* gdb.mi/gdb669.exp, gdb.mi/mi-pthreads.exp,
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c
AC
2
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
1bac305b 4 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
8926118c 5
c906108c
SS
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b
JM
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
c906108c
SS
24
25#include "defs.h"
086df311 26#include "bfdlink.h"
c906108c
SS
27#include "symtab.h"
28#include "gdbtypes.h"
29#include "gdbcore.h"
30#include "frame.h"
31#include "target.h"
32#include "value.h"
33#include "symfile.h"
34#include "objfiles.h"
0378c332 35#include "source.h"
c906108c
SS
36#include "gdbcmd.h"
37#include "breakpoint.h"
38#include "language.h"
39#include "complaints.h"
40#include "demangle.h"
c5aa993b 41#include "inferior.h" /* for write_pc */
5b5d99cf 42#include "filenames.h" /* for DOSish file names */
c906108c 43#include "gdb-stabs.h"
04ea0df1 44#include "gdb_obstack.h"
d75b5104 45#include "completer.h"
af5f3db6 46#include "bcache.h"
38017ce8 47#include <readline/readline.h>
7e8580c1 48#include "gdb_assert.h"
c906108c 49
c906108c
SS
50#include <sys/types.h>
51#include <fcntl.h>
52#include "gdb_string.h"
53#include "gdb_stat.h"
54#include <ctype.h>
55#include <time.h>
c906108c
SS
56
57#ifndef O_BINARY
58#define O_BINARY 0
59#endif
60
61#ifdef HPUXHPPA
62
63/* Some HP-UX related globals to clear when a new "main"
64 symbol file is loaded. HP-specific. */
65
66extern int hp_som_som_object_present;
67extern int hp_cxx_exception_support_initialized;
68#define RESET_HP_UX_GLOBALS() do {\
69 hp_som_som_object_present = 0; /* indicates HP-compiled code */ \
70 hp_cxx_exception_support_initialized = 0; /* must reinitialize exception stuff */ \
71 } while (0)
72#endif
73
917317f4 74int (*ui_load_progress_hook) (const char *section, unsigned long num);
c2d11a7d
JM
75void (*show_load_progress) (const char *section,
76 unsigned long section_sent,
77 unsigned long section_size,
78 unsigned long total_sent,
79 unsigned long total_size);
507f3c78
KB
80void (*pre_add_symbol_hook) (char *);
81void (*post_add_symbol_hook) (void);
82void (*target_new_objfile_hook) (struct objfile *);
c906108c 83
74b7792f
AC
84static void clear_symtab_users_cleanup (void *ignore);
85
c906108c 86/* Global variables owned by this file */
c5aa993b 87int readnow_symbol_files; /* Read full symbols immediately */
c906108c 88
c906108c
SS
89/* External variables and functions referenced. */
90
a14ed312 91extern void report_transfer_performance (unsigned long, time_t, time_t);
c906108c
SS
92
93/* Functions this file defines */
94
95#if 0
a14ed312
KB
96static int simple_read_overlay_region_table (void);
97static void simple_free_overlay_region_table (void);
c906108c
SS
98#endif
99
a14ed312 100static void set_initial_language (void);
c906108c 101
a14ed312 102static void load_command (char *, int);
c906108c 103
d7db6da9
FN
104static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
105
a14ed312 106static void add_symbol_file_command (char *, int);
c906108c 107
a14ed312 108static void add_shared_symbol_files_command (char *, int);
c906108c 109
5b5d99cf
JB
110static void reread_separate_symbols (struct objfile *objfile);
111
a14ed312 112static void cashier_psymtab (struct partial_symtab *);
c906108c 113
a14ed312 114bfd *symfile_bfd_open (char *);
c906108c 115
0e931cf0
JB
116int get_section_index (struct objfile *, char *);
117
a14ed312 118static void find_sym_fns (struct objfile *);
c906108c 119
a14ed312 120static void decrement_reading_symtab (void *);
c906108c 121
a14ed312 122static void overlay_invalidate_all (void);
c906108c 123
a14ed312 124static int overlay_is_mapped (struct obj_section *);
c906108c 125
a14ed312 126void list_overlays_command (char *, int);
c906108c 127
a14ed312 128void map_overlay_command (char *, int);
c906108c 129
a14ed312 130void unmap_overlay_command (char *, int);
c906108c 131
a14ed312 132static void overlay_auto_command (char *, int);
c906108c 133
a14ed312 134static void overlay_manual_command (char *, int);
c906108c 135
a14ed312 136static void overlay_off_command (char *, int);
c906108c 137
a14ed312 138static void overlay_load_command (char *, int);
c906108c 139
a14ed312 140static void overlay_command (char *, int);
c906108c 141
a14ed312 142static void simple_free_overlay_table (void);
c906108c 143
a14ed312 144static void read_target_long_array (CORE_ADDR, unsigned int *, int);
c906108c 145
a14ed312 146static int simple_read_overlay_table (void);
c906108c 147
a14ed312 148static int simple_overlay_update_1 (struct obj_section *);
c906108c 149
a14ed312 150static void add_filename_language (char *ext, enum language lang);
392a587b 151
a14ed312 152static void set_ext_lang_command (char *args, int from_tty);
392a587b 153
a14ed312 154static void info_ext_lang_command (char *args, int from_tty);
392a587b 155
5b5d99cf
JB
156static char *find_separate_debug_file (struct objfile *objfile);
157
a14ed312 158static void init_filename_language_table (void);
392a587b 159
a14ed312 160void _initialize_symfile (void);
c906108c
SS
161
162/* List of all available sym_fns. On gdb startup, each object file reader
163 calls add_symtab_fns() to register information on each format it is
164 prepared to read. */
165
166static struct sym_fns *symtab_fns = NULL;
167
168/* Flag for whether user will be reloading symbols multiple times.
169 Defaults to ON for VxWorks, otherwise OFF. */
170
171#ifdef SYMBOL_RELOADING_DEFAULT
172int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
173#else
174int symbol_reloading = 0;
175#endif
176
b7209cb4
FF
177/* If non-zero, shared library symbols will be added automatically
178 when the inferior is created, new libraries are loaded, or when
179 attaching to the inferior. This is almost always what users will
180 want to have happen; but for very large programs, the startup time
181 will be excessive, and so if this is a problem, the user can clear
182 this flag and then add the shared library symbols as needed. Note
183 that there is a potential for confusion, since if the shared
c906108c 184 library symbols are not loaded, commands like "info fun" will *not*
b7209cb4 185 report all the functions that are actually present. */
c906108c
SS
186
187int auto_solib_add = 1;
b7209cb4
FF
188
189/* For systems that support it, a threshold size in megabytes. If
190 automatically adding a new library's symbol table to those already
191 known to the debugger would cause the total shared library symbol
192 size to exceed this threshhold, then the shlib's symbols are not
193 added. The threshold is ignored if the user explicitly asks for a
194 shlib to be added, such as when using the "sharedlibrary"
195 command. */
196
197int auto_solib_limit;
c906108c 198\f
c5aa993b 199
c906108c
SS
200/* Since this function is called from within qsort, in an ANSI environment
201 it must conform to the prototype for qsort, which specifies that the
202 comparison function takes two "void *" pointers. */
203
204static int
0cd64fe2 205compare_symbols (const void *s1p, const void *s2p)
c906108c
SS
206{
207 register struct symbol **s1, **s2;
208
209 s1 = (struct symbol **) s1p;
210 s2 = (struct symbol **) s2p;
494b7ec9 211 return (strcmp (SYMBOL_SOURCE_NAME (*s1), SYMBOL_SOURCE_NAME (*s2)));
c906108c
SS
212}
213
214/*
215
c5aa993b 216 LOCAL FUNCTION
c906108c 217
c5aa993b 218 compare_psymbols -- compare two partial symbols by name
c906108c 219
c5aa993b 220 DESCRIPTION
c906108c 221
c5aa993b
JM
222 Given pointers to pointers to two partial symbol table entries,
223 compare them by name and return -N, 0, or +N (ala strcmp).
224 Typically used by sorting routines like qsort().
c906108c 225
c5aa993b 226 NOTES
c906108c 227
c5aa993b
JM
228 Does direct compare of first two characters before punting
229 and passing to strcmp for longer compares. Note that the
230 original version had a bug whereby two null strings or two
231 identically named one character strings would return the
232 comparison of memory following the null byte.
c906108c
SS
233
234 */
235
236static int
0cd64fe2 237compare_psymbols (const void *s1p, const void *s2p)
c906108c 238{
fba7f19c
EZ
239 register struct partial_symbol **s1, **s2;
240 register char *st1, *st2;
241
242 s1 = (struct partial_symbol **) s1p;
243 s2 = (struct partial_symbol **) s2p;
244 st1 = SYMBOL_SOURCE_NAME (*s1);
245 st2 = SYMBOL_SOURCE_NAME (*s2);
246
c906108c
SS
247
248 if ((st1[0] - st2[0]) || !st1[0])
249 {
250 return (st1[0] - st2[0]);
251 }
252 else if ((st1[1] - st2[1]) || !st1[1])
253 {
254 return (st1[1] - st2[1]);
255 }
256 else
257 {
c5aa993b 258 return (strcmp (st1, st2));
c906108c
SS
259 }
260}
261
262void
fba45db2 263sort_pst_symbols (struct partial_symtab *pst)
c906108c
SS
264{
265 /* Sort the global list; don't sort the static list */
266
c5aa993b
JM
267 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
268 pst->n_global_syms, sizeof (struct partial_symbol *),
c906108c
SS
269 compare_psymbols);
270}
271
272/* Call sort_block_syms to sort alphabetically the symbols of one block. */
273
274void
fba45db2 275sort_block_syms (register struct block *b)
c906108c
SS
276{
277 qsort (&BLOCK_SYM (b, 0), BLOCK_NSYMS (b),
278 sizeof (struct symbol *), compare_symbols);
279}
280
281/* Call sort_symtab_syms to sort alphabetically
282 the symbols of each block of one symtab. */
283
284void
fba45db2 285sort_symtab_syms (register struct symtab *s)
c906108c
SS
286{
287 register struct blockvector *bv;
288 int nbl;
289 int i;
290 register struct block *b;
291
292 if (s == 0)
293 return;
294 bv = BLOCKVECTOR (s);
295 nbl = BLOCKVECTOR_NBLOCKS (bv);
296 for (i = 0; i < nbl; i++)
297 {
298 b = BLOCKVECTOR_BLOCK (bv, i);
299 if (BLOCK_SHOULD_SORT (b))
300 sort_block_syms (b);
301 }
302}
303
304/* Make a null terminated copy of the string at PTR with SIZE characters in
305 the obstack pointed to by OBSTACKP . Returns the address of the copy.
306 Note that the string at PTR does not have to be null terminated, I.E. it
307 may be part of a larger string and we are only saving a substring. */
308
309char *
63ca651f 310obsavestring (const char *ptr, int size, struct obstack *obstackp)
c906108c
SS
311{
312 register char *p = (char *) obstack_alloc (obstackp, size + 1);
313 /* Open-coded memcpy--saves function call time. These strings are usually
314 short. FIXME: Is this really still true with a compiler that can
315 inline memcpy? */
316 {
63ca651f 317 register const char *p1 = ptr;
c906108c 318 register char *p2 = p;
63ca651f 319 const char *end = ptr + size;
c906108c
SS
320 while (p1 != end)
321 *p2++ = *p1++;
322 }
323 p[size] = 0;
324 return p;
325}
326
327/* Concatenate strings S1, S2 and S3; return the new string. Space is found
328 in the obstack pointed to by OBSTACKP. */
329
330char *
fba45db2
KB
331obconcat (struct obstack *obstackp, const char *s1, const char *s2,
332 const char *s3)
c906108c
SS
333{
334 register int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
335 register char *val = (char *) obstack_alloc (obstackp, len);
336 strcpy (val, s1);
337 strcat (val, s2);
338 strcat (val, s3);
339 return val;
340}
341
342/* True if we are nested inside psymtab_to_symtab. */
343
344int currently_reading_symtab = 0;
345
346static void
fba45db2 347decrement_reading_symtab (void *dummy)
c906108c
SS
348{
349 currently_reading_symtab--;
350}
351
352/* Get the symbol table that corresponds to a partial_symtab.
353 This is fast after the first time you do it. In fact, there
354 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
355 case inline. */
356
357struct symtab *
fba45db2 358psymtab_to_symtab (register struct partial_symtab *pst)
c906108c
SS
359{
360 /* If it's been looked up before, return it. */
361 if (pst->symtab)
362 return pst->symtab;
363
364 /* If it has not yet been read in, read it. */
365 if (!pst->readin)
c5aa993b 366 {
c906108c
SS
367 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
368 currently_reading_symtab++;
369 (*pst->read_symtab) (pst);
370 do_cleanups (back_to);
371 }
372
373 return pst->symtab;
374}
375
376/* Initialize entry point information for this objfile. */
377
378void
fba45db2 379init_entry_point_info (struct objfile *objfile)
c906108c
SS
380{
381 /* Save startup file's range of PC addresses to help blockframe.c
382 decide where the bottom of the stack is. */
383
c5aa993b 384 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
c906108c
SS
385 {
386 /* Executable file -- record its entry point so we'll recognize
c5aa993b
JM
387 the startup file because it contains the entry point. */
388 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
c906108c
SS
389 }
390 else
391 {
392 /* Examination of non-executable.o files. Short-circuit this stuff. */
c5aa993b 393 objfile->ei.entry_point = INVALID_ENTRY_POINT;
c906108c 394 }
c5aa993b
JM
395 objfile->ei.entry_file_lowpc = INVALID_ENTRY_LOWPC;
396 objfile->ei.entry_file_highpc = INVALID_ENTRY_HIGHPC;
397 objfile->ei.entry_func_lowpc = INVALID_ENTRY_LOWPC;
398 objfile->ei.entry_func_highpc = INVALID_ENTRY_HIGHPC;
399 objfile->ei.main_func_lowpc = INVALID_ENTRY_LOWPC;
400 objfile->ei.main_func_highpc = INVALID_ENTRY_HIGHPC;
c906108c
SS
401}
402
403/* Get current entry point address. */
404
405CORE_ADDR
fba45db2 406entry_point_address (void)
c906108c
SS
407{
408 return symfile_objfile ? symfile_objfile->ei.entry_point : 0;
409}
410
411/* Remember the lowest-addressed loadable section we've seen.
412 This function is called via bfd_map_over_sections.
413
414 In case of equal vmas, the section with the largest size becomes the
415 lowest-addressed loadable section.
416
417 If the vmas and sizes are equal, the last section is considered the
418 lowest-addressed loadable section. */
419
420void
4efb68b1 421find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 422{
c5aa993b 423 asection **lowest = (asection **) obj;
c906108c
SS
424
425 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
426 return;
427 if (!*lowest)
428 *lowest = sect; /* First loadable section */
429 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
430 *lowest = sect; /* A lower loadable section */
431 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
432 && (bfd_section_size (abfd, (*lowest))
433 <= bfd_section_size (abfd, sect)))
434 *lowest = sect;
435}
436
62557bbc
KB
437
438/* Build (allocate and populate) a section_addr_info struct from
439 an existing section table. */
440
441extern struct section_addr_info *
442build_section_addr_info_from_section_table (const struct section_table *start,
443 const struct section_table *end)
444{
445 struct section_addr_info *sap;
446 const struct section_table *stp;
447 int oidx;
448
449 sap = xmalloc (sizeof (struct section_addr_info));
450 memset (sap, 0, sizeof (struct section_addr_info));
451
452 for (stp = start, oidx = 0; stp != end; stp++)
453 {
fbd35540
MS
454 if (bfd_get_section_flags (stp->bfd,
455 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
62557bbc
KB
456 && oidx < MAX_SECTIONS)
457 {
458 sap->other[oidx].addr = stp->addr;
fbd35540
MS
459 sap->other[oidx].name
460 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
62557bbc
KB
461 sap->other[oidx].sectindex = stp->the_bfd_section->index;
462 oidx++;
463 }
464 }
465
466 return sap;
467}
468
469
470/* Free all memory allocated by build_section_addr_info_from_section_table. */
471
472extern void
473free_section_addr_info (struct section_addr_info *sap)
474{
475 int idx;
476
477 for (idx = 0; idx < MAX_SECTIONS; idx++)
478 if (sap->other[idx].name)
b8c9b27d
KB
479 xfree (sap->other[idx].name);
480 xfree (sap);
62557bbc
KB
481}
482
483
e8289572
JB
484/* Initialize OBJFILE's sect_index_* members. */
485static void
486init_objfile_sect_indices (struct objfile *objfile)
c906108c 487{
e8289572 488 asection *sect;
c906108c 489 int i;
e8289572 490
b8fbeb18
EZ
491 sect = bfd_get_section_by_name (objfile->obfd, ".text");
492 if (sect)
493 objfile->sect_index_text = sect->index;
494
495 sect = bfd_get_section_by_name (objfile->obfd, ".data");
496 if (sect)
497 objfile->sect_index_data = sect->index;
498
499 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
500 if (sect)
501 objfile->sect_index_bss = sect->index;
502
503 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
504 if (sect)
505 objfile->sect_index_rodata = sect->index;
506
bbcd32ad
FF
507 /* This is where things get really weird... We MUST have valid
508 indices for the various sect_index_* members or gdb will abort.
509 So if for example, there is no ".text" section, we have to
510 accomodate that. Except when explicitly adding symbol files at
511 some address, section_offsets contains nothing but zeros, so it
512 doesn't matter which slot in section_offsets the individual
513 sect_index_* members index into. So if they are all zero, it is
514 safe to just point all the currently uninitialized indices to the
515 first slot. */
516
517 for (i = 0; i < objfile->num_sections; i++)
518 {
519 if (ANOFFSET (objfile->section_offsets, i) != 0)
520 {
521 break;
522 }
523 }
524 if (i == objfile->num_sections)
525 {
526 if (objfile->sect_index_text == -1)
527 objfile->sect_index_text = 0;
528 if (objfile->sect_index_data == -1)
529 objfile->sect_index_data = 0;
530 if (objfile->sect_index_bss == -1)
531 objfile->sect_index_bss = 0;
532 if (objfile->sect_index_rodata == -1)
533 objfile->sect_index_rodata = 0;
534 }
b8fbeb18 535}
c906108c 536
e8289572
JB
537
538/* Parse the user's idea of an offset for dynamic linking, into our idea
539 of how to represent it for fast symbol reading. This is the default
540 version of the sym_fns.sym_offsets function for symbol readers that
541 don't need to do anything special. It allocates a section_offsets table
542 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
543
544void
545default_symfile_offsets (struct objfile *objfile,
546 struct section_addr_info *addrs)
547{
548 int i;
549
550 objfile->num_sections = SECT_OFF_MAX;
551 objfile->section_offsets = (struct section_offsets *)
552 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
553 memset (objfile->section_offsets, 0, SIZEOF_SECTION_OFFSETS);
554
555 /* Now calculate offsets for section that were specified by the
556 caller. */
557 for (i = 0; i < MAX_SECTIONS && addrs->other[i].name; i++)
558 {
559 struct other_sections *osp ;
560
561 osp = &addrs->other[i] ;
562 if (osp->addr == 0)
563 continue;
564
565 /* Record all sections in offsets */
566 /* The section_offsets in the objfile are here filled in using
567 the BFD index. */
568 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
569 }
570
571 /* Remember the bfd indexes for the .text, .data, .bss and
572 .rodata sections. */
573 init_objfile_sect_indices (objfile);
574}
575
576
c906108c
SS
577/* Process a symbol file, as either the main file or as a dynamically
578 loaded file.
579
96baa820
JM
580 OBJFILE is where the symbols are to be read from.
581
7e8580c1
JB
582 ADDRS is the list of section load addresses. If the user has given
583 an 'add-symbol-file' command, then this is the list of offsets and
584 addresses he or she provided as arguments to the command; or, if
585 we're handling a shared library, these are the actual addresses the
586 sections are loaded at, according to the inferior's dynamic linker
587 (as gleaned by GDB's shared library code). We convert each address
588 into an offset from the section VMA's as it appears in the object
589 file, and then call the file's sym_offsets function to convert this
590 into a format-specific offset table --- a `struct section_offsets'.
591 If ADDRS is non-zero, OFFSETS must be zero.
592
593 OFFSETS is a table of section offsets already in the right
594 format-specific representation. NUM_OFFSETS is the number of
595 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
596 assume this is the proper table the call to sym_offsets described
597 above would produce. Instead of calling sym_offsets, we just dump
598 it right into objfile->section_offsets. (When we're re-reading
599 symbols from an objfile, we don't have the original load address
600 list any more; all we have is the section offset table.) If
601 OFFSETS is non-zero, ADDRS must be zero.
96baa820
JM
602
603 MAINLINE is nonzero if this is the main symbol file, or zero if
604 it's an extra symbol file such as dynamically loaded code.
605
606 VERBO is nonzero if the caller has printed a verbose message about
607 the symbol reading (and complaints can be more terse about it). */
c906108c
SS
608
609void
7e8580c1
JB
610syms_from_objfile (struct objfile *objfile,
611 struct section_addr_info *addrs,
612 struct section_offsets *offsets,
613 int num_offsets,
614 int mainline,
615 int verbo)
c906108c 616{
2acceee2
JM
617 asection *lower_sect;
618 asection *sect;
619 CORE_ADDR lower_offset;
620 struct section_addr_info local_addr;
c906108c 621 struct cleanup *old_chain;
2acceee2
JM
622 int i;
623
7e8580c1 624 gdb_assert (! (addrs && offsets));
2acceee2 625
7e8580c1
JB
626 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
627 list. We now establish the convention that an addr of zero means
628 no load address was specified. */
629 if (! addrs && ! offsets)
2acceee2
JM
630 {
631 memset (&local_addr, 0, sizeof (local_addr));
632 addrs = &local_addr;
633 }
c906108c 634
7e8580c1
JB
635 /* Now either addrs or offsets is non-zero. */
636
c906108c
SS
637 init_entry_point_info (objfile);
638 find_sym_fns (objfile);
639
75245b24
MS
640 if (objfile->sf == NULL)
641 return; /* No symbols. */
642
c906108c
SS
643 /* Make sure that partially constructed symbol tables will be cleaned up
644 if an error occurs during symbol reading. */
74b7792f 645 old_chain = make_cleanup_free_objfile (objfile);
c906108c 646
c5aa993b 647 if (mainline)
c906108c
SS
648 {
649 /* We will modify the main symbol table, make sure that all its users
c5aa993b 650 will be cleaned up if an error occurs during symbol reading. */
74b7792f 651 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
652
653 /* Since no error yet, throw away the old symbol table. */
654
655 if (symfile_objfile != NULL)
656 {
657 free_objfile (symfile_objfile);
658 symfile_objfile = NULL;
659 }
660
661 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
662 If the user wants to get rid of them, they should do "symbol-file"
663 without arguments first. Not sure this is the best behavior
664 (PR 2207). */
c906108c 665
c5aa993b 666 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
667 }
668
669 /* Convert addr into an offset rather than an absolute address.
670 We find the lowest address of a loaded segment in the objfile,
53a5351d 671 and assume that <addr> is where that got loaded.
c906108c 672
53a5351d
JM
673 We no longer warn if the lowest section is not a text segment (as
674 happens for the PA64 port. */
e7cf9df1 675 if (!mainline)
c906108c 676 {
2acceee2
JM
677 /* Find lowest loadable section to be used as starting point for
678 continguous sections. FIXME!! won't work without call to find
679 .text first, but this assumes text is lowest section. */
680 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
681 if (lower_sect == NULL)
c906108c 682 bfd_map_over_sections (objfile->obfd, find_lowest_section,
4efb68b1 683 &lower_sect);
2acceee2 684 if (lower_sect == NULL)
c906108c
SS
685 warning ("no loadable sections found in added symbol-file %s",
686 objfile->name);
b8fbeb18
EZ
687 else
688 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
689 warning ("Lowest section in %s is %s at %s",
690 objfile->name,
691 bfd_section_name (objfile->obfd, lower_sect),
692 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
2acceee2
JM
693 if (lower_sect != NULL)
694 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
695 else
696 lower_offset = 0;
697
13de58df 698 /* Calculate offsets for the loadable sections.
2acceee2
JM
699 FIXME! Sections must be in order of increasing loadable section
700 so that contiguous sections can use the lower-offset!!!
701
13de58df
JB
702 Adjust offsets if the segments are not contiguous.
703 If the section is contiguous, its offset should be set to
2acceee2
JM
704 the offset of the highest loadable section lower than it
705 (the loadable section directly below it in memory).
706 this_offset = lower_offset = lower_addr - lower_orig_addr */
707
13de58df 708 /* Calculate offsets for sections. */
7e8580c1
JB
709 if (addrs)
710 for (i=0 ; i < MAX_SECTIONS && addrs->other[i].name; i++)
711 {
712 if (addrs->other[i].addr != 0)
713 {
714 sect = bfd_get_section_by_name (objfile->obfd,
715 addrs->other[i].name);
716 if (sect)
717 {
718 addrs->other[i].addr
719 -= bfd_section_vma (objfile->obfd, sect);
720 lower_offset = addrs->other[i].addr;
721 /* This is the index used by BFD. */
722 addrs->other[i].sectindex = sect->index ;
723 }
724 else
725 {
726 warning ("section %s not found in %s",
727 addrs->other[i].name,
728 objfile->name);
729 addrs->other[i].addr = 0;
730 }
731 }
732 else
733 addrs->other[i].addr = lower_offset;
734 }
c906108c
SS
735 }
736
737 /* Initialize symbol reading routines for this objfile, allow complaints to
738 appear for this new file, and record how verbose to be, then do the
739 initial symbol reading for this file. */
740
c5aa993b 741 (*objfile->sf->sym_init) (objfile);
b9caf505 742 clear_complaints (&symfile_complaints, 1, verbo);
c906108c 743
7e8580c1
JB
744 if (addrs)
745 (*objfile->sf->sym_offsets) (objfile, addrs);
746 else
747 {
748 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
749
750 /* Just copy in the offset table directly as given to us. */
751 objfile->num_sections = num_offsets;
752 objfile->section_offsets
753 = ((struct section_offsets *)
754 obstack_alloc (&objfile->psymbol_obstack, size));
755 memcpy (objfile->section_offsets, offsets, size);
756
757 init_objfile_sect_indices (objfile);
758 }
c906108c
SS
759
760#ifndef IBM6000_TARGET
761 /* This is a SVR4/SunOS specific hack, I think. In any event, it
762 screws RS/6000. sym_offsets should be doing this sort of thing,
763 because it knows the mapping between bfd sections and
764 section_offsets. */
765 /* This is a hack. As far as I can tell, section offsets are not
766 target dependent. They are all set to addr with a couple of
767 exceptions. The exceptions are sysvr4 shared libraries, whose
768 offsets are kept in solib structures anyway and rs6000 xcoff
769 which handles shared libraries in a completely unique way.
770
771 Section offsets are built similarly, except that they are built
772 by adding addr in all cases because there is no clear mapping
773 from section_offsets into actual sections. Note that solib.c
96baa820 774 has a different algorithm for finding section offsets.
c906108c
SS
775
776 These should probably all be collapsed into some target
777 independent form of shared library support. FIXME. */
778
2acceee2 779 if (addrs)
c906108c
SS
780 {
781 struct obj_section *s;
782
2acceee2
JM
783 /* Map section offsets in "addr" back to the object's
784 sections by comparing the section names with bfd's
785 section names. Then adjust the section address by
786 the offset. */ /* for gdb/13815 */
787
96baa820 788 ALL_OBJFILE_OSECTIONS (objfile, s)
c906108c 789 {
2acceee2
JM
790 CORE_ADDR s_addr = 0;
791 int i;
792
62557bbc
KB
793 for (i = 0;
794 !s_addr && i < MAX_SECTIONS && addrs->other[i].name;
795 i++)
fbd35540
MS
796 if (strcmp (bfd_section_name (s->objfile->obfd,
797 s->the_bfd_section),
798 addrs->other[i].name) == 0)
2acceee2
JM
799 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
800
c906108c 801 s->addr -= s->offset;
2acceee2 802 s->addr += s_addr;
c906108c 803 s->endaddr -= s->offset;
2acceee2
JM
804 s->endaddr += s_addr;
805 s->offset += s_addr;
c906108c
SS
806 }
807 }
808#endif /* not IBM6000_TARGET */
809
96baa820 810 (*objfile->sf->sym_read) (objfile, mainline);
c906108c 811
c906108c
SS
812 /* Don't allow char * to have a typename (else would get caddr_t).
813 Ditto void *. FIXME: Check whether this is now done by all the
814 symbol readers themselves (many of them now do), and if so remove
815 it from here. */
816
817 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
818 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
819
820 /* Mark the objfile has having had initial symbol read attempted. Note
821 that this does not mean we found any symbols... */
822
c5aa993b 823 objfile->flags |= OBJF_SYMS;
c906108c
SS
824
825 /* Discard cleanups as symbol reading was successful. */
826
827 discard_cleanups (old_chain);
828
96baa820 829 /* Call this after reading in a new symbol table to give target
38c2ef12 830 dependent code a crack at the new symbols. For instance, this
96baa820
JM
831 could be used to update the values of target-specific symbols GDB
832 needs to keep track of (such as _sigtramp, or whatever). */
c906108c
SS
833
834 TARGET_SYMFILE_POSTREAD (objfile);
835}
836
837/* Perform required actions after either reading in the initial
838 symbols for a new objfile, or mapping in the symbols from a reusable
839 objfile. */
c5aa993b 840
c906108c 841void
fba45db2 842new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
c906108c
SS
843{
844
845 /* If this is the main symbol file we have to clean up all users of the
846 old main symbol file. Otherwise it is sufficient to fixup all the
847 breakpoints that may have been redefined by this symbol file. */
848 if (mainline)
849 {
850 /* OK, make it the "real" symbol file. */
851 symfile_objfile = objfile;
852
853 clear_symtab_users ();
854 }
855 else
856 {
857 breakpoint_re_set ();
858 }
859
860 /* We're done reading the symbol file; finish off complaints. */
b9caf505 861 clear_complaints (&symfile_complaints, 0, verbo);
c906108c
SS
862}
863
864/* Process a symbol file, as either the main file or as a dynamically
865 loaded file.
866
867 NAME is the file name (which will be tilde-expanded and made
868 absolute herein) (but we don't free or modify NAME itself).
7904e09f
JB
869
870 FROM_TTY says how verbose to be.
871
872 MAINLINE specifies whether this is the main symbol file, or whether
873 it's an extra symbol file such as dynamically loaded code.
874
875 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
876 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
877 non-zero.
c906108c 878
c906108c
SS
879 Upon success, returns a pointer to the objfile that was added.
880 Upon failure, jumps back to command level (never returns). */
7904e09f
JB
881static struct objfile *
882symbol_file_add_with_addrs_or_offsets (char *name, int from_tty,
883 struct section_addr_info *addrs,
884 struct section_offsets *offsets,
885 int num_offsets,
886 int mainline, int flags)
c906108c
SS
887{
888 struct objfile *objfile;
889 struct partial_symtab *psymtab;
5b5d99cf 890 char *debugfile;
c906108c 891 bfd *abfd;
5b5d99cf
JB
892 struct section_addr_info orig_addrs;
893
894 if (addrs)
895 orig_addrs = *addrs;
c906108c
SS
896
897 /* Open a bfd for the file, and give user a chance to burp if we'd be
898 interactively wiping out any existing symbols. */
899
900 abfd = symfile_bfd_open (name);
901
902 if ((have_full_symbols () || have_partial_symbols ())
903 && mainline
904 && from_tty
905 && !query ("Load new symbol table from \"%s\"? ", name))
c5aa993b 906 error ("Not confirmed.");
c906108c 907
2df3850c 908 objfile = allocate_objfile (abfd, flags);
c906108c
SS
909
910 /* If the objfile uses a mapped symbol file, and we have a psymtab for
911 it, then skip reading any symbols at this time. */
912
c5aa993b 913 if ((objfile->flags & OBJF_MAPPED) && (objfile->flags & OBJF_SYMS))
c906108c
SS
914 {
915 /* We mapped in an existing symbol table file that already has had
c5aa993b
JM
916 initial symbol reading performed, so we can skip that part. Notify
917 the user that instead of reading the symbols, they have been mapped.
918 */
c906108c
SS
919 if (from_tty || info_verbose)
920 {
921 printf_filtered ("Mapped symbols for %s...", name);
922 wrap_here ("");
923 gdb_flush (gdb_stdout);
924 }
925 init_entry_point_info (objfile);
926 find_sym_fns (objfile);
927 }
928 else
929 {
930 /* We either created a new mapped symbol table, mapped an existing
c5aa993b
JM
931 symbol table file which has not had initial symbol reading
932 performed, or need to read an unmapped symbol table. */
c906108c
SS
933 if (from_tty || info_verbose)
934 {
935 if (pre_add_symbol_hook)
936 pre_add_symbol_hook (name);
937 else
938 {
939 printf_filtered ("Reading symbols from %s...", name);
940 wrap_here ("");
941 gdb_flush (gdb_stdout);
942 }
943 }
7904e09f
JB
944 syms_from_objfile (objfile, addrs, offsets, num_offsets,
945 mainline, from_tty);
c906108c
SS
946 }
947
948 /* We now have at least a partial symbol table. Check to see if the
949 user requested that all symbols be read on initial access via either
950 the gdb startup command line or on a per symbol file basis. Expand
951 all partial symbol tables for this objfile if so. */
952
2acceee2 953 if ((flags & OBJF_READNOW) || readnow_symbol_files)
c906108c
SS
954 {
955 if (from_tty || info_verbose)
956 {
957 printf_filtered ("expanding to full symbols...");
958 wrap_here ("");
959 gdb_flush (gdb_stdout);
960 }
961
c5aa993b 962 for (psymtab = objfile->psymtabs;
c906108c 963 psymtab != NULL;
c5aa993b 964 psymtab = psymtab->next)
c906108c
SS
965 {
966 psymtab_to_symtab (psymtab);
967 }
968 }
969
5b5d99cf
JB
970 debugfile = find_separate_debug_file (objfile);
971 if (debugfile)
972 {
5b5d99cf
JB
973 if (addrs != NULL)
974 {
975 objfile->separate_debug_objfile
976 = symbol_file_add (debugfile, from_tty, &orig_addrs, 0, flags);
977 }
978 else
979 {
980 objfile->separate_debug_objfile
981 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
982 }
983 objfile->separate_debug_objfile->separate_debug_objfile_backlink
984 = objfile;
985
986 /* Put the separate debug object before the normal one, this is so that
987 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
988 put_objfile_before (objfile->separate_debug_objfile, objfile);
989
990 xfree (debugfile);
991 }
992
cb3c37b2
JB
993 if (!have_partial_symbols () && !have_full_symbols ())
994 {
995 wrap_here ("");
996 printf_filtered ("(no debugging symbols found)...");
997 wrap_here ("");
998 }
999
c906108c
SS
1000 if (from_tty || info_verbose)
1001 {
1002 if (post_add_symbol_hook)
c5aa993b 1003 post_add_symbol_hook ();
c906108c 1004 else
c5aa993b
JM
1005 {
1006 printf_filtered ("done.\n");
c5aa993b 1007 }
c906108c
SS
1008 }
1009
481d0f41
JB
1010 /* We print some messages regardless of whether 'from_tty ||
1011 info_verbose' is true, so make sure they go out at the right
1012 time. */
1013 gdb_flush (gdb_stdout);
1014
109f874e
MS
1015 if (objfile->sf == NULL)
1016 return objfile; /* No symbols. */
1017
c906108c
SS
1018 new_symfile_objfile (objfile, mainline, from_tty);
1019
11cf8741
JM
1020 if (target_new_objfile_hook)
1021 target_new_objfile_hook (objfile);
c906108c
SS
1022
1023 return (objfile);
1024}
1025
7904e09f
JB
1026
1027/* Process a symbol file, as either the main file or as a dynamically
1028 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1029 for details. */
1030struct objfile *
1031symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1032 int mainline, int flags)
1033{
1034 return symbol_file_add_with_addrs_or_offsets (name, from_tty, addrs, 0, 0,
1035 mainline, flags);
1036}
1037
1038
d7db6da9
FN
1039/* Call symbol_file_add() with default values and update whatever is
1040 affected by the loading of a new main().
1041 Used when the file is supplied in the gdb command line
1042 and by some targets with special loading requirements.
1043 The auxiliary function, symbol_file_add_main_1(), has the flags
1044 argument for the switches that can only be specified in the symbol_file
1045 command itself. */
1adeb98a
FN
1046
1047void
1048symbol_file_add_main (char *args, int from_tty)
1049{
d7db6da9
FN
1050 symbol_file_add_main_1 (args, from_tty, 0);
1051}
1052
1053static void
1054symbol_file_add_main_1 (char *args, int from_tty, int flags)
1055{
1056 symbol_file_add (args, from_tty, NULL, 1, flags);
1057
1058#ifdef HPUXHPPA
1059 RESET_HP_UX_GLOBALS ();
1060#endif
1061
1062 /* Getting new symbols may change our opinion about
1063 what is frameless. */
1064 reinit_frame_cache ();
1065
1066 set_initial_language ();
1adeb98a
FN
1067}
1068
1069void
1070symbol_file_clear (int from_tty)
1071{
1072 if ((have_full_symbols () || have_partial_symbols ())
1073 && from_tty
1074 && !query ("Discard symbol table from `%s'? ",
1075 symfile_objfile->name))
1076 error ("Not confirmed.");
1077 free_all_objfiles ();
1078
1079 /* solib descriptors may have handles to objfiles. Since their
1080 storage has just been released, we'd better wipe the solib
1081 descriptors as well.
1082 */
1083#if defined(SOLIB_RESTART)
1084 SOLIB_RESTART ();
1085#endif
1086
1087 symfile_objfile = NULL;
1088 if (from_tty)
1089 printf_unfiltered ("No symbol file now.\n");
1090#ifdef HPUXHPPA
1091 RESET_HP_UX_GLOBALS ();
1092#endif
1093}
1094
5b5d99cf
JB
1095static char *
1096get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1097{
1098 asection *sect;
1099 bfd_size_type debuglink_size;
1100 unsigned long crc32;
1101 char *contents;
1102 int crc_offset;
1103 unsigned char *p;
1104
1105 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1106
1107 if (sect == NULL)
1108 return NULL;
1109
1110 debuglink_size = bfd_section_size (objfile->obfd, sect);
1111
1112 contents = xmalloc (debuglink_size);
1113 bfd_get_section_contents (objfile->obfd, sect, contents,
1114 (file_ptr)0, (bfd_size_type)debuglink_size);
1115
1116 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1117 crc_offset = strlen (contents) + 1;
1118 crc_offset = (crc_offset + 3) & ~3;
1119
1120 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1121
1122 *crc32_out = crc32;
1123 return contents;
1124}
1125
1126static int
1127separate_debug_file_exists (const char *name, unsigned long crc)
1128{
1129 unsigned long file_crc = 0;
1130 int fd;
1131 char buffer[8*1024];
1132 int count;
1133
1134 fd = open (name, O_RDONLY | O_BINARY);
1135 if (fd < 0)
1136 return 0;
1137
1138 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1139 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1140
1141 close (fd);
1142
1143 return crc == file_crc;
1144}
1145
1146static char *debug_file_directory = NULL;
1147
1148#if ! defined (DEBUG_SUBDIRECTORY)
1149#define DEBUG_SUBDIRECTORY ".debug"
1150#endif
1151
1152static char *
1153find_separate_debug_file (struct objfile *objfile)
1154{
1155 asection *sect;
1156 char *basename;
1157 char *dir;
1158 char *debugfile;
1159 char *name_copy;
1160 bfd_size_type debuglink_size;
1161 unsigned long crc32;
1162 int i;
1163
1164 basename = get_debug_link_info (objfile, &crc32);
1165
1166 if (basename == NULL)
1167 return NULL;
1168
1169 dir = xstrdup (objfile->name);
1170
fe36c4f4
JB
1171 /* Strip off the final filename part, leaving the directory name,
1172 followed by a slash. Objfile names should always be absolute and
1173 tilde-expanded, so there should always be a slash in there
1174 somewhere. */
5b5d99cf
JB
1175 for (i = strlen(dir) - 1; i >= 0; i--)
1176 {
1177 if (IS_DIR_SEPARATOR (dir[i]))
1178 break;
1179 }
fe36c4f4 1180 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
5b5d99cf
JB
1181 dir[i+1] = '\0';
1182
1183 debugfile = alloca (strlen (debug_file_directory) + 1
1184 + strlen (dir)
1185 + strlen (DEBUG_SUBDIRECTORY)
1186 + strlen ("/")
1187 + strlen (basename)
1188 + 1);
1189
1190 /* First try in the same directory as the original file. */
1191 strcpy (debugfile, dir);
1192 strcat (debugfile, basename);
1193
1194 if (separate_debug_file_exists (debugfile, crc32))
1195 {
1196 xfree (basename);
1197 xfree (dir);
1198 return xstrdup (debugfile);
1199 }
1200
1201 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1202 strcpy (debugfile, dir);
1203 strcat (debugfile, DEBUG_SUBDIRECTORY);
1204 strcat (debugfile, "/");
1205 strcat (debugfile, basename);
1206
1207 if (separate_debug_file_exists (debugfile, crc32))
1208 {
1209 xfree (basename);
1210 xfree (dir);
1211 return xstrdup (debugfile);
1212 }
1213
1214 /* Then try in the global debugfile directory. */
1215 strcpy (debugfile, debug_file_directory);
1216 strcat (debugfile, "/");
1217 strcat (debugfile, dir);
5b5d99cf
JB
1218 strcat (debugfile, basename);
1219
1220 if (separate_debug_file_exists (debugfile, crc32))
1221 {
1222 xfree (basename);
1223 xfree (dir);
1224 return xstrdup (debugfile);
1225 }
1226
1227 xfree (basename);
1228 xfree (dir);
1229 return NULL;
1230}
1231
1232
c906108c
SS
1233/* This is the symbol-file command. Read the file, analyze its
1234 symbols, and add a struct symtab to a symtab list. The syntax of
1235 the command is rather bizarre--(1) buildargv implements various
1236 quoting conventions which are undocumented and have little or
1237 nothing in common with the way things are quoted (or not quoted)
1238 elsewhere in GDB, (2) options are used, which are not generally
1239 used in GDB (perhaps "set mapped on", "set readnow on" would be
1240 better), (3) the order of options matters, which is contrary to GNU
1241 conventions (because it is confusing and inconvenient). */
4da95fc4
EZ
1242/* Note: ezannoni 2000-04-17. This function used to have support for
1243 rombug (see remote-os9k.c). It consisted of a call to target_link()
1244 (target.c) to get the address of the text segment from the target,
1245 and pass that to symbol_file_add(). This is no longer supported. */
c906108c
SS
1246
1247void
fba45db2 1248symbol_file_command (char *args, int from_tty)
c906108c
SS
1249{
1250 char **argv;
1251 char *name = NULL;
c906108c 1252 struct cleanup *cleanups;
2df3850c 1253 int flags = OBJF_USERLOADED;
c906108c
SS
1254
1255 dont_repeat ();
1256
1257 if (args == NULL)
1258 {
1adeb98a 1259 symbol_file_clear (from_tty);
c906108c
SS
1260 }
1261 else
1262 {
1263 if ((argv = buildargv (args)) == NULL)
1264 {
1265 nomem (0);
1266 }
7a292a7a 1267 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1268 while (*argv != NULL)
1269 {
1270 if (STREQ (*argv, "-mapped"))
4da95fc4
EZ
1271 flags |= OBJF_MAPPED;
1272 else
1273 if (STREQ (*argv, "-readnow"))
2acceee2 1274 flags |= OBJF_READNOW;
4da95fc4
EZ
1275 else
1276 if (**argv == '-')
1277 error ("unknown option `%s'", *argv);
c5aa993b 1278 else
c5aa993b 1279 {
4da95fc4 1280 name = *argv;
c906108c 1281
d7db6da9 1282 symbol_file_add_main_1 (name, from_tty, flags);
4da95fc4 1283 }
c906108c
SS
1284 argv++;
1285 }
1286
1287 if (name == NULL)
1288 {
1289 error ("no symbol file name was specified");
1290 }
c906108c
SS
1291 do_cleanups (cleanups);
1292 }
1293}
1294
1295/* Set the initial language.
1296
1297 A better solution would be to record the language in the psymtab when reading
1298 partial symbols, and then use it (if known) to set the language. This would
1299 be a win for formats that encode the language in an easily discoverable place,
1300 such as DWARF. For stabs, we can jump through hoops looking for specially
1301 named symbols or try to intuit the language from the specific type of stabs
1302 we find, but we can't do that until later when we read in full symbols.
1303 FIXME. */
1304
1305static void
fba45db2 1306set_initial_language (void)
c906108c
SS
1307{
1308 struct partial_symtab *pst;
c5aa993b 1309 enum language lang = language_unknown;
c906108c
SS
1310
1311 pst = find_main_psymtab ();
1312 if (pst != NULL)
1313 {
c5aa993b 1314 if (pst->filename != NULL)
c906108c 1315 {
c5aa993b
JM
1316 lang = deduce_language_from_filename (pst->filename);
1317 }
c906108c
SS
1318 if (lang == language_unknown)
1319 {
c5aa993b
JM
1320 /* Make C the default language */
1321 lang = language_c;
c906108c
SS
1322 }
1323 set_language (lang);
1324 expected_language = current_language; /* Don't warn the user */
1325 }
1326}
1327
1328/* Open file specified by NAME and hand it off to BFD for preliminary
1329 analysis. Result is a newly initialized bfd *, which includes a newly
1330 malloc'd` copy of NAME (tilde-expanded and made absolute).
1331 In case of trouble, error() is called. */
1332
1333bfd *
fba45db2 1334symfile_bfd_open (char *name)
c906108c
SS
1335{
1336 bfd *sym_bfd;
1337 int desc;
1338 char *absolute_name;
1339
1340
1341
1342 name = tilde_expand (name); /* Returns 1st new malloc'd copy */
1343
1344 /* Look down path for it, allocate 2nd new malloc'd copy. */
1345 desc = openp (getenv ("PATH"), 1, name, O_RDONLY | O_BINARY, 0, &absolute_name);
608506ed 1346#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1347 if (desc < 0)
1348 {
1349 char *exename = alloca (strlen (name) + 5);
1350 strcat (strcpy (exename, name), ".exe");
1351 desc = openp (getenv ("PATH"), 1, exename, O_RDONLY | O_BINARY,
c5aa993b 1352 0, &absolute_name);
c906108c
SS
1353 }
1354#endif
1355 if (desc < 0)
1356 {
b8c9b27d 1357 make_cleanup (xfree, name);
c906108c
SS
1358 perror_with_name (name);
1359 }
b8c9b27d 1360 xfree (name); /* Free 1st new malloc'd copy */
c906108c 1361 name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
c5aa993b 1362 /* It'll be freed in free_objfile(). */
c906108c
SS
1363
1364 sym_bfd = bfd_fdopenr (name, gnutarget, desc);
1365 if (!sym_bfd)
1366 {
1367 close (desc);
b8c9b27d 1368 make_cleanup (xfree, name);
c906108c
SS
1369 error ("\"%s\": can't open to read symbols: %s.", name,
1370 bfd_errmsg (bfd_get_error ()));
1371 }
81a9a963 1372 sym_bfd->cacheable = 1;
c906108c
SS
1373
1374 if (!bfd_check_format (sym_bfd, bfd_object))
1375 {
1376 /* FIXME: should be checking for errors from bfd_close (for one thing,
c5aa993b
JM
1377 on error it does not free all the storage associated with the
1378 bfd). */
c906108c 1379 bfd_close (sym_bfd); /* This also closes desc */
b8c9b27d 1380 make_cleanup (xfree, name);
c906108c
SS
1381 error ("\"%s\": can't read symbols: %s.", name,
1382 bfd_errmsg (bfd_get_error ()));
1383 }
1384 return (sym_bfd);
1385}
1386
0e931cf0
JB
1387/* Return the section index for the given section name. Return -1 if
1388 the section was not found. */
1389int
1390get_section_index (struct objfile *objfile, char *section_name)
1391{
1392 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1393 if (sect)
1394 return sect->index;
1395 else
1396 return -1;
1397}
1398
c906108c
SS
1399/* Link a new symtab_fns into the global symtab_fns list. Called on gdb
1400 startup by the _initialize routine in each object file format reader,
1401 to register information about each format the the reader is prepared
1402 to handle. */
1403
1404void
fba45db2 1405add_symtab_fns (struct sym_fns *sf)
c906108c
SS
1406{
1407 sf->next = symtab_fns;
1408 symtab_fns = sf;
1409}
1410
1411
1412/* Initialize to read symbols from the symbol file sym_bfd. It either
1413 returns or calls error(). The result is an initialized struct sym_fns
1414 in the objfile structure, that contains cached information about the
1415 symbol file. */
1416
1417static void
fba45db2 1418find_sym_fns (struct objfile *objfile)
c906108c
SS
1419{
1420 struct sym_fns *sf;
c5aa993b
JM
1421 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1422 char *our_target = bfd_get_target (objfile->obfd);
c906108c 1423
75245b24
MS
1424 if (our_flavour == bfd_target_srec_flavour
1425 || our_flavour == bfd_target_ihex_flavour
1426 || our_flavour == bfd_target_tekhex_flavour)
1427 return; /* No symbols. */
1428
c906108c
SS
1429 /* Special kludge for apollo. See dstread.c. */
1430 if (STREQN (our_target, "apollo", 6))
c5aa993b 1431 our_flavour = (enum bfd_flavour) -2;
c906108c 1432
c5aa993b 1433 for (sf = symtab_fns; sf != NULL; sf = sf->next)
c906108c 1434 {
c5aa993b 1435 if (our_flavour == sf->sym_flavour)
c906108c 1436 {
c5aa993b 1437 objfile->sf = sf;
c906108c
SS
1438 return;
1439 }
1440 }
1441 error ("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown.",
c5aa993b 1442 bfd_get_target (objfile->obfd));
c906108c
SS
1443}
1444\f
1445/* This function runs the load command of our current target. */
1446
1447static void
fba45db2 1448load_command (char *arg, int from_tty)
c906108c
SS
1449{
1450 if (arg == NULL)
1451 arg = get_exec_file (1);
1452 target_load (arg, from_tty);
2889e661
JB
1453
1454 /* After re-loading the executable, we don't really know which
1455 overlays are mapped any more. */
1456 overlay_cache_invalid = 1;
c906108c
SS
1457}
1458
1459/* This version of "load" should be usable for any target. Currently
1460 it is just used for remote targets, not inftarg.c or core files,
1461 on the theory that only in that case is it useful.
1462
1463 Avoiding xmodem and the like seems like a win (a) because we don't have
1464 to worry about finding it, and (b) On VMS, fork() is very slow and so
1465 we don't want to run a subprocess. On the other hand, I'm not sure how
1466 performance compares. */
917317f4
JM
1467
1468static int download_write_size = 512;
1469static int validate_download = 0;
1470
e4f9b4d5
MS
1471/* Callback service function for generic_load (bfd_map_over_sections). */
1472
1473static void
1474add_section_size_callback (bfd *abfd, asection *asec, void *data)
1475{
1476 bfd_size_type *sum = data;
1477
1478 *sum += bfd_get_section_size_before_reloc (asec);
1479}
1480
1481/* Opaque data for load_section_callback. */
1482struct load_section_data {
1483 unsigned long load_offset;
1484 unsigned long write_count;
1485 unsigned long data_count;
1486 bfd_size_type total_size;
1487};
1488
1489/* Callback service function for generic_load (bfd_map_over_sections). */
1490
1491static void
1492load_section_callback (bfd *abfd, asection *asec, void *data)
1493{
1494 struct load_section_data *args = data;
1495
1496 if (bfd_get_section_flags (abfd, asec) & SEC_LOAD)
1497 {
1498 bfd_size_type size = bfd_get_section_size_before_reloc (asec);
1499 if (size > 0)
1500 {
1501 char *buffer;
1502 struct cleanup *old_chain;
1503 CORE_ADDR lma = bfd_section_lma (abfd, asec) + args->load_offset;
1504 bfd_size_type block_size;
1505 int err;
1506 const char *sect_name = bfd_get_section_name (abfd, asec);
1507 bfd_size_type sent;
1508
1509 if (download_write_size > 0 && size > download_write_size)
1510 block_size = download_write_size;
1511 else
1512 block_size = size;
1513
1514 buffer = xmalloc (size);
1515 old_chain = make_cleanup (xfree, buffer);
1516
1517 /* Is this really necessary? I guess it gives the user something
1518 to look at during a long download. */
e4f9b4d5
MS
1519 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1520 sect_name, paddr_nz (size), paddr_nz (lma));
e4f9b4d5
MS
1521
1522 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1523
1524 sent = 0;
1525 do
1526 {
1527 int len;
1528 bfd_size_type this_transfer = size - sent;
1529
1530 if (this_transfer >= block_size)
1531 this_transfer = block_size;
1532 len = target_write_memory_partial (lma, buffer,
1533 this_transfer, &err);
1534 if (err)
1535 break;
1536 if (validate_download)
1537 {
1538 /* Broken memories and broken monitors manifest
1539 themselves here when bring new computers to
1540 life. This doubles already slow downloads. */
1541 /* NOTE: cagney/1999-10-18: A more efficient
1542 implementation might add a verify_memory()
1543 method to the target vector and then use
1544 that. remote.c could implement that method
1545 using the ``qCRC'' packet. */
1546 char *check = xmalloc (len);
1547 struct cleanup *verify_cleanups =
1548 make_cleanup (xfree, check);
1549
1550 if (target_read_memory (lma, check, len) != 0)
1551 error ("Download verify read failed at 0x%s",
1552 paddr (lma));
1553 if (memcmp (buffer, check, len) != 0)
1554 error ("Download verify compare failed at 0x%s",
1555 paddr (lma));
1556 do_cleanups (verify_cleanups);
1557 }
1558 args->data_count += len;
1559 lma += len;
1560 buffer += len;
1561 args->write_count += 1;
1562 sent += len;
1563 if (quit_flag
1564 || (ui_load_progress_hook != NULL
1565 && ui_load_progress_hook (sect_name, sent)))
1566 error ("Canceled the download");
1567
1568 if (show_load_progress != NULL)
1569 show_load_progress (sect_name, sent, size,
1570 args->data_count, args->total_size);
1571 }
1572 while (sent < size);
1573
1574 if (err != 0)
1575 error ("Memory access error while loading section %s.", sect_name);
1576
1577 do_cleanups (old_chain);
1578 }
1579 }
1580}
1581
c906108c 1582void
917317f4 1583generic_load (char *args, int from_tty)
c906108c 1584{
c906108c
SS
1585 asection *s;
1586 bfd *loadfile_bfd;
1587 time_t start_time, end_time; /* Start and end times of download */
917317f4
JM
1588 char *filename;
1589 struct cleanup *old_cleanups;
1590 char *offptr;
e4f9b4d5
MS
1591 struct load_section_data cbdata;
1592 CORE_ADDR entry;
1593
1594 cbdata.load_offset = 0; /* Offset to add to vma for each section. */
1595 cbdata.write_count = 0; /* Number of writes needed. */
1596 cbdata.data_count = 0; /* Number of bytes written to target memory. */
1597 cbdata.total_size = 0; /* Total size of all bfd sectors. */
917317f4
JM
1598
1599 /* Parse the input argument - the user can specify a load offset as
1600 a second argument. */
1601 filename = xmalloc (strlen (args) + 1);
b8c9b27d 1602 old_cleanups = make_cleanup (xfree, filename);
917317f4
JM
1603 strcpy (filename, args);
1604 offptr = strchr (filename, ' ');
1605 if (offptr != NULL)
1606 {
1607 char *endptr;
ba5f2f8a 1608
e4f9b4d5 1609 cbdata.load_offset = strtoul (offptr, &endptr, 0);
917317f4
JM
1610 if (offptr == endptr)
1611 error ("Invalid download offset:%s\n", offptr);
1612 *offptr = '\0';
1613 }
c906108c 1614 else
e4f9b4d5 1615 cbdata.load_offset = 0;
c906108c 1616
917317f4 1617 /* Open the file for loading. */
c906108c
SS
1618 loadfile_bfd = bfd_openr (filename, gnutarget);
1619 if (loadfile_bfd == NULL)
1620 {
1621 perror_with_name (filename);
1622 return;
1623 }
917317f4 1624
c906108c
SS
1625 /* FIXME: should be checking for errors from bfd_close (for one thing,
1626 on error it does not free all the storage associated with the
1627 bfd). */
5c65bbb6 1628 make_cleanup_bfd_close (loadfile_bfd);
c906108c 1629
c5aa993b 1630 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c
SS
1631 {
1632 error ("\"%s\" is not an object file: %s", filename,
1633 bfd_errmsg (bfd_get_error ()));
1634 }
c5aa993b 1635
e4f9b4d5
MS
1636 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1637 (void *) &cbdata.total_size);
c2d11a7d 1638
c906108c
SS
1639 start_time = time (NULL);
1640
e4f9b4d5 1641 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c906108c
SS
1642
1643 end_time = time (NULL);
ba5f2f8a 1644
e4f9b4d5 1645 entry = bfd_get_start_address (loadfile_bfd);
e4f9b4d5
MS
1646 ui_out_text (uiout, "Start address ");
1647 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1648 ui_out_text (uiout, ", load size ");
1649 ui_out_field_fmt (uiout, "load-size", "%lu", cbdata.data_count);
1650 ui_out_text (uiout, "\n");
e4f9b4d5
MS
1651 /* We were doing this in remote-mips.c, I suspect it is right
1652 for other targets too. */
1653 write_pc (entry);
c906108c
SS
1654
1655 /* FIXME: are we supposed to call symbol_file_add or not? According to
1656 a comment from remote-mips.c (where a call to symbol_file_add was
1657 commented out), making the call confuses GDB if more than one file is
1658 loaded in. remote-nindy.c had no call to symbol_file_add, but remote-vx.c
1659 does. */
1660
e4f9b4d5
MS
1661 print_transfer_performance (gdb_stdout, cbdata.data_count,
1662 cbdata.write_count, end_time - start_time);
c906108c
SS
1663
1664 do_cleanups (old_cleanups);
1665}
1666
1667/* Report how fast the transfer went. */
1668
917317f4
JM
1669/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1670 replaced by print_transfer_performance (with a very different
1671 function signature). */
1672
c906108c 1673void
fba45db2
KB
1674report_transfer_performance (unsigned long data_count, time_t start_time,
1675 time_t end_time)
c906108c 1676{
ba5f2f8a
MS
1677 print_transfer_performance (gdb_stdout, data_count,
1678 end_time - start_time, 0);
917317f4
JM
1679}
1680
1681void
d9fcf2fb 1682print_transfer_performance (struct ui_file *stream,
917317f4
JM
1683 unsigned long data_count,
1684 unsigned long write_count,
1685 unsigned long time_count)
1686{
8b93c638
JM
1687 ui_out_text (uiout, "Transfer rate: ");
1688 if (time_count > 0)
1689 {
ba5f2f8a 1690 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
8b93c638
JM
1691 (data_count * 8) / time_count);
1692 ui_out_text (uiout, " bits/sec");
1693 }
1694 else
1695 {
ba5f2f8a 1696 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
8b93c638
JM
1697 ui_out_text (uiout, " bits in <1 sec");
1698 }
1699 if (write_count > 0)
1700 {
1701 ui_out_text (uiout, ", ");
ba5f2f8a 1702 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
1703 ui_out_text (uiout, " bytes/write");
1704 }
1705 ui_out_text (uiout, ".\n");
c906108c
SS
1706}
1707
1708/* This function allows the addition of incrementally linked object files.
1709 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
1710/* Note: ezannoni 2000-04-13 This function/command used to have a
1711 special case syntax for the rombug target (Rombug is the boot
1712 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1713 rombug case, the user doesn't need to supply a text address,
1714 instead a call to target_link() (in target.c) would supply the
1715 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c
SS
1716
1717/* ARGSUSED */
1718static void
fba45db2 1719add_symbol_file_command (char *args, int from_tty)
c906108c 1720{
db162d44 1721 char *filename = NULL;
2df3850c 1722 int flags = OBJF_USERLOADED;
c906108c 1723 char *arg;
2acceee2 1724 int expecting_option = 0;
db162d44 1725 int section_index = 0;
2acceee2
JM
1726 int argcnt = 0;
1727 int sec_num = 0;
1728 int i;
db162d44
EZ
1729 int expecting_sec_name = 0;
1730 int expecting_sec_addr = 0;
1731
2acceee2
JM
1732 struct
1733 {
2acceee2
JM
1734 char *name;
1735 char *value;
db162d44
EZ
1736 } sect_opts[SECT_OFF_MAX];
1737
2acceee2 1738 struct section_addr_info section_addrs;
3017564a 1739 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 1740
c906108c
SS
1741 dont_repeat ();
1742
1743 if (args == NULL)
db162d44 1744 error ("add-symbol-file takes a file name and an address");
c906108c
SS
1745
1746 /* Make a copy of the string that we can safely write into. */
c2d11a7d 1747 args = xstrdup (args);
c906108c 1748
2acceee2
JM
1749 /* Ensure section_addrs is initialized */
1750 memset (&section_addrs, 0, sizeof (section_addrs));
1751
2acceee2 1752 while (*args != '\000')
c906108c 1753 {
db162d44 1754 /* Any leading spaces? */
c5aa993b 1755 while (isspace (*args))
db162d44
EZ
1756 args++;
1757
1758 /* Point arg to the beginning of the argument. */
c906108c 1759 arg = args;
db162d44
EZ
1760
1761 /* Move args pointer over the argument. */
c5aa993b 1762 while ((*args != '\000') && !isspace (*args))
db162d44
EZ
1763 args++;
1764
1765 /* If there are more arguments, terminate arg and
1766 proceed past it. */
c906108c 1767 if (*args != '\000')
db162d44
EZ
1768 *args++ = '\000';
1769
1770 /* Now process the argument. */
1771 if (argcnt == 0)
c906108c 1772 {
db162d44
EZ
1773 /* The first argument is the file name. */
1774 filename = tilde_expand (arg);
3017564a 1775 make_cleanup (xfree, filename);
c906108c 1776 }
db162d44 1777 else
7a78ae4e
ND
1778 if (argcnt == 1)
1779 {
1780 /* The second argument is always the text address at which
1781 to load the program. */
1782 sect_opts[section_index].name = ".text";
1783 sect_opts[section_index].value = arg;
1784 section_index++;
1785 }
1786 else
1787 {
1788 /* It's an option (starting with '-') or it's an argument
1789 to an option */
1790
1791 if (*arg == '-')
1792 {
1793 if (strcmp (arg, "-mapped") == 0)
1794 flags |= OBJF_MAPPED;
1795 else
1796 if (strcmp (arg, "-readnow") == 0)
1797 flags |= OBJF_READNOW;
1798 else
1799 if (strcmp (arg, "-s") == 0)
1800 {
1801 if (section_index >= SECT_OFF_MAX)
1802 error ("Too many sections specified.");
1803 expecting_sec_name = 1;
1804 expecting_sec_addr = 1;
1805 }
1806 }
1807 else
1808 {
1809 if (expecting_sec_name)
db162d44 1810 {
7a78ae4e
ND
1811 sect_opts[section_index].name = arg;
1812 expecting_sec_name = 0;
db162d44
EZ
1813 }
1814 else
7a78ae4e
ND
1815 if (expecting_sec_addr)
1816 {
1817 sect_opts[section_index].value = arg;
1818 expecting_sec_addr = 0;
1819 section_index++;
1820 }
1821 else
1822 error ("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*");
1823 }
1824 }
db162d44 1825 argcnt++;
c906108c 1826 }
c906108c 1827
db162d44
EZ
1828 /* Print the prompt for the query below. And save the arguments into
1829 a sect_addr_info structure to be passed around to other
1830 functions. We have to split this up into separate print
1831 statements because local_hex_string returns a local static
1832 string. */
2acceee2 1833
db162d44
EZ
1834 printf_filtered ("add symbol table from file \"%s\" at\n", filename);
1835 for (i = 0; i < section_index; i++)
c906108c 1836 {
db162d44
EZ
1837 CORE_ADDR addr;
1838 char *val = sect_opts[i].value;
1839 char *sec = sect_opts[i].name;
1840
1841 val = sect_opts[i].value;
1842 if (val[0] == '0' && val[1] == 'x')
1843 addr = strtoul (val+2, NULL, 16);
1844 else
1845 addr = strtoul (val, NULL, 10);
1846
db162d44
EZ
1847 /* Here we store the section offsets in the order they were
1848 entered on the command line. */
1849 section_addrs.other[sec_num].name = sec;
1850 section_addrs.other[sec_num].addr = addr;
1851 printf_filtered ("\t%s_addr = %s\n",
1852 sec,
1853 local_hex_string ((unsigned long)addr));
1854 sec_num++;
1855
1856 /* The object's sections are initialized when a
1857 call is made to build_objfile_section_table (objfile).
1858 This happens in reread_symbols.
1859 At this point, we don't know what file type this is,
1860 so we can't determine what section names are valid. */
2acceee2 1861 }
db162d44 1862
2acceee2 1863 if (from_tty && (!query ("%s", "")))
c906108c
SS
1864 error ("Not confirmed.");
1865
db162d44 1866 symbol_file_add (filename, from_tty, &section_addrs, 0, flags);
c906108c
SS
1867
1868 /* Getting new symbols may change our opinion about what is
1869 frameless. */
1870 reinit_frame_cache ();
db162d44 1871 do_cleanups (my_cleanups);
c906108c
SS
1872}
1873\f
1874static void
fba45db2 1875add_shared_symbol_files_command (char *args, int from_tty)
c906108c
SS
1876{
1877#ifdef ADD_SHARED_SYMBOL_FILES
1878 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1879#else
1880 error ("This command is not available in this configuration of GDB.");
c5aa993b 1881#endif
c906108c
SS
1882}
1883\f
1884/* Re-read symbols if a symbol-file has changed. */
1885void
fba45db2 1886reread_symbols (void)
c906108c
SS
1887{
1888 struct objfile *objfile;
1889 long new_modtime;
1890 int reread_one = 0;
1891 struct stat new_statbuf;
1892 int res;
1893
1894 /* With the addition of shared libraries, this should be modified,
1895 the load time should be saved in the partial symbol tables, since
1896 different tables may come from different source files. FIXME.
1897 This routine should then walk down each partial symbol table
1898 and see if the symbol table that it originates from has been changed */
1899
c5aa993b
JM
1900 for (objfile = object_files; objfile; objfile = objfile->next)
1901 {
1902 if (objfile->obfd)
1903 {
c906108c 1904#ifdef IBM6000_TARGET
c5aa993b
JM
1905 /* If this object is from a shared library, then you should
1906 stat on the library name, not member name. */
c906108c 1907
c5aa993b
JM
1908 if (objfile->obfd->my_archive)
1909 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1910 else
c906108c 1911#endif
c5aa993b
JM
1912 res = stat (objfile->name, &new_statbuf);
1913 if (res != 0)
c906108c 1914 {
c5aa993b
JM
1915 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1916 printf_filtered ("`%s' has disappeared; keeping its symbols.\n",
1917 objfile->name);
1918 continue;
c906108c 1919 }
c5aa993b
JM
1920 new_modtime = new_statbuf.st_mtime;
1921 if (new_modtime != objfile->mtime)
c906108c 1922 {
c5aa993b
JM
1923 struct cleanup *old_cleanups;
1924 struct section_offsets *offsets;
1925 int num_offsets;
c5aa993b
JM
1926 char *obfd_filename;
1927
1928 printf_filtered ("`%s' has changed; re-reading symbols.\n",
1929 objfile->name);
1930
1931 /* There are various functions like symbol_file_add,
1932 symfile_bfd_open, syms_from_objfile, etc., which might
1933 appear to do what we want. But they have various other
1934 effects which we *don't* want. So we just do stuff
1935 ourselves. We don't worry about mapped files (for one thing,
1936 any mapped file will be out of date). */
1937
1938 /* If we get an error, blow away this objfile (not sure if
1939 that is the correct response for things like shared
1940 libraries). */
74b7792f 1941 old_cleanups = make_cleanup_free_objfile (objfile);
c5aa993b 1942 /* We need to do this whenever any symbols go away. */
74b7792f 1943 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c5aa993b
JM
1944
1945 /* Clean up any state BFD has sitting around. We don't need
1946 to close the descriptor but BFD lacks a way of closing the
1947 BFD without closing the descriptor. */
1948 obfd_filename = bfd_get_filename (objfile->obfd);
1949 if (!bfd_close (objfile->obfd))
1950 error ("Can't close BFD for %s: %s", objfile->name,
1951 bfd_errmsg (bfd_get_error ()));
1952 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
1953 if (objfile->obfd == NULL)
1954 error ("Can't open %s to read symbols.", objfile->name);
1955 /* bfd_openr sets cacheable to true, which is what we want. */
1956 if (!bfd_check_format (objfile->obfd, bfd_object))
1957 error ("Can't read symbols from %s: %s.", objfile->name,
1958 bfd_errmsg (bfd_get_error ()));
1959
1960 /* Save the offsets, we will nuke them with the rest of the
1961 psymbol_obstack. */
1962 num_offsets = objfile->num_sections;
d4f3574e
SS
1963 offsets = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
1964 memcpy (offsets, objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
c5aa993b
JM
1965
1966 /* Nuke all the state that we will re-read. Much of the following
1967 code which sets things to NULL really is necessary to tell
1968 other parts of GDB that there is nothing currently there. */
1969
1970 /* FIXME: Do we have to free a whole linked list, or is this
1971 enough? */
1972 if (objfile->global_psymbols.list)
aac7f4ea 1973 xmfree (objfile->md, objfile->global_psymbols.list);
c5aa993b
JM
1974 memset (&objfile->global_psymbols, 0,
1975 sizeof (objfile->global_psymbols));
1976 if (objfile->static_psymbols.list)
aac7f4ea 1977 xmfree (objfile->md, objfile->static_psymbols.list);
c5aa993b
JM
1978 memset (&objfile->static_psymbols, 0,
1979 sizeof (objfile->static_psymbols));
1980
1981 /* Free the obstacks for non-reusable objfiles */
af5f3db6
AC
1982 bcache_xfree (objfile->psymbol_cache);
1983 objfile->psymbol_cache = bcache_xmalloc ();
1984 bcache_xfree (objfile->macro_cache);
1985 objfile->macro_cache = bcache_xmalloc ();
c5aa993b
JM
1986 obstack_free (&objfile->psymbol_obstack, 0);
1987 obstack_free (&objfile->symbol_obstack, 0);
1988 obstack_free (&objfile->type_obstack, 0);
1989 objfile->sections = NULL;
1990 objfile->symtabs = NULL;
1991 objfile->psymtabs = NULL;
1992 objfile->free_psymtabs = NULL;
1993 objfile->msymbols = NULL;
1994 objfile->minimal_symbol_count = 0;
0a83117a
MS
1995 memset (&objfile->msymbol_hash, 0,
1996 sizeof (objfile->msymbol_hash));
1997 memset (&objfile->msymbol_demangled_hash, 0,
1998 sizeof (objfile->msymbol_demangled_hash));
c5aa993b
JM
1999 objfile->fundamental_types = NULL;
2000 if (objfile->sf != NULL)
2001 {
2002 (*objfile->sf->sym_finish) (objfile);
2003 }
2004
2005 /* We never make this a mapped file. */
2006 objfile->md = NULL;
2007 /* obstack_specify_allocation also initializes the obstack so
2008 it is empty. */
af5f3db6
AC
2009 objfile->psymbol_cache = bcache_xmalloc ();
2010 objfile->macro_cache = bcache_xmalloc ();
c5aa993b 2011 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0,
b8c9b27d 2012 xmalloc, xfree);
c5aa993b 2013 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0,
b8c9b27d 2014 xmalloc, xfree);
c5aa993b 2015 obstack_specify_allocation (&objfile->type_obstack, 0, 0,
b8c9b27d 2016 xmalloc, xfree);
c5aa993b
JM
2017 if (build_objfile_section_table (objfile))
2018 {
2019 error ("Can't find the file sections in `%s': %s",
2020 objfile->name, bfd_errmsg (bfd_get_error ()));
2021 }
2022
2023 /* We use the same section offsets as from last time. I'm not
2024 sure whether that is always correct for shared libraries. */
2025 objfile->section_offsets = (struct section_offsets *)
d4f3574e
SS
2026 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
2027 memcpy (objfile->section_offsets, offsets, SIZEOF_SECTION_OFFSETS);
c5aa993b
JM
2028 objfile->num_sections = num_offsets;
2029
2030 /* What the hell is sym_new_init for, anyway? The concept of
2031 distinguishing between the main file and additional files
2032 in this way seems rather dubious. */
2033 if (objfile == symfile_objfile)
2034 {
2035 (*objfile->sf->sym_new_init) (objfile);
c906108c 2036#ifdef HPUXHPPA
c5aa993b 2037 RESET_HP_UX_GLOBALS ();
c906108c 2038#endif
c5aa993b
JM
2039 }
2040
2041 (*objfile->sf->sym_init) (objfile);
b9caf505 2042 clear_complaints (&symfile_complaints, 1, 1);
c5aa993b
JM
2043 /* The "mainline" parameter is a hideous hack; I think leaving it
2044 zero is OK since dbxread.c also does what it needs to do if
2045 objfile->global_psymbols.size is 0. */
96baa820 2046 (*objfile->sf->sym_read) (objfile, 0);
c5aa993b
JM
2047 if (!have_partial_symbols () && !have_full_symbols ())
2048 {
2049 wrap_here ("");
2050 printf_filtered ("(no debugging symbols found)\n");
2051 wrap_here ("");
2052 }
2053 objfile->flags |= OBJF_SYMS;
2054
2055 /* We're done reading the symbol file; finish off complaints. */
b9caf505 2056 clear_complaints (&symfile_complaints, 0, 1);
c906108c 2057
c5aa993b
JM
2058 /* Getting new symbols may change our opinion about what is
2059 frameless. */
c906108c 2060
c5aa993b 2061 reinit_frame_cache ();
c906108c 2062
c5aa993b
JM
2063 /* Discard cleanups as symbol reading was successful. */
2064 discard_cleanups (old_cleanups);
c906108c 2065
c5aa993b
JM
2066 /* If the mtime has changed between the time we set new_modtime
2067 and now, we *want* this to be out of date, so don't call stat
2068 again now. */
2069 objfile->mtime = new_modtime;
2070 reread_one = 1;
c906108c 2071
c5aa993b 2072 /* Call this after reading in a new symbol table to give target
38c2ef12 2073 dependent code a crack at the new symbols. For instance, this
c5aa993b
JM
2074 could be used to update the values of target-specific symbols GDB
2075 needs to keep track of (such as _sigtramp, or whatever). */
c906108c 2076
c5aa993b 2077 TARGET_SYMFILE_POSTREAD (objfile);
5b5d99cf
JB
2078
2079 reread_separate_symbols (objfile);
c5aa993b 2080 }
c906108c
SS
2081 }
2082 }
c906108c
SS
2083
2084 if (reread_one)
2085 clear_symtab_users ();
2086}
5b5d99cf
JB
2087
2088
2089/* Handle separate debug info for OBJFILE, which has just been
2090 re-read:
2091 - If we had separate debug info before, but now we don't, get rid
2092 of the separated objfile.
2093 - If we didn't have separated debug info before, but now we do,
2094 read in the new separated debug info file.
2095 - If the debug link points to a different file, toss the old one
2096 and read the new one.
2097 This function does *not* handle the case where objfile is still
2098 using the same separate debug info file, but that file's timestamp
2099 has changed. That case should be handled by the loop in
2100 reread_symbols already. */
2101static void
2102reread_separate_symbols (struct objfile *objfile)
2103{
2104 char *debug_file;
2105 unsigned long crc32;
2106
2107 /* Does the updated objfile's debug info live in a
2108 separate file? */
2109 debug_file = find_separate_debug_file (objfile);
2110
2111 if (objfile->separate_debug_objfile)
2112 {
2113 /* There are two cases where we need to get rid of
2114 the old separated debug info objfile:
2115 - if the new primary objfile doesn't have
2116 separated debug info, or
2117 - if the new primary objfile has separate debug
2118 info, but it's under a different filename.
2119
2120 If the old and new objfiles both have separate
2121 debug info, under the same filename, then we're
2122 okay --- if the separated file's contents have
2123 changed, we will have caught that when we
2124 visited it in this function's outermost
2125 loop. */
2126 if (! debug_file
2127 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2128 free_objfile (objfile->separate_debug_objfile);
2129 }
2130
2131 /* If the new objfile has separate debug info, and we
2132 haven't loaded it already, do so now. */
2133 if (debug_file
2134 && ! objfile->separate_debug_objfile)
2135 {
2136 /* Use the same section offset table as objfile itself.
2137 Preserve the flags from objfile that make sense. */
2138 objfile->separate_debug_objfile
2139 = (symbol_file_add_with_addrs_or_offsets
2140 (debug_file,
2141 info_verbose, /* from_tty: Don't override the default. */
2142 0, /* No addr table. */
2143 objfile->section_offsets, objfile->num_sections,
2144 0, /* Not mainline. See comments about this above. */
2145 objfile->flags & (OBJF_MAPPED | OBJF_REORDERED
2146 | OBJF_SHARED | OBJF_READNOW
2147 | OBJF_USERLOADED)));
2148 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2149 = objfile;
2150 }
2151}
2152
2153
c906108c
SS
2154\f
2155
c5aa993b
JM
2156
2157typedef struct
2158{
2159 char *ext;
c906108c 2160 enum language lang;
c5aa993b
JM
2161}
2162filename_language;
c906108c 2163
c5aa993b 2164static filename_language *filename_language_table;
c906108c
SS
2165static int fl_table_size, fl_table_next;
2166
2167static void
fba45db2 2168add_filename_language (char *ext, enum language lang)
c906108c
SS
2169{
2170 if (fl_table_next >= fl_table_size)
2171 {
2172 fl_table_size += 10;
25bf3106
PM
2173 filename_language_table =
2174 xrealloc (filename_language_table,
2175 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2176 }
2177
4fcf66da 2178 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2179 filename_language_table[fl_table_next].lang = lang;
2180 fl_table_next++;
2181}
2182
2183static char *ext_args;
2184
2185static void
fba45db2 2186set_ext_lang_command (char *args, int from_tty)
c906108c
SS
2187{
2188 int i;
2189 char *cp = ext_args;
2190 enum language lang;
2191
2192 /* First arg is filename extension, starting with '.' */
2193 if (*cp != '.')
2194 error ("'%s': Filename extension must begin with '.'", ext_args);
2195
2196 /* Find end of first arg. */
c5aa993b 2197 while (*cp && !isspace (*cp))
c906108c
SS
2198 cp++;
2199
2200 if (*cp == '\0')
2201 error ("'%s': two arguments required -- filename extension and language",
2202 ext_args);
2203
2204 /* Null-terminate first arg */
c5aa993b 2205 *cp++ = '\0';
c906108c
SS
2206
2207 /* Find beginning of second arg, which should be a source language. */
2208 while (*cp && isspace (*cp))
2209 cp++;
2210
2211 if (*cp == '\0')
2212 error ("'%s': two arguments required -- filename extension and language",
2213 ext_args);
2214
2215 /* Lookup the language from among those we know. */
2216 lang = language_enum (cp);
2217
2218 /* Now lookup the filename extension: do we already know it? */
2219 for (i = 0; i < fl_table_next; i++)
2220 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2221 break;
2222
2223 if (i >= fl_table_next)
2224 {
2225 /* new file extension */
2226 add_filename_language (ext_args, lang);
2227 }
2228 else
2229 {
2230 /* redefining a previously known filename extension */
2231
2232 /* if (from_tty) */
2233 /* query ("Really make files of type %s '%s'?", */
2234 /* ext_args, language_str (lang)); */
2235
b8c9b27d 2236 xfree (filename_language_table[i].ext);
4fcf66da 2237 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2238 filename_language_table[i].lang = lang;
2239 }
2240}
2241
2242static void
fba45db2 2243info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2244{
2245 int i;
2246
2247 printf_filtered ("Filename extensions and the languages they represent:");
2248 printf_filtered ("\n\n");
2249 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2250 printf_filtered ("\t%s\t- %s\n",
2251 filename_language_table[i].ext,
c906108c
SS
2252 language_str (filename_language_table[i].lang));
2253}
2254
2255static void
fba45db2 2256init_filename_language_table (void)
c906108c
SS
2257{
2258 if (fl_table_size == 0) /* protect against repetition */
2259 {
2260 fl_table_size = 20;
2261 fl_table_next = 0;
c5aa993b 2262 filename_language_table =
c906108c 2263 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b
JM
2264 add_filename_language (".c", language_c);
2265 add_filename_language (".C", language_cplus);
2266 add_filename_language (".cc", language_cplus);
2267 add_filename_language (".cp", language_cplus);
2268 add_filename_language (".cpp", language_cplus);
2269 add_filename_language (".cxx", language_cplus);
2270 add_filename_language (".c++", language_cplus);
2271 add_filename_language (".java", language_java);
c906108c 2272 add_filename_language (".class", language_java);
da2cf7e0 2273 add_filename_language (".m", language_objc);
c5aa993b
JM
2274 add_filename_language (".f", language_fortran);
2275 add_filename_language (".F", language_fortran);
2276 add_filename_language (".s", language_asm);
2277 add_filename_language (".S", language_asm);
c6fd39cd
PM
2278 add_filename_language (".pas", language_pascal);
2279 add_filename_language (".p", language_pascal);
2280 add_filename_language (".pp", language_pascal);
c906108c
SS
2281 }
2282}
2283
2284enum language
fba45db2 2285deduce_language_from_filename (char *filename)
c906108c
SS
2286{
2287 int i;
2288 char *cp;
2289
2290 if (filename != NULL)
2291 if ((cp = strrchr (filename, '.')) != NULL)
2292 for (i = 0; i < fl_table_next; i++)
2293 if (strcmp (cp, filename_language_table[i].ext) == 0)
2294 return filename_language_table[i].lang;
2295
2296 return language_unknown;
2297}
2298\f
2299/* allocate_symtab:
2300
2301 Allocate and partly initialize a new symbol table. Return a pointer
2302 to it. error() if no space.
2303
2304 Caller must set these fields:
c5aa993b
JM
2305 LINETABLE(symtab)
2306 symtab->blockvector
2307 symtab->dirname
2308 symtab->free_code
2309 symtab->free_ptr
2310 possibly free_named_symtabs (symtab->filename);
c906108c
SS
2311 */
2312
2313struct symtab *
fba45db2 2314allocate_symtab (char *filename, struct objfile *objfile)
c906108c
SS
2315{
2316 register struct symtab *symtab;
2317
2318 symtab = (struct symtab *)
c5aa993b 2319 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symtab));
c906108c 2320 memset (symtab, 0, sizeof (*symtab));
c5aa993b
JM
2321 symtab->filename = obsavestring (filename, strlen (filename),
2322 &objfile->symbol_obstack);
2323 symtab->fullname = NULL;
2324 symtab->language = deduce_language_from_filename (filename);
2325 symtab->debugformat = obsavestring ("unknown", 7,
2326 &objfile->symbol_obstack);
c906108c
SS
2327
2328 /* Hook it to the objfile it comes from */
2329
c5aa993b
JM
2330 symtab->objfile = objfile;
2331 symtab->next = objfile->symtabs;
2332 objfile->symtabs = symtab;
c906108c
SS
2333
2334 /* FIXME: This should go away. It is only defined for the Z8000,
2335 and the Z8000 definition of this macro doesn't have anything to
2336 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
2337 here for convenience. */
2338#ifdef INIT_EXTRA_SYMTAB_INFO
2339 INIT_EXTRA_SYMTAB_INFO (symtab);
2340#endif
2341
2342 return (symtab);
2343}
2344
2345struct partial_symtab *
fba45db2 2346allocate_psymtab (char *filename, struct objfile *objfile)
c906108c
SS
2347{
2348 struct partial_symtab *psymtab;
2349
c5aa993b 2350 if (objfile->free_psymtabs)
c906108c 2351 {
c5aa993b
JM
2352 psymtab = objfile->free_psymtabs;
2353 objfile->free_psymtabs = psymtab->next;
c906108c
SS
2354 }
2355 else
2356 psymtab = (struct partial_symtab *)
c5aa993b 2357 obstack_alloc (&objfile->psymbol_obstack,
c906108c
SS
2358 sizeof (struct partial_symtab));
2359
2360 memset (psymtab, 0, sizeof (struct partial_symtab));
c5aa993b
JM
2361 psymtab->filename = obsavestring (filename, strlen (filename),
2362 &objfile->psymbol_obstack);
2363 psymtab->symtab = NULL;
c906108c
SS
2364
2365 /* Prepend it to the psymtab list for the objfile it belongs to.
2366 Psymtabs are searched in most recent inserted -> least recent
2367 inserted order. */
2368
c5aa993b
JM
2369 psymtab->objfile = objfile;
2370 psymtab->next = objfile->psymtabs;
2371 objfile->psymtabs = psymtab;
c906108c
SS
2372#if 0
2373 {
2374 struct partial_symtab **prev_pst;
c5aa993b
JM
2375 psymtab->objfile = objfile;
2376 psymtab->next = NULL;
2377 prev_pst = &(objfile->psymtabs);
c906108c 2378 while ((*prev_pst) != NULL)
c5aa993b 2379 prev_pst = &((*prev_pst)->next);
c906108c 2380 (*prev_pst) = psymtab;
c5aa993b 2381 }
c906108c 2382#endif
c5aa993b 2383
c906108c
SS
2384 return (psymtab);
2385}
2386
2387void
fba45db2 2388discard_psymtab (struct partial_symtab *pst)
c906108c
SS
2389{
2390 struct partial_symtab **prev_pst;
2391
2392 /* From dbxread.c:
2393 Empty psymtabs happen as a result of header files which don't
2394 have any symbols in them. There can be a lot of them. But this
2395 check is wrong, in that a psymtab with N_SLINE entries but
2396 nothing else is not empty, but we don't realize that. Fixing
2397 that without slowing things down might be tricky. */
2398
2399 /* First, snip it out of the psymtab chain */
2400
2401 prev_pst = &(pst->objfile->psymtabs);
2402 while ((*prev_pst) != pst)
2403 prev_pst = &((*prev_pst)->next);
2404 (*prev_pst) = pst->next;
2405
2406 /* Next, put it on a free list for recycling */
2407
2408 pst->next = pst->objfile->free_psymtabs;
2409 pst->objfile->free_psymtabs = pst;
2410}
c906108c 2411\f
c5aa993b 2412
c906108c
SS
2413/* Reset all data structures in gdb which may contain references to symbol
2414 table data. */
2415
2416void
fba45db2 2417clear_symtab_users (void)
c906108c
SS
2418{
2419 /* Someday, we should do better than this, by only blowing away
2420 the things that really need to be blown. */
2421 clear_value_history ();
2422 clear_displays ();
2423 clear_internalvars ();
2424 breakpoint_re_set ();
2425 set_default_breakpoint (0, 0, 0, 0);
0378c332 2426 clear_current_source_symtab_and_line ();
c906108c 2427 clear_pc_function_cache ();
11cf8741
JM
2428 if (target_new_objfile_hook)
2429 target_new_objfile_hook (NULL);
c906108c
SS
2430}
2431
74b7792f
AC
2432static void
2433clear_symtab_users_cleanup (void *ignore)
2434{
2435 clear_symtab_users ();
2436}
2437
c906108c
SS
2438/* clear_symtab_users_once:
2439
2440 This function is run after symbol reading, or from a cleanup.
2441 If an old symbol table was obsoleted, the old symbol table
2442 has been blown away, but the other GDB data structures that may
2443 reference it have not yet been cleared or re-directed. (The old
2444 symtab was zapped, and the cleanup queued, in free_named_symtab()
2445 below.)
2446
2447 This function can be queued N times as a cleanup, or called
2448 directly; it will do all the work the first time, and then will be a
2449 no-op until the next time it is queued. This works by bumping a
2450 counter at queueing time. Much later when the cleanup is run, or at
2451 the end of symbol processing (in case the cleanup is discarded), if
2452 the queued count is greater than the "done-count", we do the work
2453 and set the done-count to the queued count. If the queued count is
2454 less than or equal to the done-count, we just ignore the call. This
2455 is needed because reading a single .o file will often replace many
2456 symtabs (one per .h file, for example), and we don't want to reset
2457 the breakpoints N times in the user's face.
2458
2459 The reason we both queue a cleanup, and call it directly after symbol
2460 reading, is because the cleanup protects us in case of errors, but is
2461 discarded if symbol reading is successful. */
2462
2463#if 0
2464/* FIXME: As free_named_symtabs is currently a big noop this function
2465 is no longer needed. */
a14ed312 2466static void clear_symtab_users_once (void);
c906108c
SS
2467
2468static int clear_symtab_users_queued;
2469static int clear_symtab_users_done;
2470
2471static void
fba45db2 2472clear_symtab_users_once (void)
c906108c
SS
2473{
2474 /* Enforce once-per-`do_cleanups'-semantics */
2475 if (clear_symtab_users_queued <= clear_symtab_users_done)
2476 return;
2477 clear_symtab_users_done = clear_symtab_users_queued;
2478
2479 clear_symtab_users ();
2480}
2481#endif
2482
2483/* Delete the specified psymtab, and any others that reference it. */
2484
2485static void
fba45db2 2486cashier_psymtab (struct partial_symtab *pst)
c906108c
SS
2487{
2488 struct partial_symtab *ps, *pprev = NULL;
2489 int i;
2490
2491 /* Find its previous psymtab in the chain */
c5aa993b
JM
2492 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2493 {
2494 if (ps == pst)
2495 break;
2496 pprev = ps;
2497 }
c906108c 2498
c5aa993b
JM
2499 if (ps)
2500 {
2501 /* Unhook it from the chain. */
2502 if (ps == pst->objfile->psymtabs)
2503 pst->objfile->psymtabs = ps->next;
2504 else
2505 pprev->next = ps->next;
2506
2507 /* FIXME, we can't conveniently deallocate the entries in the
2508 partial_symbol lists (global_psymbols/static_psymbols) that
2509 this psymtab points to. These just take up space until all
2510 the psymtabs are reclaimed. Ditto the dependencies list and
2511 filename, which are all in the psymbol_obstack. */
2512
2513 /* We need to cashier any psymtab that has this one as a dependency... */
2514 again:
2515 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2516 {
2517 for (i = 0; i < ps->number_of_dependencies; i++)
2518 {
2519 if (ps->dependencies[i] == pst)
2520 {
2521 cashier_psymtab (ps);
2522 goto again; /* Must restart, chain has been munged. */
2523 }
2524 }
c906108c 2525 }
c906108c 2526 }
c906108c
SS
2527}
2528
2529/* If a symtab or psymtab for filename NAME is found, free it along
2530 with any dependent breakpoints, displays, etc.
2531 Used when loading new versions of object modules with the "add-file"
2532 command. This is only called on the top-level symtab or psymtab's name;
2533 it is not called for subsidiary files such as .h files.
2534
2535 Return value is 1 if we blew away the environment, 0 if not.
7e73cedf 2536 FIXME. The return value appears to never be used.
c906108c
SS
2537
2538 FIXME. I think this is not the best way to do this. We should
2539 work on being gentler to the environment while still cleaning up
2540 all stray pointers into the freed symtab. */
2541
2542int
fba45db2 2543free_named_symtabs (char *name)
c906108c
SS
2544{
2545#if 0
2546 /* FIXME: With the new method of each objfile having it's own
2547 psymtab list, this function needs serious rethinking. In particular,
2548 why was it ever necessary to toss psymtabs with specific compilation
2549 unit filenames, as opposed to all psymtabs from a particular symbol
2550 file? -- fnf
2551 Well, the answer is that some systems permit reloading of particular
2552 compilation units. We want to blow away any old info about these
2553 compilation units, regardless of which objfiles they arrived in. --gnu. */
2554
2555 register struct symtab *s;
2556 register struct symtab *prev;
2557 register struct partial_symtab *ps;
2558 struct blockvector *bv;
2559 int blewit = 0;
2560
2561 /* We only wack things if the symbol-reload switch is set. */
2562 if (!symbol_reloading)
2563 return 0;
2564
2565 /* Some symbol formats have trouble providing file names... */
2566 if (name == 0 || *name == '\0')
2567 return 0;
2568
2569 /* Look for a psymtab with the specified name. */
2570
2571again2:
c5aa993b
JM
2572 for (ps = partial_symtab_list; ps; ps = ps->next)
2573 {
2574 if (STREQ (name, ps->filename))
2575 {
2576 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2577 goto again2; /* Must restart, chain has been munged */
2578 }
c906108c 2579 }
c906108c
SS
2580
2581 /* Look for a symtab with the specified name. */
2582
2583 for (s = symtab_list; s; s = s->next)
2584 {
2585 if (STREQ (name, s->filename))
2586 break;
2587 prev = s;
2588 }
2589
2590 if (s)
2591 {
2592 if (s == symtab_list)
2593 symtab_list = s->next;
2594 else
2595 prev->next = s->next;
2596
2597 /* For now, queue a delete for all breakpoints, displays, etc., whether
c5aa993b
JM
2598 or not they depend on the symtab being freed. This should be
2599 changed so that only those data structures affected are deleted. */
c906108c
SS
2600
2601 /* But don't delete anything if the symtab is empty.
c5aa993b
JM
2602 This test is necessary due to a bug in "dbxread.c" that
2603 causes empty symtabs to be created for N_SO symbols that
2604 contain the pathname of the object file. (This problem
2605 has been fixed in GDB 3.9x). */
c906108c
SS
2606
2607 bv = BLOCKVECTOR (s);
2608 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2609 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2610 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2611 {
b9caf505
AC
2612 complaint (&symfile_complaints, "Replacing old symbols for `%s'",
2613 name);
c906108c
SS
2614 clear_symtab_users_queued++;
2615 make_cleanup (clear_symtab_users_once, 0);
2616 blewit = 1;
c5aa993b
JM
2617 }
2618 else
2619 {
b9caf505
AC
2620 complaint (&symfile_complaints, "Empty symbol table found for `%s'",
2621 name);
c906108c
SS
2622 }
2623
2624 free_symtab (s);
2625 }
2626 else
2627 {
2628 /* It is still possible that some breakpoints will be affected
c5aa993b
JM
2629 even though no symtab was found, since the file might have
2630 been compiled without debugging, and hence not be associated
2631 with a symtab. In order to handle this correctly, we would need
2632 to keep a list of text address ranges for undebuggable files.
2633 For now, we do nothing, since this is a fairly obscure case. */
c906108c
SS
2634 ;
2635 }
2636
2637 /* FIXME, what about the minimal symbol table? */
2638 return blewit;
2639#else
2640 return (0);
2641#endif
2642}
2643\f
2644/* Allocate and partially fill a partial symtab. It will be
2645 completely filled at the end of the symbol list.
2646
d4f3574e 2647 FILENAME is the name of the symbol-file we are reading from. */
c906108c
SS
2648
2649struct partial_symtab *
fba45db2
KB
2650start_psymtab_common (struct objfile *objfile,
2651 struct section_offsets *section_offsets, char *filename,
2652 CORE_ADDR textlow, struct partial_symbol **global_syms,
2653 struct partial_symbol **static_syms)
c906108c
SS
2654{
2655 struct partial_symtab *psymtab;
2656
2657 psymtab = allocate_psymtab (filename, objfile);
c5aa993b
JM
2658 psymtab->section_offsets = section_offsets;
2659 psymtab->textlow = textlow;
2660 psymtab->texthigh = psymtab->textlow; /* default */
2661 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2662 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
c906108c
SS
2663 return (psymtab);
2664}
2665\f
2666/* Add a symbol with a long value to a psymtab.
2667 Since one arg is a struct, we pass in a ptr and deref it (sigh). */
2668
2669void
fba45db2
KB
2670add_psymbol_to_list (char *name, int namelength, namespace_enum namespace,
2671 enum address_class class,
2672 struct psymbol_allocation_list *list, long val, /* Value as a long */
2673 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2674 enum language language, struct objfile *objfile)
c906108c
SS
2675{
2676 register struct partial_symbol *psym;
2677 char *buf = alloca (namelength + 1);
2678 /* psymbol is static so that there will be no uninitialized gaps in the
2679 structure which might contain random data, causing cache misses in
2680 bcache. */
2681 static struct partial_symbol psymbol;
2682
2683 /* Create local copy of the partial symbol */
2684 memcpy (buf, name, namelength);
2685 buf[namelength] = '\0';
af5f3db6 2686 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, objfile->psymbol_cache);
c906108c
SS
2687 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2688 if (val != 0)
2689 {
2690 SYMBOL_VALUE (&psymbol) = val;
2691 }
2692 else
2693 {
2694 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2695 }
2696 SYMBOL_SECTION (&psymbol) = 0;
2697 SYMBOL_LANGUAGE (&psymbol) = language;
2698 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2699 PSYMBOL_CLASS (&psymbol) = class;
2700 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2701
2702 /* Stash the partial symbol away in the cache */
af5f3db6 2703 psym = bcache (&psymbol, sizeof (struct partial_symbol), objfile->psymbol_cache);
c906108c
SS
2704
2705 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2706 if (list->next >= list->list + list->size)
2707 {
2708 extend_psymbol_list (list, objfile);
2709 }
2710 *list->next++ = psym;
2711 OBJSTAT (objfile, n_psyms++);
2712}
2713
2714/* Add a symbol with a long value to a psymtab. This differs from
2715 * add_psymbol_to_list above in taking both a mangled and a demangled
2716 * name. */
2717
2718void
fba45db2
KB
2719add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
2720 int dem_namelength, namespace_enum namespace,
2721 enum address_class class,
2722 struct psymbol_allocation_list *list, long val, /* Value as a long */
2723 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2724 enum language language,
2725 struct objfile *objfile)
c906108c
SS
2726{
2727 register struct partial_symbol *psym;
2728 char *buf = alloca (namelength + 1);
2729 /* psymbol is static so that there will be no uninitialized gaps in the
2730 structure which might contain random data, causing cache misses in
2731 bcache. */
2732 static struct partial_symbol psymbol;
2733
2734 /* Create local copy of the partial symbol */
2735
2736 memcpy (buf, name, namelength);
2737 buf[namelength] = '\0';
af5f3db6 2738 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, objfile->psymbol_cache);
c906108c
SS
2739
2740 buf = alloca (dem_namelength + 1);
2741 memcpy (buf, dem_name, dem_namelength);
2742 buf[dem_namelength] = '\0';
c5aa993b 2743
c906108c
SS
2744 switch (language)
2745 {
c5aa993b
JM
2746 case language_c:
2747 case language_cplus:
2748 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
af5f3db6 2749 bcache (buf, dem_namelength + 1, objfile->psymbol_cache);
c5aa993b 2750 break;
c906108c
SS
2751 /* FIXME What should be done for the default case? Ignoring for now. */
2752 }
2753
2754 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2755 if (val != 0)
2756 {
2757 SYMBOL_VALUE (&psymbol) = val;
2758 }
2759 else
2760 {
2761 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2762 }
2763 SYMBOL_SECTION (&psymbol) = 0;
2764 SYMBOL_LANGUAGE (&psymbol) = language;
2765 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2766 PSYMBOL_CLASS (&psymbol) = class;
2767 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2768
2769 /* Stash the partial symbol away in the cache */
af5f3db6 2770 psym = bcache (&psymbol, sizeof (struct partial_symbol), objfile->psymbol_cache);
c906108c
SS
2771
2772 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2773 if (list->next >= list->list + list->size)
2774 {
2775 extend_psymbol_list (list, objfile);
2776 }
2777 *list->next++ = psym;
2778 OBJSTAT (objfile, n_psyms++);
2779}
2780
2781/* Initialize storage for partial symbols. */
2782
2783void
fba45db2 2784init_psymbol_list (struct objfile *objfile, int total_symbols)
c906108c
SS
2785{
2786 /* Free any previously allocated psymbol lists. */
c5aa993b
JM
2787
2788 if (objfile->global_psymbols.list)
c906108c 2789 {
4efb68b1 2790 xmfree (objfile->md, objfile->global_psymbols.list);
c906108c 2791 }
c5aa993b 2792 if (objfile->static_psymbols.list)
c906108c 2793 {
4efb68b1 2794 xmfree (objfile->md, objfile->static_psymbols.list);
c906108c 2795 }
c5aa993b 2796
c906108c
SS
2797 /* Current best guess is that approximately a twentieth
2798 of the total symbols (in a debugging file) are global or static
2799 oriented symbols */
c906108c 2800
c5aa993b
JM
2801 objfile->global_psymbols.size = total_symbols / 10;
2802 objfile->static_psymbols.size = total_symbols / 10;
2803
2804 if (objfile->global_psymbols.size > 0)
c906108c 2805 {
c5aa993b
JM
2806 objfile->global_psymbols.next =
2807 objfile->global_psymbols.list = (struct partial_symbol **)
2808 xmmalloc (objfile->md, (objfile->global_psymbols.size
2809 * sizeof (struct partial_symbol *)));
c906108c 2810 }
c5aa993b 2811 if (objfile->static_psymbols.size > 0)
c906108c 2812 {
c5aa993b
JM
2813 objfile->static_psymbols.next =
2814 objfile->static_psymbols.list = (struct partial_symbol **)
2815 xmmalloc (objfile->md, (objfile->static_psymbols.size
2816 * sizeof (struct partial_symbol *)));
c906108c
SS
2817 }
2818}
2819
2820/* OVERLAYS:
2821 The following code implements an abstraction for debugging overlay sections.
2822
2823 The target model is as follows:
2824 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2825 same VMA, each with its own unique LMA (or load address).
c906108c 2826 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2827 sections, one by one, from the load address into the VMA address.
c906108c 2828 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2829 sections should be considered to be mapped from the VMA to the LMA.
2830 This information is used for symbol lookup, and memory read/write.
2831 For instance, if a section has been mapped then its contents
2832 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2833
2834 Two levels of debugger support for overlays are available. One is
2835 "manual", in which the debugger relies on the user to tell it which
2836 overlays are currently mapped. This level of support is
2837 implemented entirely in the core debugger, and the information about
2838 whether a section is mapped is kept in the objfile->obj_section table.
2839
2840 The second level of support is "automatic", and is only available if
2841 the target-specific code provides functionality to read the target's
2842 overlay mapping table, and translate its contents for the debugger
2843 (by updating the mapped state information in the obj_section tables).
2844
2845 The interface is as follows:
c5aa993b
JM
2846 User commands:
2847 overlay map <name> -- tell gdb to consider this section mapped
2848 overlay unmap <name> -- tell gdb to consider this section unmapped
2849 overlay list -- list the sections that GDB thinks are mapped
2850 overlay read-target -- get the target's state of what's mapped
2851 overlay off/manual/auto -- set overlay debugging state
2852 Functional interface:
2853 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2854 section, return that section.
2855 find_pc_overlay(pc): find any overlay section that contains
2856 the pc, either in its VMA or its LMA
2857 overlay_is_mapped(sect): true if overlay is marked as mapped
2858 section_is_overlay(sect): true if section's VMA != LMA
2859 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2860 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2861 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2862 overlay_mapped_address(...): map an address from section's LMA to VMA
2863 overlay_unmapped_address(...): map an address from section's VMA to LMA
2864 symbol_overlayed_address(...): Return a "current" address for symbol:
2865 either in VMA or LMA depending on whether
2866 the symbol's section is currently mapped
c906108c
SS
2867 */
2868
2869/* Overlay debugging state: */
2870
d874f1e2 2871enum overlay_debugging_state overlay_debugging = ovly_off;
c906108c
SS
2872int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2873
2874/* Target vector for refreshing overlay mapped state */
a14ed312 2875static void simple_overlay_update (struct obj_section *);
507f3c78 2876void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
c906108c
SS
2877
2878/* Function: section_is_overlay (SECTION)
2879 Returns true if SECTION has VMA not equal to LMA, ie.
2880 SECTION is loaded at an address different from where it will "run". */
2881
2882int
fba45db2 2883section_is_overlay (asection *section)
c906108c 2884{
fbd35540
MS
2885 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2886
c906108c
SS
2887 if (overlay_debugging)
2888 if (section && section->lma != 0 &&
2889 section->vma != section->lma)
2890 return 1;
2891
2892 return 0;
2893}
2894
2895/* Function: overlay_invalidate_all (void)
2896 Invalidate the mapped state of all overlay sections (mark it as stale). */
2897
2898static void
fba45db2 2899overlay_invalidate_all (void)
c906108c 2900{
c5aa993b 2901 struct objfile *objfile;
c906108c
SS
2902 struct obj_section *sect;
2903
2904 ALL_OBJSECTIONS (objfile, sect)
2905 if (section_is_overlay (sect->the_bfd_section))
c5aa993b 2906 sect->ovly_mapped = -1;
c906108c
SS
2907}
2908
2909/* Function: overlay_is_mapped (SECTION)
2910 Returns true if section is an overlay, and is currently mapped.
2911 Private: public access is thru function section_is_mapped.
2912
2913 Access to the ovly_mapped flag is restricted to this function, so
2914 that we can do automatic update. If the global flag
2915 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2916 overlay_invalidate_all. If the mapped state of the particular
2917 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2918
c5aa993b 2919static int
fba45db2 2920overlay_is_mapped (struct obj_section *osect)
c906108c
SS
2921{
2922 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
2923 return 0;
2924
c5aa993b 2925 switch (overlay_debugging)
c906108c
SS
2926 {
2927 default:
d874f1e2 2928 case ovly_off:
c5aa993b 2929 return 0; /* overlay debugging off */
d874f1e2 2930 case ovly_auto: /* overlay debugging automatic */
c906108c 2931 /* Unles there is a target_overlay_update function,
c5aa993b 2932 there's really nothing useful to do here (can't really go auto) */
c906108c
SS
2933 if (target_overlay_update)
2934 {
2935 if (overlay_cache_invalid)
2936 {
2937 overlay_invalidate_all ();
2938 overlay_cache_invalid = 0;
2939 }
2940 if (osect->ovly_mapped == -1)
2941 (*target_overlay_update) (osect);
2942 }
2943 /* fall thru to manual case */
d874f1e2 2944 case ovly_on: /* overlay debugging manual */
c906108c
SS
2945 return osect->ovly_mapped == 1;
2946 }
2947}
2948
2949/* Function: section_is_mapped
2950 Returns true if section is an overlay, and is currently mapped. */
2951
2952int
fba45db2 2953section_is_mapped (asection *section)
c906108c 2954{
c5aa993b 2955 struct objfile *objfile;
c906108c
SS
2956 struct obj_section *osect;
2957
2958 if (overlay_debugging)
2959 if (section && section_is_overlay (section))
2960 ALL_OBJSECTIONS (objfile, osect)
2961 if (osect->the_bfd_section == section)
c5aa993b 2962 return overlay_is_mapped (osect);
c906108c
SS
2963
2964 return 0;
2965}
2966
2967/* Function: pc_in_unmapped_range
2968 If PC falls into the lma range of SECTION, return true, else false. */
2969
2970CORE_ADDR
fba45db2 2971pc_in_unmapped_range (CORE_ADDR pc, asection *section)
c906108c 2972{
fbd35540
MS
2973 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2974
c906108c
SS
2975 int size;
2976
2977 if (overlay_debugging)
2978 if (section && section_is_overlay (section))
2979 {
2980 size = bfd_get_section_size_before_reloc (section);
2981 if (section->lma <= pc && pc < section->lma + size)
2982 return 1;
2983 }
2984 return 0;
2985}
2986
2987/* Function: pc_in_mapped_range
2988 If PC falls into the vma range of SECTION, return true, else false. */
2989
2990CORE_ADDR
fba45db2 2991pc_in_mapped_range (CORE_ADDR pc, asection *section)
c906108c 2992{
fbd35540
MS
2993 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2994
c906108c
SS
2995 int size;
2996
2997 if (overlay_debugging)
2998 if (section && section_is_overlay (section))
2999 {
3000 size = bfd_get_section_size_before_reloc (section);
3001 if (section->vma <= pc && pc < section->vma + size)
3002 return 1;
3003 }
3004 return 0;
3005}
3006
9ec8e6a0
JB
3007
3008/* Return true if the mapped ranges of sections A and B overlap, false
3009 otherwise. */
3010int
3011sections_overlap (asection *a, asection *b)
3012{
fbd35540
MS
3013 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3014
9ec8e6a0
JB
3015 CORE_ADDR a_start = a->vma;
3016 CORE_ADDR a_end = a->vma + bfd_get_section_size_before_reloc (a);
3017 CORE_ADDR b_start = b->vma;
3018 CORE_ADDR b_end = b->vma + bfd_get_section_size_before_reloc (b);
3019
3020 return (a_start < b_end && b_start < a_end);
3021}
3022
c906108c
SS
3023/* Function: overlay_unmapped_address (PC, SECTION)
3024 Returns the address corresponding to PC in the unmapped (load) range.
3025 May be the same as PC. */
3026
3027CORE_ADDR
fba45db2 3028overlay_unmapped_address (CORE_ADDR pc, asection *section)
c906108c 3029{
fbd35540
MS
3030 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3031
c906108c
SS
3032 if (overlay_debugging)
3033 if (section && section_is_overlay (section) &&
3034 pc_in_mapped_range (pc, section))
3035 return pc + section->lma - section->vma;
3036
3037 return pc;
3038}
3039
3040/* Function: overlay_mapped_address (PC, SECTION)
3041 Returns the address corresponding to PC in the mapped (runtime) range.
3042 May be the same as PC. */
3043
3044CORE_ADDR
fba45db2 3045overlay_mapped_address (CORE_ADDR pc, asection *section)
c906108c 3046{
fbd35540
MS
3047 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3048
c906108c
SS
3049 if (overlay_debugging)
3050 if (section && section_is_overlay (section) &&
3051 pc_in_unmapped_range (pc, section))
3052 return pc + section->vma - section->lma;
3053
3054 return pc;
3055}
3056
3057
3058/* Function: symbol_overlayed_address
3059 Return one of two addresses (relative to the VMA or to the LMA),
3060 depending on whether the section is mapped or not. */
3061
c5aa993b 3062CORE_ADDR
fba45db2 3063symbol_overlayed_address (CORE_ADDR address, asection *section)
c906108c
SS
3064{
3065 if (overlay_debugging)
3066 {
3067 /* If the symbol has no section, just return its regular address. */
3068 if (section == 0)
3069 return address;
3070 /* If the symbol's section is not an overlay, just return its address */
3071 if (!section_is_overlay (section))
3072 return address;
3073 /* If the symbol's section is mapped, just return its address */
3074 if (section_is_mapped (section))
3075 return address;
3076 /*
3077 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3078 * then return its LOADED address rather than its vma address!!
3079 */
3080 return overlay_unmapped_address (address, section);
3081 }
3082 return address;
3083}
3084
3085/* Function: find_pc_overlay (PC)
3086 Return the best-match overlay section for PC:
3087 If PC matches a mapped overlay section's VMA, return that section.
3088 Else if PC matches an unmapped section's VMA, return that section.
3089 Else if PC matches an unmapped section's LMA, return that section. */
3090
3091asection *
fba45db2 3092find_pc_overlay (CORE_ADDR pc)
c906108c 3093{
c5aa993b 3094 struct objfile *objfile;
c906108c
SS
3095 struct obj_section *osect, *best_match = NULL;
3096
3097 if (overlay_debugging)
3098 ALL_OBJSECTIONS (objfile, osect)
3099 if (section_is_overlay (osect->the_bfd_section))
c5aa993b
JM
3100 {
3101 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3102 {
3103 if (overlay_is_mapped (osect))
3104 return osect->the_bfd_section;
3105 else
3106 best_match = osect;
3107 }
3108 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3109 best_match = osect;
3110 }
c906108c
SS
3111 return best_match ? best_match->the_bfd_section : NULL;
3112}
3113
3114/* Function: find_pc_mapped_section (PC)
3115 If PC falls into the VMA address range of an overlay section that is
3116 currently marked as MAPPED, return that section. Else return NULL. */
3117
3118asection *
fba45db2 3119find_pc_mapped_section (CORE_ADDR pc)
c906108c 3120{
c5aa993b 3121 struct objfile *objfile;
c906108c
SS
3122 struct obj_section *osect;
3123
3124 if (overlay_debugging)
3125 ALL_OBJSECTIONS (objfile, osect)
3126 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3127 overlay_is_mapped (osect))
c5aa993b 3128 return osect->the_bfd_section;
c906108c
SS
3129
3130 return NULL;
3131}
3132
3133/* Function: list_overlays_command
3134 Print a list of mapped sections and their PC ranges */
3135
3136void
fba45db2 3137list_overlays_command (char *args, int from_tty)
c906108c 3138{
c5aa993b
JM
3139 int nmapped = 0;
3140 struct objfile *objfile;
c906108c
SS
3141 struct obj_section *osect;
3142
3143 if (overlay_debugging)
3144 ALL_OBJSECTIONS (objfile, osect)
3145 if (overlay_is_mapped (osect))
c5aa993b
JM
3146 {
3147 const char *name;
3148 bfd_vma lma, vma;
3149 int size;
3150
3151 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3152 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3153 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3154 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3155
3156 printf_filtered ("Section %s, loaded at ", name);
3157 print_address_numeric (lma, 1, gdb_stdout);
3158 puts_filtered (" - ");
3159 print_address_numeric (lma + size, 1, gdb_stdout);
3160 printf_filtered (", mapped at ");
3161 print_address_numeric (vma, 1, gdb_stdout);
3162 puts_filtered (" - ");
3163 print_address_numeric (vma + size, 1, gdb_stdout);
3164 puts_filtered ("\n");
3165
3166 nmapped++;
3167 }
c906108c
SS
3168 if (nmapped == 0)
3169 printf_filtered ("No sections are mapped.\n");
3170}
3171
3172/* Function: map_overlay_command
3173 Mark the named section as mapped (ie. residing at its VMA address). */
3174
3175void
fba45db2 3176map_overlay_command (char *args, int from_tty)
c906108c 3177{
c5aa993b
JM
3178 struct objfile *objfile, *objfile2;
3179 struct obj_section *sec, *sec2;
3180 asection *bfdsec;
c906108c
SS
3181
3182 if (!overlay_debugging)
515ad16c
EZ
3183 error ("\
3184Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3185the 'overlay manual' command.");
c906108c
SS
3186
3187 if (args == 0 || *args == 0)
3188 error ("Argument required: name of an overlay section");
3189
3190 /* First, find a section matching the user supplied argument */
3191 ALL_OBJSECTIONS (objfile, sec)
3192 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3193 {
3194 /* Now, check to see if the section is an overlay. */
3195 bfdsec = sec->the_bfd_section;
3196 if (!section_is_overlay (bfdsec))
3197 continue; /* not an overlay section */
3198
3199 /* Mark the overlay as "mapped" */
3200 sec->ovly_mapped = 1;
3201
3202 /* Next, make a pass and unmap any sections that are
3203 overlapped by this new section: */
3204 ALL_OBJSECTIONS (objfile2, sec2)
9ec8e6a0
JB
3205 if (sec2->ovly_mapped
3206 && sec != sec2
3207 && sec->the_bfd_section != sec2->the_bfd_section
3208 && sections_overlap (sec->the_bfd_section,
3209 sec2->the_bfd_section))
c5aa993b
JM
3210 {
3211 if (info_verbose)
3212 printf_filtered ("Note: section %s unmapped by overlap\n",
3213 bfd_section_name (objfile->obfd,
3214 sec2->the_bfd_section));
3215 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3216 }
3217 return;
3218 }
c906108c
SS
3219 error ("No overlay section called %s", args);
3220}
3221
3222/* Function: unmap_overlay_command
3223 Mark the overlay section as unmapped
3224 (ie. resident in its LMA address range, rather than the VMA range). */
3225
3226void
fba45db2 3227unmap_overlay_command (char *args, int from_tty)
c906108c 3228{
c5aa993b 3229 struct objfile *objfile;
c906108c
SS
3230 struct obj_section *sec;
3231
3232 if (!overlay_debugging)
515ad16c
EZ
3233 error ("\
3234Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3235the 'overlay manual' command.");
c906108c
SS
3236
3237 if (args == 0 || *args == 0)
3238 error ("Argument required: name of an overlay section");
3239
3240 /* First, find a section matching the user supplied argument */
3241 ALL_OBJSECTIONS (objfile, sec)
3242 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3243 {
3244 if (!sec->ovly_mapped)
3245 error ("Section %s is not mapped", args);
3246 sec->ovly_mapped = 0;
3247 return;
3248 }
c906108c
SS
3249 error ("No overlay section called %s", args);
3250}
3251
3252/* Function: overlay_auto_command
3253 A utility command to turn on overlay debugging.
3254 Possibly this should be done via a set/show command. */
3255
3256static void
fba45db2 3257overlay_auto_command (char *args, int from_tty)
c906108c 3258{
d874f1e2 3259 overlay_debugging = ovly_auto;
1900040c 3260 enable_overlay_breakpoints ();
c906108c
SS
3261 if (info_verbose)
3262 printf_filtered ("Automatic overlay debugging enabled.");
3263}
3264
3265/* Function: overlay_manual_command
3266 A utility command to turn on overlay debugging.
3267 Possibly this should be done via a set/show command. */
3268
3269static void
fba45db2 3270overlay_manual_command (char *args, int from_tty)
c906108c 3271{
d874f1e2 3272 overlay_debugging = ovly_on;
1900040c 3273 disable_overlay_breakpoints ();
c906108c
SS
3274 if (info_verbose)
3275 printf_filtered ("Overlay debugging enabled.");
3276}
3277
3278/* Function: overlay_off_command
3279 A utility command to turn on overlay debugging.
3280 Possibly this should be done via a set/show command. */
3281
3282static void
fba45db2 3283overlay_off_command (char *args, int from_tty)
c906108c 3284{
d874f1e2 3285 overlay_debugging = ovly_off;
1900040c 3286 disable_overlay_breakpoints ();
c906108c
SS
3287 if (info_verbose)
3288 printf_filtered ("Overlay debugging disabled.");
3289}
3290
3291static void
fba45db2 3292overlay_load_command (char *args, int from_tty)
c906108c
SS
3293{
3294 if (target_overlay_update)
3295 (*target_overlay_update) (NULL);
3296 else
3297 error ("This target does not know how to read its overlay state.");
3298}
3299
3300/* Function: overlay_command
3301 A place-holder for a mis-typed command */
3302
3303/* Command list chain containing all defined "overlay" subcommands. */
3304struct cmd_list_element *overlaylist;
3305
3306static void
fba45db2 3307overlay_command (char *args, int from_tty)
c906108c 3308{
c5aa993b 3309 printf_unfiltered
c906108c
SS
3310 ("\"overlay\" must be followed by the name of an overlay command.\n");
3311 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3312}
3313
3314
3315/* Target Overlays for the "Simplest" overlay manager:
3316
3317 This is GDB's default target overlay layer. It works with the
3318 minimal overlay manager supplied as an example by Cygnus. The
3319 entry point is via a function pointer "target_overlay_update",
3320 so targets that use a different runtime overlay manager can
3321 substitute their own overlay_update function and take over the
3322 function pointer.
3323
3324 The overlay_update function pokes around in the target's data structures
3325 to see what overlays are mapped, and updates GDB's overlay mapping with
3326 this information.
3327
3328 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3329 unsigned _novlys; /# number of overlay sections #/
3330 unsigned _ovly_table[_novlys][4] = {
3331 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3332 {..., ..., ..., ...},
3333 }
3334 unsigned _novly_regions; /# number of overlay regions #/
3335 unsigned _ovly_region_table[_novly_regions][3] = {
3336 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3337 {..., ..., ...},
3338 }
c906108c
SS
3339 These functions will attempt to update GDB's mappedness state in the
3340 symbol section table, based on the target's mappedness state.
3341
3342 To do this, we keep a cached copy of the target's _ovly_table, and
3343 attempt to detect when the cached copy is invalidated. The main
3344 entry point is "simple_overlay_update(SECT), which looks up SECT in
3345 the cached table and re-reads only the entry for that section from
3346 the target (whenever possible).
3347 */
3348
3349/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3350static unsigned (*cache_ovly_table)[4] = 0;
c906108c 3351#if 0
c5aa993b 3352static unsigned (*cache_ovly_region_table)[3] = 0;
c906108c 3353#endif
c5aa993b 3354static unsigned cache_novlys = 0;
c906108c 3355#if 0
c5aa993b 3356static unsigned cache_novly_regions = 0;
c906108c
SS
3357#endif
3358static CORE_ADDR cache_ovly_table_base = 0;
3359#if 0
3360static CORE_ADDR cache_ovly_region_table_base = 0;
3361#endif
c5aa993b
JM
3362enum ovly_index
3363 {
3364 VMA, SIZE, LMA, MAPPED
3365 };
c906108c
SS
3366#define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3367
3368/* Throw away the cached copy of _ovly_table */
3369static void
fba45db2 3370simple_free_overlay_table (void)
c906108c
SS
3371{
3372 if (cache_ovly_table)
b8c9b27d 3373 xfree (cache_ovly_table);
c5aa993b 3374 cache_novlys = 0;
c906108c
SS
3375 cache_ovly_table = NULL;
3376 cache_ovly_table_base = 0;
3377}
3378
3379#if 0
3380/* Throw away the cached copy of _ovly_region_table */
3381static void
fba45db2 3382simple_free_overlay_region_table (void)
c906108c
SS
3383{
3384 if (cache_ovly_region_table)
b8c9b27d 3385 xfree (cache_ovly_region_table);
c5aa993b 3386 cache_novly_regions = 0;
c906108c
SS
3387 cache_ovly_region_table = NULL;
3388 cache_ovly_region_table_base = 0;
3389}
3390#endif
3391
3392/* Read an array of ints from the target into a local buffer.
3393 Convert to host order. int LEN is number of ints */
3394static void
fba45db2 3395read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
c906108c 3396{
34c0bd93 3397 /* FIXME (alloca): Not safe if array is very large. */
c906108c 3398 char *buf = alloca (len * TARGET_LONG_BYTES);
c5aa993b 3399 int i;
c906108c
SS
3400
3401 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3402 for (i = 0; i < len; i++)
c5aa993b 3403 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
c906108c
SS
3404 TARGET_LONG_BYTES);
3405}
3406
3407/* Find and grab a copy of the target _ovly_table
3408 (and _novlys, which is needed for the table's size) */
c5aa993b 3409static int
fba45db2 3410simple_read_overlay_table (void)
c906108c 3411{
0d43edd1 3412 struct minimal_symbol *novlys_msym, *ovly_table_msym;
c906108c
SS
3413
3414 simple_free_overlay_table ();
9b27852e 3415 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3416 if (! novlys_msym)
c906108c 3417 {
0d43edd1
JB
3418 error ("Error reading inferior's overlay table: "
3419 "couldn't find `_novlys' variable\n"
3420 "in inferior. Use `overlay manual' mode.");
3421 return 0;
c906108c 3422 }
0d43edd1 3423
9b27852e 3424 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3425 if (! ovly_table_msym)
3426 {
3427 error ("Error reading inferior's overlay table: couldn't find "
3428 "`_ovly_table' array\n"
3429 "in inferior. Use `overlay manual' mode.");
3430 return 0;
3431 }
3432
3433 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3434 cache_ovly_table
3435 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3436 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3437 read_target_long_array (cache_ovly_table_base,
3438 (int *) cache_ovly_table,
3439 cache_novlys * 4);
3440
c5aa993b 3441 return 1; /* SUCCESS */
c906108c
SS
3442}
3443
3444#if 0
3445/* Find and grab a copy of the target _ovly_region_table
3446 (and _novly_regions, which is needed for the table's size) */
c5aa993b 3447static int
fba45db2 3448simple_read_overlay_region_table (void)
c906108c
SS
3449{
3450 struct minimal_symbol *msym;
3451
3452 simple_free_overlay_region_table ();
9b27852e 3453 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
c906108c
SS
3454 if (msym != NULL)
3455 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
c5aa993b
JM
3456 else
3457 return 0; /* failure */
c906108c
SS
3458 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3459 if (cache_ovly_region_table != NULL)
3460 {
9b27852e 3461 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
c906108c
SS
3462 if (msym != NULL)
3463 {
3464 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
c5aa993b
JM
3465 read_target_long_array (cache_ovly_region_table_base,
3466 (int *) cache_ovly_region_table,
c906108c
SS
3467 cache_novly_regions * 3);
3468 }
c5aa993b
JM
3469 else
3470 return 0; /* failure */
c906108c 3471 }
c5aa993b
JM
3472 else
3473 return 0; /* failure */
3474 return 1; /* SUCCESS */
c906108c
SS
3475}
3476#endif
3477
3478/* Function: simple_overlay_update_1
3479 A helper function for simple_overlay_update. Assuming a cached copy
3480 of _ovly_table exists, look through it to find an entry whose vma,
3481 lma and size match those of OSECT. Re-read the entry and make sure
3482 it still matches OSECT (else the table may no longer be valid).
3483 Set OSECT's mapped state to match the entry. Return: 1 for
3484 success, 0 for failure. */
3485
3486static int
fba45db2 3487simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3488{
3489 int i, size;
fbd35540
MS
3490 bfd *obfd = osect->objfile->obfd;
3491 asection *bsect = osect->the_bfd_section;
c906108c
SS
3492
3493 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3494 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3495 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3496 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3497 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3498 {
3499 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3500 (int *) cache_ovly_table[i], 4);
fbd35540
MS
3501 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3502 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3503 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3504 {
3505 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3506 return 1;
3507 }
fbd35540 3508 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3509 return 0;
3510 }
3511 return 0;
3512}
3513
3514/* Function: simple_overlay_update
3515 If OSECT is NULL, then update all sections' mapped state
3516 (after re-reading the entire target _ovly_table).
3517 If OSECT is non-NULL, then try to find a matching entry in the
3518 cached ovly_table and update only OSECT's mapped state.
3519 If a cached entry can't be found or the cache isn't valid, then
3520 re-read the entire cache, and go ahead and update all sections. */
3521
3522static void
fba45db2 3523simple_overlay_update (struct obj_section *osect)
c906108c 3524{
c5aa993b 3525 struct objfile *objfile;
c906108c
SS
3526
3527 /* Were we given an osect to look up? NULL means do all of them. */
3528 if (osect)
3529 /* Have we got a cached copy of the target's overlay table? */
3530 if (cache_ovly_table != NULL)
3531 /* Does its cached location match what's currently in the symtab? */
c5aa993b 3532 if (cache_ovly_table_base ==
9b27852e 3533 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
c906108c
SS
3534 /* Then go ahead and try to look up this single section in the cache */
3535 if (simple_overlay_update_1 (osect))
3536 /* Found it! We're done. */
3537 return;
3538
3539 /* Cached table no good: need to read the entire table anew.
3540 Or else we want all the sections, in which case it's actually
3541 more efficient to read the whole table in one block anyway. */
3542
0d43edd1
JB
3543 if (! simple_read_overlay_table ())
3544 return;
3545
c906108c
SS
3546 /* Now may as well update all sections, even if only one was requested. */
3547 ALL_OBJSECTIONS (objfile, osect)
3548 if (section_is_overlay (osect->the_bfd_section))
c5aa993b
JM
3549 {
3550 int i, size;
fbd35540
MS
3551 bfd *obfd = osect->objfile->obfd;
3552 asection *bsect = osect->the_bfd_section;
c5aa993b
JM
3553
3554 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3555 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3556 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3557 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3558 /* && cache_ovly_table[i][SIZE] == size */ )
3559 { /* obj_section matches i'th entry in ovly_table */
c5aa993b
JM
3560 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3561 break; /* finished with inner for loop: break out */
3562 }
3563 }
c906108c
SS
3564}
3565
086df311
DJ
3566/* Set the output sections and output offsets for section SECTP in
3567 ABFD. The relocation code in BFD will read these offsets, so we
3568 need to be sure they're initialized. We map each section to itself,
3569 with no offset; this means that SECTP->vma will be honored. */
3570
3571static void
3572symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3573{
3574 sectp->output_section = sectp;
3575 sectp->output_offset = 0;
3576}
3577
3578/* Relocate the contents of a debug section SECTP in ABFD. The
3579 contents are stored in BUF if it is non-NULL, or returned in a
3580 malloc'd buffer otherwise.
3581
3582 For some platforms and debug info formats, shared libraries contain
3583 relocations against the debug sections (particularly for DWARF-2;
3584 one affected platform is PowerPC GNU/Linux, although it depends on
3585 the version of the linker in use). Also, ELF object files naturally
3586 have unresolved relocations for their debug sections. We need to apply
3587 the relocations in order to get the locations of symbols correct. */
3588
3589bfd_byte *
3590symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3591{
3592 /* We're only interested in debugging sections with relocation
3593 information. */
3594 if ((sectp->flags & SEC_RELOC) == 0)
3595 return NULL;
3596 if ((sectp->flags & SEC_DEBUGGING) == 0)
3597 return NULL;
3598
3599 /* We will handle section offsets properly elsewhere, so relocate as if
3600 all sections begin at 0. */
3601 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3602
3603 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf);
3604}
c906108c
SS
3605
3606void
fba45db2 3607_initialize_symfile (void)
c906108c
SS
3608{
3609 struct cmd_list_element *c;
c5aa993b 3610
c906108c 3611 c = add_cmd ("symbol-file", class_files, symbol_file_command,
c5aa993b 3612 "Load symbol table from executable file FILE.\n\
c906108c
SS
3613The `file' command can also load symbol tables, as well as setting the file\n\
3614to execute.", &cmdlist);
5ba2abeb 3615 set_cmd_completer (c, filename_completer);
c906108c
SS
3616
3617 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command,
db162d44 3618 "Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
c906108c 3619Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
2acceee2 3620ADDR is the starting address of the file's text.\n\
db162d44
EZ
3621The optional arguments are section-name section-address pairs and\n\
3622should be specified if the data and bss segments are not contiguous\n\
d4654627 3623with the text. SECT is a section name to be loaded at SECT_ADDR.",
c906108c 3624 &cmdlist);
5ba2abeb 3625 set_cmd_completer (c, filename_completer);
c906108c
SS
3626
3627 c = add_cmd ("add-shared-symbol-files", class_files,
3628 add_shared_symbol_files_command,
3629 "Load the symbols from shared objects in the dynamic linker's link map.",
c5aa993b 3630 &cmdlist);
c906108c
SS
3631 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3632 &cmdlist);
3633
3634 c = add_cmd ("load", class_files, load_command,
c5aa993b 3635 "Dynamically load FILE into the running program, and record its symbols\n\
c906108c 3636for access from GDB.", &cmdlist);
5ba2abeb 3637 set_cmd_completer (c, filename_completer);
c906108c
SS
3638
3639 add_show_from_set
3640 (add_set_cmd ("symbol-reloading", class_support, var_boolean,
c5aa993b
JM
3641 (char *) &symbol_reloading,
3642 "Set dynamic symbol table reloading multiple times in one run.",
c906108c
SS
3643 &setlist),
3644 &showlist);
3645
c5aa993b
JM
3646 add_prefix_cmd ("overlay", class_support, overlay_command,
3647 "Commands for debugging overlays.", &overlaylist,
c906108c
SS
3648 "overlay ", 0, &cmdlist);
3649
3650 add_com_alias ("ovly", "overlay", class_alias, 1);
3651 add_com_alias ("ov", "overlay", class_alias, 1);
3652
c5aa993b 3653 add_cmd ("map-overlay", class_support, map_overlay_command,
c906108c
SS
3654 "Assert that an overlay section is mapped.", &overlaylist);
3655
c5aa993b 3656 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
c906108c
SS
3657 "Assert that an overlay section is unmapped.", &overlaylist);
3658
c5aa993b 3659 add_cmd ("list-overlays", class_support, list_overlays_command,
c906108c
SS
3660 "List mappings of overlay sections.", &overlaylist);
3661
c5aa993b 3662 add_cmd ("manual", class_support, overlay_manual_command,
c906108c 3663 "Enable overlay debugging.", &overlaylist);
c5aa993b 3664 add_cmd ("off", class_support, overlay_off_command,
c906108c 3665 "Disable overlay debugging.", &overlaylist);
c5aa993b 3666 add_cmd ("auto", class_support, overlay_auto_command,
c906108c 3667 "Enable automatic overlay debugging.", &overlaylist);
c5aa993b 3668 add_cmd ("load-target", class_support, overlay_load_command,
c906108c
SS
3669 "Read the overlay mapping state from the target.", &overlaylist);
3670
3671 /* Filename extension to source language lookup table: */
3672 init_filename_language_table ();
3673 c = add_set_cmd ("extension-language", class_files, var_string_noescape,
c5aa993b 3674 (char *) &ext_args,
c906108c
SS
3675 "Set mapping between filename extension and source language.\n\
3676Usage: set extension-language .foo bar",
c5aa993b 3677 &setlist);
9f60d481 3678 set_cmd_cfunc (c, set_ext_lang_command);
c906108c 3679
c5aa993b 3680 add_info ("extensions", info_ext_lang_command,
c906108c 3681 "All filename extensions associated with a source language.");
917317f4
JM
3682
3683 add_show_from_set
3684 (add_set_cmd ("download-write-size", class_obscure,
3685 var_integer, (char *) &download_write_size,
3686 "Set the write size used when downloading a program.\n"
3687 "Only used when downloading a program onto a remote\n"
3688 "target. Specify zero, or a negative value, to disable\n"
3689 "blocked writes. The actual size of each transfer is also\n"
3690 "limited by the size of the target packet and the memory\n"
3691 "cache.\n",
3692 &setlist),
3693 &showlist);
5b5d99cf
JB
3694
3695 debug_file_directory = xstrdup (DEBUGDIR);
3696 c = (add_set_cmd
3697 ("debug-file-directory", class_support, var_string,
3698 (char *) &debug_file_directory,
3699 "Set the directory where separate debug symbols are searched for.\n"
3700 "Separate debug symbols are first searched for in the same\n"
3701 "directory as the binary, then in the `" DEBUG_SUBDIRECTORY
3702 "' subdirectory,\n"
3703 "and lastly at the path of the directory of the binary with\n"
3704 "the global debug-file directory prepended\n",
3705 &setlist));
3706 add_show_from_set (c, &showlist);
3707 set_cmd_completer (c, filename_completer);
3708
c906108c 3709}
This page took 0.744612 seconds and 4 git commands to generate.