared library support. FIXME. */
731
2acceee2 732 if (addrs)
c906108c
SS
733 {
734 struct obj_section *s;
735
2acceee2
JM
736 /* Map section offsets in "addr" back to the object's
737 sections by comparing the section names with bfd's
738 section names. Then adjust the section address by
739 the offset. */ /* for gdb/13815 */
740
96baa820 741 ALL_OBJFILE_OSECTIONS (objfile, s)
c906108c 742 {
2acceee2
JM
743 CORE_ADDR s_addr = 0;
744 int i;
745
62557bbc 746 for (i = 0;
a39a16c4 747 !s_addr && i < addrs->num_sections && addrs->other[i].name;
62557bbc 748 i++)
fbd35540
MS
749 if (strcmp (bfd_section_name (s->objfile->obfd,
750 s->the_bfd_section),
751 addrs->other[i].name) == 0)
2acceee2
JM
752 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
753
c906108c 754 s->addr -= s->offset;
2acceee2 755 s->addr += s_addr;
c906108c 756 s->endaddr -= s->offset;
2acceee2
JM
757 s->endaddr += s_addr;
758 s->offset += s_addr;
c906108c
SS
759 }
760 }
52d16ba8 761#endif /* not DEPRECATED_IBM6000_TARGET */
c906108c 762
96baa820 763 (*objfile->sf->sym_read) (objfile, mainline);
c906108c 764
c906108c
SS
765 /* Don't allow char * to have a typename (else would get caddr_t).
766 Ditto void *. FIXME: Check whether this is now done by all the
767 symbol readers themselves (many of them now do), and if so remove
768 it from here. */
769
770 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
771 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
772
773 /* Mark the objfile has having had initial symbol read attempted. Note
774 that this does not mean we found any symbols... */
775
c5aa993b 776 objfile->flags |= OBJF_SYMS;
c906108c
SS
777
778 /* Discard cleanups as symbol reading was successful. */
779
780 discard_cleanups (old_chain);
c906108c
SS
781}
782
783/* Perform required actions after either reading in the initial
784 symbols for a new objfile, or mapping in the symbols from a reusable
785 objfile. */
c5aa993b 786
c906108c 787void
fba45db2 788new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
c906108c
SS
789{
790
791 /* If this is the main symbol file we have to clean up all users of the
792 old main symbol file. Otherwise it is sufficient to fixup all the
793 breakpoints that may have been redefined by this symbol file. */
794 if (mainline)
795 {
796 /* OK, make it the "real" symbol file. */
797 symfile_objfile = objfile;
798
799 clear_symtab_users ();
800 }
801 else
802 {
803 breakpoint_re_set ();
804 }
805
806 /* We're done reading the symbol file; finish off complaints. */
b9caf505 807 clear_complaints (&symfile_complaints, 0, verbo);
c906108c
SS
808}
809
810/* Process a symbol file, as either the main file or as a dynamically
811 loaded file.
812
813 NAME is the file name (which will be tilde-expanded and made
814 absolute herein) (but we don't free or modify NAME itself).
7904e09f
JB
815
816 FROM_TTY says how verbose to be.
817
818 MAINLINE specifies whether this is the main symbol file, or whether
819 it's an extra symbol file such as dynamically loaded code.
820
821 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
822 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
823 non-zero.
c906108c 824
c906108c
SS
825 Upon success, returns a pointer to the objfile that was added.
826 Upon failure, jumps back to command level (never returns). */
7904e09f
JB
827static struct objfile *
828symbol_file_add_with_addrs_or_offsets (char *name, int from_tty,
829 struct section_addr_info *addrs,
830 struct section_offsets *offsets,
831 int num_offsets,
832 int mainline, int flags)
c906108c
SS
833{
834 struct objfile *objfile;
835 struct partial_symtab *psymtab;
5b5d99cf 836 char *debugfile;
c906108c 837 bfd *abfd;
a39a16c4
MM
838 struct section_addr_info *orig_addrs;
839 struct cleanup *my_cleanups;
c906108c
SS
840
841 /* Open a bfd for the file, and give user a chance to burp if we'd be
842 interactively wiping out any existing symbols. */
843
844 abfd = symfile_bfd_open (name);
845
846 if ((have_full_symbols () || have_partial_symbols ())
847 && mainline
848 && from_tty
849 && !query ("Load new symbol table from \"%s\"? ", name))
c5aa993b 850 error ("Not confirmed.");
c906108c 851
2df3850c 852 objfile = allocate_objfile (abfd, flags);
c906108c 853
a39a16c4
MM
854 orig_addrs = alloc_section_addr_info (bfd_count_sections (abfd));
855 my_cleanups = make_cleanup (xfree, orig_addrs);
856 if (addrs)
63cd24fe
EZ
857 {
858 int i;
859 orig_addrs->num_sections = addrs->num_sections;
860 for (i = 0; i < addrs->num_sections; i++)
861 orig_addrs->other[i] = addrs->other[i];
862 }
a39a16c4 863
c906108c
SS
864 /* If the objfile uses a mapped symbol file, and we have a psymtab for
865 it, then skip reading any symbols at this time. */
866
c5aa993b 867 if ((objfile->flags & OBJF_MAPPED) && (objfile->flags & OBJF_SYMS))
c906108c
SS
868 {
869 /* We mapped in an existing symbol table file that already has had
c5aa993b
JM
870 initial symbol reading performed, so we can skip that part. Notify
871 the user that instead of reading the symbols, they have been mapped.
872 */
c906108c
SS
873 if (from_tty || info_verbose)
874 {
875 printf_filtered ("Mapped symbols for %s...", name);
876 wrap_here ("");
877 gdb_flush (gdb_stdout);
878 }
879 init_entry_point_info (objfile);
880 find_sym_fns (objfile);
881 }
882 else
883 {
884 /* We either created a new mapped symbol table, mapped an existing
c5aa993b
JM
885 symbol table file which has not had initial symbol reading
886 performed, or need to read an unmapped symbol table. */
c906108c
SS
887 if (from_tty || info_verbose)
888 {
889 if (pre_add_symbol_hook)
890 pre_add_symbol_hook (name);
891 else
892 {
893 printf_filtered ("Reading symbols from %s...", name);
894 wrap_here ("");
895 gdb_flush (gdb_stdout);
896 }
897 }
7904e09f
JB
898 syms_from_objfile (objfile, addrs, offsets, num_offsets,
899 mainline, from_tty);
c906108c
SS
900 }
901
902 /* We now have at least a partial symbol table. Check to see if the
903 user requested that all symbols be read on initial access via either
904 the gdb startup command line or on a per symbol file basis. Expand
905 all partial symbol tables for this objfile if so. */
906
2acceee2 907 if ((flags & OBJF_READNOW) || readnow_symbol_files)
c906108c
SS
908 {
909 if (from_tty || info_verbose)
910 {
911 printf_filtered ("expanding to full symbols...");
912 wrap_here ("");
913 gdb_flush (gdb_stdout);
914 }
915
c5aa993b 916 for (psymtab = objfile->psymtabs;
c906108c 917 psymtab != NULL;
c5aa993b 918 psymtab = psymtab->next)
c906108c
SS
919 {
920 psymtab_to_symtab (psymtab);
921 }
922 }
923
5b5d99cf
JB
924 debugfile = find_separate_debug_file (objfile);
925 if (debugfile)
926 {
5b5d99cf
JB
927 if (addrs != NULL)
928 {
929 objfile->separate_debug_objfile
a39a16c4 930 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
5b5d99cf
JB
931 }
932 else
933 {
934 objfile->separate_debug_objfile
935 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
936 }
937 objfile->separate_debug_objfile->separate_debug_objfile_backlink
938 = objfile;
939
940 /* Put the separate debug object before the normal one, this is so that
941 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
942 put_objfile_before (objfile->separate_debug_objfile, objfile);
943
944 xfree (debugfile);
945 }
946
cb3c37b2
JB
947 if (!have_partial_symbols () && !have_full_symbols ())
948 {
949 wrap_here ("");
950 printf_filtered ("(no debugging symbols found)...");
951 wrap_here ("");
952 }
953
c906108c
SS
954 if (from_tty || info_verbose)
955 {
956 if (post_add_symbol_hook)
c5aa993b 957 post_add_symbol_hook ();
c906108c 958 else
c5aa993b
JM
959 {
960 printf_filtered ("done.\n");
c5aa993b 961 }
c906108c
SS
962 }
963
481d0f41
JB
964 /* We print some messages regardless of whether 'from_tty ||
965 info_verbose' is true, so make sure they go out at the right
966 time. */
967 gdb_flush (gdb_stdout);
968
a39a16c4
MM
969 do_cleanups (my_cleanups);
970
109f874e
MS
971 if (objfile->sf == NULL)
972 return objfile; /* No symbols. */
973
c906108c
SS
974 new_symfile_objfile (objfile, mainline, from_tty);
975
11cf8741
JM
976 if (target_new_objfile_hook)
977 target_new_objfile_hook (objfile);
c906108c
SS
978
979 return (objfile);
980}
981
7904e09f
JB
982
983/* Process a symbol file, as either the main file or as a dynamically
984 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
985 for details. */
986struct objfile *
987symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
988 int mainline, int flags)
989{
990 return symbol_file_add_with_addrs_or_offsets (name, from_tty, addrs, 0, 0,
991 mainline, flags);
992}
993
994
d7db6da9
FN
995/* Call symbol_file_add() with default values and update whatever is
996 affected by the loading of a new main().
997 Used when the file is supplied in the gdb command line
998 and by some targets with special loading requirements.
999 The auxiliary function, symbol_file_add_main_1(), has the flags
1000 argument for the switches that can only be specified in the symbol_file
1001 command itself. */
1adeb98a
FN
1002
1003void
1004symbol_file_add_main (char *args, int from_tty)
1005{
d7db6da9
FN
1006 symbol_file_add_main_1 (args, from_tty, 0);
1007}
1008
1009static void
1010symbol_file_add_main_1 (char *args, int from_tty, int flags)
1011{
1012 symbol_file_add (args, from_tty, NULL, 1, flags);
1013
1014#ifdef HPUXHPPA
1015 RESET_HP_UX_GLOBALS ();
1016#endif
1017
1018 /* Getting new symbols may change our opinion about
1019 what is frameless. */
1020 reinit_frame_cache ();
1021
1022 set_initial_language ();
1adeb98a
FN
1023}
1024
1025void
1026symbol_file_clear (int from_tty)
1027{
1028 if ((have_full_symbols () || have_partial_symbols ())
1029 && from_tty
1030 && !query ("Discard symbol table from `%s'? ",
1031 symfile_objfile->name))
1032 error ("Not confirmed.");
1033 free_all_objfiles ();
1034
1035 /* solib descriptors may have handles to objfiles. Since their
1036 storage has just been released, we'd better wipe the solib
1037 descriptors as well.
1038 */
1039#if defined(SOLIB_RESTART)
1040 SOLIB_RESTART ();
1041#endif
1042
1043 symfile_objfile = NULL;
1044 if (from_tty)
1045 printf_unfiltered ("No symbol file now.\n");
1046#ifdef HPUXHPPA
1047 RESET_HP_UX_GLOBALS ();
1048#endif
1049}
1050
5b5d99cf
JB
1051static char *
1052get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1053{
1054 asection *sect;
1055 bfd_size_type debuglink_size;
1056 unsigned long crc32;
1057 char *contents;
1058 int crc_offset;
1059 unsigned char *p;
1060
1061 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1062
1063 if (sect == NULL)
1064 return NULL;
1065
1066 debuglink_size = bfd_section_size (objfile->obfd, sect);
1067
1068 contents = xmalloc (debuglink_size);
1069 bfd_get_section_contents (objfile->obfd, sect, contents,
1070 (file_ptr)0, (bfd_size_type)debuglink_size);
1071
1072 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1073 crc_offset = strlen (contents) + 1;
1074 crc_offset = (crc_offset + 3) & ~3;
1075
1076 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1077
1078 *crc32_out = crc32;
1079 return contents;
1080}
1081
1082static int
1083separate_debug_file_exists (const char *name, unsigned long crc)
1084{
1085 unsigned long file_crc = 0;
1086 int fd;
1087 char buffer[8*1024];
1088 int count;
1089
1090 fd = open (name, O_RDONLY | O_BINARY);
1091 if (fd < 0)
1092 return 0;
1093
1094 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1095 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1096
1097 close (fd);
1098
1099 return crc == file_crc;
1100}
1101
1102static char *debug_file_directory = NULL;
1103
1104#if ! defined (DEBUG_SUBDIRECTORY)
1105#define DEBUG_SUBDIRECTORY ".debug"
1106#endif
1107
1108static char *
1109find_separate_debug_file (struct objfile *objfile)
1110{
1111 asection *sect;
1112 char *basename;
1113 char *dir;
1114 char *debugfile;
1115 char *name_copy;
1116 bfd_size_type debuglink_size;
1117 unsigned long crc32;
1118 int i;
1119
1120 basename = get_debug_link_info (objfile, &crc32);
1121
1122 if (basename == NULL)
1123 return NULL;
1124
1125 dir = xstrdup (objfile->name);
1126
fe36c4f4
JB
1127 /* Strip off the final filename part, leaving the directory name,
1128 followed by a slash. Objfile names should always be absolute and
1129 tilde-expanded, so there should always be a slash in there
1130 somewhere. */
5b5d99cf
JB
1131 for (i = strlen(dir) - 1; i >= 0; i--)
1132 {
1133 if (IS_DIR_SEPARATOR (dir[i]))
1134 break;
1135 }
fe36c4f4 1136 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
5b5d99cf
JB
1137 dir[i+1] = '\0';
1138
1139 debugfile = alloca (strlen (debug_file_directory) + 1
1140 + strlen (dir)
1141 + strlen (DEBUG_SUBDIRECTORY)
1142 + strlen ("/")
1143 + strlen (basename)
1144 + 1);
1145
1146 /* First try in the same directory as the original file. */
1147 strcpy (debugfile, dir);
1148 strcat (debugfile, basename);
1149
1150 if (separate_debug_file_exists (debugfile, crc32))
1151 {
1152 xfree (basename);
1153 xfree (dir);
1154 return xstrdup (debugfile);
1155 }
1156
1157 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1158 strcpy (debugfile, dir);
1159 strcat (debugfile, DEBUG_SUBDIRECTORY);
1160 strcat (debugfile, "/");
1161 strcat (debugfile, basename);
1162
1163 if (separate_debug_file_exists (debugfile, crc32))
1164 {
1165 xfree (basename);
1166 xfree (dir);
1167 return xstrdup (debugfile);
1168 }
1169
1170 /* Then try in the global debugfile directory. */
1171 strcpy (debugfile, debug_file_directory);
1172 strcat (debugfile, "/");
1173 strcat (debugfile, dir);
5b5d99cf
JB
1174 strcat (debugfile, basename);
1175
1176 if (separate_debug_file_exists (debugfile, crc32))
1177 {
1178 xfree (basename);
1179 xfree (dir);
1180 return xstrdup (debugfile);
1181 }
1182
1183 xfree (basename);
1184 xfree (dir);
1185 return NULL;
1186}
1187
1188
c906108c
SS
1189/* This is the symbol-file command. Read the file, analyze its
1190 symbols, and add a struct symtab to a symtab list. The syntax of
1191 the command is rather bizarre--(1) buildargv implements various
1192 quoting conventions which are undocumented and have little or
1193 nothing in common with the way things are quoted (or not quoted)
1194 elsewhere in GDB, (2) options are used, which are not generally
1195 used in GDB (perhaps "set mapped on", "set readnow on" would be
1196 better), (3) the order of options matters, which is contrary to GNU
1197 conventions (because it is confusing and inconvenient). */
4da95fc4
EZ
1198/* Note: ezannoni 2000-04-17. This function used to have support for
1199 rombug (see remote-os9k.c). It consisted of a call to target_link()
1200 (target.c) to get the address of the text segment from the target,
1201 and pass that to symbol_file_add(). This is no longer supported. */
c906108c
SS
1202
1203void
fba45db2 1204symbol_file_command (char *args, int from_tty)
c906108c
SS
1205{
1206 char **argv;
1207 char *name = NULL;
c906108c 1208 struct cleanup *cleanups;
2df3850c 1209 int flags = OBJF_USERLOADED;
c906108c
SS
1210
1211 dont_repeat ();
1212
1213 if (args == NULL)
1214 {
1adeb98a 1215 symbol_file_clear (from_tty);
c906108c
SS
1216 }
1217 else
1218 {
1219 if ((argv = buildargv (args)) == NULL)
1220 {
1221 nomem (0);
1222 }
7a292a7a 1223 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1224 while (*argv != NULL)
1225 {
1226 if (STREQ (*argv, "-mapped"))
4da95fc4
EZ
1227 flags |= OBJF_MAPPED;
1228 else
1229 if (STREQ (*argv, "-readnow"))
2acceee2 1230 flags |= OBJF_READNOW;
4da95fc4
EZ
1231 else
1232 if (**argv == '-')
1233 error ("unknown option `%s'", *argv);
c5aa993b 1234 else
c5aa993b 1235 {
4da95fc4 1236 name = *argv;
c906108c 1237
d7db6da9 1238 symbol_file_add_main_1 (name, from_tty, flags);
4da95fc4 1239 }
c906108c
SS
1240 argv++;
1241 }
1242
1243 if (name == NULL)
1244 {
1245 error ("no symbol file name was specified");
1246 }
c906108c
SS
1247 do_cleanups (cleanups);
1248 }
1249}
1250
1251/* Set the initial language.
1252
1253 A better solution would be to record the language in the psymtab when reading
1254 partial symbols, and then use it (if known) to set the language. This would
1255 be a win for formats that encode the language in an easily discoverable place,
1256 such as DWARF. For stabs, we can jump through hoops looking for specially
1257 named symbols or try to intuit the language from the specific type of stabs
1258 we find, but we can't do that until later when we read in full symbols.
1259 FIXME. */
1260
1261static void
fba45db2 1262set_initial_language (void)
c906108c
SS
1263{
1264 struct partial_symtab *pst;
c5aa993b 1265 enum language lang = language_unknown;
c906108c
SS
1266
1267 pst = find_main_psymtab ();
1268 if (pst != NULL)
1269 {
c5aa993b 1270 if (pst->filename != NULL)
c906108c 1271 {
c5aa993b
JM
1272 lang = deduce_language_from_filename (pst->filename);
1273 }
c906108c
SS
1274 if (lang == language_unknown)
1275 {
c5aa993b
JM
1276 /* Make C the default language */
1277 lang = language_c;
c906108c
SS
1278 }
1279 set_language (lang);
1280 expected_language = current_language; /* Don't warn the user */
1281 }
1282}
1283
1284/* Open file specified by NAME and hand it off to BFD for preliminary
1285 analysis. Result is a newly initialized bfd *, which includes a newly
1286 malloc'd` copy of NAME (tilde-expanded and made absolute).
1287 In case of trouble, error() is called. */
1288
1289bfd *
fba45db2 1290symfile_bfd_open (char *name)
c906108c
SS
1291{
1292 bfd *sym_bfd;
1293 int desc;
1294 char *absolute_name;
1295
1296
1297
1298 name = tilde_expand (name); /* Returns 1st new malloc'd copy */
1299
1300 /* Look down path for it, allocate 2nd new malloc'd copy. */
1301 desc = openp (getenv ("PATH"), 1, name, O_RDONLY | O_BINARY, 0, &absolute_name);
608506ed 1302#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1303 if (desc < 0)
1304 {
1305 char *exename = alloca (strlen (name) + 5);
1306 strcat (strcpy (exename, name), ".exe");
1307 desc = openp (getenv ("PATH"), 1, exename, O_RDONLY | O_BINARY,
c5aa993b 1308 0, &absolute_name);
c906108c
SS
1309 }
1310#endif
1311 if (desc < 0)
1312 {
b8c9b27d 1313 make_cleanup (xfree, name);
c906108c
SS
1314 perror_with_name (name);
1315 }
b8c9b27d 1316 xfree (name); /* Free 1st new malloc'd copy */
c906108c 1317 name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
c5aa993b 1318 /* It'll be freed in free_objfile(). */
c906108c
SS
1319
1320 sym_bfd = bfd_fdopenr (name, gnutarget, desc);
1321 if (!sym_bfd)
1322 {
1323 close (desc);
b8c9b27d 1324 make_cleanup (xfree, name);
c906108c
SS
1325 error ("\"%s\": can't open to read symbols: %s.", name,
1326 bfd_errmsg (bfd_get_error ()));
1327 }
81a9a963 1328 sym_bfd->cacheable = 1;
c906108c
SS
1329
1330 if (!bfd_check_format (sym_bfd, bfd_object))
1331 {
1332 /* FIXME: should be checking for errors from bfd_close (for one thing,
c5aa993b
JM
1333 on error it does not free all the storage associated with the
1334 bfd). */
c906108c 1335 bfd_close (sym_bfd); /* This also closes desc */
b8c9b27d 1336 make_cleanup (xfree, name);
c906108c
SS
1337 error ("\"%s\": can't read symbols: %s.", name,
1338 bfd_errmsg (bfd_get_error ()));
1339 }
1340 return (sym_bfd);
1341}
1342
0e931cf0
JB
1343/* Return the section index for the given section name. Return -1 if
1344 the section was not found. */
1345int
1346get_section_index (struct objfile *objfile, char *section_name)
1347{
1348 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1349 if (sect)
1350 return sect->index;
1351 else
1352 return -1;
1353}
1354
c906108c
SS
1355/* Link a new symtab_fns into the global symtab_fns list. Called on gdb
1356 startup by the _initialize routine in each object file format reader,
1357 to register information about each format the the reader is prepared
1358 to handle. */
1359
1360void
fba45db2 1361add_symtab_fns (struct sym_fns *sf)
c906108c
SS
1362{
1363 sf->next = symtab_fns;
1364 symtab_fns = sf;
1365}
1366
1367
1368/* Initialize to read symbols from the symbol file sym_bfd. It either
1369 returns or calls error(). The result is an initialized struct sym_fns
1370 in the objfile structure, that contains cached information about the
1371 symbol file. */
1372
1373static void
fba45db2 1374find_sym_fns (struct objfile *objfile)
c906108c
SS
1375{
1376 struct sym_fns *sf;
c5aa993b
JM
1377 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1378 char *our_target = bfd_get_target (objfile->obfd);
c906108c 1379
75245b24
MS
1380 if (our_flavour == bfd_target_srec_flavour
1381 || our_flavour == bfd_target_ihex_flavour
1382 || our_flavour == bfd_target_tekhex_flavour)
1383 return; /* No symbols. */
1384
c5aa993b 1385 for (sf = symtab_fns; sf != NULL; sf = sf->next)
c906108c 1386 {
c5aa993b 1387 if (our_flavour == sf->sym_flavour)
c906108c 1388 {
c5aa993b 1389 objfile->sf = sf;
c906108c
SS
1390 return;
1391 }
1392 }
1393 error ("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown.",
c5aa993b 1394 bfd_get_target (objfile->obfd));
c906108c
SS
1395}
1396\f
1397/* This function runs the load command of our current target. */
1398
1399static void
fba45db2 1400load_command (char *arg, int from_tty)
c906108c
SS
1401{
1402 if (arg == NULL)
1403 arg = get_exec_file (1);
1404 target_load (arg, from_tty);
2889e661
JB
1405
1406 /* After re-loading the executable, we don't really know which
1407 overlays are mapped any more. */
1408 overlay_cache_invalid = 1;
c906108c
SS
1409}
1410
1411/* This version of "load" should be usable for any target. Currently
1412 it is just used for remote targets, not inftarg.c or core files,
1413 on the theory that only in that case is it useful.
1414
1415 Avoiding xmodem and the like seems like a win (a) because we don't have
1416 to worry about finding it, and (b) On VMS, fork() is very slow and so
1417 we don't want to run a subprocess. On the other hand, I'm not sure how
1418 performance compares. */
917317f4
JM
1419
1420static int download_write_size = 512;
1421static int validate_download = 0;
1422
e4f9b4d5
MS
1423/* Callback service function for generic_load (bfd_map_over_sections). */
1424
1425static void
1426add_section_size_callback (bfd *abfd, asection *asec, void *data)
1427{
1428 bfd_size_type *sum = data;
1429
1430 *sum += bfd_get_section_size_before_reloc (asec);
1431}
1432
1433/* Opaque data for load_section_callback. */
1434struct load_section_data {
1435 unsigned long load_offset;
1436 unsigned long write_count;
1437 unsigned long data_count;
1438 bfd_size_type total_size;
1439};
1440
1441/* Callback service function for generic_load (bfd_map_over_sections). */
1442
1443static void
1444load_section_callback (bfd *abfd, asection *asec, void *data)
1445{
1446 struct load_section_data *args = data;
1447
1448 if (bfd_get_section_flags (abfd, asec) & SEC_LOAD)
1449 {
1450 bfd_size_type size = bfd_get_section_size_before_reloc (asec);
1451 if (size > 0)
1452 {
1453 char *buffer;
1454 struct cleanup *old_chain;
1455 CORE_ADDR lma = bfd_section_lma (abfd, asec) + args->load_offset;
1456 bfd_size_type block_size;
1457 int err;
1458 const char *sect_name = bfd_get_section_name (abfd, asec);
1459 bfd_size_type sent;
1460
1461 if (download_write_size > 0 && size > download_write_size)
1462 block_size = download_write_size;
1463 else
1464 block_size = size;
1465
1466 buffer = xmalloc (size);
1467 old_chain = make_cleanup (xfree, buffer);
1468
1469 /* Is this really necessary? I guess it gives the user something
1470 to look at during a long download. */
e4f9b4d5
MS
1471 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1472 sect_name, paddr_nz (size), paddr_nz (lma));
e4f9b4d5
MS
1473
1474 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1475
1476 sent = 0;
1477 do
1478 {
1479 int len;
1480 bfd_size_type this_transfer = size - sent;
1481
1482 if (this_transfer >= block_size)
1483 this_transfer = block_size;
1484 len = target_write_memory_partial (lma, buffer,
1485 this_transfer, &err);
1486 if (err)
1487 break;
1488 if (validate_download)
1489 {
1490 /* Broken memories and broken monitors manifest
1491 themselves here when bring new computers to
1492 life. This doubles already slow downloads. */
1493 /* NOTE: cagney/1999-10-18: A more efficient
1494 implementation might add a verify_memory()
1495 method to the target vector and then use
1496 that. remote.c could implement that method
1497 using the ``qCRC'' packet. */
1498 char *check = xmalloc (len);
1499 struct cleanup *verify_cleanups =
1500 make_cleanup (xfree, check);
1501
1502 if (target_read_memory (lma, check, len) != 0)
1503 error ("Download verify read failed at 0x%s",
1504 paddr (lma));
1505 if (memcmp (buffer, check, len) != 0)
1506 error ("Download verify compare failed at 0x%s",
1507 paddr (lma));
1508 do_cleanups (verify_cleanups);
1509 }
1510 args->data_count += len;
1511 lma += len;
1512 buffer += len;
1513 args->write_count += 1;
1514 sent += len;
1515 if (quit_flag
1516 || (ui_load_progress_hook != NULL
1517 && ui_load_progress_hook (sect_name, sent)))
1518 error ("Canceled the download");
1519
1520 if (show_load_progress != NULL)
1521 show_load_progress (sect_name, sent, size,
1522 args->data_count, args->total_size);
1523 }
1524 while (sent < size);
1525
1526 if (err != 0)
1527 error ("Memory access error while loading section %s.", sect_name);
1528
1529 do_cleanups (old_chain);
1530 }
1531 }
1532}
1533
c906108c 1534void
917317f4 1535generic_load (char *args, int from_tty)
c906108c 1536{
c906108c
SS
1537 asection *s;
1538 bfd *loadfile_bfd;
1539 time_t start_time, end_time; /* Start and end times of download */
917317f4
JM
1540 char *filename;
1541 struct cleanup *old_cleanups;
1542 char *offptr;
e4f9b4d5
MS
1543 struct load_section_data cbdata;
1544 CORE_ADDR entry;
1545
1546 cbdata.load_offset = 0; /* Offset to add to vma for each section. */
1547 cbdata.write_count = 0; /* Number of writes needed. */
1548 cbdata.data_count = 0; /* Number of bytes written to target memory. */
1549 cbdata.total_size = 0; /* Total size of all bfd sectors. */
917317f4
JM
1550
1551 /* Parse the input argument - the user can specify a load offset as
1552 a second argument. */
1553 filename = xmalloc (strlen (args) + 1);
b8c9b27d 1554 old_cleanups = make_cleanup (xfree, filename);
917317f4
JM
1555 strcpy (filename, args);
1556 offptr = strchr (filename, ' ');
1557 if (offptr != NULL)
1558 {
1559 char *endptr;
ba5f2f8a 1560
e4f9b4d5 1561 cbdata.load_offset = strtoul (offptr, &endptr, 0);
917317f4
JM
1562 if (offptr == endptr)
1563 error ("Invalid download offset:%s\n", offptr);
1564 *offptr = '\0';
1565 }
c906108c 1566 else
e4f9b4d5 1567 cbdata.load_offset = 0;
c906108c 1568
917317f4 1569 /* Open the file for loading. */
c906108c
SS
1570 loadfile_bfd = bfd_openr (filename, gnutarget);
1571 if (loadfile_bfd == NULL)
1572 {
1573 perror_with_name (filename);
1574 return;
1575 }
917317f4 1576
c906108c
SS
1577 /* FIXME: should be checking for errors from bfd_close (for one thing,
1578 on error it does not free all the storage associated with the
1579 bfd). */
5c65bbb6 1580 make_cleanup_bfd_close (loadfile_bfd);
c906108c 1581
c5aa993b 1582 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c
SS
1583 {
1584 error ("\"%s\" is not an object file: %s", filename,
1585 bfd_errmsg (bfd_get_error ()));
1586 }
c5aa993b 1587
e4f9b4d5
MS
1588 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1589 (void *) &cbdata.total_size);
c2d11a7d 1590
c906108c
SS
1591 start_time = time (NULL);
1592
e4f9b4d5 1593 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c906108c
SS
1594
1595 end_time = time (NULL);
ba5f2f8a 1596
e4f9b4d5 1597 entry = bfd_get_start_address (loadfile_bfd);
e4f9b4d5
MS
1598 ui_out_text (uiout, "Start address ");
1599 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1600 ui_out_text (uiout, ", load size ");
1601 ui_out_field_fmt (uiout, "load-size", "%lu", cbdata.data_count);
1602 ui_out_text (uiout, "\n");
e4f9b4d5
MS
1603 /* We were doing this in remote-mips.c, I suspect it is right
1604 for other targets too. */
1605 write_pc (entry);
c906108c 1606
7ca9f392
AC
1607 /* FIXME: are we supposed to call symbol_file_add or not? According
1608 to a comment from remote-mips.c (where a call to symbol_file_add
1609 was commented out), making the call confuses GDB if more than one
1610 file is loaded in. Some targets do (e.g., remote-vx.c) but
1611 others don't (or didn't - perhaphs they have all been deleted). */
c906108c 1612
e4f9b4d5
MS
1613 print_transfer_performance (gdb_stdout, cbdata.data_count,
1614 cbdata.write_count, end_time - start_time);
c906108c
SS
1615
1616 do_cleanups (old_cleanups);
1617}
1618
1619/* Report how fast the transfer went. */
1620
917317f4
JM
1621/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1622 replaced by print_transfer_performance (with a very different
1623 function signature). */
1624
c906108c 1625void
fba45db2
KB
1626report_transfer_performance (unsigned long data_count, time_t start_time,
1627 time_t end_time)
c906108c 1628{
ba5f2f8a
MS
1629 print_transfer_performance (gdb_stdout, data_count,
1630 end_time - start_time, 0);
917317f4
JM
1631}
1632
1633void
d9fcf2fb 1634print_transfer_performance (struct ui_file *stream,
917317f4
JM
1635 unsigned long data_count,
1636 unsigned long write_count,
1637 unsigned long time_count)
1638{
8b93c638
JM
1639 ui_out_text (uiout, "Transfer rate: ");
1640 if (time_count > 0)
1641 {
ba5f2f8a 1642 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
8b93c638
JM
1643 (data_count * 8) / time_count);
1644 ui_out_text (uiout, " bits/sec");
1645 }
1646 else
1647 {
ba5f2f8a 1648 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
8b93c638
JM
1649 ui_out_text (uiout, " bits in <1 sec");
1650 }
1651 if (write_count > 0)
1652 {
1653 ui_out_text (uiout, ", ");
ba5f2f8a 1654 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
1655 ui_out_text (uiout, " bytes/write");
1656 }
1657 ui_out_text (uiout, ".\n");
c906108c
SS
1658}
1659
1660/* This function allows the addition of incrementally linked object files.
1661 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
1662/* Note: ezannoni 2000-04-13 This function/command used to have a
1663 special case syntax for the rombug target (Rombug is the boot
1664 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1665 rombug case, the user doesn't need to supply a text address,
1666 instead a call to target_link() (in target.c) would supply the
1667 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c
SS
1668
1669/* ARGSUSED */
1670static void
fba45db2 1671add_symbol_file_command (char *args, int from_tty)
c906108c 1672{
db162d44 1673 char *filename = NULL;
2df3850c 1674 int flags = OBJF_USERLOADED;
c906108c 1675 char *arg;
2acceee2 1676 int expecting_option = 0;
db162d44 1677 int section_index = 0;
2acceee2
JM
1678 int argcnt = 0;
1679 int sec_num = 0;
1680 int i;
db162d44
EZ
1681 int expecting_sec_name = 0;
1682 int expecting_sec_addr = 0;
1683
a39a16c4 1684 struct sect_opt
2acceee2 1685 {
2acceee2
JM
1686 char *name;
1687 char *value;
a39a16c4 1688 };
db162d44 1689
a39a16c4
MM
1690 struct section_addr_info *section_addrs;
1691 struct sect_opt *sect_opts = NULL;
1692 size_t num_sect_opts = 0;
3017564a 1693 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 1694
a39a16c4
MM
1695 num_sect_opts = 16;
1696 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
1697 * sizeof (struct sect_opt));
1698
c906108c
SS
1699 dont_repeat ();
1700
1701 if (args == NULL)
db162d44 1702 error ("add-symbol-file takes a file name and an address");
c906108c
SS
1703
1704 /* Make a copy of the string that we can safely write into. */
c2d11a7d 1705 args = xstrdup (args);
c906108c 1706
2acceee2 1707 while (*args != '\000')
c906108c 1708 {
db162d44 1709 /* Any leading spaces? */
c5aa993b 1710 while (isspace (*args))
db162d44
EZ
1711 args++;
1712
1713 /* Point arg to the beginning of the argument. */
c906108c 1714 arg = args;
db162d44
EZ
1715
1716 /* Move args pointer over the argument. */
c5aa993b 1717 while ((*args != '\000') && !isspace (*args))
db162d44
EZ
1718 args++;
1719
1720 /* If there are more arguments, terminate arg and
1721 proceed past it. */
c906108c 1722 if (*args != '\000')
db162d44
EZ
1723 *args++ = '\000';
1724
1725 /* Now process the argument. */
1726 if (argcnt == 0)
c906108c 1727 {
db162d44
EZ
1728 /* The first argument is the file name. */
1729 filename = tilde_expand (arg);
3017564a 1730 make_cleanup (xfree, filename);
c906108c 1731 }
db162d44 1732 else
7a78ae4e
ND
1733 if (argcnt == 1)
1734 {
1735 /* The second argument is always the text address at which
1736 to load the program. */
1737 sect_opts[section_index].name = ".text";
1738 sect_opts[section_index].value = arg;
a39a16c4
MM
1739 if (++section_index > num_sect_opts)
1740 {
1741 num_sect_opts *= 2;
1742 sect_opts = ((struct sect_opt *)
1743 xrealloc (sect_opts,
1744 num_sect_opts
1745 * sizeof (struct sect_opt)));
1746 }
7a78ae4e
ND
1747 }
1748 else
1749 {
1750 /* It's an option (starting with '-') or it's an argument
1751 to an option */
1752
1753 if (*arg == '-')
1754 {
1755 if (strcmp (arg, "-mapped") == 0)
1756 flags |= OBJF_MAPPED;
1757 else
1758 if (strcmp (arg, "-readnow") == 0)
1759 flags |= OBJF_READNOW;
1760 else
1761 if (strcmp (arg, "-s") == 0)
1762 {
7a78ae4e
ND
1763 expecting_sec_name = 1;
1764 expecting_sec_addr = 1;
1765 }
1766 }
1767 else
1768 {
1769 if (expecting_sec_name)
db162d44 1770 {
7a78ae4e
ND
1771 sect_opts[section_index].name = arg;
1772 expecting_sec_name = 0;
db162d44
EZ
1773 }
1774 else
7a78ae4e
ND
1775 if (expecting_sec_addr)
1776 {
1777 sect_opts[section_index].value = arg;
1778 expecting_sec_addr = 0;
a39a16c4
MM
1779 if (++section_index > num_sect_opts)
1780 {
1781 num_sect_opts *= 2;
1782 sect_opts = ((struct sect_opt *)
1783 xrealloc (sect_opts,
1784 num_sect_opts
1785 * sizeof (struct sect_opt)));
1786 }
7a78ae4e
ND
1787 }
1788 else
1789 error ("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*");
1790 }
1791 }
db162d44 1792 argcnt++;
c906108c 1793 }
c906108c 1794
db162d44
EZ
1795 /* Print the prompt for the query below. And save the arguments into
1796 a sect_addr_info structure to be passed around to other
1797 functions. We have to split this up into separate print
1798 statements because local_hex_string returns a local static
1799 string. */
2acceee2 1800
db162d44 1801 printf_filtered ("add symbol table from file \"%s\" at\n", filename);
a39a16c4
MM
1802 section_addrs = alloc_section_addr_info (section_index);
1803 make_cleanup (xfree, section_addrs);
db162d44 1804 for (i = 0; i < section_index; i++)
c906108c 1805 {
db162d44
EZ
1806 CORE_ADDR addr;
1807 char *val = sect_opts[i].value;
1808 char *sec = sect_opts[i].name;
1809
ae822768 1810 addr = parse_and_eval_address (val);
db162d44 1811
db162d44
EZ
1812 /* Here we store the section offsets in the order they were
1813 entered on the command line. */
a39a16c4
MM
1814 section_addrs->other[sec_num].name = sec;
1815 section_addrs->other[sec_num].addr = addr;
db162d44
EZ
1816 printf_filtered ("\t%s_addr = %s\n",
1817 sec,
1818 local_hex_string ((unsigned long)addr));
1819 sec_num++;
1820
1821 /* The object's sections are initialized when a
1822 call is made to build_objfile_section_table (objfile).
1823 This happens in reread_symbols.
1824 At this point, we don't know what file type this is,
1825 so we can't determine what section names are valid. */
2acceee2 1826 }
db162d44 1827
2acceee2 1828 if (from_tty && (!query ("%s", "")))
c906108c
SS
1829 error ("Not confirmed.");
1830
a39a16c4 1831 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
c906108c
SS
1832
1833 /* Getting new symbols may change our opinion about what is
1834 frameless. */
1835 reinit_frame_cache ();
db162d44 1836 do_cleanups (my_cleanups);
c906108c
SS
1837}
1838\f
1839static void
fba45db2 1840add_shared_symbol_files_command (char *args, int from_tty)
c906108c
SS
1841{
1842#ifdef ADD_SHARED_SYMBOL_FILES
1843 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1844#else
1845 error ("This command is not available in this configuration of GDB.");
c5aa993b 1846#endif
c906108c
SS
1847}
1848\f
1849/* Re-read symbols if a symbol-file has changed. */
1850void
fba45db2 1851reread_symbols (void)
c906108c
SS
1852{
1853 struct objfile *objfile;
1854 long new_modtime;
1855 int reread_one = 0;
1856 struct stat new_statbuf;
1857 int res;
1858
1859 /* With the addition of shared libraries, this should be modified,
1860 the load time should be saved in the partial symbol tables, since
1861 different tables may come from different source files. FIXME.
1862 This routine should then walk down each partial symbol table
1863 and see if the symbol table that it originates from has been changed */
1864
c5aa993b
JM
1865 for (objfile = object_files; objfile; objfile = objfile->next)
1866 {
1867 if (objfile->obfd)
1868 {
52d16ba8 1869#ifdef DEPRECATED_IBM6000_TARGET
c5aa993b
JM
1870 /* If this object is from a shared library, then you should
1871 stat on the library name, not member name. */
c906108c 1872
c5aa993b
JM
1873 if (objfile->obfd->my_archive)
1874 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1875 else
c906108c 1876#endif
c5aa993b
JM
1877 res = stat (objfile->name, &new_statbuf);
1878 if (res != 0)
c906108c 1879 {
c5aa993b
JM
1880 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1881 printf_filtered ("`%s' has disappeared; keeping its symbols.\n",
1882 objfile->name);
1883 continue;
c906108c 1884 }
c5aa993b
JM
1885 new_modtime = new_statbuf.st_mtime;
1886 if (new_modtime != objfile->mtime)
c906108c 1887 {
c5aa993b
JM
1888 struct cleanup *old_cleanups;
1889 struct section_offsets *offsets;
1890 int num_offsets;
c5aa993b
JM
1891 char *obfd_filename;
1892
1893 printf_filtered ("`%s' has changed; re-reading symbols.\n",
1894 objfile->name);
1895
1896 /* There are various functions like symbol_file_add,
1897 symfile_bfd_open, syms_from_objfile, etc., which might
1898 appear to do what we want. But they have various other
1899 effects which we *don't* want. So we just do stuff
1900 ourselves. We don't worry about mapped files (for one thing,
1901 any mapped file will be out of date). */
1902
1903 /* If we get an error, blow away this objfile (not sure if
1904 that is the correct response for things like shared
1905 libraries). */
74b7792f 1906 old_cleanups = make_cleanup_free_objfile (objfile);
c5aa993b 1907 /* We need to do this whenever any symbols go away. */
74b7792f 1908 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c5aa993b
JM
1909
1910 /* Clean up any state BFD has sitting around. We don't need
1911 to close the descriptor but BFD lacks a way of closing the
1912 BFD without closing the descriptor. */
1913 obfd_filename = bfd_get_filename (objfile->obfd);
1914 if (!bfd_close (objfile->obfd))
1915 error ("Can't close BFD for %s: %s", objfile->name,
1916 bfd_errmsg (bfd_get_error ()));
1917 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
1918 if (objfile->obfd == NULL)
1919 error ("Can't open %s to read symbols.", objfile->name);
1920 /* bfd_openr sets cacheable to true, which is what we want. */
1921 if (!bfd_check_format (objfile->obfd, bfd_object))
1922 error ("Can't read symbols from %s: %s.", objfile->name,
1923 bfd_errmsg (bfd_get_error ()));
1924
1925 /* Save the offsets, we will nuke them with the rest of the
1926 psymbol_obstack. */
1927 num_offsets = objfile->num_sections;
a39a16c4
MM
1928 offsets = ((struct section_offsets *)
1929 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
1930 memcpy (offsets, objfile->section_offsets,
1931 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b
JM
1932
1933 /* Nuke all the state that we will re-read. Much of the following
1934 code which sets things to NULL really is necessary to tell
1935 other parts of GDB that there is nothing currently there. */
1936
1937 /* FIXME: Do we have to free a whole linked list, or is this
1938 enough? */
1939 if (objfile->global_psymbols.list)
aac7f4ea 1940 xmfree (objfile->md, objfile->global_psymbols.list);
c5aa993b
JM
1941 memset (&objfile->global_psymbols, 0,
1942 sizeof (objfile->global_psymbols));
1943 if (objfile->static_psymbols.list)
aac7f4ea 1944 xmfree (objfile->md, objfile->static_psymbols.list);
c5aa993b
JM
1945 memset (&objfile->static_psymbols, 0,
1946 sizeof (objfile->static_psymbols));
1947
1948 /* Free the obstacks for non-reusable objfiles */
af5f3db6
AC
1949 bcache_xfree (objfile->psymbol_cache);
1950 objfile->psymbol_cache = bcache_xmalloc ();
1951 bcache_xfree (objfile->macro_cache);
1952 objfile->macro_cache = bcache_xmalloc ();
2de7ced7
DJ
1953 if (objfile->demangled_names_hash != NULL)
1954 {
1955 htab_delete (objfile->demangled_names_hash);
1956 objfile->demangled_names_hash = NULL;
1957 }
c5aa993b
JM
1958 obstack_free (&objfile->psymbol_obstack, 0);
1959 obstack_free (&objfile->symbol_obstack, 0);
1960 obstack_free (&objfile->type_obstack, 0);
1961 objfile->sections = NULL;
1962 objfile->symtabs = NULL;
1963 objfile->psymtabs = NULL;
1964 objfile->free_psymtabs = NULL;
1965 objfile->msymbols = NULL;
29239a8f 1966 objfile->sym_private = NULL;
c5aa993b 1967 objfile->minimal_symbol_count = 0;
0a83117a
MS
1968 memset (&objfile->msymbol_hash, 0,
1969 sizeof (objfile->msymbol_hash));
1970 memset (&objfile->msymbol_demangled_hash, 0,
1971 sizeof (objfile->msymbol_demangled_hash));
c5aa993b
JM
1972 objfile->fundamental_types = NULL;
1973 if (objfile->sf != NULL)
1974 {
1975 (*objfile->sf->sym_finish) (objfile);
1976 }
1977
1978 /* We never make this a mapped file. */
1979 objfile->md = NULL;
1980 /* obstack_specify_allocation also initializes the obstack so
1981 it is empty. */
af5f3db6
AC
1982 objfile->psymbol_cache = bcache_xmalloc ();
1983 objfile->macro_cache = bcache_xmalloc ();
c5aa993b 1984 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0,
b8c9b27d 1985 xmalloc, xfree);
c5aa993b 1986 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0,
b8c9b27d 1987 xmalloc, xfree);
c5aa993b 1988 obstack_specify_allocation (&objfile->type_obstack, 0, 0,
b8c9b27d 1989 xmalloc, xfree);
c5aa993b
JM
1990 if (build_objfile_section_table (objfile))
1991 {
1992 error ("Can't find the file sections in `%s': %s",
1993 objfile->name, bfd_errmsg (bfd_get_error ()));
1994 }
15831452 1995 terminate_minimal_symbol_table (objfile);
c5aa993b
JM
1996
1997 /* We use the same section offsets as from last time. I'm not
1998 sure whether that is always correct for shared libraries. */
1999 objfile->section_offsets = (struct section_offsets *)
a39a16c4
MM
2000 obstack_alloc (&objfile->psymbol_obstack,
2001 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2002 memcpy (objfile->section_offsets, offsets,
2003 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b
JM
2004 objfile->num_sections = num_offsets;
2005
2006 /* What the hell is sym_new_init for, anyway? The concept of
2007 distinguishing between the main file and additional files
2008 in this way seems rather dubious. */
2009 if (objfile == symfile_objfile)
2010 {
2011 (*objfile->sf->sym_new_init) (objfile);
c906108c 2012#ifdef HPUXHPPA
c5aa993b 2013 RESET_HP_UX_GLOBALS ();
c906108c 2014#endif
c5aa993b
JM
2015 }
2016
2017 (*objfile->sf->sym_init) (objfile);
b9caf505 2018 clear_complaints (&symfile_complaints, 1, 1);
c5aa993b
JM
2019 /* The "mainline" parameter is a hideous hack; I think leaving it
2020 zero is OK since dbxread.c also does what it needs to do if
2021 objfile->global_psymbols.size is 0. */
96baa820 2022 (*objfile->sf->sym_read) (objfile, 0);
c5aa993b
JM
2023 if (!have_partial_symbols () && !have_full_symbols ())
2024 {
2025 wrap_here ("");
2026 printf_filtered ("(no debugging symbols found)\n");
2027 wrap_here ("");
2028 }
2029 objfile->flags |= OBJF_SYMS;
2030
2031 /* We're done reading the symbol file; finish off complaints. */
b9caf505 2032 clear_complaints (&symfile_complaints, 0, 1);
c906108c 2033
c5aa993b
JM
2034 /* Getting new symbols may change our opinion about what is
2035 frameless. */
c906108c 2036
c5aa993b 2037 reinit_frame_cache ();
c906108c 2038
c5aa993b
JM
2039 /* Discard cleanups as symbol reading was successful. */
2040 discard_cleanups (old_cleanups);
c906108c 2041
c5aa993b
JM
2042 /* If the mtime has changed between the time we set new_modtime
2043 and now, we *want* this to be out of date, so don't call stat
2044 again now. */
2045 objfile->mtime = new_modtime;
2046 reread_one = 1;
5b5d99cf 2047 reread_separate_symbols (objfile);
c5aa993b 2048 }
c906108c
SS
2049 }
2050 }
c906108c
SS
2051
2052 if (reread_one)
2053 clear_symtab_users ();
2054}
5b5d99cf
JB
2055
2056
2057/* Handle separate debug info for OBJFILE, which has just been
2058 re-read:
2059 - If we had separate debug info before, but now we don't, get rid
2060 of the separated objfile.
2061 - If we didn't have separated debug info before, but now we do,
2062 read in the new separated debug info file.
2063 - If the debug link points to a different file, toss the old one
2064 and read the new one.
2065 This function does *not* handle the case where objfile is still
2066 using the same separate debug info file, but that file's timestamp
2067 has changed. That case should be handled by the loop in
2068 reread_symbols already. */
2069static void
2070reread_separate_symbols (struct objfile *objfile)
2071{
2072 char *debug_file;
2073 unsigned long crc32;
2074
2075 /* Does the updated objfile's debug info live in a
2076 separate file? */
2077 debug_file = find_separate_debug_file (objfile);
2078
2079 if (objfile->separate_debug_objfile)
2080 {
2081 /* There are two cases where we need to get rid of
2082 the old separated debug info objfile:
2083 - if the new primary objfile doesn't have
2084 separated debug info, or
2085 - if the new primary objfile has separate debug
2086 info, but it's under a different filename.
2087
2088 If the old and new objfiles both have separate
2089 debug info, under the same filename, then we're
2090 okay --- if the separated file's contents have
2091 changed, we will have caught that when we
2092 visited it in this function's outermost
2093 loop. */
2094 if (! debug_file
2095 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2096 free_objfile (objfile->separate_debug_objfile);
2097 }
2098
2099 /* If the new objfile has separate debug info, and we
2100 haven't loaded it already, do so now. */
2101 if (debug_file
2102 && ! objfile->separate_debug_objfile)
2103 {
2104 /* Use the same section offset table as objfile itself.
2105 Preserve the flags from objfile that make sense. */
2106 objfile->separate_debug_objfile
2107 = (symbol_file_add_with_addrs_or_offsets
2108 (debug_file,
2109 info_verbose, /* from_tty: Don't override the default. */
2110 0, /* No addr table. */
2111 objfile->section_offsets, objfile->num_sections,
2112 0, /* Not mainline. See comments about this above. */
2113 objfile->flags & (OBJF_MAPPED | OBJF_REORDERED
2114 | OBJF_SHARED | OBJF_READNOW
2115 | OBJF_USERLOADED)));
2116 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2117 = objfile;
2118 }
2119}
2120
2121
c906108c
SS
2122\f
2123
c5aa993b
JM
2124
2125typedef struct
2126{
2127 char *ext;
c906108c 2128 enum language lang;
c5aa993b
JM
2129}
2130filename_language;
c906108c 2131
c5aa993b 2132static filename_language *filename_language_table;
c906108c
SS
2133static int fl_table_size, fl_table_next;
2134
2135static void
fba45db2 2136add_filename_language (char *ext, enum language lang)
c906108c
SS
2137{
2138 if (fl_table_next >= fl_table_size)
2139 {
2140 fl_table_size += 10;
25bf3106
PM
2141 filename_language_table =
2142 xrealloc (filename_language_table,
2143 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2144 }
2145
4fcf66da 2146 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2147 filename_language_table[fl_table_next].lang = lang;
2148 fl_table_next++;
2149}
2150
2151static char *ext_args;
2152
2153static void
fba45db2 2154set_ext_lang_command (char *args, int from_tty)
c906108c
SS
2155{
2156 int i;
2157 char *cp = ext_args;
2158 enum language lang;
2159
2160 /* First arg is filename extension, starting with '.' */
2161 if (*cp != '.')
2162 error ("'%s': Filename extension must begin with '.'", ext_args);
2163
2164 /* Find end of first arg. */
c5aa993b 2165 while (*cp && !isspace (*cp))
c906108c
SS
2166 cp++;
2167
2168 if (*cp == '\0')
2169 error ("'%s': two arguments required -- filename extension and language",
2170 ext_args);
2171
2172 /* Null-terminate first arg */
c5aa993b 2173 *cp++ = '\0';
c906108c
SS
2174
2175 /* Find beginning of second arg, which should be a source language. */
2176 while (*cp && isspace (*cp))
2177 cp++;
2178
2179 if (*cp == '\0')
2180 error ("'%s': two arguments required -- filename extension and language",
2181 ext_args);
2182
2183 /* Lookup the language from among those we know. */
2184 lang = language_enum (cp);
2185
2186 /* Now lookup the filename extension: do we already know it? */
2187 for (i = 0; i < fl_table_next; i++)
2188 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2189 break;
2190
2191 if (i >= fl_table_next)
2192 {
2193 /* new file extension */
2194 add_filename_language (ext_args, lang);
2195 }
2196 else
2197 {
2198 /* redefining a previously known filename extension */
2199
2200 /* if (from_tty) */
2201 /* query ("Really make files of type %s '%s'?", */
2202 /* ext_args, language_str (lang)); */
2203
b8c9b27d 2204 xfree (filename_language_table[i].ext);
4fcf66da 2205 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2206 filename_language_table[i].lang = lang;
2207 }
2208}
2209
2210static void
fba45db2 2211info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2212{
2213 int i;
2214
2215 printf_filtered ("Filename extensions and the languages they represent:");
2216 printf_filtered ("\n\n");
2217 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2218 printf_filtered ("\t%s\t- %s\n",
2219 filename_language_table[i].ext,
c906108c
SS
2220 language_str (filename_language_table[i].lang));
2221}
2222
2223static void
fba45db2 2224init_filename_language_table (void)
c906108c
SS
2225{
2226 if (fl_table_size == 0) /* protect against repetition */
2227 {
2228 fl_table_size = 20;
2229 fl_table_next = 0;
c5aa993b 2230 filename_language_table =
c906108c 2231 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b
JM
2232 add_filename_language (".c", language_c);
2233 add_filename_language (".C", language_cplus);
2234 add_filename_language (".cc", language_cplus);
2235 add_filename_language (".cp", language_cplus);
2236 add_filename_language (".cpp", language_cplus);
2237 add_filename_language (".cxx", language_cplus);
2238 add_filename_language (".c++", language_cplus);
2239 add_filename_language (".java", language_java);
c906108c 2240 add_filename_language (".class", language_java);
da2cf7e0 2241 add_filename_language (".m", language_objc);
c5aa993b
JM
2242 add_filename_language (".f", language_fortran);
2243 add_filename_language (".F", language_fortran);
2244 add_filename_language (".s", language_asm);
2245 add_filename_language (".S", language_asm);
c6fd39cd
PM
2246 add_filename_language (".pas", language_pascal);
2247 add_filename_language (".p", language_pascal);
2248 add_filename_language (".pp", language_pascal);
c906108c
SS
2249 }
2250}
2251
2252enum language
fba45db2 2253deduce_language_from_filename (char *filename)
c906108c
SS
2254{
2255 int i;
2256 char *cp;
2257
2258 if (filename != NULL)
2259 if ((cp = strrchr (filename, '.')) != NULL)
2260 for (i = 0; i < fl_table_next; i++)
2261 if (strcmp (cp, filename_language_table[i].ext) == 0)
2262 return filename_language_table[i].lang;
2263
2264 return language_unknown;
2265}
2266\f
2267/* allocate_symtab:
2268
2269 Allocate and partly initialize a new symbol table. Return a pointer
2270 to it. error() if no space.
2271
2272 Caller must set these fields:
c5aa993b
JM
2273 LINETABLE(symtab)
2274 symtab->blockvector
2275 symtab->dirname
2276 symtab->free_code
2277 symtab->free_ptr
2278 possibly free_named_symtabs (symtab->filename);
c906108c
SS
2279 */
2280
2281struct symtab *
fba45db2 2282allocate_symtab (char *filename, struct objfile *objfile)
c906108c
SS
2283{
2284 register struct symtab *symtab;
2285
2286 symtab = (struct symtab *)
c5aa993b 2287 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symtab));
c906108c 2288 memset (symtab, 0, sizeof (*symtab));
c5aa993b
JM
2289 symtab->filename = obsavestring (filename, strlen (filename),
2290 &objfile->symbol_obstack);
2291 symtab->fullname = NULL;
2292 symtab->language = deduce_language_from_filename (filename);
2293 symtab->debugformat = obsavestring ("unknown", 7,
2294 &objfile->symbol_obstack);
c906108c
SS
2295
2296 /* Hook it to the objfile it comes from */
2297
c5aa993b
JM
2298 symtab->objfile = objfile;
2299 symtab->next = objfile->symtabs;
2300 objfile->symtabs = symtab;
c906108c
SS
2301
2302 /* FIXME: This should go away. It is only defined for the Z8000,
2303 and the Z8000 definition of this macro doesn't have anything to
2304 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
2305 here for convenience. */
2306#ifdef INIT_EXTRA_SYMTAB_INFO
2307 INIT_EXTRA_SYMTAB_INFO (symtab);
2308#endif
2309
2310 return (symtab);
2311}
2312
2313struct partial_symtab *
fba45db2 2314allocate_psymtab (char *filename, struct objfile *objfile)
c906108c
SS
2315{
2316 struct partial_symtab *psymtab;
2317
c5aa993b 2318 if (objfile->free_psymtabs)
c906108c 2319 {
c5aa993b
JM
2320 psymtab = objfile->free_psymtabs;
2321 objfile->free_psymtabs = psymtab->next;
c906108c
SS
2322 }
2323 else
2324 psymtab = (struct partial_symtab *)
c5aa993b 2325 obstack_alloc (&objfile->psymbol_obstack,
c906108c
SS
2326 sizeof (struct partial_symtab));
2327
2328 memset (psymtab, 0, sizeof (struct partial_symtab));
c5aa993b
JM
2329 psymtab->filename = obsavestring (filename, strlen (filename),
2330 &objfile->psymbol_obstack);
2331 psymtab->symtab = NULL;
c906108c
SS
2332
2333 /* Prepend it to the psymtab list for the objfile it belongs to.
2334 Psymtabs are searched in most recent inserted -> least recent
2335 inserted order. */
2336
c5aa993b
JM
2337 psymtab->objfile = objfile;
2338 psymtab->next = objfile->psymtabs;
2339 objfile->psymtabs = psymtab;
c906108c
SS
2340#if 0
2341 {
2342 struct partial_symtab **prev_pst;
c5aa993b
JM
2343 psymtab->objfile = objfile;
2344 psymtab->next = NULL;
2345 prev_pst = &(objfile->psymtabs);
c906108c 2346 while ((*prev_pst) != NULL)
c5aa993b 2347 prev_pst = &((*prev_pst)->next);
c906108c 2348 (*prev_pst) = psymtab;
c5aa993b 2349 }
c906108c 2350#endif
c5aa993b 2351
c906108c
SS
2352 return (psymtab);
2353}
2354
2355void
fba45db2 2356discard_psymtab (struct partial_symtab *pst)
c906108c
SS
2357{
2358 struct partial_symtab **prev_pst;
2359
2360 /* From dbxread.c:
2361 Empty psymtabs happen as a result of header files which don't
2362 have any symbols in them. There can be a lot of them. But this
2363 check is wrong, in that a psymtab with N_SLINE entries but
2364 nothing else is not empty, but we don't realize that. Fixing
2365 that without slowing things down might be tricky. */
2366
2367 /* First, snip it out of the psymtab chain */
2368
2369 prev_pst = &(pst->objfile->psymtabs);
2370 while ((*prev_pst) != pst)
2371 prev_pst = &((*prev_pst)->next);
2372 (*prev_pst) = pst->next;
2373
2374 /* Next, put it on a free list for recycling */
2375
2376 pst->next = pst->objfile->free_psymtabs;
2377 pst->objfile->free_psymtabs = pst;
2378}
c906108c 2379\f
c5aa993b 2380
c906108c
SS
2381/* Reset all data structures in gdb which may contain references to symbol
2382 table data. */
2383
2384void
fba45db2 2385clear_symtab_users (void)
c906108c
SS
2386{
2387 /* Someday, we should do better than this, by only blowing away
2388 the things that really need to be blown. */
2389 clear_value_history ();
2390 clear_displays ();
2391 clear_internalvars ();
2392 breakpoint_re_set ();
2393 set_default_breakpoint (0, 0, 0, 0);
0378c332 2394 clear_current_source_symtab_and_line ();
c906108c 2395 clear_pc_function_cache ();
11cf8741
JM
2396 if (target_new_objfile_hook)
2397 target_new_objfile_hook (NULL);
c906108c
SS
2398}
2399
74b7792f
AC
2400static void
2401clear_symtab_users_cleanup (void *ignore)
2402{
2403 clear_symtab_users ();
2404}
2405
c906108c
SS
2406/* clear_symtab_users_once:
2407
2408 This function is run after symbol reading, or from a cleanup.
2409 If an old symbol table was obsoleted, the old symbol table
2410 has been blown away, but the other GDB data structures that may
2411 reference it have not yet been cleared or re-directed. (The old
2412 symtab was zapped, and the cleanup queued, in free_named_symtab()
2413 below.)
2414
2415 This function can be queued N times as a cleanup, or called
2416 directly; it will do all the work the first time, and then will be a
2417 no-op until the next time it is queued. This works by bumping a
2418 counter at queueing time. Much later when the cleanup is run, or at
2419 the end of symbol processing (in case the cleanup is discarded), if
2420 the queued count is greater than the "done-count", we do the work
2421 and set the done-count to the queued count. If the queued count is
2422 less than or equal to the done-count, we just ignore the call. This
2423 is needed because reading a single .o file will often replace many
2424 symtabs (one per .h file, for example), and we don't want to reset
2425 the breakpoints N times in the user's face.
2426
2427 The reason we both queue a cleanup, and call it directly after symbol
2428 reading, is because the cleanup protects us in case of errors, but is
2429 discarded if symbol reading is successful. */
2430
2431#if 0
2432/* FIXME: As free_named_symtabs is currently a big noop this function
2433 is no longer needed. */
a14ed312 2434static void clear_symtab_users_once (void);
c906108c
SS
2435
2436static int clear_symtab_users_queued;
2437static int clear_symtab_users_done;
2438
2439static void
fba45db2 2440clear_symtab_users_once (void)
c906108c
SS
2441{
2442 /* Enforce once-per-`do_cleanups'-semantics */
2443 if (clear_symtab_users_queued <= clear_symtab_users_done)
2444 return;
2445 clear_symtab_users_done = clear_symtab_users_queued;
2446
2447 clear_symtab_users ();
2448}
2449#endif
2450
2451/* Delete the specified psymtab, and any others that reference it. */
2452
2453static void
fba45db2 2454cashier_psymtab (struct partial_symtab *pst)
c906108c
SS
2455{
2456 struct partial_symtab *ps, *pprev = NULL;
2457 int i;
2458
2459 /* Find its previous psymtab in the chain */
c5aa993b
JM
2460 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2461 {
2462 if (ps == pst)
2463 break;
2464 pprev = ps;
2465 }
c906108c 2466
c5aa993b
JM
2467 if (ps)
2468 {
2469 /* Unhook it from the chain. */
2470 if (ps == pst->objfile->psymtabs)
2471 pst->objfile->psymtabs = ps->next;
2472 else
2473 pprev->next = ps->next;
2474
2475 /* FIXME, we can't conveniently deallocate the entries in the
2476 partial_symbol lists (global_psymbols/static_psymbols) that
2477 this psymtab points to. These just take up space until all
2478 the psymtabs are reclaimed. Ditto the dependencies list and
2479 filename, which are all in the psymbol_obstack. */
2480
2481 /* We need to cashier any psymtab that has this one as a dependency... */
2482 again:
2483 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2484 {
2485 for (i = 0; i < ps->number_of_dependencies; i++)
2486 {
2487 if (ps->dependencies[i] == pst)
2488 {
2489 cashier_psymtab (ps);
2490 goto again; /* Must restart, chain has been munged. */
2491 }
2492 }
c906108c 2493 }
c906108c 2494 }
c906108c
SS
2495}
2496
2497/* If a symtab or psymtab for filename NAME is found, free it along
2498 with any dependent breakpoints, displays, etc.
2499 Used when loading new versions of object modules with the "add-file"
2500 command. This is only called on the top-level symtab or psymtab's name;
2501 it is not called for subsidiary files such as .h files.
2502
2503 Return value is 1 if we blew away the environment, 0 if not.
7e73cedf 2504 FIXME. The return value appears to never be used.
c906108c
SS
2505
2506 FIXME. I think this is not the best way to do this. We should
2507 work on being gentler to the environment while still cleaning up
2508 all stray pointers into the freed symtab. */
2509
2510int
fba45db2 2511free_named_symtabs (char *name)
c906108c
SS
2512{
2513#if 0
2514 /* FIXME: With the new method of each objfile having it's own
2515 psymtab list, this function needs serious rethinking. In particular,
2516 why was it ever necessary to toss psymtabs with specific compilation
2517 unit filenames, as opposed to all psymtabs from a particular symbol
2518 file? -- fnf
2519 Well, the answer is that some systems permit reloading of particular
2520 compilation units. We want to blow away any old info about these
2521 compilation units, regardless of which objfiles they arrived in. --gnu. */
2522
2523 register struct symtab *s;
2524 register struct symtab *prev;
2525 register struct partial_symtab *ps;
2526 struct blockvector *bv;
2527 int blewit = 0;
2528
2529 /* We only wack things if the symbol-reload switch is set. */
2530 if (!symbol_reloading)
2531 return 0;
2532
2533 /* Some symbol formats have trouble providing file names... */
2534 if (name == 0 || *name == '\0')
2535 return 0;
2536
2537 /* Look for a psymtab with the specified name. */
2538
2539again2:
c5aa993b
JM
2540 for (ps = partial_symtab_list; ps; ps = ps->next)
2541 {
2542 if (STREQ (name, ps->filename))
2543 {
2544 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2545 goto again2; /* Must restart, chain has been munged */
2546 }
c906108c 2547 }
c906108c
SS
2548
2549 /* Look for a symtab with the specified name. */
2550
2551 for (s = symtab_list; s; s = s->next)
2552 {
2553 if (STREQ (name, s->filename))
2554 break;
2555 prev = s;
2556 }
2557
2558 if (s)
2559 {
2560 if (s == symtab_list)
2561 symtab_list = s->next;
2562 else
2563 prev->next = s->next;
2564
2565 /* For now, queue a delete for all breakpoints, displays, etc., whether
c5aa993b
JM
2566 or not they depend on the symtab being freed. This should be
2567 changed so that only those data structures affected are deleted. */
c906108c
SS
2568
2569 /* But don't delete anything if the symtab is empty.
c5aa993b
JM
2570 This test is necessary due to a bug in "dbxread.c" that
2571 causes empty symtabs to be created for N_SO symbols that
2572 contain the pathname of the object file. (This problem
2573 has been fixed in GDB 3.9x). */
c906108c
SS
2574
2575 bv = BLOCKVECTOR (s);
2576 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2577 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2578 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2579 {
b9caf505
AC
2580 complaint (&symfile_complaints, "Replacing old symbols for `%s'",
2581 name);
c906108c
SS
2582 clear_symtab_users_queued++;
2583 make_cleanup (clear_symtab_users_once, 0);
2584 blewit = 1;
c5aa993b
JM
2585 }
2586 else
2587 {
b9caf505
AC
2588 complaint (&symfile_complaints, "Empty symbol table found for `%s'",
2589 name);
c906108c
SS
2590 }
2591
2592 free_symtab (s);
2593 }
2594 else
2595 {
2596 /* It is still possible that some breakpoints will be affected
c5aa993b
JM
2597 even though no symtab was found, since the file might have
2598 been compiled without debugging, and hence not be associated
2599 with a symtab. In order to handle this correctly, we would need
2600 to keep a list of text address ranges for undebuggable files.
2601 For now, we do nothing, since this is a fairly obscure case. */
c906108c
SS
2602 ;
2603 }
2604
2605 /* FIXME, what about the minimal symbol table? */
2606 return blewit;
2607#else
2608 return (0);
2609#endif
2610}
2611\f
2612/* Allocate and partially fill a partial symtab. It will be
2613 completely filled at the end of the symbol list.
2614
d4f3574e 2615 FILENAME is the name of the symbol-file we are reading from. */
c906108c
SS
2616
2617struct partial_symtab *
fba45db2
KB
2618start_psymtab_common (struct objfile *objfile,
2619 struct section_offsets *section_offsets, char *filename,
2620 CORE_ADDR textlow, struct partial_symbol **global_syms,
2621 struct partial_symbol **static_syms)
c906108c
SS
2622{
2623 struct partial_symtab *psymtab;
2624
2625 psymtab = allocate_psymtab (filename, objfile);
c5aa993b
JM
2626 psymtab->section_offsets = section_offsets;
2627 psymtab->textlow = textlow;
2628 psymtab->texthigh = psymtab->textlow; /* default */
2629 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2630 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
c906108c
SS
2631 return (psymtab);
2632}
2633\f
2634/* Add a symbol with a long value to a psymtab.
5c4e30ca
DC
2635 Since one arg is a struct, we pass in a ptr and deref it (sigh).
2636 Return the partial symbol that has been added. */
2637
2638/* NOTE: carlton/2003-09-11: The reason why we return the partial
2639 symbol is so that callers can get access to the symbol's demangled
2640 name, which they don't have any cheap way to determine otherwise.
2641 (Currenly, dwarf2read.c is the only file who uses that information,
2642 though it's possible that other readers might in the future.)
2643 Elena wasn't thrilled about that, and I don't blame her, but we
2644 couldn't come up with a better way to get that information. If
2645 it's needed in other situations, we could consider breaking up
2646 SYMBOL_SET_NAMES to provide access to the demangled name lookup
2647 cache. */
2648
2649const struct partial_symbol *
176620f1 2650add_psymbol_to_list (char *name, int namelength, domain_enum domain,
fba45db2
KB
2651 enum address_class class,
2652 struct psymbol_allocation_list *list, long val, /* Value as a long */
2653 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2654 enum language language, struct objfile *objfile)
c906108c
SS
2655{
2656 register struct partial_symbol *psym;
2657 char *buf = alloca (namelength + 1);
2658 /* psymbol is static so that there will be no uninitialized gaps in the
2659 structure which might contain random data, causing cache misses in
2660 bcache. */
2661 static struct partial_symbol psymbol;
2662
2663 /* Create local copy of the partial symbol */
2664 memcpy (buf, name, namelength);
2665 buf[namelength] = '\0';
c906108c
SS
2666 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2667 if (val != 0)
2668 {
2669 SYMBOL_VALUE (&psymbol) = val;
2670 }
2671 else
2672 {
2673 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2674 }
2675 SYMBOL_SECTION (&psymbol) = 0;
2676 SYMBOL_LANGUAGE (&psymbol) = language;
176620f1 2677 PSYMBOL_DOMAIN (&psymbol) = domain;
c906108c 2678 PSYMBOL_CLASS (&psymbol) = class;
2de7ced7
DJ
2679
2680 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
c906108c
SS
2681
2682 /* Stash the partial symbol away in the cache */
af5f3db6 2683 psym = bcache (&psymbol, sizeof (struct partial_symbol), objfile->psymbol_cache);
c906108c
SS
2684
2685 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2686 if (list->next >= list->list + list->size)
2687 {
2688 extend_psymbol_list (list, objfile);
2689 }
2690 *list->next++ = psym;
2691 OBJSTAT (objfile, n_psyms++);
5c4e30ca
DC
2692
2693 return psym;
c906108c
SS
2694}
2695
2696/* Add a symbol with a long value to a psymtab. This differs from
2697 * add_psymbol_to_list above in taking both a mangled and a demangled
2698 * name. */
2699
2700void
fba45db2 2701add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
176620f1 2702 int dem_namelength, domain_enum domain,
fba45db2
KB
2703 enum address_class class,
2704 struct psymbol_allocation_list *list, long val, /* Value as a long */
2705 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2706 enum language language,
2707 struct objfile *objfile)
c906108c
SS
2708{
2709 register struct partial_symbol *psym;
2710 char *buf = alloca (namelength + 1);
2711 /* psymbol is static so that there will be no uninitialized gaps in the
2712 structure which might contain random data, causing cache misses in
2713 bcache. */
2714 static struct partial_symbol psymbol;
2715
2716 /* Create local copy of the partial symbol */
2717
2718 memcpy (buf, name, namelength);
2719 buf[namelength] = '\0';
22abf04a 2720 DEPRECATED_SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, objfile->psymbol_cache);
c906108c
SS
2721
2722 buf = alloca (dem_namelength + 1);
2723 memcpy (buf, dem_name, dem_namelength);
2724 buf[dem_namelength] = '\0';
c5aa993b 2725
c906108c
SS
2726 switch (language)
2727 {
c5aa993b
JM
2728 case language_c:
2729 case language_cplus:
2730 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
af5f3db6 2731 bcache (buf, dem_namelength + 1, objfile->psymbol_cache);
c5aa993b 2732 break;
c906108c
SS
2733 /* FIXME What should be done for the default case? Ignoring for now. */
2734 }
2735
2736 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2737 if (val != 0)
2738 {
2739 SYMBOL_VALUE (&psymbol) = val;
2740 }
2741 else
2742 {
2743 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2744 }
2745 SYMBOL_SECTION (&psymbol) = 0;
2746 SYMBOL_LANGUAGE (&psymbol) = language;
176620f1 2747 PSYMBOL_DOMAIN (&psymbol) = domain;
c906108c
SS
2748 PSYMBOL_CLASS (&psymbol) = class;
2749 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2750
2751 /* Stash the partial symbol away in the cache */
af5f3db6 2752 psym = bcache (&psymbol, sizeof (struct partial_symbol), objfile->psymbol_cache);
c906108c
SS
2753
2754 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2755 if (list->next >= list->list + list->size)
2756 {
2757 extend_psymbol_list (list, objfile);
2758 }
2759 *list->next++ = psym;
2760 OBJSTAT (objfile, n_psyms++);
2761}
2762
2763/* Initialize storage for partial symbols. */
2764
2765void
fba45db2 2766init_psymbol_list (struct objfile *objfile, int total_symbols)
c906108c
SS
2767{
2768 /* Free any previously allocated psymbol lists. */
c5aa993b
JM
2769
2770 if (objfile->global_psymbols.list)
c906108c 2771 {
4efb68b1 2772 xmfree (objfile->md, objfile->global_psymbols.list);
c906108c 2773 }
c5aa993b 2774 if (objfile->static_psymbols.list)
c906108c 2775 {
4efb68b1 2776 xmfree (objfile->md, objfile->static_psymbols.list);
c906108c 2777 }
c5aa993b 2778
c906108c
SS
2779 /* Current best guess is that approximately a twentieth
2780 of the total symbols (in a debugging file) are global or static
2781 oriented symbols */
c906108c 2782
c5aa993b
JM
2783 objfile->global_psymbols.size = total_symbols / 10;
2784 objfile->static_psymbols.size = total_symbols / 10;
2785
2786 if (objfile->global_psymbols.size > 0)
c906108c 2787 {
c5aa993b
JM
2788 objfile->global_psymbols.next =
2789 objfile->global_psymbols.list = (struct partial_symbol **)
2790 xmmalloc (objfile->md, (objfile->global_psymbols.size
2791 * sizeof (struct partial_symbol *)));
c906108c 2792 }
c5aa993b 2793 if (objfile->static_psymbols.size > 0)
c906108c 2794 {
c5aa993b
JM
2795 objfile->static_psymbols.next =
2796 objfile->static_psymbols.list = (struct partial_symbol **)
2797 xmmalloc (objfile->md, (objfile->static_psymbols.size
2798 * sizeof (struct partial_symbol *)));
c906108c
SS
2799 }
2800}
2801
2802/* OVERLAYS:
2803 The following code implements an abstraction for debugging overlay sections.
2804
2805 The target model is as follows:
2806 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2807 same VMA, each with its own unique LMA (or load address).
c906108c 2808 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2809 sections, one by one, from the load address into the VMA address.
c906108c 2810 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2811 sections should be considered to be mapped from the VMA to the LMA.
2812 This information is used for symbol lookup, and memory read/write.
2813 For instance, if a section has been mapped then its contents
2814 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2815
2816 Two levels of debugger support for overlays are available. One is
2817 "manual", in which the debugger relies on the user to tell it which
2818 overlays are currently mapped. This level of support is
2819 implemented entirely in the core debugger, and the information about
2820 whether a section is mapped is kept in the objfile->obj_section table.
2821
2822 The second level of support is "automatic", and is only available if
2823 the target-specific code provides functionality to read the target's
2824 overlay mapping table, and translate its contents for the debugger
2825 (by updating the mapped state information in the obj_section tables).
2826
2827 The interface is as follows:
c5aa993b
JM
2828 User commands:
2829 overlay map <name> -- tell gdb to consider this section mapped
2830 overlay unmap <name> -- tell gdb to consider this section unmapped
2831 overlay list -- list the sections that GDB thinks are mapped
2832 overlay read-target -- get the target's state of what's mapped
2833 overlay off/manual/auto -- set overlay debugging state
2834 Functional interface:
2835 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2836 section, return that section.
2837 find_pc_overlay(pc): find any overlay section that contains
2838 the pc, either in its VMA or its LMA
2839 overlay_is_mapped(sect): true if overlay is marked as mapped
2840 section_is_overlay(sect): true if section's VMA != LMA
2841 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2842 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2843 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2844 overlay_mapped_address(...): map an address from section's LMA to VMA
2845 overlay_unmapped_address(...): map an address from section's VMA to LMA
2846 symbol_overlayed_address(...): Return a "current" address for symbol:
2847 either in VMA or LMA depending on whether
2848 the symbol's section is currently mapped
c906108c
SS
2849 */
2850
2851/* Overlay debugging state: */
2852
d874f1e2 2853enum overlay_debugging_state overlay_debugging = ovly_off;
c906108c
SS
2854int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2855
2856/* Target vector for refreshing overlay mapped state */
a14ed312 2857static void simple_overlay_update (struct obj_section *);
507f3c78 2858void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
c906108c
SS
2859
2860/* Function: section_is_overlay (SECTION)
2861 Returns true if SECTION has VMA not equal to LMA, ie.
2862 SECTION is loaded at an address different from where it will "run". */
2863
2864int
fba45db2 2865section_is_overlay (asection *section)
c906108c 2866{
fbd35540
MS
2867 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2868
c906108c
SS
2869 if (overlay_debugging)
2870 if (section && section->lma != 0 &&
2871 section->vma != section->lma)
2872 return 1;
2873
2874 return 0;
2875}
2876
2877/* Function: overlay_invalidate_all (void)
2878 Invalidate the mapped state of all overlay sections (mark it as stale). */
2879
2880static void
fba45db2 2881overlay_invalidate_all (void)
c906108c 2882{
c5aa993b 2883 struct objfile *objfile;
c906108c
SS
2884 struct obj_section *sect;
2885
2886 ALL_OBJSECTIONS (objfile, sect)
2887 if (section_is_overlay (sect->the_bfd_section))
c5aa993b 2888 sect->ovly_mapped = -1;
c906108c
SS
2889}
2890
2891/* Function: overlay_is_mapped (SECTION)
2892 Returns true if section is an overlay, and is currently mapped.
2893 Private: public access is thru function section_is_mapped.
2894
2895 Access to the ovly_mapped flag is restricted to this function, so
2896 that we can do automatic update. If the global flag
2897 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2898 overlay_invalidate_all. If the mapped state of the particular
2899 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2900
c5aa993b 2901static int
fba45db2 2902overlay_is_mapped (struct obj_section *osect)
c906108c
SS
2903{
2904 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
2905 return 0;
2906
c5aa993b 2907 switch (overlay_debugging)
c906108c
SS
2908 {
2909 default:
d874f1e2 2910 case ovly_off:
c5aa993b 2911 return 0; /* overlay debugging off */
d874f1e2 2912 case ovly_auto: /* overlay debugging automatic */
c906108c 2913 /* Unles there is a target_overlay_update function,
c5aa993b 2914 there's really nothing useful to do here (can't really go auto) */
c906108c
SS
2915 if (target_overlay_update)
2916 {
2917 if (overlay_cache_invalid)
2918 {
2919 overlay_invalidate_all ();
2920 overlay_cache_invalid = 0;
2921 }
2922 if (osect->ovly_mapped == -1)
2923 (*target_overlay_update) (osect);
2924 }
2925 /* fall thru to manual case */
d874f1e2 2926 case ovly_on: /* overlay debugging manual */
c906108c
SS
2927 return osect->ovly_mapped == 1;
2928 }
2929}
2930
2931/* Function: section_is_mapped
2932 Returns true if section is an overlay, and is currently mapped. */
2933
2934int
fba45db2 2935section_is_mapped (asection *section)
c906108c 2936{
c5aa993b 2937 struct objfile *objfile;
c906108c
SS
2938 struct obj_section *osect;
2939
2940 if (overlay_debugging)
2941 if (section && section_is_overlay (section))
2942 ALL_OBJSECTIONS (objfile, osect)
2943 if (osect->the_bfd_section == section)
c5aa993b 2944 return overlay_is_mapped (osect);
c906108c
SS
2945
2946 return 0;
2947}
2948
2949/* Function: pc_in_unmapped_range
2950 If PC falls into the lma range of SECTION, return true, else false. */
2951
2952CORE_ADDR
fba45db2 2953pc_in_unmapped_range (CORE_ADDR pc, asection *section)
c906108c 2954{
fbd35540
MS
2955 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2956
c906108c
SS
2957 int size;
2958
2959 if (overlay_debugging)
2960 if (section && section_is_overlay (section))
2961 {
2962 size = bfd_get_section_size_before_reloc (section);
2963 if (section->lma <= pc && pc < section->lma + size)
2964 return 1;
2965 }
2966 return 0;
2967}
2968
2969/* Function: pc_in_mapped_range
2970 If PC falls into the vma range of SECTION, return true, else false. */
2971
2972CORE_ADDR
fba45db2 2973pc_in_mapped_range (CORE_ADDR pc, asection *section)
c906108c 2974{
fbd35540
MS
2975 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2976
c906108c
SS
2977 int size;
2978
2979 if (overlay_debugging)
2980 if (section && section_is_overlay (section))
2981 {
2982 size = bfd_get_section_size_before_reloc (section);
2983 if (section->vma <= pc && pc < section->vma + size)
2984 return 1;
2985 }
2986 return 0;
2987}
2988
9ec8e6a0
JB
2989
2990/* Return true if the mapped ranges of sections A and B overlap, false
2991 otherwise. */
b9362cc7 2992static int
9ec8e6a0
JB
2993sections_overlap (asection *a, asection *b)
2994{
fbd35540
MS
2995 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2996
9ec8e6a0
JB
2997 CORE_ADDR a_start = a->vma;
2998 CORE_ADDR a_end = a->vma + bfd_get_section_size_before_reloc (a);
2999 CORE_ADDR b_start = b->vma;
3000 CORE_ADDR b_end = b->vma + bfd_get_section_size_before_reloc (b);
3001
3002 return (a_start < b_end && b_start < a_end);
3003}
3004
c906108c
SS
3005/* Function: overlay_unmapped_address (PC, SECTION)
3006 Returns the address corresponding to PC in the unmapped (load) range.
3007 May be the same as PC. */
3008
3009CORE_ADDR
fba45db2 3010overlay_unmapped_address (CORE_ADDR pc, asection *section)
c906108c 3011{
fbd35540
MS
3012 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3013
c906108c
SS
3014 if (overlay_debugging)
3015 if (section && section_is_overlay (section) &&
3016 pc_in_mapped_range (pc, section))
3017 return pc + section->lma - section->vma;
3018
3019 return pc;
3020}
3021
3022/* Function: overlay_mapped_address (PC, SECTION)
3023 Returns the address corresponding to PC in the mapped (runtime) range.
3024 May be the same as PC. */
3025
3026CORE_ADDR
fba45db2 3027overlay_mapped_address (CORE_ADDR pc, asection *section)
c906108c 3028{
fbd35540
MS
3029 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3030
c906108c
SS
3031 if (overlay_debugging)
3032 if (section && section_is_overlay (section) &&
3033 pc_in_unmapped_range (pc, section))
3034 return pc + section->vma - section->lma;
3035
3036 return pc;
3037}
3038
3039
3040/* Function: symbol_overlayed_address
3041 Return one of two addresses (relative to the VMA or to the LMA),
3042 depending on whether the section is mapped or not. */
3043
c5aa993b 3044CORE_ADDR
fba45db2 3045symbol_overlayed_address (CORE_ADDR address, asection *section)
c906108c
SS
3046{
3047 if (overlay_debugging)
3048 {
3049 /* If the symbol has no section, just return its regular address. */
3050 if (section == 0)
3051 return address;
3052 /* If the symbol's section is not an overlay, just return its address */
3053 if (!section_is_overlay (section))
3054 return address;
3055 /* If the symbol's section is mapped, just return its address */
3056 if (section_is_mapped (section))
3057 return address;
3058 /*
3059 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3060 * then return its LOADED address rather than its vma address!!
3061 */
3062 return overlay_unmapped_address (address, section);
3063 }
3064 return address;
3065}
3066
3067/* Function: find_pc_overlay (PC)
3068 Return the best-match overlay section for PC:
3069 If PC matches a mapped overlay section's VMA, return that section.
3070 Else if PC matches an unmapped section's VMA, return that section.
3071 Else if PC matches an unmapped section's LMA, return that section. */
3072
3073asection *
fba45db2 3074find_pc_overlay (CORE_ADDR pc)
c906108c 3075{
c5aa993b 3076 struct objfile *objfile;
c906108c
SS
3077 struct obj_section *osect, *best_match = NULL;
3078
3079 if (overlay_debugging)
3080 ALL_OBJSECTIONS (objfile, osect)
3081 if (section_is_overlay (osect->the_bfd_section))
c5aa993b
JM
3082 {
3083 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3084 {
3085 if (overlay_is_mapped (osect))
3086 return osect->the_bfd_section;
3087 else
3088 best_match = osect;
3089 }
3090 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3091 best_match = osect;
3092 }
c906108c
SS
3093 return best_match ? best_match->the_bfd_section : NULL;
3094}
3095
3096/* Function: find_pc_mapped_section (PC)
3097 If PC falls into the VMA address range of an overlay section that is
3098 currently marked as MAPPED, return that section. Else return NULL. */
3099
3100asection *
fba45db2 3101find_pc_mapped_section (CORE_ADDR pc)
c906108c 3102{
c5aa993b 3103 struct objfile *objfile;
c906108c
SS
3104 struct obj_section *osect;
3105
3106 if (overlay_debugging)
3107 ALL_OBJSECTIONS (objfile, osect)
3108 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3109 overlay_is_mapped (osect))
c5aa993b 3110 return osect->the_bfd_section;
c906108c
SS
3111
3112 return NULL;
3113}
3114
3115/* Function: list_overlays_command
3116 Print a list of mapped sections and their PC ranges */
3117
3118void
fba45db2 3119list_overlays_command (char *args, int from_tty)
c906108c 3120{
c5aa993b
JM
3121 int nmapped = 0;
3122 struct objfile *objfile;
c906108c
SS
3123 struct obj_section *osect;
3124
3125 if (overlay_debugging)
3126 ALL_OBJSECTIONS (objfile, osect)
3127 if (overlay_is_mapped (osect))
c5aa993b
JM
3128 {
3129 const char *name;
3130 bfd_vma lma, vma;
3131 int size;
3132
3133 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3134 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3135 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3136 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3137
3138 printf_filtered ("Section %s, loaded at ", name);
3139 print_address_numeric (lma, 1, gdb_stdout);
3140 puts_filtered (" - ");
3141 print_address_numeric (lma + size, 1, gdb_stdout);
3142 printf_filtered (", mapped at ");
3143 print_address_numeric (vma, 1, gdb_stdout);
3144 puts_filtered (" - ");
3145 print_address_numeric (vma + size, 1, gdb_stdout);
3146 puts_filtered ("\n");
3147
3148 nmapped++;
3149 }
c906108c
SS
3150 if (nmapped == 0)
3151 printf_filtered ("No sections are mapped.\n");
3152}
3153
3154/* Function: map_overlay_command
3155 Mark the named section as mapped (ie. residing at its VMA address). */
3156
3157void
fba45db2 3158map_overlay_command (char *args, int from_tty)
c906108c 3159{
c5aa993b
JM
3160 struct objfile *objfile, *objfile2;
3161 struct obj_section *sec, *sec2;
3162 asection *bfdsec;
c906108c
SS
3163
3164 if (!overlay_debugging)
515ad16c
EZ
3165 error ("\
3166Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3167the 'overlay manual' command.");
c906108c
SS
3168
3169 if (args == 0 || *args == 0)
3170 error ("Argument required: name of an overlay section");
3171
3172 /* First, find a section matching the user supplied argument */
3173 ALL_OBJSECTIONS (objfile, sec)
3174 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3175 {
3176 /* Now, check to see if the section is an overlay. */
3177 bfdsec = sec->the_bfd_section;
3178 if (!section_is_overlay (bfdsec))
3179 continue; /* not an overlay section */
3180
3181 /* Mark the overlay as "mapped" */
3182 sec->ovly_mapped = 1;
3183
3184 /* Next, make a pass and unmap any sections that are
3185 overlapped by this new section: */
3186 ALL_OBJSECTIONS (objfile2, sec2)
9ec8e6a0
JB
3187 if (sec2->ovly_mapped
3188 && sec != sec2
3189 && sec->the_bfd_section != sec2->the_bfd_section
3190 && sections_overlap (sec->the_bfd_section,
3191 sec2->the_bfd_section))
c5aa993b
JM
3192 {
3193 if (info_verbose)
3194 printf_filtered ("Note: section %s unmapped by overlap\n",
3195 bfd_section_name (objfile->obfd,
3196 sec2->the_bfd_section));
3197 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3198 }
3199 return;
3200 }
c906108c
SS
3201 error ("No overlay section called %s", args);
3202}
3203
3204/* Function: unmap_overlay_command
3205 Mark the overlay section as unmapped
3206 (ie. resident in its LMA address range, rather than the VMA range). */
3207
3208void
fba45db2 3209unmap_overlay_command (char *args, int from_tty)
c906108c 3210{
c5aa993b 3211 struct objfile *objfile;
c906108c
SS
3212 struct obj_section *sec;
3213
3214 if (!overlay_debugging)
515ad16c
EZ
3215 error ("\
3216Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3217the 'overlay manual' command.");
c906108c
SS
3218
3219 if (args == 0 || *args == 0)
3220 error ("Argument required: name of an overlay section");
3221
3222 /* First, find a section matching the user supplied argument */
3223 ALL_OBJSECTIONS (objfile, sec)
3224 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3225 {
3226 if (!sec->ovly_mapped)
3227 error ("Section %s is not mapped", args);
3228 sec->ovly_mapped = 0;
3229 return;
3230 }
c906108c
SS
3231 error ("No overlay section called %s", args);
3232}
3233
3234/* Function: overlay_auto_command
3235 A utility command to turn on overlay debugging.
3236 Possibly this should be done via a set/show command. */
3237
3238static void
fba45db2 3239overlay_auto_command (char *args, int from_tty)
c906108c 3240{
d874f1e2 3241 overlay_debugging = ovly_auto;
1900040c 3242 enable_overlay_breakpoints ();
c906108c
SS
3243 if (info_verbose)
3244 printf_filtered ("Automatic overlay debugging enabled.");
3245}
3246
3247/* Function: overlay_manual_command
3248 A utility command to turn on overlay debugging.
3249 Possibly this should be done via a set/show command. */
3250
3251static void
fba45db2 3252overlay_manual_command (char *args, int from_tty)
c906108c 3253{
d874f1e2 3254 overlay_debugging = ovly_on;
1900040c 3255 disable_overlay_breakpoints ();
c906108c
SS
3256 if (info_verbose)
3257 printf_filtered ("Overlay debugging enabled.");
3258}
3259
3260/* Function: overlay_off_command
3261 A utility command to turn on overlay debugging.
3262 Possibly this should be done via a set/show command. */
3263
3264static void
fba45db2 3265overlay_off_command (char *args, int from_tty)
c906108c 3266{
d874f1e2 3267 overlay_debugging = ovly_off;
1900040c 3268 disable_overlay_breakpoints ();
c906108c
SS
3269 if (info_verbose)
3270 printf_filtered ("Overlay debugging disabled.");
3271}
3272
3273static void
fba45db2 3274overlay_load_command (char *args, int from_tty)
c906108c
SS
3275{
3276 if (target_overlay_update)
3277 (*target_overlay_update) (NULL);
3278 else
3279 error ("This target does not know how to read its overlay state.");
3280}
3281
3282/* Function: overlay_command
3283 A place-holder for a mis-typed command */
3284
3285/* Command list chain containing all defined "overlay" subcommands. */
3286struct cmd_list_element *overlaylist;
3287
3288static void
fba45db2 3289overlay_command (char *args, int from_tty)
c906108c 3290{
c5aa993b 3291 printf_unfiltered
c906108c
SS
3292 ("\"overlay\" must be followed by the name of an overlay command.\n");
3293 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3294}
3295
3296
3297/* Target Overlays for the "Simplest" overlay manager:
3298
3299 This is GDB's default target overlay layer. It works with the
3300 minimal overlay manager supplied as an example by Cygnus. The
3301 entry point is via a function pointer "target_overlay_update",
3302 so targets that use a different runtime overlay manager can
3303 substitute their own overlay_update function and take over the
3304 function pointer.
3305
3306 The overlay_update function pokes around in the target's data structures
3307 to see what overlays are mapped, and updates GDB's overlay mapping with
3308 this information.
3309
3310 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3311 unsigned _novlys; /# number of overlay sections #/
3312 unsigned _ovly_table[_novlys][4] = {
3313 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3314 {..., ..., ..., ...},
3315 }
3316 unsigned _novly_regions; /# number of overlay regions #/
3317 unsigned _ovly_region_table[_novly_regions][3] = {
3318 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3319 {..., ..., ...},
3320 }
c906108c
SS
3321 These functions will attempt to update GDB's mappedness state in the
3322 symbol section table, based on the target's mappedness state.
3323
3324 To do this, we keep a cached copy of the target's _ovly_table, and
3325 attempt to detect when the cached copy is invalidated. The main
3326 entry point is "simple_overlay_update(SECT), which looks up SECT in
3327 the cached table and re-reads only the entry for that section from
3328 the target (whenever possible).
3329 */
3330
3331/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3332static unsigned (*cache_ovly_table)[4] = 0;
c906108c 3333#if 0
c5aa993b 3334static unsigned (*cache_ovly_region_table)[3] = 0;
c906108c 3335#endif
c5aa993b 3336static unsigned cache_novlys = 0;
c906108c 3337#if 0
c5aa993b 3338static unsigned cache_novly_regions = 0;
c906108c
SS
3339#endif
3340static CORE_ADDR cache_ovly_table_base = 0;
3341#if 0
3342static CORE_ADDR cache_ovly_region_table_base = 0;
3343#endif
c5aa993b
JM
3344enum ovly_index
3345 {
3346 VMA, SIZE, LMA, MAPPED
3347 };
c906108c
SS
3348#define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3349
3350/* Throw away the cached copy of _ovly_table */
3351static void
fba45db2 3352simple_free_overlay_table (void)
c906108c
SS
3353{
3354 if (cache_ovly_table)
b8c9b27d 3355 xfree (cache_ovly_table);
c5aa993b 3356 cache_novlys = 0;
c906108c
SS
3357 cache_ovly_table = NULL;
3358 cache_ovly_table_base = 0;
3359}
3360
3361#if 0
3362/* Throw away the cached copy of _ovly_region_table */
3363static void
fba45db2 3364simple_free_overlay_region_table (void)
c906108c
SS
3365{
3366 if (cache_ovly_region_table)
b8c9b27d 3367 xfree (cache_ovly_region_table);
c5aa993b 3368 cache_novly_regions = 0;
c906108c
SS
3369 cache_ovly_region_table = NULL;
3370 cache_ovly_region_table_base = 0;
3371}
3372#endif
3373
3374/* Read an array of ints from the target into a local buffer.
3375 Convert to host order. int LEN is number of ints */
3376static void
fba45db2 3377read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
c906108c 3378{
34c0bd93 3379 /* FIXME (alloca): Not safe if array is very large. */
c906108c 3380 char *buf = alloca (len * TARGET_LONG_BYTES);
c5aa993b 3381 int i;
c906108c
SS
3382
3383 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3384 for (i = 0; i < len; i++)
c5aa993b 3385 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
c906108c
SS
3386 TARGET_LONG_BYTES);
3387}
3388
3389/* Find and grab a copy of the target _ovly_table
3390 (and _novlys, which is needed for the table's size) */
c5aa993b 3391static int
fba45db2 3392simple_read_overlay_table (void)
c906108c 3393{
0d43edd1 3394 struct minimal_symbol *novlys_msym, *ovly_table_msym;
c906108c
SS
3395
3396 simple_free_overlay_table ();
9b27852e 3397 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3398 if (! novlys_msym)
c906108c 3399 {
0d43edd1
JB
3400 error ("Error reading inferior's overlay table: "
3401 "couldn't find `_novlys' variable\n"
3402 "in inferior. Use `overlay manual' mode.");
3403 return 0;
c906108c 3404 }
0d43edd1 3405
9b27852e 3406 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3407 if (! ovly_table_msym)
3408 {
3409 error ("Error reading inferior's overlay table: couldn't find "
3410 "`_ovly_table' array\n"
3411 "in inferior. Use `overlay manual' mode.");
3412 return 0;
3413 }
3414
3415 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3416 cache_ovly_table
3417 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3418 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3419 read_target_long_array (cache_ovly_table_base,
3420 (int *) cache_ovly_table,
3421 cache_novlys * 4);
3422
c5aa993b 3423 return 1; /* SUCCESS */
c906108c
SS
3424}
3425
3426#if 0
3427/* Find and grab a copy of the target _ovly_region_table
3428 (and _novly_regions, which is needed for the table's size) */
c5aa993b 3429static int
fba45db2 3430simple_read_overlay_region_table (void)
c906108c
SS
3431{
3432 struct minimal_symbol *msym;
3433
3434 simple_free_overlay_region_table ();
9b27852e 3435 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
c906108c
SS
3436 if (msym != NULL)
3437 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
c5aa993b
JM
3438 else
3439 return 0; /* failure */
c906108c
SS
3440 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3441 if (cache_ovly_region_table != NULL)
3442 {
9b27852e 3443 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
c906108c
SS
3444 if (msym != NULL)
3445 {
3446 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
c5aa993b
JM
3447 read_target_long_array (cache_ovly_region_table_base,
3448 (int *) cache_ovly_region_table,
c906108c
SS
3449 cache_novly_regions * 3);
3450 }
c5aa993b
JM
3451 else
3452 return 0; /* failure */
c906108c 3453 }
c5aa993b
JM
3454 else
3455 return 0; /* failure */
3456 return 1; /* SUCCESS */
c906108c
SS
3457}
3458#endif
3459
3460/* Function: simple_overlay_update_1
3461 A helper function for simple_overlay_update. Assuming a cached copy
3462 of _ovly_table exists, look through it to find an entry whose vma,
3463 lma and size match those of OSECT. Re-read the entry and make sure
3464 it still matches OSECT (else the table may no longer be valid).
3465 Set OSECT's mapped state to match the entry. Return: 1 for
3466 success, 0 for failure. */
3467
3468static int
fba45db2 3469simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3470{
3471 int i, size;
fbd35540
MS
3472 bfd *obfd = osect->objfile->obfd;
3473 asection *bsect = osect->the_bfd_section;
c906108c
SS
3474
3475 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3476 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3477 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3478 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3479 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3480 {
3481 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3482 (int *) cache_ovly_table[i], 4);
fbd35540
MS
3483 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3484 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3485 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3486 {
3487 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3488 return 1;
3489 }
fbd35540 3490 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3491 return 0;
3492 }
3493 return 0;
3494}
3495
3496/* Function: simple_overlay_update
3497 If OSECT is NULL, then update all sections' mapped state
3498 (after re-reading the entire target _ovly_table).
3499 If OSECT is non-NULL, then try to find a matching entry in the
3500 cached ovly_table and update only OSECT's mapped state.
3501 If a cached entry can't be found or the cache isn't valid, then
3502 re-read the entire cache, and go ahead and update all sections. */
3503
3504static void
fba45db2 3505simple_overlay_update (struct obj_section *osect)
c906108c 3506{
c5aa993b 3507 struct objfile *objfile;
c906108c
SS
3508
3509 /* Were we given an osect to look up? NULL means do all of them. */
3510 if (osect)
3511 /* Have we got a cached copy of the target's overlay table? */
3512 if (cache_ovly_table != NULL)
3513 /* Does its cached location match what's currently in the symtab? */
c5aa993b 3514 if (cache_ovly_table_base ==
9b27852e 3515 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
c906108c
SS
3516 /* Then go ahead and try to look up this single section in the cache */
3517 if (simple_overlay_update_1 (osect))
3518 /* Found it! We're done. */
3519 return;
3520
3521 /* Cached table no good: need to read the entire table anew.
3522 Or else we want all the sections, in which case it's actually
3523 more efficient to read the whole table in one block anyway. */
3524
0d43edd1
JB
3525 if (! simple_read_overlay_table ())
3526 return;
3527
c906108c
SS
3528 /* Now may as well update all sections, even if only one was requested. */
3529 ALL_OBJSECTIONS (objfile, osect)
3530 if (section_is_overlay (osect->the_bfd_section))
c5aa993b
JM
3531 {
3532 int i, size;
fbd35540
MS
3533 bfd *obfd = osect->objfile->obfd;
3534 asection *bsect = osect->the_bfd_section;
c5aa993b
JM
3535
3536 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3537 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3538 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3539 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3540 /* && cache_ovly_table[i][SIZE] == size */ )
3541 { /* obj_section matches i'th entry in ovly_table */
c5aa993b
JM
3542 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3543 break; /* finished with inner for loop: break out */
3544 }
3545 }
c906108c
SS
3546}
3547
086df311
DJ
3548/* Set the output sections and output offsets for section SECTP in
3549 ABFD. The relocation code in BFD will read these offsets, so we
3550 need to be sure they're initialized. We map each section to itself,
3551 with no offset; this means that SECTP->vma will be honored. */
3552
3553static void
3554symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3555{
3556 sectp->output_section = sectp;
3557 sectp->output_offset = 0;
3558}
3559
3560/* Relocate the contents of a debug section SECTP in ABFD. The
3561 contents are stored in BUF if it is non-NULL, or returned in a
3562 malloc'd buffer otherwise.
3563
3564 For some platforms and debug info formats, shared libraries contain
3565 relocations against the debug sections (particularly for DWARF-2;
3566 one affected platform is PowerPC GNU/Linux, although it depends on
3567 the version of the linker in use). Also, ELF object files naturally
3568 have unresolved relocations for their debug sections. We need to apply
3569 the relocations in order to get the locations of symbols correct. */
3570
3571bfd_byte *
3572symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3573{
3574 /* We're only interested in debugging sections with relocation
3575 information. */
3576 if ((sectp->flags & SEC_RELOC) == 0)
3577 return NULL;
3578 if ((sectp->flags & SEC_DEBUGGING) == 0)
3579 return NULL;
3580
3581 /* We will handle section offsets properly elsewhere, so relocate as if
3582 all sections begin at 0. */
3583 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3584
97606a13 3585 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
086df311 3586}
c906108c
SS
3587
3588void
fba45db2 3589_initialize_symfile (void)
c906108c
SS
3590{
3591 struct cmd_list_element *c;
c5aa993b 3592
c906108c 3593 c = add_cmd ("symbol-file", class_files, symbol_file_command,
c5aa993b 3594 "Load symbol table from executable file FILE.\n\
c906108c
SS
3595The `file' command can also load symbol tables, as well as setting the file\n\
3596to execute.", &cmdlist);
5ba2abeb 3597 set_cmd_completer (c, filename_completer);
c906108c
SS
3598
3599 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command,
db162d44 3600 "Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
c906108c 3601Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
2acceee2 3602ADDR is the starting address of the file's text.\n\
db162d44
EZ
3603The optional arguments are section-name section-address pairs and\n\
3604should be specified if the data and bss segments are not contiguous\n\
d4654627 3605with the text. SECT is a section name to be loaded at SECT_ADDR.",
c906108c 3606 &cmdlist);
5ba2abeb 3607 set_cmd_completer (c, filename_completer);
c906108c
SS
3608
3609 c = add_cmd ("add-shared-symbol-files", class_files,
3610 add_shared_symbol_files_command,
3611 "Load the symbols from shared objects in the dynamic linker's link map.",
c5aa993b 3612 &cmdlist);
c906108c
SS
3613 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3614 &cmdlist);
3615
3616 c = add_cmd ("load", class_files, load_command,
c5aa993b 3617 "Dynamically load FILE into the running program, and record its symbols\n\
c906108c 3618for access from GDB.", &cmdlist);
5ba2abeb 3619 set_cmd_completer (c, filename_completer);
c906108c
SS
3620
3621 add_show_from_set
3622 (add_set_cmd ("symbol-reloading", class_support, var_boolean,
c5aa993b
JM
3623 (char *) &symbol_reloading,
3624 "Set dynamic symbol table reloading multiple times in one run.",
c906108c
SS
3625 &setlist),
3626 &showlist);
3627
c5aa993b
JM
3628 add_prefix_cmd ("overlay", class_support, overlay_command,
3629 "Commands for debugging overlays.", &overlaylist,
c906108c
SS
3630 "overlay ", 0, &cmdlist);
3631
3632 add_com_alias ("ovly", "overlay", class_alias, 1);
3633 add_com_alias ("ov", "overlay", class_alias, 1);
3634
c5aa993b 3635 add_cmd ("map-overlay", class_support, map_overlay_command,
c906108c
SS
3636 "Assert that an overlay section is mapped.", &overlaylist);
3637
c5aa993b 3638 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
c906108c
SS
3639 "Assert that an overlay section is unmapped.", &overlaylist);
3640
c5aa993b 3641 add_cmd ("list-overlays", class_support, list_overlays_command,
c906108c
SS
3642 "List mappings of overlay sections.", &overlaylist);
3643
c5aa993b 3644 add_cmd ("manual", class_support, overlay_manual_command,
c906108c 3645 "Enable overlay debugging.", &overlaylist);
c5aa993b 3646 add_cmd ("off", class_support, overlay_off_command,
c906108c 3647 "Disable overlay debugging.", &overlaylist);
c5aa993b 3648 add_cmd ("auto", class_support, overlay_auto_command,
c906108c 3649 "Enable automatic overlay debugging.", &overlaylist);
c5aa993b 3650 add_cmd ("load-target", class_support, overlay_load_command,
c906108c
SS
3651 "Read the overlay mapping state from the target.", &overlaylist);
3652
3653 /* Filename extension to source language lookup table: */
3654 init_filename_language_table ();
3655 c = add_set_cmd ("extension-language", class_files, var_string_noescape,
c5aa993b 3656 (char *) &ext_args,
c906108c
SS
3657 "Set mapping between filename extension and source language.\n\
3658Usage: set extension-language .foo bar",
c5aa993b 3659 &setlist);
9f60d481 3660 set_cmd_cfunc (c, set_ext_lang_command);
c906108c 3661
c5aa993b 3662 add_info ("extensions", info_ext_lang_command,
c906108c 3663 "All filename extensions associated with a source language.");
917317f4
JM
3664
3665 add_show_from_set
3666 (add_set_cmd ("download-write-size", class_obscure,
3667 var_integer, (char *) &download_write_size,
3668 "Set the write size used when downloading a program.\n"
3669 "Only used when downloading a program onto a remote\n"
3670 "target. Specify zero, or a negative value, to disable\n"
3671 "blocked writes. The actual size of each transfer is also\n"
3672 "limited by the size of the target packet and the memory\n"
3673 "cache.\n",
3674 &setlist),
3675 &showlist);
5b5d99cf
JB
3676
3677 debug_file_directory = xstrdup (DEBUGDIR);
3678 c = (add_set_cmd
3679 ("debug-file-directory", class_support, var_string,
3680 (char *) &debug_file_directory,
3681 "Set the directory where separate debug symbols are searched for.\n"
3682 "Separate debug symbols are first searched for in the same\n"
3683 "directory as the binary, then in the `" DEBUG_SUBDIRECTORY
3684 "' subdirectory,\n"
3685 "and lastly at the path of the directory of the binary with\n"
3686 "the global debug-file directory prepended\n",
3687 &setlist));
3688 add_show_from_set (c, &showlist);
3689 set_cmd_completer (c, filename_completer);
c906108c 3690}
This page took 0.76693 seconds and 4 git commands to generate.