Move linker test entry to ld/testsuite/ChangeLog
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
0b302171 3 Copyright (C) 1990-2012 Free Software Foundation, Inc.
8926118c 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
086df311 24#include "bfdlink.h"
c906108c
SS
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "target.h"
30#include "value.h"
31#include "symfile.h"
32#include "objfiles.h"
0378c332 33#include "source.h"
c906108c
SS
34#include "gdbcmd.h"
35#include "breakpoint.h"
36#include "language.h"
37#include "complaints.h"
38#include "demangle.h"
fb14de7b
UW
39#include "inferior.h"
40#include "regcache.h"
5b5d99cf 41#include "filenames.h" /* for DOSish file names */
c906108c 42#include "gdb-stabs.h"
04ea0df1 43#include "gdb_obstack.h"
d75b5104 44#include "completer.h"
af5f3db6 45#include "bcache.h"
2de7ced7 46#include "hashtab.h"
dbda9972 47#include "readline/readline.h"
7e8580c1 48#include "gdb_assert.h"
fe898f56 49#include "block.h"
ea53e89f 50#include "observer.h"
c1bd25fd 51#include "exec.h"
9bdcbae7 52#include "parser-defs.h"
8756216b 53#include "varobj.h"
77069918 54#include "elf-bfd.h"
e85a822c 55#include "solib.h"
f1838a98 56#include "remote.h"
1bfeeb0f 57#include "stack.h"
c906108c 58
c906108c
SS
59#include <sys/types.h>
60#include <fcntl.h>
61#include "gdb_string.h"
62#include "gdb_stat.h"
63#include <ctype.h>
64#include <time.h>
2b71414d 65#include <sys/time.h>
c906108c 66
ccefe4c4 67#include "psymtab.h"
c906108c 68
3e43a32a
MS
69int (*deprecated_ui_load_progress_hook) (const char *section,
70 unsigned long num);
9a4105ab 71void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
72 unsigned long section_sent,
73 unsigned long section_size,
74 unsigned long total_sent,
c2d11a7d 75 unsigned long total_size);
769d7dc4
AC
76void (*deprecated_pre_add_symbol_hook) (const char *);
77void (*deprecated_post_add_symbol_hook) (void);
c906108c 78
74b7792f
AC
79static void clear_symtab_users_cleanup (void *ignore);
80
c378eb4e
MS
81/* Global variables owned by this file. */
82int readnow_symbol_files; /* Read full symbols immediately. */
c906108c 83
c378eb4e 84/* External variables and functions referenced. */
c906108c 85
a14ed312 86extern void report_transfer_performance (unsigned long, time_t, time_t);
c906108c 87
c378eb4e 88/* Functions this file defines. */
c906108c 89
a14ed312 90static void load_command (char *, int);
c906108c 91
d7db6da9
FN
92static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
93
a14ed312 94static void add_symbol_file_command (char *, int);
c906108c 95
a14ed312 96bfd *symfile_bfd_open (char *);
c906108c 97
0e931cf0
JB
98int get_section_index (struct objfile *, char *);
99
00b5771c 100static const struct sym_fns *find_sym_fns (bfd *);
c906108c 101
a14ed312 102static void decrement_reading_symtab (void *);
c906108c 103
a14ed312 104static void overlay_invalidate_all (void);
c906108c 105
a14ed312 106void list_overlays_command (char *, int);
c906108c 107
a14ed312 108void map_overlay_command (char *, int);
c906108c 109
a14ed312 110void unmap_overlay_command (char *, int);
c906108c 111
a14ed312 112static void overlay_auto_command (char *, int);
c906108c 113
a14ed312 114static void overlay_manual_command (char *, int);
c906108c 115
a14ed312 116static void overlay_off_command (char *, int);
c906108c 117
a14ed312 118static void overlay_load_command (char *, int);
c906108c 119
a14ed312 120static void overlay_command (char *, int);
c906108c 121
a14ed312 122static void simple_free_overlay_table (void);
c906108c 123
e17a4113
UW
124static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
125 enum bfd_endian);
c906108c 126
a14ed312 127static int simple_read_overlay_table (void);
c906108c 128
a14ed312 129static int simple_overlay_update_1 (struct obj_section *);
c906108c 130
a14ed312 131static void add_filename_language (char *ext, enum language lang);
392a587b 132
a14ed312 133static void info_ext_lang_command (char *args, int from_tty);
392a587b 134
a14ed312 135static void init_filename_language_table (void);
392a587b 136
31d99776
DJ
137static void symfile_find_segment_sections (struct objfile *objfile);
138
a14ed312 139void _initialize_symfile (void);
c906108c
SS
140
141/* List of all available sym_fns. On gdb startup, each object file reader
142 calls add_symtab_fns() to register information on each format it is
c378eb4e 143 prepared to read. */
c906108c 144
00b5771c
TT
145typedef const struct sym_fns *sym_fns_ptr;
146DEF_VEC_P (sym_fns_ptr);
147
148static VEC (sym_fns_ptr) *symtab_fns = NULL;
c906108c 149
b7209cb4
FF
150/* If non-zero, shared library symbols will be added automatically
151 when the inferior is created, new libraries are loaded, or when
152 attaching to the inferior. This is almost always what users will
153 want to have happen; but for very large programs, the startup time
154 will be excessive, and so if this is a problem, the user can clear
155 this flag and then add the shared library symbols as needed. Note
156 that there is a potential for confusion, since if the shared
c906108c 157 library symbols are not loaded, commands like "info fun" will *not*
0d14a781 158 report all the functions that are actually present. */
c906108c
SS
159
160int auto_solib_add = 1;
c906108c 161\f
c5aa993b 162
c906108c
SS
163/* Make a null terminated copy of the string at PTR with SIZE characters in
164 the obstack pointed to by OBSTACKP . Returns the address of the copy.
c378eb4e 165 Note that the string at PTR does not have to be null terminated, I.e. it
0d14a781 166 may be part of a larger string and we are only saving a substring. */
c906108c
SS
167
168char *
63ca651f 169obsavestring (const char *ptr, int size, struct obstack *obstackp)
c906108c 170{
52f0bd74 171 char *p = (char *) obstack_alloc (obstackp, size + 1);
c906108c
SS
172 /* Open-coded memcpy--saves function call time. These strings are usually
173 short. FIXME: Is this really still true with a compiler that can
c378eb4e 174 inline memcpy? */
c906108c 175 {
aa1ee363
AC
176 const char *p1 = ptr;
177 char *p2 = p;
63ca651f 178 const char *end = ptr + size;
433759f7 179
c906108c
SS
180 while (p1 != end)
181 *p2++ = *p1++;
182 }
183 p[size] = 0;
184 return p;
185}
186
3e43a32a
MS
187/* Concatenate NULL terminated variable argument list of `const char *'
188 strings; return the new string. Space is found in the OBSTACKP.
189 Argument list must be terminated by a sentinel expression `(char *)
190 NULL'. */
c906108c
SS
191
192char *
48cb83fd 193obconcat (struct obstack *obstackp, ...)
c906108c 194{
48cb83fd
JK
195 va_list ap;
196
197 va_start (ap, obstackp);
198 for (;;)
199 {
200 const char *s = va_arg (ap, const char *);
201
202 if (s == NULL)
203 break;
204
205 obstack_grow_str (obstackp, s);
206 }
207 va_end (ap);
208 obstack_1grow (obstackp, 0);
209
210 return obstack_finish (obstackp);
c906108c
SS
211}
212
0d14a781 213/* True if we are reading a symbol table. */
c906108c
SS
214
215int currently_reading_symtab = 0;
216
217static void
fba45db2 218decrement_reading_symtab (void *dummy)
c906108c
SS
219{
220 currently_reading_symtab--;
221}
222
ccefe4c4
TT
223/* Increment currently_reading_symtab and return a cleanup that can be
224 used to decrement it. */
225struct cleanup *
226increment_reading_symtab (void)
c906108c 227{
ccefe4c4
TT
228 ++currently_reading_symtab;
229 return make_cleanup (decrement_reading_symtab, NULL);
c906108c
SS
230}
231
5417f6dc
RM
232/* Remember the lowest-addressed loadable section we've seen.
233 This function is called via bfd_map_over_sections.
c906108c
SS
234
235 In case of equal vmas, the section with the largest size becomes the
236 lowest-addressed loadable section.
237
238 If the vmas and sizes are equal, the last section is considered the
239 lowest-addressed loadable section. */
240
241void
4efb68b1 242find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 243{
c5aa993b 244 asection **lowest = (asection **) obj;
c906108c 245
eb73e134 246 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
247 return;
248 if (!*lowest)
249 *lowest = sect; /* First loadable section */
250 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
251 *lowest = sect; /* A lower loadable section */
252 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
253 && (bfd_section_size (abfd, (*lowest))
254 <= bfd_section_size (abfd, sect)))
255 *lowest = sect;
256}
257
a39a16c4
MM
258/* Create a new section_addr_info, with room for NUM_SECTIONS. */
259
260struct section_addr_info *
261alloc_section_addr_info (size_t num_sections)
262{
263 struct section_addr_info *sap;
264 size_t size;
265
266 size = (sizeof (struct section_addr_info)
267 + sizeof (struct other_sections) * (num_sections - 1));
268 sap = (struct section_addr_info *) xmalloc (size);
269 memset (sap, 0, size);
270 sap->num_sections = num_sections;
271
272 return sap;
273}
62557bbc
KB
274
275/* Build (allocate and populate) a section_addr_info struct from
c378eb4e 276 an existing section table. */
62557bbc
KB
277
278extern struct section_addr_info *
0542c86d
PA
279build_section_addr_info_from_section_table (const struct target_section *start,
280 const struct target_section *end)
62557bbc
KB
281{
282 struct section_addr_info *sap;
0542c86d 283 const struct target_section *stp;
62557bbc
KB
284 int oidx;
285
a39a16c4 286 sap = alloc_section_addr_info (end - start);
62557bbc
KB
287
288 for (stp = start, oidx = 0; stp != end; stp++)
289 {
5417f6dc 290 if (bfd_get_section_flags (stp->bfd,
fbd35540 291 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 292 && oidx < end - start)
62557bbc
KB
293 {
294 sap->other[oidx].addr = stp->addr;
5417f6dc 295 sap->other[oidx].name
fbd35540 296 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
62557bbc
KB
297 sap->other[oidx].sectindex = stp->the_bfd_section->index;
298 oidx++;
299 }
300 }
301
302 return sap;
303}
304
82ccf5a5 305/* Create a section_addr_info from section offsets in ABFD. */
089b4803 306
82ccf5a5
JK
307static struct section_addr_info *
308build_section_addr_info_from_bfd (bfd *abfd)
089b4803
TG
309{
310 struct section_addr_info *sap;
311 int i;
312 struct bfd_section *sec;
313
82ccf5a5
JK
314 sap = alloc_section_addr_info (bfd_count_sections (abfd));
315 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
316 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
012836ea 317 {
82ccf5a5
JK
318 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
319 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
012836ea
JK
320 sap->other[i].sectindex = sec->index;
321 i++;
322 }
089b4803
TG
323 return sap;
324}
325
82ccf5a5
JK
326/* Create a section_addr_info from section offsets in OBJFILE. */
327
328struct section_addr_info *
329build_section_addr_info_from_objfile (const struct objfile *objfile)
330{
331 struct section_addr_info *sap;
332 int i;
333
334 /* Before reread_symbols gets rewritten it is not safe to call:
335 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
336 */
337 sap = build_section_addr_info_from_bfd (objfile->obfd);
338 for (i = 0; i < sap->num_sections && sap->other[i].name; i++)
339 {
340 int sectindex = sap->other[i].sectindex;
341
342 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
343 }
344 return sap;
345}
62557bbc 346
c378eb4e 347/* Free all memory allocated by build_section_addr_info_from_section_table. */
62557bbc
KB
348
349extern void
350free_section_addr_info (struct section_addr_info *sap)
351{
352 int idx;
353
a39a16c4 354 for (idx = 0; idx < sap->num_sections; idx++)
62557bbc 355 if (sap->other[idx].name)
b8c9b27d
KB
356 xfree (sap->other[idx].name);
357 xfree (sap);
62557bbc
KB
358}
359
360
e8289572
JB
361/* Initialize OBJFILE's sect_index_* members. */
362static void
363init_objfile_sect_indices (struct objfile *objfile)
c906108c 364{
e8289572 365 asection *sect;
c906108c 366 int i;
5417f6dc 367
b8fbeb18 368 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 369 if (sect)
b8fbeb18
EZ
370 objfile->sect_index_text = sect->index;
371
372 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 373 if (sect)
b8fbeb18
EZ
374 objfile->sect_index_data = sect->index;
375
376 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 377 if (sect)
b8fbeb18
EZ
378 objfile->sect_index_bss = sect->index;
379
380 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 381 if (sect)
b8fbeb18
EZ
382 objfile->sect_index_rodata = sect->index;
383
bbcd32ad
FF
384 /* This is where things get really weird... We MUST have valid
385 indices for the various sect_index_* members or gdb will abort.
386 So if for example, there is no ".text" section, we have to
31d99776
DJ
387 accomodate that. First, check for a file with the standard
388 one or two segments. */
389
390 symfile_find_segment_sections (objfile);
391
392 /* Except when explicitly adding symbol files at some address,
393 section_offsets contains nothing but zeros, so it doesn't matter
394 which slot in section_offsets the individual sect_index_* members
395 index into. So if they are all zero, it is safe to just point
396 all the currently uninitialized indices to the first slot. But
397 beware: if this is the main executable, it may be relocated
398 later, e.g. by the remote qOffsets packet, and then this will
399 be wrong! That's why we try segments first. */
bbcd32ad
FF
400
401 for (i = 0; i < objfile->num_sections; i++)
402 {
403 if (ANOFFSET (objfile->section_offsets, i) != 0)
404 {
405 break;
406 }
407 }
408 if (i == objfile->num_sections)
409 {
410 if (objfile->sect_index_text == -1)
411 objfile->sect_index_text = 0;
412 if (objfile->sect_index_data == -1)
413 objfile->sect_index_data = 0;
414 if (objfile->sect_index_bss == -1)
415 objfile->sect_index_bss = 0;
416 if (objfile->sect_index_rodata == -1)
417 objfile->sect_index_rodata = 0;
418 }
b8fbeb18 419}
c906108c 420
c1bd25fd
DJ
421/* The arguments to place_section. */
422
423struct place_section_arg
424{
425 struct section_offsets *offsets;
426 CORE_ADDR lowest;
427};
428
429/* Find a unique offset to use for loadable section SECT if
430 the user did not provide an offset. */
431
2c0b251b 432static void
c1bd25fd
DJ
433place_section (bfd *abfd, asection *sect, void *obj)
434{
435 struct place_section_arg *arg = obj;
436 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
437 int done;
3bd72c6f 438 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 439
2711e456
DJ
440 /* We are only interested in allocated sections. */
441 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
442 return;
443
444 /* If the user specified an offset, honor it. */
445 if (offsets[sect->index] != 0)
446 return;
447
448 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
449 start_addr = (arg->lowest + align - 1) & -align;
450
c1bd25fd
DJ
451 do {
452 asection *cur_sec;
c1bd25fd 453
c1bd25fd
DJ
454 done = 1;
455
456 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
457 {
458 int indx = cur_sec->index;
c1bd25fd
DJ
459
460 /* We don't need to compare against ourself. */
461 if (cur_sec == sect)
462 continue;
463
2711e456
DJ
464 /* We can only conflict with allocated sections. */
465 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
466 continue;
467
468 /* If the section offset is 0, either the section has not been placed
469 yet, or it was the lowest section placed (in which case LOWEST
470 will be past its end). */
471 if (offsets[indx] == 0)
472 continue;
473
474 /* If this section would overlap us, then we must move up. */
475 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
476 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
477 {
478 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
479 start_addr = (start_addr + align - 1) & -align;
480 done = 0;
3bd72c6f 481 break;
c1bd25fd
DJ
482 }
483
484 /* Otherwise, we appear to be OK. So far. */
485 }
486 }
487 while (!done);
488
489 offsets[sect->index] = start_addr;
490 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 491}
e8289572 492
75242ef4
JK
493/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
494 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
495 entries. */
e8289572
JB
496
497void
75242ef4
JK
498relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
499 int num_sections,
500 struct section_addr_info *addrs)
e8289572
JB
501{
502 int i;
503
75242ef4 504 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 505
c378eb4e 506 /* Now calculate offsets for section that were specified by the caller. */
a39a16c4 507 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
e8289572 508 {
75242ef4 509 struct other_sections *osp;
e8289572 510
75242ef4 511 osp = &addrs->other[i];
5488dafb 512 if (osp->sectindex == -1)
e8289572
JB
513 continue;
514
c378eb4e 515 /* Record all sections in offsets. */
e8289572 516 /* The section_offsets in the objfile are here filled in using
c378eb4e 517 the BFD index. */
75242ef4
JK
518 section_offsets->offsets[osp->sectindex] = osp->addr;
519 }
520}
521
1276c759
JK
522/* Transform section name S for a name comparison. prelink can split section
523 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
524 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
525 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
526 (`.sbss') section has invalid (increased) virtual address. */
527
528static const char *
529addr_section_name (const char *s)
530{
531 if (strcmp (s, ".dynbss") == 0)
532 return ".bss";
533 if (strcmp (s, ".sdynbss") == 0)
534 return ".sbss";
535
536 return s;
537}
538
82ccf5a5
JK
539/* qsort comparator for addrs_section_sort. Sort entries in ascending order by
540 their (name, sectindex) pair. sectindex makes the sort by name stable. */
541
542static int
543addrs_section_compar (const void *ap, const void *bp)
544{
545 const struct other_sections *a = *((struct other_sections **) ap);
546 const struct other_sections *b = *((struct other_sections **) bp);
22e048c9 547 int retval;
82ccf5a5 548
1276c759 549 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
82ccf5a5
JK
550 if (retval)
551 return retval;
552
5488dafb 553 return a->sectindex - b->sectindex;
82ccf5a5
JK
554}
555
556/* Provide sorted array of pointers to sections of ADDRS. The array is
557 terminated by NULL. Caller is responsible to call xfree for it. */
558
559static struct other_sections **
560addrs_section_sort (struct section_addr_info *addrs)
561{
562 struct other_sections **array;
563 int i;
564
565 /* `+ 1' for the NULL terminator. */
566 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
567 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
568 array[i] = &addrs->other[i];
569 array[i] = NULL;
570
571 qsort (array, i, sizeof (*array), addrs_section_compar);
572
573 return array;
574}
575
75242ef4 576/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
577 also SECTINDEXes specific to ABFD there. This function can be used to
578 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
579
580void
581addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
582{
583 asection *lower_sect;
75242ef4
JK
584 CORE_ADDR lower_offset;
585 int i;
82ccf5a5
JK
586 struct cleanup *my_cleanup;
587 struct section_addr_info *abfd_addrs;
588 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
589 struct other_sections **addrs_to_abfd_addrs;
75242ef4
JK
590
591 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
592 continguous sections. */
593 lower_sect = NULL;
594 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
595 if (lower_sect == NULL)
596 {
597 warning (_("no loadable sections found in added symbol-file %s"),
598 bfd_get_filename (abfd));
599 lower_offset = 0;
e8289572 600 }
75242ef4
JK
601 else
602 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
603
82ccf5a5
JK
604 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
605 in ABFD. Section names are not unique - there can be multiple sections of
606 the same name. Also the sections of the same name do not have to be
607 adjacent to each other. Some sections may be present only in one of the
608 files. Even sections present in both files do not have to be in the same
609 order.
610
611 Use stable sort by name for the sections in both files. Then linearly
612 scan both lists matching as most of the entries as possible. */
613
614 addrs_sorted = addrs_section_sort (addrs);
615 my_cleanup = make_cleanup (xfree, addrs_sorted);
616
617 abfd_addrs = build_section_addr_info_from_bfd (abfd);
618 make_cleanup_free_section_addr_info (abfd_addrs);
619 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
620 make_cleanup (xfree, abfd_addrs_sorted);
621
c378eb4e
MS
622 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
623 ABFD_ADDRS_SORTED. */
82ccf5a5
JK
624
625 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
626 * addrs->num_sections);
627 make_cleanup (xfree, addrs_to_abfd_addrs);
628
629 while (*addrs_sorted)
630 {
1276c759 631 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
82ccf5a5
JK
632
633 while (*abfd_addrs_sorted
1276c759
JK
634 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
635 sect_name) < 0)
82ccf5a5
JK
636 abfd_addrs_sorted++;
637
638 if (*abfd_addrs_sorted
1276c759
JK
639 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
640 sect_name) == 0)
82ccf5a5
JK
641 {
642 int index_in_addrs;
643
644 /* Make the found item directly addressable from ADDRS. */
645 index_in_addrs = *addrs_sorted - addrs->other;
646 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
647 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
648
649 /* Never use the same ABFD entry twice. */
650 abfd_addrs_sorted++;
651 }
652
653 addrs_sorted++;
654 }
655
75242ef4
JK
656 /* Calculate offsets for the loadable sections.
657 FIXME! Sections must be in order of increasing loadable section
658 so that contiguous sections can use the lower-offset!!!
659
660 Adjust offsets if the segments are not contiguous.
661 If the section is contiguous, its offset should be set to
662 the offset of the highest loadable section lower than it
663 (the loadable section directly below it in memory).
664 this_offset = lower_offset = lower_addr - lower_orig_addr */
665
666 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
667 {
82ccf5a5 668 struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
669
670 if (sect)
75242ef4 671 {
c378eb4e 672 /* This is the index used by BFD. */
82ccf5a5 673 addrs->other[i].sectindex = sect->sectindex;
672d9c23
JK
674
675 if (addrs->other[i].addr != 0)
75242ef4 676 {
82ccf5a5 677 addrs->other[i].addr -= sect->addr;
75242ef4 678 lower_offset = addrs->other[i].addr;
75242ef4
JK
679 }
680 else
672d9c23 681 addrs->other[i].addr = lower_offset;
75242ef4
JK
682 }
683 else
672d9c23 684 {
1276c759
JK
685 /* addr_section_name transformation is not used for SECT_NAME. */
686 const char *sect_name = addrs->other[i].name;
687
b0fcb67f
JK
688 /* This section does not exist in ABFD, which is normally
689 unexpected and we want to issue a warning.
690
4d9743af
JK
691 However, the ELF prelinker does create a few sections which are
692 marked in the main executable as loadable (they are loaded in
693 memory from the DYNAMIC segment) and yet are not present in
694 separate debug info files. This is fine, and should not cause
695 a warning. Shared libraries contain just the section
696 ".gnu.liblist" but it is not marked as loadable there. There is
697 no other way to identify them than by their name as the sections
1276c759
JK
698 created by prelink have no special flags.
699
700 For the sections `.bss' and `.sbss' see addr_section_name. */
b0fcb67f
JK
701
702 if (!(strcmp (sect_name, ".gnu.liblist") == 0
4d9743af 703 || strcmp (sect_name, ".gnu.conflict") == 0
1276c759
JK
704 || (strcmp (sect_name, ".bss") == 0
705 && i > 0
706 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
707 && addrs_to_abfd_addrs[i - 1] != NULL)
708 || (strcmp (sect_name, ".sbss") == 0
709 && i > 0
710 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
711 && addrs_to_abfd_addrs[i - 1] != NULL)))
b0fcb67f
JK
712 warning (_("section %s not found in %s"), sect_name,
713 bfd_get_filename (abfd));
714
672d9c23 715 addrs->other[i].addr = 0;
5488dafb 716 addrs->other[i].sectindex = -1;
672d9c23 717 }
75242ef4 718 }
82ccf5a5
JK
719
720 do_cleanups (my_cleanup);
75242ef4
JK
721}
722
723/* Parse the user's idea of an offset for dynamic linking, into our idea
724 of how to represent it for fast symbol reading. This is the default
725 version of the sym_fns.sym_offsets function for symbol readers that
726 don't need to do anything special. It allocates a section_offsets table
727 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
728
729void
730default_symfile_offsets (struct objfile *objfile,
731 struct section_addr_info *addrs)
732{
733 objfile->num_sections = bfd_count_sections (objfile->obfd);
734 objfile->section_offsets = (struct section_offsets *)
735 obstack_alloc (&objfile->objfile_obstack,
736 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
737 relative_addr_info_to_section_offsets (objfile->section_offsets,
738 objfile->num_sections, addrs);
e8289572 739
c1bd25fd
DJ
740 /* For relocatable files, all loadable sections will start at zero.
741 The zero is meaningless, so try to pick arbitrary addresses such
742 that no loadable sections overlap. This algorithm is quadratic,
743 but the number of sections in a single object file is generally
744 small. */
745 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
746 {
747 struct place_section_arg arg;
2711e456
DJ
748 bfd *abfd = objfile->obfd;
749 asection *cur_sec;
2711e456
DJ
750
751 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
752 /* We do not expect this to happen; just skip this step if the
753 relocatable file has a section with an assigned VMA. */
754 if (bfd_section_vma (abfd, cur_sec) != 0)
755 break;
756
757 if (cur_sec == NULL)
758 {
759 CORE_ADDR *offsets = objfile->section_offsets->offsets;
760
761 /* Pick non-overlapping offsets for sections the user did not
762 place explicitly. */
763 arg.offsets = objfile->section_offsets;
764 arg.lowest = 0;
765 bfd_map_over_sections (objfile->obfd, place_section, &arg);
766
767 /* Correctly filling in the section offsets is not quite
768 enough. Relocatable files have two properties that
769 (most) shared objects do not:
770
771 - Their debug information will contain relocations. Some
772 shared libraries do also, but many do not, so this can not
773 be assumed.
774
775 - If there are multiple code sections they will be loaded
776 at different relative addresses in memory than they are
777 in the objfile, since all sections in the file will start
778 at address zero.
779
780 Because GDB has very limited ability to map from an
781 address in debug info to the correct code section,
782 it relies on adding SECT_OFF_TEXT to things which might be
783 code. If we clear all the section offsets, and set the
784 section VMAs instead, then symfile_relocate_debug_section
785 will return meaningful debug information pointing at the
786 correct sections.
787
788 GDB has too many different data structures for section
789 addresses - a bfd, objfile, and so_list all have section
790 tables, as does exec_ops. Some of these could probably
791 be eliminated. */
792
793 for (cur_sec = abfd->sections; cur_sec != NULL;
794 cur_sec = cur_sec->next)
795 {
796 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
797 continue;
798
799 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
3e43a32a
MS
800 exec_set_section_address (bfd_get_filename (abfd),
801 cur_sec->index,
30510692 802 offsets[cur_sec->index]);
2711e456
DJ
803 offsets[cur_sec->index] = 0;
804 }
805 }
c1bd25fd
DJ
806 }
807
e8289572 808 /* Remember the bfd indexes for the .text, .data, .bss and
c378eb4e 809 .rodata sections. */
e8289572
JB
810 init_objfile_sect_indices (objfile);
811}
812
813
31d99776
DJ
814/* Divide the file into segments, which are individual relocatable units.
815 This is the default version of the sym_fns.sym_segments function for
816 symbol readers that do not have an explicit representation of segments.
817 It assumes that object files do not have segments, and fully linked
818 files have a single segment. */
819
820struct symfile_segment_data *
821default_symfile_segments (bfd *abfd)
822{
823 int num_sections, i;
824 asection *sect;
825 struct symfile_segment_data *data;
826 CORE_ADDR low, high;
827
828 /* Relocatable files contain enough information to position each
829 loadable section independently; they should not be relocated
830 in segments. */
831 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
832 return NULL;
833
834 /* Make sure there is at least one loadable section in the file. */
835 for (sect = abfd->sections; sect != NULL; sect = sect->next)
836 {
837 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
838 continue;
839
840 break;
841 }
842 if (sect == NULL)
843 return NULL;
844
845 low = bfd_get_section_vma (abfd, sect);
846 high = low + bfd_get_section_size (sect);
847
848 data = XZALLOC (struct symfile_segment_data);
849 data->num_segments = 1;
850 data->segment_bases = XCALLOC (1, CORE_ADDR);
851 data->segment_sizes = XCALLOC (1, CORE_ADDR);
852
853 num_sections = bfd_count_sections (abfd);
854 data->segment_info = XCALLOC (num_sections, int);
855
856 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
857 {
858 CORE_ADDR vma;
859
860 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
861 continue;
862
863 vma = bfd_get_section_vma (abfd, sect);
864 if (vma < low)
865 low = vma;
866 if (vma + bfd_get_section_size (sect) > high)
867 high = vma + bfd_get_section_size (sect);
868
869 data->segment_info[i] = 1;
870 }
871
872 data->segment_bases[0] = low;
873 data->segment_sizes[0] = high - low;
874
875 return data;
876}
877
c906108c
SS
878/* Process a symbol file, as either the main file or as a dynamically
879 loaded file.
880
96baa820
JM
881 OBJFILE is where the symbols are to be read from.
882
7e8580c1
JB
883 ADDRS is the list of section load addresses. If the user has given
884 an 'add-symbol-file' command, then this is the list of offsets and
885 addresses he or she provided as arguments to the command; or, if
886 we're handling a shared library, these are the actual addresses the
887 sections are loaded at, according to the inferior's dynamic linker
888 (as gleaned by GDB's shared library code). We convert each address
889 into an offset from the section VMA's as it appears in the object
890 file, and then call the file's sym_offsets function to convert this
891 into a format-specific offset table --- a `struct section_offsets'.
892 If ADDRS is non-zero, OFFSETS must be zero.
893
894 OFFSETS is a table of section offsets already in the right
895 format-specific representation. NUM_OFFSETS is the number of
896 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
897 assume this is the proper table the call to sym_offsets described
898 above would produce. Instead of calling sym_offsets, we just dump
899 it right into objfile->section_offsets. (When we're re-reading
900 symbols from an objfile, we don't have the original load address
901 list any more; all we have is the section offset table.) If
902 OFFSETS is non-zero, ADDRS must be zero.
96baa820 903
7eedccfa
PP
904 ADD_FLAGS encodes verbosity level, whether this is main symbol or
905 an extra symbol file such as dynamically loaded code, and wether
906 breakpoint reset should be deferred. */
c906108c
SS
907
908void
7e8580c1
JB
909syms_from_objfile (struct objfile *objfile,
910 struct section_addr_info *addrs,
911 struct section_offsets *offsets,
912 int num_offsets,
7eedccfa 913 int add_flags)
c906108c 914{
a39a16c4 915 struct section_addr_info *local_addr = NULL;
c906108c 916 struct cleanup *old_chain;
7eedccfa 917 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 918
7e8580c1 919 gdb_assert (! (addrs && offsets));
2acceee2 920
c906108c 921 init_entry_point_info (objfile);
31d99776 922 objfile->sf = find_sym_fns (objfile->obfd);
c906108c 923
75245b24 924 if (objfile->sf == NULL)
c378eb4e 925 return; /* No symbols. */
75245b24 926
c906108c
SS
927 /* Make sure that partially constructed symbol tables will be cleaned up
928 if an error occurs during symbol reading. */
74b7792f 929 old_chain = make_cleanup_free_objfile (objfile);
c906108c 930
a39a16c4
MM
931 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
932 list. We now establish the convention that an addr of zero means
c378eb4e 933 no load address was specified. */
a39a16c4
MM
934 if (! addrs && ! offsets)
935 {
5417f6dc 936 local_addr
a39a16c4
MM
937 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
938 make_cleanup (xfree, local_addr);
939 addrs = local_addr;
940 }
941
942 /* Now either addrs or offsets is non-zero. */
943
c5aa993b 944 if (mainline)
c906108c
SS
945 {
946 /* We will modify the main symbol table, make sure that all its users
c5aa993b 947 will be cleaned up if an error occurs during symbol reading. */
74b7792f 948 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
949
950 /* Since no error yet, throw away the old symbol table. */
951
952 if (symfile_objfile != NULL)
953 {
954 free_objfile (symfile_objfile);
adb7f338 955 gdb_assert (symfile_objfile == NULL);
c906108c
SS
956 }
957
958 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
959 If the user wants to get rid of them, they should do "symbol-file"
960 without arguments first. Not sure this is the best behavior
961 (PR 2207). */
c906108c 962
c5aa993b 963 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
964 }
965
966 /* Convert addr into an offset rather than an absolute address.
967 We find the lowest address of a loaded segment in the objfile,
53a5351d 968 and assume that <addr> is where that got loaded.
c906108c 969
53a5351d
JM
970 We no longer warn if the lowest section is not a text segment (as
971 happens for the PA64 port. */
0d15807d 972 if (addrs && addrs->other[0].name)
75242ef4 973 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
974
975 /* Initialize symbol reading routines for this objfile, allow complaints to
976 appear for this new file, and record how verbose to be, then do the
c378eb4e 977 initial symbol reading for this file. */
c906108c 978
c5aa993b 979 (*objfile->sf->sym_init) (objfile);
7eedccfa 980 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 981
7e8580c1
JB
982 if (addrs)
983 (*objfile->sf->sym_offsets) (objfile, addrs);
984 else
985 {
986 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
987
988 /* Just copy in the offset table directly as given to us. */
989 objfile->num_sections = num_offsets;
990 objfile->section_offsets
991 = ((struct section_offsets *)
8b92e4d5 992 obstack_alloc (&objfile->objfile_obstack, size));
7e8580c1
JB
993 memcpy (objfile->section_offsets, offsets, size);
994
995 init_objfile_sect_indices (objfile);
996 }
c906108c 997
f4352531 998 (*objfile->sf->sym_read) (objfile, add_flags);
c906108c 999
b11896a5
TT
1000 if ((add_flags & SYMFILE_NO_READ) == 0)
1001 require_partial_symbols (objfile, 0);
1002
c906108c
SS
1003 /* Discard cleanups as symbol reading was successful. */
1004
1005 discard_cleanups (old_chain);
f7545552 1006 xfree (local_addr);
c906108c
SS
1007}
1008
1009/* Perform required actions after either reading in the initial
1010 symbols for a new objfile, or mapping in the symbols from a reusable
c1e56572 1011 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c5aa993b 1012
c906108c 1013void
7eedccfa 1014new_symfile_objfile (struct objfile *objfile, int add_flags)
c906108c 1015{
c906108c 1016 /* If this is the main symbol file we have to clean up all users of the
c378eb4e 1017 old main symbol file. Otherwise it is sufficient to fixup all the
c906108c 1018 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1019 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1020 {
1021 /* OK, make it the "real" symbol file. */
1022 symfile_objfile = objfile;
1023
c1e56572 1024 clear_symtab_users (add_flags);
c906108c 1025 }
7eedccfa 1026 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1027 {
69de3c6a 1028 breakpoint_re_set ();
c906108c
SS
1029 }
1030
1031 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 1032 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
1033}
1034
1035/* Process a symbol file, as either the main file or as a dynamically
1036 loaded file.
1037
5417f6dc
RM
1038 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1039 This BFD will be closed on error, and is always consumed by this function.
7904e09f 1040
7eedccfa
PP
1041 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1042 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f
JB
1043
1044 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
7eedccfa
PP
1045 syms_from_objfile, above.
1046 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1047
63524580
JK
1048 PARENT is the original objfile if ABFD is a separate debug info file.
1049 Otherwise PARENT is NULL.
1050
c906108c 1051 Upon success, returns a pointer to the objfile that was added.
c378eb4e 1052 Upon failure, jumps back to command level (never returns). */
7eedccfa 1053
7904e09f 1054static struct objfile *
7eedccfa
PP
1055symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1056 int add_flags,
7904e09f
JB
1057 struct section_addr_info *addrs,
1058 struct section_offsets *offsets,
1059 int num_offsets,
63524580 1060 int flags, struct objfile *parent)
c906108c
SS
1061{
1062 struct objfile *objfile;
a39a16c4 1063 struct cleanup *my_cleanups;
5417f6dc 1064 const char *name = bfd_get_filename (abfd);
7eedccfa 1065 const int from_tty = add_flags & SYMFILE_VERBOSE;
0838fb57 1066 const int mainline = add_flags & SYMFILE_MAINLINE;
b11896a5
TT
1067 const int should_print = ((from_tty || info_verbose)
1068 && (readnow_symbol_files
1069 || (add_flags & SYMFILE_NO_READ) == 0));
c906108c 1070
9291a0cd 1071 if (readnow_symbol_files)
b11896a5
TT
1072 {
1073 flags |= OBJF_READNOW;
1074 add_flags &= ~SYMFILE_NO_READ;
1075 }
9291a0cd 1076
5417f6dc 1077 my_cleanups = make_cleanup_bfd_close (abfd);
c906108c 1078
5417f6dc
RM
1079 /* Give user a chance to burp if we'd be
1080 interactively wiping out any existing symbols. */
c906108c
SS
1081
1082 if ((have_full_symbols () || have_partial_symbols ())
0838fb57 1083 && mainline
c906108c 1084 && from_tty
9e2f0ad4 1085 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1086 error (_("Not confirmed."));
c906108c 1087
0838fb57 1088 objfile = allocate_objfile (abfd, flags | (mainline ? OBJF_MAINLINE : 0));
5417f6dc 1089 discard_cleanups (my_cleanups);
c906108c 1090
63524580
JK
1091 if (parent)
1092 add_separate_debug_objfile (objfile, parent);
1093
78a4a9b9
AC
1094 /* We either created a new mapped symbol table, mapped an existing
1095 symbol table file which has not had initial symbol reading
c378eb4e 1096 performed, or need to read an unmapped symbol table. */
b11896a5 1097 if (should_print)
c906108c 1098 {
769d7dc4
AC
1099 if (deprecated_pre_add_symbol_hook)
1100 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1101 else
c906108c 1102 {
55333a84
DE
1103 printf_unfiltered (_("Reading symbols from %s..."), name);
1104 wrap_here ("");
1105 gdb_flush (gdb_stdout);
c906108c 1106 }
c906108c 1107 }
78a4a9b9 1108 syms_from_objfile (objfile, addrs, offsets, num_offsets,
7eedccfa 1109 add_flags);
c906108c
SS
1110
1111 /* We now have at least a partial symbol table. Check to see if the
1112 user requested that all symbols be read on initial access via either
1113 the gdb startup command line or on a per symbol file basis. Expand
c378eb4e 1114 all partial symbol tables for this objfile if so. */
c906108c 1115
9291a0cd 1116 if ((flags & OBJF_READNOW))
c906108c 1117 {
b11896a5 1118 if (should_print)
c906108c 1119 {
a3f17187 1120 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1121 wrap_here ("");
1122 gdb_flush (gdb_stdout);
1123 }
1124
ccefe4c4
TT
1125 if (objfile->sf)
1126 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1127 }
1128
b11896a5 1129 if (should_print && !objfile_has_symbols (objfile))
cb3c37b2
JB
1130 {
1131 wrap_here ("");
55333a84 1132 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1133 wrap_here ("");
1134 }
1135
b11896a5 1136 if (should_print)
c906108c 1137 {
769d7dc4
AC
1138 if (deprecated_post_add_symbol_hook)
1139 deprecated_post_add_symbol_hook ();
c906108c 1140 else
55333a84 1141 printf_unfiltered (_("done.\n"));
c906108c
SS
1142 }
1143
481d0f41
JB
1144 /* We print some messages regardless of whether 'from_tty ||
1145 info_verbose' is true, so make sure they go out at the right
1146 time. */
1147 gdb_flush (gdb_stdout);
1148
109f874e 1149 if (objfile->sf == NULL)
8caee43b
PP
1150 {
1151 observer_notify_new_objfile (objfile);
c378eb4e 1152 return objfile; /* No symbols. */
8caee43b 1153 }
109f874e 1154
7eedccfa 1155 new_symfile_objfile (objfile, add_flags);
c906108c 1156
06d3b283 1157 observer_notify_new_objfile (objfile);
c906108c 1158
ce7d4522 1159 bfd_cache_close_all ();
c906108c
SS
1160 return (objfile);
1161}
1162
9cce227f
TG
1163/* Add BFD as a separate debug file for OBJFILE. */
1164
1165void
1166symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1167{
15d123c9 1168 struct objfile *new_objfile;
089b4803
TG
1169 struct section_addr_info *sap;
1170 struct cleanup *my_cleanup;
1171
1172 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1173 because sections of BFD may not match sections of OBJFILE and because
1174 vma may have been modified by tools such as prelink. */
1175 sap = build_section_addr_info_from_objfile (objfile);
1176 my_cleanup = make_cleanup_free_section_addr_info (sap);
9cce227f 1177
15d123c9 1178 new_objfile = symbol_file_add_with_addrs_or_offsets
9cce227f 1179 (bfd, symfile_flags,
089b4803 1180 sap, NULL, 0,
9cce227f 1181 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
63524580
JK
1182 | OBJF_USERLOADED),
1183 objfile);
089b4803
TG
1184
1185 do_cleanups (my_cleanup);
9cce227f 1186}
7904e09f 1187
eb4556d7
JB
1188/* Process the symbol file ABFD, as either the main file or as a
1189 dynamically loaded file.
1190
1191 See symbol_file_add_with_addrs_or_offsets's comments for
1192 details. */
1193struct objfile *
7eedccfa 1194symbol_file_add_from_bfd (bfd *abfd, int add_flags,
eb4556d7 1195 struct section_addr_info *addrs,
63524580 1196 int flags, struct objfile *parent)
eb4556d7 1197{
7eedccfa 1198 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
63524580 1199 flags, parent);
eb4556d7
JB
1200}
1201
1202
7904e09f
JB
1203/* Process a symbol file, as either the main file or as a dynamically
1204 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1205 for details. */
1206struct objfile *
7eedccfa
PP
1207symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1208 int flags)
7904e09f 1209{
7eedccfa 1210 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
63524580 1211 flags, NULL);
7904e09f
JB
1212}
1213
1214
d7db6da9
FN
1215/* Call symbol_file_add() with default values and update whatever is
1216 affected by the loading of a new main().
1217 Used when the file is supplied in the gdb command line
1218 and by some targets with special loading requirements.
1219 The auxiliary function, symbol_file_add_main_1(), has the flags
1220 argument for the switches that can only be specified in the symbol_file
1221 command itself. */
5417f6dc 1222
1adeb98a
FN
1223void
1224symbol_file_add_main (char *args, int from_tty)
1225{
d7db6da9
FN
1226 symbol_file_add_main_1 (args, from_tty, 0);
1227}
1228
1229static void
1230symbol_file_add_main_1 (char *args, int from_tty, int flags)
1231{
7dcd53a0
TT
1232 const int add_flags = (current_inferior ()->symfile_flags
1233 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1234
7eedccfa 1235 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1236
d7db6da9
FN
1237 /* Getting new symbols may change our opinion about
1238 what is frameless. */
1239 reinit_frame_cache ();
1240
7dcd53a0
TT
1241 if ((flags & SYMFILE_NO_READ) == 0)
1242 set_initial_language ();
1adeb98a
FN
1243}
1244
1245void
1246symbol_file_clear (int from_tty)
1247{
1248 if ((have_full_symbols () || have_partial_symbols ())
1249 && from_tty
0430b0d6
AS
1250 && (symfile_objfile
1251 ? !query (_("Discard symbol table from `%s'? "),
1252 symfile_objfile->name)
1253 : !query (_("Discard symbol table? "))))
8a3fe4f8 1254 error (_("Not confirmed."));
1adeb98a 1255
0133421a
JK
1256 /* solib descriptors may have handles to objfiles. Wipe them before their
1257 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1258 no_shared_libraries (NULL, from_tty);
1259
0133421a
JK
1260 free_all_objfiles ();
1261
adb7f338 1262 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1263 if (from_tty)
1264 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1265}
1266
5b5d99cf
JB
1267static char *
1268get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1269{
1270 asection *sect;
1271 bfd_size_type debuglink_size;
1272 unsigned long crc32;
1273 char *contents;
1274 int crc_offset;
5417f6dc 1275
5b5d99cf
JB
1276 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1277
1278 if (sect == NULL)
1279 return NULL;
1280
1281 debuglink_size = bfd_section_size (objfile->obfd, sect);
5417f6dc 1282
5b5d99cf
JB
1283 contents = xmalloc (debuglink_size);
1284 bfd_get_section_contents (objfile->obfd, sect, contents,
1285 (file_ptr)0, (bfd_size_type)debuglink_size);
1286
c378eb4e 1287 /* Crc value is stored after the filename, aligned up to 4 bytes. */
5b5d99cf
JB
1288 crc_offset = strlen (contents) + 1;
1289 crc_offset = (crc_offset + 3) & ~3;
1290
1291 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
5417f6dc 1292
5b5d99cf
JB
1293 *crc32_out = crc32;
1294 return contents;
1295}
1296
904578ed
JK
1297/* Return 32-bit CRC for ABFD. If successful store it to *FILE_CRC_RETURN and
1298 return 1. Otherwise print a warning and return 0. ABFD seek position is
1299 not preserved. */
1300
1301static int
1302get_file_crc (bfd *abfd, unsigned long *file_crc_return)
1303{
1304 unsigned long file_crc = 0;
1305
1306 if (bfd_seek (abfd, 0, SEEK_SET) != 0)
1307 {
1308 warning (_("Problem reading \"%s\" for CRC: %s"),
1309 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
1310 return 0;
1311 }
1312
1313 for (;;)
1314 {
1315 gdb_byte buffer[8 * 1024];
1316 bfd_size_type count;
1317
1318 count = bfd_bread (buffer, sizeof (buffer), abfd);
1319 if (count == (bfd_size_type) -1)
1320 {
1321 warning (_("Problem reading \"%s\" for CRC: %s"),
1322 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
1323 return 0;
1324 }
1325 if (count == 0)
1326 break;
1327 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1328 }
1329
1330 *file_crc_return = file_crc;
1331 return 1;
1332}
1333
5b5d99cf 1334static int
287ccc17 1335separate_debug_file_exists (const char *name, unsigned long crc,
32a0e547 1336 struct objfile *parent_objfile)
5b5d99cf 1337{
904578ed
JK
1338 unsigned long file_crc;
1339 int file_crc_p;
f1838a98 1340 bfd *abfd;
32a0e547 1341 struct stat parent_stat, abfd_stat;
904578ed 1342 int verified_as_different;
32a0e547
JK
1343
1344 /* Find a separate debug info file as if symbols would be present in
1345 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1346 section can contain just the basename of PARENT_OBJFILE without any
1347 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
c378eb4e 1348 the separate debug infos with the same basename can exist. */
32a0e547 1349
0ba1096a 1350 if (filename_cmp (name, parent_objfile->name) == 0)
32a0e547 1351 return 0;
5b5d99cf 1352
874f5765 1353 abfd = bfd_open_maybe_remote (name);
f1838a98
UW
1354
1355 if (!abfd)
5b5d99cf
JB
1356 return 0;
1357
0ba1096a 1358 /* Verify symlinks were not the cause of filename_cmp name difference above.
32a0e547
JK
1359
1360 Some operating systems, e.g. Windows, do not provide a meaningful
1361 st_ino; they always set it to zero. (Windows does provide a
1362 meaningful st_dev.) Do not indicate a duplicate library in that
1363 case. While there is no guarantee that a system that provides
1364 meaningful inode numbers will never set st_ino to zero, this is
1365 merely an optimization, so we do not need to worry about false
1366 negatives. */
1367
1368 if (bfd_stat (abfd, &abfd_stat) == 0
904578ed
JK
1369 && abfd_stat.st_ino != 0
1370 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
32a0e547 1371 {
904578ed
JK
1372 if (abfd_stat.st_dev == parent_stat.st_dev
1373 && abfd_stat.st_ino == parent_stat.st_ino)
1374 {
1375 bfd_close (abfd);
1376 return 0;
1377 }
1378 verified_as_different = 1;
32a0e547 1379 }
904578ed
JK
1380 else
1381 verified_as_different = 0;
32a0e547 1382
904578ed 1383 file_crc_p = get_file_crc (abfd, &file_crc);
5b5d99cf 1384
f1838a98 1385 bfd_close (abfd);
5b5d99cf 1386
904578ed
JK
1387 if (!file_crc_p)
1388 return 0;
1389
287ccc17
JK
1390 if (crc != file_crc)
1391 {
904578ed
JK
1392 /* If one (or both) the files are accessed for example the via "remote:"
1393 gdbserver way it does not support the bfd_stat operation. Verify
1394 whether those two files are not the same manually. */
1395
1396 if (!verified_as_different && !parent_objfile->crc32_p)
1397 {
1398 parent_objfile->crc32_p = get_file_crc (parent_objfile->obfd,
1399 &parent_objfile->crc32);
1400 if (!parent_objfile->crc32_p)
1401 return 0;
1402 }
1403
0e8aefe7 1404 if (verified_as_different || parent_objfile->crc32 != file_crc)
904578ed
JK
1405 warning (_("the debug information found in \"%s\""
1406 " does not match \"%s\" (CRC mismatch).\n"),
1407 name, parent_objfile->name);
1408
287ccc17
JK
1409 return 0;
1410 }
1411
1412 return 1;
5b5d99cf
JB
1413}
1414
aa28a74e 1415char *debug_file_directory = NULL;
920d2a44
AC
1416static void
1417show_debug_file_directory (struct ui_file *file, int from_tty,
1418 struct cmd_list_element *c, const char *value)
1419{
3e43a32a
MS
1420 fprintf_filtered (file,
1421 _("The directory where separate debug "
1422 "symbols are searched for is \"%s\".\n"),
920d2a44
AC
1423 value);
1424}
5b5d99cf
JB
1425
1426#if ! defined (DEBUG_SUBDIRECTORY)
1427#define DEBUG_SUBDIRECTORY ".debug"
1428#endif
1429
1db33378
PP
1430/* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1431 where the original file resides (may not be the same as
1432 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1433 looking for. Returns the name of the debuginfo, of NULL. */
1434
1435static char *
1436find_separate_debug_file (const char *dir,
1437 const char *canon_dir,
1438 const char *debuglink,
1439 unsigned long crc32, struct objfile *objfile)
9cce227f 1440{
1db33378
PP
1441 char *debugdir;
1442 char *debugfile;
9cce227f 1443 int i;
e4ab2fad
JK
1444 VEC (char_ptr) *debugdir_vec;
1445 struct cleanup *back_to;
1446 int ix;
5b5d99cf 1447
1db33378 1448 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1ffa32ee 1449 i = strlen (dir);
1db33378
PP
1450 if (canon_dir != NULL && strlen (canon_dir) > i)
1451 i = strlen (canon_dir);
1ffa32ee 1452
25522fae
JK
1453 debugfile = xmalloc (strlen (debug_file_directory) + 1
1454 + i
1455 + strlen (DEBUG_SUBDIRECTORY)
1456 + strlen ("/")
1db33378 1457 + strlen (debuglink)
25522fae 1458 + 1);
5b5d99cf
JB
1459
1460 /* First try in the same directory as the original file. */
1461 strcpy (debugfile, dir);
1db33378 1462 strcat (debugfile, debuglink);
5b5d99cf 1463
32a0e547 1464 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1465 return debugfile;
5417f6dc 1466
5b5d99cf
JB
1467 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1468 strcpy (debugfile, dir);
1469 strcat (debugfile, DEBUG_SUBDIRECTORY);
1470 strcat (debugfile, "/");
1db33378 1471 strcat (debugfile, debuglink);
5b5d99cf 1472
32a0e547 1473 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1474 return debugfile;
5417f6dc 1475
24ddea62 1476 /* Then try in the global debugfile directories.
f888f159 1477
24ddea62
JK
1478 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1479 cause "/..." lookups. */
5417f6dc 1480
e4ab2fad
JK
1481 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1482 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
24ddea62 1483
e4ab2fad
JK
1484 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1485 {
1486 strcpy (debugfile, debugdir);
aa28a74e 1487 strcat (debugfile, "/");
24ddea62 1488 strcat (debugfile, dir);
1db33378 1489 strcat (debugfile, debuglink);
aa28a74e 1490
32a0e547 1491 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1492 return debugfile;
24ddea62
JK
1493
1494 /* If the file is in the sysroot, try using its base path in the
1495 global debugfile directory. */
1db33378
PP
1496 if (canon_dir != NULL
1497 && filename_ncmp (canon_dir, gdb_sysroot,
0ba1096a 1498 strlen (gdb_sysroot)) == 0
1db33378 1499 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
24ddea62 1500 {
e4ab2fad 1501 strcpy (debugfile, debugdir);
1db33378 1502 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
24ddea62 1503 strcat (debugfile, "/");
1db33378 1504 strcat (debugfile, debuglink);
24ddea62 1505
32a0e547 1506 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1507 return debugfile;
24ddea62 1508 }
aa28a74e 1509 }
f888f159 1510
e4ab2fad 1511 do_cleanups (back_to);
25522fae 1512 xfree (debugfile);
1db33378
PP
1513 return NULL;
1514}
1515
1516/* Modify PATH to contain only "directory/" part of PATH.
1517 If there were no directory separators in PATH, PATH will be empty
1518 string on return. */
1519
1520static void
1521terminate_after_last_dir_separator (char *path)
1522{
1523 int i;
1524
1525 /* Strip off the final filename part, leaving the directory name,
1526 followed by a slash. The directory can be relative or absolute. */
1527 for (i = strlen(path) - 1; i >= 0; i--)
1528 if (IS_DIR_SEPARATOR (path[i]))
1529 break;
1530
1531 /* If I is -1 then no directory is present there and DIR will be "". */
1532 path[i + 1] = '\0';
1533}
1534
1535/* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1536 Returns pathname, or NULL. */
1537
1538char *
1539find_separate_debug_file_by_debuglink (struct objfile *objfile)
1540{
1541 char *debuglink;
1542 char *dir, *canon_dir;
1543 char *debugfile;
1544 unsigned long crc32;
1545 struct cleanup *cleanups;
1546
1547 debuglink = get_debug_link_info (objfile, &crc32);
1548
1549 if (debuglink == NULL)
1550 {
1551 /* There's no separate debug info, hence there's no way we could
1552 load it => no warning. */
1553 return NULL;
1554 }
1555
1556 dir = xstrdup (objfile->name);
1557 cleanups = make_cleanup (xfree, dir);
1558 terminate_after_last_dir_separator (dir);
1559 canon_dir = lrealpath (dir);
1560
1561 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1562 crc32, objfile);
1563 xfree (canon_dir);
1564
1565 if (debugfile == NULL)
1566 {
1567#ifdef HAVE_LSTAT
1568 /* For PR gdb/9538, try again with realpath (if different from the
1569 original). */
1570
1571 struct stat st_buf;
1572
1573 if (lstat (objfile->name, &st_buf) == 0 && S_ISLNK(st_buf.st_mode))
1574 {
1575 char *symlink_dir;
1576
1577 symlink_dir = lrealpath (objfile->name);
1578 if (symlink_dir != NULL)
1579 {
1580 make_cleanup (xfree, symlink_dir);
1581 terminate_after_last_dir_separator (symlink_dir);
1582 if (strcmp (dir, symlink_dir) != 0)
1583 {
1584 /* Different directory, so try using it. */
1585 debugfile = find_separate_debug_file (symlink_dir,
1586 symlink_dir,
1587 debuglink,
1588 crc32,
1589 objfile);
1590 }
1591 }
1592 }
1593#endif /* HAVE_LSTAT */
1594 }
aa28a74e 1595
1db33378 1596 do_cleanups (cleanups);
25522fae 1597 return debugfile;
5b5d99cf
JB
1598}
1599
1600
c906108c
SS
1601/* This is the symbol-file command. Read the file, analyze its
1602 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1603 the command is rather bizarre:
1604
1605 1. The function buildargv implements various quoting conventions
1606 which are undocumented and have little or nothing in common with
1607 the way things are quoted (or not quoted) elsewhere in GDB.
1608
1609 2. Options are used, which are not generally used in GDB (perhaps
1610 "set mapped on", "set readnow on" would be better)
1611
1612 3. The order of options matters, which is contrary to GNU
c906108c
SS
1613 conventions (because it is confusing and inconvenient). */
1614
1615void
fba45db2 1616symbol_file_command (char *args, int from_tty)
c906108c 1617{
c906108c
SS
1618 dont_repeat ();
1619
1620 if (args == NULL)
1621 {
1adeb98a 1622 symbol_file_clear (from_tty);
c906108c
SS
1623 }
1624 else
1625 {
d1a41061 1626 char **argv = gdb_buildargv (args);
cb2f3a29
MK
1627 int flags = OBJF_USERLOADED;
1628 struct cleanup *cleanups;
1629 char *name = NULL;
1630
7a292a7a 1631 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1632 while (*argv != NULL)
1633 {
78a4a9b9
AC
1634 if (strcmp (*argv, "-readnow") == 0)
1635 flags |= OBJF_READNOW;
1636 else if (**argv == '-')
8a3fe4f8 1637 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1638 else
1639 {
cb2f3a29 1640 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1641 name = *argv;
78a4a9b9 1642 }
cb2f3a29 1643
c906108c
SS
1644 argv++;
1645 }
1646
1647 if (name == NULL)
cb2f3a29
MK
1648 error (_("no symbol file name was specified"));
1649
c906108c
SS
1650 do_cleanups (cleanups);
1651 }
1652}
1653
1654/* Set the initial language.
1655
cb2f3a29
MK
1656 FIXME: A better solution would be to record the language in the
1657 psymtab when reading partial symbols, and then use it (if known) to
1658 set the language. This would be a win for formats that encode the
1659 language in an easily discoverable place, such as DWARF. For
1660 stabs, we can jump through hoops looking for specially named
1661 symbols or try to intuit the language from the specific type of
1662 stabs we find, but we can't do that until later when we read in
1663 full symbols. */
c906108c 1664
8b60591b 1665void
fba45db2 1666set_initial_language (void)
c906108c 1667{
c5aa993b 1668 enum language lang = language_unknown;
c906108c 1669
01f8c46d
JK
1670 if (language_of_main != language_unknown)
1671 lang = language_of_main;
1672 else
1673 {
1674 const char *filename;
f888f159 1675
01f8c46d
JK
1676 filename = find_main_filename ();
1677 if (filename != NULL)
1678 lang = deduce_language_from_filename (filename);
1679 }
cb2f3a29 1680
ccefe4c4
TT
1681 if (lang == language_unknown)
1682 {
1683 /* Make C the default language */
1684 lang = language_c;
c906108c 1685 }
ccefe4c4
TT
1686
1687 set_language (lang);
1688 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1689}
1690
874f5765
TG
1691/* If NAME is a remote name open the file using remote protocol, otherwise
1692 open it normally. */
1693
1694bfd *
1695bfd_open_maybe_remote (const char *name)
1696{
1697 if (remote_filename_p (name))
1698 return remote_bfd_open (name, gnutarget);
1699 else
1700 return bfd_openr (name, gnutarget);
1701}
1702
1703
cb2f3a29
MK
1704/* Open the file specified by NAME and hand it off to BFD for
1705 preliminary analysis. Return a newly initialized bfd *, which
1706 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1707 absolute). In case of trouble, error() is called. */
c906108c
SS
1708
1709bfd *
fba45db2 1710symfile_bfd_open (char *name)
c906108c
SS
1711{
1712 bfd *sym_bfd;
1713 int desc;
1714 char *absolute_name;
1715
f1838a98
UW
1716 if (remote_filename_p (name))
1717 {
1718 name = xstrdup (name);
1719 sym_bfd = remote_bfd_open (name, gnutarget);
1720 if (!sym_bfd)
1721 {
1722 make_cleanup (xfree, name);
1723 error (_("`%s': can't open to read symbols: %s."), name,
1724 bfd_errmsg (bfd_get_error ()));
1725 }
1726
1727 if (!bfd_check_format (sym_bfd, bfd_object))
1728 {
1729 bfd_close (sym_bfd);
1730 make_cleanup (xfree, name);
1731 error (_("`%s': can't read symbols: %s."), name,
1732 bfd_errmsg (bfd_get_error ()));
1733 }
1734
1735 return sym_bfd;
1736 }
1737
cb2f3a29 1738 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c
SS
1739
1740 /* Look down path for it, allocate 2nd new malloc'd copy. */
cb2f3a29 1741 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
fbdebf46 1742 O_RDONLY | O_BINARY, &absolute_name);
608506ed 1743#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1744 if (desc < 0)
1745 {
1746 char *exename = alloca (strlen (name) + 5);
433759f7 1747
c906108c 1748 strcat (strcpy (exename, name), ".exe");
014d698b 1749 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
fbdebf46 1750 O_RDONLY | O_BINARY, &absolute_name);
c906108c
SS
1751 }
1752#endif
1753 if (desc < 0)
1754 {
b8c9b27d 1755 make_cleanup (xfree, name);
c906108c
SS
1756 perror_with_name (name);
1757 }
cb2f3a29
MK
1758
1759 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
c378eb4e 1760 bfd. It'll be freed in free_objfile(). */
cb2f3a29
MK
1761 xfree (name);
1762 name = absolute_name;
c906108c 1763
9f76c2cd 1764 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
c906108c
SS
1765 if (!sym_bfd)
1766 {
b8c9b27d 1767 make_cleanup (xfree, name);
f1838a98 1768 error (_("`%s': can't open to read symbols: %s."), name,
c906108c
SS
1769 bfd_errmsg (bfd_get_error ()));
1770 }
549c1eea 1771 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1772
1773 if (!bfd_check_format (sym_bfd, bfd_object))
1774 {
cb2f3a29
MK
1775 /* FIXME: should be checking for errors from bfd_close (for one
1776 thing, on error it does not free all the storage associated
1777 with the bfd). */
1778 bfd_close (sym_bfd); /* This also closes desc. */
b8c9b27d 1779 make_cleanup (xfree, name);
f1838a98 1780 error (_("`%s': can't read symbols: %s."), name,
c906108c
SS
1781 bfd_errmsg (bfd_get_error ()));
1782 }
cb2f3a29 1783
4f6f9936
JK
1784 /* bfd_usrdata exists for applications and libbfd must not touch it. */
1785 gdb_assert (bfd_usrdata (sym_bfd) == NULL);
1786
cb2f3a29 1787 return sym_bfd;
c906108c
SS
1788}
1789
cb2f3a29
MK
1790/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1791 the section was not found. */
1792
0e931cf0
JB
1793int
1794get_section_index (struct objfile *objfile, char *section_name)
1795{
1796 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1797
0e931cf0
JB
1798 if (sect)
1799 return sect->index;
1800 else
1801 return -1;
1802}
1803
cb2f3a29
MK
1804/* Link SF into the global symtab_fns list. Called on startup by the
1805 _initialize routine in each object file format reader, to register
b021a221 1806 information about each format the reader is prepared to handle. */
c906108c
SS
1807
1808void
00b5771c 1809add_symtab_fns (const struct sym_fns *sf)
c906108c 1810{
00b5771c 1811 VEC_safe_push (sym_fns_ptr, symtab_fns, sf);
c906108c
SS
1812}
1813
cb2f3a29
MK
1814/* Initialize OBJFILE to read symbols from its associated BFD. It
1815 either returns or calls error(). The result is an initialized
1816 struct sym_fns in the objfile structure, that contains cached
1817 information about the symbol file. */
c906108c 1818
00b5771c 1819static const struct sym_fns *
31d99776 1820find_sym_fns (bfd *abfd)
c906108c 1821{
00b5771c 1822 const struct sym_fns *sf;
31d99776 1823 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
00b5771c 1824 int i;
c906108c 1825
75245b24
MS
1826 if (our_flavour == bfd_target_srec_flavour
1827 || our_flavour == bfd_target_ihex_flavour
1828 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1829 return NULL; /* No symbols. */
75245b24 1830
00b5771c 1831 for (i = 0; VEC_iterate (sym_fns_ptr, symtab_fns, i, sf); ++i)
31d99776
DJ
1832 if (our_flavour == sf->sym_flavour)
1833 return sf;
cb2f3a29 1834
8a3fe4f8 1835 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1836 bfd_get_target (abfd));
c906108c
SS
1837}
1838\f
cb2f3a29 1839
c906108c
SS
1840/* This function runs the load command of our current target. */
1841
1842static void
fba45db2 1843load_command (char *arg, int from_tty)
c906108c 1844{
e5cc9f32
JB
1845 dont_repeat ();
1846
4487aabf
PA
1847 /* The user might be reloading because the binary has changed. Take
1848 this opportunity to check. */
1849 reopen_exec_file ();
1850 reread_symbols ();
1851
c906108c 1852 if (arg == NULL)
1986bccd
AS
1853 {
1854 char *parg;
1855 int count = 0;
1856
1857 parg = arg = get_exec_file (1);
1858
1859 /* Count how many \ " ' tab space there are in the name. */
1860 while ((parg = strpbrk (parg, "\\\"'\t ")))
1861 {
1862 parg++;
1863 count++;
1864 }
1865
1866 if (count)
1867 {
1868 /* We need to quote this string so buildargv can pull it apart. */
1869 char *temp = xmalloc (strlen (arg) + count + 1 );
1870 char *ptemp = temp;
1871 char *prev;
1872
1873 make_cleanup (xfree, temp);
1874
1875 prev = parg = arg;
1876 while ((parg = strpbrk (parg, "\\\"'\t ")))
1877 {
1878 strncpy (ptemp, prev, parg - prev);
1879 ptemp += parg - prev;
1880 prev = parg++;
1881 *ptemp++ = '\\';
1882 }
1883 strcpy (ptemp, prev);
1884
1885 arg = temp;
1886 }
1887 }
1888
c906108c 1889 target_load (arg, from_tty);
2889e661
JB
1890
1891 /* After re-loading the executable, we don't really know which
1892 overlays are mapped any more. */
1893 overlay_cache_invalid = 1;
c906108c
SS
1894}
1895
1896/* This version of "load" should be usable for any target. Currently
1897 it is just used for remote targets, not inftarg.c or core files,
1898 on the theory that only in that case is it useful.
1899
1900 Avoiding xmodem and the like seems like a win (a) because we don't have
1901 to worry about finding it, and (b) On VMS, fork() is very slow and so
1902 we don't want to run a subprocess. On the other hand, I'm not sure how
1903 performance compares. */
917317f4 1904
917317f4
JM
1905static int validate_download = 0;
1906
e4f9b4d5
MS
1907/* Callback service function for generic_load (bfd_map_over_sections). */
1908
1909static void
1910add_section_size_callback (bfd *abfd, asection *asec, void *data)
1911{
1912 bfd_size_type *sum = data;
1913
2c500098 1914 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1915}
1916
1917/* Opaque data for load_section_callback. */
1918struct load_section_data {
1919 unsigned long load_offset;
a76d924d
DJ
1920 struct load_progress_data *progress_data;
1921 VEC(memory_write_request_s) *requests;
1922};
1923
1924/* Opaque data for load_progress. */
1925struct load_progress_data {
1926 /* Cumulative data. */
e4f9b4d5
MS
1927 unsigned long write_count;
1928 unsigned long data_count;
1929 bfd_size_type total_size;
a76d924d
DJ
1930};
1931
1932/* Opaque data for load_progress for a single section. */
1933struct load_progress_section_data {
1934 struct load_progress_data *cumulative;
cf7a04e8 1935
a76d924d 1936 /* Per-section data. */
cf7a04e8
DJ
1937 const char *section_name;
1938 ULONGEST section_sent;
1939 ULONGEST section_size;
1940 CORE_ADDR lma;
1941 gdb_byte *buffer;
e4f9b4d5
MS
1942};
1943
a76d924d 1944/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1945
1946static void
1947load_progress (ULONGEST bytes, void *untyped_arg)
1948{
a76d924d
DJ
1949 struct load_progress_section_data *args = untyped_arg;
1950 struct load_progress_data *totals;
1951
1952 if (args == NULL)
1953 /* Writing padding data. No easy way to get at the cumulative
1954 stats, so just ignore this. */
1955 return;
1956
1957 totals = args->cumulative;
1958
1959 if (bytes == 0 && args->section_sent == 0)
1960 {
1961 /* The write is just starting. Let the user know we've started
1962 this section. */
79a45e25 1963 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
5af949e3
UW
1964 args->section_name, hex_string (args->section_size),
1965 paddress (target_gdbarch, args->lma));
a76d924d
DJ
1966 return;
1967 }
cf7a04e8
DJ
1968
1969 if (validate_download)
1970 {
1971 /* Broken memories and broken monitors manifest themselves here
1972 when bring new computers to life. This doubles already slow
1973 downloads. */
1974 /* NOTE: cagney/1999-10-18: A more efficient implementation
1975 might add a verify_memory() method to the target vector and
1976 then use that. remote.c could implement that method using
1977 the ``qCRC'' packet. */
1978 gdb_byte *check = xmalloc (bytes);
1979 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1980
1981 if (target_read_memory (args->lma, check, bytes) != 0)
5af949e3
UW
1982 error (_("Download verify read failed at %s"),
1983 paddress (target_gdbarch, args->lma));
cf7a04e8 1984 if (memcmp (args->buffer, check, bytes) != 0)
5af949e3
UW
1985 error (_("Download verify compare failed at %s"),
1986 paddress (target_gdbarch, args->lma));
cf7a04e8
DJ
1987 do_cleanups (verify_cleanups);
1988 }
a76d924d 1989 totals->data_count += bytes;
cf7a04e8
DJ
1990 args->lma += bytes;
1991 args->buffer += bytes;
a76d924d 1992 totals->write_count += 1;
cf7a04e8
DJ
1993 args->section_sent += bytes;
1994 if (quit_flag
1995 || (deprecated_ui_load_progress_hook != NULL
1996 && deprecated_ui_load_progress_hook (args->section_name,
1997 args->section_sent)))
1998 error (_("Canceled the download"));
1999
2000 if (deprecated_show_load_progress != NULL)
2001 deprecated_show_load_progress (args->section_name,
2002 args->section_sent,
2003 args->section_size,
a76d924d
DJ
2004 totals->data_count,
2005 totals->total_size);
cf7a04e8
DJ
2006}
2007
e4f9b4d5
MS
2008/* Callback service function for generic_load (bfd_map_over_sections). */
2009
2010static void
2011load_section_callback (bfd *abfd, asection *asec, void *data)
2012{
a76d924d 2013 struct memory_write_request *new_request;
e4f9b4d5 2014 struct load_section_data *args = data;
a76d924d 2015 struct load_progress_section_data *section_data;
cf7a04e8
DJ
2016 bfd_size_type size = bfd_get_section_size (asec);
2017 gdb_byte *buffer;
cf7a04e8 2018 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 2019
cf7a04e8
DJ
2020 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2021 return;
e4f9b4d5 2022
cf7a04e8
DJ
2023 if (size == 0)
2024 return;
e4f9b4d5 2025
a76d924d
DJ
2026 new_request = VEC_safe_push (memory_write_request_s,
2027 args->requests, NULL);
2028 memset (new_request, 0, sizeof (struct memory_write_request));
2029 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
2030 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
3e43a32a
MS
2031 new_request->end = new_request->begin + size; /* FIXME Should size
2032 be in instead? */
a76d924d
DJ
2033 new_request->data = xmalloc (size);
2034 new_request->baton = section_data;
cf7a04e8 2035
a76d924d 2036 buffer = new_request->data;
cf7a04e8 2037
a76d924d
DJ
2038 section_data->cumulative = args->progress_data;
2039 section_data->section_name = sect_name;
2040 section_data->section_size = size;
2041 section_data->lma = new_request->begin;
2042 section_data->buffer = buffer;
cf7a04e8
DJ
2043
2044 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
2045}
2046
2047/* Clean up an entire memory request vector, including load
2048 data and progress records. */
cf7a04e8 2049
a76d924d
DJ
2050static void
2051clear_memory_write_data (void *arg)
2052{
2053 VEC(memory_write_request_s) **vec_p = arg;
2054 VEC(memory_write_request_s) *vec = *vec_p;
2055 int i;
2056 struct memory_write_request *mr;
cf7a04e8 2057
a76d924d
DJ
2058 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2059 {
2060 xfree (mr->data);
2061 xfree (mr->baton);
2062 }
2063 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
2064}
2065
c906108c 2066void
917317f4 2067generic_load (char *args, int from_tty)
c906108c 2068{
c906108c 2069 bfd *loadfile_bfd;
2b71414d 2070 struct timeval start_time, end_time;
917317f4 2071 char *filename;
1986bccd 2072 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 2073 struct load_section_data cbdata;
a76d924d 2074 struct load_progress_data total_progress;
79a45e25 2075 struct ui_out *uiout = current_uiout;
a76d924d 2076
e4f9b4d5 2077 CORE_ADDR entry;
1986bccd 2078 char **argv;
e4f9b4d5 2079
a76d924d
DJ
2080 memset (&cbdata, 0, sizeof (cbdata));
2081 memset (&total_progress, 0, sizeof (total_progress));
2082 cbdata.progress_data = &total_progress;
2083
2084 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 2085
d1a41061
PP
2086 if (args == NULL)
2087 error_no_arg (_("file to load"));
1986bccd 2088
d1a41061 2089 argv = gdb_buildargv (args);
1986bccd
AS
2090 make_cleanup_freeargv (argv);
2091
2092 filename = tilde_expand (argv[0]);
2093 make_cleanup (xfree, filename);
2094
2095 if (argv[1] != NULL)
917317f4
JM
2096 {
2097 char *endptr;
ba5f2f8a 2098
1986bccd
AS
2099 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
2100
2101 /* If the last word was not a valid number then
2102 treat it as a file name with spaces in. */
2103 if (argv[1] == endptr)
2104 error (_("Invalid download offset:%s."), argv[1]);
2105
2106 if (argv[2] != NULL)
2107 error (_("Too many parameters."));
917317f4 2108 }
c906108c 2109
c378eb4e 2110 /* Open the file for loading. */
c906108c
SS
2111 loadfile_bfd = bfd_openr (filename, gnutarget);
2112 if (loadfile_bfd == NULL)
2113 {
2114 perror_with_name (filename);
2115 return;
2116 }
917317f4 2117
c906108c
SS
2118 /* FIXME: should be checking for errors from bfd_close (for one thing,
2119 on error it does not free all the storage associated with the
2120 bfd). */
5c65bbb6 2121 make_cleanup_bfd_close (loadfile_bfd);
c906108c 2122
c5aa993b 2123 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 2124 {
8a3fe4f8 2125 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
2126 bfd_errmsg (bfd_get_error ()));
2127 }
c5aa993b 2128
5417f6dc 2129 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
2130 (void *) &total_progress.total_size);
2131
2132 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 2133
2b71414d 2134 gettimeofday (&start_time, NULL);
c906108c 2135
a76d924d
DJ
2136 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2137 load_progress) != 0)
2138 error (_("Load failed"));
c906108c 2139
2b71414d 2140 gettimeofday (&end_time, NULL);
ba5f2f8a 2141
e4f9b4d5 2142 entry = bfd_get_start_address (loadfile_bfd);
e4f9b4d5 2143 ui_out_text (uiout, "Start address ");
5af949e3 2144 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
e4f9b4d5 2145 ui_out_text (uiout, ", load size ");
a76d924d 2146 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 2147 ui_out_text (uiout, "\n");
e4f9b4d5
MS
2148 /* We were doing this in remote-mips.c, I suspect it is right
2149 for other targets too. */
fb14de7b 2150 regcache_write_pc (get_current_regcache (), entry);
c906108c 2151
38963c97
DJ
2152 /* Reset breakpoints, now that we have changed the load image. For
2153 instance, breakpoints may have been set (or reset, by
2154 post_create_inferior) while connected to the target but before we
2155 loaded the program. In that case, the prologue analyzer could
2156 have read instructions from the target to find the right
2157 breakpoint locations. Loading has changed the contents of that
2158 memory. */
2159
2160 breakpoint_re_set ();
2161
7ca9f392
AC
2162 /* FIXME: are we supposed to call symbol_file_add or not? According
2163 to a comment from remote-mips.c (where a call to symbol_file_add
2164 was commented out), making the call confuses GDB if more than one
2165 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 2166 others don't (or didn't - perhaps they have all been deleted). */
c906108c 2167
a76d924d
DJ
2168 print_transfer_performance (gdb_stdout, total_progress.data_count,
2169 total_progress.write_count,
2170 &start_time, &end_time);
c906108c
SS
2171
2172 do_cleanups (old_cleanups);
2173}
2174
c378eb4e 2175/* Report how fast the transfer went. */
c906108c 2176
917317f4
JM
2177/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2178 replaced by print_transfer_performance (with a very different
c378eb4e 2179 function signature). */
917317f4 2180
c906108c 2181void
fba45db2
KB
2182report_transfer_performance (unsigned long data_count, time_t start_time,
2183 time_t end_time)
c906108c 2184{
2b71414d
DJ
2185 struct timeval start, end;
2186
2187 start.tv_sec = start_time;
2188 start.tv_usec = 0;
2189 end.tv_sec = end_time;
2190 end.tv_usec = 0;
2191
2192 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
917317f4
JM
2193}
2194
2195void
d9fcf2fb 2196print_transfer_performance (struct ui_file *stream,
917317f4
JM
2197 unsigned long data_count,
2198 unsigned long write_count,
2b71414d
DJ
2199 const struct timeval *start_time,
2200 const struct timeval *end_time)
917317f4 2201{
9f43d28c 2202 ULONGEST time_count;
79a45e25 2203 struct ui_out *uiout = current_uiout;
2b71414d
DJ
2204
2205 /* Compute the elapsed time in milliseconds, as a tradeoff between
2206 accuracy and overflow. */
2207 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2208 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2209
8b93c638
JM
2210 ui_out_text (uiout, "Transfer rate: ");
2211 if (time_count > 0)
2212 {
9f43d28c
DJ
2213 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2214
2215 if (ui_out_is_mi_like_p (uiout))
2216 {
2217 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2218 ui_out_text (uiout, " bits/sec");
2219 }
2220 else if (rate < 1024)
2221 {
2222 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2223 ui_out_text (uiout, " bytes/sec");
2224 }
2225 else
2226 {
2227 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2228 ui_out_text (uiout, " KB/sec");
2229 }
8b93c638
JM
2230 }
2231 else
2232 {
ba5f2f8a 2233 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 2234 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
2235 }
2236 if (write_count > 0)
2237 {
2238 ui_out_text (uiout, ", ");
ba5f2f8a 2239 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
2240 ui_out_text (uiout, " bytes/write");
2241 }
2242 ui_out_text (uiout, ".\n");
c906108c
SS
2243}
2244
2245/* This function allows the addition of incrementally linked object files.
2246 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2247/* Note: ezannoni 2000-04-13 This function/command used to have a
2248 special case syntax for the rombug target (Rombug is the boot
2249 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2250 rombug case, the user doesn't need to supply a text address,
2251 instead a call to target_link() (in target.c) would supply the
c378eb4e 2252 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2253
c906108c 2254static void
fba45db2 2255add_symbol_file_command (char *args, int from_tty)
c906108c 2256{
5af949e3 2257 struct gdbarch *gdbarch = get_current_arch ();
db162d44 2258 char *filename = NULL;
2df3850c 2259 int flags = OBJF_USERLOADED;
c906108c 2260 char *arg;
db162d44 2261 int section_index = 0;
2acceee2
JM
2262 int argcnt = 0;
2263 int sec_num = 0;
2264 int i;
db162d44
EZ
2265 int expecting_sec_name = 0;
2266 int expecting_sec_addr = 0;
5b96932b 2267 char **argv;
db162d44 2268
a39a16c4 2269 struct sect_opt
2acceee2 2270 {
2acceee2
JM
2271 char *name;
2272 char *value;
a39a16c4 2273 };
db162d44 2274
a39a16c4
MM
2275 struct section_addr_info *section_addrs;
2276 struct sect_opt *sect_opts = NULL;
2277 size_t num_sect_opts = 0;
3017564a 2278 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2279
a39a16c4 2280 num_sect_opts = 16;
5417f6dc 2281 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
2282 * sizeof (struct sect_opt));
2283
c906108c
SS
2284 dont_repeat ();
2285
2286 if (args == NULL)
8a3fe4f8 2287 error (_("add-symbol-file takes a file name and an address"));
c906108c 2288
d1a41061 2289 argv = gdb_buildargv (args);
5b96932b 2290 make_cleanup_freeargv (argv);
db162d44 2291
5b96932b
AS
2292 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2293 {
c378eb4e 2294 /* Process the argument. */
db162d44 2295 if (argcnt == 0)
c906108c 2296 {
c378eb4e 2297 /* The first argument is the file name. */
db162d44 2298 filename = tilde_expand (arg);
3017564a 2299 make_cleanup (xfree, filename);
c906108c 2300 }
db162d44 2301 else
7a78ae4e
ND
2302 if (argcnt == 1)
2303 {
2304 /* The second argument is always the text address at which
c378eb4e 2305 to load the program. */
7a78ae4e
ND
2306 sect_opts[section_index].name = ".text";
2307 sect_opts[section_index].value = arg;
f414f22f 2308 if (++section_index >= num_sect_opts)
a39a16c4
MM
2309 {
2310 num_sect_opts *= 2;
5417f6dc 2311 sect_opts = ((struct sect_opt *)
a39a16c4 2312 xrealloc (sect_opts,
5417f6dc 2313 num_sect_opts
a39a16c4
MM
2314 * sizeof (struct sect_opt)));
2315 }
7a78ae4e
ND
2316 }
2317 else
2318 {
2319 /* It's an option (starting with '-') or it's an argument
c378eb4e 2320 to an option. */
7a78ae4e
ND
2321
2322 if (*arg == '-')
2323 {
78a4a9b9
AC
2324 if (strcmp (arg, "-readnow") == 0)
2325 flags |= OBJF_READNOW;
2326 else if (strcmp (arg, "-s") == 0)
2327 {
2328 expecting_sec_name = 1;
2329 expecting_sec_addr = 1;
2330 }
7a78ae4e
ND
2331 }
2332 else
2333 {
2334 if (expecting_sec_name)
db162d44 2335 {
7a78ae4e
ND
2336 sect_opts[section_index].name = arg;
2337 expecting_sec_name = 0;
db162d44
EZ
2338 }
2339 else
7a78ae4e
ND
2340 if (expecting_sec_addr)
2341 {
2342 sect_opts[section_index].value = arg;
2343 expecting_sec_addr = 0;
f414f22f 2344 if (++section_index >= num_sect_opts)
a39a16c4
MM
2345 {
2346 num_sect_opts *= 2;
5417f6dc 2347 sect_opts = ((struct sect_opt *)
a39a16c4 2348 xrealloc (sect_opts,
5417f6dc 2349 num_sect_opts
a39a16c4
MM
2350 * sizeof (struct sect_opt)));
2351 }
7a78ae4e
ND
2352 }
2353 else
3e43a32a 2354 error (_("USAGE: add-symbol-file <filename> <textaddress>"
412946b6 2355 " [-readnow] [-s <secname> <addr>]*"));
7a78ae4e
ND
2356 }
2357 }
c906108c 2358 }
c906108c 2359
927890d0
JB
2360 /* This command takes at least two arguments. The first one is a
2361 filename, and the second is the address where this file has been
2362 loaded. Abort now if this address hasn't been provided by the
2363 user. */
2364 if (section_index < 1)
2365 error (_("The address where %s has been loaded is missing"), filename);
2366
c378eb4e 2367 /* Print the prompt for the query below. And save the arguments into
db162d44
EZ
2368 a sect_addr_info structure to be passed around to other
2369 functions. We have to split this up into separate print
bb599908 2370 statements because hex_string returns a local static
c378eb4e 2371 string. */
5417f6dc 2372
a3f17187 2373 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2374 section_addrs = alloc_section_addr_info (section_index);
2375 make_cleanup (xfree, section_addrs);
db162d44 2376 for (i = 0; i < section_index; i++)
c906108c 2377 {
db162d44
EZ
2378 CORE_ADDR addr;
2379 char *val = sect_opts[i].value;
2380 char *sec = sect_opts[i].name;
5417f6dc 2381
ae822768 2382 addr = parse_and_eval_address (val);
db162d44 2383
db162d44 2384 /* Here we store the section offsets in the order they were
c378eb4e 2385 entered on the command line. */
a39a16c4
MM
2386 section_addrs->other[sec_num].name = sec;
2387 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2388 printf_unfiltered ("\t%s_addr = %s\n", sec,
2389 paddress (gdbarch, addr));
db162d44
EZ
2390 sec_num++;
2391
5417f6dc 2392 /* The object's sections are initialized when a
db162d44 2393 call is made to build_objfile_section_table (objfile).
5417f6dc 2394 This happens in reread_symbols.
db162d44
EZ
2395 At this point, we don't know what file type this is,
2396 so we can't determine what section names are valid. */
2acceee2 2397 }
db162d44 2398
2acceee2 2399 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2400 error (_("Not confirmed."));
c906108c 2401
7eedccfa
PP
2402 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2403 section_addrs, flags);
c906108c
SS
2404
2405 /* Getting new symbols may change our opinion about what is
2406 frameless. */
2407 reinit_frame_cache ();
db162d44 2408 do_cleanups (my_cleanups);
c906108c
SS
2409}
2410\f
70992597 2411
4ac39b97
JK
2412typedef struct objfile *objfilep;
2413
2414DEF_VEC_P (objfilep);
2415
c906108c
SS
2416/* Re-read symbols if a symbol-file has changed. */
2417void
fba45db2 2418reread_symbols (void)
c906108c
SS
2419{
2420 struct objfile *objfile;
2421 long new_modtime;
c906108c
SS
2422 struct stat new_statbuf;
2423 int res;
4ac39b97
JK
2424 VEC (objfilep) *new_objfiles = NULL;
2425 struct cleanup *all_cleanups;
2426
2427 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
c906108c
SS
2428
2429 /* With the addition of shared libraries, this should be modified,
2430 the load time should be saved in the partial symbol tables, since
2431 different tables may come from different source files. FIXME.
2432 This routine should then walk down each partial symbol table
c378eb4e 2433 and see if the symbol table that it originates from has been changed. */
c906108c 2434
c5aa993b
JM
2435 for (objfile = object_files; objfile; objfile = objfile->next)
2436 {
9cce227f
TG
2437 /* solib-sunos.c creates one objfile with obfd. */
2438 if (objfile->obfd == NULL)
2439 continue;
2440
2441 /* Separate debug objfiles are handled in the main objfile. */
2442 if (objfile->separate_debug_objfile_backlink)
2443 continue;
2444
02aeec7b
JB
2445 /* If this object is from an archive (what you usually create with
2446 `ar', often called a `static library' on most systems, though
2447 a `shared library' on AIX is also an archive), then you should
2448 stat on the archive name, not member name. */
9cce227f
TG
2449 if (objfile->obfd->my_archive)
2450 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2451 else
9cce227f
TG
2452 res = stat (objfile->name, &new_statbuf);
2453 if (res != 0)
2454 {
c378eb4e 2455 /* FIXME, should use print_sys_errmsg but it's not filtered. */
9cce227f
TG
2456 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2457 objfile->name);
2458 continue;
2459 }
2460 new_modtime = new_statbuf.st_mtime;
2461 if (new_modtime != objfile->mtime)
2462 {
2463 struct cleanup *old_cleanups;
2464 struct section_offsets *offsets;
2465 int num_offsets;
2466 char *obfd_filename;
2467
2468 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2469 objfile->name);
2470
2471 /* There are various functions like symbol_file_add,
2472 symfile_bfd_open, syms_from_objfile, etc., which might
2473 appear to do what we want. But they have various other
2474 effects which we *don't* want. So we just do stuff
2475 ourselves. We don't worry about mapped files (for one thing,
2476 any mapped file will be out of date). */
2477
2478 /* If we get an error, blow away this objfile (not sure if
2479 that is the correct response for things like shared
2480 libraries). */
2481 old_cleanups = make_cleanup_free_objfile (objfile);
2482 /* We need to do this whenever any symbols go away. */
2483 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2484
0ba1096a
KT
2485 if (exec_bfd != NULL
2486 && filename_cmp (bfd_get_filename (objfile->obfd),
2487 bfd_get_filename (exec_bfd)) == 0)
9cce227f
TG
2488 {
2489 /* Reload EXEC_BFD without asking anything. */
2490
2491 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2492 }
2493
f6eeced0
JK
2494 /* Keep the calls order approx. the same as in free_objfile. */
2495
2496 /* Free the separate debug objfiles. It will be
2497 automatically recreated by sym_read. */
2498 free_objfile_separate_debug (objfile);
2499
2500 /* Remove any references to this objfile in the global
2501 value lists. */
2502 preserve_values (objfile);
2503
2504 /* Nuke all the state that we will re-read. Much of the following
2505 code which sets things to NULL really is necessary to tell
2506 other parts of GDB that there is nothing currently there.
2507
2508 Try to keep the freeing order compatible with free_objfile. */
2509
2510 if (objfile->sf != NULL)
2511 {
2512 (*objfile->sf->sym_finish) (objfile);
2513 }
2514
2515 clear_objfile_data (objfile);
2516
9cce227f
TG
2517 /* Clean up any state BFD has sitting around. We don't need
2518 to close the descriptor but BFD lacks a way of closing the
2519 BFD without closing the descriptor. */
2520 obfd_filename = bfd_get_filename (objfile->obfd);
2521 if (!bfd_close (objfile->obfd))
2522 error (_("Can't close BFD for %s: %s"), objfile->name,
2523 bfd_errmsg (bfd_get_error ()));
874f5765 2524 objfile->obfd = bfd_open_maybe_remote (obfd_filename);
9cce227f
TG
2525 if (objfile->obfd == NULL)
2526 error (_("Can't open %s to read symbols."), objfile->name);
2527 else
2528 objfile->obfd = gdb_bfd_ref (objfile->obfd);
2529 /* bfd_openr sets cacheable to true, which is what we want. */
2530 if (!bfd_check_format (objfile->obfd, bfd_object))
2531 error (_("Can't read symbols from %s: %s."), objfile->name,
2532 bfd_errmsg (bfd_get_error ()));
2533
2534 /* Save the offsets, we will nuke them with the rest of the
2535 objfile_obstack. */
2536 num_offsets = objfile->num_sections;
2537 offsets = ((struct section_offsets *)
2538 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2539 memcpy (offsets, objfile->section_offsets,
2540 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2541
9cce227f
TG
2542 /* FIXME: Do we have to free a whole linked list, or is this
2543 enough? */
2544 if (objfile->global_psymbols.list)
2545 xfree (objfile->global_psymbols.list);
2546 memset (&objfile->global_psymbols, 0,
2547 sizeof (objfile->global_psymbols));
2548 if (objfile->static_psymbols.list)
2549 xfree (objfile->static_psymbols.list);
2550 memset (&objfile->static_psymbols, 0,
2551 sizeof (objfile->static_psymbols));
2552
c378eb4e 2553 /* Free the obstacks for non-reusable objfiles. */
710e1a31
SW
2554 psymbol_bcache_free (objfile->psymbol_cache);
2555 objfile->psymbol_cache = psymbol_bcache_init ();
9cce227f 2556 bcache_xfree (objfile->macro_cache);
cbd70537 2557 objfile->macro_cache = bcache_xmalloc (NULL, NULL);
9cce227f 2558 bcache_xfree (objfile->filename_cache);
cbd70537 2559 objfile->filename_cache = bcache_xmalloc (NULL,NULL);
9cce227f
TG
2560 if (objfile->demangled_names_hash != NULL)
2561 {
2562 htab_delete (objfile->demangled_names_hash);
2563 objfile->demangled_names_hash = NULL;
2564 }
2565 obstack_free (&objfile->objfile_obstack, 0);
2566 objfile->sections = NULL;
2567 objfile->symtabs = NULL;
2568 objfile->psymtabs = NULL;
2569 objfile->psymtabs_addrmap = NULL;
2570 objfile->free_psymtabs = NULL;
34eaf542 2571 objfile->template_symbols = NULL;
9cce227f
TG
2572 objfile->msymbols = NULL;
2573 objfile->deprecated_sym_private = NULL;
2574 objfile->minimal_symbol_count = 0;
2575 memset (&objfile->msymbol_hash, 0,
2576 sizeof (objfile->msymbol_hash));
2577 memset (&objfile->msymbol_demangled_hash, 0,
2578 sizeof (objfile->msymbol_demangled_hash));
2579
9cce227f
TG
2580 /* obstack_init also initializes the obstack so it is
2581 empty. We could use obstack_specify_allocation but
d82ea6a8 2582 gdb_obstack.h specifies the alloc/dealloc functions. */
9cce227f 2583 obstack_init (&objfile->objfile_obstack);
d82ea6a8 2584 build_objfile_section_table (objfile);
9cce227f
TG
2585 terminate_minimal_symbol_table (objfile);
2586
2587 /* We use the same section offsets as from last time. I'm not
2588 sure whether that is always correct for shared libraries. */
2589 objfile->section_offsets = (struct section_offsets *)
2590 obstack_alloc (&objfile->objfile_obstack,
2591 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2592 memcpy (objfile->section_offsets, offsets,
2593 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2594 objfile->num_sections = num_offsets;
2595
2596 /* What the hell is sym_new_init for, anyway? The concept of
2597 distinguishing between the main file and additional files
2598 in this way seems rather dubious. */
2599 if (objfile == symfile_objfile)
c906108c 2600 {
9cce227f 2601 (*objfile->sf->sym_new_init) (objfile);
c906108c 2602 }
9cce227f
TG
2603
2604 (*objfile->sf->sym_init) (objfile);
2605 clear_complaints (&symfile_complaints, 1, 1);
2606 /* Do not set flags as this is safe and we don't want to be
2607 verbose. */
2608 (*objfile->sf->sym_read) (objfile, 0);
b11896a5
TT
2609 if ((objfile->flags & OBJF_PSYMTABS_READ) != 0)
2610 {
2611 objfile->flags &= ~OBJF_PSYMTABS_READ;
2612 require_partial_symbols (objfile, 0);
2613 }
2614
9cce227f 2615 if (!objfile_has_symbols (objfile))
c906108c 2616 {
9cce227f
TG
2617 wrap_here ("");
2618 printf_unfiltered (_("(no debugging symbols found)\n"));
2619 wrap_here ("");
c5aa993b 2620 }
9cce227f
TG
2621
2622 /* We're done reading the symbol file; finish off complaints. */
2623 clear_complaints (&symfile_complaints, 0, 1);
2624
2625 /* Getting new symbols may change our opinion about what is
2626 frameless. */
2627
2628 reinit_frame_cache ();
2629
2630 /* Discard cleanups as symbol reading was successful. */
2631 discard_cleanups (old_cleanups);
2632
2633 /* If the mtime has changed between the time we set new_modtime
2634 and now, we *want* this to be out of date, so don't call stat
2635 again now. */
2636 objfile->mtime = new_modtime;
9cce227f 2637 init_entry_point_info (objfile);
4ac39b97
JK
2638
2639 VEC_safe_push (objfilep, new_objfiles, objfile);
c906108c
SS
2640 }
2641 }
c906108c 2642
4ac39b97 2643 if (new_objfiles)
ea53e89f 2644 {
4ac39b97
JK
2645 int ix;
2646
ff3536bc
UW
2647 /* Notify objfiles that we've modified objfile sections. */
2648 objfiles_changed ();
2649
c1e56572 2650 clear_symtab_users (0);
4ac39b97
JK
2651
2652 /* clear_objfile_data for each objfile was called before freeing it and
2653 observer_notify_new_objfile (NULL) has been called by
2654 clear_symtab_users above. Notify the new files now. */
2655 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2656 observer_notify_new_objfile (objfile);
2657
ea53e89f
JB
2658 /* At least one objfile has changed, so we can consider that
2659 the executable we're debugging has changed too. */
781b42b0 2660 observer_notify_executable_changed ();
ea53e89f 2661 }
4ac39b97
JK
2662
2663 do_cleanups (all_cleanups);
c906108c 2664}
c906108c
SS
2665\f
2666
c5aa993b
JM
2667
2668typedef struct
2669{
2670 char *ext;
c906108c 2671 enum language lang;
c5aa993b
JM
2672}
2673filename_language;
c906108c 2674
c5aa993b 2675static filename_language *filename_language_table;
c906108c
SS
2676static int fl_table_size, fl_table_next;
2677
2678static void
fba45db2 2679add_filename_language (char *ext, enum language lang)
c906108c
SS
2680{
2681 if (fl_table_next >= fl_table_size)
2682 {
2683 fl_table_size += 10;
5417f6dc 2684 filename_language_table =
25bf3106
PM
2685 xrealloc (filename_language_table,
2686 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2687 }
2688
4fcf66da 2689 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2690 filename_language_table[fl_table_next].lang = lang;
2691 fl_table_next++;
2692}
2693
2694static char *ext_args;
920d2a44
AC
2695static void
2696show_ext_args (struct ui_file *file, int from_tty,
2697 struct cmd_list_element *c, const char *value)
2698{
3e43a32a
MS
2699 fprintf_filtered (file,
2700 _("Mapping between filename extension "
2701 "and source language is \"%s\".\n"),
920d2a44
AC
2702 value);
2703}
c906108c
SS
2704
2705static void
26c41df3 2706set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2707{
2708 int i;
2709 char *cp = ext_args;
2710 enum language lang;
2711
c378eb4e 2712 /* First arg is filename extension, starting with '.' */
c906108c 2713 if (*cp != '.')
8a3fe4f8 2714 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2715
2716 /* Find end of first arg. */
c5aa993b 2717 while (*cp && !isspace (*cp))
c906108c
SS
2718 cp++;
2719
2720 if (*cp == '\0')
3e43a32a
MS
2721 error (_("'%s': two arguments required -- "
2722 "filename extension and language"),
c906108c
SS
2723 ext_args);
2724
c378eb4e 2725 /* Null-terminate first arg. */
c5aa993b 2726 *cp++ = '\0';
c906108c
SS
2727
2728 /* Find beginning of second arg, which should be a source language. */
2729 while (*cp && isspace (*cp))
2730 cp++;
2731
2732 if (*cp == '\0')
3e43a32a
MS
2733 error (_("'%s': two arguments required -- "
2734 "filename extension and language"),
c906108c
SS
2735 ext_args);
2736
2737 /* Lookup the language from among those we know. */
2738 lang = language_enum (cp);
2739
2740 /* Now lookup the filename extension: do we already know it? */
2741 for (i = 0; i < fl_table_next; i++)
2742 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2743 break;
2744
2745 if (i >= fl_table_next)
2746 {
c378eb4e 2747 /* New file extension. */
c906108c
SS
2748 add_filename_language (ext_args, lang);
2749 }
2750 else
2751 {
c378eb4e 2752 /* Redefining a previously known filename extension. */
c906108c
SS
2753
2754 /* if (from_tty) */
2755 /* query ("Really make files of type %s '%s'?", */
2756 /* ext_args, language_str (lang)); */
2757
b8c9b27d 2758 xfree (filename_language_table[i].ext);
4fcf66da 2759 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2760 filename_language_table[i].lang = lang;
2761 }
2762}
2763
2764static void
fba45db2 2765info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2766{
2767 int i;
2768
a3f17187 2769 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2770 printf_filtered ("\n\n");
2771 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2772 printf_filtered ("\t%s\t- %s\n",
2773 filename_language_table[i].ext,
c906108c
SS
2774 language_str (filename_language_table[i].lang));
2775}
2776
2777static void
fba45db2 2778init_filename_language_table (void)
c906108c 2779{
c378eb4e 2780 if (fl_table_size == 0) /* Protect against repetition. */
c906108c
SS
2781 {
2782 fl_table_size = 20;
2783 fl_table_next = 0;
c5aa993b 2784 filename_language_table =
c906108c 2785 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b 2786 add_filename_language (".c", language_c);
6aecb9c2 2787 add_filename_language (".d", language_d);
c5aa993b
JM
2788 add_filename_language (".C", language_cplus);
2789 add_filename_language (".cc", language_cplus);
2790 add_filename_language (".cp", language_cplus);
2791 add_filename_language (".cpp", language_cplus);
2792 add_filename_language (".cxx", language_cplus);
2793 add_filename_language (".c++", language_cplus);
2794 add_filename_language (".java", language_java);
c906108c 2795 add_filename_language (".class", language_java);
da2cf7e0 2796 add_filename_language (".m", language_objc);
c5aa993b
JM
2797 add_filename_language (".f", language_fortran);
2798 add_filename_language (".F", language_fortran);
fd5700c7
JK
2799 add_filename_language (".for", language_fortran);
2800 add_filename_language (".FOR", language_fortran);
2801 add_filename_language (".ftn", language_fortran);
2802 add_filename_language (".FTN", language_fortran);
2803 add_filename_language (".fpp", language_fortran);
2804 add_filename_language (".FPP", language_fortran);
2805 add_filename_language (".f90", language_fortran);
2806 add_filename_language (".F90", language_fortran);
2807 add_filename_language (".f95", language_fortran);
2808 add_filename_language (".F95", language_fortran);
2809 add_filename_language (".f03", language_fortran);
2810 add_filename_language (".F03", language_fortran);
2811 add_filename_language (".f08", language_fortran);
2812 add_filename_language (".F08", language_fortran);
c5aa993b 2813 add_filename_language (".s", language_asm);
aa707ed0 2814 add_filename_language (".sx", language_asm);
c5aa993b 2815 add_filename_language (".S", language_asm);
c6fd39cd
PM
2816 add_filename_language (".pas", language_pascal);
2817 add_filename_language (".p", language_pascal);
2818 add_filename_language (".pp", language_pascal);
963a6417
PH
2819 add_filename_language (".adb", language_ada);
2820 add_filename_language (".ads", language_ada);
2821 add_filename_language (".a", language_ada);
2822 add_filename_language (".ada", language_ada);
dde59185 2823 add_filename_language (".dg", language_ada);
c906108c
SS
2824 }
2825}
2826
2827enum language
dd786858 2828deduce_language_from_filename (const char *filename)
c906108c
SS
2829{
2830 int i;
2831 char *cp;
2832
2833 if (filename != NULL)
2834 if ((cp = strrchr (filename, '.')) != NULL)
2835 for (i = 0; i < fl_table_next; i++)
2836 if (strcmp (cp, filename_language_table[i].ext) == 0)
2837 return filename_language_table[i].lang;
2838
2839 return language_unknown;
2840}
2841\f
2842/* allocate_symtab:
2843
2844 Allocate and partly initialize a new symbol table. Return a pointer
2845 to it. error() if no space.
2846
2847 Caller must set these fields:
c5aa993b
JM
2848 LINETABLE(symtab)
2849 symtab->blockvector
2850 symtab->dirname
2851 symtab->free_code
2852 symtab->free_ptr
c906108c
SS
2853 */
2854
2855struct symtab *
72b9f47f 2856allocate_symtab (const char *filename, struct objfile *objfile)
c906108c 2857{
52f0bd74 2858 struct symtab *symtab;
c906108c
SS
2859
2860 symtab = (struct symtab *)
4a146b47 2861 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2862 memset (symtab, 0, sizeof (*symtab));
10abe6bf
TT
2863 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2864 objfile->filename_cache);
c5aa993b
JM
2865 symtab->fullname = NULL;
2866 symtab->language = deduce_language_from_filename (filename);
1c9e8358 2867 symtab->debugformat = "unknown";
c906108c 2868
c378eb4e 2869 /* Hook it to the objfile it comes from. */
c906108c 2870
c5aa993b
JM
2871 symtab->objfile = objfile;
2872 symtab->next = objfile->symtabs;
2873 objfile->symtabs = symtab;
c906108c 2874
c906108c
SS
2875 return (symtab);
2876}
c906108c 2877\f
c5aa993b 2878
c906108c 2879/* Reset all data structures in gdb which may contain references to symbol
c1e56572 2880 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c906108c
SS
2881
2882void
c1e56572 2883clear_symtab_users (int add_flags)
c906108c
SS
2884{
2885 /* Someday, we should do better than this, by only blowing away
2886 the things that really need to be blown. */
c0501be5
DJ
2887
2888 /* Clear the "current" symtab first, because it is no longer valid.
2889 breakpoint_re_set may try to access the current symtab. */
2890 clear_current_source_symtab_and_line ();
2891
c906108c 2892 clear_displays ();
c1e56572
JK
2893 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2894 breakpoint_re_set ();
1bfeeb0f 2895 clear_last_displayed_sal ();
c906108c 2896 clear_pc_function_cache ();
06d3b283 2897 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2898
2899 /* Clear globals which might have pointed into a removed objfile.
2900 FIXME: It's not clear which of these are supposed to persist
2901 between expressions and which ought to be reset each time. */
2902 expression_context_block = NULL;
2903 innermost_block = NULL;
8756216b
DP
2904
2905 /* Varobj may refer to old symbols, perform a cleanup. */
2906 varobj_invalidate ();
2907
c906108c
SS
2908}
2909
74b7792f
AC
2910static void
2911clear_symtab_users_cleanup (void *ignore)
2912{
c1e56572 2913 clear_symtab_users (0);
74b7792f 2914}
c906108c 2915\f
c906108c
SS
2916/* OVERLAYS:
2917 The following code implements an abstraction for debugging overlay sections.
2918
2919 The target model is as follows:
2920 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2921 same VMA, each with its own unique LMA (or load address).
c906108c 2922 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2923 sections, one by one, from the load address into the VMA address.
5417f6dc 2924 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2925 sections should be considered to be mapped from the VMA to the LMA.
2926 This information is used for symbol lookup, and memory read/write.
5417f6dc 2927 For instance, if a section has been mapped then its contents
c5aa993b 2928 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2929
2930 Two levels of debugger support for overlays are available. One is
2931 "manual", in which the debugger relies on the user to tell it which
2932 overlays are currently mapped. This level of support is
2933 implemented entirely in the core debugger, and the information about
2934 whether a section is mapped is kept in the objfile->obj_section table.
2935
2936 The second level of support is "automatic", and is only available if
2937 the target-specific code provides functionality to read the target's
2938 overlay mapping table, and translate its contents for the debugger
2939 (by updating the mapped state information in the obj_section tables).
2940
2941 The interface is as follows:
c5aa993b
JM
2942 User commands:
2943 overlay map <name> -- tell gdb to consider this section mapped
2944 overlay unmap <name> -- tell gdb to consider this section unmapped
2945 overlay list -- list the sections that GDB thinks are mapped
2946 overlay read-target -- get the target's state of what's mapped
2947 overlay off/manual/auto -- set overlay debugging state
2948 Functional interface:
2949 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2950 section, return that section.
5417f6dc 2951 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 2952 the pc, either in its VMA or its LMA
714835d5 2953 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
2954 section_is_overlay(sect): true if section's VMA != LMA
2955 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2956 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2957 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2958 overlay_mapped_address(...): map an address from section's LMA to VMA
2959 overlay_unmapped_address(...): map an address from section's VMA to LMA
2960 symbol_overlayed_address(...): Return a "current" address for symbol:
2961 either in VMA or LMA depending on whether
c378eb4e 2962 the symbol's section is currently mapped. */
c906108c
SS
2963
2964/* Overlay debugging state: */
2965
d874f1e2 2966enum overlay_debugging_state overlay_debugging = ovly_off;
c378eb4e 2967int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
c906108c 2968
c906108c 2969/* Function: section_is_overlay (SECTION)
5417f6dc 2970 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
2971 SECTION is loaded at an address different from where it will "run". */
2972
2973int
714835d5 2974section_is_overlay (struct obj_section *section)
c906108c 2975{
714835d5
UW
2976 if (overlay_debugging && section)
2977 {
2978 bfd *abfd = section->objfile->obfd;
2979 asection *bfd_section = section->the_bfd_section;
f888f159 2980
714835d5
UW
2981 if (bfd_section_lma (abfd, bfd_section) != 0
2982 && bfd_section_lma (abfd, bfd_section)
2983 != bfd_section_vma (abfd, bfd_section))
2984 return 1;
2985 }
c906108c
SS
2986
2987 return 0;
2988}
2989
2990/* Function: overlay_invalidate_all (void)
2991 Invalidate the mapped state of all overlay sections (mark it as stale). */
2992
2993static void
fba45db2 2994overlay_invalidate_all (void)
c906108c 2995{
c5aa993b 2996 struct objfile *objfile;
c906108c
SS
2997 struct obj_section *sect;
2998
2999 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
3000 if (section_is_overlay (sect))
3001 sect->ovly_mapped = -1;
c906108c
SS
3002}
3003
714835d5 3004/* Function: section_is_mapped (SECTION)
5417f6dc 3005 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3006
3007 Access to the ovly_mapped flag is restricted to this function, so
3008 that we can do automatic update. If the global flag
3009 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3010 overlay_invalidate_all. If the mapped state of the particular
3011 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3012
714835d5
UW
3013int
3014section_is_mapped (struct obj_section *osect)
c906108c 3015{
9216df95
UW
3016 struct gdbarch *gdbarch;
3017
714835d5 3018 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
3019 return 0;
3020
c5aa993b 3021 switch (overlay_debugging)
c906108c
SS
3022 {
3023 default:
d874f1e2 3024 case ovly_off:
c5aa993b 3025 return 0; /* overlay debugging off */
d874f1e2 3026 case ovly_auto: /* overlay debugging automatic */
1c772458 3027 /* Unles there is a gdbarch_overlay_update function,
c378eb4e 3028 there's really nothing useful to do here (can't really go auto). */
9216df95
UW
3029 gdbarch = get_objfile_arch (osect->objfile);
3030 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
3031 {
3032 if (overlay_cache_invalid)
3033 {
3034 overlay_invalidate_all ();
3035 overlay_cache_invalid = 0;
3036 }
3037 if (osect->ovly_mapped == -1)
9216df95 3038 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
3039 }
3040 /* fall thru to manual case */
d874f1e2 3041 case ovly_on: /* overlay debugging manual */
c906108c
SS
3042 return osect->ovly_mapped == 1;
3043 }
3044}
3045
c906108c
SS
3046/* Function: pc_in_unmapped_range
3047 If PC falls into the lma range of SECTION, return true, else false. */
3048
3049CORE_ADDR
714835d5 3050pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3051{
714835d5
UW
3052 if (section_is_overlay (section))
3053 {
3054 bfd *abfd = section->objfile->obfd;
3055 asection *bfd_section = section->the_bfd_section;
fbd35540 3056
714835d5
UW
3057 /* We assume the LMA is relocated by the same offset as the VMA. */
3058 bfd_vma size = bfd_get_section_size (bfd_section);
3059 CORE_ADDR offset = obj_section_offset (section);
3060
3061 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3062 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3063 return 1;
3064 }
c906108c 3065
c906108c
SS
3066 return 0;
3067}
3068
3069/* Function: pc_in_mapped_range
3070 If PC falls into the vma range of SECTION, return true, else false. */
3071
3072CORE_ADDR
714835d5 3073pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3074{
714835d5
UW
3075 if (section_is_overlay (section))
3076 {
3077 if (obj_section_addr (section) <= pc
3078 && pc < obj_section_endaddr (section))
3079 return 1;
3080 }
c906108c 3081
c906108c
SS
3082 return 0;
3083}
3084
9ec8e6a0
JB
3085
3086/* Return true if the mapped ranges of sections A and B overlap, false
3087 otherwise. */
b9362cc7 3088static int
714835d5 3089sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3090{
714835d5
UW
3091 CORE_ADDR a_start = obj_section_addr (a);
3092 CORE_ADDR a_end = obj_section_endaddr (a);
3093 CORE_ADDR b_start = obj_section_addr (b);
3094 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3095
3096 return (a_start < b_end && b_start < a_end);
3097}
3098
c906108c
SS
3099/* Function: overlay_unmapped_address (PC, SECTION)
3100 Returns the address corresponding to PC in the unmapped (load) range.
3101 May be the same as PC. */
3102
3103CORE_ADDR
714835d5 3104overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3105{
714835d5
UW
3106 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3107 {
3108 bfd *abfd = section->objfile->obfd;
3109 asection *bfd_section = section->the_bfd_section;
fbd35540 3110
714835d5
UW
3111 return pc + bfd_section_lma (abfd, bfd_section)
3112 - bfd_section_vma (abfd, bfd_section);
3113 }
c906108c
SS
3114
3115 return pc;
3116}
3117
3118/* Function: overlay_mapped_address (PC, SECTION)
3119 Returns the address corresponding to PC in the mapped (runtime) range.
3120 May be the same as PC. */
3121
3122CORE_ADDR
714835d5 3123overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3124{
714835d5
UW
3125 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3126 {
3127 bfd *abfd = section->objfile->obfd;
3128 asection *bfd_section = section->the_bfd_section;
fbd35540 3129
714835d5
UW
3130 return pc + bfd_section_vma (abfd, bfd_section)
3131 - bfd_section_lma (abfd, bfd_section);
3132 }
c906108c
SS
3133
3134 return pc;
3135}
3136
3137
5417f6dc 3138/* Function: symbol_overlayed_address
c906108c
SS
3139 Return one of two addresses (relative to the VMA or to the LMA),
3140 depending on whether the section is mapped or not. */
3141
c5aa993b 3142CORE_ADDR
714835d5 3143symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3144{
3145 if (overlay_debugging)
3146 {
c378eb4e 3147 /* If the symbol has no section, just return its regular address. */
c906108c
SS
3148 if (section == 0)
3149 return address;
c378eb4e
MS
3150 /* If the symbol's section is not an overlay, just return its
3151 address. */
c906108c
SS
3152 if (!section_is_overlay (section))
3153 return address;
c378eb4e 3154 /* If the symbol's section is mapped, just return its address. */
c906108c
SS
3155 if (section_is_mapped (section))
3156 return address;
3157 /*
3158 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3159 * then return its LOADED address rather than its vma address!!
3160 */
3161 return overlay_unmapped_address (address, section);
3162 }
3163 return address;
3164}
3165
5417f6dc 3166/* Function: find_pc_overlay (PC)
c906108c
SS
3167 Return the best-match overlay section for PC:
3168 If PC matches a mapped overlay section's VMA, return that section.
3169 Else if PC matches an unmapped section's VMA, return that section.
3170 Else if PC matches an unmapped section's LMA, return that section. */
3171
714835d5 3172struct obj_section *
fba45db2 3173find_pc_overlay (CORE_ADDR pc)
c906108c 3174{
c5aa993b 3175 struct objfile *objfile;
c906108c
SS
3176 struct obj_section *osect, *best_match = NULL;
3177
3178 if (overlay_debugging)
3179 ALL_OBJSECTIONS (objfile, osect)
714835d5 3180 if (section_is_overlay (osect))
c5aa993b 3181 {
714835d5 3182 if (pc_in_mapped_range (pc, osect))
c5aa993b 3183 {
714835d5
UW
3184 if (section_is_mapped (osect))
3185 return osect;
c5aa993b
JM
3186 else
3187 best_match = osect;
3188 }
714835d5 3189 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3190 best_match = osect;
3191 }
714835d5 3192 return best_match;
c906108c
SS
3193}
3194
3195/* Function: find_pc_mapped_section (PC)
5417f6dc 3196 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3197 currently marked as MAPPED, return that section. Else return NULL. */
3198
714835d5 3199struct obj_section *
fba45db2 3200find_pc_mapped_section (CORE_ADDR pc)
c906108c 3201{
c5aa993b 3202 struct objfile *objfile;
c906108c
SS
3203 struct obj_section *osect;
3204
3205 if (overlay_debugging)
3206 ALL_OBJSECTIONS (objfile, osect)
714835d5
UW
3207 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3208 return osect;
c906108c
SS
3209
3210 return NULL;
3211}
3212
3213/* Function: list_overlays_command
c378eb4e 3214 Print a list of mapped sections and their PC ranges. */
c906108c
SS
3215
3216void
fba45db2 3217list_overlays_command (char *args, int from_tty)
c906108c 3218{
c5aa993b
JM
3219 int nmapped = 0;
3220 struct objfile *objfile;
c906108c
SS
3221 struct obj_section *osect;
3222
3223 if (overlay_debugging)
3224 ALL_OBJSECTIONS (objfile, osect)
714835d5 3225 if (section_is_mapped (osect))
c5aa993b 3226 {
5af949e3 3227 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c5aa993b
JM
3228 const char *name;
3229 bfd_vma lma, vma;
3230 int size;
3231
3232 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3233 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3234 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3235 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3236
3237 printf_filtered ("Section %s, loaded at ", name);
5af949e3 3238 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
c5aa993b 3239 puts_filtered (" - ");
5af949e3 3240 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
c5aa993b 3241 printf_filtered (", mapped at ");
5af949e3 3242 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
c5aa993b 3243 puts_filtered (" - ");
5af949e3 3244 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
c5aa993b
JM
3245 puts_filtered ("\n");
3246
3247 nmapped++;
3248 }
c906108c 3249 if (nmapped == 0)
a3f17187 3250 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3251}
3252
3253/* Function: map_overlay_command
3254 Mark the named section as mapped (ie. residing at its VMA address). */
3255
3256void
fba45db2 3257map_overlay_command (char *args, int from_tty)
c906108c 3258{
c5aa993b
JM
3259 struct objfile *objfile, *objfile2;
3260 struct obj_section *sec, *sec2;
c906108c
SS
3261
3262 if (!overlay_debugging)
3e43a32a
MS
3263 error (_("Overlay debugging not enabled. Use "
3264 "either the 'overlay auto' or\n"
3265 "the 'overlay manual' command."));
c906108c
SS
3266
3267 if (args == 0 || *args == 0)
8a3fe4f8 3268 error (_("Argument required: name of an overlay section"));
c906108c 3269
c378eb4e 3270 /* First, find a section matching the user supplied argument. */
c906108c
SS
3271 ALL_OBJSECTIONS (objfile, sec)
3272 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b 3273 {
c378eb4e 3274 /* Now, check to see if the section is an overlay. */
714835d5 3275 if (!section_is_overlay (sec))
c5aa993b
JM
3276 continue; /* not an overlay section */
3277
c378eb4e 3278 /* Mark the overlay as "mapped". */
c5aa993b
JM
3279 sec->ovly_mapped = 1;
3280
3281 /* Next, make a pass and unmap any sections that are
3282 overlapped by this new section: */
3283 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3284 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3285 {
3286 if (info_verbose)
a3f17187 3287 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3288 bfd_section_name (objfile->obfd,
3289 sec2->the_bfd_section));
c378eb4e 3290 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
c5aa993b
JM
3291 }
3292 return;
3293 }
8a3fe4f8 3294 error (_("No overlay section called %s"), args);
c906108c
SS
3295}
3296
3297/* Function: unmap_overlay_command
5417f6dc 3298 Mark the overlay section as unmapped
c906108c
SS
3299 (ie. resident in its LMA address range, rather than the VMA range). */
3300
3301void
fba45db2 3302unmap_overlay_command (char *args, int from_tty)
c906108c 3303{
c5aa993b 3304 struct objfile *objfile;
c906108c
SS
3305 struct obj_section *sec;
3306
3307 if (!overlay_debugging)
3e43a32a
MS
3308 error (_("Overlay debugging not enabled. "
3309 "Use either the 'overlay auto' or\n"
3310 "the 'overlay manual' command."));
c906108c
SS
3311
3312 if (args == 0 || *args == 0)
8a3fe4f8 3313 error (_("Argument required: name of an overlay section"));
c906108c 3314
c378eb4e 3315 /* First, find a section matching the user supplied argument. */
c906108c
SS
3316 ALL_OBJSECTIONS (objfile, sec)
3317 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3318 {
3319 if (!sec->ovly_mapped)
8a3fe4f8 3320 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3321 sec->ovly_mapped = 0;
3322 return;
3323 }
8a3fe4f8 3324 error (_("No overlay section called %s"), args);
c906108c
SS
3325}
3326
3327/* Function: overlay_auto_command
3328 A utility command to turn on overlay debugging.
c378eb4e 3329 Possibly this should be done via a set/show command. */
c906108c
SS
3330
3331static void
fba45db2 3332overlay_auto_command (char *args, int from_tty)
c906108c 3333{
d874f1e2 3334 overlay_debugging = ovly_auto;
1900040c 3335 enable_overlay_breakpoints ();
c906108c 3336 if (info_verbose)
a3f17187 3337 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3338}
3339
3340/* Function: overlay_manual_command
3341 A utility command to turn on overlay debugging.
c378eb4e 3342 Possibly this should be done via a set/show command. */
c906108c
SS
3343
3344static void
fba45db2 3345overlay_manual_command (char *args, int from_tty)
c906108c 3346{
d874f1e2 3347 overlay_debugging = ovly_on;
1900040c 3348 disable_overlay_breakpoints ();
c906108c 3349 if (info_verbose)
a3f17187 3350 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3351}
3352
3353/* Function: overlay_off_command
3354 A utility command to turn on overlay debugging.
c378eb4e 3355 Possibly this should be done via a set/show command. */
c906108c
SS
3356
3357static void
fba45db2 3358overlay_off_command (char *args, int from_tty)
c906108c 3359{
d874f1e2 3360 overlay_debugging = ovly_off;
1900040c 3361 disable_overlay_breakpoints ();
c906108c 3362 if (info_verbose)
a3f17187 3363 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3364}
3365
3366static void
fba45db2 3367overlay_load_command (char *args, int from_tty)
c906108c 3368{
e17c207e
UW
3369 struct gdbarch *gdbarch = get_current_arch ();
3370
3371 if (gdbarch_overlay_update_p (gdbarch))
3372 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3373 else
8a3fe4f8 3374 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3375}
3376
3377/* Function: overlay_command
c378eb4e 3378 A place-holder for a mis-typed command. */
c906108c 3379
c378eb4e 3380/* Command list chain containing all defined "overlay" subcommands. */
c906108c
SS
3381struct cmd_list_element *overlaylist;
3382
3383static void
fba45db2 3384overlay_command (char *args, int from_tty)
c906108c 3385{
c5aa993b 3386 printf_unfiltered
c906108c
SS
3387 ("\"overlay\" must be followed by the name of an overlay command.\n");
3388 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3389}
3390
3391
3392/* Target Overlays for the "Simplest" overlay manager:
3393
5417f6dc
RM
3394 This is GDB's default target overlay layer. It works with the
3395 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3396 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3397 so targets that use a different runtime overlay manager can
c906108c
SS
3398 substitute their own overlay_update function and take over the
3399 function pointer.
3400
3401 The overlay_update function pokes around in the target's data structures
3402 to see what overlays are mapped, and updates GDB's overlay mapping with
3403 this information.
3404
3405 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3406 unsigned _novlys; /# number of overlay sections #/
3407 unsigned _ovly_table[_novlys][4] = {
3408 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3409 {..., ..., ..., ...},
3410 }
3411 unsigned _novly_regions; /# number of overlay regions #/
3412 unsigned _ovly_region_table[_novly_regions][3] = {
3413 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3414 {..., ..., ...},
3415 }
c906108c
SS
3416 These functions will attempt to update GDB's mappedness state in the
3417 symbol section table, based on the target's mappedness state.
3418
3419 To do this, we keep a cached copy of the target's _ovly_table, and
3420 attempt to detect when the cached copy is invalidated. The main
3421 entry point is "simple_overlay_update(SECT), which looks up SECT in
3422 the cached table and re-reads only the entry for that section from
c378eb4e 3423 the target (whenever possible). */
c906108c
SS
3424
3425/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3426static unsigned (*cache_ovly_table)[4] = 0;
c5aa993b 3427static unsigned cache_novlys = 0;
c906108c 3428static CORE_ADDR cache_ovly_table_base = 0;
c5aa993b
JM
3429enum ovly_index
3430 {
3431 VMA, SIZE, LMA, MAPPED
3432 };
c906108c 3433
c378eb4e 3434/* Throw away the cached copy of _ovly_table. */
c906108c 3435static void
fba45db2 3436simple_free_overlay_table (void)
c906108c
SS
3437{
3438 if (cache_ovly_table)
b8c9b27d 3439 xfree (cache_ovly_table);
c5aa993b 3440 cache_novlys = 0;
c906108c
SS
3441 cache_ovly_table = NULL;
3442 cache_ovly_table_base = 0;
3443}
3444
9216df95 3445/* Read an array of ints of size SIZE from the target into a local buffer.
c378eb4e 3446 Convert to host order. int LEN is number of ints. */
c906108c 3447static void
9216df95 3448read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3449 int len, int size, enum bfd_endian byte_order)
c906108c 3450{
c378eb4e 3451 /* FIXME (alloca): Not safe if array is very large. */
9216df95 3452 gdb_byte *buf = alloca (len * size);
c5aa993b 3453 int i;
c906108c 3454
9216df95 3455 read_memory (memaddr, buf, len * size);
c906108c 3456 for (i = 0; i < len; i++)
e17a4113 3457 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3458}
3459
3460/* Find and grab a copy of the target _ovly_table
c378eb4e 3461 (and _novlys, which is needed for the table's size). */
c5aa993b 3462static int
fba45db2 3463simple_read_overlay_table (void)
c906108c 3464{
0d43edd1 3465 struct minimal_symbol *novlys_msym, *ovly_table_msym;
9216df95
UW
3466 struct gdbarch *gdbarch;
3467 int word_size;
e17a4113 3468 enum bfd_endian byte_order;
c906108c
SS
3469
3470 simple_free_overlay_table ();
9b27852e 3471 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3472 if (! novlys_msym)
c906108c 3473 {
8a3fe4f8 3474 error (_("Error reading inferior's overlay table: "
0d43edd1 3475 "couldn't find `_novlys' variable\n"
8a3fe4f8 3476 "in inferior. Use `overlay manual' mode."));
0d43edd1 3477 return 0;
c906108c 3478 }
0d43edd1 3479
9b27852e 3480 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3481 if (! ovly_table_msym)
3482 {
8a3fe4f8 3483 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3484 "`_ovly_table' array\n"
8a3fe4f8 3485 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3486 return 0;
3487 }
3488
9216df95
UW
3489 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3490 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3491 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3492
e17a4113
UW
3493 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3494 4, byte_order);
0d43edd1
JB
3495 cache_ovly_table
3496 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3497 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3498 read_target_long_array (cache_ovly_table_base,
777ea8f1 3499 (unsigned int *) cache_ovly_table,
e17a4113 3500 cache_novlys * 4, word_size, byte_order);
0d43edd1 3501
c5aa993b 3502 return 1; /* SUCCESS */
c906108c
SS
3503}
3504
5417f6dc 3505/* Function: simple_overlay_update_1
c906108c
SS
3506 A helper function for simple_overlay_update. Assuming a cached copy
3507 of _ovly_table exists, look through it to find an entry whose vma,
3508 lma and size match those of OSECT. Re-read the entry and make sure
3509 it still matches OSECT (else the table may no longer be valid).
3510 Set OSECT's mapped state to match the entry. Return: 1 for
3511 success, 0 for failure. */
3512
3513static int
fba45db2 3514simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3515{
3516 int i, size;
fbd35540
MS
3517 bfd *obfd = osect->objfile->obfd;
3518 asection *bsect = osect->the_bfd_section;
9216df95
UW
3519 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3520 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3521 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3522
2c500098 3523 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3524 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3525 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3526 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3527 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c 3528 {
9216df95
UW
3529 read_target_long_array (cache_ovly_table_base + i * word_size,
3530 (unsigned int *) cache_ovly_table[i],
e17a4113 3531 4, word_size, byte_order);
fbd35540
MS
3532 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3533 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3534 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3535 {
3536 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3537 return 1;
3538 }
c378eb4e 3539 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3540 return 0;
3541 }
3542 return 0;
3543}
3544
3545/* Function: simple_overlay_update
5417f6dc
RM
3546 If OSECT is NULL, then update all sections' mapped state
3547 (after re-reading the entire target _ovly_table).
3548 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3549 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3550 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3551 re-read the entire cache, and go ahead and update all sections. */
3552
1c772458 3553void
fba45db2 3554simple_overlay_update (struct obj_section *osect)
c906108c 3555{
c5aa993b 3556 struct objfile *objfile;
c906108c 3557
c378eb4e 3558 /* Were we given an osect to look up? NULL means do all of them. */
c906108c 3559 if (osect)
c378eb4e 3560 /* Have we got a cached copy of the target's overlay table? */
c906108c 3561 if (cache_ovly_table != NULL)
9cc89665
MS
3562 {
3563 /* Does its cached location match what's currently in the
3564 symtab? */
3565 struct minimal_symbol *minsym
3566 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3567
3568 if (minsym == NULL)
3569 error (_("Error reading inferior's overlay table: couldn't "
3570 "find `_ovly_table' array\n"
3571 "in inferior. Use `overlay manual' mode."));
3572
3573 if (cache_ovly_table_base == SYMBOL_VALUE_ADDRESS (minsym))
3574 /* Then go ahead and try to look up this single section in
3575 the cache. */
3576 if (simple_overlay_update_1 (osect))
3577 /* Found it! We're done. */
3578 return;
3579 }
c906108c
SS
3580
3581 /* Cached table no good: need to read the entire table anew.
3582 Or else we want all the sections, in which case it's actually
3583 more efficient to read the whole table in one block anyway. */
3584
0d43edd1
JB
3585 if (! simple_read_overlay_table ())
3586 return;
3587
c378eb4e 3588 /* Now may as well update all sections, even if only one was requested. */
c906108c 3589 ALL_OBJSECTIONS (objfile, osect)
714835d5 3590 if (section_is_overlay (osect))
c5aa993b
JM
3591 {
3592 int i, size;
fbd35540
MS
3593 bfd *obfd = osect->objfile->obfd;
3594 asection *bsect = osect->the_bfd_section;
c5aa993b 3595
2c500098 3596 size = bfd_get_section_size (bsect);
c5aa993b 3597 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3598 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3599 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3600 /* && cache_ovly_table[i][SIZE] == size */ )
c378eb4e 3601 { /* obj_section matches i'th entry in ovly_table. */
c5aa993b 3602 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
c378eb4e 3603 break; /* finished with inner for loop: break out. */
c5aa993b
JM
3604 }
3605 }
c906108c
SS
3606}
3607
086df311
DJ
3608/* Set the output sections and output offsets for section SECTP in
3609 ABFD. The relocation code in BFD will read these offsets, so we
3610 need to be sure they're initialized. We map each section to itself,
3611 with no offset; this means that SECTP->vma will be honored. */
3612
3613static void
3614symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3615{
3616 sectp->output_section = sectp;
3617 sectp->output_offset = 0;
3618}
3619
ac8035ab
TG
3620/* Default implementation for sym_relocate. */
3621
3622
3623bfd_byte *
3624default_symfile_relocate (struct objfile *objfile, asection *sectp,
3625 bfd_byte *buf)
3626{
3019eac3
DE
3627 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3628 DWO file. */
3629 bfd *abfd = sectp->owner;
ac8035ab
TG
3630
3631 /* We're only interested in sections with relocation
3632 information. */
3633 if ((sectp->flags & SEC_RELOC) == 0)
3634 return NULL;
3635
3636 /* We will handle section offsets properly elsewhere, so relocate as if
3637 all sections begin at 0. */
3638 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3639
3640 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3641}
3642
086df311
DJ
3643/* Relocate the contents of a debug section SECTP in ABFD. The
3644 contents are stored in BUF if it is non-NULL, or returned in a
3645 malloc'd buffer otherwise.
3646
3647 For some platforms and debug info formats, shared libraries contain
3648 relocations against the debug sections (particularly for DWARF-2;
3649 one affected platform is PowerPC GNU/Linux, although it depends on
3650 the version of the linker in use). Also, ELF object files naturally
3651 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3652 the relocations in order to get the locations of symbols correct.
3653 Another example that may require relocation processing, is the
3654 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3655 debug section. */
086df311
DJ
3656
3657bfd_byte *
ac8035ab
TG
3658symfile_relocate_debug_section (struct objfile *objfile,
3659 asection *sectp, bfd_byte *buf)
086df311 3660{
ac8035ab 3661 gdb_assert (objfile->sf->sym_relocate);
086df311 3662
ac8035ab 3663 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3664}
c906108c 3665
31d99776
DJ
3666struct symfile_segment_data *
3667get_symfile_segment_data (bfd *abfd)
3668{
00b5771c 3669 const struct sym_fns *sf = find_sym_fns (abfd);
31d99776
DJ
3670
3671 if (sf == NULL)
3672 return NULL;
3673
3674 return sf->sym_segments (abfd);
3675}
3676
3677void
3678free_symfile_segment_data (struct symfile_segment_data *data)
3679{
3680 xfree (data->segment_bases);
3681 xfree (data->segment_sizes);
3682 xfree (data->segment_info);
3683 xfree (data);
3684}
3685
28c32713
JB
3686
3687/* Given:
3688 - DATA, containing segment addresses from the object file ABFD, and
3689 the mapping from ABFD's sections onto the segments that own them,
3690 and
3691 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3692 segment addresses reported by the target,
3693 store the appropriate offsets for each section in OFFSETS.
3694
3695 If there are fewer entries in SEGMENT_BASES than there are segments
3696 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3697
8d385431
DJ
3698 If there are more entries, then ignore the extra. The target may
3699 not be able to distinguish between an empty data segment and a
3700 missing data segment; a missing text segment is less plausible. */
31d99776
DJ
3701int
3702symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3703 struct section_offsets *offsets,
3704 int num_segment_bases,
3705 const CORE_ADDR *segment_bases)
3706{
3707 int i;
3708 asection *sect;
3709
28c32713
JB
3710 /* It doesn't make sense to call this function unless you have some
3711 segment base addresses. */
202b96c1 3712 gdb_assert (num_segment_bases > 0);
28c32713 3713
31d99776
DJ
3714 /* If we do not have segment mappings for the object file, we
3715 can not relocate it by segments. */
3716 gdb_assert (data != NULL);
3717 gdb_assert (data->num_segments > 0);
3718
31d99776
DJ
3719 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3720 {
31d99776
DJ
3721 int which = data->segment_info[i];
3722
28c32713
JB
3723 gdb_assert (0 <= which && which <= data->num_segments);
3724
3725 /* Don't bother computing offsets for sections that aren't
3726 loaded as part of any segment. */
3727 if (! which)
3728 continue;
3729
3730 /* Use the last SEGMENT_BASES entry as the address of any extra
3731 segments mentioned in DATA->segment_info. */
31d99776 3732 if (which > num_segment_bases)
28c32713 3733 which = num_segment_bases;
31d99776 3734
28c32713
JB
3735 offsets->offsets[i] = (segment_bases[which - 1]
3736 - data->segment_bases[which - 1]);
31d99776
DJ
3737 }
3738
3739 return 1;
3740}
3741
3742static void
3743symfile_find_segment_sections (struct objfile *objfile)
3744{
3745 bfd *abfd = objfile->obfd;
3746 int i;
3747 asection *sect;
3748 struct symfile_segment_data *data;
3749
3750 data = get_symfile_segment_data (objfile->obfd);
3751 if (data == NULL)
3752 return;
3753
3754 if (data->num_segments != 1 && data->num_segments != 2)
3755 {
3756 free_symfile_segment_data (data);
3757 return;
3758 }
3759
3760 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3761 {
31d99776
DJ
3762 int which = data->segment_info[i];
3763
3764 if (which == 1)
3765 {
3766 if (objfile->sect_index_text == -1)
3767 objfile->sect_index_text = sect->index;
3768
3769 if (objfile->sect_index_rodata == -1)
3770 objfile->sect_index_rodata = sect->index;
3771 }
3772 else if (which == 2)
3773 {
3774 if (objfile->sect_index_data == -1)
3775 objfile->sect_index_data = sect->index;
3776
3777 if (objfile->sect_index_bss == -1)
3778 objfile->sect_index_bss = sect->index;
3779 }
3780 }
3781
3782 free_symfile_segment_data (data);
3783}
3784
c906108c 3785void
fba45db2 3786_initialize_symfile (void)
c906108c
SS
3787{
3788 struct cmd_list_element *c;
c5aa993b 3789
1a966eab
AC
3790 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3791Load symbol table from executable file FILE.\n\
c906108c 3792The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3793to execute."), &cmdlist);
5ba2abeb 3794 set_cmd_completer (c, filename_completer);
c906108c 3795
1a966eab 3796 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3797Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3e43a32a
MS
3798Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3799 ...]\nADDR is the starting address of the file's text.\n\
db162d44
EZ
3800The optional arguments are section-name section-address pairs and\n\
3801should be specified if the data and bss segments are not contiguous\n\
1a966eab 3802with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3803 &cmdlist);
5ba2abeb 3804 set_cmd_completer (c, filename_completer);
c906108c 3805
1a966eab
AC
3806 c = add_cmd ("load", class_files, load_command, _("\
3807Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
3808for access from GDB.\n\
3809A load OFFSET may also be given."), &cmdlist);
5ba2abeb 3810 set_cmd_completer (c, filename_completer);
c906108c 3811
c5aa993b 3812 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3813 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3814 "overlay ", 0, &cmdlist);
3815
3816 add_com_alias ("ovly", "overlay", class_alias, 1);
3817 add_com_alias ("ov", "overlay", class_alias, 1);
3818
c5aa993b 3819 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3820 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3821
c5aa993b 3822 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3823 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3824
c5aa993b 3825 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3826 _("List mappings of overlay sections."), &overlaylist);
c906108c 3827
c5aa993b 3828 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3829 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3830 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3831 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3832 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3833 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3834 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3835 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3836
3837 /* Filename extension to source language lookup table: */
3838 init_filename_language_table ();
26c41df3
AC
3839 add_setshow_string_noescape_cmd ("extension-language", class_files,
3840 &ext_args, _("\
3841Set mapping between filename extension and source language."), _("\
3842Show mapping between filename extension and source language."), _("\
3843Usage: set extension-language .foo bar"),
3844 set_ext_lang_command,
920d2a44 3845 show_ext_args,
26c41df3 3846 &setlist, &showlist);
c906108c 3847
c5aa993b 3848 add_info ("extensions", info_ext_lang_command,
1bedd215 3849 _("All filename extensions associated with a source language."));
917317f4 3850
525226b5
AC
3851 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3852 &debug_file_directory, _("\
24ddea62
JK
3853Set the directories where separate debug symbols are searched for."), _("\
3854Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
3855Separate debug symbols are first searched for in the same\n\
3856directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3857and lastly at the path of the directory of the binary with\n\
24ddea62 3858each global debug-file-directory component prepended."),
525226b5 3859 NULL,
920d2a44 3860 show_debug_file_directory,
525226b5 3861 &setlist, &showlist);
c906108c 3862}
This page took 1.740195 seconds and 4 git commands to generate.