gdb: Remove duplicate declaration of global innermost_block
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
e2882c85 3 Copyright (C) 1990-2018 Free Software Foundation, Inc.
8926118c 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
086df311 24#include "bfdlink.h"
c906108c
SS
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "target.h"
30#include "value.h"
31#include "symfile.h"
32#include "objfiles.h"
0378c332 33#include "source.h"
c906108c
SS
34#include "gdbcmd.h"
35#include "breakpoint.h"
36#include "language.h"
37#include "complaints.h"
38#include "demangle.h"
fb14de7b
UW
39#include "inferior.h"
40#include "regcache.h"
5b5d99cf 41#include "filenames.h" /* for DOSish file names */
c906108c 42#include "gdb-stabs.h"
04ea0df1 43#include "gdb_obstack.h"
d75b5104 44#include "completer.h"
af5f3db6 45#include "bcache.h"
2de7ced7 46#include "hashtab.h"
dbda9972 47#include "readline/readline.h"
fe898f56 48#include "block.h"
ea53e89f 49#include "observer.h"
c1bd25fd 50#include "exec.h"
9bdcbae7 51#include "parser-defs.h"
8756216b 52#include "varobj.h"
77069918 53#include "elf-bfd.h"
e85a822c 54#include "solib.h"
f1838a98 55#include "remote.h"
1bfeeb0f 56#include "stack.h"
cbb099e8 57#include "gdb_bfd.h"
529480d0 58#include "cli/cli-utils.h"
0efef640 59#include "common/byte-vector.h"
32fa66eb 60#include "selftest.h"
c906108c 61
c906108c
SS
62#include <sys/types.h>
63#include <fcntl.h>
53ce3c39 64#include <sys/stat.h>
c906108c 65#include <ctype.h>
dcb07cfa 66#include <chrono>
c906108c 67
ccefe4c4 68#include "psymtab.h"
c906108c 69
3e43a32a
MS
70int (*deprecated_ui_load_progress_hook) (const char *section,
71 unsigned long num);
9a4105ab 72void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
73 unsigned long section_sent,
74 unsigned long section_size,
75 unsigned long total_sent,
c2d11a7d 76 unsigned long total_size);
769d7dc4
AC
77void (*deprecated_pre_add_symbol_hook) (const char *);
78void (*deprecated_post_add_symbol_hook) (void);
c906108c 79
74b7792f
AC
80static void clear_symtab_users_cleanup (void *ignore);
81
c378eb4e
MS
82/* Global variables owned by this file. */
83int readnow_symbol_files; /* Read full symbols immediately. */
97cbe998 84int readnever_symbol_files; /* Never read full symbols. */
c906108c 85
c378eb4e 86/* Functions this file defines. */
c906108c 87
ecf45d2c 88static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
b15cc25c 89 objfile_flags flags);
d7db6da9 90
00b5771c 91static const struct sym_fns *find_sym_fns (bfd *);
c906108c 92
a14ed312 93static void overlay_invalidate_all (void);
c906108c 94
a14ed312 95static void simple_free_overlay_table (void);
c906108c 96
e17a4113
UW
97static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
98 enum bfd_endian);
c906108c 99
a14ed312 100static int simple_read_overlay_table (void);
c906108c 101
a14ed312 102static int simple_overlay_update_1 (struct obj_section *);
c906108c 103
31d99776
DJ
104static void symfile_find_segment_sections (struct objfile *objfile);
105
c906108c
SS
106/* List of all available sym_fns. On gdb startup, each object file reader
107 calls add_symtab_fns() to register information on each format it is
c378eb4e 108 prepared to read. */
c906108c 109
905014d7 110struct registered_sym_fns
c256e171 111{
905014d7
SM
112 registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_)
113 : sym_flavour (sym_flavour_), sym_fns (sym_fns_)
114 {}
115
c256e171
DE
116 /* BFD flavour that we handle. */
117 enum bfd_flavour sym_flavour;
118
119 /* The "vtable" of symbol functions. */
120 const struct sym_fns *sym_fns;
905014d7 121};
c256e171 122
905014d7 123static std::vector<registered_sym_fns> symtab_fns;
c906108c 124
770e7fc7
DE
125/* Values for "set print symbol-loading". */
126
127const char print_symbol_loading_off[] = "off";
128const char print_symbol_loading_brief[] = "brief";
129const char print_symbol_loading_full[] = "full";
130static const char *print_symbol_loading_enums[] =
131{
132 print_symbol_loading_off,
133 print_symbol_loading_brief,
134 print_symbol_loading_full,
135 NULL
136};
137static const char *print_symbol_loading = print_symbol_loading_full;
138
b7209cb4
FF
139/* If non-zero, shared library symbols will be added automatically
140 when the inferior is created, new libraries are loaded, or when
141 attaching to the inferior. This is almost always what users will
142 want to have happen; but for very large programs, the startup time
143 will be excessive, and so if this is a problem, the user can clear
144 this flag and then add the shared library symbols as needed. Note
145 that there is a potential for confusion, since if the shared
c906108c 146 library symbols are not loaded, commands like "info fun" will *not*
0d14a781 147 report all the functions that are actually present. */
c906108c
SS
148
149int auto_solib_add = 1;
c906108c 150\f
c5aa993b 151
770e7fc7
DE
152/* Return non-zero if symbol-loading messages should be printed.
153 FROM_TTY is the standard from_tty argument to gdb commands.
154 If EXEC is non-zero the messages are for the executable.
155 Otherwise, messages are for shared libraries.
156 If FULL is non-zero then the caller is printing a detailed message.
157 E.g., the message includes the shared library name.
158 Otherwise, the caller is printing a brief "summary" message. */
159
160int
161print_symbol_loading_p (int from_tty, int exec, int full)
162{
163 if (!from_tty && !info_verbose)
164 return 0;
165
166 if (exec)
167 {
168 /* We don't check FULL for executables, there are few such
169 messages, therefore brief == full. */
170 return print_symbol_loading != print_symbol_loading_off;
171 }
172 if (full)
173 return print_symbol_loading == print_symbol_loading_full;
174 return print_symbol_loading == print_symbol_loading_brief;
175}
176
0d14a781 177/* True if we are reading a symbol table. */
c906108c
SS
178
179int currently_reading_symtab = 0;
180
ccefe4c4
TT
181/* Increment currently_reading_symtab and return a cleanup that can be
182 used to decrement it. */
3b7bacac 183
c83dd867 184scoped_restore_tmpl<int>
ccefe4c4 185increment_reading_symtab (void)
c906108c 186{
c83dd867
TT
187 gdb_assert (currently_reading_symtab >= 0);
188 return make_scoped_restore (&currently_reading_symtab,
189 currently_reading_symtab + 1);
c906108c
SS
190}
191
5417f6dc
RM
192/* Remember the lowest-addressed loadable section we've seen.
193 This function is called via bfd_map_over_sections.
c906108c
SS
194
195 In case of equal vmas, the section with the largest size becomes the
196 lowest-addressed loadable section.
197
198 If the vmas and sizes are equal, the last section is considered the
199 lowest-addressed loadable section. */
200
201void
4efb68b1 202find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 203{
c5aa993b 204 asection **lowest = (asection **) obj;
c906108c 205
eb73e134 206 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
207 return;
208 if (!*lowest)
209 *lowest = sect; /* First loadable section */
210 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
211 *lowest = sect; /* A lower loadable section */
212 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
213 && (bfd_section_size (abfd, (*lowest))
214 <= bfd_section_size (abfd, sect)))
215 *lowest = sect;
216}
217
d76488d8
TT
218/* Create a new section_addr_info, with room for NUM_SECTIONS. The
219 new object's 'num_sections' field is set to 0; it must be updated
220 by the caller. */
a39a16c4
MM
221
222struct section_addr_info *
223alloc_section_addr_info (size_t num_sections)
224{
225 struct section_addr_info *sap;
226 size_t size;
227
228 size = (sizeof (struct section_addr_info)
229 + sizeof (struct other_sections) * (num_sections - 1));
230 sap = (struct section_addr_info *) xmalloc (size);
231 memset (sap, 0, size);
a39a16c4
MM
232
233 return sap;
234}
62557bbc
KB
235
236/* Build (allocate and populate) a section_addr_info struct from
c378eb4e 237 an existing section table. */
62557bbc
KB
238
239extern struct section_addr_info *
0542c86d
PA
240build_section_addr_info_from_section_table (const struct target_section *start,
241 const struct target_section *end)
62557bbc
KB
242{
243 struct section_addr_info *sap;
0542c86d 244 const struct target_section *stp;
62557bbc
KB
245 int oidx;
246
a39a16c4 247 sap = alloc_section_addr_info (end - start);
62557bbc
KB
248
249 for (stp = start, oidx = 0; stp != end; stp++)
250 {
2b2848e2
DE
251 struct bfd_section *asect = stp->the_bfd_section;
252 bfd *abfd = asect->owner;
253
254 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 255 && oidx < end - start)
62557bbc
KB
256 {
257 sap->other[oidx].addr = stp->addr;
2b2848e2
DE
258 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
259 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
62557bbc
KB
260 oidx++;
261 }
262 }
263
d76488d8
TT
264 sap->num_sections = oidx;
265
62557bbc
KB
266 return sap;
267}
268
82ccf5a5 269/* Create a section_addr_info from section offsets in ABFD. */
089b4803 270
82ccf5a5
JK
271static struct section_addr_info *
272build_section_addr_info_from_bfd (bfd *abfd)
089b4803
TG
273{
274 struct section_addr_info *sap;
275 int i;
276 struct bfd_section *sec;
277
82ccf5a5
JK
278 sap = alloc_section_addr_info (bfd_count_sections (abfd));
279 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
280 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
012836ea 281 {
82ccf5a5
JK
282 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
283 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
65cf3563 284 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
012836ea
JK
285 i++;
286 }
d76488d8
TT
287
288 sap->num_sections = i;
289
089b4803
TG
290 return sap;
291}
292
82ccf5a5
JK
293/* Create a section_addr_info from section offsets in OBJFILE. */
294
295struct section_addr_info *
296build_section_addr_info_from_objfile (const struct objfile *objfile)
297{
298 struct section_addr_info *sap;
299 int i;
300
301 /* Before reread_symbols gets rewritten it is not safe to call:
302 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
303 */
304 sap = build_section_addr_info_from_bfd (objfile->obfd);
d76488d8 305 for (i = 0; i < sap->num_sections; i++)
82ccf5a5
JK
306 {
307 int sectindex = sap->other[i].sectindex;
308
309 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
310 }
311 return sap;
312}
62557bbc 313
c378eb4e 314/* Free all memory allocated by build_section_addr_info_from_section_table. */
62557bbc
KB
315
316extern void
317free_section_addr_info (struct section_addr_info *sap)
318{
319 int idx;
320
a39a16c4 321 for (idx = 0; idx < sap->num_sections; idx++)
d76488d8 322 xfree (sap->other[idx].name);
b8c9b27d 323 xfree (sap);
62557bbc
KB
324}
325
e8289572 326/* Initialize OBJFILE's sect_index_* members. */
3b7bacac 327
e8289572
JB
328static void
329init_objfile_sect_indices (struct objfile *objfile)
c906108c 330{
e8289572 331 asection *sect;
c906108c 332 int i;
5417f6dc 333
b8fbeb18 334 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 335 if (sect)
b8fbeb18
EZ
336 objfile->sect_index_text = sect->index;
337
338 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 339 if (sect)
b8fbeb18
EZ
340 objfile->sect_index_data = sect->index;
341
342 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 343 if (sect)
b8fbeb18
EZ
344 objfile->sect_index_bss = sect->index;
345
346 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 347 if (sect)
b8fbeb18
EZ
348 objfile->sect_index_rodata = sect->index;
349
bbcd32ad
FF
350 /* This is where things get really weird... We MUST have valid
351 indices for the various sect_index_* members or gdb will abort.
352 So if for example, there is no ".text" section, we have to
31d99776
DJ
353 accomodate that. First, check for a file with the standard
354 one or two segments. */
355
356 symfile_find_segment_sections (objfile);
357
358 /* Except when explicitly adding symbol files at some address,
359 section_offsets contains nothing but zeros, so it doesn't matter
360 which slot in section_offsets the individual sect_index_* members
361 index into. So if they are all zero, it is safe to just point
362 all the currently uninitialized indices to the first slot. But
363 beware: if this is the main executable, it may be relocated
364 later, e.g. by the remote qOffsets packet, and then this will
365 be wrong! That's why we try segments first. */
bbcd32ad
FF
366
367 for (i = 0; i < objfile->num_sections; i++)
368 {
369 if (ANOFFSET (objfile->section_offsets, i) != 0)
370 {
371 break;
372 }
373 }
374 if (i == objfile->num_sections)
375 {
376 if (objfile->sect_index_text == -1)
377 objfile->sect_index_text = 0;
378 if (objfile->sect_index_data == -1)
379 objfile->sect_index_data = 0;
380 if (objfile->sect_index_bss == -1)
381 objfile->sect_index_bss = 0;
382 if (objfile->sect_index_rodata == -1)
383 objfile->sect_index_rodata = 0;
384 }
b8fbeb18 385}
c906108c 386
c1bd25fd
DJ
387/* The arguments to place_section. */
388
389struct place_section_arg
390{
391 struct section_offsets *offsets;
392 CORE_ADDR lowest;
393};
394
395/* Find a unique offset to use for loadable section SECT if
396 the user did not provide an offset. */
397
2c0b251b 398static void
c1bd25fd
DJ
399place_section (bfd *abfd, asection *sect, void *obj)
400{
19ba03f4 401 struct place_section_arg *arg = (struct place_section_arg *) obj;
c1bd25fd
DJ
402 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
403 int done;
3bd72c6f 404 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 405
2711e456
DJ
406 /* We are only interested in allocated sections. */
407 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
408 return;
409
410 /* If the user specified an offset, honor it. */
65cf3563 411 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
c1bd25fd
DJ
412 return;
413
414 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
415 start_addr = (arg->lowest + align - 1) & -align;
416
c1bd25fd
DJ
417 do {
418 asection *cur_sec;
c1bd25fd 419
c1bd25fd
DJ
420 done = 1;
421
422 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
423 {
424 int indx = cur_sec->index;
c1bd25fd
DJ
425
426 /* We don't need to compare against ourself. */
427 if (cur_sec == sect)
428 continue;
429
2711e456
DJ
430 /* We can only conflict with allocated sections. */
431 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
432 continue;
433
434 /* If the section offset is 0, either the section has not been placed
435 yet, or it was the lowest section placed (in which case LOWEST
436 will be past its end). */
437 if (offsets[indx] == 0)
438 continue;
439
440 /* If this section would overlap us, then we must move up. */
441 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
442 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
443 {
444 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
445 start_addr = (start_addr + align - 1) & -align;
446 done = 0;
3bd72c6f 447 break;
c1bd25fd
DJ
448 }
449
450 /* Otherwise, we appear to be OK. So far. */
451 }
452 }
453 while (!done);
454
65cf3563 455 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
c1bd25fd 456 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 457}
e8289572 458
75242ef4
JK
459/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
460 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
461 entries. */
e8289572
JB
462
463void
75242ef4
JK
464relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
465 int num_sections,
3189cb12 466 const struct section_addr_info *addrs)
e8289572
JB
467{
468 int i;
469
75242ef4 470 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 471
c378eb4e 472 /* Now calculate offsets for section that were specified by the caller. */
d76488d8 473 for (i = 0; i < addrs->num_sections; i++)
e8289572 474 {
3189cb12 475 const struct other_sections *osp;
e8289572 476
75242ef4 477 osp = &addrs->other[i];
5488dafb 478 if (osp->sectindex == -1)
e8289572
JB
479 continue;
480
c378eb4e 481 /* Record all sections in offsets. */
e8289572 482 /* The section_offsets in the objfile are here filled in using
c378eb4e 483 the BFD index. */
75242ef4
JK
484 section_offsets->offsets[osp->sectindex] = osp->addr;
485 }
486}
487
1276c759
JK
488/* Transform section name S for a name comparison. prelink can split section
489 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
490 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
491 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
492 (`.sbss') section has invalid (increased) virtual address. */
493
494static const char *
495addr_section_name (const char *s)
496{
497 if (strcmp (s, ".dynbss") == 0)
498 return ".bss";
499 if (strcmp (s, ".sdynbss") == 0)
500 return ".sbss";
501
502 return s;
503}
504
82ccf5a5
JK
505/* qsort comparator for addrs_section_sort. Sort entries in ascending order by
506 their (name, sectindex) pair. sectindex makes the sort by name stable. */
507
508static int
509addrs_section_compar (const void *ap, const void *bp)
510{
511 const struct other_sections *a = *((struct other_sections **) ap);
512 const struct other_sections *b = *((struct other_sections **) bp);
22e048c9 513 int retval;
82ccf5a5 514
1276c759 515 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
82ccf5a5
JK
516 if (retval)
517 return retval;
518
5488dafb 519 return a->sectindex - b->sectindex;
82ccf5a5
JK
520}
521
522/* Provide sorted array of pointers to sections of ADDRS. The array is
523 terminated by NULL. Caller is responsible to call xfree for it. */
524
525static struct other_sections **
526addrs_section_sort (struct section_addr_info *addrs)
527{
528 struct other_sections **array;
529 int i;
530
531 /* `+ 1' for the NULL terminator. */
8d749320 532 array = XNEWVEC (struct other_sections *, addrs->num_sections + 1);
d76488d8 533 for (i = 0; i < addrs->num_sections; i++)
82ccf5a5
JK
534 array[i] = &addrs->other[i];
535 array[i] = NULL;
536
537 qsort (array, i, sizeof (*array), addrs_section_compar);
538
539 return array;
540}
541
75242ef4 542/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
543 also SECTINDEXes specific to ABFD there. This function can be used to
544 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
545
546void
547addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
548{
549 asection *lower_sect;
75242ef4
JK
550 CORE_ADDR lower_offset;
551 int i;
82ccf5a5
JK
552 struct cleanup *my_cleanup;
553 struct section_addr_info *abfd_addrs;
554 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
555 struct other_sections **addrs_to_abfd_addrs;
75242ef4
JK
556
557 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
558 continguous sections. */
559 lower_sect = NULL;
560 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
561 if (lower_sect == NULL)
562 {
563 warning (_("no loadable sections found in added symbol-file %s"),
564 bfd_get_filename (abfd));
565 lower_offset = 0;
e8289572 566 }
75242ef4
JK
567 else
568 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
569
82ccf5a5
JK
570 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
571 in ABFD. Section names are not unique - there can be multiple sections of
572 the same name. Also the sections of the same name do not have to be
573 adjacent to each other. Some sections may be present only in one of the
574 files. Even sections present in both files do not have to be in the same
575 order.
576
577 Use stable sort by name for the sections in both files. Then linearly
578 scan both lists matching as most of the entries as possible. */
579
580 addrs_sorted = addrs_section_sort (addrs);
581 my_cleanup = make_cleanup (xfree, addrs_sorted);
582
583 abfd_addrs = build_section_addr_info_from_bfd (abfd);
584 make_cleanup_free_section_addr_info (abfd_addrs);
585 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
586 make_cleanup (xfree, abfd_addrs_sorted);
587
c378eb4e
MS
588 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
589 ABFD_ADDRS_SORTED. */
82ccf5a5 590
8d749320 591 addrs_to_abfd_addrs = XCNEWVEC (struct other_sections *, addrs->num_sections);
82ccf5a5
JK
592 make_cleanup (xfree, addrs_to_abfd_addrs);
593
594 while (*addrs_sorted)
595 {
1276c759 596 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
82ccf5a5
JK
597
598 while (*abfd_addrs_sorted
1276c759
JK
599 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
600 sect_name) < 0)
82ccf5a5
JK
601 abfd_addrs_sorted++;
602
603 if (*abfd_addrs_sorted
1276c759
JK
604 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
605 sect_name) == 0)
82ccf5a5
JK
606 {
607 int index_in_addrs;
608
609 /* Make the found item directly addressable from ADDRS. */
610 index_in_addrs = *addrs_sorted - addrs->other;
611 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
612 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
613
614 /* Never use the same ABFD entry twice. */
615 abfd_addrs_sorted++;
616 }
617
618 addrs_sorted++;
619 }
620
75242ef4
JK
621 /* Calculate offsets for the loadable sections.
622 FIXME! Sections must be in order of increasing loadable section
623 so that contiguous sections can use the lower-offset!!!
624
625 Adjust offsets if the segments are not contiguous.
626 If the section is contiguous, its offset should be set to
627 the offset of the highest loadable section lower than it
628 (the loadable section directly below it in memory).
629 this_offset = lower_offset = lower_addr - lower_orig_addr */
630
d76488d8 631 for (i = 0; i < addrs->num_sections; i++)
75242ef4 632 {
82ccf5a5 633 struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
634
635 if (sect)
75242ef4 636 {
c378eb4e 637 /* This is the index used by BFD. */
82ccf5a5 638 addrs->other[i].sectindex = sect->sectindex;
672d9c23
JK
639
640 if (addrs->other[i].addr != 0)
75242ef4 641 {
82ccf5a5 642 addrs->other[i].addr -= sect->addr;
75242ef4 643 lower_offset = addrs->other[i].addr;
75242ef4
JK
644 }
645 else
672d9c23 646 addrs->other[i].addr = lower_offset;
75242ef4
JK
647 }
648 else
672d9c23 649 {
1276c759
JK
650 /* addr_section_name transformation is not used for SECT_NAME. */
651 const char *sect_name = addrs->other[i].name;
652
b0fcb67f
JK
653 /* This section does not exist in ABFD, which is normally
654 unexpected and we want to issue a warning.
655
4d9743af
JK
656 However, the ELF prelinker does create a few sections which are
657 marked in the main executable as loadable (they are loaded in
658 memory from the DYNAMIC segment) and yet are not present in
659 separate debug info files. This is fine, and should not cause
660 a warning. Shared libraries contain just the section
661 ".gnu.liblist" but it is not marked as loadable there. There is
662 no other way to identify them than by their name as the sections
1276c759
JK
663 created by prelink have no special flags.
664
665 For the sections `.bss' and `.sbss' see addr_section_name. */
b0fcb67f
JK
666
667 if (!(strcmp (sect_name, ".gnu.liblist") == 0
4d9743af 668 || strcmp (sect_name, ".gnu.conflict") == 0
1276c759
JK
669 || (strcmp (sect_name, ".bss") == 0
670 && i > 0
671 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
672 && addrs_to_abfd_addrs[i - 1] != NULL)
673 || (strcmp (sect_name, ".sbss") == 0
674 && i > 0
675 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
676 && addrs_to_abfd_addrs[i - 1] != NULL)))
b0fcb67f
JK
677 warning (_("section %s not found in %s"), sect_name,
678 bfd_get_filename (abfd));
679
672d9c23 680 addrs->other[i].addr = 0;
5488dafb 681 addrs->other[i].sectindex = -1;
672d9c23 682 }
75242ef4 683 }
82ccf5a5
JK
684
685 do_cleanups (my_cleanup);
75242ef4
JK
686}
687
688/* Parse the user's idea of an offset for dynamic linking, into our idea
689 of how to represent it for fast symbol reading. This is the default
690 version of the sym_fns.sym_offsets function for symbol readers that
691 don't need to do anything special. It allocates a section_offsets table
692 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
693
694void
695default_symfile_offsets (struct objfile *objfile,
3189cb12 696 const struct section_addr_info *addrs)
75242ef4 697{
d445b2f6 698 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
75242ef4
JK
699 objfile->section_offsets = (struct section_offsets *)
700 obstack_alloc (&objfile->objfile_obstack,
701 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
702 relative_addr_info_to_section_offsets (objfile->section_offsets,
703 objfile->num_sections, addrs);
e8289572 704
c1bd25fd
DJ
705 /* For relocatable files, all loadable sections will start at zero.
706 The zero is meaningless, so try to pick arbitrary addresses such
707 that no loadable sections overlap. This algorithm is quadratic,
708 but the number of sections in a single object file is generally
709 small. */
710 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
711 {
712 struct place_section_arg arg;
2711e456
DJ
713 bfd *abfd = objfile->obfd;
714 asection *cur_sec;
2711e456
DJ
715
716 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
717 /* We do not expect this to happen; just skip this step if the
718 relocatable file has a section with an assigned VMA. */
719 if (bfd_section_vma (abfd, cur_sec) != 0)
720 break;
721
722 if (cur_sec == NULL)
723 {
724 CORE_ADDR *offsets = objfile->section_offsets->offsets;
725
726 /* Pick non-overlapping offsets for sections the user did not
727 place explicitly. */
728 arg.offsets = objfile->section_offsets;
729 arg.lowest = 0;
730 bfd_map_over_sections (objfile->obfd, place_section, &arg);
731
732 /* Correctly filling in the section offsets is not quite
733 enough. Relocatable files have two properties that
734 (most) shared objects do not:
735
736 - Their debug information will contain relocations. Some
737 shared libraries do also, but many do not, so this can not
738 be assumed.
739
740 - If there are multiple code sections they will be loaded
741 at different relative addresses in memory than they are
742 in the objfile, since all sections in the file will start
743 at address zero.
744
745 Because GDB has very limited ability to map from an
746 address in debug info to the correct code section,
747 it relies on adding SECT_OFF_TEXT to things which might be
748 code. If we clear all the section offsets, and set the
749 section VMAs instead, then symfile_relocate_debug_section
750 will return meaningful debug information pointing at the
751 correct sections.
752
753 GDB has too many different data structures for section
754 addresses - a bfd, objfile, and so_list all have section
755 tables, as does exec_ops. Some of these could probably
756 be eliminated. */
757
758 for (cur_sec = abfd->sections; cur_sec != NULL;
759 cur_sec = cur_sec->next)
760 {
761 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
762 continue;
763
764 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
3e43a32a
MS
765 exec_set_section_address (bfd_get_filename (abfd),
766 cur_sec->index,
30510692 767 offsets[cur_sec->index]);
2711e456
DJ
768 offsets[cur_sec->index] = 0;
769 }
770 }
c1bd25fd
DJ
771 }
772
e8289572 773 /* Remember the bfd indexes for the .text, .data, .bss and
c378eb4e 774 .rodata sections. */
e8289572
JB
775 init_objfile_sect_indices (objfile);
776}
777
31d99776
DJ
778/* Divide the file into segments, which are individual relocatable units.
779 This is the default version of the sym_fns.sym_segments function for
780 symbol readers that do not have an explicit representation of segments.
781 It assumes that object files do not have segments, and fully linked
782 files have a single segment. */
783
784struct symfile_segment_data *
785default_symfile_segments (bfd *abfd)
786{
787 int num_sections, i;
788 asection *sect;
789 struct symfile_segment_data *data;
790 CORE_ADDR low, high;
791
792 /* Relocatable files contain enough information to position each
793 loadable section independently; they should not be relocated
794 in segments. */
795 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
796 return NULL;
797
798 /* Make sure there is at least one loadable section in the file. */
799 for (sect = abfd->sections; sect != NULL; sect = sect->next)
800 {
801 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
802 continue;
803
804 break;
805 }
806 if (sect == NULL)
807 return NULL;
808
809 low = bfd_get_section_vma (abfd, sect);
810 high = low + bfd_get_section_size (sect);
811
41bf6aca 812 data = XCNEW (struct symfile_segment_data);
31d99776 813 data->num_segments = 1;
fc270c35
TT
814 data->segment_bases = XCNEW (CORE_ADDR);
815 data->segment_sizes = XCNEW (CORE_ADDR);
31d99776
DJ
816
817 num_sections = bfd_count_sections (abfd);
fc270c35 818 data->segment_info = XCNEWVEC (int, num_sections);
31d99776
DJ
819
820 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
821 {
822 CORE_ADDR vma;
823
824 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
825 continue;
826
827 vma = bfd_get_section_vma (abfd, sect);
828 if (vma < low)
829 low = vma;
830 if (vma + bfd_get_section_size (sect) > high)
831 high = vma + bfd_get_section_size (sect);
832
833 data->segment_info[i] = 1;
834 }
835
836 data->segment_bases[0] = low;
837 data->segment_sizes[0] = high - low;
838
839 return data;
840}
841
608e2dbb
TT
842/* This is a convenience function to call sym_read for OBJFILE and
843 possibly force the partial symbols to be read. */
844
845static void
b15cc25c 846read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
608e2dbb
TT
847{
848 (*objfile->sf->sym_read) (objfile, add_flags);
23732b1e 849 objfile->per_bfd->minsyms_read = true;
8a92335b
JK
850
851 /* find_separate_debug_file_in_section should be called only if there is
852 single binary with no existing separate debug info file. */
853 if (!objfile_has_partial_symbols (objfile)
854 && objfile->separate_debug_objfile == NULL
855 && objfile->separate_debug_objfile_backlink == NULL)
608e2dbb 856 {
192b62ce 857 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
608e2dbb
TT
858
859 if (abfd != NULL)
24ba069a
JK
860 {
861 /* find_separate_debug_file_in_section uses the same filename for the
862 virtual section-as-bfd like the bfd filename containing the
863 section. Therefore use also non-canonical name form for the same
864 file containing the section. */
192b62ce
TT
865 symbol_file_add_separate (abfd.get (), objfile->original_name,
866 add_flags, objfile);
24ba069a 867 }
608e2dbb
TT
868 }
869 if ((add_flags & SYMFILE_NO_READ) == 0)
870 require_partial_symbols (objfile, 0);
871}
872
3d6e24f0
JB
873/* Initialize entry point information for this objfile. */
874
875static void
876init_entry_point_info (struct objfile *objfile)
877{
6ef55de7
TT
878 struct entry_info *ei = &objfile->per_bfd->ei;
879
880 if (ei->initialized)
881 return;
882 ei->initialized = 1;
883
3d6e24f0
JB
884 /* Save startup file's range of PC addresses to help blockframe.c
885 decide where the bottom of the stack is. */
886
887 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
888 {
889 /* Executable file -- record its entry point so we'll recognize
890 the startup file because it contains the entry point. */
6ef55de7
TT
891 ei->entry_point = bfd_get_start_address (objfile->obfd);
892 ei->entry_point_p = 1;
3d6e24f0
JB
893 }
894 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
895 && bfd_get_start_address (objfile->obfd) != 0)
896 {
897 /* Some shared libraries may have entry points set and be
898 runnable. There's no clear way to indicate this, so just check
899 for values other than zero. */
6ef55de7
TT
900 ei->entry_point = bfd_get_start_address (objfile->obfd);
901 ei->entry_point_p = 1;
3d6e24f0
JB
902 }
903 else
904 {
905 /* Examination of non-executable.o files. Short-circuit this stuff. */
6ef55de7 906 ei->entry_point_p = 0;
3d6e24f0
JB
907 }
908
6ef55de7 909 if (ei->entry_point_p)
3d6e24f0 910 {
53eddfa6 911 struct obj_section *osect;
6ef55de7 912 CORE_ADDR entry_point = ei->entry_point;
53eddfa6 913 int found;
3d6e24f0
JB
914
915 /* Make certain that the address points at real code, and not a
916 function descriptor. */
917 entry_point
df6d5441 918 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
3d6e24f0
JB
919 entry_point,
920 &current_target);
921
922 /* Remove any ISA markers, so that this matches entries in the
923 symbol table. */
6ef55de7 924 ei->entry_point
df6d5441 925 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
53eddfa6
TT
926
927 found = 0;
928 ALL_OBJFILE_OSECTIONS (objfile, osect)
929 {
930 struct bfd_section *sect = osect->the_bfd_section;
931
932 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
933 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
934 + bfd_get_section_size (sect)))
935 {
6ef55de7 936 ei->the_bfd_section_index
53eddfa6
TT
937 = gdb_bfd_section_index (objfile->obfd, sect);
938 found = 1;
939 break;
940 }
941 }
942
943 if (!found)
6ef55de7 944 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
3d6e24f0
JB
945 }
946}
947
c906108c
SS
948/* Process a symbol file, as either the main file or as a dynamically
949 loaded file.
950
36e4d068
JB
951 This function does not set the OBJFILE's entry-point info.
952
96baa820
JM
953 OBJFILE is where the symbols are to be read from.
954
7e8580c1
JB
955 ADDRS is the list of section load addresses. If the user has given
956 an 'add-symbol-file' command, then this is the list of offsets and
957 addresses he or she provided as arguments to the command; or, if
958 we're handling a shared library, these are the actual addresses the
959 sections are loaded at, according to the inferior's dynamic linker
960 (as gleaned by GDB's shared library code). We convert each address
961 into an offset from the section VMA's as it appears in the object
962 file, and then call the file's sym_offsets function to convert this
963 into a format-specific offset table --- a `struct section_offsets'.
96baa820 964
7eedccfa
PP
965 ADD_FLAGS encodes verbosity level, whether this is main symbol or
966 an extra symbol file such as dynamically loaded code, and wether
967 breakpoint reset should be deferred. */
c906108c 968
36e4d068
JB
969static void
970syms_from_objfile_1 (struct objfile *objfile,
971 struct section_addr_info *addrs,
b15cc25c 972 symfile_add_flags add_flags)
c906108c 973{
a39a16c4 974 struct section_addr_info *local_addr = NULL;
c906108c 975 struct cleanup *old_chain;
7eedccfa 976 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 977
8fb8eb5c 978 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
c906108c 979
75245b24 980 if (objfile->sf == NULL)
36e4d068
JB
981 {
982 /* No symbols to load, but we still need to make sure
983 that the section_offsets table is allocated. */
d445b2f6 984 int num_sections = gdb_bfd_count_sections (objfile->obfd);
a7bfba49 985 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
36e4d068
JB
986
987 objfile->num_sections = num_sections;
988 objfile->section_offsets
224c3ddb
SM
989 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
990 size);
36e4d068
JB
991 memset (objfile->section_offsets, 0, size);
992 return;
993 }
75245b24 994
c906108c
SS
995 /* Make sure that partially constructed symbol tables will be cleaned up
996 if an error occurs during symbol reading. */
ed2b3126
TT
997 old_chain = make_cleanup (null_cleanup, NULL);
998 std::unique_ptr<struct objfile> objfile_holder (objfile);
c906108c 999
6bf667bb
DE
1000 /* If ADDRS is NULL, put together a dummy address list.
1001 We now establish the convention that an addr of zero means
c378eb4e 1002 no load address was specified. */
6bf667bb 1003 if (! addrs)
a39a16c4 1004 {
d445b2f6 1005 local_addr = alloc_section_addr_info (1);
a39a16c4
MM
1006 make_cleanup (xfree, local_addr);
1007 addrs = local_addr;
1008 }
1009
c5aa993b 1010 if (mainline)
c906108c
SS
1011 {
1012 /* We will modify the main symbol table, make sure that all its users
c5aa993b 1013 will be cleaned up if an error occurs during symbol reading. */
74b7792f 1014 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
1015
1016 /* Since no error yet, throw away the old symbol table. */
1017
1018 if (symfile_objfile != NULL)
1019 {
9e86da07 1020 delete symfile_objfile;
adb7f338 1021 gdb_assert (symfile_objfile == NULL);
c906108c
SS
1022 }
1023
1024 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
1025 If the user wants to get rid of them, they should do "symbol-file"
1026 without arguments first. Not sure this is the best behavior
1027 (PR 2207). */
c906108c 1028
c5aa993b 1029 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
1030 }
1031
1032 /* Convert addr into an offset rather than an absolute address.
1033 We find the lowest address of a loaded segment in the objfile,
53a5351d 1034 and assume that <addr> is where that got loaded.
c906108c 1035
53a5351d
JM
1036 We no longer warn if the lowest section is not a text segment (as
1037 happens for the PA64 port. */
6bf667bb 1038 if (addrs->num_sections > 0)
75242ef4 1039 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
1040
1041 /* Initialize symbol reading routines for this objfile, allow complaints to
1042 appear for this new file, and record how verbose to be, then do the
c378eb4e 1043 initial symbol reading for this file. */
c906108c 1044
c5aa993b 1045 (*objfile->sf->sym_init) (objfile);
7eedccfa 1046 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 1047
6bf667bb 1048 (*objfile->sf->sym_offsets) (objfile, addrs);
c906108c 1049
608e2dbb 1050 read_symbols (objfile, add_flags);
b11896a5 1051
c906108c
SS
1052 /* Discard cleanups as symbol reading was successful. */
1053
ed2b3126 1054 objfile_holder.release ();
c906108c 1055 discard_cleanups (old_chain);
f7545552 1056 xfree (local_addr);
c906108c
SS
1057}
1058
36e4d068
JB
1059/* Same as syms_from_objfile_1, but also initializes the objfile
1060 entry-point info. */
1061
6bf667bb 1062static void
36e4d068
JB
1063syms_from_objfile (struct objfile *objfile,
1064 struct section_addr_info *addrs,
b15cc25c 1065 symfile_add_flags add_flags)
36e4d068 1066{
6bf667bb 1067 syms_from_objfile_1 (objfile, addrs, add_flags);
36e4d068
JB
1068 init_entry_point_info (objfile);
1069}
1070
c906108c
SS
1071/* Perform required actions after either reading in the initial
1072 symbols for a new objfile, or mapping in the symbols from a reusable
c1e56572 1073 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c5aa993b 1074
e7d52ed3 1075static void
b15cc25c 1076finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
c906108c 1077{
c906108c 1078 /* If this is the main symbol file we have to clean up all users of the
c378eb4e 1079 old main symbol file. Otherwise it is sufficient to fixup all the
c906108c 1080 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1081 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1082 {
1083 /* OK, make it the "real" symbol file. */
1084 symfile_objfile = objfile;
1085
c1e56572 1086 clear_symtab_users (add_flags);
c906108c 1087 }
7eedccfa 1088 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1089 {
69de3c6a 1090 breakpoint_re_set ();
c906108c
SS
1091 }
1092
1093 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 1094 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
1095}
1096
1097/* Process a symbol file, as either the main file or as a dynamically
1098 loaded file.
1099
5417f6dc 1100 ABFD is a BFD already open on the file, as from symfile_bfd_open.
8ac244b4 1101 A new reference is acquired by this function.
7904e09f 1102
9e86da07 1103 For NAME description see the objfile constructor.
24ba069a 1104
7eedccfa
PP
1105 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1106 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f 1107
6bf667bb 1108 ADDRS is as described for syms_from_objfile_1, above.
7eedccfa 1109 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1110
63524580
JK
1111 PARENT is the original objfile if ABFD is a separate debug info file.
1112 Otherwise PARENT is NULL.
1113
c906108c 1114 Upon success, returns a pointer to the objfile that was added.
c378eb4e 1115 Upon failure, jumps back to command level (never returns). */
7eedccfa 1116
7904e09f 1117static struct objfile *
b15cc25c
PA
1118symbol_file_add_with_addrs (bfd *abfd, const char *name,
1119 symfile_add_flags add_flags,
6bf667bb 1120 struct section_addr_info *addrs,
b15cc25c 1121 objfile_flags flags, struct objfile *parent)
c906108c
SS
1122{
1123 struct objfile *objfile;
7eedccfa 1124 const int from_tty = add_flags & SYMFILE_VERBOSE;
0838fb57 1125 const int mainline = add_flags & SYMFILE_MAINLINE;
770e7fc7 1126 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
b11896a5
TT
1127 && (readnow_symbol_files
1128 || (add_flags & SYMFILE_NO_READ) == 0));
c906108c 1129
9291a0cd 1130 if (readnow_symbol_files)
b11896a5
TT
1131 {
1132 flags |= OBJF_READNOW;
1133 add_flags &= ~SYMFILE_NO_READ;
1134 }
97cbe998
SDJ
1135 else if (readnever_symbol_files
1136 || (parent != NULL && (parent->flags & OBJF_READNEVER)))
1137 {
1138 flags |= OBJF_READNEVER;
1139 add_flags |= SYMFILE_NO_READ;
1140 }
9291a0cd 1141
5417f6dc
RM
1142 /* Give user a chance to burp if we'd be
1143 interactively wiping out any existing symbols. */
c906108c
SS
1144
1145 if ((have_full_symbols () || have_partial_symbols ())
0838fb57 1146 && mainline
c906108c 1147 && from_tty
9e2f0ad4 1148 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1149 error (_("Not confirmed."));
c906108c 1150
b15cc25c
PA
1151 if (mainline)
1152 flags |= OBJF_MAINLINE;
9e86da07 1153 objfile = new struct objfile (abfd, name, flags);
c906108c 1154
63524580
JK
1155 if (parent)
1156 add_separate_debug_objfile (objfile, parent);
1157
78a4a9b9
AC
1158 /* We either created a new mapped symbol table, mapped an existing
1159 symbol table file which has not had initial symbol reading
c378eb4e 1160 performed, or need to read an unmapped symbol table. */
b11896a5 1161 if (should_print)
c906108c 1162 {
769d7dc4
AC
1163 if (deprecated_pre_add_symbol_hook)
1164 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1165 else
c906108c 1166 {
55333a84
DE
1167 printf_unfiltered (_("Reading symbols from %s..."), name);
1168 wrap_here ("");
1169 gdb_flush (gdb_stdout);
c906108c 1170 }
c906108c 1171 }
6bf667bb 1172 syms_from_objfile (objfile, addrs, add_flags);
c906108c
SS
1173
1174 /* We now have at least a partial symbol table. Check to see if the
1175 user requested that all symbols be read on initial access via either
1176 the gdb startup command line or on a per symbol file basis. Expand
c378eb4e 1177 all partial symbol tables for this objfile if so. */
c906108c 1178
9291a0cd 1179 if ((flags & OBJF_READNOW))
c906108c 1180 {
b11896a5 1181 if (should_print)
c906108c 1182 {
a3f17187 1183 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1184 wrap_here ("");
1185 gdb_flush (gdb_stdout);
1186 }
1187
ccefe4c4
TT
1188 if (objfile->sf)
1189 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1190 }
1191
b11896a5 1192 if (should_print && !objfile_has_symbols (objfile))
cb3c37b2
JB
1193 {
1194 wrap_here ("");
55333a84 1195 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1196 wrap_here ("");
1197 }
1198
b11896a5 1199 if (should_print)
c906108c 1200 {
769d7dc4
AC
1201 if (deprecated_post_add_symbol_hook)
1202 deprecated_post_add_symbol_hook ();
c906108c 1203 else
55333a84 1204 printf_unfiltered (_("done.\n"));
c906108c
SS
1205 }
1206
481d0f41
JB
1207 /* We print some messages regardless of whether 'from_tty ||
1208 info_verbose' is true, so make sure they go out at the right
1209 time. */
1210 gdb_flush (gdb_stdout);
1211
109f874e 1212 if (objfile->sf == NULL)
8caee43b
PP
1213 {
1214 observer_notify_new_objfile (objfile);
c378eb4e 1215 return objfile; /* No symbols. */
8caee43b 1216 }
109f874e 1217
e7d52ed3 1218 finish_new_objfile (objfile, add_flags);
c906108c 1219
06d3b283 1220 observer_notify_new_objfile (objfile);
c906108c 1221
ce7d4522 1222 bfd_cache_close_all ();
c906108c
SS
1223 return (objfile);
1224}
1225
24ba069a 1226/* Add BFD as a separate debug file for OBJFILE. For NAME description
9e86da07 1227 see the objfile constructor. */
9cce227f
TG
1228
1229void
b15cc25c
PA
1230symbol_file_add_separate (bfd *bfd, const char *name,
1231 symfile_add_flags symfile_flags,
24ba069a 1232 struct objfile *objfile)
9cce227f 1233{
089b4803
TG
1234 struct section_addr_info *sap;
1235 struct cleanup *my_cleanup;
1236
1237 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1238 because sections of BFD may not match sections of OBJFILE and because
1239 vma may have been modified by tools such as prelink. */
1240 sap = build_section_addr_info_from_objfile (objfile);
1241 my_cleanup = make_cleanup_free_section_addr_info (sap);
9cce227f 1242
870f88f7 1243 symbol_file_add_with_addrs
24ba069a 1244 (bfd, name, symfile_flags, sap,
9cce227f 1245 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
63524580
JK
1246 | OBJF_USERLOADED),
1247 objfile);
089b4803
TG
1248
1249 do_cleanups (my_cleanup);
9cce227f 1250}
7904e09f 1251
eb4556d7
JB
1252/* Process the symbol file ABFD, as either the main file or as a
1253 dynamically loaded file.
6bf667bb 1254 See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1255
eb4556d7 1256struct objfile *
b15cc25c
PA
1257symbol_file_add_from_bfd (bfd *abfd, const char *name,
1258 symfile_add_flags add_flags,
eb4556d7 1259 struct section_addr_info *addrs,
b15cc25c 1260 objfile_flags flags, struct objfile *parent)
eb4556d7 1261{
24ba069a
JK
1262 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1263 parent);
eb4556d7
JB
1264}
1265
7904e09f 1266/* Process a symbol file, as either the main file or as a dynamically
6bf667bb 1267 loaded file. See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1268
7904e09f 1269struct objfile *
b15cc25c
PA
1270symbol_file_add (const char *name, symfile_add_flags add_flags,
1271 struct section_addr_info *addrs, objfile_flags flags)
7904e09f 1272{
192b62ce 1273 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
8ac244b4 1274
192b62ce
TT
1275 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1276 flags, NULL);
7904e09f
JB
1277}
1278
d7db6da9
FN
1279/* Call symbol_file_add() with default values and update whatever is
1280 affected by the loading of a new main().
1281 Used when the file is supplied in the gdb command line
1282 and by some targets with special loading requirements.
1283 The auxiliary function, symbol_file_add_main_1(), has the flags
1284 argument for the switches that can only be specified in the symbol_file
1285 command itself. */
5417f6dc 1286
1adeb98a 1287void
ecf45d2c 1288symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1adeb98a 1289{
ecf45d2c 1290 symbol_file_add_main_1 (args, add_flags, 0);
d7db6da9
FN
1291}
1292
1293static void
ecf45d2c
SL
1294symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1295 objfile_flags flags)
d7db6da9 1296{
ecf45d2c 1297 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
7dcd53a0 1298
7eedccfa 1299 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1300
d7db6da9
FN
1301 /* Getting new symbols may change our opinion about
1302 what is frameless. */
1303 reinit_frame_cache ();
1304
b15cc25c 1305 if ((add_flags & SYMFILE_NO_READ) == 0)
7dcd53a0 1306 set_initial_language ();
1adeb98a
FN
1307}
1308
1309void
1310symbol_file_clear (int from_tty)
1311{
1312 if ((have_full_symbols () || have_partial_symbols ())
1313 && from_tty
0430b0d6
AS
1314 && (symfile_objfile
1315 ? !query (_("Discard symbol table from `%s'? "),
4262abfb 1316 objfile_name (symfile_objfile))
0430b0d6 1317 : !query (_("Discard symbol table? "))))
8a3fe4f8 1318 error (_("Not confirmed."));
1adeb98a 1319
0133421a
JK
1320 /* solib descriptors may have handles to objfiles. Wipe them before their
1321 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1322 no_shared_libraries (NULL, from_tty);
1323
0133421a
JK
1324 free_all_objfiles ();
1325
adb7f338 1326 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1327 if (from_tty)
1328 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1329}
1330
c4dcb155
SM
1331/* See symfile.h. */
1332
1333int separate_debug_file_debug = 0;
1334
5b5d99cf 1335static int
287ccc17 1336separate_debug_file_exists (const char *name, unsigned long crc,
32a0e547 1337 struct objfile *parent_objfile)
5b5d99cf 1338{
904578ed
JK
1339 unsigned long file_crc;
1340 int file_crc_p;
32a0e547 1341 struct stat parent_stat, abfd_stat;
904578ed 1342 int verified_as_different;
32a0e547
JK
1343
1344 /* Find a separate debug info file as if symbols would be present in
1345 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1346 section can contain just the basename of PARENT_OBJFILE without any
1347 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
c378eb4e 1348 the separate debug infos with the same basename can exist. */
32a0e547 1349
4262abfb 1350 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
32a0e547 1351 return 0;
5b5d99cf 1352
c4dcb155
SM
1353 if (separate_debug_file_debug)
1354 printf_unfiltered (_(" Trying %s\n"), name);
1355
192b62ce 1356 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name, gnutarget, -1));
f1838a98 1357
192b62ce 1358 if (abfd == NULL)
5b5d99cf
JB
1359 return 0;
1360
0ba1096a 1361 /* Verify symlinks were not the cause of filename_cmp name difference above.
32a0e547
JK
1362
1363 Some operating systems, e.g. Windows, do not provide a meaningful
1364 st_ino; they always set it to zero. (Windows does provide a
0a93529c
GB
1365 meaningful st_dev.) Files accessed from gdbservers that do not
1366 support the vFile:fstat packet will also have st_ino set to zero.
1367 Do not indicate a duplicate library in either case. While there
1368 is no guarantee that a system that provides meaningful inode
1369 numbers will never set st_ino to zero, this is merely an
1370 optimization, so we do not need to worry about false negatives. */
32a0e547 1371
192b62ce 1372 if (bfd_stat (abfd.get (), &abfd_stat) == 0
904578ed
JK
1373 && abfd_stat.st_ino != 0
1374 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
32a0e547 1375 {
904578ed
JK
1376 if (abfd_stat.st_dev == parent_stat.st_dev
1377 && abfd_stat.st_ino == parent_stat.st_ino)
192b62ce 1378 return 0;
904578ed 1379 verified_as_different = 1;
32a0e547 1380 }
904578ed
JK
1381 else
1382 verified_as_different = 0;
32a0e547 1383
192b62ce 1384 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
5b5d99cf 1385
904578ed
JK
1386 if (!file_crc_p)
1387 return 0;
1388
287ccc17
JK
1389 if (crc != file_crc)
1390 {
dccee2de
TT
1391 unsigned long parent_crc;
1392
0a93529c
GB
1393 /* If the files could not be verified as different with
1394 bfd_stat then we need to calculate the parent's CRC
1395 to verify whether the files are different or not. */
904578ed 1396
dccee2de 1397 if (!verified_as_different)
904578ed 1398 {
dccee2de 1399 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
904578ed
JK
1400 return 0;
1401 }
1402
dccee2de 1403 if (verified_as_different || parent_crc != file_crc)
904578ed
JK
1404 warning (_("the debug information found in \"%s\""
1405 " does not match \"%s\" (CRC mismatch).\n"),
4262abfb 1406 name, objfile_name (parent_objfile));
904578ed 1407
287ccc17
JK
1408 return 0;
1409 }
1410
1411 return 1;
5b5d99cf
JB
1412}
1413
aa28a74e 1414char *debug_file_directory = NULL;
920d2a44
AC
1415static void
1416show_debug_file_directory (struct ui_file *file, int from_tty,
1417 struct cmd_list_element *c, const char *value)
1418{
3e43a32a
MS
1419 fprintf_filtered (file,
1420 _("The directory where separate debug "
1421 "symbols are searched for is \"%s\".\n"),
920d2a44
AC
1422 value);
1423}
5b5d99cf
JB
1424
1425#if ! defined (DEBUG_SUBDIRECTORY)
1426#define DEBUG_SUBDIRECTORY ".debug"
1427#endif
1428
1db33378
PP
1429/* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1430 where the original file resides (may not be the same as
1431 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
7edbb660
DE
1432 looking for. CANON_DIR is the "realpath" form of DIR.
1433 DIR must contain a trailing '/'.
1434 Returns the path of the file with separate debug info, of NULL. */
1db33378
PP
1435
1436static char *
1437find_separate_debug_file (const char *dir,
1438 const char *canon_dir,
1439 const char *debuglink,
1440 unsigned long crc32, struct objfile *objfile)
9cce227f 1441{
1db33378
PP
1442 char *debugdir;
1443 char *debugfile;
9cce227f 1444 int i;
e4ab2fad
JK
1445 VEC (char_ptr) *debugdir_vec;
1446 struct cleanup *back_to;
1447 int ix;
5b5d99cf 1448
c4dcb155
SM
1449 if (separate_debug_file_debug)
1450 printf_unfiltered (_("\nLooking for separate debug info (debug link) for "
1451 "%s\n"), objfile_name (objfile));
1452
325fac50 1453 /* Set I to std::max (strlen (canon_dir), strlen (dir)). */
1ffa32ee 1454 i = strlen (dir);
1db33378
PP
1455 if (canon_dir != NULL && strlen (canon_dir) > i)
1456 i = strlen (canon_dir);
1ffa32ee 1457
224c3ddb
SM
1458 debugfile
1459 = (char *) xmalloc (strlen (debug_file_directory) + 1
1460 + i
1461 + strlen (DEBUG_SUBDIRECTORY)
1462 + strlen ("/")
1463 + strlen (debuglink)
1464 + 1);
5b5d99cf
JB
1465
1466 /* First try in the same directory as the original file. */
1467 strcpy (debugfile, dir);
1db33378 1468 strcat (debugfile, debuglink);
5b5d99cf 1469
32a0e547 1470 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1471 return debugfile;
5417f6dc 1472
5b5d99cf
JB
1473 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1474 strcpy (debugfile, dir);
1475 strcat (debugfile, DEBUG_SUBDIRECTORY);
1476 strcat (debugfile, "/");
1db33378 1477 strcat (debugfile, debuglink);
5b5d99cf 1478
32a0e547 1479 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1480 return debugfile;
5417f6dc 1481
24ddea62 1482 /* Then try in the global debugfile directories.
f888f159 1483
24ddea62
JK
1484 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1485 cause "/..." lookups. */
5417f6dc 1486
e4ab2fad
JK
1487 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1488 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
24ddea62 1489
e4ab2fad
JK
1490 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1491 {
1492 strcpy (debugfile, debugdir);
aa28a74e 1493 strcat (debugfile, "/");
24ddea62 1494 strcat (debugfile, dir);
1db33378 1495 strcat (debugfile, debuglink);
aa28a74e 1496
32a0e547 1497 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1498 {
1499 do_cleanups (back_to);
1500 return debugfile;
1501 }
24ddea62
JK
1502
1503 /* If the file is in the sysroot, try using its base path in the
1504 global debugfile directory. */
1db33378
PP
1505 if (canon_dir != NULL
1506 && filename_ncmp (canon_dir, gdb_sysroot,
0ba1096a 1507 strlen (gdb_sysroot)) == 0
1db33378 1508 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
24ddea62 1509 {
e4ab2fad 1510 strcpy (debugfile, debugdir);
1db33378 1511 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
24ddea62 1512 strcat (debugfile, "/");
1db33378 1513 strcat (debugfile, debuglink);
24ddea62 1514
32a0e547 1515 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1516 {
1517 do_cleanups (back_to);
1518 return debugfile;
1519 }
24ddea62 1520 }
aa28a74e 1521 }
f888f159 1522
e4ab2fad 1523 do_cleanups (back_to);
25522fae 1524 xfree (debugfile);
1db33378
PP
1525 return NULL;
1526}
1527
7edbb660 1528/* Modify PATH to contain only "[/]directory/" part of PATH.
1db33378
PP
1529 If there were no directory separators in PATH, PATH will be empty
1530 string on return. */
1531
1532static void
1533terminate_after_last_dir_separator (char *path)
1534{
1535 int i;
1536
1537 /* Strip off the final filename part, leaving the directory name,
1538 followed by a slash. The directory can be relative or absolute. */
1539 for (i = strlen(path) - 1; i >= 0; i--)
1540 if (IS_DIR_SEPARATOR (path[i]))
1541 break;
1542
1543 /* If I is -1 then no directory is present there and DIR will be "". */
1544 path[i + 1] = '\0';
1545}
1546
1547/* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1548 Returns pathname, or NULL. */
1549
1550char *
1551find_separate_debug_file_by_debuglink (struct objfile *objfile)
1552{
1db33378
PP
1553 char *debugfile;
1554 unsigned long crc32;
1db33378 1555
5eae7aea
TT
1556 gdb::unique_xmalloc_ptr<char> debuglink
1557 (bfd_get_debug_link_info (objfile->obfd, &crc32));
1db33378
PP
1558
1559 if (debuglink == NULL)
1560 {
1561 /* There's no separate debug info, hence there's no way we could
1562 load it => no warning. */
1563 return NULL;
1564 }
1565
5eae7aea
TT
1566 std::string dir = objfile_name (objfile);
1567 terminate_after_last_dir_separator (&dir[0]);
1568 gdb::unique_xmalloc_ptr<char> canon_dir (lrealpath (dir.c_str ()));
1db33378 1569
5eae7aea
TT
1570 debugfile = find_separate_debug_file (dir.c_str (), canon_dir.get (),
1571 debuglink.get (), crc32, objfile);
1db33378
PP
1572
1573 if (debugfile == NULL)
1574 {
1db33378
PP
1575 /* For PR gdb/9538, try again with realpath (if different from the
1576 original). */
1577
1578 struct stat st_buf;
1579
4262abfb
JK
1580 if (lstat (objfile_name (objfile), &st_buf) == 0
1581 && S_ISLNK (st_buf.st_mode))
1db33378 1582 {
5eae7aea
TT
1583 gdb::unique_xmalloc_ptr<char> symlink_dir
1584 (lrealpath (objfile_name (objfile)));
1db33378
PP
1585 if (symlink_dir != NULL)
1586 {
5eae7aea
TT
1587 terminate_after_last_dir_separator (symlink_dir.get ());
1588 if (dir != symlink_dir.get ())
1db33378
PP
1589 {
1590 /* Different directory, so try using it. */
5eae7aea
TT
1591 debugfile = find_separate_debug_file (symlink_dir.get (),
1592 symlink_dir.get (),
1593 debuglink.get (),
1db33378
PP
1594 crc32,
1595 objfile);
1596 }
1597 }
1598 }
1db33378 1599 }
aa28a74e 1600
25522fae 1601 return debugfile;
5b5d99cf
JB
1602}
1603
97cbe998
SDJ
1604/* Make sure that OBJF_{READNOW,READNEVER} are not set
1605 simultaneously. */
1606
1607static void
1608validate_readnow_readnever (objfile_flags flags)
1609{
1610 if ((flags & OBJF_READNOW) && (flags & OBJF_READNEVER))
1611 error (_("-readnow and -readnever cannot be used simultaneously"));
1612}
1613
c906108c
SS
1614/* This is the symbol-file command. Read the file, analyze its
1615 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1616 the command is rather bizarre:
1617
1618 1. The function buildargv implements various quoting conventions
1619 which are undocumented and have little or nothing in common with
1620 the way things are quoted (or not quoted) elsewhere in GDB.
1621
1622 2. Options are used, which are not generally used in GDB (perhaps
1623 "set mapped on", "set readnow on" would be better)
1624
1625 3. The order of options matters, which is contrary to GNU
c906108c
SS
1626 conventions (because it is confusing and inconvenient). */
1627
1628void
1d8b34a7 1629symbol_file_command (const char *args, int from_tty)
c906108c 1630{
c906108c
SS
1631 dont_repeat ();
1632
1633 if (args == NULL)
1634 {
1adeb98a 1635 symbol_file_clear (from_tty);
c906108c
SS
1636 }
1637 else
1638 {
b15cc25c 1639 objfile_flags flags = OBJF_USERLOADED;
ecf45d2c 1640 symfile_add_flags add_flags = 0;
cb2f3a29 1641 char *name = NULL;
40fc416f
SDJ
1642 bool stop_processing_options = false;
1643 int idx;
1644 char *arg;
cb2f3a29 1645
ecf45d2c
SL
1646 if (from_tty)
1647 add_flags |= SYMFILE_VERBOSE;
1648
773a1edc 1649 gdb_argv built_argv (args);
40fc416f 1650 for (arg = built_argv[0], idx = 0; arg != NULL; arg = built_argv[++idx])
c906108c 1651 {
40fc416f 1652 if (stop_processing_options || *arg != '-')
7f0f8ac8 1653 {
40fc416f
SDJ
1654 if (name == NULL)
1655 name = arg;
1656 else
1657 error (_("Unrecognized argument \"%s\""), arg);
7f0f8ac8 1658 }
40fc416f
SDJ
1659 else if (strcmp (arg, "-readnow") == 0)
1660 flags |= OBJF_READNOW;
97cbe998
SDJ
1661 else if (strcmp (arg, "-readnever") == 0)
1662 flags |= OBJF_READNEVER;
40fc416f
SDJ
1663 else if (strcmp (arg, "--") == 0)
1664 stop_processing_options = true;
1665 else
1666 error (_("Unrecognized argument \"%s\""), arg);
c906108c
SS
1667 }
1668
1669 if (name == NULL)
cb2f3a29 1670 error (_("no symbol file name was specified"));
40fc416f 1671
97cbe998
SDJ
1672 validate_readnow_readnever (flags);
1673
40fc416f 1674 symbol_file_add_main_1 (name, add_flags, flags);
c906108c
SS
1675 }
1676}
1677
1678/* Set the initial language.
1679
cb2f3a29
MK
1680 FIXME: A better solution would be to record the language in the
1681 psymtab when reading partial symbols, and then use it (if known) to
1682 set the language. This would be a win for formats that encode the
1683 language in an easily discoverable place, such as DWARF. For
1684 stabs, we can jump through hoops looking for specially named
1685 symbols or try to intuit the language from the specific type of
1686 stabs we find, but we can't do that until later when we read in
1687 full symbols. */
c906108c 1688
8b60591b 1689void
fba45db2 1690set_initial_language (void)
c906108c 1691{
9e6c82ad 1692 enum language lang = main_language ();
c906108c 1693
9e6c82ad 1694 if (lang == language_unknown)
01f8c46d 1695 {
bf6d8a91 1696 char *name = main_name ();
d12307c1 1697 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
f888f159 1698
bf6d8a91
TT
1699 if (sym != NULL)
1700 lang = SYMBOL_LANGUAGE (sym);
01f8c46d 1701 }
cb2f3a29 1702
ccefe4c4
TT
1703 if (lang == language_unknown)
1704 {
1705 /* Make C the default language */
1706 lang = language_c;
c906108c 1707 }
ccefe4c4
TT
1708
1709 set_language (lang);
1710 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1711}
1712
cb2f3a29
MK
1713/* Open the file specified by NAME and hand it off to BFD for
1714 preliminary analysis. Return a newly initialized bfd *, which
1715 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1716 absolute). In case of trouble, error() is called. */
c906108c 1717
192b62ce 1718gdb_bfd_ref_ptr
97a41605 1719symfile_bfd_open (const char *name)
c906108c 1720{
97a41605
GB
1721 int desc = -1;
1722 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c 1723
97a41605 1724 if (!is_target_filename (name))
f1838a98 1725 {
ee0c3293 1726 char *absolute_name;
f1838a98 1727
ee0c3293 1728 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
c906108c 1729
97a41605
GB
1730 /* Look down path for it, allocate 2nd new malloc'd copy. */
1731 desc = openp (getenv ("PATH"),
1732 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
ee0c3293 1733 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
608506ed 1734#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
97a41605
GB
1735 if (desc < 0)
1736 {
ee0c3293 1737 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
433759f7 1738
ee0c3293 1739 strcat (strcpy (exename, expanded_name.get ()), ".exe");
97a41605
GB
1740 desc = openp (getenv ("PATH"),
1741 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1742 exename, O_RDONLY | O_BINARY, &absolute_name);
1743 }
c906108c 1744#endif
97a41605 1745 if (desc < 0)
ee0c3293 1746 perror_with_name (expanded_name.get ());
cb2f3a29 1747
97a41605
GB
1748 make_cleanup (xfree, absolute_name);
1749 name = absolute_name;
1750 }
c906108c 1751
192b62ce
TT
1752 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1753 if (sym_bfd == NULL)
faab9922
JK
1754 error (_("`%s': can't open to read symbols: %s."), name,
1755 bfd_errmsg (bfd_get_error ()));
97a41605 1756
192b62ce
TT
1757 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1758 bfd_set_cacheable (sym_bfd.get (), 1);
c906108c 1759
192b62ce
TT
1760 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1761 error (_("`%s': can't read symbols: %s."), name,
1762 bfd_errmsg (bfd_get_error ()));
cb2f3a29 1763
faab9922
JK
1764 do_cleanups (back_to);
1765
cb2f3a29 1766 return sym_bfd;
c906108c
SS
1767}
1768
cb2f3a29
MK
1769/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1770 the section was not found. */
1771
0e931cf0 1772int
a121b7c1 1773get_section_index (struct objfile *objfile, const char *section_name)
0e931cf0
JB
1774{
1775 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1776
0e931cf0
JB
1777 if (sect)
1778 return sect->index;
1779 else
1780 return -1;
1781}
1782
c256e171
DE
1783/* Link SF into the global symtab_fns list.
1784 FLAVOUR is the file format that SF handles.
1785 Called on startup by the _initialize routine in each object file format
1786 reader, to register information about each format the reader is prepared
1787 to handle. */
c906108c
SS
1788
1789void
c256e171 1790add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
c906108c 1791{
905014d7 1792 symtab_fns.emplace_back (flavour, sf);
c906108c
SS
1793}
1794
cb2f3a29
MK
1795/* Initialize OBJFILE to read symbols from its associated BFD. It
1796 either returns or calls error(). The result is an initialized
1797 struct sym_fns in the objfile structure, that contains cached
1798 information about the symbol file. */
c906108c 1799
00b5771c 1800static const struct sym_fns *
31d99776 1801find_sym_fns (bfd *abfd)
c906108c 1802{
31d99776 1803 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
c906108c 1804
75245b24
MS
1805 if (our_flavour == bfd_target_srec_flavour
1806 || our_flavour == bfd_target_ihex_flavour
1807 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1808 return NULL; /* No symbols. */
75245b24 1809
905014d7
SM
1810 for (const registered_sym_fns &rsf : symtab_fns)
1811 if (our_flavour == rsf.sym_flavour)
1812 return rsf.sym_fns;
cb2f3a29 1813
8a3fe4f8 1814 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1815 bfd_get_target (abfd));
c906108c
SS
1816}
1817\f
cb2f3a29 1818
c906108c
SS
1819/* This function runs the load command of our current target. */
1820
1821static void
5fed81ff 1822load_command (const char *arg, int from_tty)
c906108c 1823{
5b3fca71
TT
1824 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1825
e5cc9f32
JB
1826 dont_repeat ();
1827
4487aabf
PA
1828 /* The user might be reloading because the binary has changed. Take
1829 this opportunity to check. */
1830 reopen_exec_file ();
1831 reread_symbols ();
1832
c906108c 1833 if (arg == NULL)
1986bccd 1834 {
5fed81ff 1835 const char *parg;
1986bccd
AS
1836 int count = 0;
1837
1838 parg = arg = get_exec_file (1);
1839
1840 /* Count how many \ " ' tab space there are in the name. */
1841 while ((parg = strpbrk (parg, "\\\"'\t ")))
1842 {
1843 parg++;
1844 count++;
1845 }
1846
1847 if (count)
1848 {
1849 /* We need to quote this string so buildargv can pull it apart. */
224c3ddb 1850 char *temp = (char *) xmalloc (strlen (arg) + count + 1 );
1986bccd 1851 char *ptemp = temp;
5fed81ff 1852 const char *prev;
1986bccd
AS
1853
1854 make_cleanup (xfree, temp);
1855
1856 prev = parg = arg;
1857 while ((parg = strpbrk (parg, "\\\"'\t ")))
1858 {
1859 strncpy (ptemp, prev, parg - prev);
1860 ptemp += parg - prev;
1861 prev = parg++;
1862 *ptemp++ = '\\';
1863 }
1864 strcpy (ptemp, prev);
1865
1866 arg = temp;
1867 }
1868 }
1869
c906108c 1870 target_load (arg, from_tty);
2889e661
JB
1871
1872 /* After re-loading the executable, we don't really know which
1873 overlays are mapped any more. */
1874 overlay_cache_invalid = 1;
5b3fca71
TT
1875
1876 do_cleanups (cleanup);
c906108c
SS
1877}
1878
1879/* This version of "load" should be usable for any target. Currently
1880 it is just used for remote targets, not inftarg.c or core files,
1881 on the theory that only in that case is it useful.
1882
1883 Avoiding xmodem and the like seems like a win (a) because we don't have
1884 to worry about finding it, and (b) On VMS, fork() is very slow and so
1885 we don't want to run a subprocess. On the other hand, I'm not sure how
1886 performance compares. */
917317f4 1887
917317f4
JM
1888static int validate_download = 0;
1889
e4f9b4d5
MS
1890/* Callback service function for generic_load (bfd_map_over_sections). */
1891
1892static void
1893add_section_size_callback (bfd *abfd, asection *asec, void *data)
1894{
19ba03f4 1895 bfd_size_type *sum = (bfd_size_type *) data;
e4f9b4d5 1896
2c500098 1897 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1898}
1899
1900/* Opaque data for load_section_callback. */
1901struct load_section_data {
f698ca8e 1902 CORE_ADDR load_offset;
a76d924d
DJ
1903 struct load_progress_data *progress_data;
1904 VEC(memory_write_request_s) *requests;
1905};
1906
1907/* Opaque data for load_progress. */
1908struct load_progress_data {
1909 /* Cumulative data. */
e4f9b4d5
MS
1910 unsigned long write_count;
1911 unsigned long data_count;
1912 bfd_size_type total_size;
a76d924d
DJ
1913};
1914
1915/* Opaque data for load_progress for a single section. */
1916struct load_progress_section_data {
1917 struct load_progress_data *cumulative;
cf7a04e8 1918
a76d924d 1919 /* Per-section data. */
cf7a04e8
DJ
1920 const char *section_name;
1921 ULONGEST section_sent;
1922 ULONGEST section_size;
1923 CORE_ADDR lma;
1924 gdb_byte *buffer;
e4f9b4d5
MS
1925};
1926
a76d924d 1927/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1928
1929static void
1930load_progress (ULONGEST bytes, void *untyped_arg)
1931{
19ba03f4
SM
1932 struct load_progress_section_data *args
1933 = (struct load_progress_section_data *) untyped_arg;
a76d924d
DJ
1934 struct load_progress_data *totals;
1935
1936 if (args == NULL)
1937 /* Writing padding data. No easy way to get at the cumulative
1938 stats, so just ignore this. */
1939 return;
1940
1941 totals = args->cumulative;
1942
1943 if (bytes == 0 && args->section_sent == 0)
1944 {
1945 /* The write is just starting. Let the user know we've started
1946 this section. */
112e8700
SM
1947 current_uiout->message ("Loading section %s, size %s lma %s\n",
1948 args->section_name,
1949 hex_string (args->section_size),
1950 paddress (target_gdbarch (), args->lma));
a76d924d
DJ
1951 return;
1952 }
cf7a04e8
DJ
1953
1954 if (validate_download)
1955 {
1956 /* Broken memories and broken monitors manifest themselves here
1957 when bring new computers to life. This doubles already slow
1958 downloads. */
1959 /* NOTE: cagney/1999-10-18: A more efficient implementation
1960 might add a verify_memory() method to the target vector and
1961 then use that. remote.c could implement that method using
1962 the ``qCRC'' packet. */
0efef640 1963 gdb::byte_vector check (bytes);
cf7a04e8 1964
0efef640 1965 if (target_read_memory (args->lma, check.data (), bytes) != 0)
5af949e3 1966 error (_("Download verify read failed at %s"),
f5656ead 1967 paddress (target_gdbarch (), args->lma));
0efef640 1968 if (memcmp (args->buffer, check.data (), bytes) != 0)
5af949e3 1969 error (_("Download verify compare failed at %s"),
f5656ead 1970 paddress (target_gdbarch (), args->lma));
cf7a04e8 1971 }
a76d924d 1972 totals->data_count += bytes;
cf7a04e8
DJ
1973 args->lma += bytes;
1974 args->buffer += bytes;
a76d924d 1975 totals->write_count += 1;
cf7a04e8 1976 args->section_sent += bytes;
522002f9 1977 if (check_quit_flag ()
cf7a04e8
DJ
1978 || (deprecated_ui_load_progress_hook != NULL
1979 && deprecated_ui_load_progress_hook (args->section_name,
1980 args->section_sent)))
1981 error (_("Canceled the download"));
1982
1983 if (deprecated_show_load_progress != NULL)
1984 deprecated_show_load_progress (args->section_name,
1985 args->section_sent,
1986 args->section_size,
a76d924d
DJ
1987 totals->data_count,
1988 totals->total_size);
cf7a04e8
DJ
1989}
1990
e4f9b4d5
MS
1991/* Callback service function for generic_load (bfd_map_over_sections). */
1992
1993static void
1994load_section_callback (bfd *abfd, asection *asec, void *data)
1995{
a76d924d 1996 struct memory_write_request *new_request;
19ba03f4 1997 struct load_section_data *args = (struct load_section_data *) data;
a76d924d 1998 struct load_progress_section_data *section_data;
cf7a04e8
DJ
1999 bfd_size_type size = bfd_get_section_size (asec);
2000 gdb_byte *buffer;
cf7a04e8 2001 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 2002
cf7a04e8
DJ
2003 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2004 return;
e4f9b4d5 2005
cf7a04e8
DJ
2006 if (size == 0)
2007 return;
e4f9b4d5 2008
a76d924d
DJ
2009 new_request = VEC_safe_push (memory_write_request_s,
2010 args->requests, NULL);
2011 memset (new_request, 0, sizeof (struct memory_write_request));
8d749320 2012 section_data = XCNEW (struct load_progress_section_data);
a76d924d 2013 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
3e43a32a
MS
2014 new_request->end = new_request->begin + size; /* FIXME Should size
2015 be in instead? */
224c3ddb 2016 new_request->data = (gdb_byte *) xmalloc (size);
a76d924d 2017 new_request->baton = section_data;
cf7a04e8 2018
a76d924d 2019 buffer = new_request->data;
cf7a04e8 2020
a76d924d
DJ
2021 section_data->cumulative = args->progress_data;
2022 section_data->section_name = sect_name;
2023 section_data->section_size = size;
2024 section_data->lma = new_request->begin;
2025 section_data->buffer = buffer;
cf7a04e8
DJ
2026
2027 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
2028}
2029
2030/* Clean up an entire memory request vector, including load
2031 data and progress records. */
cf7a04e8 2032
a76d924d
DJ
2033static void
2034clear_memory_write_data (void *arg)
2035{
19ba03f4 2036 VEC(memory_write_request_s) **vec_p = (VEC(memory_write_request_s) **) arg;
a76d924d
DJ
2037 VEC(memory_write_request_s) *vec = *vec_p;
2038 int i;
2039 struct memory_write_request *mr;
cf7a04e8 2040
a76d924d
DJ
2041 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2042 {
2043 xfree (mr->data);
2044 xfree (mr->baton);
2045 }
2046 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
2047}
2048
dcb07cfa
PA
2049static void print_transfer_performance (struct ui_file *stream,
2050 unsigned long data_count,
2051 unsigned long write_count,
2052 std::chrono::steady_clock::duration d);
2053
c906108c 2054void
9cbe5fff 2055generic_load (const char *args, int from_tty)
c906108c 2056{
773a1edc 2057 struct cleanup *old_cleanups;
e4f9b4d5 2058 struct load_section_data cbdata;
a76d924d 2059 struct load_progress_data total_progress;
79a45e25 2060 struct ui_out *uiout = current_uiout;
a76d924d 2061
e4f9b4d5
MS
2062 CORE_ADDR entry;
2063
a76d924d
DJ
2064 memset (&cbdata, 0, sizeof (cbdata));
2065 memset (&total_progress, 0, sizeof (total_progress));
2066 cbdata.progress_data = &total_progress;
2067
773a1edc 2068 old_cleanups = make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 2069
d1a41061
PP
2070 if (args == NULL)
2071 error_no_arg (_("file to load"));
1986bccd 2072
773a1edc 2073 gdb_argv argv (args);
1986bccd 2074
ee0c3293 2075 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
1986bccd
AS
2076
2077 if (argv[1] != NULL)
917317f4 2078 {
f698ca8e 2079 const char *endptr;
ba5f2f8a 2080
f698ca8e 2081 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
1986bccd
AS
2082
2083 /* If the last word was not a valid number then
2084 treat it as a file name with spaces in. */
2085 if (argv[1] == endptr)
2086 error (_("Invalid download offset:%s."), argv[1]);
2087
2088 if (argv[2] != NULL)
2089 error (_("Too many parameters."));
917317f4 2090 }
c906108c 2091
c378eb4e 2092 /* Open the file for loading. */
ee0c3293 2093 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
c906108c 2094 if (loadfile_bfd == NULL)
ee0c3293 2095 perror_with_name (filename.get ());
917317f4 2096
192b62ce 2097 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
c906108c 2098 {
ee0c3293 2099 error (_("\"%s\" is not an object file: %s"), filename.get (),
c906108c
SS
2100 bfd_errmsg (bfd_get_error ()));
2101 }
c5aa993b 2102
192b62ce 2103 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
a76d924d
DJ
2104 (void *) &total_progress.total_size);
2105
192b62ce 2106 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
c2d11a7d 2107
dcb07cfa
PA
2108 using namespace std::chrono;
2109
2110 steady_clock::time_point start_time = steady_clock::now ();
c906108c 2111
a76d924d
DJ
2112 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2113 load_progress) != 0)
2114 error (_("Load failed"));
c906108c 2115
dcb07cfa 2116 steady_clock::time_point end_time = steady_clock::now ();
ba5f2f8a 2117
192b62ce 2118 entry = bfd_get_start_address (loadfile_bfd.get ());
8c2b9656 2119 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
112e8700
SM
2120 uiout->text ("Start address ");
2121 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
2122 uiout->text (", load size ");
2123 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
2124 uiout->text ("\n");
fb14de7b 2125 regcache_write_pc (get_current_regcache (), entry);
c906108c 2126
38963c97
DJ
2127 /* Reset breakpoints, now that we have changed the load image. For
2128 instance, breakpoints may have been set (or reset, by
2129 post_create_inferior) while connected to the target but before we
2130 loaded the program. In that case, the prologue analyzer could
2131 have read instructions from the target to find the right
2132 breakpoint locations. Loading has changed the contents of that
2133 memory. */
2134
2135 breakpoint_re_set ();
2136
a76d924d
DJ
2137 print_transfer_performance (gdb_stdout, total_progress.data_count,
2138 total_progress.write_count,
dcb07cfa 2139 end_time - start_time);
c906108c
SS
2140
2141 do_cleanups (old_cleanups);
2142}
2143
dcb07cfa
PA
2144/* Report on STREAM the performance of a memory transfer operation,
2145 such as 'load'. DATA_COUNT is the number of bytes transferred.
2146 WRITE_COUNT is the number of separate write operations, or 0, if
2147 that information is not available. TIME is how long the operation
2148 lasted. */
c906108c 2149
dcb07cfa 2150static void
d9fcf2fb 2151print_transfer_performance (struct ui_file *stream,
917317f4
JM
2152 unsigned long data_count,
2153 unsigned long write_count,
dcb07cfa 2154 std::chrono::steady_clock::duration time)
917317f4 2155{
dcb07cfa 2156 using namespace std::chrono;
79a45e25 2157 struct ui_out *uiout = current_uiout;
2b71414d 2158
dcb07cfa 2159 milliseconds ms = duration_cast<milliseconds> (time);
2b71414d 2160
112e8700 2161 uiout->text ("Transfer rate: ");
dcb07cfa 2162 if (ms.count () > 0)
8b93c638 2163 {
dcb07cfa 2164 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
9f43d28c 2165
112e8700 2166 if (uiout->is_mi_like_p ())
9f43d28c 2167 {
112e8700
SM
2168 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2169 uiout->text (" bits/sec");
9f43d28c
DJ
2170 }
2171 else if (rate < 1024)
2172 {
112e8700
SM
2173 uiout->field_fmt ("transfer-rate", "%lu", rate);
2174 uiout->text (" bytes/sec");
9f43d28c
DJ
2175 }
2176 else
2177 {
112e8700
SM
2178 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2179 uiout->text (" KB/sec");
9f43d28c 2180 }
8b93c638
JM
2181 }
2182 else
2183 {
112e8700
SM
2184 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2185 uiout->text (" bits in <1 sec");
8b93c638
JM
2186 }
2187 if (write_count > 0)
2188 {
112e8700
SM
2189 uiout->text (", ");
2190 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2191 uiout->text (" bytes/write");
8b93c638 2192 }
112e8700 2193 uiout->text (".\n");
c906108c
SS
2194}
2195
2196/* This function allows the addition of incrementally linked object files.
2197 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2198/* Note: ezannoni 2000-04-13 This function/command used to have a
2199 special case syntax for the rombug target (Rombug is the boot
2200 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2201 rombug case, the user doesn't need to supply a text address,
2202 instead a call to target_link() (in target.c) would supply the
c378eb4e 2203 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2204
c906108c 2205static void
2cf311eb 2206add_symbol_file_command (const char *args, int from_tty)
c906108c 2207{
5af949e3 2208 struct gdbarch *gdbarch = get_current_arch ();
ee0c3293 2209 gdb::unique_xmalloc_ptr<char> filename;
c906108c 2210 char *arg;
2acceee2
JM
2211 int argcnt = 0;
2212 int sec_num = 0;
76ad5e1e 2213 struct objfile *objf;
b15cc25c
PA
2214 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2215 symfile_add_flags add_flags = 0;
2216
2217 if (from_tty)
2218 add_flags |= SYMFILE_VERBOSE;
db162d44 2219
a39a16c4 2220 struct sect_opt
2acceee2 2221 {
a121b7c1
PA
2222 const char *name;
2223 const char *value;
a39a16c4 2224 };
db162d44 2225
a39a16c4 2226 struct section_addr_info *section_addrs;
40fc416f
SDJ
2227 std::vector<sect_opt> sect_opts = { { ".text", NULL } };
2228 bool stop_processing_options = false;
3017564a 2229 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2230
c906108c
SS
2231 dont_repeat ();
2232
2233 if (args == NULL)
8a3fe4f8 2234 error (_("add-symbol-file takes a file name and an address"));
c906108c 2235
40fc416f 2236 bool seen_addr = false;
773a1edc 2237 gdb_argv argv (args);
db162d44 2238
5b96932b
AS
2239 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2240 {
40fc416f 2241 if (stop_processing_options || *arg != '-')
41dc8db8 2242 {
40fc416f 2243 if (filename == NULL)
41dc8db8 2244 {
40fc416f
SDJ
2245 /* First non-option argument is always the filename. */
2246 filename.reset (tilde_expand (arg));
41dc8db8 2247 }
40fc416f 2248 else if (!seen_addr)
41dc8db8 2249 {
40fc416f
SDJ
2250 /* The second non-option argument is always the text
2251 address at which to load the program. */
2252 sect_opts[0].value = arg;
2253 seen_addr = true;
41dc8db8
MB
2254 }
2255 else
02ca603a 2256 error (_("Unrecognized argument \"%s\""), arg);
41dc8db8 2257 }
40fc416f
SDJ
2258 else if (strcmp (arg, "-readnow") == 0)
2259 flags |= OBJF_READNOW;
97cbe998
SDJ
2260 else if (strcmp (arg, "-readnever") == 0)
2261 flags |= OBJF_READNEVER;
40fc416f
SDJ
2262 else if (strcmp (arg, "-s") == 0)
2263 {
2264 if (argv[argcnt + 1] == NULL)
2265 error (_("Missing section name after \"-s\""));
2266 else if (argv[argcnt + 2] == NULL)
2267 error (_("Missing section address after \"-s\""));
2268
2269 sect_opt sect = { argv[argcnt + 1], argv[argcnt + 2] };
2270
2271 sect_opts.push_back (sect);
2272 argcnt += 2;
2273 }
2274 else if (strcmp (arg, "--") == 0)
2275 stop_processing_options = true;
2276 else
2277 error (_("Unrecognized argument \"%s\""), arg);
c906108c 2278 }
c906108c 2279
40fc416f
SDJ
2280 if (filename == NULL)
2281 error (_("You must provide a filename to be loaded."));
2282
97cbe998
SDJ
2283 validate_readnow_readnever (flags);
2284
927890d0
JB
2285 /* This command takes at least two arguments. The first one is a
2286 filename, and the second is the address where this file has been
2287 loaded. Abort now if this address hasn't been provided by the
2288 user. */
40fc416f 2289 if (!seen_addr)
ee0c3293
TT
2290 error (_("The address where %s has been loaded is missing"),
2291 filename.get ());
927890d0 2292
c378eb4e 2293 /* Print the prompt for the query below. And save the arguments into
db162d44
EZ
2294 a sect_addr_info structure to be passed around to other
2295 functions. We have to split this up into separate print
bb599908 2296 statements because hex_string returns a local static
c378eb4e 2297 string. */
5417f6dc 2298
ee0c3293
TT
2299 printf_unfiltered (_("add symbol table from file \"%s\" at\n"),
2300 filename.get ());
f978cb06 2301 section_addrs = alloc_section_addr_info (sect_opts.size ());
a39a16c4 2302 make_cleanup (xfree, section_addrs);
f978cb06 2303 for (sect_opt &sect : sect_opts)
c906108c 2304 {
db162d44 2305 CORE_ADDR addr;
f978cb06
TT
2306 const char *val = sect.value;
2307 const char *sec = sect.name;
5417f6dc 2308
ae822768 2309 addr = parse_and_eval_address (val);
db162d44 2310
db162d44 2311 /* Here we store the section offsets in the order they were
c378eb4e 2312 entered on the command line. */
a121b7c1 2313 section_addrs->other[sec_num].name = (char *) sec;
a39a16c4 2314 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2315 printf_unfiltered ("\t%s_addr = %s\n", sec,
2316 paddress (gdbarch, addr));
db162d44
EZ
2317 sec_num++;
2318
5417f6dc 2319 /* The object's sections are initialized when a
db162d44 2320 call is made to build_objfile_section_table (objfile).
5417f6dc 2321 This happens in reread_symbols.
db162d44
EZ
2322 At this point, we don't know what file type this is,
2323 so we can't determine what section names are valid. */
2acceee2 2324 }
d76488d8 2325 section_addrs->num_sections = sec_num;
db162d44 2326
2acceee2 2327 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2328 error (_("Not confirmed."));
c906108c 2329
ee0c3293 2330 objf = symbol_file_add (filename.get (), add_flags, section_addrs, flags);
76ad5e1e
NB
2331
2332 add_target_sections_of_objfile (objf);
c906108c
SS
2333
2334 /* Getting new symbols may change our opinion about what is
2335 frameless. */
2336 reinit_frame_cache ();
db162d44 2337 do_cleanups (my_cleanups);
c906108c
SS
2338}
2339\f
70992597 2340
63644780
NB
2341/* This function removes a symbol file that was added via add-symbol-file. */
2342
2343static void
2cf311eb 2344remove_symbol_file_command (const char *args, int from_tty)
63644780 2345{
63644780 2346 struct objfile *objf = NULL;
63644780 2347 struct program_space *pspace = current_program_space;
63644780
NB
2348
2349 dont_repeat ();
2350
2351 if (args == NULL)
2352 error (_("remove-symbol-file: no symbol file provided"));
2353
773a1edc 2354 gdb_argv argv (args);
63644780
NB
2355
2356 if (strcmp (argv[0], "-a") == 0)
2357 {
2358 /* Interpret the next argument as an address. */
2359 CORE_ADDR addr;
2360
2361 if (argv[1] == NULL)
2362 error (_("Missing address argument"));
2363
2364 if (argv[2] != NULL)
2365 error (_("Junk after %s"), argv[1]);
2366
2367 addr = parse_and_eval_address (argv[1]);
2368
2369 ALL_OBJFILES (objf)
2370 {
d03de421
PA
2371 if ((objf->flags & OBJF_USERLOADED) != 0
2372 && (objf->flags & OBJF_SHARED) != 0
63644780
NB
2373 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2374 break;
2375 }
2376 }
2377 else if (argv[0] != NULL)
2378 {
2379 /* Interpret the current argument as a file name. */
63644780
NB
2380
2381 if (argv[1] != NULL)
2382 error (_("Junk after %s"), argv[0]);
2383
ee0c3293 2384 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
63644780
NB
2385
2386 ALL_OBJFILES (objf)
2387 {
d03de421
PA
2388 if ((objf->flags & OBJF_USERLOADED) != 0
2389 && (objf->flags & OBJF_SHARED) != 0
63644780 2390 && objf->pspace == pspace
ee0c3293 2391 && filename_cmp (filename.get (), objfile_name (objf)) == 0)
63644780
NB
2392 break;
2393 }
2394 }
2395
2396 if (objf == NULL)
2397 error (_("No symbol file found"));
2398
2399 if (from_tty
2400 && !query (_("Remove symbol table from file \"%s\"? "),
2401 objfile_name (objf)))
2402 error (_("Not confirmed."));
2403
9e86da07 2404 delete objf;
63644780 2405 clear_symtab_users (0);
63644780
NB
2406}
2407
c906108c 2408/* Re-read symbols if a symbol-file has changed. */
3b7bacac 2409
c906108c 2410void
fba45db2 2411reread_symbols (void)
c906108c
SS
2412{
2413 struct objfile *objfile;
2414 long new_modtime;
c906108c
SS
2415 struct stat new_statbuf;
2416 int res;
4c404b8b 2417 std::vector<struct objfile *> new_objfiles;
c906108c
SS
2418
2419 /* With the addition of shared libraries, this should be modified,
2420 the load time should be saved in the partial symbol tables, since
2421 different tables may come from different source files. FIXME.
2422 This routine should then walk down each partial symbol table
c378eb4e 2423 and see if the symbol table that it originates from has been changed. */
c906108c 2424
c5aa993b
JM
2425 for (objfile = object_files; objfile; objfile = objfile->next)
2426 {
9cce227f
TG
2427 if (objfile->obfd == NULL)
2428 continue;
2429
2430 /* Separate debug objfiles are handled in the main objfile. */
2431 if (objfile->separate_debug_objfile_backlink)
2432 continue;
2433
02aeec7b
JB
2434 /* If this object is from an archive (what you usually create with
2435 `ar', often called a `static library' on most systems, though
2436 a `shared library' on AIX is also an archive), then you should
2437 stat on the archive name, not member name. */
9cce227f
TG
2438 if (objfile->obfd->my_archive)
2439 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2440 else
4262abfb 2441 res = stat (objfile_name (objfile), &new_statbuf);
9cce227f
TG
2442 if (res != 0)
2443 {
c378eb4e 2444 /* FIXME, should use print_sys_errmsg but it's not filtered. */
9cce227f 2445 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
4262abfb 2446 objfile_name (objfile));
9cce227f
TG
2447 continue;
2448 }
2449 new_modtime = new_statbuf.st_mtime;
2450 if (new_modtime != objfile->mtime)
2451 {
2452 struct cleanup *old_cleanups;
2453 struct section_offsets *offsets;
2454 int num_offsets;
24ba069a 2455 char *original_name;
9cce227f
TG
2456
2457 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
4262abfb 2458 objfile_name (objfile));
9cce227f
TG
2459
2460 /* There are various functions like symbol_file_add,
2461 symfile_bfd_open, syms_from_objfile, etc., which might
2462 appear to do what we want. But they have various other
2463 effects which we *don't* want. So we just do stuff
2464 ourselves. We don't worry about mapped files (for one thing,
2465 any mapped file will be out of date). */
2466
2467 /* If we get an error, blow away this objfile (not sure if
2468 that is the correct response for things like shared
2469 libraries). */
ed2b3126
TT
2470 std::unique_ptr<struct objfile> objfile_holder (objfile);
2471
9cce227f 2472 /* We need to do this whenever any symbols go away. */
ed2b3126 2473 old_cleanups = make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
9cce227f 2474
0ba1096a
KT
2475 if (exec_bfd != NULL
2476 && filename_cmp (bfd_get_filename (objfile->obfd),
2477 bfd_get_filename (exec_bfd)) == 0)
9cce227f
TG
2478 {
2479 /* Reload EXEC_BFD without asking anything. */
2480
2481 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2482 }
2483
f6eeced0
JK
2484 /* Keep the calls order approx. the same as in free_objfile. */
2485
2486 /* Free the separate debug objfiles. It will be
2487 automatically recreated by sym_read. */
2488 free_objfile_separate_debug (objfile);
2489
2490 /* Remove any references to this objfile in the global
2491 value lists. */
2492 preserve_values (objfile);
2493
2494 /* Nuke all the state that we will re-read. Much of the following
2495 code which sets things to NULL really is necessary to tell
2496 other parts of GDB that there is nothing currently there.
2497
2498 Try to keep the freeing order compatible with free_objfile. */
2499
2500 if (objfile->sf != NULL)
2501 {
2502 (*objfile->sf->sym_finish) (objfile);
2503 }
2504
2505 clear_objfile_data (objfile);
2506
e1507e95 2507 /* Clean up any state BFD has sitting around. */
a4453b7e 2508 {
192b62ce 2509 gdb_bfd_ref_ptr obfd (objfile->obfd);
d3846e71 2510 char *obfd_filename;
a4453b7e
TT
2511
2512 obfd_filename = bfd_get_filename (objfile->obfd);
2513 /* Open the new BFD before freeing the old one, so that
2514 the filename remains live. */
192b62ce
TT
2515 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2516 objfile->obfd = temp.release ();
e1507e95 2517 if (objfile->obfd == NULL)
192b62ce 2518 error (_("Can't open %s to read symbols."), obfd_filename);
a4453b7e
TT
2519 }
2520
24ba069a
JK
2521 original_name = xstrdup (objfile->original_name);
2522 make_cleanup (xfree, original_name);
2523
9cce227f
TG
2524 /* bfd_openr sets cacheable to true, which is what we want. */
2525 if (!bfd_check_format (objfile->obfd, bfd_object))
4262abfb 2526 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
9cce227f
TG
2527 bfd_errmsg (bfd_get_error ()));
2528
2529 /* Save the offsets, we will nuke them with the rest of the
2530 objfile_obstack. */
2531 num_offsets = objfile->num_sections;
2532 offsets = ((struct section_offsets *)
2533 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2534 memcpy (offsets, objfile->section_offsets,
2535 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2536
9cce227f
TG
2537 /* FIXME: Do we have to free a whole linked list, or is this
2538 enough? */
af5bf4ad
SM
2539 objfile->global_psymbols.clear ();
2540 objfile->static_psymbols.clear ();
9cce227f 2541
c378eb4e 2542 /* Free the obstacks for non-reusable objfiles. */
710e1a31
SW
2543 psymbol_bcache_free (objfile->psymbol_cache);
2544 objfile->psymbol_cache = psymbol_bcache_init ();
41664b45
DG
2545
2546 /* NB: after this call to obstack_free, objfiles_changed
2547 will need to be called (see discussion below). */
9cce227f
TG
2548 obstack_free (&objfile->objfile_obstack, 0);
2549 objfile->sections = NULL;
43f3e411 2550 objfile->compunit_symtabs = NULL;
9cce227f
TG
2551 objfile->psymtabs = NULL;
2552 objfile->psymtabs_addrmap = NULL;
2553 objfile->free_psymtabs = NULL;
34eaf542 2554 objfile->template_symbols = NULL;
9cce227f 2555
9cce227f
TG
2556 /* obstack_init also initializes the obstack so it is
2557 empty. We could use obstack_specify_allocation but
d82ea6a8 2558 gdb_obstack.h specifies the alloc/dealloc functions. */
9cce227f 2559 obstack_init (&objfile->objfile_obstack);
779bd270 2560
846060df
JB
2561 /* set_objfile_per_bfd potentially allocates the per-bfd
2562 data on the objfile's obstack (if sharing data across
2563 multiple users is not possible), so it's important to
2564 do it *after* the obstack has been initialized. */
2565 set_objfile_per_bfd (objfile);
2566
224c3ddb
SM
2567 objfile->original_name
2568 = (char *) obstack_copy0 (&objfile->objfile_obstack, original_name,
2569 strlen (original_name));
24ba069a 2570
779bd270
DE
2571 /* Reset the sym_fns pointer. The ELF reader can change it
2572 based on whether .gdb_index is present, and we need it to
2573 start over. PR symtab/15885 */
8fb8eb5c 2574 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
779bd270 2575
d82ea6a8 2576 build_objfile_section_table (objfile);
9cce227f
TG
2577 terminate_minimal_symbol_table (objfile);
2578
2579 /* We use the same section offsets as from last time. I'm not
2580 sure whether that is always correct for shared libraries. */
2581 objfile->section_offsets = (struct section_offsets *)
2582 obstack_alloc (&objfile->objfile_obstack,
2583 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2584 memcpy (objfile->section_offsets, offsets,
2585 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2586 objfile->num_sections = num_offsets;
2587
2588 /* What the hell is sym_new_init for, anyway? The concept of
2589 distinguishing between the main file and additional files
2590 in this way seems rather dubious. */
2591 if (objfile == symfile_objfile)
c906108c 2592 {
9cce227f 2593 (*objfile->sf->sym_new_init) (objfile);
c906108c 2594 }
9cce227f
TG
2595
2596 (*objfile->sf->sym_init) (objfile);
2597 clear_complaints (&symfile_complaints, 1, 1);
608e2dbb
TT
2598
2599 objfile->flags &= ~OBJF_PSYMTABS_READ;
41664b45
DG
2600
2601 /* We are about to read new symbols and potentially also
2602 DWARF information. Some targets may want to pass addresses
2603 read from DWARF DIE's through an adjustment function before
2604 saving them, like MIPS, which may call into
2605 "find_pc_section". When called, that function will make
2606 use of per-objfile program space data.
2607
2608 Since we discarded our section information above, we have
2609 dangling pointers in the per-objfile program space data
2610 structure. Force GDB to update the section mapping
2611 information by letting it know the objfile has changed,
2612 making the dangling pointers point to correct data
2613 again. */
2614
2615 objfiles_changed ();
2616
608e2dbb 2617 read_symbols (objfile, 0);
b11896a5 2618
9cce227f 2619 if (!objfile_has_symbols (objfile))
c906108c 2620 {
9cce227f
TG
2621 wrap_here ("");
2622 printf_unfiltered (_("(no debugging symbols found)\n"));
2623 wrap_here ("");
c5aa993b 2624 }
9cce227f
TG
2625
2626 /* We're done reading the symbol file; finish off complaints. */
2627 clear_complaints (&symfile_complaints, 0, 1);
2628
2629 /* Getting new symbols may change our opinion about what is
2630 frameless. */
2631
2632 reinit_frame_cache ();
2633
2634 /* Discard cleanups as symbol reading was successful. */
ed2b3126 2635 objfile_holder.release ();
9cce227f
TG
2636 discard_cleanups (old_cleanups);
2637
2638 /* If the mtime has changed between the time we set new_modtime
2639 and now, we *want* this to be out of date, so don't call stat
2640 again now. */
2641 objfile->mtime = new_modtime;
9cce227f 2642 init_entry_point_info (objfile);
4ac39b97 2643
4c404b8b 2644 new_objfiles.push_back (objfile);
c906108c
SS
2645 }
2646 }
c906108c 2647
4c404b8b 2648 if (!new_objfiles.empty ())
ea53e89f 2649 {
c1e56572 2650 clear_symtab_users (0);
4ac39b97
JK
2651
2652 /* clear_objfile_data for each objfile was called before freeing it and
2653 observer_notify_new_objfile (NULL) has been called by
2654 clear_symtab_users above. Notify the new files now. */
4c404b8b
TT
2655 for (auto iter : new_objfiles)
2656 observer_notify_new_objfile (iter);
4ac39b97 2657
ea53e89f
JB
2658 /* At least one objfile has changed, so we can consider that
2659 the executable we're debugging has changed too. */
781b42b0 2660 observer_notify_executable_changed ();
ea53e89f 2661 }
c906108c 2662}
c906108c
SS
2663\f
2664
593e3209 2665struct filename_language
c5aa993b 2666{
593e3209
SM
2667 filename_language (const std::string &ext_, enum language lang_)
2668 : ext (ext_), lang (lang_)
2669 {}
3fcf0b0d 2670
593e3209
SM
2671 std::string ext;
2672 enum language lang;
2673};
c906108c 2674
593e3209 2675static std::vector<filename_language> filename_language_table;
c906108c 2676
56618e20
TT
2677/* See symfile.h. */
2678
2679void
2680add_filename_language (const char *ext, enum language lang)
c906108c 2681{
593e3209 2682 filename_language_table.emplace_back (ext, lang);
c906108c
SS
2683}
2684
2685static char *ext_args;
920d2a44
AC
2686static void
2687show_ext_args (struct ui_file *file, int from_tty,
2688 struct cmd_list_element *c, const char *value)
2689{
3e43a32a
MS
2690 fprintf_filtered (file,
2691 _("Mapping between filename extension "
2692 "and source language is \"%s\".\n"),
920d2a44
AC
2693 value);
2694}
c906108c
SS
2695
2696static void
eb4c3f4a
TT
2697set_ext_lang_command (const char *args,
2698 int from_tty, struct cmd_list_element *e)
c906108c 2699{
c906108c
SS
2700 char *cp = ext_args;
2701 enum language lang;
2702
c378eb4e 2703 /* First arg is filename extension, starting with '.' */
c906108c 2704 if (*cp != '.')
8a3fe4f8 2705 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2706
2707 /* Find end of first arg. */
c5aa993b 2708 while (*cp && !isspace (*cp))
c906108c
SS
2709 cp++;
2710
2711 if (*cp == '\0')
3e43a32a
MS
2712 error (_("'%s': two arguments required -- "
2713 "filename extension and language"),
c906108c
SS
2714 ext_args);
2715
c378eb4e 2716 /* Null-terminate first arg. */
c5aa993b 2717 *cp++ = '\0';
c906108c
SS
2718
2719 /* Find beginning of second arg, which should be a source language. */
529480d0 2720 cp = skip_spaces (cp);
c906108c
SS
2721
2722 if (*cp == '\0')
3e43a32a
MS
2723 error (_("'%s': two arguments required -- "
2724 "filename extension and language"),
c906108c
SS
2725 ext_args);
2726
2727 /* Lookup the language from among those we know. */
2728 lang = language_enum (cp);
2729
593e3209 2730 auto it = filename_language_table.begin ();
c906108c 2731 /* Now lookup the filename extension: do we already know it? */
593e3209 2732 for (; it != filename_language_table.end (); it++)
3fcf0b0d 2733 {
593e3209 2734 if (it->ext == ext_args)
3fcf0b0d
TT
2735 break;
2736 }
c906108c 2737
593e3209 2738 if (it == filename_language_table.end ())
c906108c 2739 {
c378eb4e 2740 /* New file extension. */
c906108c
SS
2741 add_filename_language (ext_args, lang);
2742 }
2743 else
2744 {
c378eb4e 2745 /* Redefining a previously known filename extension. */
c906108c
SS
2746
2747 /* if (from_tty) */
2748 /* query ("Really make files of type %s '%s'?", */
2749 /* ext_args, language_str (lang)); */
2750
593e3209 2751 it->lang = lang;
c906108c
SS
2752 }
2753}
2754
2755static void
1d12d88f 2756info_ext_lang_command (const char *args, int from_tty)
c906108c 2757{
a3f17187 2758 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c 2759 printf_filtered ("\n\n");
593e3209
SM
2760 for (const filename_language &entry : filename_language_table)
2761 printf_filtered ("\t%s\t- %s\n", entry.ext.c_str (),
2762 language_str (entry.lang));
c906108c
SS
2763}
2764
c906108c 2765enum language
dd786858 2766deduce_language_from_filename (const char *filename)
c906108c 2767{
e6a959d6 2768 const char *cp;
c906108c
SS
2769
2770 if (filename != NULL)
2771 if ((cp = strrchr (filename, '.')) != NULL)
3fcf0b0d 2772 {
593e3209
SM
2773 for (const filename_language &entry : filename_language_table)
2774 if (entry.ext == cp)
2775 return entry.lang;
3fcf0b0d 2776 }
c906108c
SS
2777
2778 return language_unknown;
2779}
2780\f
43f3e411
DE
2781/* Allocate and initialize a new symbol table.
2782 CUST is from the result of allocate_compunit_symtab. */
c906108c
SS
2783
2784struct symtab *
43f3e411 2785allocate_symtab (struct compunit_symtab *cust, const char *filename)
c906108c 2786{
43f3e411
DE
2787 struct objfile *objfile = cust->objfile;
2788 struct symtab *symtab
2789 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
c906108c 2790
19ba03f4
SM
2791 symtab->filename
2792 = (const char *) bcache (filename, strlen (filename) + 1,
21ea9eec 2793 objfile->per_bfd->filename_cache);
c5aa993b
JM
2794 symtab->fullname = NULL;
2795 symtab->language = deduce_language_from_filename (filename);
c906108c 2796
db0fec5c
DE
2797 /* This can be very verbose with lots of headers.
2798 Only print at higher debug levels. */
2799 if (symtab_create_debug >= 2)
45cfd468
DE
2800 {
2801 /* Be a bit clever with debugging messages, and don't print objfile
2802 every time, only when it changes. */
2803 static char *last_objfile_name = NULL;
2804
2805 if (last_objfile_name == NULL
4262abfb 2806 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
45cfd468
DE
2807 {
2808 xfree (last_objfile_name);
4262abfb 2809 last_objfile_name = xstrdup (objfile_name (objfile));
45cfd468
DE
2810 fprintf_unfiltered (gdb_stdlog,
2811 "Creating one or more symtabs for objfile %s ...\n",
2812 last_objfile_name);
2813 }
2814 fprintf_unfiltered (gdb_stdlog,
b3dbbd6f
PM
2815 "Created symtab %s for module %s.\n",
2816 host_address_to_string (symtab), filename);
45cfd468
DE
2817 }
2818
43f3e411
DE
2819 /* Add it to CUST's list of symtabs. */
2820 if (cust->filetabs == NULL)
2821 {
2822 cust->filetabs = symtab;
2823 cust->last_filetab = symtab;
2824 }
2825 else
2826 {
2827 cust->last_filetab->next = symtab;
2828 cust->last_filetab = symtab;
2829 }
2830
2831 /* Backlink to the containing compunit symtab. */
2832 symtab->compunit_symtab = cust;
2833
2834 return symtab;
2835}
2836
2837/* Allocate and initialize a new compunit.
2838 NAME is the name of the main source file, if there is one, or some
2839 descriptive text if there are no source files. */
2840
2841struct compunit_symtab *
2842allocate_compunit_symtab (struct objfile *objfile, const char *name)
2843{
2844 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2845 struct compunit_symtab);
2846 const char *saved_name;
2847
2848 cu->objfile = objfile;
2849
2850 /* The name we record here is only for display/debugging purposes.
2851 Just save the basename to avoid path issues (too long for display,
2852 relative vs absolute, etc.). */
2853 saved_name = lbasename (name);
224c3ddb
SM
2854 cu->name
2855 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2856 strlen (saved_name));
43f3e411
DE
2857
2858 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2859
2860 if (symtab_create_debug)
2861 {
2862 fprintf_unfiltered (gdb_stdlog,
2863 "Created compunit symtab %s for %s.\n",
2864 host_address_to_string (cu),
2865 cu->name);
2866 }
2867
2868 return cu;
2869}
2870
2871/* Hook CU to the objfile it comes from. */
2872
2873void
2874add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2875{
2876 cu->next = cu->objfile->compunit_symtabs;
2877 cu->objfile->compunit_symtabs = cu;
c906108c 2878}
c906108c 2879\f
c5aa993b 2880
b15cc25c
PA
2881/* Reset all data structures in gdb which may contain references to
2882 symbol table data. */
c906108c
SS
2883
2884void
b15cc25c 2885clear_symtab_users (symfile_add_flags add_flags)
c906108c
SS
2886{
2887 /* Someday, we should do better than this, by only blowing away
2888 the things that really need to be blown. */
c0501be5
DJ
2889
2890 /* Clear the "current" symtab first, because it is no longer valid.
2891 breakpoint_re_set may try to access the current symtab. */
2892 clear_current_source_symtab_and_line ();
2893
c906108c 2894 clear_displays ();
1bfeeb0f 2895 clear_last_displayed_sal ();
c906108c 2896 clear_pc_function_cache ();
06d3b283 2897 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2898
2899 /* Clear globals which might have pointed into a removed objfile.
2900 FIXME: It's not clear which of these are supposed to persist
2901 between expressions and which ought to be reset each time. */
2902 expression_context_block = NULL;
2903 innermost_block = NULL;
8756216b
DP
2904
2905 /* Varobj may refer to old symbols, perform a cleanup. */
2906 varobj_invalidate ();
2907
e700d1b2
JB
2908 /* Now that the various caches have been cleared, we can re_set
2909 our breakpoints without risking it using stale data. */
2910 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2911 breakpoint_re_set ();
c906108c
SS
2912}
2913
74b7792f
AC
2914static void
2915clear_symtab_users_cleanup (void *ignore)
2916{
c1e56572 2917 clear_symtab_users (0);
74b7792f 2918}
c906108c 2919\f
c906108c
SS
2920/* OVERLAYS:
2921 The following code implements an abstraction for debugging overlay sections.
2922
2923 The target model is as follows:
2924 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2925 same VMA, each with its own unique LMA (or load address).
c906108c 2926 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2927 sections, one by one, from the load address into the VMA address.
5417f6dc 2928 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2929 sections should be considered to be mapped from the VMA to the LMA.
2930 This information is used for symbol lookup, and memory read/write.
5417f6dc 2931 For instance, if a section has been mapped then its contents
c5aa993b 2932 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2933
2934 Two levels of debugger support for overlays are available. One is
2935 "manual", in which the debugger relies on the user to tell it which
2936 overlays are currently mapped. This level of support is
2937 implemented entirely in the core debugger, and the information about
2938 whether a section is mapped is kept in the objfile->obj_section table.
2939
2940 The second level of support is "automatic", and is only available if
2941 the target-specific code provides functionality to read the target's
2942 overlay mapping table, and translate its contents for the debugger
2943 (by updating the mapped state information in the obj_section tables).
2944
2945 The interface is as follows:
c5aa993b
JM
2946 User commands:
2947 overlay map <name> -- tell gdb to consider this section mapped
2948 overlay unmap <name> -- tell gdb to consider this section unmapped
2949 overlay list -- list the sections that GDB thinks are mapped
2950 overlay read-target -- get the target's state of what's mapped
2951 overlay off/manual/auto -- set overlay debugging state
2952 Functional interface:
2953 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2954 section, return that section.
5417f6dc 2955 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 2956 the pc, either in its VMA or its LMA
714835d5 2957 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
2958 section_is_overlay(sect): true if section's VMA != LMA
2959 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2960 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2961 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2962 overlay_mapped_address(...): map an address from section's LMA to VMA
2963 overlay_unmapped_address(...): map an address from section's VMA to LMA
2964 symbol_overlayed_address(...): Return a "current" address for symbol:
2965 either in VMA or LMA depending on whether
c378eb4e 2966 the symbol's section is currently mapped. */
c906108c
SS
2967
2968/* Overlay debugging state: */
2969
d874f1e2 2970enum overlay_debugging_state overlay_debugging = ovly_off;
c378eb4e 2971int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
c906108c 2972
c906108c 2973/* Function: section_is_overlay (SECTION)
5417f6dc 2974 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
2975 SECTION is loaded at an address different from where it will "run". */
2976
2977int
714835d5 2978section_is_overlay (struct obj_section *section)
c906108c 2979{
714835d5
UW
2980 if (overlay_debugging && section)
2981 {
714835d5 2982 asection *bfd_section = section->the_bfd_section;
f888f159 2983
714835d5
UW
2984 if (bfd_section_lma (abfd, bfd_section) != 0
2985 && bfd_section_lma (abfd, bfd_section)
2986 != bfd_section_vma (abfd, bfd_section))
2987 return 1;
2988 }
c906108c
SS
2989
2990 return 0;
2991}
2992
2993/* Function: overlay_invalidate_all (void)
2994 Invalidate the mapped state of all overlay sections (mark it as stale). */
2995
2996static void
fba45db2 2997overlay_invalidate_all (void)
c906108c 2998{
c5aa993b 2999 struct objfile *objfile;
c906108c
SS
3000 struct obj_section *sect;
3001
3002 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
3003 if (section_is_overlay (sect))
3004 sect->ovly_mapped = -1;
c906108c
SS
3005}
3006
714835d5 3007/* Function: section_is_mapped (SECTION)
5417f6dc 3008 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3009
3010 Access to the ovly_mapped flag is restricted to this function, so
3011 that we can do automatic update. If the global flag
3012 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3013 overlay_invalidate_all. If the mapped state of the particular
3014 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3015
714835d5
UW
3016int
3017section_is_mapped (struct obj_section *osect)
c906108c 3018{
9216df95
UW
3019 struct gdbarch *gdbarch;
3020
714835d5 3021 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
3022 return 0;
3023
c5aa993b 3024 switch (overlay_debugging)
c906108c
SS
3025 {
3026 default:
d874f1e2 3027 case ovly_off:
c5aa993b 3028 return 0; /* overlay debugging off */
d874f1e2 3029 case ovly_auto: /* overlay debugging automatic */
1c772458 3030 /* Unles there is a gdbarch_overlay_update function,
c378eb4e 3031 there's really nothing useful to do here (can't really go auto). */
9216df95
UW
3032 gdbarch = get_objfile_arch (osect->objfile);
3033 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
3034 {
3035 if (overlay_cache_invalid)
3036 {
3037 overlay_invalidate_all ();
3038 overlay_cache_invalid = 0;
3039 }
3040 if (osect->ovly_mapped == -1)
9216df95 3041 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
3042 }
3043 /* fall thru to manual case */
d874f1e2 3044 case ovly_on: /* overlay debugging manual */
c906108c
SS
3045 return osect->ovly_mapped == 1;
3046 }
3047}
3048
c906108c
SS
3049/* Function: pc_in_unmapped_range
3050 If PC falls into the lma range of SECTION, return true, else false. */
3051
3052CORE_ADDR
714835d5 3053pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3054{
714835d5
UW
3055 if (section_is_overlay (section))
3056 {
3057 bfd *abfd = section->objfile->obfd;
3058 asection *bfd_section = section->the_bfd_section;
fbd35540 3059
714835d5
UW
3060 /* We assume the LMA is relocated by the same offset as the VMA. */
3061 bfd_vma size = bfd_get_section_size (bfd_section);
3062 CORE_ADDR offset = obj_section_offset (section);
3063
3064 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3065 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3066 return 1;
3067 }
c906108c 3068
c906108c
SS
3069 return 0;
3070}
3071
3072/* Function: pc_in_mapped_range
3073 If PC falls into the vma range of SECTION, return true, else false. */
3074
3075CORE_ADDR
714835d5 3076pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3077{
714835d5
UW
3078 if (section_is_overlay (section))
3079 {
3080 if (obj_section_addr (section) <= pc
3081 && pc < obj_section_endaddr (section))
3082 return 1;
3083 }
c906108c 3084
c906108c
SS
3085 return 0;
3086}
3087
9ec8e6a0
JB
3088/* Return true if the mapped ranges of sections A and B overlap, false
3089 otherwise. */
3b7bacac 3090
b9362cc7 3091static int
714835d5 3092sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3093{
714835d5
UW
3094 CORE_ADDR a_start = obj_section_addr (a);
3095 CORE_ADDR a_end = obj_section_endaddr (a);
3096 CORE_ADDR b_start = obj_section_addr (b);
3097 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3098
3099 return (a_start < b_end && b_start < a_end);
3100}
3101
c906108c
SS
3102/* Function: overlay_unmapped_address (PC, SECTION)
3103 Returns the address corresponding to PC in the unmapped (load) range.
3104 May be the same as PC. */
3105
3106CORE_ADDR
714835d5 3107overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3108{
714835d5
UW
3109 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3110 {
714835d5 3111 asection *bfd_section = section->the_bfd_section;
fbd35540 3112
714835d5
UW
3113 return pc + bfd_section_lma (abfd, bfd_section)
3114 - bfd_section_vma (abfd, bfd_section);
3115 }
c906108c
SS
3116
3117 return pc;
3118}
3119
3120/* Function: overlay_mapped_address (PC, SECTION)
3121 Returns the address corresponding to PC in the mapped (runtime) range.
3122 May be the same as PC. */
3123
3124CORE_ADDR
714835d5 3125overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3126{
714835d5
UW
3127 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3128 {
714835d5 3129 asection *bfd_section = section->the_bfd_section;
fbd35540 3130
714835d5
UW
3131 return pc + bfd_section_vma (abfd, bfd_section)
3132 - bfd_section_lma (abfd, bfd_section);
3133 }
c906108c
SS
3134
3135 return pc;
3136}
3137
5417f6dc 3138/* Function: symbol_overlayed_address
c906108c
SS
3139 Return one of two addresses (relative to the VMA or to the LMA),
3140 depending on whether the section is mapped or not. */
3141
c5aa993b 3142CORE_ADDR
714835d5 3143symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3144{
3145 if (overlay_debugging)
3146 {
c378eb4e 3147 /* If the symbol has no section, just return its regular address. */
c906108c
SS
3148 if (section == 0)
3149 return address;
c378eb4e
MS
3150 /* If the symbol's section is not an overlay, just return its
3151 address. */
c906108c
SS
3152 if (!section_is_overlay (section))
3153 return address;
c378eb4e 3154 /* If the symbol's section is mapped, just return its address. */
c906108c
SS
3155 if (section_is_mapped (section))
3156 return address;
3157 /*
3158 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3159 * then return its LOADED address rather than its vma address!!
3160 */
3161 return overlay_unmapped_address (address, section);
3162 }
3163 return address;
3164}
3165
5417f6dc 3166/* Function: find_pc_overlay (PC)
c906108c
SS
3167 Return the best-match overlay section for PC:
3168 If PC matches a mapped overlay section's VMA, return that section.
3169 Else if PC matches an unmapped section's VMA, return that section.
3170 Else if PC matches an unmapped section's LMA, return that section. */
3171
714835d5 3172struct obj_section *
fba45db2 3173find_pc_overlay (CORE_ADDR pc)
c906108c 3174{
c5aa993b 3175 struct objfile *objfile;
c906108c
SS
3176 struct obj_section *osect, *best_match = NULL;
3177
3178 if (overlay_debugging)
b631e59b
KT
3179 {
3180 ALL_OBJSECTIONS (objfile, osect)
3181 if (section_is_overlay (osect))
c5aa993b 3182 {
b631e59b
KT
3183 if (pc_in_mapped_range (pc, osect))
3184 {
3185 if (section_is_mapped (osect))
3186 return osect;
3187 else
3188 best_match = osect;
3189 }
3190 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3191 best_match = osect;
3192 }
b631e59b 3193 }
714835d5 3194 return best_match;
c906108c
SS
3195}
3196
3197/* Function: find_pc_mapped_section (PC)
5417f6dc 3198 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3199 currently marked as MAPPED, return that section. Else return NULL. */
3200
714835d5 3201struct obj_section *
fba45db2 3202find_pc_mapped_section (CORE_ADDR pc)
c906108c 3203{
c5aa993b 3204 struct objfile *objfile;
c906108c
SS
3205 struct obj_section *osect;
3206
3207 if (overlay_debugging)
b631e59b
KT
3208 {
3209 ALL_OBJSECTIONS (objfile, osect)
3210 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3211 return osect;
3212 }
c906108c
SS
3213
3214 return NULL;
3215}
3216
3217/* Function: list_overlays_command
c378eb4e 3218 Print a list of mapped sections and their PC ranges. */
c906108c 3219
5d3055ad 3220static void
2cf311eb 3221list_overlays_command (const char *args, int from_tty)
c906108c 3222{
c5aa993b
JM
3223 int nmapped = 0;
3224 struct objfile *objfile;
c906108c
SS
3225 struct obj_section *osect;
3226
3227 if (overlay_debugging)
b631e59b
KT
3228 {
3229 ALL_OBJSECTIONS (objfile, osect)
714835d5 3230 if (section_is_mapped (osect))
b631e59b
KT
3231 {
3232 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3233 const char *name;
3234 bfd_vma lma, vma;
3235 int size;
3236
3237 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3238 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3239 size = bfd_get_section_size (osect->the_bfd_section);
3240 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3241
3242 printf_filtered ("Section %s, loaded at ", name);
3243 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3244 puts_filtered (" - ");
3245 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3246 printf_filtered (", mapped at ");
3247 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3248 puts_filtered (" - ");
3249 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3250 puts_filtered ("\n");
3251
3252 nmapped++;
3253 }
3254 }
c906108c 3255 if (nmapped == 0)
a3f17187 3256 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3257}
3258
3259/* Function: map_overlay_command
3260 Mark the named section as mapped (ie. residing at its VMA address). */
3261
5d3055ad 3262static void
2cf311eb 3263map_overlay_command (const char *args, int from_tty)
c906108c 3264{
c5aa993b
JM
3265 struct objfile *objfile, *objfile2;
3266 struct obj_section *sec, *sec2;
c906108c
SS
3267
3268 if (!overlay_debugging)
3e43a32a
MS
3269 error (_("Overlay debugging not enabled. Use "
3270 "either the 'overlay auto' or\n"
3271 "the 'overlay manual' command."));
c906108c
SS
3272
3273 if (args == 0 || *args == 0)
8a3fe4f8 3274 error (_("Argument required: name of an overlay section"));
c906108c 3275
c378eb4e 3276 /* First, find a section matching the user supplied argument. */
c906108c
SS
3277 ALL_OBJSECTIONS (objfile, sec)
3278 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b 3279 {
c378eb4e 3280 /* Now, check to see if the section is an overlay. */
714835d5 3281 if (!section_is_overlay (sec))
c5aa993b
JM
3282 continue; /* not an overlay section */
3283
c378eb4e 3284 /* Mark the overlay as "mapped". */
c5aa993b
JM
3285 sec->ovly_mapped = 1;
3286
3287 /* Next, make a pass and unmap any sections that are
3288 overlapped by this new section: */
3289 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3290 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3291 {
3292 if (info_verbose)
a3f17187 3293 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3294 bfd_section_name (objfile->obfd,
3295 sec2->the_bfd_section));
c378eb4e 3296 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
c5aa993b
JM
3297 }
3298 return;
3299 }
8a3fe4f8 3300 error (_("No overlay section called %s"), args);
c906108c
SS
3301}
3302
3303/* Function: unmap_overlay_command
5417f6dc 3304 Mark the overlay section as unmapped
c906108c
SS
3305 (ie. resident in its LMA address range, rather than the VMA range). */
3306
5d3055ad 3307static void
2cf311eb 3308unmap_overlay_command (const char *args, int from_tty)
c906108c 3309{
c5aa993b 3310 struct objfile *objfile;
7a270e0c 3311 struct obj_section *sec = NULL;
c906108c
SS
3312
3313 if (!overlay_debugging)
3e43a32a
MS
3314 error (_("Overlay debugging not enabled. "
3315 "Use either the 'overlay auto' or\n"
3316 "the 'overlay manual' command."));
c906108c
SS
3317
3318 if (args == 0 || *args == 0)
8a3fe4f8 3319 error (_("Argument required: name of an overlay section"));
c906108c 3320
c378eb4e 3321 /* First, find a section matching the user supplied argument. */
c906108c
SS
3322 ALL_OBJSECTIONS (objfile, sec)
3323 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3324 {
3325 if (!sec->ovly_mapped)
8a3fe4f8 3326 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3327 sec->ovly_mapped = 0;
3328 return;
3329 }
8a3fe4f8 3330 error (_("No overlay section called %s"), args);
c906108c
SS
3331}
3332
3333/* Function: overlay_auto_command
3334 A utility command to turn on overlay debugging.
c378eb4e 3335 Possibly this should be done via a set/show command. */
c906108c
SS
3336
3337static void
2cf311eb 3338overlay_auto_command (const char *args, int from_tty)
c906108c 3339{
d874f1e2 3340 overlay_debugging = ovly_auto;
1900040c 3341 enable_overlay_breakpoints ();
c906108c 3342 if (info_verbose)
a3f17187 3343 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3344}
3345
3346/* Function: overlay_manual_command
3347 A utility command to turn on overlay debugging.
c378eb4e 3348 Possibly this should be done via a set/show command. */
c906108c
SS
3349
3350static void
2cf311eb 3351overlay_manual_command (const char *args, int from_tty)
c906108c 3352{
d874f1e2 3353 overlay_debugging = ovly_on;
1900040c 3354 disable_overlay_breakpoints ();
c906108c 3355 if (info_verbose)
a3f17187 3356 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3357}
3358
3359/* Function: overlay_off_command
3360 A utility command to turn on overlay debugging.
c378eb4e 3361 Possibly this should be done via a set/show command. */
c906108c
SS
3362
3363static void
2cf311eb 3364overlay_off_command (const char *args, int from_tty)
c906108c 3365{
d874f1e2 3366 overlay_debugging = ovly_off;
1900040c 3367 disable_overlay_breakpoints ();
c906108c 3368 if (info_verbose)
a3f17187 3369 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3370}
3371
3372static void
2cf311eb 3373overlay_load_command (const char *args, int from_tty)
c906108c 3374{
e17c207e
UW
3375 struct gdbarch *gdbarch = get_current_arch ();
3376
3377 if (gdbarch_overlay_update_p (gdbarch))
3378 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3379 else
8a3fe4f8 3380 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3381}
3382
3383/* Function: overlay_command
c378eb4e 3384 A place-holder for a mis-typed command. */
c906108c 3385
c378eb4e 3386/* Command list chain containing all defined "overlay" subcommands. */
28578e6b 3387static struct cmd_list_element *overlaylist;
c906108c
SS
3388
3389static void
981a3fb3 3390overlay_command (const char *args, int from_tty)
c906108c 3391{
c5aa993b 3392 printf_unfiltered
c906108c 3393 ("\"overlay\" must be followed by the name of an overlay command.\n");
635c7e8a 3394 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
c906108c
SS
3395}
3396
c906108c
SS
3397/* Target Overlays for the "Simplest" overlay manager:
3398
5417f6dc
RM
3399 This is GDB's default target overlay layer. It works with the
3400 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3401 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3402 so targets that use a different runtime overlay manager can
c906108c
SS
3403 substitute their own overlay_update function and take over the
3404 function pointer.
3405
3406 The overlay_update function pokes around in the target's data structures
3407 to see what overlays are mapped, and updates GDB's overlay mapping with
3408 this information.
3409
3410 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3411 unsigned _novlys; /# number of overlay sections #/
3412 unsigned _ovly_table[_novlys][4] = {
438e1e42 3413 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
c5aa993b
JM
3414 {..., ..., ..., ...},
3415 }
3416 unsigned _novly_regions; /# number of overlay regions #/
3417 unsigned _ovly_region_table[_novly_regions][3] = {
438e1e42 3418 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
c5aa993b
JM
3419 {..., ..., ...},
3420 }
c906108c
SS
3421 These functions will attempt to update GDB's mappedness state in the
3422 symbol section table, based on the target's mappedness state.
3423
3424 To do this, we keep a cached copy of the target's _ovly_table, and
3425 attempt to detect when the cached copy is invalidated. The main
3426 entry point is "simple_overlay_update(SECT), which looks up SECT in
3427 the cached table and re-reads only the entry for that section from
c378eb4e 3428 the target (whenever possible). */
c906108c
SS
3429
3430/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3431static unsigned (*cache_ovly_table)[4] = 0;
c5aa993b 3432static unsigned cache_novlys = 0;
c906108c 3433static CORE_ADDR cache_ovly_table_base = 0;
c5aa993b
JM
3434enum ovly_index
3435 {
438e1e42 3436 VMA, OSIZE, LMA, MAPPED
c5aa993b 3437 };
c906108c 3438
c378eb4e 3439/* Throw away the cached copy of _ovly_table. */
3b7bacac 3440
c906108c 3441static void
fba45db2 3442simple_free_overlay_table (void)
c906108c
SS
3443{
3444 if (cache_ovly_table)
b8c9b27d 3445 xfree (cache_ovly_table);
c5aa993b 3446 cache_novlys = 0;
c906108c
SS
3447 cache_ovly_table = NULL;
3448 cache_ovly_table_base = 0;
3449}
3450
9216df95 3451/* Read an array of ints of size SIZE from the target into a local buffer.
c378eb4e 3452 Convert to host order. int LEN is number of ints. */
3b7bacac 3453
c906108c 3454static void
9216df95 3455read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3456 int len, int size, enum bfd_endian byte_order)
c906108c 3457{
c378eb4e 3458 /* FIXME (alloca): Not safe if array is very large. */
224c3ddb 3459 gdb_byte *buf = (gdb_byte *) alloca (len * size);
c5aa993b 3460 int i;
c906108c 3461
9216df95 3462 read_memory (memaddr, buf, len * size);
c906108c 3463 for (i = 0; i < len; i++)
e17a4113 3464 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3465}
3466
3467/* Find and grab a copy of the target _ovly_table
c378eb4e 3468 (and _novlys, which is needed for the table's size). */
3b7bacac 3469
c5aa993b 3470static int
fba45db2 3471simple_read_overlay_table (void)
c906108c 3472{
3b7344d5 3473 struct bound_minimal_symbol novlys_msym;
7c7b6655 3474 struct bound_minimal_symbol ovly_table_msym;
9216df95
UW
3475 struct gdbarch *gdbarch;
3476 int word_size;
e17a4113 3477 enum bfd_endian byte_order;
c906108c
SS
3478
3479 simple_free_overlay_table ();
9b27852e 3480 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3b7344d5 3481 if (! novlys_msym.minsym)
c906108c 3482 {
8a3fe4f8 3483 error (_("Error reading inferior's overlay table: "
0d43edd1 3484 "couldn't find `_novlys' variable\n"
8a3fe4f8 3485 "in inferior. Use `overlay manual' mode."));
0d43edd1 3486 return 0;
c906108c 3487 }
0d43edd1 3488
7c7b6655
TT
3489 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3490 if (! ovly_table_msym.minsym)
0d43edd1 3491 {
8a3fe4f8 3492 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3493 "`_ovly_table' array\n"
8a3fe4f8 3494 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3495 return 0;
3496 }
3497
7c7b6655 3498 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
9216df95 3499 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3500 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3501
77e371c0
TT
3502 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3503 4, byte_order);
0d43edd1 3504 cache_ovly_table
224c3ddb 3505 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
77e371c0 3506 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
0d43edd1 3507 read_target_long_array (cache_ovly_table_base,
777ea8f1 3508 (unsigned int *) cache_ovly_table,
e17a4113 3509 cache_novlys * 4, word_size, byte_order);
0d43edd1 3510
c5aa993b 3511 return 1; /* SUCCESS */
c906108c
SS
3512}
3513
5417f6dc 3514/* Function: simple_overlay_update_1
c906108c
SS
3515 A helper function for simple_overlay_update. Assuming a cached copy
3516 of _ovly_table exists, look through it to find an entry whose vma,
3517 lma and size match those of OSECT. Re-read the entry and make sure
3518 it still matches OSECT (else the table may no longer be valid).
3519 Set OSECT's mapped state to match the entry. Return: 1 for
3520 success, 0 for failure. */
3521
3522static int
fba45db2 3523simple_overlay_update_1 (struct obj_section *osect)
c906108c 3524{
764c99c1 3525 int i;
fbd35540 3526 asection *bsect = osect->the_bfd_section;
9216df95
UW
3527 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3528 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3529 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3530
c906108c 3531 for (i = 0; i < cache_novlys; i++)
fbd35540 3532 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3533 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c906108c 3534 {
9216df95
UW
3535 read_target_long_array (cache_ovly_table_base + i * word_size,
3536 (unsigned int *) cache_ovly_table[i],
e17a4113 3537 4, word_size, byte_order);
fbd35540 3538 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3539 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c906108c
SS
3540 {
3541 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3542 return 1;
3543 }
c378eb4e 3544 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3545 return 0;
3546 }
3547 return 0;
3548}
3549
3550/* Function: simple_overlay_update
5417f6dc
RM
3551 If OSECT is NULL, then update all sections' mapped state
3552 (after re-reading the entire target _ovly_table).
3553 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3554 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3555 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3556 re-read the entire cache, and go ahead and update all sections. */
3557
1c772458 3558void
fba45db2 3559simple_overlay_update (struct obj_section *osect)
c906108c 3560{
c5aa993b 3561 struct objfile *objfile;
c906108c 3562
c378eb4e 3563 /* Were we given an osect to look up? NULL means do all of them. */
c906108c 3564 if (osect)
c378eb4e 3565 /* Have we got a cached copy of the target's overlay table? */
c906108c 3566 if (cache_ovly_table != NULL)
9cc89665
MS
3567 {
3568 /* Does its cached location match what's currently in the
3569 symtab? */
3b7344d5 3570 struct bound_minimal_symbol minsym
9cc89665
MS
3571 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3572
3b7344d5 3573 if (minsym.minsym == NULL)
9cc89665
MS
3574 error (_("Error reading inferior's overlay table: couldn't "
3575 "find `_ovly_table' array\n"
3576 "in inferior. Use `overlay manual' mode."));
3577
77e371c0 3578 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
9cc89665
MS
3579 /* Then go ahead and try to look up this single section in
3580 the cache. */
3581 if (simple_overlay_update_1 (osect))
3582 /* Found it! We're done. */
3583 return;
3584 }
c906108c
SS
3585
3586 /* Cached table no good: need to read the entire table anew.
3587 Or else we want all the sections, in which case it's actually
3588 more efficient to read the whole table in one block anyway. */
3589
0d43edd1
JB
3590 if (! simple_read_overlay_table ())
3591 return;
3592
c378eb4e 3593 /* Now may as well update all sections, even if only one was requested. */
c906108c 3594 ALL_OBJSECTIONS (objfile, osect)
714835d5 3595 if (section_is_overlay (osect))
c5aa993b 3596 {
764c99c1 3597 int i;
fbd35540 3598 asection *bsect = osect->the_bfd_section;
c5aa993b 3599
c5aa993b 3600 for (i = 0; i < cache_novlys; i++)
fbd35540 3601 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3602 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c378eb4e 3603 { /* obj_section matches i'th entry in ovly_table. */
c5aa993b 3604 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
c378eb4e 3605 break; /* finished with inner for loop: break out. */
c5aa993b
JM
3606 }
3607 }
c906108c
SS
3608}
3609
086df311
DJ
3610/* Set the output sections and output offsets for section SECTP in
3611 ABFD. The relocation code in BFD will read these offsets, so we
3612 need to be sure they're initialized. We map each section to itself,
3613 with no offset; this means that SECTP->vma will be honored. */
3614
3615static void
3616symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3617{
3618 sectp->output_section = sectp;
3619 sectp->output_offset = 0;
3620}
3621
ac8035ab
TG
3622/* Default implementation for sym_relocate. */
3623
ac8035ab
TG
3624bfd_byte *
3625default_symfile_relocate (struct objfile *objfile, asection *sectp,
3626 bfd_byte *buf)
3627{
3019eac3
DE
3628 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3629 DWO file. */
3630 bfd *abfd = sectp->owner;
ac8035ab
TG
3631
3632 /* We're only interested in sections with relocation
3633 information. */
3634 if ((sectp->flags & SEC_RELOC) == 0)
3635 return NULL;
3636
3637 /* We will handle section offsets properly elsewhere, so relocate as if
3638 all sections begin at 0. */
3639 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3640
3641 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3642}
3643
086df311
DJ
3644/* Relocate the contents of a debug section SECTP in ABFD. The
3645 contents are stored in BUF if it is non-NULL, or returned in a
3646 malloc'd buffer otherwise.
3647
3648 For some platforms and debug info formats, shared libraries contain
3649 relocations against the debug sections (particularly for DWARF-2;
3650 one affected platform is PowerPC GNU/Linux, although it depends on
3651 the version of the linker in use). Also, ELF object files naturally
3652 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3653 the relocations in order to get the locations of symbols correct.
3654 Another example that may require relocation processing, is the
3655 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3656 debug section. */
086df311
DJ
3657
3658bfd_byte *
ac8035ab
TG
3659symfile_relocate_debug_section (struct objfile *objfile,
3660 asection *sectp, bfd_byte *buf)
086df311 3661{
ac8035ab 3662 gdb_assert (objfile->sf->sym_relocate);
086df311 3663
ac8035ab 3664 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3665}
c906108c 3666
31d99776
DJ
3667struct symfile_segment_data *
3668get_symfile_segment_data (bfd *abfd)
3669{
00b5771c 3670 const struct sym_fns *sf = find_sym_fns (abfd);
31d99776
DJ
3671
3672 if (sf == NULL)
3673 return NULL;
3674
3675 return sf->sym_segments (abfd);
3676}
3677
3678void
3679free_symfile_segment_data (struct symfile_segment_data *data)
3680{
3681 xfree (data->segment_bases);
3682 xfree (data->segment_sizes);
3683 xfree (data->segment_info);
3684 xfree (data);
3685}
3686
28c32713
JB
3687/* Given:
3688 - DATA, containing segment addresses from the object file ABFD, and
3689 the mapping from ABFD's sections onto the segments that own them,
3690 and
3691 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3692 segment addresses reported by the target,
3693 store the appropriate offsets for each section in OFFSETS.
3694
3695 If there are fewer entries in SEGMENT_BASES than there are segments
3696 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3697
8d385431
DJ
3698 If there are more entries, then ignore the extra. The target may
3699 not be able to distinguish between an empty data segment and a
3700 missing data segment; a missing text segment is less plausible. */
3b7bacac 3701
31d99776 3702int
3189cb12
DE
3703symfile_map_offsets_to_segments (bfd *abfd,
3704 const struct symfile_segment_data *data,
31d99776
DJ
3705 struct section_offsets *offsets,
3706 int num_segment_bases,
3707 const CORE_ADDR *segment_bases)
3708{
3709 int i;
3710 asection *sect;
3711
28c32713
JB
3712 /* It doesn't make sense to call this function unless you have some
3713 segment base addresses. */
202b96c1 3714 gdb_assert (num_segment_bases > 0);
28c32713 3715
31d99776
DJ
3716 /* If we do not have segment mappings for the object file, we
3717 can not relocate it by segments. */
3718 gdb_assert (data != NULL);
3719 gdb_assert (data->num_segments > 0);
3720
31d99776
DJ
3721 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3722 {
31d99776
DJ
3723 int which = data->segment_info[i];
3724
28c32713
JB
3725 gdb_assert (0 <= which && which <= data->num_segments);
3726
3727 /* Don't bother computing offsets for sections that aren't
3728 loaded as part of any segment. */
3729 if (! which)
3730 continue;
3731
3732 /* Use the last SEGMENT_BASES entry as the address of any extra
3733 segments mentioned in DATA->segment_info. */
31d99776 3734 if (which > num_segment_bases)
28c32713 3735 which = num_segment_bases;
31d99776 3736
28c32713
JB
3737 offsets->offsets[i] = (segment_bases[which - 1]
3738 - data->segment_bases[which - 1]);
31d99776
DJ
3739 }
3740
3741 return 1;
3742}
3743
3744static void
3745symfile_find_segment_sections (struct objfile *objfile)
3746{
3747 bfd *abfd = objfile->obfd;
3748 int i;
3749 asection *sect;
3750 struct symfile_segment_data *data;
3751
3752 data = get_symfile_segment_data (objfile->obfd);
3753 if (data == NULL)
3754 return;
3755
3756 if (data->num_segments != 1 && data->num_segments != 2)
3757 {
3758 free_symfile_segment_data (data);
3759 return;
3760 }
3761
3762 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3763 {
31d99776
DJ
3764 int which = data->segment_info[i];
3765
3766 if (which == 1)
3767 {
3768 if (objfile->sect_index_text == -1)
3769 objfile->sect_index_text = sect->index;
3770
3771 if (objfile->sect_index_rodata == -1)
3772 objfile->sect_index_rodata = sect->index;
3773 }
3774 else if (which == 2)
3775 {
3776 if (objfile->sect_index_data == -1)
3777 objfile->sect_index_data = sect->index;
3778
3779 if (objfile->sect_index_bss == -1)
3780 objfile->sect_index_bss = sect->index;
3781 }
3782 }
3783
3784 free_symfile_segment_data (data);
3785}
3786
76ad5e1e
NB
3787/* Listen for free_objfile events. */
3788
3789static void
3790symfile_free_objfile (struct objfile *objfile)
3791{
c33b2f12
MM
3792 /* Remove the target sections owned by this objfile. */
3793 if (objfile != NULL)
76ad5e1e
NB
3794 remove_target_sections ((void *) objfile);
3795}
3796
540c2971
DE
3797/* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3798 Expand all symtabs that match the specified criteria.
3799 See quick_symbol_functions.expand_symtabs_matching for details. */
3800
3801void
14bc53a8
PA
3802expand_symtabs_matching
3803 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
b5ec771e 3804 const lookup_name_info &lookup_name,
14bc53a8
PA
3805 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3806 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3807 enum search_domain kind)
540c2971
DE
3808{
3809 struct objfile *objfile;
3810
3811 ALL_OBJFILES (objfile)
3812 {
3813 if (objfile->sf)
bb4142cf 3814 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
b5ec771e 3815 lookup_name,
276d885b 3816 symbol_matcher,
14bc53a8 3817 expansion_notify, kind);
540c2971
DE
3818 }
3819}
3820
3821/* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3822 Map function FUN over every file.
3823 See quick_symbol_functions.map_symbol_filenames for details. */
3824
3825void
bb4142cf
DE
3826map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3827 int need_fullname)
540c2971
DE
3828{
3829 struct objfile *objfile;
3830
3831 ALL_OBJFILES (objfile)
3832 {
3833 if (objfile->sf)
3834 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3835 need_fullname);
3836 }
3837}
3838
32fa66eb
SM
3839#if GDB_SELF_TEST
3840
3841namespace selftests {
3842namespace filename_language {
3843
32fa66eb
SM
3844static void test_filename_language ()
3845{
3846 /* This test messes up the filename_language_table global. */
593e3209 3847 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
32fa66eb
SM
3848
3849 /* Test deducing an unknown extension. */
3850 language lang = deduce_language_from_filename ("myfile.blah");
3851 SELF_CHECK (lang == language_unknown);
3852
3853 /* Test deducing a known extension. */
3854 lang = deduce_language_from_filename ("myfile.c");
3855 SELF_CHECK (lang == language_c);
3856
3857 /* Test adding a new extension using the internal API. */
3858 add_filename_language (".blah", language_pascal);
3859 lang = deduce_language_from_filename ("myfile.blah");
3860 SELF_CHECK (lang == language_pascal);
3861}
3862
3863static void
3864test_set_ext_lang_command ()
3865{
3866 /* This test messes up the filename_language_table global. */
593e3209 3867 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
32fa66eb
SM
3868
3869 /* Confirm that the .hello extension is not known. */
3870 language lang = deduce_language_from_filename ("cake.hello");
3871 SELF_CHECK (lang == language_unknown);
3872
3873 /* Test adding a new extension using the CLI command. */
3874 gdb::unique_xmalloc_ptr<char> args_holder (xstrdup (".hello rust"));
3875 ext_args = args_holder.get ();
3876 set_ext_lang_command (NULL, 1, NULL);
3877
3878 lang = deduce_language_from_filename ("cake.hello");
3879 SELF_CHECK (lang == language_rust);
3880
3881 /* Test overriding an existing extension using the CLI command. */
593e3209 3882 int size_before = filename_language_table.size ();
32fa66eb
SM
3883 args_holder.reset (xstrdup (".hello pascal"));
3884 ext_args = args_holder.get ();
3885 set_ext_lang_command (NULL, 1, NULL);
593e3209 3886 int size_after = filename_language_table.size ();
32fa66eb
SM
3887
3888 lang = deduce_language_from_filename ("cake.hello");
3889 SELF_CHECK (lang == language_pascal);
3890 SELF_CHECK (size_before == size_after);
3891}
3892
3893} /* namespace filename_language */
3894} /* namespace selftests */
3895
3896#endif /* GDB_SELF_TEST */
3897
c906108c 3898void
fba45db2 3899_initialize_symfile (void)
c906108c
SS
3900{
3901 struct cmd_list_element *c;
c5aa993b 3902
76ad5e1e
NB
3903 observer_attach_free_objfile (symfile_free_objfile);
3904
97cbe998 3905#define READNOW_READNEVER_HELP \
8ca2f0b9
TT
3906 "The '-readnow' option will cause GDB to read the entire symbol file\n\
3907immediately. This makes the command slower, but may make future operations\n\
97cbe998
SDJ
3908faster.\n\
3909The '-readnever' option will prevent GDB from reading the symbol file's\n\
3910symbolic debug information."
8ca2f0b9 3911
1a966eab
AC
3912 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3913Load symbol table from executable file FILE.\n\
97cbe998 3914Usage: symbol-file [-readnow | -readnever] FILE\n\
c906108c 3915The `file' command can also load symbol tables, as well as setting the file\n\
97cbe998 3916to execute.\n" READNOW_READNEVER_HELP), &cmdlist);
5ba2abeb 3917 set_cmd_completer (c, filename_completer);
c906108c 3918
1a966eab 3919 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3920Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
97cbe998
SDJ
3921Usage: add-symbol-file FILE ADDR [-readnow | -readnever | \
3922-s SECT-NAME SECT-ADDR]...\n\
02ca603a
TT
3923ADDR is the starting address of the file's text.\n\
3924Each '-s' argument provides a section name and address, and\n\
db162d44 3925should be specified if the data and bss segments are not contiguous\n\
8ca2f0b9 3926with the text. SECT-NAME is a section name to be loaded at SECT-ADDR.\n"
97cbe998 3927READNOW_READNEVER_HELP),
c906108c 3928 &cmdlist);
5ba2abeb 3929 set_cmd_completer (c, filename_completer);
c906108c 3930
63644780
NB
3931 c = add_cmd ("remove-symbol-file", class_files,
3932 remove_symbol_file_command, _("\
3933Remove a symbol file added via the add-symbol-file command.\n\
3934Usage: remove-symbol-file FILENAME\n\
3935 remove-symbol-file -a ADDRESS\n\
3936The file to remove can be identified by its filename or by an address\n\
3937that lies within the boundaries of this symbol file in memory."),
3938 &cmdlist);
3939
1a966eab
AC
3940 c = add_cmd ("load", class_files, load_command, _("\
3941Dynamically load FILE into the running program, and record its symbols\n\
1986bccd 3942for access from GDB.\n\
8ca2f0b9 3943Usage: load [FILE] [OFFSET]\n\
5cf30ebf
LM
3944An optional load OFFSET may also be given as a literal address.\n\
3945When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
8ca2f0b9 3946on its own."), &cmdlist);
5ba2abeb 3947 set_cmd_completer (c, filename_completer);
c906108c 3948
c5aa993b 3949 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3950 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3951 "overlay ", 0, &cmdlist);
3952
3953 add_com_alias ("ovly", "overlay", class_alias, 1);
3954 add_com_alias ("ov", "overlay", class_alias, 1);
3955
c5aa993b 3956 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3957 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3958
c5aa993b 3959 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3960 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3961
c5aa993b 3962 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3963 _("List mappings of overlay sections."), &overlaylist);
c906108c 3964
c5aa993b 3965 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3966 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3967 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3968 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3969 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3970 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3971 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3972 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3973
3974 /* Filename extension to source language lookup table: */
26c41df3
AC
3975 add_setshow_string_noescape_cmd ("extension-language", class_files,
3976 &ext_args, _("\
3977Set mapping between filename extension and source language."), _("\
3978Show mapping between filename extension and source language."), _("\
3979Usage: set extension-language .foo bar"),
3980 set_ext_lang_command,
920d2a44 3981 show_ext_args,
26c41df3 3982 &setlist, &showlist);
c906108c 3983
c5aa993b 3984 add_info ("extensions", info_ext_lang_command,
1bedd215 3985 _("All filename extensions associated with a source language."));
917317f4 3986
525226b5
AC
3987 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3988 &debug_file_directory, _("\
24ddea62
JK
3989Set the directories where separate debug symbols are searched for."), _("\
3990Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
3991Separate debug symbols are first searched for in the same\n\
3992directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3993and lastly at the path of the directory of the binary with\n\
24ddea62 3994each global debug-file-directory component prepended."),
525226b5 3995 NULL,
920d2a44 3996 show_debug_file_directory,
525226b5 3997 &setlist, &showlist);
770e7fc7
DE
3998
3999 add_setshow_enum_cmd ("symbol-loading", no_class,
4000 print_symbol_loading_enums, &print_symbol_loading,
4001 _("\
4002Set printing of symbol loading messages."), _("\
4003Show printing of symbol loading messages."), _("\
4004off == turn all messages off\n\
4005brief == print messages for the executable,\n\
4006 and brief messages for shared libraries\n\
4007full == print messages for the executable,\n\
4008 and messages for each shared library."),
4009 NULL,
4010 NULL,
4011 &setprintlist, &showprintlist);
c4dcb155
SM
4012
4013 add_setshow_boolean_cmd ("separate-debug-file", no_class,
4014 &separate_debug_file_debug, _("\
4015Set printing of separate debug info file search debug."), _("\
4016Show printing of separate debug info file search debug."), _("\
4017When on, GDB prints the searched locations while looking for separate debug \
4018info files."), NULL, NULL, &setdebuglist, &showdebuglist);
32fa66eb
SM
4019
4020#if GDB_SELF_TEST
4021 selftests::register_test
4022 ("filename_language", selftests::filename_language::test_filename_language);
4023 selftests::register_test
4024 ("set_ext_lang_command",
4025 selftests::filename_language::test_set_ext_lang_command);
4026#endif
c906108c 4027}
This page took 2.47848 seconds and 4 git commands to generate.