* config/tc-i386.h (EXTERN_FORCE_RELOC): Define.
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c
AC
2
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5
c906108c
SS
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b
JM
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
c906108c
SS
24
25#include "defs.h"
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "gdbcore.h"
29#include "frame.h"
30#include "target.h"
31#include "value.h"
32#include "symfile.h"
33#include "objfiles.h"
0378c332 34#include "source.h"
c906108c
SS
35#include "gdbcmd.h"
36#include "breakpoint.h"
37#include "language.h"
38#include "complaints.h"
39#include "demangle.h"
c5aa993b 40#include "inferior.h" /* for write_pc */
c906108c 41#include "gdb-stabs.h"
04ea0df1 42#include "gdb_obstack.h"
d75b5104 43#include "completer.h"
af5f3db6 44#include "bcache.h"
c906108c 45
c906108c
SS
46#include <sys/types.h>
47#include <fcntl.h>
48#include "gdb_string.h"
49#include "gdb_stat.h"
50#include <ctype.h>
51#include <time.h>
c906108c
SS
52
53#ifndef O_BINARY
54#define O_BINARY 0
55#endif
56
57#ifdef HPUXHPPA
58
59/* Some HP-UX related globals to clear when a new "main"
60 symbol file is loaded. HP-specific. */
61
62extern int hp_som_som_object_present;
63extern int hp_cxx_exception_support_initialized;
64#define RESET_HP_UX_GLOBALS() do {\
65 hp_som_som_object_present = 0; /* indicates HP-compiled code */ \
66 hp_cxx_exception_support_initialized = 0; /* must reinitialize exception stuff */ \
67 } while (0)
68#endif
69
917317f4 70int (*ui_load_progress_hook) (const char *section, unsigned long num);
c2d11a7d
JM
71void (*show_load_progress) (const char *section,
72 unsigned long section_sent,
73 unsigned long section_size,
74 unsigned long total_sent,
75 unsigned long total_size);
507f3c78
KB
76void (*pre_add_symbol_hook) (char *);
77void (*post_add_symbol_hook) (void);
78void (*target_new_objfile_hook) (struct objfile *);
c906108c 79
74b7792f
AC
80static void clear_symtab_users_cleanup (void *ignore);
81
c906108c 82/* Global variables owned by this file */
c5aa993b 83int readnow_symbol_files; /* Read full symbols immediately */
c906108c 84
c906108c
SS
85/* External variables and functions referenced. */
86
a14ed312 87extern void report_transfer_performance (unsigned long, time_t, time_t);
c906108c
SS
88
89/* Functions this file defines */
90
91#if 0
a14ed312
KB
92static int simple_read_overlay_region_table (void);
93static void simple_free_overlay_region_table (void);
c906108c
SS
94#endif
95
a14ed312 96static void set_initial_language (void);
c906108c 97
a14ed312 98static void load_command (char *, int);
c906108c 99
d7db6da9
FN
100static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
101
a14ed312 102static void add_symbol_file_command (char *, int);
c906108c 103
a14ed312 104static void add_shared_symbol_files_command (char *, int);
c906108c 105
a14ed312 106static void cashier_psymtab (struct partial_symtab *);
c906108c 107
a14ed312 108bfd *symfile_bfd_open (char *);
c906108c 109
0e931cf0
JB
110int get_section_index (struct objfile *, char *);
111
a14ed312 112static void find_sym_fns (struct objfile *);
c906108c 113
a14ed312 114static void decrement_reading_symtab (void *);
c906108c 115
a14ed312 116static void overlay_invalidate_all (void);
c906108c 117
a14ed312 118static int overlay_is_mapped (struct obj_section *);
c906108c 119
a14ed312 120void list_overlays_command (char *, int);
c906108c 121
a14ed312 122void map_overlay_command (char *, int);
c906108c 123
a14ed312 124void unmap_overlay_command (char *, int);
c906108c 125
a14ed312 126static void overlay_auto_command (char *, int);
c906108c 127
a14ed312 128static void overlay_manual_command (char *, int);
c906108c 129
a14ed312 130static void overlay_off_command (char *, int);
c906108c 131
a14ed312 132static void overlay_load_command (char *, int);
c906108c 133
a14ed312 134static void overlay_command (char *, int);
c906108c 135
a14ed312 136static void simple_free_overlay_table (void);
c906108c 137
a14ed312 138static void read_target_long_array (CORE_ADDR, unsigned int *, int);
c906108c 139
a14ed312 140static int simple_read_overlay_table (void);
c906108c 141
a14ed312 142static int simple_overlay_update_1 (struct obj_section *);
c906108c 143
a14ed312 144static void add_filename_language (char *ext, enum language lang);
392a587b 145
a14ed312 146static void set_ext_lang_command (char *args, int from_tty);
392a587b 147
a14ed312 148static void info_ext_lang_command (char *args, int from_tty);
392a587b 149
a14ed312 150static void init_filename_language_table (void);
392a587b 151
a14ed312 152void _initialize_symfile (void);
c906108c
SS
153
154/* List of all available sym_fns. On gdb startup, each object file reader
155 calls add_symtab_fns() to register information on each format it is
156 prepared to read. */
157
158static struct sym_fns *symtab_fns = NULL;
159
160/* Flag for whether user will be reloading symbols multiple times.
161 Defaults to ON for VxWorks, otherwise OFF. */
162
163#ifdef SYMBOL_RELOADING_DEFAULT
164int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
165#else
166int symbol_reloading = 0;
167#endif
168
b7209cb4
FF
169/* If non-zero, shared library symbols will be added automatically
170 when the inferior is created, new libraries are loaded, or when
171 attaching to the inferior. This is almost always what users will
172 want to have happen; but for very large programs, the startup time
173 will be excessive, and so if this is a problem, the user can clear
174 this flag and then add the shared library symbols as needed. Note
175 that there is a potential for confusion, since if the shared
c906108c 176 library symbols are not loaded, commands like "info fun" will *not*
b7209cb4 177 report all the functions that are actually present. */
c906108c
SS
178
179int auto_solib_add = 1;
b7209cb4
FF
180
181/* For systems that support it, a threshold size in megabytes. If
182 automatically adding a new library's symbol table to those already
183 known to the debugger would cause the total shared library symbol
184 size to exceed this threshhold, then the shlib's symbols are not
185 added. The threshold is ignored if the user explicitly asks for a
186 shlib to be added, such as when using the "sharedlibrary"
187 command. */
188
189int auto_solib_limit;
c906108c 190\f
c5aa993b 191
c906108c
SS
192/* Since this function is called from within qsort, in an ANSI environment
193 it must conform to the prototype for qsort, which specifies that the
194 comparison function takes two "void *" pointers. */
195
196static int
0cd64fe2 197compare_symbols (const void *s1p, const void *s2p)
c906108c
SS
198{
199 register struct symbol **s1, **s2;
200
201 s1 = (struct symbol **) s1p;
202 s2 = (struct symbol **) s2p;
494b7ec9 203 return (strcmp (SYMBOL_SOURCE_NAME (*s1), SYMBOL_SOURCE_NAME (*s2)));
c906108c
SS
204}
205
206/*
207
c5aa993b 208 LOCAL FUNCTION
c906108c 209
c5aa993b 210 compare_psymbols -- compare two partial symbols by name
c906108c 211
c5aa993b 212 DESCRIPTION
c906108c 213
c5aa993b
JM
214 Given pointers to pointers to two partial symbol table entries,
215 compare them by name and return -N, 0, or +N (ala strcmp).
216 Typically used by sorting routines like qsort().
c906108c 217
c5aa993b 218 NOTES
c906108c 219
c5aa993b
JM
220 Does direct compare of first two characters before punting
221 and passing to strcmp for longer compares. Note that the
222 original version had a bug whereby two null strings or two
223 identically named one character strings would return the
224 comparison of memory following the null byte.
c906108c
SS
225
226 */
227
228static int
0cd64fe2 229compare_psymbols (const void *s1p, const void *s2p)
c906108c 230{
fba7f19c
EZ
231 register struct partial_symbol **s1, **s2;
232 register char *st1, *st2;
233
234 s1 = (struct partial_symbol **) s1p;
235 s2 = (struct partial_symbol **) s2p;
236 st1 = SYMBOL_SOURCE_NAME (*s1);
237 st2 = SYMBOL_SOURCE_NAME (*s2);
238
c906108c
SS
239
240 if ((st1[0] - st2[0]) || !st1[0])
241 {
242 return (st1[0] - st2[0]);
243 }
244 else if ((st1[1] - st2[1]) || !st1[1])
245 {
246 return (st1[1] - st2[1]);
247 }
248 else
249 {
c5aa993b 250 return (strcmp (st1, st2));
c906108c
SS
251 }
252}
253
254void
fba45db2 255sort_pst_symbols (struct partial_symtab *pst)
c906108c
SS
256{
257 /* Sort the global list; don't sort the static list */
258
c5aa993b
JM
259 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
260 pst->n_global_syms, sizeof (struct partial_symbol *),
c906108c
SS
261 compare_psymbols);
262}
263
264/* Call sort_block_syms to sort alphabetically the symbols of one block. */
265
266void
fba45db2 267sort_block_syms (register struct block *b)
c906108c
SS
268{
269 qsort (&BLOCK_SYM (b, 0), BLOCK_NSYMS (b),
270 sizeof (struct symbol *), compare_symbols);
271}
272
273/* Call sort_symtab_syms to sort alphabetically
274 the symbols of each block of one symtab. */
275
276void
fba45db2 277sort_symtab_syms (register struct symtab *s)
c906108c
SS
278{
279 register struct blockvector *bv;
280 int nbl;
281 int i;
282 register struct block *b;
283
284 if (s == 0)
285 return;
286 bv = BLOCKVECTOR (s);
287 nbl = BLOCKVECTOR_NBLOCKS (bv);
288 for (i = 0; i < nbl; i++)
289 {
290 b = BLOCKVECTOR_BLOCK (bv, i);
291 if (BLOCK_SHOULD_SORT (b))
292 sort_block_syms (b);
293 }
294}
295
296/* Make a null terminated copy of the string at PTR with SIZE characters in
297 the obstack pointed to by OBSTACKP . Returns the address of the copy.
298 Note that the string at PTR does not have to be null terminated, I.E. it
299 may be part of a larger string and we are only saving a substring. */
300
301char *
fba45db2 302obsavestring (char *ptr, int size, struct obstack *obstackp)
c906108c
SS
303{
304 register char *p = (char *) obstack_alloc (obstackp, size + 1);
305 /* Open-coded memcpy--saves function call time. These strings are usually
306 short. FIXME: Is this really still true with a compiler that can
307 inline memcpy? */
308 {
309 register char *p1 = ptr;
310 register char *p2 = p;
311 char *end = ptr + size;
312 while (p1 != end)
313 *p2++ = *p1++;
314 }
315 p[size] = 0;
316 return p;
317}
318
319/* Concatenate strings S1, S2 and S3; return the new string. Space is found
320 in the obstack pointed to by OBSTACKP. */
321
322char *
fba45db2
KB
323obconcat (struct obstack *obstackp, const char *s1, const char *s2,
324 const char *s3)
c906108c
SS
325{
326 register int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
327 register char *val = (char *) obstack_alloc (obstackp, len);
328 strcpy (val, s1);
329 strcat (val, s2);
330 strcat (val, s3);
331 return val;
332}
333
334/* True if we are nested inside psymtab_to_symtab. */
335
336int currently_reading_symtab = 0;
337
338static void
fba45db2 339decrement_reading_symtab (void *dummy)
c906108c
SS
340{
341 currently_reading_symtab--;
342}
343
344/* Get the symbol table that corresponds to a partial_symtab.
345 This is fast after the first time you do it. In fact, there
346 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
347 case inline. */
348
349struct symtab *
fba45db2 350psymtab_to_symtab (register struct partial_symtab *pst)
c906108c
SS
351{
352 /* If it's been looked up before, return it. */
353 if (pst->symtab)
354 return pst->symtab;
355
356 /* If it has not yet been read in, read it. */
357 if (!pst->readin)
c5aa993b 358 {
c906108c
SS
359 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
360 currently_reading_symtab++;
361 (*pst->read_symtab) (pst);
362 do_cleanups (back_to);
363 }
364
365 return pst->symtab;
366}
367
368/* Initialize entry point information for this objfile. */
369
370void
fba45db2 371init_entry_point_info (struct objfile *objfile)
c906108c
SS
372{
373 /* Save startup file's range of PC addresses to help blockframe.c
374 decide where the bottom of the stack is. */
375
c5aa993b 376 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
c906108c
SS
377 {
378 /* Executable file -- record its entry point so we'll recognize
c5aa993b
JM
379 the startup file because it contains the entry point. */
380 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
c906108c
SS
381 }
382 else
383 {
384 /* Examination of non-executable.o files. Short-circuit this stuff. */
c5aa993b 385 objfile->ei.entry_point = INVALID_ENTRY_POINT;
c906108c 386 }
c5aa993b
JM
387 objfile->ei.entry_file_lowpc = INVALID_ENTRY_LOWPC;
388 objfile->ei.entry_file_highpc = INVALID_ENTRY_HIGHPC;
389 objfile->ei.entry_func_lowpc = INVALID_ENTRY_LOWPC;
390 objfile->ei.entry_func_highpc = INVALID_ENTRY_HIGHPC;
391 objfile->ei.main_func_lowpc = INVALID_ENTRY_LOWPC;
392 objfile->ei.main_func_highpc = INVALID_ENTRY_HIGHPC;
c906108c
SS
393}
394
395/* Get current entry point address. */
396
397CORE_ADDR
fba45db2 398entry_point_address (void)
c906108c
SS
399{
400 return symfile_objfile ? symfile_objfile->ei.entry_point : 0;
401}
402
403/* Remember the lowest-addressed loadable section we've seen.
404 This function is called via bfd_map_over_sections.
405
406 In case of equal vmas, the section with the largest size becomes the
407 lowest-addressed loadable section.
408
409 If the vmas and sizes are equal, the last section is considered the
410 lowest-addressed loadable section. */
411
412void
fba45db2 413find_lowest_section (bfd *abfd, asection *sect, PTR obj)
c906108c 414{
c5aa993b 415 asection **lowest = (asection **) obj;
c906108c
SS
416
417 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
418 return;
419 if (!*lowest)
420 *lowest = sect; /* First loadable section */
421 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
422 *lowest = sect; /* A lower loadable section */
423 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
424 && (bfd_section_size (abfd, (*lowest))
425 <= bfd_section_size (abfd, sect)))
426 *lowest = sect;
427}
428
62557bbc
KB
429
430/* Build (allocate and populate) a section_addr_info struct from
431 an existing section table. */
432
433extern struct section_addr_info *
434build_section_addr_info_from_section_table (const struct section_table *start,
435 const struct section_table *end)
436{
437 struct section_addr_info *sap;
438 const struct section_table *stp;
439 int oidx;
440
441 sap = xmalloc (sizeof (struct section_addr_info));
442 memset (sap, 0, sizeof (struct section_addr_info));
443
444 for (stp = start, oidx = 0; stp != end; stp++)
445 {
fbd35540
MS
446 if (bfd_get_section_flags (stp->bfd,
447 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
62557bbc
KB
448 && oidx < MAX_SECTIONS)
449 {
450 sap->other[oidx].addr = stp->addr;
fbd35540
MS
451 sap->other[oidx].name
452 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
62557bbc
KB
453 sap->other[oidx].sectindex = stp->the_bfd_section->index;
454 oidx++;
455 }
456 }
457
458 return sap;
459}
460
461
462/* Free all memory allocated by build_section_addr_info_from_section_table. */
463
464extern void
465free_section_addr_info (struct section_addr_info *sap)
466{
467 int idx;
468
469 for (idx = 0; idx < MAX_SECTIONS; idx++)
470 if (sap->other[idx].name)
b8c9b27d
KB
471 xfree (sap->other[idx].name);
472 xfree (sap);
62557bbc
KB
473}
474
475
c906108c
SS
476/* Parse the user's idea of an offset for dynamic linking, into our idea
477 of how to represent it for fast symbol reading. This is the default
478 version of the sym_fns.sym_offsets function for symbol readers that
479 don't need to do anything special. It allocates a section_offsets table
480 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
481
d4f3574e 482void
fba45db2
KB
483default_symfile_offsets (struct objfile *objfile,
484 struct section_addr_info *addrs)
c906108c 485{
c906108c 486 int i;
b8fbeb18 487 asection *sect = NULL;
c906108c
SS
488
489 objfile->num_sections = SECT_OFF_MAX;
d4f3574e 490 objfile->section_offsets = (struct section_offsets *)
c5aa993b 491 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
d4f3574e 492 memset (objfile->section_offsets, 0, SIZEOF_SECTION_OFFSETS);
c906108c 493
b8fbeb18
EZ
494 /* Now calculate offsets for section that were specified by the
495 caller. */
2acceee2
JM
496 for (i = 0; i < MAX_SECTIONS && addrs->other[i].name; i++)
497 {
498 struct other_sections *osp ;
499
500 osp = &addrs->other[i] ;
b8fbeb18 501 if (osp->addr == 0)
2acceee2 502 continue;
b8fbeb18 503
2acceee2 504 /* Record all sections in offsets */
b8fbeb18
EZ
505 /* The section_offsets in the objfile are here filled in using
506 the BFD index. */
a4c8257b 507 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
2acceee2 508 }
c906108c 509
b8fbeb18
EZ
510 /* Remember the bfd indexes for the .text, .data, .bss and
511 .rodata sections. */
512
513 sect = bfd_get_section_by_name (objfile->obfd, ".text");
514 if (sect)
515 objfile->sect_index_text = sect->index;
516
517 sect = bfd_get_section_by_name (objfile->obfd, ".data");
518 if (sect)
519 objfile->sect_index_data = sect->index;
520
521 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
522 if (sect)
523 objfile->sect_index_bss = sect->index;
524
525 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
526 if (sect)
527 objfile->sect_index_rodata = sect->index;
528
bbcd32ad
FF
529 /* This is where things get really weird... We MUST have valid
530 indices for the various sect_index_* members or gdb will abort.
531 So if for example, there is no ".text" section, we have to
532 accomodate that. Except when explicitly adding symbol files at
533 some address, section_offsets contains nothing but zeros, so it
534 doesn't matter which slot in section_offsets the individual
535 sect_index_* members index into. So if they are all zero, it is
536 safe to just point all the currently uninitialized indices to the
537 first slot. */
538
539 for (i = 0; i < objfile->num_sections; i++)
540 {
541 if (ANOFFSET (objfile->section_offsets, i) != 0)
542 {
543 break;
544 }
545 }
546 if (i == objfile->num_sections)
547 {
548 if (objfile->sect_index_text == -1)
549 objfile->sect_index_text = 0;
550 if (objfile->sect_index_data == -1)
551 objfile->sect_index_data = 0;
552 if (objfile->sect_index_bss == -1)
553 objfile->sect_index_bss = 0;
554 if (objfile->sect_index_rodata == -1)
555 objfile->sect_index_rodata = 0;
556 }
b8fbeb18 557}
c906108c
SS
558
559/* Process a symbol file, as either the main file or as a dynamically
560 loaded file.
561
96baa820
JM
562 OBJFILE is where the symbols are to be read from.
563
564 ADDR is the address where the text segment was loaded, unless the
565 objfile is the main symbol file, in which case it is zero.
566
567 MAINLINE is nonzero if this is the main symbol file, or zero if
568 it's an extra symbol file such as dynamically loaded code.
569
570 VERBO is nonzero if the caller has printed a verbose message about
571 the symbol reading (and complaints can be more terse about it). */
c906108c
SS
572
573void
fba45db2
KB
574syms_from_objfile (struct objfile *objfile, struct section_addr_info *addrs,
575 int mainline, int verbo)
c906108c 576{
2acceee2
JM
577 asection *lower_sect;
578 asection *sect;
579 CORE_ADDR lower_offset;
580 struct section_addr_info local_addr;
c906108c 581 struct cleanup *old_chain;
2acceee2
JM
582 int i;
583
584 /* If ADDRS is NULL, initialize the local section_addr_info struct and
585 point ADDRS to it. We now establish the convention that an addr of
586 zero means no load address was specified. */
587
588 if (addrs == NULL)
589 {
590 memset (&local_addr, 0, sizeof (local_addr));
591 addrs = &local_addr;
592 }
c906108c
SS
593
594 init_entry_point_info (objfile);
595 find_sym_fns (objfile);
596
75245b24
MS
597 if (objfile->sf == NULL)
598 return; /* No symbols. */
599
c906108c
SS
600 /* Make sure that partially constructed symbol tables will be cleaned up
601 if an error occurs during symbol reading. */
74b7792f 602 old_chain = make_cleanup_free_objfile (objfile);
c906108c 603
c5aa993b 604 if (mainline)
c906108c
SS
605 {
606 /* We will modify the main symbol table, make sure that all its users
c5aa993b 607 will be cleaned up if an error occurs during symbol reading. */
74b7792f 608 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
609
610 /* Since no error yet, throw away the old symbol table. */
611
612 if (symfile_objfile != NULL)
613 {
614 free_objfile (symfile_objfile);
615 symfile_objfile = NULL;
616 }
617
618 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
619 If the user wants to get rid of them, they should do "symbol-file"
620 without arguments first. Not sure this is the best behavior
621 (PR 2207). */
c906108c 622
c5aa993b 623 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
624 }
625
626 /* Convert addr into an offset rather than an absolute address.
627 We find the lowest address of a loaded segment in the objfile,
53a5351d 628 and assume that <addr> is where that got loaded.
c906108c 629
53a5351d
JM
630 We no longer warn if the lowest section is not a text segment (as
631 happens for the PA64 port. */
e7cf9df1 632 if (!mainline)
c906108c 633 {
2acceee2
JM
634 /* Find lowest loadable section to be used as starting point for
635 continguous sections. FIXME!! won't work without call to find
636 .text first, but this assumes text is lowest section. */
637 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
638 if (lower_sect == NULL)
c906108c 639 bfd_map_over_sections (objfile->obfd, find_lowest_section,
2acceee2
JM
640 (PTR) &lower_sect);
641 if (lower_sect == NULL)
c906108c
SS
642 warning ("no loadable sections found in added symbol-file %s",
643 objfile->name);
b8fbeb18
EZ
644 else
645 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
646 warning ("Lowest section in %s is %s at %s",
647 objfile->name,
648 bfd_section_name (objfile->obfd, lower_sect),
649 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
2acceee2
JM
650 if (lower_sect != NULL)
651 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
652 else
653 lower_offset = 0;
654
655 /* Calculate offsets for the loadable sections.
656 FIXME! Sections must be in order of increasing loadable section
657 so that contiguous sections can use the lower-offset!!!
658
659 Adjust offsets if the segments are not contiguous.
660 If the section is contiguous, its offset should be set to
661 the offset of the highest loadable section lower than it
662 (the loadable section directly below it in memory).
663 this_offset = lower_offset = lower_addr - lower_orig_addr */
664
e7cf9df1 665 /* Calculate offsets for sections. */
2acceee2
JM
666 for (i=0 ; i < MAX_SECTIONS && addrs->other[i].name; i++)
667 {
e7cf9df1 668 if (addrs->other[i].addr != 0)
2acceee2 669 {
e7cf9df1 670 sect = bfd_get_section_by_name (objfile->obfd, addrs->other[i].name);
2acceee2
JM
671 if (sect)
672 {
673 addrs->other[i].addr -= bfd_section_vma (objfile->obfd, sect);
674 lower_offset = addrs->other[i].addr;
e7cf9df1 675 /* This is the index used by BFD. */
2acceee2
JM
676 addrs->other[i].sectindex = sect->index ;
677 }
678 else
679 {
680 warning ("section %s not found in %s", addrs->other[i].name,
681 objfile->name);
682 addrs->other[i].addr = 0;
683 }
684 }
685 else
686 addrs->other[i].addr = lower_offset;
687 }
c906108c
SS
688 }
689
690 /* Initialize symbol reading routines for this objfile, allow complaints to
691 appear for this new file, and record how verbose to be, then do the
692 initial symbol reading for this file. */
693
c5aa993b 694 (*objfile->sf->sym_init) (objfile);
b9caf505 695 clear_complaints (&symfile_complaints, 1, verbo);
c906108c 696
2acceee2 697 (*objfile->sf->sym_offsets) (objfile, addrs);
c906108c
SS
698
699#ifndef IBM6000_TARGET
700 /* This is a SVR4/SunOS specific hack, I think. In any event, it
701 screws RS/6000. sym_offsets should be doing this sort of thing,
702 because it knows the mapping between bfd sections and
703 section_offsets. */
704 /* This is a hack. As far as I can tell, section offsets are not
705 target dependent. They are all set to addr with a couple of
706 exceptions. The exceptions are sysvr4 shared libraries, whose
707 offsets are kept in solib structures anyway and rs6000 xcoff
708 which handles shared libraries in a completely unique way.
709
710 Section offsets are built similarly, except that they are built
711 by adding addr in all cases because there is no clear mapping
712 from section_offsets into actual sections. Note that solib.c
96baa820 713 has a different algorithm for finding section offsets.
c906108c
SS
714
715 These should probably all be collapsed into some target
716 independent form of shared library support. FIXME. */
717
2acceee2 718 if (addrs)
c906108c
SS
719 {
720 struct obj_section *s;
721
2acceee2
JM
722 /* Map section offsets in "addr" back to the object's
723 sections by comparing the section names with bfd's
724 section names. Then adjust the section address by
725 the offset. */ /* for gdb/13815 */
726
96baa820 727 ALL_OBJFILE_OSECTIONS (objfile, s)
c906108c 728 {
2acceee2
JM
729 CORE_ADDR s_addr = 0;
730 int i;
731
62557bbc
KB
732 for (i = 0;
733 !s_addr && i < MAX_SECTIONS && addrs->other[i].name;
734 i++)
fbd35540
MS
735 if (strcmp (bfd_section_name (s->objfile->obfd,
736 s->the_bfd_section),
737 addrs->other[i].name) == 0)
2acceee2
JM
738 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
739
c906108c 740 s->addr -= s->offset;
2acceee2 741 s->addr += s_addr;
c906108c 742 s->endaddr -= s->offset;
2acceee2
JM
743 s->endaddr += s_addr;
744 s->offset += s_addr;
c906108c
SS
745 }
746 }
747#endif /* not IBM6000_TARGET */
748
96baa820 749 (*objfile->sf->sym_read) (objfile, mainline);
c906108c
SS
750
751 if (!have_partial_symbols () && !have_full_symbols ())
752 {
753 wrap_here ("");
754 printf_filtered ("(no debugging symbols found)...");
755 wrap_here ("");
756 }
757
758 /* Don't allow char * to have a typename (else would get caddr_t).
759 Ditto void *. FIXME: Check whether this is now done by all the
760 symbol readers themselves (many of them now do), and if so remove
761 it from here. */
762
763 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
764 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
765
766 /* Mark the objfile has having had initial symbol read attempted. Note
767 that this does not mean we found any symbols... */
768
c5aa993b 769 objfile->flags |= OBJF_SYMS;
c906108c
SS
770
771 /* Discard cleanups as symbol reading was successful. */
772
773 discard_cleanups (old_chain);
774
96baa820 775 /* Call this after reading in a new symbol table to give target
38c2ef12 776 dependent code a crack at the new symbols. For instance, this
96baa820
JM
777 could be used to update the values of target-specific symbols GDB
778 needs to keep track of (such as _sigtramp, or whatever). */
c906108c
SS
779
780 TARGET_SYMFILE_POSTREAD (objfile);
781}
782
783/* Perform required actions after either reading in the initial
784 symbols for a new objfile, or mapping in the symbols from a reusable
785 objfile. */
c5aa993b 786
c906108c 787void
fba45db2 788new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
c906108c
SS
789{
790
791 /* If this is the main symbol file we have to clean up all users of the
792 old main symbol file. Otherwise it is sufficient to fixup all the
793 breakpoints that may have been redefined by this symbol file. */
794 if (mainline)
795 {
796 /* OK, make it the "real" symbol file. */
797 symfile_objfile = objfile;
798
799 clear_symtab_users ();
800 }
801 else
802 {
803 breakpoint_re_set ();
804 }
805
806 /* We're done reading the symbol file; finish off complaints. */
b9caf505 807 clear_complaints (&symfile_complaints, 0, verbo);
c906108c
SS
808}
809
810/* Process a symbol file, as either the main file or as a dynamically
811 loaded file.
812
813 NAME is the file name (which will be tilde-expanded and made
814 absolute herein) (but we don't free or modify NAME itself).
815 FROM_TTY says how verbose to be. MAINLINE specifies whether this
816 is the main symbol file, or whether it's an extra symbol file such
817 as dynamically loaded code. If !mainline, ADDR is the address
818 where the text segment was loaded.
819
c906108c
SS
820 Upon success, returns a pointer to the objfile that was added.
821 Upon failure, jumps back to command level (never returns). */
822
823struct objfile *
fba45db2
KB
824symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
825 int mainline, int flags)
c906108c
SS
826{
827 struct objfile *objfile;
828 struct partial_symtab *psymtab;
829 bfd *abfd;
830
831 /* Open a bfd for the file, and give user a chance to burp if we'd be
832 interactively wiping out any existing symbols. */
833
834 abfd = symfile_bfd_open (name);
835
836 if ((have_full_symbols () || have_partial_symbols ())
837 && mainline
838 && from_tty
839 && !query ("Load new symbol table from \"%s\"? ", name))
c5aa993b 840 error ("Not confirmed.");
c906108c 841
2df3850c 842 objfile = allocate_objfile (abfd, flags);
c906108c
SS
843
844 /* If the objfile uses a mapped symbol file, and we have a psymtab for
845 it, then skip reading any symbols at this time. */
846
c5aa993b 847 if ((objfile->flags & OBJF_MAPPED) && (objfile->flags & OBJF_SYMS))
c906108c
SS
848 {
849 /* We mapped in an existing symbol table file that already has had
c5aa993b
JM
850 initial symbol reading performed, so we can skip that part. Notify
851 the user that instead of reading the symbols, they have been mapped.
852 */
c906108c
SS
853 if (from_tty || info_verbose)
854 {
855 printf_filtered ("Mapped symbols for %s...", name);
856 wrap_here ("");
857 gdb_flush (gdb_stdout);
858 }
859 init_entry_point_info (objfile);
860 find_sym_fns (objfile);
861 }
862 else
863 {
864 /* We either created a new mapped symbol table, mapped an existing
c5aa993b
JM
865 symbol table file which has not had initial symbol reading
866 performed, or need to read an unmapped symbol table. */
c906108c
SS
867 if (from_tty || info_verbose)
868 {
869 if (pre_add_symbol_hook)
870 pre_add_symbol_hook (name);
871 else
872 {
873 printf_filtered ("Reading symbols from %s...", name);
874 wrap_here ("");
875 gdb_flush (gdb_stdout);
876 }
877 }
2acceee2 878 syms_from_objfile (objfile, addrs, mainline, from_tty);
c906108c
SS
879 }
880
881 /* We now have at least a partial symbol table. Check to see if the
882 user requested that all symbols be read on initial access via either
883 the gdb startup command line or on a per symbol file basis. Expand
884 all partial symbol tables for this objfile if so. */
885
2acceee2 886 if ((flags & OBJF_READNOW) || readnow_symbol_files)
c906108c
SS
887 {
888 if (from_tty || info_verbose)
889 {
890 printf_filtered ("expanding to full symbols...");
891 wrap_here ("");
892 gdb_flush (gdb_stdout);
893 }
894
c5aa993b 895 for (psymtab = objfile->psymtabs;
c906108c 896 psymtab != NULL;
c5aa993b 897 psymtab = psymtab->next)
c906108c
SS
898 {
899 psymtab_to_symtab (psymtab);
900 }
901 }
902
903 if (from_tty || info_verbose)
904 {
905 if (post_add_symbol_hook)
c5aa993b 906 post_add_symbol_hook ();
c906108c 907 else
c5aa993b
JM
908 {
909 printf_filtered ("done.\n");
910 gdb_flush (gdb_stdout);
911 }
c906108c
SS
912 }
913
109f874e
MS
914 if (objfile->sf == NULL)
915 return objfile; /* No symbols. */
916
c906108c
SS
917 new_symfile_objfile (objfile, mainline, from_tty);
918
11cf8741
JM
919 if (target_new_objfile_hook)
920 target_new_objfile_hook (objfile);
c906108c
SS
921
922 return (objfile);
923}
924
d7db6da9
FN
925/* Call symbol_file_add() with default values and update whatever is
926 affected by the loading of a new main().
927 Used when the file is supplied in the gdb command line
928 and by some targets with special loading requirements.
929 The auxiliary function, symbol_file_add_main_1(), has the flags
930 argument for the switches that can only be specified in the symbol_file
931 command itself. */
1adeb98a
FN
932
933void
934symbol_file_add_main (char *args, int from_tty)
935{
d7db6da9
FN
936 symbol_file_add_main_1 (args, from_tty, 0);
937}
938
939static void
940symbol_file_add_main_1 (char *args, int from_tty, int flags)
941{
942 symbol_file_add (args, from_tty, NULL, 1, flags);
943
944#ifdef HPUXHPPA
945 RESET_HP_UX_GLOBALS ();
946#endif
947
948 /* Getting new symbols may change our opinion about
949 what is frameless. */
950 reinit_frame_cache ();
951
952 set_initial_language ();
1adeb98a
FN
953}
954
955void
956symbol_file_clear (int from_tty)
957{
958 if ((have_full_symbols () || have_partial_symbols ())
959 && from_tty
960 && !query ("Discard symbol table from `%s'? ",
961 symfile_objfile->name))
962 error ("Not confirmed.");
963 free_all_objfiles ();
964
965 /* solib descriptors may have handles to objfiles. Since their
966 storage has just been released, we'd better wipe the solib
967 descriptors as well.
968 */
969#if defined(SOLIB_RESTART)
970 SOLIB_RESTART ();
971#endif
972
973 symfile_objfile = NULL;
974 if (from_tty)
975 printf_unfiltered ("No symbol file now.\n");
976#ifdef HPUXHPPA
977 RESET_HP_UX_GLOBALS ();
978#endif
979}
980
c906108c
SS
981/* This is the symbol-file command. Read the file, analyze its
982 symbols, and add a struct symtab to a symtab list. The syntax of
983 the command is rather bizarre--(1) buildargv implements various
984 quoting conventions which are undocumented and have little or
985 nothing in common with the way things are quoted (or not quoted)
986 elsewhere in GDB, (2) options are used, which are not generally
987 used in GDB (perhaps "set mapped on", "set readnow on" would be
988 better), (3) the order of options matters, which is contrary to GNU
989 conventions (because it is confusing and inconvenient). */
4da95fc4
EZ
990/* Note: ezannoni 2000-04-17. This function used to have support for
991 rombug (see remote-os9k.c). It consisted of a call to target_link()
992 (target.c) to get the address of the text segment from the target,
993 and pass that to symbol_file_add(). This is no longer supported. */
c906108c
SS
994
995void
fba45db2 996symbol_file_command (char *args, int from_tty)
c906108c
SS
997{
998 char **argv;
999 char *name = NULL;
c906108c 1000 struct cleanup *cleanups;
2df3850c 1001 int flags = OBJF_USERLOADED;
c906108c
SS
1002
1003 dont_repeat ();
1004
1005 if (args == NULL)
1006 {
1adeb98a 1007 symbol_file_clear (from_tty);
c906108c
SS
1008 }
1009 else
1010 {
1011 if ((argv = buildargv (args)) == NULL)
1012 {
1013 nomem (0);
1014 }
7a292a7a 1015 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1016 while (*argv != NULL)
1017 {
1018 if (STREQ (*argv, "-mapped"))
4da95fc4
EZ
1019 flags |= OBJF_MAPPED;
1020 else
1021 if (STREQ (*argv, "-readnow"))
2acceee2 1022 flags |= OBJF_READNOW;
4da95fc4
EZ
1023 else
1024 if (**argv == '-')
1025 error ("unknown option `%s'", *argv);
c5aa993b 1026 else
c5aa993b 1027 {
4da95fc4 1028 name = *argv;
c906108c 1029
d7db6da9 1030 symbol_file_add_main_1 (name, from_tty, flags);
4da95fc4 1031 }
c906108c
SS
1032 argv++;
1033 }
1034
1035 if (name == NULL)
1036 {
1037 error ("no symbol file name was specified");
1038 }
c906108c
SS
1039 do_cleanups (cleanups);
1040 }
1041}
1042
1043/* Set the initial language.
1044
1045 A better solution would be to record the language in the psymtab when reading
1046 partial symbols, and then use it (if known) to set the language. This would
1047 be a win for formats that encode the language in an easily discoverable place,
1048 such as DWARF. For stabs, we can jump through hoops looking for specially
1049 named symbols or try to intuit the language from the specific type of stabs
1050 we find, but we can't do that until later when we read in full symbols.
1051 FIXME. */
1052
1053static void
fba45db2 1054set_initial_language (void)
c906108c
SS
1055{
1056 struct partial_symtab *pst;
c5aa993b 1057 enum language lang = language_unknown;
c906108c
SS
1058
1059 pst = find_main_psymtab ();
1060 if (pst != NULL)
1061 {
c5aa993b 1062 if (pst->filename != NULL)
c906108c 1063 {
c5aa993b
JM
1064 lang = deduce_language_from_filename (pst->filename);
1065 }
c906108c
SS
1066 if (lang == language_unknown)
1067 {
c5aa993b
JM
1068 /* Make C the default language */
1069 lang = language_c;
c906108c
SS
1070 }
1071 set_language (lang);
1072 expected_language = current_language; /* Don't warn the user */
1073 }
1074}
1075
1076/* Open file specified by NAME and hand it off to BFD for preliminary
1077 analysis. Result is a newly initialized bfd *, which includes a newly
1078 malloc'd` copy of NAME (tilde-expanded and made absolute).
1079 In case of trouble, error() is called. */
1080
1081bfd *
fba45db2 1082symfile_bfd_open (char *name)
c906108c
SS
1083{
1084 bfd *sym_bfd;
1085 int desc;
1086 char *absolute_name;
1087
1088
1089
1090 name = tilde_expand (name); /* Returns 1st new malloc'd copy */
1091
1092 /* Look down path for it, allocate 2nd new malloc'd copy. */
1093 desc = openp (getenv ("PATH"), 1, name, O_RDONLY | O_BINARY, 0, &absolute_name);
608506ed 1094#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1095 if (desc < 0)
1096 {
1097 char *exename = alloca (strlen (name) + 5);
1098 strcat (strcpy (exename, name), ".exe");
1099 desc = openp (getenv ("PATH"), 1, exename, O_RDONLY | O_BINARY,
c5aa993b 1100 0, &absolute_name);
c906108c
SS
1101 }
1102#endif
1103 if (desc < 0)
1104 {
b8c9b27d 1105 make_cleanup (xfree, name);
c906108c
SS
1106 perror_with_name (name);
1107 }
b8c9b27d 1108 xfree (name); /* Free 1st new malloc'd copy */
c906108c 1109 name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
c5aa993b 1110 /* It'll be freed in free_objfile(). */
c906108c
SS
1111
1112 sym_bfd = bfd_fdopenr (name, gnutarget, desc);
1113 if (!sym_bfd)
1114 {
1115 close (desc);
b8c9b27d 1116 make_cleanup (xfree, name);
c906108c
SS
1117 error ("\"%s\": can't open to read symbols: %s.", name,
1118 bfd_errmsg (bfd_get_error ()));
1119 }
81a9a963 1120 sym_bfd->cacheable = 1;
c906108c
SS
1121
1122 if (!bfd_check_format (sym_bfd, bfd_object))
1123 {
1124 /* FIXME: should be checking for errors from bfd_close (for one thing,
c5aa993b
JM
1125 on error it does not free all the storage associated with the
1126 bfd). */
c906108c 1127 bfd_close (sym_bfd); /* This also closes desc */
b8c9b27d 1128 make_cleanup (xfree, name);
c906108c
SS
1129 error ("\"%s\": can't read symbols: %s.", name,
1130 bfd_errmsg (bfd_get_error ()));
1131 }
1132 return (sym_bfd);
1133}
1134
0e931cf0
JB
1135/* Return the section index for the given section name. Return -1 if
1136 the section was not found. */
1137int
1138get_section_index (struct objfile *objfile, char *section_name)
1139{
1140 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1141 if (sect)
1142 return sect->index;
1143 else
1144 return -1;
1145}
1146
c906108c
SS
1147/* Link a new symtab_fns into the global symtab_fns list. Called on gdb
1148 startup by the _initialize routine in each object file format reader,
1149 to register information about each format the the reader is prepared
1150 to handle. */
1151
1152void
fba45db2 1153add_symtab_fns (struct sym_fns *sf)
c906108c
SS
1154{
1155 sf->next = symtab_fns;
1156 symtab_fns = sf;
1157}
1158
1159
1160/* Initialize to read symbols from the symbol file sym_bfd. It either
1161 returns or calls error(). The result is an initialized struct sym_fns
1162 in the objfile structure, that contains cached information about the
1163 symbol file. */
1164
1165static void
fba45db2 1166find_sym_fns (struct objfile *objfile)
c906108c
SS
1167{
1168 struct sym_fns *sf;
c5aa993b
JM
1169 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1170 char *our_target = bfd_get_target (objfile->obfd);
c906108c 1171
75245b24
MS
1172 if (our_flavour == bfd_target_srec_flavour
1173 || our_flavour == bfd_target_ihex_flavour
1174 || our_flavour == bfd_target_tekhex_flavour)
1175 return; /* No symbols. */
1176
c906108c
SS
1177 /* Special kludge for apollo. See dstread.c. */
1178 if (STREQN (our_target, "apollo", 6))
c5aa993b 1179 our_flavour = (enum bfd_flavour) -2;
c906108c 1180
c5aa993b 1181 for (sf = symtab_fns; sf != NULL; sf = sf->next)
c906108c 1182 {
c5aa993b 1183 if (our_flavour == sf->sym_flavour)
c906108c 1184 {
c5aa993b 1185 objfile->sf = sf;
c906108c
SS
1186 return;
1187 }
1188 }
1189 error ("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown.",
c5aa993b 1190 bfd_get_target (objfile->obfd));
c906108c
SS
1191}
1192\f
1193/* This function runs the load command of our current target. */
1194
1195static void
fba45db2 1196load_command (char *arg, int from_tty)
c906108c
SS
1197{
1198 if (arg == NULL)
1199 arg = get_exec_file (1);
1200 target_load (arg, from_tty);
2889e661
JB
1201
1202 /* After re-loading the executable, we don't really know which
1203 overlays are mapped any more. */
1204 overlay_cache_invalid = 1;
c906108c
SS
1205}
1206
1207/* This version of "load" should be usable for any target. Currently
1208 it is just used for remote targets, not inftarg.c or core files,
1209 on the theory that only in that case is it useful.
1210
1211 Avoiding xmodem and the like seems like a win (a) because we don't have
1212 to worry about finding it, and (b) On VMS, fork() is very slow and so
1213 we don't want to run a subprocess. On the other hand, I'm not sure how
1214 performance compares. */
917317f4
JM
1215
1216static int download_write_size = 512;
1217static int validate_download = 0;
1218
e4f9b4d5
MS
1219/* Callback service function for generic_load (bfd_map_over_sections). */
1220
1221static void
1222add_section_size_callback (bfd *abfd, asection *asec, void *data)
1223{
1224 bfd_size_type *sum = data;
1225
1226 *sum += bfd_get_section_size_before_reloc (asec);
1227}
1228
1229/* Opaque data for load_section_callback. */
1230struct load_section_data {
1231 unsigned long load_offset;
1232 unsigned long write_count;
1233 unsigned long data_count;
1234 bfd_size_type total_size;
1235};
1236
1237/* Callback service function for generic_load (bfd_map_over_sections). */
1238
1239static void
1240load_section_callback (bfd *abfd, asection *asec, void *data)
1241{
1242 struct load_section_data *args = data;
1243
1244 if (bfd_get_section_flags (abfd, asec) & SEC_LOAD)
1245 {
1246 bfd_size_type size = bfd_get_section_size_before_reloc (asec);
1247 if (size > 0)
1248 {
1249 char *buffer;
1250 struct cleanup *old_chain;
1251 CORE_ADDR lma = bfd_section_lma (abfd, asec) + args->load_offset;
1252 bfd_size_type block_size;
1253 int err;
1254 const char *sect_name = bfd_get_section_name (abfd, asec);
1255 bfd_size_type sent;
1256
1257 if (download_write_size > 0 && size > download_write_size)
1258 block_size = download_write_size;
1259 else
1260 block_size = size;
1261
1262 buffer = xmalloc (size);
1263 old_chain = make_cleanup (xfree, buffer);
1264
1265 /* Is this really necessary? I guess it gives the user something
1266 to look at during a long download. */
e4f9b4d5
MS
1267 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1268 sect_name, paddr_nz (size), paddr_nz (lma));
e4f9b4d5
MS
1269
1270 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1271
1272 sent = 0;
1273 do
1274 {
1275 int len;
1276 bfd_size_type this_transfer = size - sent;
1277
1278 if (this_transfer >= block_size)
1279 this_transfer = block_size;
1280 len = target_write_memory_partial (lma, buffer,
1281 this_transfer, &err);
1282 if (err)
1283 break;
1284 if (validate_download)
1285 {
1286 /* Broken memories and broken monitors manifest
1287 themselves here when bring new computers to
1288 life. This doubles already slow downloads. */
1289 /* NOTE: cagney/1999-10-18: A more efficient
1290 implementation might add a verify_memory()
1291 method to the target vector and then use
1292 that. remote.c could implement that method
1293 using the ``qCRC'' packet. */
1294 char *check = xmalloc (len);
1295 struct cleanup *verify_cleanups =
1296 make_cleanup (xfree, check);
1297
1298 if (target_read_memory (lma, check, len) != 0)
1299 error ("Download verify read failed at 0x%s",
1300 paddr (lma));
1301 if (memcmp (buffer, check, len) != 0)
1302 error ("Download verify compare failed at 0x%s",
1303 paddr (lma));
1304 do_cleanups (verify_cleanups);
1305 }
1306 args->data_count += len;
1307 lma += len;
1308 buffer += len;
1309 args->write_count += 1;
1310 sent += len;
1311 if (quit_flag
1312 || (ui_load_progress_hook != NULL
1313 && ui_load_progress_hook (sect_name, sent)))
1314 error ("Canceled the download");
1315
1316 if (show_load_progress != NULL)
1317 show_load_progress (sect_name, sent, size,
1318 args->data_count, args->total_size);
1319 }
1320 while (sent < size);
1321
1322 if (err != 0)
1323 error ("Memory access error while loading section %s.", sect_name);
1324
1325 do_cleanups (old_chain);
1326 }
1327 }
1328}
1329
c906108c 1330void
917317f4 1331generic_load (char *args, int from_tty)
c906108c 1332{
c906108c
SS
1333 asection *s;
1334 bfd *loadfile_bfd;
1335 time_t start_time, end_time; /* Start and end times of download */
917317f4
JM
1336 char *filename;
1337 struct cleanup *old_cleanups;
1338 char *offptr;
e4f9b4d5
MS
1339 struct load_section_data cbdata;
1340 CORE_ADDR entry;
1341
1342 cbdata.load_offset = 0; /* Offset to add to vma for each section. */
1343 cbdata.write_count = 0; /* Number of writes needed. */
1344 cbdata.data_count = 0; /* Number of bytes written to target memory. */
1345 cbdata.total_size = 0; /* Total size of all bfd sectors. */
917317f4
JM
1346
1347 /* Parse the input argument - the user can specify a load offset as
1348 a second argument. */
1349 filename = xmalloc (strlen (args) + 1);
b8c9b27d 1350 old_cleanups = make_cleanup (xfree, filename);
917317f4
JM
1351 strcpy (filename, args);
1352 offptr = strchr (filename, ' ');
1353 if (offptr != NULL)
1354 {
1355 char *endptr;
ba5f2f8a 1356
e4f9b4d5 1357 cbdata.load_offset = strtoul (offptr, &endptr, 0);
917317f4
JM
1358 if (offptr == endptr)
1359 error ("Invalid download offset:%s\n", offptr);
1360 *offptr = '\0';
1361 }
c906108c 1362 else
e4f9b4d5 1363 cbdata.load_offset = 0;
c906108c 1364
917317f4 1365 /* Open the file for loading. */
c906108c
SS
1366 loadfile_bfd = bfd_openr (filename, gnutarget);
1367 if (loadfile_bfd == NULL)
1368 {
1369 perror_with_name (filename);
1370 return;
1371 }
917317f4 1372
c906108c
SS
1373 /* FIXME: should be checking for errors from bfd_close (for one thing,
1374 on error it does not free all the storage associated with the
1375 bfd). */
5c65bbb6 1376 make_cleanup_bfd_close (loadfile_bfd);
c906108c 1377
c5aa993b 1378 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c
SS
1379 {
1380 error ("\"%s\" is not an object file: %s", filename,
1381 bfd_errmsg (bfd_get_error ()));
1382 }
c5aa993b 1383
e4f9b4d5
MS
1384 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1385 (void *) &cbdata.total_size);
c2d11a7d 1386
c906108c
SS
1387 start_time = time (NULL);
1388
e4f9b4d5 1389 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c906108c
SS
1390
1391 end_time = time (NULL);
ba5f2f8a 1392
e4f9b4d5 1393 entry = bfd_get_start_address (loadfile_bfd);
e4f9b4d5
MS
1394 ui_out_text (uiout, "Start address ");
1395 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1396 ui_out_text (uiout, ", load size ");
1397 ui_out_field_fmt (uiout, "load-size", "%lu", cbdata.data_count);
1398 ui_out_text (uiout, "\n");
e4f9b4d5
MS
1399 /* We were doing this in remote-mips.c, I suspect it is right
1400 for other targets too. */
1401 write_pc (entry);
c906108c
SS
1402
1403 /* FIXME: are we supposed to call symbol_file_add or not? According to
1404 a comment from remote-mips.c (where a call to symbol_file_add was
1405 commented out), making the call confuses GDB if more than one file is
1406 loaded in. remote-nindy.c had no call to symbol_file_add, but remote-vx.c
1407 does. */
1408
e4f9b4d5
MS
1409 print_transfer_performance (gdb_stdout, cbdata.data_count,
1410 cbdata.write_count, end_time - start_time);
c906108c
SS
1411
1412 do_cleanups (old_cleanups);
1413}
1414
1415/* Report how fast the transfer went. */
1416
917317f4
JM
1417/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1418 replaced by print_transfer_performance (with a very different
1419 function signature). */
1420
c906108c 1421void
fba45db2
KB
1422report_transfer_performance (unsigned long data_count, time_t start_time,
1423 time_t end_time)
c906108c 1424{
ba5f2f8a
MS
1425 print_transfer_performance (gdb_stdout, data_count,
1426 end_time - start_time, 0);
917317f4
JM
1427}
1428
1429void
d9fcf2fb 1430print_transfer_performance (struct ui_file *stream,
917317f4
JM
1431 unsigned long data_count,
1432 unsigned long write_count,
1433 unsigned long time_count)
1434{
8b93c638
JM
1435 ui_out_text (uiout, "Transfer rate: ");
1436 if (time_count > 0)
1437 {
ba5f2f8a 1438 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
8b93c638
JM
1439 (data_count * 8) / time_count);
1440 ui_out_text (uiout, " bits/sec");
1441 }
1442 else
1443 {
ba5f2f8a 1444 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
8b93c638
JM
1445 ui_out_text (uiout, " bits in <1 sec");
1446 }
1447 if (write_count > 0)
1448 {
1449 ui_out_text (uiout, ", ");
ba5f2f8a 1450 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
1451 ui_out_text (uiout, " bytes/write");
1452 }
1453 ui_out_text (uiout, ".\n");
c906108c
SS
1454}
1455
1456/* This function allows the addition of incrementally linked object files.
1457 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
1458/* Note: ezannoni 2000-04-13 This function/command used to have a
1459 special case syntax for the rombug target (Rombug is the boot
1460 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1461 rombug case, the user doesn't need to supply a text address,
1462 instead a call to target_link() (in target.c) would supply the
1463 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c
SS
1464
1465/* ARGSUSED */
1466static void
fba45db2 1467add_symbol_file_command (char *args, int from_tty)
c906108c 1468{
db162d44 1469 char *filename = NULL;
2df3850c 1470 int flags = OBJF_USERLOADED;
c906108c 1471 char *arg;
2acceee2 1472 int expecting_option = 0;
db162d44 1473 int section_index = 0;
2acceee2
JM
1474 int argcnt = 0;
1475 int sec_num = 0;
1476 int i;
db162d44
EZ
1477 int expecting_sec_name = 0;
1478 int expecting_sec_addr = 0;
1479
2acceee2
JM
1480 struct
1481 {
2acceee2
JM
1482 char *name;
1483 char *value;
db162d44
EZ
1484 } sect_opts[SECT_OFF_MAX];
1485
2acceee2 1486 struct section_addr_info section_addrs;
3017564a 1487 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 1488
c906108c
SS
1489 dont_repeat ();
1490
1491 if (args == NULL)
db162d44 1492 error ("add-symbol-file takes a file name and an address");
c906108c
SS
1493
1494 /* Make a copy of the string that we can safely write into. */
c2d11a7d 1495 args = xstrdup (args);
c906108c 1496
2acceee2
JM
1497 /* Ensure section_addrs is initialized */
1498 memset (&section_addrs, 0, sizeof (section_addrs));
1499
2acceee2 1500 while (*args != '\000')
c906108c 1501 {
db162d44 1502 /* Any leading spaces? */
c5aa993b 1503 while (isspace (*args))
db162d44
EZ
1504 args++;
1505
1506 /* Point arg to the beginning of the argument. */
c906108c 1507 arg = args;
db162d44
EZ
1508
1509 /* Move args pointer over the argument. */
c5aa993b 1510 while ((*args != '\000') && !isspace (*args))
db162d44
EZ
1511 args++;
1512
1513 /* If there are more arguments, terminate arg and
1514 proceed past it. */
c906108c 1515 if (*args != '\000')
db162d44
EZ
1516 *args++ = '\000';
1517
1518 /* Now process the argument. */
1519 if (argcnt == 0)
c906108c 1520 {
db162d44
EZ
1521 /* The first argument is the file name. */
1522 filename = tilde_expand (arg);
3017564a 1523 make_cleanup (xfree, filename);
c906108c 1524 }
db162d44 1525 else
7a78ae4e
ND
1526 if (argcnt == 1)
1527 {
1528 /* The second argument is always the text address at which
1529 to load the program. */
1530 sect_opts[section_index].name = ".text";
1531 sect_opts[section_index].value = arg;
1532 section_index++;
1533 }
1534 else
1535 {
1536 /* It's an option (starting with '-') or it's an argument
1537 to an option */
1538
1539 if (*arg == '-')
1540 {
1541 if (strcmp (arg, "-mapped") == 0)
1542 flags |= OBJF_MAPPED;
1543 else
1544 if (strcmp (arg, "-readnow") == 0)
1545 flags |= OBJF_READNOW;
1546 else
1547 if (strcmp (arg, "-s") == 0)
1548 {
1549 if (section_index >= SECT_OFF_MAX)
1550 error ("Too many sections specified.");
1551 expecting_sec_name = 1;
1552 expecting_sec_addr = 1;
1553 }
1554 }
1555 else
1556 {
1557 if (expecting_sec_name)
db162d44 1558 {
7a78ae4e
ND
1559 sect_opts[section_index].name = arg;
1560 expecting_sec_name = 0;
db162d44
EZ
1561 }
1562 else
7a78ae4e
ND
1563 if (expecting_sec_addr)
1564 {
1565 sect_opts[section_index].value = arg;
1566 expecting_sec_addr = 0;
1567 section_index++;
1568 }
1569 else
1570 error ("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*");
1571 }
1572 }
db162d44 1573 argcnt++;
c906108c 1574 }
c906108c 1575
db162d44
EZ
1576 /* Print the prompt for the query below. And save the arguments into
1577 a sect_addr_info structure to be passed around to other
1578 functions. We have to split this up into separate print
1579 statements because local_hex_string returns a local static
1580 string. */
2acceee2 1581
db162d44
EZ
1582 printf_filtered ("add symbol table from file \"%s\" at\n", filename);
1583 for (i = 0; i < section_index; i++)
c906108c 1584 {
db162d44
EZ
1585 CORE_ADDR addr;
1586 char *val = sect_opts[i].value;
1587 char *sec = sect_opts[i].name;
1588
1589 val = sect_opts[i].value;
1590 if (val[0] == '0' && val[1] == 'x')
1591 addr = strtoul (val+2, NULL, 16);
1592 else
1593 addr = strtoul (val, NULL, 10);
1594
db162d44
EZ
1595 /* Here we store the section offsets in the order they were
1596 entered on the command line. */
1597 section_addrs.other[sec_num].name = sec;
1598 section_addrs.other[sec_num].addr = addr;
1599 printf_filtered ("\t%s_addr = %s\n",
1600 sec,
1601 local_hex_string ((unsigned long)addr));
1602 sec_num++;
1603
1604 /* The object's sections are initialized when a
1605 call is made to build_objfile_section_table (objfile).
1606 This happens in reread_symbols.
1607 At this point, we don't know what file type this is,
1608 so we can't determine what section names are valid. */
2acceee2 1609 }
db162d44 1610
2acceee2 1611 if (from_tty && (!query ("%s", "")))
c906108c
SS
1612 error ("Not confirmed.");
1613
db162d44 1614 symbol_file_add (filename, from_tty, &section_addrs, 0, flags);
c906108c
SS
1615
1616 /* Getting new symbols may change our opinion about what is
1617 frameless. */
1618 reinit_frame_cache ();
db162d44 1619 do_cleanups (my_cleanups);
c906108c
SS
1620}
1621\f
1622static void
fba45db2 1623add_shared_symbol_files_command (char *args, int from_tty)
c906108c
SS
1624{
1625#ifdef ADD_SHARED_SYMBOL_FILES
1626 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1627#else
1628 error ("This command is not available in this configuration of GDB.");
c5aa993b 1629#endif
c906108c
SS
1630}
1631\f
1632/* Re-read symbols if a symbol-file has changed. */
1633void
fba45db2 1634reread_symbols (void)
c906108c
SS
1635{
1636 struct objfile *objfile;
1637 long new_modtime;
1638 int reread_one = 0;
1639 struct stat new_statbuf;
1640 int res;
1641
1642 /* With the addition of shared libraries, this should be modified,
1643 the load time should be saved in the partial symbol tables, since
1644 different tables may come from different source files. FIXME.
1645 This routine should then walk down each partial symbol table
1646 and see if the symbol table that it originates from has been changed */
1647
c5aa993b
JM
1648 for (objfile = object_files; objfile; objfile = objfile->next)
1649 {
1650 if (objfile->obfd)
1651 {
c906108c 1652#ifdef IBM6000_TARGET
c5aa993b
JM
1653 /* If this object is from a shared library, then you should
1654 stat on the library name, not member name. */
c906108c 1655
c5aa993b
JM
1656 if (objfile->obfd->my_archive)
1657 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1658 else
c906108c 1659#endif
c5aa993b
JM
1660 res = stat (objfile->name, &new_statbuf);
1661 if (res != 0)
c906108c 1662 {
c5aa993b
JM
1663 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1664 printf_filtered ("`%s' has disappeared; keeping its symbols.\n",
1665 objfile->name);
1666 continue;
c906108c 1667 }
c5aa993b
JM
1668 new_modtime = new_statbuf.st_mtime;
1669 if (new_modtime != objfile->mtime)
c906108c 1670 {
c5aa993b
JM
1671 struct cleanup *old_cleanups;
1672 struct section_offsets *offsets;
1673 int num_offsets;
c5aa993b
JM
1674 char *obfd_filename;
1675
1676 printf_filtered ("`%s' has changed; re-reading symbols.\n",
1677 objfile->name);
1678
1679 /* There are various functions like symbol_file_add,
1680 symfile_bfd_open, syms_from_objfile, etc., which might
1681 appear to do what we want. But they have various other
1682 effects which we *don't* want. So we just do stuff
1683 ourselves. We don't worry about mapped files (for one thing,
1684 any mapped file will be out of date). */
1685
1686 /* If we get an error, blow away this objfile (not sure if
1687 that is the correct response for things like shared
1688 libraries). */
74b7792f 1689 old_cleanups = make_cleanup_free_objfile (objfile);
c5aa993b 1690 /* We need to do this whenever any symbols go away. */
74b7792f 1691 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c5aa993b
JM
1692
1693 /* Clean up any state BFD has sitting around. We don't need
1694 to close the descriptor but BFD lacks a way of closing the
1695 BFD without closing the descriptor. */
1696 obfd_filename = bfd_get_filename (objfile->obfd);
1697 if (!bfd_close (objfile->obfd))
1698 error ("Can't close BFD for %s: %s", objfile->name,
1699 bfd_errmsg (bfd_get_error ()));
1700 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
1701 if (objfile->obfd == NULL)
1702 error ("Can't open %s to read symbols.", objfile->name);
1703 /* bfd_openr sets cacheable to true, which is what we want. */
1704 if (!bfd_check_format (objfile->obfd, bfd_object))
1705 error ("Can't read symbols from %s: %s.", objfile->name,
1706 bfd_errmsg (bfd_get_error ()));
1707
1708 /* Save the offsets, we will nuke them with the rest of the
1709 psymbol_obstack. */
1710 num_offsets = objfile->num_sections;
d4f3574e
SS
1711 offsets = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
1712 memcpy (offsets, objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
c5aa993b
JM
1713
1714 /* Nuke all the state that we will re-read. Much of the following
1715 code which sets things to NULL really is necessary to tell
1716 other parts of GDB that there is nothing currently there. */
1717
1718 /* FIXME: Do we have to free a whole linked list, or is this
1719 enough? */
1720 if (objfile->global_psymbols.list)
aac7f4ea 1721 xmfree (objfile->md, objfile->global_psymbols.list);
c5aa993b
JM
1722 memset (&objfile->global_psymbols, 0,
1723 sizeof (objfile->global_psymbols));
1724 if (objfile->static_psymbols.list)
aac7f4ea 1725 xmfree (objfile->md, objfile->static_psymbols.list);
c5aa993b
JM
1726 memset (&objfile->static_psymbols, 0,
1727 sizeof (objfile->static_psymbols));
1728
1729 /* Free the obstacks for non-reusable objfiles */
af5f3db6
AC
1730 bcache_xfree (objfile->psymbol_cache);
1731 objfile->psymbol_cache = bcache_xmalloc ();
1732 bcache_xfree (objfile->macro_cache);
1733 objfile->macro_cache = bcache_xmalloc ();
c5aa993b
JM
1734 obstack_free (&objfile->psymbol_obstack, 0);
1735 obstack_free (&objfile->symbol_obstack, 0);
1736 obstack_free (&objfile->type_obstack, 0);
1737 objfile->sections = NULL;
1738 objfile->symtabs = NULL;
1739 objfile->psymtabs = NULL;
1740 objfile->free_psymtabs = NULL;
1741 objfile->msymbols = NULL;
1742 objfile->minimal_symbol_count = 0;
0a83117a
MS
1743 memset (&objfile->msymbol_hash, 0,
1744 sizeof (objfile->msymbol_hash));
1745 memset (&objfile->msymbol_demangled_hash, 0,
1746 sizeof (objfile->msymbol_demangled_hash));
c5aa993b
JM
1747 objfile->fundamental_types = NULL;
1748 if (objfile->sf != NULL)
1749 {
1750 (*objfile->sf->sym_finish) (objfile);
1751 }
1752
1753 /* We never make this a mapped file. */
1754 objfile->md = NULL;
1755 /* obstack_specify_allocation also initializes the obstack so
1756 it is empty. */
af5f3db6
AC
1757 objfile->psymbol_cache = bcache_xmalloc ();
1758 objfile->macro_cache = bcache_xmalloc ();
c5aa993b 1759 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0,
b8c9b27d 1760 xmalloc, xfree);
c5aa993b 1761 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0,
b8c9b27d 1762 xmalloc, xfree);
c5aa993b 1763 obstack_specify_allocation (&objfile->type_obstack, 0, 0,
b8c9b27d 1764 xmalloc, xfree);
c5aa993b
JM
1765 if (build_objfile_section_table (objfile))
1766 {
1767 error ("Can't find the file sections in `%s': %s",
1768 objfile->name, bfd_errmsg (bfd_get_error ()));
1769 }
1770
1771 /* We use the same section offsets as from last time. I'm not
1772 sure whether that is always correct for shared libraries. */
1773 objfile->section_offsets = (struct section_offsets *)
d4f3574e
SS
1774 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
1775 memcpy (objfile->section_offsets, offsets, SIZEOF_SECTION_OFFSETS);
c5aa993b
JM
1776 objfile->num_sections = num_offsets;
1777
1778 /* What the hell is sym_new_init for, anyway? The concept of
1779 distinguishing between the main file and additional files
1780 in this way seems rather dubious. */
1781 if (objfile == symfile_objfile)
1782 {
1783 (*objfile->sf->sym_new_init) (objfile);
c906108c 1784#ifdef HPUXHPPA
c5aa993b 1785 RESET_HP_UX_GLOBALS ();
c906108c 1786#endif
c5aa993b
JM
1787 }
1788
1789 (*objfile->sf->sym_init) (objfile);
b9caf505 1790 clear_complaints (&symfile_complaints, 1, 1);
c5aa993b
JM
1791 /* The "mainline" parameter is a hideous hack; I think leaving it
1792 zero is OK since dbxread.c also does what it needs to do if
1793 objfile->global_psymbols.size is 0. */
96baa820 1794 (*objfile->sf->sym_read) (objfile, 0);
c5aa993b
JM
1795 if (!have_partial_symbols () && !have_full_symbols ())
1796 {
1797 wrap_here ("");
1798 printf_filtered ("(no debugging symbols found)\n");
1799 wrap_here ("");
1800 }
1801 objfile->flags |= OBJF_SYMS;
1802
1803 /* We're done reading the symbol file; finish off complaints. */
b9caf505 1804 clear_complaints (&symfile_complaints, 0, 1);
c906108c 1805
c5aa993b
JM
1806 /* Getting new symbols may change our opinion about what is
1807 frameless. */
c906108c 1808
c5aa993b 1809 reinit_frame_cache ();
c906108c 1810
c5aa993b
JM
1811 /* Discard cleanups as symbol reading was successful. */
1812 discard_cleanups (old_cleanups);
c906108c 1813
c5aa993b
JM
1814 /* If the mtime has changed between the time we set new_modtime
1815 and now, we *want* this to be out of date, so don't call stat
1816 again now. */
1817 objfile->mtime = new_modtime;
1818 reread_one = 1;
c906108c 1819
c5aa993b 1820 /* Call this after reading in a new symbol table to give target
38c2ef12 1821 dependent code a crack at the new symbols. For instance, this
c5aa993b
JM
1822 could be used to update the values of target-specific symbols GDB
1823 needs to keep track of (such as _sigtramp, or whatever). */
c906108c 1824
c5aa993b
JM
1825 TARGET_SYMFILE_POSTREAD (objfile);
1826 }
c906108c
SS
1827 }
1828 }
c906108c
SS
1829
1830 if (reread_one)
1831 clear_symtab_users ();
1832}
c906108c
SS
1833\f
1834
c5aa993b
JM
1835
1836typedef struct
1837{
1838 char *ext;
c906108c 1839 enum language lang;
c5aa993b
JM
1840}
1841filename_language;
c906108c 1842
c5aa993b 1843static filename_language *filename_language_table;
c906108c
SS
1844static int fl_table_size, fl_table_next;
1845
1846static void
fba45db2 1847add_filename_language (char *ext, enum language lang)
c906108c
SS
1848{
1849 if (fl_table_next >= fl_table_size)
1850 {
1851 fl_table_size += 10;
25bf3106
PM
1852 filename_language_table =
1853 xrealloc (filename_language_table,
1854 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
1855 }
1856
4fcf66da 1857 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
1858 filename_language_table[fl_table_next].lang = lang;
1859 fl_table_next++;
1860}
1861
1862static char *ext_args;
1863
1864static void
fba45db2 1865set_ext_lang_command (char *args, int from_tty)
c906108c
SS
1866{
1867 int i;
1868 char *cp = ext_args;
1869 enum language lang;
1870
1871 /* First arg is filename extension, starting with '.' */
1872 if (*cp != '.')
1873 error ("'%s': Filename extension must begin with '.'", ext_args);
1874
1875 /* Find end of first arg. */
c5aa993b 1876 while (*cp && !isspace (*cp))
c906108c
SS
1877 cp++;
1878
1879 if (*cp == '\0')
1880 error ("'%s': two arguments required -- filename extension and language",
1881 ext_args);
1882
1883 /* Null-terminate first arg */
c5aa993b 1884 *cp++ = '\0';
c906108c
SS
1885
1886 /* Find beginning of second arg, which should be a source language. */
1887 while (*cp && isspace (*cp))
1888 cp++;
1889
1890 if (*cp == '\0')
1891 error ("'%s': two arguments required -- filename extension and language",
1892 ext_args);
1893
1894 /* Lookup the language from among those we know. */
1895 lang = language_enum (cp);
1896
1897 /* Now lookup the filename extension: do we already know it? */
1898 for (i = 0; i < fl_table_next; i++)
1899 if (0 == strcmp (ext_args, filename_language_table[i].ext))
1900 break;
1901
1902 if (i >= fl_table_next)
1903 {
1904 /* new file extension */
1905 add_filename_language (ext_args, lang);
1906 }
1907 else
1908 {
1909 /* redefining a previously known filename extension */
1910
1911 /* if (from_tty) */
1912 /* query ("Really make files of type %s '%s'?", */
1913 /* ext_args, language_str (lang)); */
1914
b8c9b27d 1915 xfree (filename_language_table[i].ext);
4fcf66da 1916 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
1917 filename_language_table[i].lang = lang;
1918 }
1919}
1920
1921static void
fba45db2 1922info_ext_lang_command (char *args, int from_tty)
c906108c
SS
1923{
1924 int i;
1925
1926 printf_filtered ("Filename extensions and the languages they represent:");
1927 printf_filtered ("\n\n");
1928 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
1929 printf_filtered ("\t%s\t- %s\n",
1930 filename_language_table[i].ext,
c906108c
SS
1931 language_str (filename_language_table[i].lang));
1932}
1933
1934static void
fba45db2 1935init_filename_language_table (void)
c906108c
SS
1936{
1937 if (fl_table_size == 0) /* protect against repetition */
1938 {
1939 fl_table_size = 20;
1940 fl_table_next = 0;
c5aa993b 1941 filename_language_table =
c906108c 1942 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b
JM
1943 add_filename_language (".c", language_c);
1944 add_filename_language (".C", language_cplus);
1945 add_filename_language (".cc", language_cplus);
1946 add_filename_language (".cp", language_cplus);
1947 add_filename_language (".cpp", language_cplus);
1948 add_filename_language (".cxx", language_cplus);
1949 add_filename_language (".c++", language_cplus);
1950 add_filename_language (".java", language_java);
c906108c 1951 add_filename_language (".class", language_java);
db034ac5
AC
1952 /* OBSOLETE add_filename_language (".ch", language_chill); */
1953 /* OBSOLETE add_filename_language (".c186", language_chill); */
1954 /* OBSOLETE add_filename_language (".c286", language_chill); */
c5aa993b
JM
1955 add_filename_language (".f", language_fortran);
1956 add_filename_language (".F", language_fortran);
1957 add_filename_language (".s", language_asm);
1958 add_filename_language (".S", language_asm);
c6fd39cd
PM
1959 add_filename_language (".pas", language_pascal);
1960 add_filename_language (".p", language_pascal);
1961 add_filename_language (".pp", language_pascal);
c906108c
SS
1962 }
1963}
1964
1965enum language
fba45db2 1966deduce_language_from_filename (char *filename)
c906108c
SS
1967{
1968 int i;
1969 char *cp;
1970
1971 if (filename != NULL)
1972 if ((cp = strrchr (filename, '.')) != NULL)
1973 for (i = 0; i < fl_table_next; i++)
1974 if (strcmp (cp, filename_language_table[i].ext) == 0)
1975 return filename_language_table[i].lang;
1976
1977 return language_unknown;
1978}
1979\f
1980/* allocate_symtab:
1981
1982 Allocate and partly initialize a new symbol table. Return a pointer
1983 to it. error() if no space.
1984
1985 Caller must set these fields:
c5aa993b
JM
1986 LINETABLE(symtab)
1987 symtab->blockvector
1988 symtab->dirname
1989 symtab->free_code
1990 symtab->free_ptr
1991 possibly free_named_symtabs (symtab->filename);
c906108c
SS
1992 */
1993
1994struct symtab *
fba45db2 1995allocate_symtab (char *filename, struct objfile *objfile)
c906108c
SS
1996{
1997 register struct symtab *symtab;
1998
1999 symtab = (struct symtab *)
c5aa993b 2000 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symtab));
c906108c 2001 memset (symtab, 0, sizeof (*symtab));
c5aa993b
JM
2002 symtab->filename = obsavestring (filename, strlen (filename),
2003 &objfile->symbol_obstack);
2004 symtab->fullname = NULL;
2005 symtab->language = deduce_language_from_filename (filename);
2006 symtab->debugformat = obsavestring ("unknown", 7,
2007 &objfile->symbol_obstack);
c906108c
SS
2008
2009 /* Hook it to the objfile it comes from */
2010
c5aa993b
JM
2011 symtab->objfile = objfile;
2012 symtab->next = objfile->symtabs;
2013 objfile->symtabs = symtab;
c906108c
SS
2014
2015 /* FIXME: This should go away. It is only defined for the Z8000,
2016 and the Z8000 definition of this macro doesn't have anything to
2017 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
2018 here for convenience. */
2019#ifdef INIT_EXTRA_SYMTAB_INFO
2020 INIT_EXTRA_SYMTAB_INFO (symtab);
2021#endif
2022
2023 return (symtab);
2024}
2025
2026struct partial_symtab *
fba45db2 2027allocate_psymtab (char *filename, struct objfile *objfile)
c906108c
SS
2028{
2029 struct partial_symtab *psymtab;
2030
c5aa993b 2031 if (objfile->free_psymtabs)
c906108c 2032 {
c5aa993b
JM
2033 psymtab = objfile->free_psymtabs;
2034 objfile->free_psymtabs = psymtab->next;
c906108c
SS
2035 }
2036 else
2037 psymtab = (struct partial_symtab *)
c5aa993b 2038 obstack_alloc (&objfile->psymbol_obstack,
c906108c
SS
2039 sizeof (struct partial_symtab));
2040
2041 memset (psymtab, 0, sizeof (struct partial_symtab));
c5aa993b
JM
2042 psymtab->filename = obsavestring (filename, strlen (filename),
2043 &objfile->psymbol_obstack);
2044 psymtab->symtab = NULL;
c906108c
SS
2045
2046 /* Prepend it to the psymtab list for the objfile it belongs to.
2047 Psymtabs are searched in most recent inserted -> least recent
2048 inserted order. */
2049
c5aa993b
JM
2050 psymtab->objfile = objfile;
2051 psymtab->next = objfile->psymtabs;
2052 objfile->psymtabs = psymtab;
c906108c
SS
2053#if 0
2054 {
2055 struct partial_symtab **prev_pst;
c5aa993b
JM
2056 psymtab->objfile = objfile;
2057 psymtab->next = NULL;
2058 prev_pst = &(objfile->psymtabs);
c906108c 2059 while ((*prev_pst) != NULL)
c5aa993b 2060 prev_pst = &((*prev_pst)->next);
c906108c 2061 (*prev_pst) = psymtab;
c5aa993b 2062 }
c906108c 2063#endif
c5aa993b 2064
c906108c
SS
2065 return (psymtab);
2066}
2067
2068void
fba45db2 2069discard_psymtab (struct partial_symtab *pst)
c906108c
SS
2070{
2071 struct partial_symtab **prev_pst;
2072
2073 /* From dbxread.c:
2074 Empty psymtabs happen as a result of header files which don't
2075 have any symbols in them. There can be a lot of them. But this
2076 check is wrong, in that a psymtab with N_SLINE entries but
2077 nothing else is not empty, but we don't realize that. Fixing
2078 that without slowing things down might be tricky. */
2079
2080 /* First, snip it out of the psymtab chain */
2081
2082 prev_pst = &(pst->objfile->psymtabs);
2083 while ((*prev_pst) != pst)
2084 prev_pst = &((*prev_pst)->next);
2085 (*prev_pst) = pst->next;
2086
2087 /* Next, put it on a free list for recycling */
2088
2089 pst->next = pst->objfile->free_psymtabs;
2090 pst->objfile->free_psymtabs = pst;
2091}
c906108c 2092\f
c5aa993b 2093
c906108c
SS
2094/* Reset all data structures in gdb which may contain references to symbol
2095 table data. */
2096
2097void
fba45db2 2098clear_symtab_users (void)
c906108c
SS
2099{
2100 /* Someday, we should do better than this, by only blowing away
2101 the things that really need to be blown. */
2102 clear_value_history ();
2103 clear_displays ();
2104 clear_internalvars ();
2105 breakpoint_re_set ();
2106 set_default_breakpoint (0, 0, 0, 0);
0378c332 2107 clear_current_source_symtab_and_line ();
c906108c 2108 clear_pc_function_cache ();
11cf8741
JM
2109 if (target_new_objfile_hook)
2110 target_new_objfile_hook (NULL);
c906108c
SS
2111}
2112
74b7792f
AC
2113static void
2114clear_symtab_users_cleanup (void *ignore)
2115{
2116 clear_symtab_users ();
2117}
2118
c906108c
SS
2119/* clear_symtab_users_once:
2120
2121 This function is run after symbol reading, or from a cleanup.
2122 If an old symbol table was obsoleted, the old symbol table
2123 has been blown away, but the other GDB data structures that may
2124 reference it have not yet been cleared or re-directed. (The old
2125 symtab was zapped, and the cleanup queued, in free_named_symtab()
2126 below.)
2127
2128 This function can be queued N times as a cleanup, or called
2129 directly; it will do all the work the first time, and then will be a
2130 no-op until the next time it is queued. This works by bumping a
2131 counter at queueing time. Much later when the cleanup is run, or at
2132 the end of symbol processing (in case the cleanup is discarded), if
2133 the queued count is greater than the "done-count", we do the work
2134 and set the done-count to the queued count. If the queued count is
2135 less than or equal to the done-count, we just ignore the call. This
2136 is needed because reading a single .o file will often replace many
2137 symtabs (one per .h file, for example), and we don't want to reset
2138 the breakpoints N times in the user's face.
2139
2140 The reason we both queue a cleanup, and call it directly after symbol
2141 reading, is because the cleanup protects us in case of errors, but is
2142 discarded if symbol reading is successful. */
2143
2144#if 0
2145/* FIXME: As free_named_symtabs is currently a big noop this function
2146 is no longer needed. */
a14ed312 2147static void clear_symtab_users_once (void);
c906108c
SS
2148
2149static int clear_symtab_users_queued;
2150static int clear_symtab_users_done;
2151
2152static void
fba45db2 2153clear_symtab_users_once (void)
c906108c
SS
2154{
2155 /* Enforce once-per-`do_cleanups'-semantics */
2156 if (clear_symtab_users_queued <= clear_symtab_users_done)
2157 return;
2158 clear_symtab_users_done = clear_symtab_users_queued;
2159
2160 clear_symtab_users ();
2161}
2162#endif
2163
2164/* Delete the specified psymtab, and any others that reference it. */
2165
2166static void
fba45db2 2167cashier_psymtab (struct partial_symtab *pst)
c906108c
SS
2168{
2169 struct partial_symtab *ps, *pprev = NULL;
2170 int i;
2171
2172 /* Find its previous psymtab in the chain */
c5aa993b
JM
2173 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2174 {
2175 if (ps == pst)
2176 break;
2177 pprev = ps;
2178 }
c906108c 2179
c5aa993b
JM
2180 if (ps)
2181 {
2182 /* Unhook it from the chain. */
2183 if (ps == pst->objfile->psymtabs)
2184 pst->objfile->psymtabs = ps->next;
2185 else
2186 pprev->next = ps->next;
2187
2188 /* FIXME, we can't conveniently deallocate the entries in the
2189 partial_symbol lists (global_psymbols/static_psymbols) that
2190 this psymtab points to. These just take up space until all
2191 the psymtabs are reclaimed. Ditto the dependencies list and
2192 filename, which are all in the psymbol_obstack. */
2193
2194 /* We need to cashier any psymtab that has this one as a dependency... */
2195 again:
2196 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2197 {
2198 for (i = 0; i < ps->number_of_dependencies; i++)
2199 {
2200 if (ps->dependencies[i] == pst)
2201 {
2202 cashier_psymtab (ps);
2203 goto again; /* Must restart, chain has been munged. */
2204 }
2205 }
c906108c 2206 }
c906108c 2207 }
c906108c
SS
2208}
2209
2210/* If a symtab or psymtab for filename NAME is found, free it along
2211 with any dependent breakpoints, displays, etc.
2212 Used when loading new versions of object modules with the "add-file"
2213 command. This is only called on the top-level symtab or psymtab's name;
2214 it is not called for subsidiary files such as .h files.
2215
2216 Return value is 1 if we blew away the environment, 0 if not.
7e73cedf 2217 FIXME. The return value appears to never be used.
c906108c
SS
2218
2219 FIXME. I think this is not the best way to do this. We should
2220 work on being gentler to the environment while still cleaning up
2221 all stray pointers into the freed symtab. */
2222
2223int
fba45db2 2224free_named_symtabs (char *name)
c906108c
SS
2225{
2226#if 0
2227 /* FIXME: With the new method of each objfile having it's own
2228 psymtab list, this function needs serious rethinking. In particular,
2229 why was it ever necessary to toss psymtabs with specific compilation
2230 unit filenames, as opposed to all psymtabs from a particular symbol
2231 file? -- fnf
2232 Well, the answer is that some systems permit reloading of particular
2233 compilation units. We want to blow away any old info about these
2234 compilation units, regardless of which objfiles they arrived in. --gnu. */
2235
2236 register struct symtab *s;
2237 register struct symtab *prev;
2238 register struct partial_symtab *ps;
2239 struct blockvector *bv;
2240 int blewit = 0;
2241
2242 /* We only wack things if the symbol-reload switch is set. */
2243 if (!symbol_reloading)
2244 return 0;
2245
2246 /* Some symbol formats have trouble providing file names... */
2247 if (name == 0 || *name == '\0')
2248 return 0;
2249
2250 /* Look for a psymtab with the specified name. */
2251
2252again2:
c5aa993b
JM
2253 for (ps = partial_symtab_list; ps; ps = ps->next)
2254 {
2255 if (STREQ (name, ps->filename))
2256 {
2257 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2258 goto again2; /* Must restart, chain has been munged */
2259 }
c906108c 2260 }
c906108c
SS
2261
2262 /* Look for a symtab with the specified name. */
2263
2264 for (s = symtab_list; s; s = s->next)
2265 {
2266 if (STREQ (name, s->filename))
2267 break;
2268 prev = s;
2269 }
2270
2271 if (s)
2272 {
2273 if (s == symtab_list)
2274 symtab_list = s->next;
2275 else
2276 prev->next = s->next;
2277
2278 /* For now, queue a delete for all breakpoints, displays, etc., whether
c5aa993b
JM
2279 or not they depend on the symtab being freed. This should be
2280 changed so that only those data structures affected are deleted. */
c906108c
SS
2281
2282 /* But don't delete anything if the symtab is empty.
c5aa993b
JM
2283 This test is necessary due to a bug in "dbxread.c" that
2284 causes empty symtabs to be created for N_SO symbols that
2285 contain the pathname of the object file. (This problem
2286 has been fixed in GDB 3.9x). */
c906108c
SS
2287
2288 bv = BLOCKVECTOR (s);
2289 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2290 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2291 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2292 {
b9caf505
AC
2293 complaint (&symfile_complaints, "Replacing old symbols for `%s'",
2294 name);
c906108c
SS
2295 clear_symtab_users_queued++;
2296 make_cleanup (clear_symtab_users_once, 0);
2297 blewit = 1;
c5aa993b
JM
2298 }
2299 else
2300 {
b9caf505
AC
2301 complaint (&symfile_complaints, "Empty symbol table found for `%s'",
2302 name);
c906108c
SS
2303 }
2304
2305 free_symtab (s);
2306 }
2307 else
2308 {
2309 /* It is still possible that some breakpoints will be affected
c5aa993b
JM
2310 even though no symtab was found, since the file might have
2311 been compiled without debugging, and hence not be associated
2312 with a symtab. In order to handle this correctly, we would need
2313 to keep a list of text address ranges for undebuggable files.
2314 For now, we do nothing, since this is a fairly obscure case. */
c906108c
SS
2315 ;
2316 }
2317
2318 /* FIXME, what about the minimal symbol table? */
2319 return blewit;
2320#else
2321 return (0);
2322#endif
2323}
2324\f
2325/* Allocate and partially fill a partial symtab. It will be
2326 completely filled at the end of the symbol list.
2327
d4f3574e 2328 FILENAME is the name of the symbol-file we are reading from. */
c906108c
SS
2329
2330struct partial_symtab *
fba45db2
KB
2331start_psymtab_common (struct objfile *objfile,
2332 struct section_offsets *section_offsets, char *filename,
2333 CORE_ADDR textlow, struct partial_symbol **global_syms,
2334 struct partial_symbol **static_syms)
c906108c
SS
2335{
2336 struct partial_symtab *psymtab;
2337
2338 psymtab = allocate_psymtab (filename, objfile);
c5aa993b
JM
2339 psymtab->section_offsets = section_offsets;
2340 psymtab->textlow = textlow;
2341 psymtab->texthigh = psymtab->textlow; /* default */
2342 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2343 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
c906108c
SS
2344 return (psymtab);
2345}
2346\f
2347/* Add a symbol with a long value to a psymtab.
2348 Since one arg is a struct, we pass in a ptr and deref it (sigh). */
2349
2350void
fba45db2
KB
2351add_psymbol_to_list (char *name, int namelength, namespace_enum namespace,
2352 enum address_class class,
2353 struct psymbol_allocation_list *list, long val, /* Value as a long */
2354 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2355 enum language language, struct objfile *objfile)
c906108c
SS
2356{
2357 register struct partial_symbol *psym;
2358 char *buf = alloca (namelength + 1);
2359 /* psymbol is static so that there will be no uninitialized gaps in the
2360 structure which might contain random data, causing cache misses in
2361 bcache. */
2362 static struct partial_symbol psymbol;
2363
2364 /* Create local copy of the partial symbol */
2365 memcpy (buf, name, namelength);
2366 buf[namelength] = '\0';
af5f3db6 2367 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, objfile->psymbol_cache);
c906108c
SS
2368 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2369 if (val != 0)
2370 {
2371 SYMBOL_VALUE (&psymbol) = val;
2372 }
2373 else
2374 {
2375 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2376 }
2377 SYMBOL_SECTION (&psymbol) = 0;
2378 SYMBOL_LANGUAGE (&psymbol) = language;
2379 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2380 PSYMBOL_CLASS (&psymbol) = class;
2381 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2382
2383 /* Stash the partial symbol away in the cache */
af5f3db6 2384 psym = bcache (&psymbol, sizeof (struct partial_symbol), objfile->psymbol_cache);
c906108c
SS
2385
2386 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2387 if (list->next >= list->list + list->size)
2388 {
2389 extend_psymbol_list (list, objfile);
2390 }
2391 *list->next++ = psym;
2392 OBJSTAT (objfile, n_psyms++);
2393}
2394
2395/* Add a symbol with a long value to a psymtab. This differs from
2396 * add_psymbol_to_list above in taking both a mangled and a demangled
2397 * name. */
2398
2399void
fba45db2
KB
2400add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
2401 int dem_namelength, namespace_enum namespace,
2402 enum address_class class,
2403 struct psymbol_allocation_list *list, long val, /* Value as a long */
2404 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2405 enum language language,
2406 struct objfile *objfile)
c906108c
SS
2407{
2408 register struct partial_symbol *psym;
2409 char *buf = alloca (namelength + 1);
2410 /* psymbol is static so that there will be no uninitialized gaps in the
2411 structure which might contain random data, causing cache misses in
2412 bcache. */
2413 static struct partial_symbol psymbol;
2414
2415 /* Create local copy of the partial symbol */
2416
2417 memcpy (buf, name, namelength);
2418 buf[namelength] = '\0';
af5f3db6 2419 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, objfile->psymbol_cache);
c906108c
SS
2420
2421 buf = alloca (dem_namelength + 1);
2422 memcpy (buf, dem_name, dem_namelength);
2423 buf[dem_namelength] = '\0';
c5aa993b 2424
c906108c
SS
2425 switch (language)
2426 {
c5aa993b
JM
2427 case language_c:
2428 case language_cplus:
2429 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
af5f3db6 2430 bcache (buf, dem_namelength + 1, objfile->psymbol_cache);
c5aa993b 2431 break;
db034ac5
AC
2432 /* OBSOLETE case language_chill: */
2433 /* OBSOLETE SYMBOL_CHILL_DEMANGLED_NAME (&psymbol) = */
2434 /* OBSOLETE bcache (buf, dem_namelength + 1, objfile->psymbol_cache); */
c5aa993b 2435
c906108c
SS
2436 /* FIXME What should be done for the default case? Ignoring for now. */
2437 }
2438
2439 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2440 if (val != 0)
2441 {
2442 SYMBOL_VALUE (&psymbol) = val;
2443 }
2444 else
2445 {
2446 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2447 }
2448 SYMBOL_SECTION (&psymbol) = 0;
2449 SYMBOL_LANGUAGE (&psymbol) = language;
2450 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2451 PSYMBOL_CLASS (&psymbol) = class;
2452 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2453
2454 /* Stash the partial symbol away in the cache */
af5f3db6 2455 psym = bcache (&psymbol, sizeof (struct partial_symbol), objfile->psymbol_cache);
c906108c
SS
2456
2457 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2458 if (list->next >= list->list + list->size)
2459 {
2460 extend_psymbol_list (list, objfile);
2461 }
2462 *list->next++ = psym;
2463 OBJSTAT (objfile, n_psyms++);
2464}
2465
2466/* Initialize storage for partial symbols. */
2467
2468void
fba45db2 2469init_psymbol_list (struct objfile *objfile, int total_symbols)
c906108c
SS
2470{
2471 /* Free any previously allocated psymbol lists. */
c5aa993b
JM
2472
2473 if (objfile->global_psymbols.list)
c906108c 2474 {
aac7f4ea 2475 xmfree (objfile->md, (PTR) objfile->global_psymbols.list);
c906108c 2476 }
c5aa993b 2477 if (objfile->static_psymbols.list)
c906108c 2478 {
aac7f4ea 2479 xmfree (objfile->md, (PTR) objfile->static_psymbols.list);
c906108c 2480 }
c5aa993b 2481
c906108c
SS
2482 /* Current best guess is that approximately a twentieth
2483 of the total symbols (in a debugging file) are global or static
2484 oriented symbols */
c906108c 2485
c5aa993b
JM
2486 objfile->global_psymbols.size = total_symbols / 10;
2487 objfile->static_psymbols.size = total_symbols / 10;
2488
2489 if (objfile->global_psymbols.size > 0)
c906108c 2490 {
c5aa993b
JM
2491 objfile->global_psymbols.next =
2492 objfile->global_psymbols.list = (struct partial_symbol **)
2493 xmmalloc (objfile->md, (objfile->global_psymbols.size
2494 * sizeof (struct partial_symbol *)));
c906108c 2495 }
c5aa993b 2496 if (objfile->static_psymbols.size > 0)
c906108c 2497 {
c5aa993b
JM
2498 objfile->static_psymbols.next =
2499 objfile->static_psymbols.list = (struct partial_symbol **)
2500 xmmalloc (objfile->md, (objfile->static_psymbols.size
2501 * sizeof (struct partial_symbol *)));
c906108c
SS
2502 }
2503}
2504
2505/* OVERLAYS:
2506 The following code implements an abstraction for debugging overlay sections.
2507
2508 The target model is as follows:
2509 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2510 same VMA, each with its own unique LMA (or load address).
c906108c 2511 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2512 sections, one by one, from the load address into the VMA address.
c906108c 2513 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2514 sections should be considered to be mapped from the VMA to the LMA.
2515 This information is used for symbol lookup, and memory read/write.
2516 For instance, if a section has been mapped then its contents
2517 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2518
2519 Two levels of debugger support for overlays are available. One is
2520 "manual", in which the debugger relies on the user to tell it which
2521 overlays are currently mapped. This level of support is
2522 implemented entirely in the core debugger, and the information about
2523 whether a section is mapped is kept in the objfile->obj_section table.
2524
2525 The second level of support is "automatic", and is only available if
2526 the target-specific code provides functionality to read the target's
2527 overlay mapping table, and translate its contents for the debugger
2528 (by updating the mapped state information in the obj_section tables).
2529
2530 The interface is as follows:
c5aa993b
JM
2531 User commands:
2532 overlay map <name> -- tell gdb to consider this section mapped
2533 overlay unmap <name> -- tell gdb to consider this section unmapped
2534 overlay list -- list the sections that GDB thinks are mapped
2535 overlay read-target -- get the target's state of what's mapped
2536 overlay off/manual/auto -- set overlay debugging state
2537 Functional interface:
2538 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2539 section, return that section.
2540 find_pc_overlay(pc): find any overlay section that contains
2541 the pc, either in its VMA or its LMA
2542 overlay_is_mapped(sect): true if overlay is marked as mapped
2543 section_is_overlay(sect): true if section's VMA != LMA
2544 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2545 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2546 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2547 overlay_mapped_address(...): map an address from section's LMA to VMA
2548 overlay_unmapped_address(...): map an address from section's VMA to LMA
2549 symbol_overlayed_address(...): Return a "current" address for symbol:
2550 either in VMA or LMA depending on whether
2551 the symbol's section is currently mapped
c906108c
SS
2552 */
2553
2554/* Overlay debugging state: */
2555
d874f1e2 2556enum overlay_debugging_state overlay_debugging = ovly_off;
c906108c
SS
2557int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2558
2559/* Target vector for refreshing overlay mapped state */
a14ed312 2560static void simple_overlay_update (struct obj_section *);
507f3c78 2561void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
c906108c
SS
2562
2563/* Function: section_is_overlay (SECTION)
2564 Returns true if SECTION has VMA not equal to LMA, ie.
2565 SECTION is loaded at an address different from where it will "run". */
2566
2567int
fba45db2 2568section_is_overlay (asection *section)
c906108c 2569{
fbd35540
MS
2570 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2571
c906108c
SS
2572 if (overlay_debugging)
2573 if (section && section->lma != 0 &&
2574 section->vma != section->lma)
2575 return 1;
2576
2577 return 0;
2578}
2579
2580/* Function: overlay_invalidate_all (void)
2581 Invalidate the mapped state of all overlay sections (mark it as stale). */
2582
2583static void
fba45db2 2584overlay_invalidate_all (void)
c906108c 2585{
c5aa993b 2586 struct objfile *objfile;
c906108c
SS
2587 struct obj_section *sect;
2588
2589 ALL_OBJSECTIONS (objfile, sect)
2590 if (section_is_overlay (sect->the_bfd_section))
c5aa993b 2591 sect->ovly_mapped = -1;
c906108c
SS
2592}
2593
2594/* Function: overlay_is_mapped (SECTION)
2595 Returns true if section is an overlay, and is currently mapped.
2596 Private: public access is thru function section_is_mapped.
2597
2598 Access to the ovly_mapped flag is restricted to this function, so
2599 that we can do automatic update. If the global flag
2600 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2601 overlay_invalidate_all. If the mapped state of the particular
2602 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2603
c5aa993b 2604static int
fba45db2 2605overlay_is_mapped (struct obj_section *osect)
c906108c
SS
2606{
2607 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
2608 return 0;
2609
c5aa993b 2610 switch (overlay_debugging)
c906108c
SS
2611 {
2612 default:
d874f1e2 2613 case ovly_off:
c5aa993b 2614 return 0; /* overlay debugging off */
d874f1e2 2615 case ovly_auto: /* overlay debugging automatic */
c906108c 2616 /* Unles there is a target_overlay_update function,
c5aa993b 2617 there's really nothing useful to do here (can't really go auto) */
c906108c
SS
2618 if (target_overlay_update)
2619 {
2620 if (overlay_cache_invalid)
2621 {
2622 overlay_invalidate_all ();
2623 overlay_cache_invalid = 0;
2624 }
2625 if (osect->ovly_mapped == -1)
2626 (*target_overlay_update) (osect);
2627 }
2628 /* fall thru to manual case */
d874f1e2 2629 case ovly_on: /* overlay debugging manual */
c906108c
SS
2630 return osect->ovly_mapped == 1;
2631 }
2632}
2633
2634/* Function: section_is_mapped
2635 Returns true if section is an overlay, and is currently mapped. */
2636
2637int
fba45db2 2638section_is_mapped (asection *section)
c906108c 2639{
c5aa993b 2640 struct objfile *objfile;
c906108c
SS
2641 struct obj_section *osect;
2642
2643 if (overlay_debugging)
2644 if (section && section_is_overlay (section))
2645 ALL_OBJSECTIONS (objfile, osect)
2646 if (osect->the_bfd_section == section)
c5aa993b 2647 return overlay_is_mapped (osect);
c906108c
SS
2648
2649 return 0;
2650}
2651
2652/* Function: pc_in_unmapped_range
2653 If PC falls into the lma range of SECTION, return true, else false. */
2654
2655CORE_ADDR
fba45db2 2656pc_in_unmapped_range (CORE_ADDR pc, asection *section)
c906108c 2657{
fbd35540
MS
2658 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2659
c906108c
SS
2660 int size;
2661
2662 if (overlay_debugging)
2663 if (section && section_is_overlay (section))
2664 {
2665 size = bfd_get_section_size_before_reloc (section);
2666 if (section->lma <= pc && pc < section->lma + size)
2667 return 1;
2668 }
2669 return 0;
2670}
2671
2672/* Function: pc_in_mapped_range
2673 If PC falls into the vma range of SECTION, return true, else false. */
2674
2675CORE_ADDR
fba45db2 2676pc_in_mapped_range (CORE_ADDR pc, asection *section)
c906108c 2677{
fbd35540
MS
2678 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2679
c906108c
SS
2680 int size;
2681
2682 if (overlay_debugging)
2683 if (section && section_is_overlay (section))
2684 {
2685 size = bfd_get_section_size_before_reloc (section);
2686 if (section->vma <= pc && pc < section->vma + size)
2687 return 1;
2688 }
2689 return 0;
2690}
2691
9ec8e6a0
JB
2692
2693/* Return true if the mapped ranges of sections A and B overlap, false
2694 otherwise. */
2695int
2696sections_overlap (asection *a, asection *b)
2697{
fbd35540
MS
2698 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2699
9ec8e6a0
JB
2700 CORE_ADDR a_start = a->vma;
2701 CORE_ADDR a_end = a->vma + bfd_get_section_size_before_reloc (a);
2702 CORE_ADDR b_start = b->vma;
2703 CORE_ADDR b_end = b->vma + bfd_get_section_size_before_reloc (b);
2704
2705 return (a_start < b_end && b_start < a_end);
2706}
2707
c906108c
SS
2708/* Function: overlay_unmapped_address (PC, SECTION)
2709 Returns the address corresponding to PC in the unmapped (load) range.
2710 May be the same as PC. */
2711
2712CORE_ADDR
fba45db2 2713overlay_unmapped_address (CORE_ADDR pc, asection *section)
c906108c 2714{
fbd35540
MS
2715 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2716
c906108c
SS
2717 if (overlay_debugging)
2718 if (section && section_is_overlay (section) &&
2719 pc_in_mapped_range (pc, section))
2720 return pc + section->lma - section->vma;
2721
2722 return pc;
2723}
2724
2725/* Function: overlay_mapped_address (PC, SECTION)
2726 Returns the address corresponding to PC in the mapped (runtime) range.
2727 May be the same as PC. */
2728
2729CORE_ADDR
fba45db2 2730overlay_mapped_address (CORE_ADDR pc, asection *section)
c906108c 2731{
fbd35540
MS
2732 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2733
c906108c
SS
2734 if (overlay_debugging)
2735 if (section && section_is_overlay (section) &&
2736 pc_in_unmapped_range (pc, section))
2737 return pc + section->vma - section->lma;
2738
2739 return pc;
2740}
2741
2742
2743/* Function: symbol_overlayed_address
2744 Return one of two addresses (relative to the VMA or to the LMA),
2745 depending on whether the section is mapped or not. */
2746
c5aa993b 2747CORE_ADDR
fba45db2 2748symbol_overlayed_address (CORE_ADDR address, asection *section)
c906108c
SS
2749{
2750 if (overlay_debugging)
2751 {
2752 /* If the symbol has no section, just return its regular address. */
2753 if (section == 0)
2754 return address;
2755 /* If the symbol's section is not an overlay, just return its address */
2756 if (!section_is_overlay (section))
2757 return address;
2758 /* If the symbol's section is mapped, just return its address */
2759 if (section_is_mapped (section))
2760 return address;
2761 /*
2762 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
2763 * then return its LOADED address rather than its vma address!!
2764 */
2765 return overlay_unmapped_address (address, section);
2766 }
2767 return address;
2768}
2769
2770/* Function: find_pc_overlay (PC)
2771 Return the best-match overlay section for PC:
2772 If PC matches a mapped overlay section's VMA, return that section.
2773 Else if PC matches an unmapped section's VMA, return that section.
2774 Else if PC matches an unmapped section's LMA, return that section. */
2775
2776asection *
fba45db2 2777find_pc_overlay (CORE_ADDR pc)
c906108c 2778{
c5aa993b 2779 struct objfile *objfile;
c906108c
SS
2780 struct obj_section *osect, *best_match = NULL;
2781
2782 if (overlay_debugging)
2783 ALL_OBJSECTIONS (objfile, osect)
2784 if (section_is_overlay (osect->the_bfd_section))
c5aa993b
JM
2785 {
2786 if (pc_in_mapped_range (pc, osect->the_bfd_section))
2787 {
2788 if (overlay_is_mapped (osect))
2789 return osect->the_bfd_section;
2790 else
2791 best_match = osect;
2792 }
2793 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
2794 best_match = osect;
2795 }
c906108c
SS
2796 return best_match ? best_match->the_bfd_section : NULL;
2797}
2798
2799/* Function: find_pc_mapped_section (PC)
2800 If PC falls into the VMA address range of an overlay section that is
2801 currently marked as MAPPED, return that section. Else return NULL. */
2802
2803asection *
fba45db2 2804find_pc_mapped_section (CORE_ADDR pc)
c906108c 2805{
c5aa993b 2806 struct objfile *objfile;
c906108c
SS
2807 struct obj_section *osect;
2808
2809 if (overlay_debugging)
2810 ALL_OBJSECTIONS (objfile, osect)
2811 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
2812 overlay_is_mapped (osect))
c5aa993b 2813 return osect->the_bfd_section;
c906108c
SS
2814
2815 return NULL;
2816}
2817
2818/* Function: list_overlays_command
2819 Print a list of mapped sections and their PC ranges */
2820
2821void
fba45db2 2822list_overlays_command (char *args, int from_tty)
c906108c 2823{
c5aa993b
JM
2824 int nmapped = 0;
2825 struct objfile *objfile;
c906108c
SS
2826 struct obj_section *osect;
2827
2828 if (overlay_debugging)
2829 ALL_OBJSECTIONS (objfile, osect)
2830 if (overlay_is_mapped (osect))
c5aa993b
JM
2831 {
2832 const char *name;
2833 bfd_vma lma, vma;
2834 int size;
2835
2836 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
2837 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2838 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
2839 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
2840
2841 printf_filtered ("Section %s, loaded at ", name);
2842 print_address_numeric (lma, 1, gdb_stdout);
2843 puts_filtered (" - ");
2844 print_address_numeric (lma + size, 1, gdb_stdout);
2845 printf_filtered (", mapped at ");
2846 print_address_numeric (vma, 1, gdb_stdout);
2847 puts_filtered (" - ");
2848 print_address_numeric (vma + size, 1, gdb_stdout);
2849 puts_filtered ("\n");
2850
2851 nmapped++;
2852 }
c906108c
SS
2853 if (nmapped == 0)
2854 printf_filtered ("No sections are mapped.\n");
2855}
2856
2857/* Function: map_overlay_command
2858 Mark the named section as mapped (ie. residing at its VMA address). */
2859
2860void
fba45db2 2861map_overlay_command (char *args, int from_tty)
c906108c 2862{
c5aa993b
JM
2863 struct objfile *objfile, *objfile2;
2864 struct obj_section *sec, *sec2;
2865 asection *bfdsec;
c906108c
SS
2866
2867 if (!overlay_debugging)
515ad16c
EZ
2868 error ("\
2869Overlay debugging not enabled. Use either the 'overlay auto' or\n\
2870the 'overlay manual' command.");
c906108c
SS
2871
2872 if (args == 0 || *args == 0)
2873 error ("Argument required: name of an overlay section");
2874
2875 /* First, find a section matching the user supplied argument */
2876 ALL_OBJSECTIONS (objfile, sec)
2877 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
2878 {
2879 /* Now, check to see if the section is an overlay. */
2880 bfdsec = sec->the_bfd_section;
2881 if (!section_is_overlay (bfdsec))
2882 continue; /* not an overlay section */
2883
2884 /* Mark the overlay as "mapped" */
2885 sec->ovly_mapped = 1;
2886
2887 /* Next, make a pass and unmap any sections that are
2888 overlapped by this new section: */
2889 ALL_OBJSECTIONS (objfile2, sec2)
9ec8e6a0
JB
2890 if (sec2->ovly_mapped
2891 && sec != sec2
2892 && sec->the_bfd_section != sec2->the_bfd_section
2893 && sections_overlap (sec->the_bfd_section,
2894 sec2->the_bfd_section))
c5aa993b
JM
2895 {
2896 if (info_verbose)
2897 printf_filtered ("Note: section %s unmapped by overlap\n",
2898 bfd_section_name (objfile->obfd,
2899 sec2->the_bfd_section));
2900 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
2901 }
2902 return;
2903 }
c906108c
SS
2904 error ("No overlay section called %s", args);
2905}
2906
2907/* Function: unmap_overlay_command
2908 Mark the overlay section as unmapped
2909 (ie. resident in its LMA address range, rather than the VMA range). */
2910
2911void
fba45db2 2912unmap_overlay_command (char *args, int from_tty)
c906108c 2913{
c5aa993b 2914 struct objfile *objfile;
c906108c
SS
2915 struct obj_section *sec;
2916
2917 if (!overlay_debugging)
515ad16c
EZ
2918 error ("\
2919Overlay debugging not enabled. Use either the 'overlay auto' or\n\
2920the 'overlay manual' command.");
c906108c
SS
2921
2922 if (args == 0 || *args == 0)
2923 error ("Argument required: name of an overlay section");
2924
2925 /* First, find a section matching the user supplied argument */
2926 ALL_OBJSECTIONS (objfile, sec)
2927 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
2928 {
2929 if (!sec->ovly_mapped)
2930 error ("Section %s is not mapped", args);
2931 sec->ovly_mapped = 0;
2932 return;
2933 }
c906108c
SS
2934 error ("No overlay section called %s", args);
2935}
2936
2937/* Function: overlay_auto_command
2938 A utility command to turn on overlay debugging.
2939 Possibly this should be done via a set/show command. */
2940
2941static void
fba45db2 2942overlay_auto_command (char *args, int from_tty)
c906108c 2943{
d874f1e2 2944 overlay_debugging = ovly_auto;
1900040c 2945 enable_overlay_breakpoints ();
c906108c
SS
2946 if (info_verbose)
2947 printf_filtered ("Automatic overlay debugging enabled.");
2948}
2949
2950/* Function: overlay_manual_command
2951 A utility command to turn on overlay debugging.
2952 Possibly this should be done via a set/show command. */
2953
2954static void
fba45db2 2955overlay_manual_command (char *args, int from_tty)
c906108c 2956{
d874f1e2 2957 overlay_debugging = ovly_on;
1900040c 2958 disable_overlay_breakpoints ();
c906108c
SS
2959 if (info_verbose)
2960 printf_filtered ("Overlay debugging enabled.");
2961}
2962
2963/* Function: overlay_off_command
2964 A utility command to turn on overlay debugging.
2965 Possibly this should be done via a set/show command. */
2966
2967static void
fba45db2 2968overlay_off_command (char *args, int from_tty)
c906108c 2969{
d874f1e2 2970 overlay_debugging = ovly_off;
1900040c 2971 disable_overlay_breakpoints ();
c906108c
SS
2972 if (info_verbose)
2973 printf_filtered ("Overlay debugging disabled.");
2974}
2975
2976static void
fba45db2 2977overlay_load_command (char *args, int from_tty)
c906108c
SS
2978{
2979 if (target_overlay_update)
2980 (*target_overlay_update) (NULL);
2981 else
2982 error ("This target does not know how to read its overlay state.");
2983}
2984
2985/* Function: overlay_command
2986 A place-holder for a mis-typed command */
2987
2988/* Command list chain containing all defined "overlay" subcommands. */
2989struct cmd_list_element *overlaylist;
2990
2991static void
fba45db2 2992overlay_command (char *args, int from_tty)
c906108c 2993{
c5aa993b 2994 printf_unfiltered
c906108c
SS
2995 ("\"overlay\" must be followed by the name of an overlay command.\n");
2996 help_list (overlaylist, "overlay ", -1, gdb_stdout);
2997}
2998
2999
3000/* Target Overlays for the "Simplest" overlay manager:
3001
3002 This is GDB's default target overlay layer. It works with the
3003 minimal overlay manager supplied as an example by Cygnus. The
3004 entry point is via a function pointer "target_overlay_update",
3005 so targets that use a different runtime overlay manager can
3006 substitute their own overlay_update function and take over the
3007 function pointer.
3008
3009 The overlay_update function pokes around in the target's data structures
3010 to see what overlays are mapped, and updates GDB's overlay mapping with
3011 this information.
3012
3013 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3014 unsigned _novlys; /# number of overlay sections #/
3015 unsigned _ovly_table[_novlys][4] = {
3016 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3017 {..., ..., ..., ...},
3018 }
3019 unsigned _novly_regions; /# number of overlay regions #/
3020 unsigned _ovly_region_table[_novly_regions][3] = {
3021 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3022 {..., ..., ...},
3023 }
c906108c
SS
3024 These functions will attempt to update GDB's mappedness state in the
3025 symbol section table, based on the target's mappedness state.
3026
3027 To do this, we keep a cached copy of the target's _ovly_table, and
3028 attempt to detect when the cached copy is invalidated. The main
3029 entry point is "simple_overlay_update(SECT), which looks up SECT in
3030 the cached table and re-reads only the entry for that section from
3031 the target (whenever possible).
3032 */
3033
3034/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3035static unsigned (*cache_ovly_table)[4] = 0;
c906108c 3036#if 0
c5aa993b 3037static unsigned (*cache_ovly_region_table)[3] = 0;
c906108c 3038#endif
c5aa993b 3039static unsigned cache_novlys = 0;
c906108c 3040#if 0
c5aa993b 3041static unsigned cache_novly_regions = 0;
c906108c
SS
3042#endif
3043static CORE_ADDR cache_ovly_table_base = 0;
3044#if 0
3045static CORE_ADDR cache_ovly_region_table_base = 0;
3046#endif
c5aa993b
JM
3047enum ovly_index
3048 {
3049 VMA, SIZE, LMA, MAPPED
3050 };
c906108c
SS
3051#define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3052
3053/* Throw away the cached copy of _ovly_table */
3054static void
fba45db2 3055simple_free_overlay_table (void)
c906108c
SS
3056{
3057 if (cache_ovly_table)
b8c9b27d 3058 xfree (cache_ovly_table);
c5aa993b 3059 cache_novlys = 0;
c906108c
SS
3060 cache_ovly_table = NULL;
3061 cache_ovly_table_base = 0;
3062}
3063
3064#if 0
3065/* Throw away the cached copy of _ovly_region_table */
3066static void
fba45db2 3067simple_free_overlay_region_table (void)
c906108c
SS
3068{
3069 if (cache_ovly_region_table)
b8c9b27d 3070 xfree (cache_ovly_region_table);
c5aa993b 3071 cache_novly_regions = 0;
c906108c
SS
3072 cache_ovly_region_table = NULL;
3073 cache_ovly_region_table_base = 0;
3074}
3075#endif
3076
3077/* Read an array of ints from the target into a local buffer.
3078 Convert to host order. int LEN is number of ints */
3079static void
fba45db2 3080read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
c906108c 3081{
34c0bd93 3082 /* FIXME (alloca): Not safe if array is very large. */
c906108c 3083 char *buf = alloca (len * TARGET_LONG_BYTES);
c5aa993b 3084 int i;
c906108c
SS
3085
3086 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3087 for (i = 0; i < len; i++)
c5aa993b 3088 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
c906108c
SS
3089 TARGET_LONG_BYTES);
3090}
3091
3092/* Find and grab a copy of the target _ovly_table
3093 (and _novlys, which is needed for the table's size) */
c5aa993b 3094static int
fba45db2 3095simple_read_overlay_table (void)
c906108c 3096{
0d43edd1 3097 struct minimal_symbol *novlys_msym, *ovly_table_msym;
c906108c
SS
3098
3099 simple_free_overlay_table ();
9b27852e 3100 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3101 if (! novlys_msym)
c906108c 3102 {
0d43edd1
JB
3103 error ("Error reading inferior's overlay table: "
3104 "couldn't find `_novlys' variable\n"
3105 "in inferior. Use `overlay manual' mode.");
3106 return 0;
c906108c 3107 }
0d43edd1 3108
9b27852e 3109 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3110 if (! ovly_table_msym)
3111 {
3112 error ("Error reading inferior's overlay table: couldn't find "
3113 "`_ovly_table' array\n"
3114 "in inferior. Use `overlay manual' mode.");
3115 return 0;
3116 }
3117
3118 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3119 cache_ovly_table
3120 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3121 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3122 read_target_long_array (cache_ovly_table_base,
3123 (int *) cache_ovly_table,
3124 cache_novlys * 4);
3125
c5aa993b 3126 return 1; /* SUCCESS */
c906108c
SS
3127}
3128
3129#if 0
3130/* Find and grab a copy of the target _ovly_region_table
3131 (and _novly_regions, which is needed for the table's size) */
c5aa993b 3132static int
fba45db2 3133simple_read_overlay_region_table (void)
c906108c
SS
3134{
3135 struct minimal_symbol *msym;
3136
3137 simple_free_overlay_region_table ();
9b27852e 3138 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
c906108c
SS
3139 if (msym != NULL)
3140 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
c5aa993b
JM
3141 else
3142 return 0; /* failure */
c906108c
SS
3143 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3144 if (cache_ovly_region_table != NULL)
3145 {
9b27852e 3146 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
c906108c
SS
3147 if (msym != NULL)
3148 {
3149 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
c5aa993b
JM
3150 read_target_long_array (cache_ovly_region_table_base,
3151 (int *) cache_ovly_region_table,
c906108c
SS
3152 cache_novly_regions * 3);
3153 }
c5aa993b
JM
3154 else
3155 return 0; /* failure */
c906108c 3156 }
c5aa993b
JM
3157 else
3158 return 0; /* failure */
3159 return 1; /* SUCCESS */
c906108c
SS
3160}
3161#endif
3162
3163/* Function: simple_overlay_update_1
3164 A helper function for simple_overlay_update. Assuming a cached copy
3165 of _ovly_table exists, look through it to find an entry whose vma,
3166 lma and size match those of OSECT. Re-read the entry and make sure
3167 it still matches OSECT (else the table may no longer be valid).
3168 Set OSECT's mapped state to match the entry. Return: 1 for
3169 success, 0 for failure. */
3170
3171static int
fba45db2 3172simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3173{
3174 int i, size;
fbd35540
MS
3175 bfd *obfd = osect->objfile->obfd;
3176 asection *bsect = osect->the_bfd_section;
c906108c
SS
3177
3178 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3179 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3180 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3181 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3182 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3183 {
3184 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3185 (int *) cache_ovly_table[i], 4);
fbd35540
MS
3186 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3187 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3188 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3189 {
3190 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3191 return 1;
3192 }
fbd35540 3193 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3194 return 0;
3195 }
3196 return 0;
3197}
3198
3199/* Function: simple_overlay_update
3200 If OSECT is NULL, then update all sections' mapped state
3201 (after re-reading the entire target _ovly_table).
3202 If OSECT is non-NULL, then try to find a matching entry in the
3203 cached ovly_table and update only OSECT's mapped state.
3204 If a cached entry can't be found or the cache isn't valid, then
3205 re-read the entire cache, and go ahead and update all sections. */
3206
3207static void
fba45db2 3208simple_overlay_update (struct obj_section *osect)
c906108c 3209{
c5aa993b 3210 struct objfile *objfile;
c906108c
SS
3211
3212 /* Were we given an osect to look up? NULL means do all of them. */
3213 if (osect)
3214 /* Have we got a cached copy of the target's overlay table? */
3215 if (cache_ovly_table != NULL)
3216 /* Does its cached location match what's currently in the symtab? */
c5aa993b 3217 if (cache_ovly_table_base ==
9b27852e 3218 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
c906108c
SS
3219 /* Then go ahead and try to look up this single section in the cache */
3220 if (simple_overlay_update_1 (osect))
3221 /* Found it! We're done. */
3222 return;
3223
3224 /* Cached table no good: need to read the entire table anew.
3225 Or else we want all the sections, in which case it's actually
3226 more efficient to read the whole table in one block anyway. */
3227
0d43edd1
JB
3228 if (! simple_read_overlay_table ())
3229 return;
3230
c906108c
SS
3231 /* Now may as well update all sections, even if only one was requested. */
3232 ALL_OBJSECTIONS (objfile, osect)
3233 if (section_is_overlay (osect->the_bfd_section))
c5aa993b
JM
3234 {
3235 int i, size;
fbd35540
MS
3236 bfd *obfd = osect->objfile->obfd;
3237 asection *bsect = osect->the_bfd_section;
c5aa993b
JM
3238
3239 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3240 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3241 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3242 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3243 /* && cache_ovly_table[i][SIZE] == size */ )
3244 { /* obj_section matches i'th entry in ovly_table */
c5aa993b
JM
3245 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3246 break; /* finished with inner for loop: break out */
3247 }
3248 }
c906108c
SS
3249}
3250
3251
3252void
fba45db2 3253_initialize_symfile (void)
c906108c
SS
3254{
3255 struct cmd_list_element *c;
c5aa993b 3256
c906108c 3257 c = add_cmd ("symbol-file", class_files, symbol_file_command,
c5aa993b 3258 "Load symbol table from executable file FILE.\n\
c906108c
SS
3259The `file' command can also load symbol tables, as well as setting the file\n\
3260to execute.", &cmdlist);
5ba2abeb 3261 set_cmd_completer (c, filename_completer);
c906108c
SS
3262
3263 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command,
db162d44 3264 "Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
c906108c 3265Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
2acceee2 3266ADDR is the starting address of the file's text.\n\
db162d44
EZ
3267The optional arguments are section-name section-address pairs and\n\
3268should be specified if the data and bss segments are not contiguous\n\
d4654627 3269with the text. SECT is a section name to be loaded at SECT_ADDR.",
c906108c 3270 &cmdlist);
5ba2abeb 3271 set_cmd_completer (c, filename_completer);
c906108c
SS
3272
3273 c = add_cmd ("add-shared-symbol-files", class_files,
3274 add_shared_symbol_files_command,
3275 "Load the symbols from shared objects in the dynamic linker's link map.",
c5aa993b 3276 &cmdlist);
c906108c
SS
3277 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3278 &cmdlist);
3279
3280 c = add_cmd ("load", class_files, load_command,
c5aa993b 3281 "Dynamically load FILE into the running program, and record its symbols\n\
c906108c 3282for access from GDB.", &cmdlist);
5ba2abeb 3283 set_cmd_completer (c, filename_completer);
c906108c
SS
3284
3285 add_show_from_set
3286 (add_set_cmd ("symbol-reloading", class_support, var_boolean,
c5aa993b
JM
3287 (char *) &symbol_reloading,
3288 "Set dynamic symbol table reloading multiple times in one run.",
c906108c
SS
3289 &setlist),
3290 &showlist);
3291
c5aa993b
JM
3292 add_prefix_cmd ("overlay", class_support, overlay_command,
3293 "Commands for debugging overlays.", &overlaylist,
c906108c
SS
3294 "overlay ", 0, &cmdlist);
3295
3296 add_com_alias ("ovly", "overlay", class_alias, 1);
3297 add_com_alias ("ov", "overlay", class_alias, 1);
3298
c5aa993b 3299 add_cmd ("map-overlay", class_support, map_overlay_command,
c906108c
SS
3300 "Assert that an overlay section is mapped.", &overlaylist);
3301
c5aa993b 3302 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
c906108c
SS
3303 "Assert that an overlay section is unmapped.", &overlaylist);
3304
c5aa993b 3305 add_cmd ("list-overlays", class_support, list_overlays_command,
c906108c
SS
3306 "List mappings of overlay sections.", &overlaylist);
3307
c5aa993b 3308 add_cmd ("manual", class_support, overlay_manual_command,
c906108c 3309 "Enable overlay debugging.", &overlaylist);
c5aa993b 3310 add_cmd ("off", class_support, overlay_off_command,
c906108c 3311 "Disable overlay debugging.", &overlaylist);
c5aa993b 3312 add_cmd ("auto", class_support, overlay_auto_command,
c906108c 3313 "Enable automatic overlay debugging.", &overlaylist);
c5aa993b 3314 add_cmd ("load-target", class_support, overlay_load_command,
c906108c
SS
3315 "Read the overlay mapping state from the target.", &overlaylist);
3316
3317 /* Filename extension to source language lookup table: */
3318 init_filename_language_table ();
3319 c = add_set_cmd ("extension-language", class_files, var_string_noescape,
c5aa993b 3320 (char *) &ext_args,
c906108c
SS
3321 "Set mapping between filename extension and source language.\n\
3322Usage: set extension-language .foo bar",
c5aa993b 3323 &setlist);
9f60d481 3324 set_cmd_cfunc (c, set_ext_lang_command);
c906108c 3325
c5aa993b 3326 add_info ("extensions", info_ext_lang_command,
c906108c 3327 "All filename extensions associated with a source language.");
917317f4
JM
3328
3329 add_show_from_set
3330 (add_set_cmd ("download-write-size", class_obscure,
3331 var_integer, (char *) &download_write_size,
3332 "Set the write size used when downloading a program.\n"
3333 "Only used when downloading a program onto a remote\n"
3334 "target. Specify zero, or a negative value, to disable\n"
3335 "blocked writes. The actual size of each transfer is also\n"
3336 "limited by the size of the target packet and the memory\n"
3337 "cache.\n",
3338 &setlist),
3339 &showlist);
c906108c 3340}
This page took 0.47381 seconds and 4 git commands to generate.