Make '{add-,}symbol-file' not care about the position of command line arguments
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
61baf725 3 Copyright (C) 1990-2017 Free Software Foundation, Inc.
8926118c 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
086df311 24#include "bfdlink.h"
c906108c
SS
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "target.h"
30#include "value.h"
31#include "symfile.h"
32#include "objfiles.h"
0378c332 33#include "source.h"
c906108c
SS
34#include "gdbcmd.h"
35#include "breakpoint.h"
36#include "language.h"
37#include "complaints.h"
38#include "demangle.h"
fb14de7b
UW
39#include "inferior.h"
40#include "regcache.h"
5b5d99cf 41#include "filenames.h" /* for DOSish file names */
c906108c 42#include "gdb-stabs.h"
04ea0df1 43#include "gdb_obstack.h"
d75b5104 44#include "completer.h"
af5f3db6 45#include "bcache.h"
2de7ced7 46#include "hashtab.h"
dbda9972 47#include "readline/readline.h"
fe898f56 48#include "block.h"
ea53e89f 49#include "observer.h"
c1bd25fd 50#include "exec.h"
9bdcbae7 51#include "parser-defs.h"
8756216b 52#include "varobj.h"
77069918 53#include "elf-bfd.h"
e85a822c 54#include "solib.h"
f1838a98 55#include "remote.h"
1bfeeb0f 56#include "stack.h"
cbb099e8 57#include "gdb_bfd.h"
529480d0 58#include "cli/cli-utils.h"
0efef640 59#include "common/byte-vector.h"
32fa66eb 60#include "selftest.h"
c906108c 61
c906108c
SS
62#include <sys/types.h>
63#include <fcntl.h>
53ce3c39 64#include <sys/stat.h>
c906108c 65#include <ctype.h>
dcb07cfa 66#include <chrono>
c906108c 67
ccefe4c4 68#include "psymtab.h"
c906108c 69
3e43a32a
MS
70int (*deprecated_ui_load_progress_hook) (const char *section,
71 unsigned long num);
9a4105ab 72void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
73 unsigned long section_sent,
74 unsigned long section_size,
75 unsigned long total_sent,
c2d11a7d 76 unsigned long total_size);
769d7dc4
AC
77void (*deprecated_pre_add_symbol_hook) (const char *);
78void (*deprecated_post_add_symbol_hook) (void);
c906108c 79
74b7792f
AC
80static void clear_symtab_users_cleanup (void *ignore);
81
c378eb4e
MS
82/* Global variables owned by this file. */
83int readnow_symbol_files; /* Read full symbols immediately. */
c906108c 84
c378eb4e 85/* Functions this file defines. */
c906108c 86
ecf45d2c 87static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
b15cc25c 88 objfile_flags flags);
d7db6da9 89
00b5771c 90static const struct sym_fns *find_sym_fns (bfd *);
c906108c 91
a14ed312 92static void overlay_invalidate_all (void);
c906108c 93
a14ed312 94static void simple_free_overlay_table (void);
c906108c 95
e17a4113
UW
96static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
97 enum bfd_endian);
c906108c 98
a14ed312 99static int simple_read_overlay_table (void);
c906108c 100
a14ed312 101static int simple_overlay_update_1 (struct obj_section *);
c906108c 102
31d99776
DJ
103static void symfile_find_segment_sections (struct objfile *objfile);
104
c906108c
SS
105/* List of all available sym_fns. On gdb startup, each object file reader
106 calls add_symtab_fns() to register information on each format it is
c378eb4e 107 prepared to read. */
c906108c 108
905014d7 109struct registered_sym_fns
c256e171 110{
905014d7
SM
111 registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_)
112 : sym_flavour (sym_flavour_), sym_fns (sym_fns_)
113 {}
114
c256e171
DE
115 /* BFD flavour that we handle. */
116 enum bfd_flavour sym_flavour;
117
118 /* The "vtable" of symbol functions. */
119 const struct sym_fns *sym_fns;
905014d7 120};
c256e171 121
905014d7 122static std::vector<registered_sym_fns> symtab_fns;
c906108c 123
770e7fc7
DE
124/* Values for "set print symbol-loading". */
125
126const char print_symbol_loading_off[] = "off";
127const char print_symbol_loading_brief[] = "brief";
128const char print_symbol_loading_full[] = "full";
129static const char *print_symbol_loading_enums[] =
130{
131 print_symbol_loading_off,
132 print_symbol_loading_brief,
133 print_symbol_loading_full,
134 NULL
135};
136static const char *print_symbol_loading = print_symbol_loading_full;
137
b7209cb4
FF
138/* If non-zero, shared library symbols will be added automatically
139 when the inferior is created, new libraries are loaded, or when
140 attaching to the inferior. This is almost always what users will
141 want to have happen; but for very large programs, the startup time
142 will be excessive, and so if this is a problem, the user can clear
143 this flag and then add the shared library symbols as needed. Note
144 that there is a potential for confusion, since if the shared
c906108c 145 library symbols are not loaded, commands like "info fun" will *not*
0d14a781 146 report all the functions that are actually present. */
c906108c
SS
147
148int auto_solib_add = 1;
c906108c 149\f
c5aa993b 150
770e7fc7
DE
151/* Return non-zero if symbol-loading messages should be printed.
152 FROM_TTY is the standard from_tty argument to gdb commands.
153 If EXEC is non-zero the messages are for the executable.
154 Otherwise, messages are for shared libraries.
155 If FULL is non-zero then the caller is printing a detailed message.
156 E.g., the message includes the shared library name.
157 Otherwise, the caller is printing a brief "summary" message. */
158
159int
160print_symbol_loading_p (int from_tty, int exec, int full)
161{
162 if (!from_tty && !info_verbose)
163 return 0;
164
165 if (exec)
166 {
167 /* We don't check FULL for executables, there are few such
168 messages, therefore brief == full. */
169 return print_symbol_loading != print_symbol_loading_off;
170 }
171 if (full)
172 return print_symbol_loading == print_symbol_loading_full;
173 return print_symbol_loading == print_symbol_loading_brief;
174}
175
0d14a781 176/* True if we are reading a symbol table. */
c906108c
SS
177
178int currently_reading_symtab = 0;
179
ccefe4c4
TT
180/* Increment currently_reading_symtab and return a cleanup that can be
181 used to decrement it. */
3b7bacac 182
c83dd867 183scoped_restore_tmpl<int>
ccefe4c4 184increment_reading_symtab (void)
c906108c 185{
c83dd867
TT
186 gdb_assert (currently_reading_symtab >= 0);
187 return make_scoped_restore (&currently_reading_symtab,
188 currently_reading_symtab + 1);
c906108c
SS
189}
190
5417f6dc
RM
191/* Remember the lowest-addressed loadable section we've seen.
192 This function is called via bfd_map_over_sections.
c906108c
SS
193
194 In case of equal vmas, the section with the largest size becomes the
195 lowest-addressed loadable section.
196
197 If the vmas and sizes are equal, the last section is considered the
198 lowest-addressed loadable section. */
199
200void
4efb68b1 201find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 202{
c5aa993b 203 asection **lowest = (asection **) obj;
c906108c 204
eb73e134 205 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
206 return;
207 if (!*lowest)
208 *lowest = sect; /* First loadable section */
209 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
210 *lowest = sect; /* A lower loadable section */
211 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
212 && (bfd_section_size (abfd, (*lowest))
213 <= bfd_section_size (abfd, sect)))
214 *lowest = sect;
215}
216
d76488d8
TT
217/* Create a new section_addr_info, with room for NUM_SECTIONS. The
218 new object's 'num_sections' field is set to 0; it must be updated
219 by the caller. */
a39a16c4
MM
220
221struct section_addr_info *
222alloc_section_addr_info (size_t num_sections)
223{
224 struct section_addr_info *sap;
225 size_t size;
226
227 size = (sizeof (struct section_addr_info)
228 + sizeof (struct other_sections) * (num_sections - 1));
229 sap = (struct section_addr_info *) xmalloc (size);
230 memset (sap, 0, size);
a39a16c4
MM
231
232 return sap;
233}
62557bbc
KB
234
235/* Build (allocate and populate) a section_addr_info struct from
c378eb4e 236 an existing section table. */
62557bbc
KB
237
238extern struct section_addr_info *
0542c86d
PA
239build_section_addr_info_from_section_table (const struct target_section *start,
240 const struct target_section *end)
62557bbc
KB
241{
242 struct section_addr_info *sap;
0542c86d 243 const struct target_section *stp;
62557bbc
KB
244 int oidx;
245
a39a16c4 246 sap = alloc_section_addr_info (end - start);
62557bbc
KB
247
248 for (stp = start, oidx = 0; stp != end; stp++)
249 {
2b2848e2
DE
250 struct bfd_section *asect = stp->the_bfd_section;
251 bfd *abfd = asect->owner;
252
253 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 254 && oidx < end - start)
62557bbc
KB
255 {
256 sap->other[oidx].addr = stp->addr;
2b2848e2
DE
257 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
258 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
62557bbc
KB
259 oidx++;
260 }
261 }
262
d76488d8
TT
263 sap->num_sections = oidx;
264
62557bbc
KB
265 return sap;
266}
267
82ccf5a5 268/* Create a section_addr_info from section offsets in ABFD. */
089b4803 269
82ccf5a5
JK
270static struct section_addr_info *
271build_section_addr_info_from_bfd (bfd *abfd)
089b4803
TG
272{
273 struct section_addr_info *sap;
274 int i;
275 struct bfd_section *sec;
276
82ccf5a5
JK
277 sap = alloc_section_addr_info (bfd_count_sections (abfd));
278 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
279 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
012836ea 280 {
82ccf5a5
JK
281 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
282 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
65cf3563 283 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
012836ea
JK
284 i++;
285 }
d76488d8
TT
286
287 sap->num_sections = i;
288
089b4803
TG
289 return sap;
290}
291
82ccf5a5
JK
292/* Create a section_addr_info from section offsets in OBJFILE. */
293
294struct section_addr_info *
295build_section_addr_info_from_objfile (const struct objfile *objfile)
296{
297 struct section_addr_info *sap;
298 int i;
299
300 /* Before reread_symbols gets rewritten it is not safe to call:
301 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
302 */
303 sap = build_section_addr_info_from_bfd (objfile->obfd);
d76488d8 304 for (i = 0; i < sap->num_sections; i++)
82ccf5a5
JK
305 {
306 int sectindex = sap->other[i].sectindex;
307
308 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
309 }
310 return sap;
311}
62557bbc 312
c378eb4e 313/* Free all memory allocated by build_section_addr_info_from_section_table. */
62557bbc
KB
314
315extern void
316free_section_addr_info (struct section_addr_info *sap)
317{
318 int idx;
319
a39a16c4 320 for (idx = 0; idx < sap->num_sections; idx++)
d76488d8 321 xfree (sap->other[idx].name);
b8c9b27d 322 xfree (sap);
62557bbc
KB
323}
324
e8289572 325/* Initialize OBJFILE's sect_index_* members. */
3b7bacac 326
e8289572
JB
327static void
328init_objfile_sect_indices (struct objfile *objfile)
c906108c 329{
e8289572 330 asection *sect;
c906108c 331 int i;
5417f6dc 332
b8fbeb18 333 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 334 if (sect)
b8fbeb18
EZ
335 objfile->sect_index_text = sect->index;
336
337 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 338 if (sect)
b8fbeb18
EZ
339 objfile->sect_index_data = sect->index;
340
341 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 342 if (sect)
b8fbeb18
EZ
343 objfile->sect_index_bss = sect->index;
344
345 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 346 if (sect)
b8fbeb18
EZ
347 objfile->sect_index_rodata = sect->index;
348
bbcd32ad
FF
349 /* This is where things get really weird... We MUST have valid
350 indices for the various sect_index_* members or gdb will abort.
351 So if for example, there is no ".text" section, we have to
31d99776
DJ
352 accomodate that. First, check for a file with the standard
353 one or two segments. */
354
355 symfile_find_segment_sections (objfile);
356
357 /* Except when explicitly adding symbol files at some address,
358 section_offsets contains nothing but zeros, so it doesn't matter
359 which slot in section_offsets the individual sect_index_* members
360 index into. So if they are all zero, it is safe to just point
361 all the currently uninitialized indices to the first slot. But
362 beware: if this is the main executable, it may be relocated
363 later, e.g. by the remote qOffsets packet, and then this will
364 be wrong! That's why we try segments first. */
bbcd32ad
FF
365
366 for (i = 0; i < objfile->num_sections; i++)
367 {
368 if (ANOFFSET (objfile->section_offsets, i) != 0)
369 {
370 break;
371 }
372 }
373 if (i == objfile->num_sections)
374 {
375 if (objfile->sect_index_text == -1)
376 objfile->sect_index_text = 0;
377 if (objfile->sect_index_data == -1)
378 objfile->sect_index_data = 0;
379 if (objfile->sect_index_bss == -1)
380 objfile->sect_index_bss = 0;
381 if (objfile->sect_index_rodata == -1)
382 objfile->sect_index_rodata = 0;
383 }
b8fbeb18 384}
c906108c 385
c1bd25fd
DJ
386/* The arguments to place_section. */
387
388struct place_section_arg
389{
390 struct section_offsets *offsets;
391 CORE_ADDR lowest;
392};
393
394/* Find a unique offset to use for loadable section SECT if
395 the user did not provide an offset. */
396
2c0b251b 397static void
c1bd25fd
DJ
398place_section (bfd *abfd, asection *sect, void *obj)
399{
19ba03f4 400 struct place_section_arg *arg = (struct place_section_arg *) obj;
c1bd25fd
DJ
401 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
402 int done;
3bd72c6f 403 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 404
2711e456
DJ
405 /* We are only interested in allocated sections. */
406 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
407 return;
408
409 /* If the user specified an offset, honor it. */
65cf3563 410 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
c1bd25fd
DJ
411 return;
412
413 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
414 start_addr = (arg->lowest + align - 1) & -align;
415
c1bd25fd
DJ
416 do {
417 asection *cur_sec;
c1bd25fd 418
c1bd25fd
DJ
419 done = 1;
420
421 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
422 {
423 int indx = cur_sec->index;
c1bd25fd
DJ
424
425 /* We don't need to compare against ourself. */
426 if (cur_sec == sect)
427 continue;
428
2711e456
DJ
429 /* We can only conflict with allocated sections. */
430 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
431 continue;
432
433 /* If the section offset is 0, either the section has not been placed
434 yet, or it was the lowest section placed (in which case LOWEST
435 will be past its end). */
436 if (offsets[indx] == 0)
437 continue;
438
439 /* If this section would overlap us, then we must move up. */
440 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
441 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
442 {
443 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
444 start_addr = (start_addr + align - 1) & -align;
445 done = 0;
3bd72c6f 446 break;
c1bd25fd
DJ
447 }
448
449 /* Otherwise, we appear to be OK. So far. */
450 }
451 }
452 while (!done);
453
65cf3563 454 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
c1bd25fd 455 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 456}
e8289572 457
75242ef4
JK
458/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
459 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
460 entries. */
e8289572
JB
461
462void
75242ef4
JK
463relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
464 int num_sections,
3189cb12 465 const struct section_addr_info *addrs)
e8289572
JB
466{
467 int i;
468
75242ef4 469 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 470
c378eb4e 471 /* Now calculate offsets for section that were specified by the caller. */
d76488d8 472 for (i = 0; i < addrs->num_sections; i++)
e8289572 473 {
3189cb12 474 const struct other_sections *osp;
e8289572 475
75242ef4 476 osp = &addrs->other[i];
5488dafb 477 if (osp->sectindex == -1)
e8289572
JB
478 continue;
479
c378eb4e 480 /* Record all sections in offsets. */
e8289572 481 /* The section_offsets in the objfile are here filled in using
c378eb4e 482 the BFD index. */
75242ef4
JK
483 section_offsets->offsets[osp->sectindex] = osp->addr;
484 }
485}
486
1276c759
JK
487/* Transform section name S for a name comparison. prelink can split section
488 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
489 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
490 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
491 (`.sbss') section has invalid (increased) virtual address. */
492
493static const char *
494addr_section_name (const char *s)
495{
496 if (strcmp (s, ".dynbss") == 0)
497 return ".bss";
498 if (strcmp (s, ".sdynbss") == 0)
499 return ".sbss";
500
501 return s;
502}
503
82ccf5a5
JK
504/* qsort comparator for addrs_section_sort. Sort entries in ascending order by
505 their (name, sectindex) pair. sectindex makes the sort by name stable. */
506
507static int
508addrs_section_compar (const void *ap, const void *bp)
509{
510 const struct other_sections *a = *((struct other_sections **) ap);
511 const struct other_sections *b = *((struct other_sections **) bp);
22e048c9 512 int retval;
82ccf5a5 513
1276c759 514 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
82ccf5a5
JK
515 if (retval)
516 return retval;
517
5488dafb 518 return a->sectindex - b->sectindex;
82ccf5a5
JK
519}
520
521/* Provide sorted array of pointers to sections of ADDRS. The array is
522 terminated by NULL. Caller is responsible to call xfree for it. */
523
524static struct other_sections **
525addrs_section_sort (struct section_addr_info *addrs)
526{
527 struct other_sections **array;
528 int i;
529
530 /* `+ 1' for the NULL terminator. */
8d749320 531 array = XNEWVEC (struct other_sections *, addrs->num_sections + 1);
d76488d8 532 for (i = 0; i < addrs->num_sections; i++)
82ccf5a5
JK
533 array[i] = &addrs->other[i];
534 array[i] = NULL;
535
536 qsort (array, i, sizeof (*array), addrs_section_compar);
537
538 return array;
539}
540
75242ef4 541/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
542 also SECTINDEXes specific to ABFD there. This function can be used to
543 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
544
545void
546addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
547{
548 asection *lower_sect;
75242ef4
JK
549 CORE_ADDR lower_offset;
550 int i;
82ccf5a5
JK
551 struct cleanup *my_cleanup;
552 struct section_addr_info *abfd_addrs;
553 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
554 struct other_sections **addrs_to_abfd_addrs;
75242ef4
JK
555
556 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
557 continguous sections. */
558 lower_sect = NULL;
559 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
560 if (lower_sect == NULL)
561 {
562 warning (_("no loadable sections found in added symbol-file %s"),
563 bfd_get_filename (abfd));
564 lower_offset = 0;
e8289572 565 }
75242ef4
JK
566 else
567 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
568
82ccf5a5
JK
569 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
570 in ABFD. Section names are not unique - there can be multiple sections of
571 the same name. Also the sections of the same name do not have to be
572 adjacent to each other. Some sections may be present only in one of the
573 files. Even sections present in both files do not have to be in the same
574 order.
575
576 Use stable sort by name for the sections in both files. Then linearly
577 scan both lists matching as most of the entries as possible. */
578
579 addrs_sorted = addrs_section_sort (addrs);
580 my_cleanup = make_cleanup (xfree, addrs_sorted);
581
582 abfd_addrs = build_section_addr_info_from_bfd (abfd);
583 make_cleanup_free_section_addr_info (abfd_addrs);
584 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
585 make_cleanup (xfree, abfd_addrs_sorted);
586
c378eb4e
MS
587 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
588 ABFD_ADDRS_SORTED. */
82ccf5a5 589
8d749320 590 addrs_to_abfd_addrs = XCNEWVEC (struct other_sections *, addrs->num_sections);
82ccf5a5
JK
591 make_cleanup (xfree, addrs_to_abfd_addrs);
592
593 while (*addrs_sorted)
594 {
1276c759 595 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
82ccf5a5
JK
596
597 while (*abfd_addrs_sorted
1276c759
JK
598 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
599 sect_name) < 0)
82ccf5a5
JK
600 abfd_addrs_sorted++;
601
602 if (*abfd_addrs_sorted
1276c759
JK
603 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
604 sect_name) == 0)
82ccf5a5
JK
605 {
606 int index_in_addrs;
607
608 /* Make the found item directly addressable from ADDRS. */
609 index_in_addrs = *addrs_sorted - addrs->other;
610 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
611 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
612
613 /* Never use the same ABFD entry twice. */
614 abfd_addrs_sorted++;
615 }
616
617 addrs_sorted++;
618 }
619
75242ef4
JK
620 /* Calculate offsets for the loadable sections.
621 FIXME! Sections must be in order of increasing loadable section
622 so that contiguous sections can use the lower-offset!!!
623
624 Adjust offsets if the segments are not contiguous.
625 If the section is contiguous, its offset should be set to
626 the offset of the highest loadable section lower than it
627 (the loadable section directly below it in memory).
628 this_offset = lower_offset = lower_addr - lower_orig_addr */
629
d76488d8 630 for (i = 0; i < addrs->num_sections; i++)
75242ef4 631 {
82ccf5a5 632 struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
633
634 if (sect)
75242ef4 635 {
c378eb4e 636 /* This is the index used by BFD. */
82ccf5a5 637 addrs->other[i].sectindex = sect->sectindex;
672d9c23
JK
638
639 if (addrs->other[i].addr != 0)
75242ef4 640 {
82ccf5a5 641 addrs->other[i].addr -= sect->addr;
75242ef4 642 lower_offset = addrs->other[i].addr;
75242ef4
JK
643 }
644 else
672d9c23 645 addrs->other[i].addr = lower_offset;
75242ef4
JK
646 }
647 else
672d9c23 648 {
1276c759
JK
649 /* addr_section_name transformation is not used for SECT_NAME. */
650 const char *sect_name = addrs->other[i].name;
651
b0fcb67f
JK
652 /* This section does not exist in ABFD, which is normally
653 unexpected and we want to issue a warning.
654
4d9743af
JK
655 However, the ELF prelinker does create a few sections which are
656 marked in the main executable as loadable (they are loaded in
657 memory from the DYNAMIC segment) and yet are not present in
658 separate debug info files. This is fine, and should not cause
659 a warning. Shared libraries contain just the section
660 ".gnu.liblist" but it is not marked as loadable there. There is
661 no other way to identify them than by their name as the sections
1276c759
JK
662 created by prelink have no special flags.
663
664 For the sections `.bss' and `.sbss' see addr_section_name. */
b0fcb67f
JK
665
666 if (!(strcmp (sect_name, ".gnu.liblist") == 0
4d9743af 667 || strcmp (sect_name, ".gnu.conflict") == 0
1276c759
JK
668 || (strcmp (sect_name, ".bss") == 0
669 && i > 0
670 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
671 && addrs_to_abfd_addrs[i - 1] != NULL)
672 || (strcmp (sect_name, ".sbss") == 0
673 && i > 0
674 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
675 && addrs_to_abfd_addrs[i - 1] != NULL)))
b0fcb67f
JK
676 warning (_("section %s not found in %s"), sect_name,
677 bfd_get_filename (abfd));
678
672d9c23 679 addrs->other[i].addr = 0;
5488dafb 680 addrs->other[i].sectindex = -1;
672d9c23 681 }
75242ef4 682 }
82ccf5a5
JK
683
684 do_cleanups (my_cleanup);
75242ef4
JK
685}
686
687/* Parse the user's idea of an offset for dynamic linking, into our idea
688 of how to represent it for fast symbol reading. This is the default
689 version of the sym_fns.sym_offsets function for symbol readers that
690 don't need to do anything special. It allocates a section_offsets table
691 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
692
693void
694default_symfile_offsets (struct objfile *objfile,
3189cb12 695 const struct section_addr_info *addrs)
75242ef4 696{
d445b2f6 697 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
75242ef4
JK
698 objfile->section_offsets = (struct section_offsets *)
699 obstack_alloc (&objfile->objfile_obstack,
700 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
701 relative_addr_info_to_section_offsets (objfile->section_offsets,
702 objfile->num_sections, addrs);
e8289572 703
c1bd25fd
DJ
704 /* For relocatable files, all loadable sections will start at zero.
705 The zero is meaningless, so try to pick arbitrary addresses such
706 that no loadable sections overlap. This algorithm is quadratic,
707 but the number of sections in a single object file is generally
708 small. */
709 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
710 {
711 struct place_section_arg arg;
2711e456
DJ
712 bfd *abfd = objfile->obfd;
713 asection *cur_sec;
2711e456
DJ
714
715 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
716 /* We do not expect this to happen; just skip this step if the
717 relocatable file has a section with an assigned VMA. */
718 if (bfd_section_vma (abfd, cur_sec) != 0)
719 break;
720
721 if (cur_sec == NULL)
722 {
723 CORE_ADDR *offsets = objfile->section_offsets->offsets;
724
725 /* Pick non-overlapping offsets for sections the user did not
726 place explicitly. */
727 arg.offsets = objfile->section_offsets;
728 arg.lowest = 0;
729 bfd_map_over_sections (objfile->obfd, place_section, &arg);
730
731 /* Correctly filling in the section offsets is not quite
732 enough. Relocatable files have two properties that
733 (most) shared objects do not:
734
735 - Their debug information will contain relocations. Some
736 shared libraries do also, but many do not, so this can not
737 be assumed.
738
739 - If there are multiple code sections they will be loaded
740 at different relative addresses in memory than they are
741 in the objfile, since all sections in the file will start
742 at address zero.
743
744 Because GDB has very limited ability to map from an
745 address in debug info to the correct code section,
746 it relies on adding SECT_OFF_TEXT to things which might be
747 code. If we clear all the section offsets, and set the
748 section VMAs instead, then symfile_relocate_debug_section
749 will return meaningful debug information pointing at the
750 correct sections.
751
752 GDB has too many different data structures for section
753 addresses - a bfd, objfile, and so_list all have section
754 tables, as does exec_ops. Some of these could probably
755 be eliminated. */
756
757 for (cur_sec = abfd->sections; cur_sec != NULL;
758 cur_sec = cur_sec->next)
759 {
760 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
761 continue;
762
763 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
3e43a32a
MS
764 exec_set_section_address (bfd_get_filename (abfd),
765 cur_sec->index,
30510692 766 offsets[cur_sec->index]);
2711e456
DJ
767 offsets[cur_sec->index] = 0;
768 }
769 }
c1bd25fd
DJ
770 }
771
e8289572 772 /* Remember the bfd indexes for the .text, .data, .bss and
c378eb4e 773 .rodata sections. */
e8289572
JB
774 init_objfile_sect_indices (objfile);
775}
776
31d99776
DJ
777/* Divide the file into segments, which are individual relocatable units.
778 This is the default version of the sym_fns.sym_segments function for
779 symbol readers that do not have an explicit representation of segments.
780 It assumes that object files do not have segments, and fully linked
781 files have a single segment. */
782
783struct symfile_segment_data *
784default_symfile_segments (bfd *abfd)
785{
786 int num_sections, i;
787 asection *sect;
788 struct symfile_segment_data *data;
789 CORE_ADDR low, high;
790
791 /* Relocatable files contain enough information to position each
792 loadable section independently; they should not be relocated
793 in segments. */
794 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
795 return NULL;
796
797 /* Make sure there is at least one loadable section in the file. */
798 for (sect = abfd->sections; sect != NULL; sect = sect->next)
799 {
800 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
801 continue;
802
803 break;
804 }
805 if (sect == NULL)
806 return NULL;
807
808 low = bfd_get_section_vma (abfd, sect);
809 high = low + bfd_get_section_size (sect);
810
41bf6aca 811 data = XCNEW (struct symfile_segment_data);
31d99776 812 data->num_segments = 1;
fc270c35
TT
813 data->segment_bases = XCNEW (CORE_ADDR);
814 data->segment_sizes = XCNEW (CORE_ADDR);
31d99776
DJ
815
816 num_sections = bfd_count_sections (abfd);
fc270c35 817 data->segment_info = XCNEWVEC (int, num_sections);
31d99776
DJ
818
819 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
820 {
821 CORE_ADDR vma;
822
823 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
824 continue;
825
826 vma = bfd_get_section_vma (abfd, sect);
827 if (vma < low)
828 low = vma;
829 if (vma + bfd_get_section_size (sect) > high)
830 high = vma + bfd_get_section_size (sect);
831
832 data->segment_info[i] = 1;
833 }
834
835 data->segment_bases[0] = low;
836 data->segment_sizes[0] = high - low;
837
838 return data;
839}
840
608e2dbb
TT
841/* This is a convenience function to call sym_read for OBJFILE and
842 possibly force the partial symbols to be read. */
843
844static void
b15cc25c 845read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
608e2dbb
TT
846{
847 (*objfile->sf->sym_read) (objfile, add_flags);
23732b1e 848 objfile->per_bfd->minsyms_read = true;
8a92335b
JK
849
850 /* find_separate_debug_file_in_section should be called only if there is
851 single binary with no existing separate debug info file. */
852 if (!objfile_has_partial_symbols (objfile)
853 && objfile->separate_debug_objfile == NULL
854 && objfile->separate_debug_objfile_backlink == NULL)
608e2dbb 855 {
192b62ce 856 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
608e2dbb
TT
857
858 if (abfd != NULL)
24ba069a
JK
859 {
860 /* find_separate_debug_file_in_section uses the same filename for the
861 virtual section-as-bfd like the bfd filename containing the
862 section. Therefore use also non-canonical name form for the same
863 file containing the section. */
192b62ce
TT
864 symbol_file_add_separate (abfd.get (), objfile->original_name,
865 add_flags, objfile);
24ba069a 866 }
608e2dbb
TT
867 }
868 if ((add_flags & SYMFILE_NO_READ) == 0)
869 require_partial_symbols (objfile, 0);
870}
871
3d6e24f0
JB
872/* Initialize entry point information for this objfile. */
873
874static void
875init_entry_point_info (struct objfile *objfile)
876{
6ef55de7
TT
877 struct entry_info *ei = &objfile->per_bfd->ei;
878
879 if (ei->initialized)
880 return;
881 ei->initialized = 1;
882
3d6e24f0
JB
883 /* Save startup file's range of PC addresses to help blockframe.c
884 decide where the bottom of the stack is. */
885
886 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
887 {
888 /* Executable file -- record its entry point so we'll recognize
889 the startup file because it contains the entry point. */
6ef55de7
TT
890 ei->entry_point = bfd_get_start_address (objfile->obfd);
891 ei->entry_point_p = 1;
3d6e24f0
JB
892 }
893 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
894 && bfd_get_start_address (objfile->obfd) != 0)
895 {
896 /* Some shared libraries may have entry points set and be
897 runnable. There's no clear way to indicate this, so just check
898 for values other than zero. */
6ef55de7
TT
899 ei->entry_point = bfd_get_start_address (objfile->obfd);
900 ei->entry_point_p = 1;
3d6e24f0
JB
901 }
902 else
903 {
904 /* Examination of non-executable.o files. Short-circuit this stuff. */
6ef55de7 905 ei->entry_point_p = 0;
3d6e24f0
JB
906 }
907
6ef55de7 908 if (ei->entry_point_p)
3d6e24f0 909 {
53eddfa6 910 struct obj_section *osect;
6ef55de7 911 CORE_ADDR entry_point = ei->entry_point;
53eddfa6 912 int found;
3d6e24f0
JB
913
914 /* Make certain that the address points at real code, and not a
915 function descriptor. */
916 entry_point
df6d5441 917 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
3d6e24f0
JB
918 entry_point,
919 &current_target);
920
921 /* Remove any ISA markers, so that this matches entries in the
922 symbol table. */
6ef55de7 923 ei->entry_point
df6d5441 924 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
53eddfa6
TT
925
926 found = 0;
927 ALL_OBJFILE_OSECTIONS (objfile, osect)
928 {
929 struct bfd_section *sect = osect->the_bfd_section;
930
931 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
932 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
933 + bfd_get_section_size (sect)))
934 {
6ef55de7 935 ei->the_bfd_section_index
53eddfa6
TT
936 = gdb_bfd_section_index (objfile->obfd, sect);
937 found = 1;
938 break;
939 }
940 }
941
942 if (!found)
6ef55de7 943 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
3d6e24f0
JB
944 }
945}
946
c906108c
SS
947/* Process a symbol file, as either the main file or as a dynamically
948 loaded file.
949
36e4d068
JB
950 This function does not set the OBJFILE's entry-point info.
951
96baa820
JM
952 OBJFILE is where the symbols are to be read from.
953
7e8580c1
JB
954 ADDRS is the list of section load addresses. If the user has given
955 an 'add-symbol-file' command, then this is the list of offsets and
956 addresses he or she provided as arguments to the command; or, if
957 we're handling a shared library, these are the actual addresses the
958 sections are loaded at, according to the inferior's dynamic linker
959 (as gleaned by GDB's shared library code). We convert each address
960 into an offset from the section VMA's as it appears in the object
961 file, and then call the file's sym_offsets function to convert this
962 into a format-specific offset table --- a `struct section_offsets'.
96baa820 963
7eedccfa
PP
964 ADD_FLAGS encodes verbosity level, whether this is main symbol or
965 an extra symbol file such as dynamically loaded code, and wether
966 breakpoint reset should be deferred. */
c906108c 967
36e4d068
JB
968static void
969syms_from_objfile_1 (struct objfile *objfile,
970 struct section_addr_info *addrs,
b15cc25c 971 symfile_add_flags add_flags)
c906108c 972{
a39a16c4 973 struct section_addr_info *local_addr = NULL;
c906108c 974 struct cleanup *old_chain;
7eedccfa 975 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 976
8fb8eb5c 977 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
c906108c 978
75245b24 979 if (objfile->sf == NULL)
36e4d068
JB
980 {
981 /* No symbols to load, but we still need to make sure
982 that the section_offsets table is allocated. */
d445b2f6 983 int num_sections = gdb_bfd_count_sections (objfile->obfd);
a7bfba49 984 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
36e4d068
JB
985
986 objfile->num_sections = num_sections;
987 objfile->section_offsets
224c3ddb
SM
988 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
989 size);
36e4d068
JB
990 memset (objfile->section_offsets, 0, size);
991 return;
992 }
75245b24 993
c906108c
SS
994 /* Make sure that partially constructed symbol tables will be cleaned up
995 if an error occurs during symbol reading. */
ed2b3126
TT
996 old_chain = make_cleanup (null_cleanup, NULL);
997 std::unique_ptr<struct objfile> objfile_holder (objfile);
c906108c 998
6bf667bb
DE
999 /* If ADDRS is NULL, put together a dummy address list.
1000 We now establish the convention that an addr of zero means
c378eb4e 1001 no load address was specified. */
6bf667bb 1002 if (! addrs)
a39a16c4 1003 {
d445b2f6 1004 local_addr = alloc_section_addr_info (1);
a39a16c4
MM
1005 make_cleanup (xfree, local_addr);
1006 addrs = local_addr;
1007 }
1008
c5aa993b 1009 if (mainline)
c906108c
SS
1010 {
1011 /* We will modify the main symbol table, make sure that all its users
c5aa993b 1012 will be cleaned up if an error occurs during symbol reading. */
74b7792f 1013 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
1014
1015 /* Since no error yet, throw away the old symbol table. */
1016
1017 if (symfile_objfile != NULL)
1018 {
9e86da07 1019 delete symfile_objfile;
adb7f338 1020 gdb_assert (symfile_objfile == NULL);
c906108c
SS
1021 }
1022
1023 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
1024 If the user wants to get rid of them, they should do "symbol-file"
1025 without arguments first. Not sure this is the best behavior
1026 (PR 2207). */
c906108c 1027
c5aa993b 1028 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
1029 }
1030
1031 /* Convert addr into an offset rather than an absolute address.
1032 We find the lowest address of a loaded segment in the objfile,
53a5351d 1033 and assume that <addr> is where that got loaded.
c906108c 1034
53a5351d
JM
1035 We no longer warn if the lowest section is not a text segment (as
1036 happens for the PA64 port. */
6bf667bb 1037 if (addrs->num_sections > 0)
75242ef4 1038 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
1039
1040 /* Initialize symbol reading routines for this objfile, allow complaints to
1041 appear for this new file, and record how verbose to be, then do the
c378eb4e 1042 initial symbol reading for this file. */
c906108c 1043
c5aa993b 1044 (*objfile->sf->sym_init) (objfile);
7eedccfa 1045 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 1046
6bf667bb 1047 (*objfile->sf->sym_offsets) (objfile, addrs);
c906108c 1048
608e2dbb 1049 read_symbols (objfile, add_flags);
b11896a5 1050
c906108c
SS
1051 /* Discard cleanups as symbol reading was successful. */
1052
ed2b3126 1053 objfile_holder.release ();
c906108c 1054 discard_cleanups (old_chain);
f7545552 1055 xfree (local_addr);
c906108c
SS
1056}
1057
36e4d068
JB
1058/* Same as syms_from_objfile_1, but also initializes the objfile
1059 entry-point info. */
1060
6bf667bb 1061static void
36e4d068
JB
1062syms_from_objfile (struct objfile *objfile,
1063 struct section_addr_info *addrs,
b15cc25c 1064 symfile_add_flags add_flags)
36e4d068 1065{
6bf667bb 1066 syms_from_objfile_1 (objfile, addrs, add_flags);
36e4d068
JB
1067 init_entry_point_info (objfile);
1068}
1069
c906108c
SS
1070/* Perform required actions after either reading in the initial
1071 symbols for a new objfile, or mapping in the symbols from a reusable
c1e56572 1072 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c5aa993b 1073
e7d52ed3 1074static void
b15cc25c 1075finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
c906108c 1076{
c906108c 1077 /* If this is the main symbol file we have to clean up all users of the
c378eb4e 1078 old main symbol file. Otherwise it is sufficient to fixup all the
c906108c 1079 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1080 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1081 {
1082 /* OK, make it the "real" symbol file. */
1083 symfile_objfile = objfile;
1084
c1e56572 1085 clear_symtab_users (add_flags);
c906108c 1086 }
7eedccfa 1087 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1088 {
69de3c6a 1089 breakpoint_re_set ();
c906108c
SS
1090 }
1091
1092 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 1093 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
1094}
1095
1096/* Process a symbol file, as either the main file or as a dynamically
1097 loaded file.
1098
5417f6dc 1099 ABFD is a BFD already open on the file, as from symfile_bfd_open.
8ac244b4 1100 A new reference is acquired by this function.
7904e09f 1101
9e86da07 1102 For NAME description see the objfile constructor.
24ba069a 1103
7eedccfa
PP
1104 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1105 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f 1106
6bf667bb 1107 ADDRS is as described for syms_from_objfile_1, above.
7eedccfa 1108 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1109
63524580
JK
1110 PARENT is the original objfile if ABFD is a separate debug info file.
1111 Otherwise PARENT is NULL.
1112
c906108c 1113 Upon success, returns a pointer to the objfile that was added.
c378eb4e 1114 Upon failure, jumps back to command level (never returns). */
7eedccfa 1115
7904e09f 1116static struct objfile *
b15cc25c
PA
1117symbol_file_add_with_addrs (bfd *abfd, const char *name,
1118 symfile_add_flags add_flags,
6bf667bb 1119 struct section_addr_info *addrs,
b15cc25c 1120 objfile_flags flags, struct objfile *parent)
c906108c
SS
1121{
1122 struct objfile *objfile;
7eedccfa 1123 const int from_tty = add_flags & SYMFILE_VERBOSE;
0838fb57 1124 const int mainline = add_flags & SYMFILE_MAINLINE;
770e7fc7 1125 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
b11896a5
TT
1126 && (readnow_symbol_files
1127 || (add_flags & SYMFILE_NO_READ) == 0));
c906108c 1128
9291a0cd 1129 if (readnow_symbol_files)
b11896a5
TT
1130 {
1131 flags |= OBJF_READNOW;
1132 add_flags &= ~SYMFILE_NO_READ;
1133 }
9291a0cd 1134
5417f6dc
RM
1135 /* Give user a chance to burp if we'd be
1136 interactively wiping out any existing symbols. */
c906108c
SS
1137
1138 if ((have_full_symbols () || have_partial_symbols ())
0838fb57 1139 && mainline
c906108c 1140 && from_tty
9e2f0ad4 1141 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1142 error (_("Not confirmed."));
c906108c 1143
b15cc25c
PA
1144 if (mainline)
1145 flags |= OBJF_MAINLINE;
9e86da07 1146 objfile = new struct objfile (abfd, name, flags);
c906108c 1147
63524580
JK
1148 if (parent)
1149 add_separate_debug_objfile (objfile, parent);
1150
78a4a9b9
AC
1151 /* We either created a new mapped symbol table, mapped an existing
1152 symbol table file which has not had initial symbol reading
c378eb4e 1153 performed, or need to read an unmapped symbol table. */
b11896a5 1154 if (should_print)
c906108c 1155 {
769d7dc4
AC
1156 if (deprecated_pre_add_symbol_hook)
1157 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1158 else
c906108c 1159 {
55333a84
DE
1160 printf_unfiltered (_("Reading symbols from %s..."), name);
1161 wrap_here ("");
1162 gdb_flush (gdb_stdout);
c906108c 1163 }
c906108c 1164 }
6bf667bb 1165 syms_from_objfile (objfile, addrs, add_flags);
c906108c
SS
1166
1167 /* We now have at least a partial symbol table. Check to see if the
1168 user requested that all symbols be read on initial access via either
1169 the gdb startup command line or on a per symbol file basis. Expand
c378eb4e 1170 all partial symbol tables for this objfile if so. */
c906108c 1171
9291a0cd 1172 if ((flags & OBJF_READNOW))
c906108c 1173 {
b11896a5 1174 if (should_print)
c906108c 1175 {
a3f17187 1176 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1177 wrap_here ("");
1178 gdb_flush (gdb_stdout);
1179 }
1180
ccefe4c4
TT
1181 if (objfile->sf)
1182 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1183 }
1184
b11896a5 1185 if (should_print && !objfile_has_symbols (objfile))
cb3c37b2
JB
1186 {
1187 wrap_here ("");
55333a84 1188 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1189 wrap_here ("");
1190 }
1191
b11896a5 1192 if (should_print)
c906108c 1193 {
769d7dc4
AC
1194 if (deprecated_post_add_symbol_hook)
1195 deprecated_post_add_symbol_hook ();
c906108c 1196 else
55333a84 1197 printf_unfiltered (_("done.\n"));
c906108c
SS
1198 }
1199
481d0f41
JB
1200 /* We print some messages regardless of whether 'from_tty ||
1201 info_verbose' is true, so make sure they go out at the right
1202 time. */
1203 gdb_flush (gdb_stdout);
1204
109f874e 1205 if (objfile->sf == NULL)
8caee43b
PP
1206 {
1207 observer_notify_new_objfile (objfile);
c378eb4e 1208 return objfile; /* No symbols. */
8caee43b 1209 }
109f874e 1210
e7d52ed3 1211 finish_new_objfile (objfile, add_flags);
c906108c 1212
06d3b283 1213 observer_notify_new_objfile (objfile);
c906108c 1214
ce7d4522 1215 bfd_cache_close_all ();
c906108c
SS
1216 return (objfile);
1217}
1218
24ba069a 1219/* Add BFD as a separate debug file for OBJFILE. For NAME description
9e86da07 1220 see the objfile constructor. */
9cce227f
TG
1221
1222void
b15cc25c
PA
1223symbol_file_add_separate (bfd *bfd, const char *name,
1224 symfile_add_flags symfile_flags,
24ba069a 1225 struct objfile *objfile)
9cce227f 1226{
089b4803
TG
1227 struct section_addr_info *sap;
1228 struct cleanup *my_cleanup;
1229
1230 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1231 because sections of BFD may not match sections of OBJFILE and because
1232 vma may have been modified by tools such as prelink. */
1233 sap = build_section_addr_info_from_objfile (objfile);
1234 my_cleanup = make_cleanup_free_section_addr_info (sap);
9cce227f 1235
870f88f7 1236 symbol_file_add_with_addrs
24ba069a 1237 (bfd, name, symfile_flags, sap,
9cce227f 1238 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
63524580
JK
1239 | OBJF_USERLOADED),
1240 objfile);
089b4803
TG
1241
1242 do_cleanups (my_cleanup);
9cce227f 1243}
7904e09f 1244
eb4556d7
JB
1245/* Process the symbol file ABFD, as either the main file or as a
1246 dynamically loaded file.
6bf667bb 1247 See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1248
eb4556d7 1249struct objfile *
b15cc25c
PA
1250symbol_file_add_from_bfd (bfd *abfd, const char *name,
1251 symfile_add_flags add_flags,
eb4556d7 1252 struct section_addr_info *addrs,
b15cc25c 1253 objfile_flags flags, struct objfile *parent)
eb4556d7 1254{
24ba069a
JK
1255 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1256 parent);
eb4556d7
JB
1257}
1258
7904e09f 1259/* Process a symbol file, as either the main file or as a dynamically
6bf667bb 1260 loaded file. See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1261
7904e09f 1262struct objfile *
b15cc25c
PA
1263symbol_file_add (const char *name, symfile_add_flags add_flags,
1264 struct section_addr_info *addrs, objfile_flags flags)
7904e09f 1265{
192b62ce 1266 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
8ac244b4 1267
192b62ce
TT
1268 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1269 flags, NULL);
7904e09f
JB
1270}
1271
d7db6da9
FN
1272/* Call symbol_file_add() with default values and update whatever is
1273 affected by the loading of a new main().
1274 Used when the file is supplied in the gdb command line
1275 and by some targets with special loading requirements.
1276 The auxiliary function, symbol_file_add_main_1(), has the flags
1277 argument for the switches that can only be specified in the symbol_file
1278 command itself. */
5417f6dc 1279
1adeb98a 1280void
ecf45d2c 1281symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1adeb98a 1282{
ecf45d2c 1283 symbol_file_add_main_1 (args, add_flags, 0);
d7db6da9
FN
1284}
1285
1286static void
ecf45d2c
SL
1287symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1288 objfile_flags flags)
d7db6da9 1289{
ecf45d2c 1290 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
7dcd53a0 1291
7eedccfa 1292 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1293
d7db6da9
FN
1294 /* Getting new symbols may change our opinion about
1295 what is frameless. */
1296 reinit_frame_cache ();
1297
b15cc25c 1298 if ((add_flags & SYMFILE_NO_READ) == 0)
7dcd53a0 1299 set_initial_language ();
1adeb98a
FN
1300}
1301
1302void
1303symbol_file_clear (int from_tty)
1304{
1305 if ((have_full_symbols () || have_partial_symbols ())
1306 && from_tty
0430b0d6
AS
1307 && (symfile_objfile
1308 ? !query (_("Discard symbol table from `%s'? "),
4262abfb 1309 objfile_name (symfile_objfile))
0430b0d6 1310 : !query (_("Discard symbol table? "))))
8a3fe4f8 1311 error (_("Not confirmed."));
1adeb98a 1312
0133421a
JK
1313 /* solib descriptors may have handles to objfiles. Wipe them before their
1314 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1315 no_shared_libraries (NULL, from_tty);
1316
0133421a
JK
1317 free_all_objfiles ();
1318
adb7f338 1319 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1320 if (from_tty)
1321 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1322}
1323
c4dcb155
SM
1324/* See symfile.h. */
1325
1326int separate_debug_file_debug = 0;
1327
5b5d99cf 1328static int
287ccc17 1329separate_debug_file_exists (const char *name, unsigned long crc,
32a0e547 1330 struct objfile *parent_objfile)
5b5d99cf 1331{
904578ed
JK
1332 unsigned long file_crc;
1333 int file_crc_p;
32a0e547 1334 struct stat parent_stat, abfd_stat;
904578ed 1335 int verified_as_different;
32a0e547
JK
1336
1337 /* Find a separate debug info file as if symbols would be present in
1338 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1339 section can contain just the basename of PARENT_OBJFILE without any
1340 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
c378eb4e 1341 the separate debug infos with the same basename can exist. */
32a0e547 1342
4262abfb 1343 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
32a0e547 1344 return 0;
5b5d99cf 1345
c4dcb155
SM
1346 if (separate_debug_file_debug)
1347 printf_unfiltered (_(" Trying %s\n"), name);
1348
192b62ce 1349 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name, gnutarget, -1));
f1838a98 1350
192b62ce 1351 if (abfd == NULL)
5b5d99cf
JB
1352 return 0;
1353
0ba1096a 1354 /* Verify symlinks were not the cause of filename_cmp name difference above.
32a0e547
JK
1355
1356 Some operating systems, e.g. Windows, do not provide a meaningful
1357 st_ino; they always set it to zero. (Windows does provide a
0a93529c
GB
1358 meaningful st_dev.) Files accessed from gdbservers that do not
1359 support the vFile:fstat packet will also have st_ino set to zero.
1360 Do not indicate a duplicate library in either case. While there
1361 is no guarantee that a system that provides meaningful inode
1362 numbers will never set st_ino to zero, this is merely an
1363 optimization, so we do not need to worry about false negatives. */
32a0e547 1364
192b62ce 1365 if (bfd_stat (abfd.get (), &abfd_stat) == 0
904578ed
JK
1366 && abfd_stat.st_ino != 0
1367 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
32a0e547 1368 {
904578ed
JK
1369 if (abfd_stat.st_dev == parent_stat.st_dev
1370 && abfd_stat.st_ino == parent_stat.st_ino)
192b62ce 1371 return 0;
904578ed 1372 verified_as_different = 1;
32a0e547 1373 }
904578ed
JK
1374 else
1375 verified_as_different = 0;
32a0e547 1376
192b62ce 1377 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
5b5d99cf 1378
904578ed
JK
1379 if (!file_crc_p)
1380 return 0;
1381
287ccc17
JK
1382 if (crc != file_crc)
1383 {
dccee2de
TT
1384 unsigned long parent_crc;
1385
0a93529c
GB
1386 /* If the files could not be verified as different with
1387 bfd_stat then we need to calculate the parent's CRC
1388 to verify whether the files are different or not. */
904578ed 1389
dccee2de 1390 if (!verified_as_different)
904578ed 1391 {
dccee2de 1392 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
904578ed
JK
1393 return 0;
1394 }
1395
dccee2de 1396 if (verified_as_different || parent_crc != file_crc)
904578ed
JK
1397 warning (_("the debug information found in \"%s\""
1398 " does not match \"%s\" (CRC mismatch).\n"),
4262abfb 1399 name, objfile_name (parent_objfile));
904578ed 1400
287ccc17
JK
1401 return 0;
1402 }
1403
1404 return 1;
5b5d99cf
JB
1405}
1406
aa28a74e 1407char *debug_file_directory = NULL;
920d2a44
AC
1408static void
1409show_debug_file_directory (struct ui_file *file, int from_tty,
1410 struct cmd_list_element *c, const char *value)
1411{
3e43a32a
MS
1412 fprintf_filtered (file,
1413 _("The directory where separate debug "
1414 "symbols are searched for is \"%s\".\n"),
920d2a44
AC
1415 value);
1416}
5b5d99cf
JB
1417
1418#if ! defined (DEBUG_SUBDIRECTORY)
1419#define DEBUG_SUBDIRECTORY ".debug"
1420#endif
1421
1db33378
PP
1422/* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1423 where the original file resides (may not be the same as
1424 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
7edbb660
DE
1425 looking for. CANON_DIR is the "realpath" form of DIR.
1426 DIR must contain a trailing '/'.
1427 Returns the path of the file with separate debug info, of NULL. */
1db33378
PP
1428
1429static char *
1430find_separate_debug_file (const char *dir,
1431 const char *canon_dir,
1432 const char *debuglink,
1433 unsigned long crc32, struct objfile *objfile)
9cce227f 1434{
1db33378
PP
1435 char *debugdir;
1436 char *debugfile;
9cce227f 1437 int i;
e4ab2fad
JK
1438 VEC (char_ptr) *debugdir_vec;
1439 struct cleanup *back_to;
1440 int ix;
5b5d99cf 1441
c4dcb155
SM
1442 if (separate_debug_file_debug)
1443 printf_unfiltered (_("\nLooking for separate debug info (debug link) for "
1444 "%s\n"), objfile_name (objfile));
1445
325fac50 1446 /* Set I to std::max (strlen (canon_dir), strlen (dir)). */
1ffa32ee 1447 i = strlen (dir);
1db33378
PP
1448 if (canon_dir != NULL && strlen (canon_dir) > i)
1449 i = strlen (canon_dir);
1ffa32ee 1450
224c3ddb
SM
1451 debugfile
1452 = (char *) xmalloc (strlen (debug_file_directory) + 1
1453 + i
1454 + strlen (DEBUG_SUBDIRECTORY)
1455 + strlen ("/")
1456 + strlen (debuglink)
1457 + 1);
5b5d99cf
JB
1458
1459 /* First try in the same directory as the original file. */
1460 strcpy (debugfile, dir);
1db33378 1461 strcat (debugfile, debuglink);
5b5d99cf 1462
32a0e547 1463 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1464 return debugfile;
5417f6dc 1465
5b5d99cf
JB
1466 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1467 strcpy (debugfile, dir);
1468 strcat (debugfile, DEBUG_SUBDIRECTORY);
1469 strcat (debugfile, "/");
1db33378 1470 strcat (debugfile, debuglink);
5b5d99cf 1471
32a0e547 1472 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1473 return debugfile;
5417f6dc 1474
24ddea62 1475 /* Then try in the global debugfile directories.
f888f159 1476
24ddea62
JK
1477 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1478 cause "/..." lookups. */
5417f6dc 1479
e4ab2fad
JK
1480 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1481 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
24ddea62 1482
e4ab2fad
JK
1483 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1484 {
1485 strcpy (debugfile, debugdir);
aa28a74e 1486 strcat (debugfile, "/");
24ddea62 1487 strcat (debugfile, dir);
1db33378 1488 strcat (debugfile, debuglink);
aa28a74e 1489
32a0e547 1490 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1491 {
1492 do_cleanups (back_to);
1493 return debugfile;
1494 }
24ddea62
JK
1495
1496 /* If the file is in the sysroot, try using its base path in the
1497 global debugfile directory. */
1db33378
PP
1498 if (canon_dir != NULL
1499 && filename_ncmp (canon_dir, gdb_sysroot,
0ba1096a 1500 strlen (gdb_sysroot)) == 0
1db33378 1501 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
24ddea62 1502 {
e4ab2fad 1503 strcpy (debugfile, debugdir);
1db33378 1504 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
24ddea62 1505 strcat (debugfile, "/");
1db33378 1506 strcat (debugfile, debuglink);
24ddea62 1507
32a0e547 1508 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1509 {
1510 do_cleanups (back_to);
1511 return debugfile;
1512 }
24ddea62 1513 }
aa28a74e 1514 }
f888f159 1515
e4ab2fad 1516 do_cleanups (back_to);
25522fae 1517 xfree (debugfile);
1db33378
PP
1518 return NULL;
1519}
1520
7edbb660 1521/* Modify PATH to contain only "[/]directory/" part of PATH.
1db33378
PP
1522 If there were no directory separators in PATH, PATH will be empty
1523 string on return. */
1524
1525static void
1526terminate_after_last_dir_separator (char *path)
1527{
1528 int i;
1529
1530 /* Strip off the final filename part, leaving the directory name,
1531 followed by a slash. The directory can be relative or absolute. */
1532 for (i = strlen(path) - 1; i >= 0; i--)
1533 if (IS_DIR_SEPARATOR (path[i]))
1534 break;
1535
1536 /* If I is -1 then no directory is present there and DIR will be "". */
1537 path[i + 1] = '\0';
1538}
1539
1540/* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1541 Returns pathname, or NULL. */
1542
1543char *
1544find_separate_debug_file_by_debuglink (struct objfile *objfile)
1545{
1db33378
PP
1546 char *debugfile;
1547 unsigned long crc32;
1db33378 1548
5eae7aea
TT
1549 gdb::unique_xmalloc_ptr<char> debuglink
1550 (bfd_get_debug_link_info (objfile->obfd, &crc32));
1db33378
PP
1551
1552 if (debuglink == NULL)
1553 {
1554 /* There's no separate debug info, hence there's no way we could
1555 load it => no warning. */
1556 return NULL;
1557 }
1558
5eae7aea
TT
1559 std::string dir = objfile_name (objfile);
1560 terminate_after_last_dir_separator (&dir[0]);
1561 gdb::unique_xmalloc_ptr<char> canon_dir (lrealpath (dir.c_str ()));
1db33378 1562
5eae7aea
TT
1563 debugfile = find_separate_debug_file (dir.c_str (), canon_dir.get (),
1564 debuglink.get (), crc32, objfile);
1db33378
PP
1565
1566 if (debugfile == NULL)
1567 {
1db33378
PP
1568 /* For PR gdb/9538, try again with realpath (if different from the
1569 original). */
1570
1571 struct stat st_buf;
1572
4262abfb
JK
1573 if (lstat (objfile_name (objfile), &st_buf) == 0
1574 && S_ISLNK (st_buf.st_mode))
1db33378 1575 {
5eae7aea
TT
1576 gdb::unique_xmalloc_ptr<char> symlink_dir
1577 (lrealpath (objfile_name (objfile)));
1db33378
PP
1578 if (symlink_dir != NULL)
1579 {
5eae7aea
TT
1580 terminate_after_last_dir_separator (symlink_dir.get ());
1581 if (dir != symlink_dir.get ())
1db33378
PP
1582 {
1583 /* Different directory, so try using it. */
5eae7aea
TT
1584 debugfile = find_separate_debug_file (symlink_dir.get (),
1585 symlink_dir.get (),
1586 debuglink.get (),
1db33378
PP
1587 crc32,
1588 objfile);
1589 }
1590 }
1591 }
1db33378 1592 }
aa28a74e 1593
25522fae 1594 return debugfile;
5b5d99cf
JB
1595}
1596
c906108c
SS
1597/* This is the symbol-file command. Read the file, analyze its
1598 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1599 the command is rather bizarre:
1600
1601 1. The function buildargv implements various quoting conventions
1602 which are undocumented and have little or nothing in common with
1603 the way things are quoted (or not quoted) elsewhere in GDB.
1604
1605 2. Options are used, which are not generally used in GDB (perhaps
1606 "set mapped on", "set readnow on" would be better)
1607
1608 3. The order of options matters, which is contrary to GNU
c906108c
SS
1609 conventions (because it is confusing and inconvenient). */
1610
1611void
1d8b34a7 1612symbol_file_command (const char *args, int from_tty)
c906108c 1613{
c906108c
SS
1614 dont_repeat ();
1615
1616 if (args == NULL)
1617 {
1adeb98a 1618 symbol_file_clear (from_tty);
c906108c
SS
1619 }
1620 else
1621 {
b15cc25c 1622 objfile_flags flags = OBJF_USERLOADED;
ecf45d2c 1623 symfile_add_flags add_flags = 0;
cb2f3a29 1624 char *name = NULL;
40fc416f
SDJ
1625 bool stop_processing_options = false;
1626 int idx;
1627 char *arg;
cb2f3a29 1628
ecf45d2c
SL
1629 if (from_tty)
1630 add_flags |= SYMFILE_VERBOSE;
1631
773a1edc 1632 gdb_argv built_argv (args);
40fc416f 1633 for (arg = built_argv[0], idx = 0; arg != NULL; arg = built_argv[++idx])
c906108c 1634 {
40fc416f 1635 if (stop_processing_options || *arg != '-')
7f0f8ac8 1636 {
40fc416f
SDJ
1637 if (name == NULL)
1638 name = arg;
1639 else
1640 error (_("Unrecognized argument \"%s\""), arg);
7f0f8ac8 1641 }
40fc416f
SDJ
1642 else if (strcmp (arg, "-readnow") == 0)
1643 flags |= OBJF_READNOW;
1644 else if (strcmp (arg, "--") == 0)
1645 stop_processing_options = true;
1646 else
1647 error (_("Unrecognized argument \"%s\""), arg);
c906108c
SS
1648 }
1649
1650 if (name == NULL)
cb2f3a29 1651 error (_("no symbol file name was specified"));
40fc416f
SDJ
1652
1653 symbol_file_add_main_1 (name, add_flags, flags);
c906108c
SS
1654 }
1655}
1656
1657/* Set the initial language.
1658
cb2f3a29
MK
1659 FIXME: A better solution would be to record the language in the
1660 psymtab when reading partial symbols, and then use it (if known) to
1661 set the language. This would be a win for formats that encode the
1662 language in an easily discoverable place, such as DWARF. For
1663 stabs, we can jump through hoops looking for specially named
1664 symbols or try to intuit the language from the specific type of
1665 stabs we find, but we can't do that until later when we read in
1666 full symbols. */
c906108c 1667
8b60591b 1668void
fba45db2 1669set_initial_language (void)
c906108c 1670{
9e6c82ad 1671 enum language lang = main_language ();
c906108c 1672
9e6c82ad 1673 if (lang == language_unknown)
01f8c46d 1674 {
bf6d8a91 1675 char *name = main_name ();
d12307c1 1676 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
f888f159 1677
bf6d8a91
TT
1678 if (sym != NULL)
1679 lang = SYMBOL_LANGUAGE (sym);
01f8c46d 1680 }
cb2f3a29 1681
ccefe4c4
TT
1682 if (lang == language_unknown)
1683 {
1684 /* Make C the default language */
1685 lang = language_c;
c906108c 1686 }
ccefe4c4
TT
1687
1688 set_language (lang);
1689 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1690}
1691
cb2f3a29
MK
1692/* Open the file specified by NAME and hand it off to BFD for
1693 preliminary analysis. Return a newly initialized bfd *, which
1694 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1695 absolute). In case of trouble, error() is called. */
c906108c 1696
192b62ce 1697gdb_bfd_ref_ptr
97a41605 1698symfile_bfd_open (const char *name)
c906108c 1699{
97a41605
GB
1700 int desc = -1;
1701 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c 1702
97a41605 1703 if (!is_target_filename (name))
f1838a98 1704 {
ee0c3293 1705 char *absolute_name;
f1838a98 1706
ee0c3293 1707 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
c906108c 1708
97a41605
GB
1709 /* Look down path for it, allocate 2nd new malloc'd copy. */
1710 desc = openp (getenv ("PATH"),
1711 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
ee0c3293 1712 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
608506ed 1713#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
97a41605
GB
1714 if (desc < 0)
1715 {
ee0c3293 1716 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
433759f7 1717
ee0c3293 1718 strcat (strcpy (exename, expanded_name.get ()), ".exe");
97a41605
GB
1719 desc = openp (getenv ("PATH"),
1720 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1721 exename, O_RDONLY | O_BINARY, &absolute_name);
1722 }
c906108c 1723#endif
97a41605 1724 if (desc < 0)
ee0c3293 1725 perror_with_name (expanded_name.get ());
cb2f3a29 1726
97a41605
GB
1727 make_cleanup (xfree, absolute_name);
1728 name = absolute_name;
1729 }
c906108c 1730
192b62ce
TT
1731 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1732 if (sym_bfd == NULL)
faab9922
JK
1733 error (_("`%s': can't open to read symbols: %s."), name,
1734 bfd_errmsg (bfd_get_error ()));
97a41605 1735
192b62ce
TT
1736 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1737 bfd_set_cacheable (sym_bfd.get (), 1);
c906108c 1738
192b62ce
TT
1739 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1740 error (_("`%s': can't read symbols: %s."), name,
1741 bfd_errmsg (bfd_get_error ()));
cb2f3a29 1742
faab9922
JK
1743 do_cleanups (back_to);
1744
cb2f3a29 1745 return sym_bfd;
c906108c
SS
1746}
1747
cb2f3a29
MK
1748/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1749 the section was not found. */
1750
0e931cf0 1751int
a121b7c1 1752get_section_index (struct objfile *objfile, const char *section_name)
0e931cf0
JB
1753{
1754 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1755
0e931cf0
JB
1756 if (sect)
1757 return sect->index;
1758 else
1759 return -1;
1760}
1761
c256e171
DE
1762/* Link SF into the global symtab_fns list.
1763 FLAVOUR is the file format that SF handles.
1764 Called on startup by the _initialize routine in each object file format
1765 reader, to register information about each format the reader is prepared
1766 to handle. */
c906108c
SS
1767
1768void
c256e171 1769add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
c906108c 1770{
905014d7 1771 symtab_fns.emplace_back (flavour, sf);
c906108c
SS
1772}
1773
cb2f3a29
MK
1774/* Initialize OBJFILE to read symbols from its associated BFD. It
1775 either returns or calls error(). The result is an initialized
1776 struct sym_fns in the objfile structure, that contains cached
1777 information about the symbol file. */
c906108c 1778
00b5771c 1779static const struct sym_fns *
31d99776 1780find_sym_fns (bfd *abfd)
c906108c 1781{
31d99776 1782 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
c906108c 1783
75245b24
MS
1784 if (our_flavour == bfd_target_srec_flavour
1785 || our_flavour == bfd_target_ihex_flavour
1786 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1787 return NULL; /* No symbols. */
75245b24 1788
905014d7
SM
1789 for (const registered_sym_fns &rsf : symtab_fns)
1790 if (our_flavour == rsf.sym_flavour)
1791 return rsf.sym_fns;
cb2f3a29 1792
8a3fe4f8 1793 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1794 bfd_get_target (abfd));
c906108c
SS
1795}
1796\f
cb2f3a29 1797
c906108c
SS
1798/* This function runs the load command of our current target. */
1799
1800static void
5fed81ff 1801load_command (const char *arg, int from_tty)
c906108c 1802{
5b3fca71
TT
1803 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1804
e5cc9f32
JB
1805 dont_repeat ();
1806
4487aabf
PA
1807 /* The user might be reloading because the binary has changed. Take
1808 this opportunity to check. */
1809 reopen_exec_file ();
1810 reread_symbols ();
1811
c906108c 1812 if (arg == NULL)
1986bccd 1813 {
5fed81ff 1814 const char *parg;
1986bccd
AS
1815 int count = 0;
1816
1817 parg = arg = get_exec_file (1);
1818
1819 /* Count how many \ " ' tab space there are in the name. */
1820 while ((parg = strpbrk (parg, "\\\"'\t ")))
1821 {
1822 parg++;
1823 count++;
1824 }
1825
1826 if (count)
1827 {
1828 /* We need to quote this string so buildargv can pull it apart. */
224c3ddb 1829 char *temp = (char *) xmalloc (strlen (arg) + count + 1 );
1986bccd 1830 char *ptemp = temp;
5fed81ff 1831 const char *prev;
1986bccd
AS
1832
1833 make_cleanup (xfree, temp);
1834
1835 prev = parg = arg;
1836 while ((parg = strpbrk (parg, "\\\"'\t ")))
1837 {
1838 strncpy (ptemp, prev, parg - prev);
1839 ptemp += parg - prev;
1840 prev = parg++;
1841 *ptemp++ = '\\';
1842 }
1843 strcpy (ptemp, prev);
1844
1845 arg = temp;
1846 }
1847 }
1848
c906108c 1849 target_load (arg, from_tty);
2889e661
JB
1850
1851 /* After re-loading the executable, we don't really know which
1852 overlays are mapped any more. */
1853 overlay_cache_invalid = 1;
5b3fca71
TT
1854
1855 do_cleanups (cleanup);
c906108c
SS
1856}
1857
1858/* This version of "load" should be usable for any target. Currently
1859 it is just used for remote targets, not inftarg.c or core files,
1860 on the theory that only in that case is it useful.
1861
1862 Avoiding xmodem and the like seems like a win (a) because we don't have
1863 to worry about finding it, and (b) On VMS, fork() is very slow and so
1864 we don't want to run a subprocess. On the other hand, I'm not sure how
1865 performance compares. */
917317f4 1866
917317f4
JM
1867static int validate_download = 0;
1868
e4f9b4d5
MS
1869/* Callback service function for generic_load (bfd_map_over_sections). */
1870
1871static void
1872add_section_size_callback (bfd *abfd, asection *asec, void *data)
1873{
19ba03f4 1874 bfd_size_type *sum = (bfd_size_type *) data;
e4f9b4d5 1875
2c500098 1876 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1877}
1878
1879/* Opaque data for load_section_callback. */
1880struct load_section_data {
f698ca8e 1881 CORE_ADDR load_offset;
a76d924d
DJ
1882 struct load_progress_data *progress_data;
1883 VEC(memory_write_request_s) *requests;
1884};
1885
1886/* Opaque data for load_progress. */
1887struct load_progress_data {
1888 /* Cumulative data. */
e4f9b4d5
MS
1889 unsigned long write_count;
1890 unsigned long data_count;
1891 bfd_size_type total_size;
a76d924d
DJ
1892};
1893
1894/* Opaque data for load_progress for a single section. */
1895struct load_progress_section_data {
1896 struct load_progress_data *cumulative;
cf7a04e8 1897
a76d924d 1898 /* Per-section data. */
cf7a04e8
DJ
1899 const char *section_name;
1900 ULONGEST section_sent;
1901 ULONGEST section_size;
1902 CORE_ADDR lma;
1903 gdb_byte *buffer;
e4f9b4d5
MS
1904};
1905
a76d924d 1906/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1907
1908static void
1909load_progress (ULONGEST bytes, void *untyped_arg)
1910{
19ba03f4
SM
1911 struct load_progress_section_data *args
1912 = (struct load_progress_section_data *) untyped_arg;
a76d924d
DJ
1913 struct load_progress_data *totals;
1914
1915 if (args == NULL)
1916 /* Writing padding data. No easy way to get at the cumulative
1917 stats, so just ignore this. */
1918 return;
1919
1920 totals = args->cumulative;
1921
1922 if (bytes == 0 && args->section_sent == 0)
1923 {
1924 /* The write is just starting. Let the user know we've started
1925 this section. */
112e8700
SM
1926 current_uiout->message ("Loading section %s, size %s lma %s\n",
1927 args->section_name,
1928 hex_string (args->section_size),
1929 paddress (target_gdbarch (), args->lma));
a76d924d
DJ
1930 return;
1931 }
cf7a04e8
DJ
1932
1933 if (validate_download)
1934 {
1935 /* Broken memories and broken monitors manifest themselves here
1936 when bring new computers to life. This doubles already slow
1937 downloads. */
1938 /* NOTE: cagney/1999-10-18: A more efficient implementation
1939 might add a verify_memory() method to the target vector and
1940 then use that. remote.c could implement that method using
1941 the ``qCRC'' packet. */
0efef640 1942 gdb::byte_vector check (bytes);
cf7a04e8 1943
0efef640 1944 if (target_read_memory (args->lma, check.data (), bytes) != 0)
5af949e3 1945 error (_("Download verify read failed at %s"),
f5656ead 1946 paddress (target_gdbarch (), args->lma));
0efef640 1947 if (memcmp (args->buffer, check.data (), bytes) != 0)
5af949e3 1948 error (_("Download verify compare failed at %s"),
f5656ead 1949 paddress (target_gdbarch (), args->lma));
cf7a04e8 1950 }
a76d924d 1951 totals->data_count += bytes;
cf7a04e8
DJ
1952 args->lma += bytes;
1953 args->buffer += bytes;
a76d924d 1954 totals->write_count += 1;
cf7a04e8 1955 args->section_sent += bytes;
522002f9 1956 if (check_quit_flag ()
cf7a04e8
DJ
1957 || (deprecated_ui_load_progress_hook != NULL
1958 && deprecated_ui_load_progress_hook (args->section_name,
1959 args->section_sent)))
1960 error (_("Canceled the download"));
1961
1962 if (deprecated_show_load_progress != NULL)
1963 deprecated_show_load_progress (args->section_name,
1964 args->section_sent,
1965 args->section_size,
a76d924d
DJ
1966 totals->data_count,
1967 totals->total_size);
cf7a04e8
DJ
1968}
1969
e4f9b4d5
MS
1970/* Callback service function for generic_load (bfd_map_over_sections). */
1971
1972static void
1973load_section_callback (bfd *abfd, asection *asec, void *data)
1974{
a76d924d 1975 struct memory_write_request *new_request;
19ba03f4 1976 struct load_section_data *args = (struct load_section_data *) data;
a76d924d 1977 struct load_progress_section_data *section_data;
cf7a04e8
DJ
1978 bfd_size_type size = bfd_get_section_size (asec);
1979 gdb_byte *buffer;
cf7a04e8 1980 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 1981
cf7a04e8
DJ
1982 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1983 return;
e4f9b4d5 1984
cf7a04e8
DJ
1985 if (size == 0)
1986 return;
e4f9b4d5 1987
a76d924d
DJ
1988 new_request = VEC_safe_push (memory_write_request_s,
1989 args->requests, NULL);
1990 memset (new_request, 0, sizeof (struct memory_write_request));
8d749320 1991 section_data = XCNEW (struct load_progress_section_data);
a76d924d 1992 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
3e43a32a
MS
1993 new_request->end = new_request->begin + size; /* FIXME Should size
1994 be in instead? */
224c3ddb 1995 new_request->data = (gdb_byte *) xmalloc (size);
a76d924d 1996 new_request->baton = section_data;
cf7a04e8 1997
a76d924d 1998 buffer = new_request->data;
cf7a04e8 1999
a76d924d
DJ
2000 section_data->cumulative = args->progress_data;
2001 section_data->section_name = sect_name;
2002 section_data->section_size = size;
2003 section_data->lma = new_request->begin;
2004 section_data->buffer = buffer;
cf7a04e8
DJ
2005
2006 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
2007}
2008
2009/* Clean up an entire memory request vector, including load
2010 data and progress records. */
cf7a04e8 2011
a76d924d
DJ
2012static void
2013clear_memory_write_data (void *arg)
2014{
19ba03f4 2015 VEC(memory_write_request_s) **vec_p = (VEC(memory_write_request_s) **) arg;
a76d924d
DJ
2016 VEC(memory_write_request_s) *vec = *vec_p;
2017 int i;
2018 struct memory_write_request *mr;
cf7a04e8 2019
a76d924d
DJ
2020 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2021 {
2022 xfree (mr->data);
2023 xfree (mr->baton);
2024 }
2025 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
2026}
2027
dcb07cfa
PA
2028static void print_transfer_performance (struct ui_file *stream,
2029 unsigned long data_count,
2030 unsigned long write_count,
2031 std::chrono::steady_clock::duration d);
2032
c906108c 2033void
9cbe5fff 2034generic_load (const char *args, int from_tty)
c906108c 2035{
773a1edc 2036 struct cleanup *old_cleanups;
e4f9b4d5 2037 struct load_section_data cbdata;
a76d924d 2038 struct load_progress_data total_progress;
79a45e25 2039 struct ui_out *uiout = current_uiout;
a76d924d 2040
e4f9b4d5
MS
2041 CORE_ADDR entry;
2042
a76d924d
DJ
2043 memset (&cbdata, 0, sizeof (cbdata));
2044 memset (&total_progress, 0, sizeof (total_progress));
2045 cbdata.progress_data = &total_progress;
2046
773a1edc 2047 old_cleanups = make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 2048
d1a41061
PP
2049 if (args == NULL)
2050 error_no_arg (_("file to load"));
1986bccd 2051
773a1edc 2052 gdb_argv argv (args);
1986bccd 2053
ee0c3293 2054 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
1986bccd
AS
2055
2056 if (argv[1] != NULL)
917317f4 2057 {
f698ca8e 2058 const char *endptr;
ba5f2f8a 2059
f698ca8e 2060 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
1986bccd
AS
2061
2062 /* If the last word was not a valid number then
2063 treat it as a file name with spaces in. */
2064 if (argv[1] == endptr)
2065 error (_("Invalid download offset:%s."), argv[1]);
2066
2067 if (argv[2] != NULL)
2068 error (_("Too many parameters."));
917317f4 2069 }
c906108c 2070
c378eb4e 2071 /* Open the file for loading. */
ee0c3293 2072 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
c906108c 2073 if (loadfile_bfd == NULL)
ee0c3293 2074 perror_with_name (filename.get ());
917317f4 2075
192b62ce 2076 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
c906108c 2077 {
ee0c3293 2078 error (_("\"%s\" is not an object file: %s"), filename.get (),
c906108c
SS
2079 bfd_errmsg (bfd_get_error ()));
2080 }
c5aa993b 2081
192b62ce 2082 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
a76d924d
DJ
2083 (void *) &total_progress.total_size);
2084
192b62ce 2085 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
c2d11a7d 2086
dcb07cfa
PA
2087 using namespace std::chrono;
2088
2089 steady_clock::time_point start_time = steady_clock::now ();
c906108c 2090
a76d924d
DJ
2091 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2092 load_progress) != 0)
2093 error (_("Load failed"));
c906108c 2094
dcb07cfa 2095 steady_clock::time_point end_time = steady_clock::now ();
ba5f2f8a 2096
192b62ce 2097 entry = bfd_get_start_address (loadfile_bfd.get ());
8c2b9656 2098 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
112e8700
SM
2099 uiout->text ("Start address ");
2100 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
2101 uiout->text (", load size ");
2102 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
2103 uiout->text ("\n");
fb14de7b 2104 regcache_write_pc (get_current_regcache (), entry);
c906108c 2105
38963c97
DJ
2106 /* Reset breakpoints, now that we have changed the load image. For
2107 instance, breakpoints may have been set (or reset, by
2108 post_create_inferior) while connected to the target but before we
2109 loaded the program. In that case, the prologue analyzer could
2110 have read instructions from the target to find the right
2111 breakpoint locations. Loading has changed the contents of that
2112 memory. */
2113
2114 breakpoint_re_set ();
2115
a76d924d
DJ
2116 print_transfer_performance (gdb_stdout, total_progress.data_count,
2117 total_progress.write_count,
dcb07cfa 2118 end_time - start_time);
c906108c
SS
2119
2120 do_cleanups (old_cleanups);
2121}
2122
dcb07cfa
PA
2123/* Report on STREAM the performance of a memory transfer operation,
2124 such as 'load'. DATA_COUNT is the number of bytes transferred.
2125 WRITE_COUNT is the number of separate write operations, or 0, if
2126 that information is not available. TIME is how long the operation
2127 lasted. */
c906108c 2128
dcb07cfa 2129static void
d9fcf2fb 2130print_transfer_performance (struct ui_file *stream,
917317f4
JM
2131 unsigned long data_count,
2132 unsigned long write_count,
dcb07cfa 2133 std::chrono::steady_clock::duration time)
917317f4 2134{
dcb07cfa 2135 using namespace std::chrono;
79a45e25 2136 struct ui_out *uiout = current_uiout;
2b71414d 2137
dcb07cfa 2138 milliseconds ms = duration_cast<milliseconds> (time);
2b71414d 2139
112e8700 2140 uiout->text ("Transfer rate: ");
dcb07cfa 2141 if (ms.count () > 0)
8b93c638 2142 {
dcb07cfa 2143 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
9f43d28c 2144
112e8700 2145 if (uiout->is_mi_like_p ())
9f43d28c 2146 {
112e8700
SM
2147 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2148 uiout->text (" bits/sec");
9f43d28c
DJ
2149 }
2150 else if (rate < 1024)
2151 {
112e8700
SM
2152 uiout->field_fmt ("transfer-rate", "%lu", rate);
2153 uiout->text (" bytes/sec");
9f43d28c
DJ
2154 }
2155 else
2156 {
112e8700
SM
2157 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2158 uiout->text (" KB/sec");
9f43d28c 2159 }
8b93c638
JM
2160 }
2161 else
2162 {
112e8700
SM
2163 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2164 uiout->text (" bits in <1 sec");
8b93c638
JM
2165 }
2166 if (write_count > 0)
2167 {
112e8700
SM
2168 uiout->text (", ");
2169 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2170 uiout->text (" bytes/write");
8b93c638 2171 }
112e8700 2172 uiout->text (".\n");
c906108c
SS
2173}
2174
2175/* This function allows the addition of incrementally linked object files.
2176 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2177/* Note: ezannoni 2000-04-13 This function/command used to have a
2178 special case syntax for the rombug target (Rombug is the boot
2179 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2180 rombug case, the user doesn't need to supply a text address,
2181 instead a call to target_link() (in target.c) would supply the
c378eb4e 2182 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2183
c906108c 2184static void
2cf311eb 2185add_symbol_file_command (const char *args, int from_tty)
c906108c 2186{
5af949e3 2187 struct gdbarch *gdbarch = get_current_arch ();
ee0c3293 2188 gdb::unique_xmalloc_ptr<char> filename;
c906108c 2189 char *arg;
2acceee2
JM
2190 int argcnt = 0;
2191 int sec_num = 0;
76ad5e1e 2192 struct objfile *objf;
b15cc25c
PA
2193 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2194 symfile_add_flags add_flags = 0;
2195
2196 if (from_tty)
2197 add_flags |= SYMFILE_VERBOSE;
db162d44 2198
a39a16c4 2199 struct sect_opt
2acceee2 2200 {
a121b7c1
PA
2201 const char *name;
2202 const char *value;
a39a16c4 2203 };
db162d44 2204
a39a16c4 2205 struct section_addr_info *section_addrs;
40fc416f
SDJ
2206 std::vector<sect_opt> sect_opts = { { ".text", NULL } };
2207 bool stop_processing_options = false;
3017564a 2208 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2209
c906108c
SS
2210 dont_repeat ();
2211
2212 if (args == NULL)
8a3fe4f8 2213 error (_("add-symbol-file takes a file name and an address"));
c906108c 2214
40fc416f 2215 bool seen_addr = false;
773a1edc 2216 gdb_argv argv (args);
db162d44 2217
5b96932b
AS
2218 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2219 {
40fc416f 2220 if (stop_processing_options || *arg != '-')
41dc8db8 2221 {
40fc416f 2222 if (filename == NULL)
41dc8db8 2223 {
40fc416f
SDJ
2224 /* First non-option argument is always the filename. */
2225 filename.reset (tilde_expand (arg));
41dc8db8 2226 }
40fc416f 2227 else if (!seen_addr)
41dc8db8 2228 {
40fc416f
SDJ
2229 /* The second non-option argument is always the text
2230 address at which to load the program. */
2231 sect_opts[0].value = arg;
2232 seen_addr = true;
41dc8db8
MB
2233 }
2234 else
02ca603a 2235 error (_("Unrecognized argument \"%s\""), arg);
41dc8db8 2236 }
40fc416f
SDJ
2237 else if (strcmp (arg, "-readnow") == 0)
2238 flags |= OBJF_READNOW;
2239 else if (strcmp (arg, "-s") == 0)
2240 {
2241 if (argv[argcnt + 1] == NULL)
2242 error (_("Missing section name after \"-s\""));
2243 else if (argv[argcnt + 2] == NULL)
2244 error (_("Missing section address after \"-s\""));
2245
2246 sect_opt sect = { argv[argcnt + 1], argv[argcnt + 2] };
2247
2248 sect_opts.push_back (sect);
2249 argcnt += 2;
2250 }
2251 else if (strcmp (arg, "--") == 0)
2252 stop_processing_options = true;
2253 else
2254 error (_("Unrecognized argument \"%s\""), arg);
c906108c 2255 }
c906108c 2256
40fc416f
SDJ
2257 if (filename == NULL)
2258 error (_("You must provide a filename to be loaded."));
2259
927890d0
JB
2260 /* This command takes at least two arguments. The first one is a
2261 filename, and the second is the address where this file has been
2262 loaded. Abort now if this address hasn't been provided by the
2263 user. */
40fc416f 2264 if (!seen_addr)
ee0c3293
TT
2265 error (_("The address where %s has been loaded is missing"),
2266 filename.get ());
927890d0 2267
c378eb4e 2268 /* Print the prompt for the query below. And save the arguments into
db162d44
EZ
2269 a sect_addr_info structure to be passed around to other
2270 functions. We have to split this up into separate print
bb599908 2271 statements because hex_string returns a local static
c378eb4e 2272 string. */
5417f6dc 2273
ee0c3293
TT
2274 printf_unfiltered (_("add symbol table from file \"%s\" at\n"),
2275 filename.get ());
f978cb06 2276 section_addrs = alloc_section_addr_info (sect_opts.size ());
a39a16c4 2277 make_cleanup (xfree, section_addrs);
f978cb06 2278 for (sect_opt &sect : sect_opts)
c906108c 2279 {
db162d44 2280 CORE_ADDR addr;
f978cb06
TT
2281 const char *val = sect.value;
2282 const char *sec = sect.name;
5417f6dc 2283
ae822768 2284 addr = parse_and_eval_address (val);
db162d44 2285
db162d44 2286 /* Here we store the section offsets in the order they were
c378eb4e 2287 entered on the command line. */
a121b7c1 2288 section_addrs->other[sec_num].name = (char *) sec;
a39a16c4 2289 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2290 printf_unfiltered ("\t%s_addr = %s\n", sec,
2291 paddress (gdbarch, addr));
db162d44
EZ
2292 sec_num++;
2293
5417f6dc 2294 /* The object's sections are initialized when a
db162d44 2295 call is made to build_objfile_section_table (objfile).
5417f6dc 2296 This happens in reread_symbols.
db162d44
EZ
2297 At this point, we don't know what file type this is,
2298 so we can't determine what section names are valid. */
2acceee2 2299 }
d76488d8 2300 section_addrs->num_sections = sec_num;
db162d44 2301
2acceee2 2302 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2303 error (_("Not confirmed."));
c906108c 2304
ee0c3293 2305 objf = symbol_file_add (filename.get (), add_flags, section_addrs, flags);
76ad5e1e
NB
2306
2307 add_target_sections_of_objfile (objf);
c906108c
SS
2308
2309 /* Getting new symbols may change our opinion about what is
2310 frameless. */
2311 reinit_frame_cache ();
db162d44 2312 do_cleanups (my_cleanups);
c906108c
SS
2313}
2314\f
70992597 2315
63644780
NB
2316/* This function removes a symbol file that was added via add-symbol-file. */
2317
2318static void
2cf311eb 2319remove_symbol_file_command (const char *args, int from_tty)
63644780 2320{
63644780 2321 struct objfile *objf = NULL;
63644780 2322 struct program_space *pspace = current_program_space;
63644780
NB
2323
2324 dont_repeat ();
2325
2326 if (args == NULL)
2327 error (_("remove-symbol-file: no symbol file provided"));
2328
773a1edc 2329 gdb_argv argv (args);
63644780
NB
2330
2331 if (strcmp (argv[0], "-a") == 0)
2332 {
2333 /* Interpret the next argument as an address. */
2334 CORE_ADDR addr;
2335
2336 if (argv[1] == NULL)
2337 error (_("Missing address argument"));
2338
2339 if (argv[2] != NULL)
2340 error (_("Junk after %s"), argv[1]);
2341
2342 addr = parse_and_eval_address (argv[1]);
2343
2344 ALL_OBJFILES (objf)
2345 {
d03de421
PA
2346 if ((objf->flags & OBJF_USERLOADED) != 0
2347 && (objf->flags & OBJF_SHARED) != 0
63644780
NB
2348 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2349 break;
2350 }
2351 }
2352 else if (argv[0] != NULL)
2353 {
2354 /* Interpret the current argument as a file name. */
63644780
NB
2355
2356 if (argv[1] != NULL)
2357 error (_("Junk after %s"), argv[0]);
2358
ee0c3293 2359 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
63644780
NB
2360
2361 ALL_OBJFILES (objf)
2362 {
d03de421
PA
2363 if ((objf->flags & OBJF_USERLOADED) != 0
2364 && (objf->flags & OBJF_SHARED) != 0
63644780 2365 && objf->pspace == pspace
ee0c3293 2366 && filename_cmp (filename.get (), objfile_name (objf)) == 0)
63644780
NB
2367 break;
2368 }
2369 }
2370
2371 if (objf == NULL)
2372 error (_("No symbol file found"));
2373
2374 if (from_tty
2375 && !query (_("Remove symbol table from file \"%s\"? "),
2376 objfile_name (objf)))
2377 error (_("Not confirmed."));
2378
9e86da07 2379 delete objf;
63644780 2380 clear_symtab_users (0);
63644780
NB
2381}
2382
c906108c 2383/* Re-read symbols if a symbol-file has changed. */
3b7bacac 2384
c906108c 2385void
fba45db2 2386reread_symbols (void)
c906108c
SS
2387{
2388 struct objfile *objfile;
2389 long new_modtime;
c906108c
SS
2390 struct stat new_statbuf;
2391 int res;
4c404b8b 2392 std::vector<struct objfile *> new_objfiles;
c906108c
SS
2393
2394 /* With the addition of shared libraries, this should be modified,
2395 the load time should be saved in the partial symbol tables, since
2396 different tables may come from different source files. FIXME.
2397 This routine should then walk down each partial symbol table
c378eb4e 2398 and see if the symbol table that it originates from has been changed. */
c906108c 2399
c5aa993b
JM
2400 for (objfile = object_files; objfile; objfile = objfile->next)
2401 {
9cce227f
TG
2402 if (objfile->obfd == NULL)
2403 continue;
2404
2405 /* Separate debug objfiles are handled in the main objfile. */
2406 if (objfile->separate_debug_objfile_backlink)
2407 continue;
2408
02aeec7b
JB
2409 /* If this object is from an archive (what you usually create with
2410 `ar', often called a `static library' on most systems, though
2411 a `shared library' on AIX is also an archive), then you should
2412 stat on the archive name, not member name. */
9cce227f
TG
2413 if (objfile->obfd->my_archive)
2414 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2415 else
4262abfb 2416 res = stat (objfile_name (objfile), &new_statbuf);
9cce227f
TG
2417 if (res != 0)
2418 {
c378eb4e 2419 /* FIXME, should use print_sys_errmsg but it's not filtered. */
9cce227f 2420 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
4262abfb 2421 objfile_name (objfile));
9cce227f
TG
2422 continue;
2423 }
2424 new_modtime = new_statbuf.st_mtime;
2425 if (new_modtime != objfile->mtime)
2426 {
2427 struct cleanup *old_cleanups;
2428 struct section_offsets *offsets;
2429 int num_offsets;
24ba069a 2430 char *original_name;
9cce227f
TG
2431
2432 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
4262abfb 2433 objfile_name (objfile));
9cce227f
TG
2434
2435 /* There are various functions like symbol_file_add,
2436 symfile_bfd_open, syms_from_objfile, etc., which might
2437 appear to do what we want. But they have various other
2438 effects which we *don't* want. So we just do stuff
2439 ourselves. We don't worry about mapped files (for one thing,
2440 any mapped file will be out of date). */
2441
2442 /* If we get an error, blow away this objfile (not sure if
2443 that is the correct response for things like shared
2444 libraries). */
ed2b3126
TT
2445 std::unique_ptr<struct objfile> objfile_holder (objfile);
2446
9cce227f 2447 /* We need to do this whenever any symbols go away. */
ed2b3126 2448 old_cleanups = make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
9cce227f 2449
0ba1096a
KT
2450 if (exec_bfd != NULL
2451 && filename_cmp (bfd_get_filename (objfile->obfd),
2452 bfd_get_filename (exec_bfd)) == 0)
9cce227f
TG
2453 {
2454 /* Reload EXEC_BFD without asking anything. */
2455
2456 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2457 }
2458
f6eeced0
JK
2459 /* Keep the calls order approx. the same as in free_objfile. */
2460
2461 /* Free the separate debug objfiles. It will be
2462 automatically recreated by sym_read. */
2463 free_objfile_separate_debug (objfile);
2464
2465 /* Remove any references to this objfile in the global
2466 value lists. */
2467 preserve_values (objfile);
2468
2469 /* Nuke all the state that we will re-read. Much of the following
2470 code which sets things to NULL really is necessary to tell
2471 other parts of GDB that there is nothing currently there.
2472
2473 Try to keep the freeing order compatible with free_objfile. */
2474
2475 if (objfile->sf != NULL)
2476 {
2477 (*objfile->sf->sym_finish) (objfile);
2478 }
2479
2480 clear_objfile_data (objfile);
2481
e1507e95 2482 /* Clean up any state BFD has sitting around. */
a4453b7e 2483 {
192b62ce 2484 gdb_bfd_ref_ptr obfd (objfile->obfd);
d3846e71 2485 char *obfd_filename;
a4453b7e
TT
2486
2487 obfd_filename = bfd_get_filename (objfile->obfd);
2488 /* Open the new BFD before freeing the old one, so that
2489 the filename remains live. */
192b62ce
TT
2490 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2491 objfile->obfd = temp.release ();
e1507e95 2492 if (objfile->obfd == NULL)
192b62ce 2493 error (_("Can't open %s to read symbols."), obfd_filename);
a4453b7e
TT
2494 }
2495
24ba069a
JK
2496 original_name = xstrdup (objfile->original_name);
2497 make_cleanup (xfree, original_name);
2498
9cce227f
TG
2499 /* bfd_openr sets cacheable to true, which is what we want. */
2500 if (!bfd_check_format (objfile->obfd, bfd_object))
4262abfb 2501 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
9cce227f
TG
2502 bfd_errmsg (bfd_get_error ()));
2503
2504 /* Save the offsets, we will nuke them with the rest of the
2505 objfile_obstack. */
2506 num_offsets = objfile->num_sections;
2507 offsets = ((struct section_offsets *)
2508 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2509 memcpy (offsets, objfile->section_offsets,
2510 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2511
9cce227f
TG
2512 /* FIXME: Do we have to free a whole linked list, or is this
2513 enough? */
af5bf4ad
SM
2514 objfile->global_psymbols.clear ();
2515 objfile->static_psymbols.clear ();
9cce227f 2516
c378eb4e 2517 /* Free the obstacks for non-reusable objfiles. */
710e1a31
SW
2518 psymbol_bcache_free (objfile->psymbol_cache);
2519 objfile->psymbol_cache = psymbol_bcache_init ();
41664b45
DG
2520
2521 /* NB: after this call to obstack_free, objfiles_changed
2522 will need to be called (see discussion below). */
9cce227f
TG
2523 obstack_free (&objfile->objfile_obstack, 0);
2524 objfile->sections = NULL;
43f3e411 2525 objfile->compunit_symtabs = NULL;
9cce227f
TG
2526 objfile->psymtabs = NULL;
2527 objfile->psymtabs_addrmap = NULL;
2528 objfile->free_psymtabs = NULL;
34eaf542 2529 objfile->template_symbols = NULL;
9cce227f 2530
9cce227f
TG
2531 /* obstack_init also initializes the obstack so it is
2532 empty. We could use obstack_specify_allocation but
d82ea6a8 2533 gdb_obstack.h specifies the alloc/dealloc functions. */
9cce227f 2534 obstack_init (&objfile->objfile_obstack);
779bd270 2535
846060df
JB
2536 /* set_objfile_per_bfd potentially allocates the per-bfd
2537 data on the objfile's obstack (if sharing data across
2538 multiple users is not possible), so it's important to
2539 do it *after* the obstack has been initialized. */
2540 set_objfile_per_bfd (objfile);
2541
224c3ddb
SM
2542 objfile->original_name
2543 = (char *) obstack_copy0 (&objfile->objfile_obstack, original_name,
2544 strlen (original_name));
24ba069a 2545
779bd270
DE
2546 /* Reset the sym_fns pointer. The ELF reader can change it
2547 based on whether .gdb_index is present, and we need it to
2548 start over. PR symtab/15885 */
8fb8eb5c 2549 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
779bd270 2550
d82ea6a8 2551 build_objfile_section_table (objfile);
9cce227f
TG
2552 terminate_minimal_symbol_table (objfile);
2553
2554 /* We use the same section offsets as from last time. I'm not
2555 sure whether that is always correct for shared libraries. */
2556 objfile->section_offsets = (struct section_offsets *)
2557 obstack_alloc (&objfile->objfile_obstack,
2558 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2559 memcpy (objfile->section_offsets, offsets,
2560 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2561 objfile->num_sections = num_offsets;
2562
2563 /* What the hell is sym_new_init for, anyway? The concept of
2564 distinguishing between the main file and additional files
2565 in this way seems rather dubious. */
2566 if (objfile == symfile_objfile)
c906108c 2567 {
9cce227f 2568 (*objfile->sf->sym_new_init) (objfile);
c906108c 2569 }
9cce227f
TG
2570
2571 (*objfile->sf->sym_init) (objfile);
2572 clear_complaints (&symfile_complaints, 1, 1);
608e2dbb
TT
2573
2574 objfile->flags &= ~OBJF_PSYMTABS_READ;
41664b45
DG
2575
2576 /* We are about to read new symbols and potentially also
2577 DWARF information. Some targets may want to pass addresses
2578 read from DWARF DIE's through an adjustment function before
2579 saving them, like MIPS, which may call into
2580 "find_pc_section". When called, that function will make
2581 use of per-objfile program space data.
2582
2583 Since we discarded our section information above, we have
2584 dangling pointers in the per-objfile program space data
2585 structure. Force GDB to update the section mapping
2586 information by letting it know the objfile has changed,
2587 making the dangling pointers point to correct data
2588 again. */
2589
2590 objfiles_changed ();
2591
608e2dbb 2592 read_symbols (objfile, 0);
b11896a5 2593
9cce227f 2594 if (!objfile_has_symbols (objfile))
c906108c 2595 {
9cce227f
TG
2596 wrap_here ("");
2597 printf_unfiltered (_("(no debugging symbols found)\n"));
2598 wrap_here ("");
c5aa993b 2599 }
9cce227f
TG
2600
2601 /* We're done reading the symbol file; finish off complaints. */
2602 clear_complaints (&symfile_complaints, 0, 1);
2603
2604 /* Getting new symbols may change our opinion about what is
2605 frameless. */
2606
2607 reinit_frame_cache ();
2608
2609 /* Discard cleanups as symbol reading was successful. */
ed2b3126 2610 objfile_holder.release ();
9cce227f
TG
2611 discard_cleanups (old_cleanups);
2612
2613 /* If the mtime has changed between the time we set new_modtime
2614 and now, we *want* this to be out of date, so don't call stat
2615 again now. */
2616 objfile->mtime = new_modtime;
9cce227f 2617 init_entry_point_info (objfile);
4ac39b97 2618
4c404b8b 2619 new_objfiles.push_back (objfile);
c906108c
SS
2620 }
2621 }
c906108c 2622
4c404b8b 2623 if (!new_objfiles.empty ())
ea53e89f 2624 {
c1e56572 2625 clear_symtab_users (0);
4ac39b97
JK
2626
2627 /* clear_objfile_data for each objfile was called before freeing it and
2628 observer_notify_new_objfile (NULL) has been called by
2629 clear_symtab_users above. Notify the new files now. */
4c404b8b
TT
2630 for (auto iter : new_objfiles)
2631 observer_notify_new_objfile (iter);
4ac39b97 2632
ea53e89f
JB
2633 /* At least one objfile has changed, so we can consider that
2634 the executable we're debugging has changed too. */
781b42b0 2635 observer_notify_executable_changed ();
ea53e89f 2636 }
c906108c 2637}
c906108c
SS
2638\f
2639
593e3209 2640struct filename_language
c5aa993b 2641{
593e3209
SM
2642 filename_language (const std::string &ext_, enum language lang_)
2643 : ext (ext_), lang (lang_)
2644 {}
3fcf0b0d 2645
593e3209
SM
2646 std::string ext;
2647 enum language lang;
2648};
c906108c 2649
593e3209 2650static std::vector<filename_language> filename_language_table;
c906108c 2651
56618e20
TT
2652/* See symfile.h. */
2653
2654void
2655add_filename_language (const char *ext, enum language lang)
c906108c 2656{
593e3209 2657 filename_language_table.emplace_back (ext, lang);
c906108c
SS
2658}
2659
2660static char *ext_args;
920d2a44
AC
2661static void
2662show_ext_args (struct ui_file *file, int from_tty,
2663 struct cmd_list_element *c, const char *value)
2664{
3e43a32a
MS
2665 fprintf_filtered (file,
2666 _("Mapping between filename extension "
2667 "and source language is \"%s\".\n"),
920d2a44
AC
2668 value);
2669}
c906108c
SS
2670
2671static void
eb4c3f4a
TT
2672set_ext_lang_command (const char *args,
2673 int from_tty, struct cmd_list_element *e)
c906108c 2674{
c906108c
SS
2675 char *cp = ext_args;
2676 enum language lang;
2677
c378eb4e 2678 /* First arg is filename extension, starting with '.' */
c906108c 2679 if (*cp != '.')
8a3fe4f8 2680 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2681
2682 /* Find end of first arg. */
c5aa993b 2683 while (*cp && !isspace (*cp))
c906108c
SS
2684 cp++;
2685
2686 if (*cp == '\0')
3e43a32a
MS
2687 error (_("'%s': two arguments required -- "
2688 "filename extension and language"),
c906108c
SS
2689 ext_args);
2690
c378eb4e 2691 /* Null-terminate first arg. */
c5aa993b 2692 *cp++ = '\0';
c906108c
SS
2693
2694 /* Find beginning of second arg, which should be a source language. */
529480d0 2695 cp = skip_spaces (cp);
c906108c
SS
2696
2697 if (*cp == '\0')
3e43a32a
MS
2698 error (_("'%s': two arguments required -- "
2699 "filename extension and language"),
c906108c
SS
2700 ext_args);
2701
2702 /* Lookup the language from among those we know. */
2703 lang = language_enum (cp);
2704
593e3209 2705 auto it = filename_language_table.begin ();
c906108c 2706 /* Now lookup the filename extension: do we already know it? */
593e3209 2707 for (; it != filename_language_table.end (); it++)
3fcf0b0d 2708 {
593e3209 2709 if (it->ext == ext_args)
3fcf0b0d
TT
2710 break;
2711 }
c906108c 2712
593e3209 2713 if (it == filename_language_table.end ())
c906108c 2714 {
c378eb4e 2715 /* New file extension. */
c906108c
SS
2716 add_filename_language (ext_args, lang);
2717 }
2718 else
2719 {
c378eb4e 2720 /* Redefining a previously known filename extension. */
c906108c
SS
2721
2722 /* if (from_tty) */
2723 /* query ("Really make files of type %s '%s'?", */
2724 /* ext_args, language_str (lang)); */
2725
593e3209 2726 it->lang = lang;
c906108c
SS
2727 }
2728}
2729
2730static void
1d12d88f 2731info_ext_lang_command (const char *args, int from_tty)
c906108c 2732{
a3f17187 2733 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c 2734 printf_filtered ("\n\n");
593e3209
SM
2735 for (const filename_language &entry : filename_language_table)
2736 printf_filtered ("\t%s\t- %s\n", entry.ext.c_str (),
2737 language_str (entry.lang));
c906108c
SS
2738}
2739
c906108c 2740enum language
dd786858 2741deduce_language_from_filename (const char *filename)
c906108c 2742{
e6a959d6 2743 const char *cp;
c906108c
SS
2744
2745 if (filename != NULL)
2746 if ((cp = strrchr (filename, '.')) != NULL)
3fcf0b0d 2747 {
593e3209
SM
2748 for (const filename_language &entry : filename_language_table)
2749 if (entry.ext == cp)
2750 return entry.lang;
3fcf0b0d 2751 }
c906108c
SS
2752
2753 return language_unknown;
2754}
2755\f
43f3e411
DE
2756/* Allocate and initialize a new symbol table.
2757 CUST is from the result of allocate_compunit_symtab. */
c906108c
SS
2758
2759struct symtab *
43f3e411 2760allocate_symtab (struct compunit_symtab *cust, const char *filename)
c906108c 2761{
43f3e411
DE
2762 struct objfile *objfile = cust->objfile;
2763 struct symtab *symtab
2764 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
c906108c 2765
19ba03f4
SM
2766 symtab->filename
2767 = (const char *) bcache (filename, strlen (filename) + 1,
21ea9eec 2768 objfile->per_bfd->filename_cache);
c5aa993b
JM
2769 symtab->fullname = NULL;
2770 symtab->language = deduce_language_from_filename (filename);
c906108c 2771
db0fec5c
DE
2772 /* This can be very verbose with lots of headers.
2773 Only print at higher debug levels. */
2774 if (symtab_create_debug >= 2)
45cfd468
DE
2775 {
2776 /* Be a bit clever with debugging messages, and don't print objfile
2777 every time, only when it changes. */
2778 static char *last_objfile_name = NULL;
2779
2780 if (last_objfile_name == NULL
4262abfb 2781 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
45cfd468
DE
2782 {
2783 xfree (last_objfile_name);
4262abfb 2784 last_objfile_name = xstrdup (objfile_name (objfile));
45cfd468
DE
2785 fprintf_unfiltered (gdb_stdlog,
2786 "Creating one or more symtabs for objfile %s ...\n",
2787 last_objfile_name);
2788 }
2789 fprintf_unfiltered (gdb_stdlog,
b3dbbd6f
PM
2790 "Created symtab %s for module %s.\n",
2791 host_address_to_string (symtab), filename);
45cfd468
DE
2792 }
2793
43f3e411
DE
2794 /* Add it to CUST's list of symtabs. */
2795 if (cust->filetabs == NULL)
2796 {
2797 cust->filetabs = symtab;
2798 cust->last_filetab = symtab;
2799 }
2800 else
2801 {
2802 cust->last_filetab->next = symtab;
2803 cust->last_filetab = symtab;
2804 }
2805
2806 /* Backlink to the containing compunit symtab. */
2807 symtab->compunit_symtab = cust;
2808
2809 return symtab;
2810}
2811
2812/* Allocate and initialize a new compunit.
2813 NAME is the name of the main source file, if there is one, or some
2814 descriptive text if there are no source files. */
2815
2816struct compunit_symtab *
2817allocate_compunit_symtab (struct objfile *objfile, const char *name)
2818{
2819 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2820 struct compunit_symtab);
2821 const char *saved_name;
2822
2823 cu->objfile = objfile;
2824
2825 /* The name we record here is only for display/debugging purposes.
2826 Just save the basename to avoid path issues (too long for display,
2827 relative vs absolute, etc.). */
2828 saved_name = lbasename (name);
224c3ddb
SM
2829 cu->name
2830 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2831 strlen (saved_name));
43f3e411
DE
2832
2833 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2834
2835 if (symtab_create_debug)
2836 {
2837 fprintf_unfiltered (gdb_stdlog,
2838 "Created compunit symtab %s for %s.\n",
2839 host_address_to_string (cu),
2840 cu->name);
2841 }
2842
2843 return cu;
2844}
2845
2846/* Hook CU to the objfile it comes from. */
2847
2848void
2849add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2850{
2851 cu->next = cu->objfile->compunit_symtabs;
2852 cu->objfile->compunit_symtabs = cu;
c906108c 2853}
c906108c 2854\f
c5aa993b 2855
b15cc25c
PA
2856/* Reset all data structures in gdb which may contain references to
2857 symbol table data. */
c906108c
SS
2858
2859void
b15cc25c 2860clear_symtab_users (symfile_add_flags add_flags)
c906108c
SS
2861{
2862 /* Someday, we should do better than this, by only blowing away
2863 the things that really need to be blown. */
c0501be5
DJ
2864
2865 /* Clear the "current" symtab first, because it is no longer valid.
2866 breakpoint_re_set may try to access the current symtab. */
2867 clear_current_source_symtab_and_line ();
2868
c906108c 2869 clear_displays ();
1bfeeb0f 2870 clear_last_displayed_sal ();
c906108c 2871 clear_pc_function_cache ();
06d3b283 2872 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2873
2874 /* Clear globals which might have pointed into a removed objfile.
2875 FIXME: It's not clear which of these are supposed to persist
2876 between expressions and which ought to be reset each time. */
2877 expression_context_block = NULL;
2878 innermost_block = NULL;
8756216b
DP
2879
2880 /* Varobj may refer to old symbols, perform a cleanup. */
2881 varobj_invalidate ();
2882
e700d1b2
JB
2883 /* Now that the various caches have been cleared, we can re_set
2884 our breakpoints without risking it using stale data. */
2885 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2886 breakpoint_re_set ();
c906108c
SS
2887}
2888
74b7792f
AC
2889static void
2890clear_symtab_users_cleanup (void *ignore)
2891{
c1e56572 2892 clear_symtab_users (0);
74b7792f 2893}
c906108c 2894\f
c906108c
SS
2895/* OVERLAYS:
2896 The following code implements an abstraction for debugging overlay sections.
2897
2898 The target model is as follows:
2899 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2900 same VMA, each with its own unique LMA (or load address).
c906108c 2901 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2902 sections, one by one, from the load address into the VMA address.
5417f6dc 2903 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2904 sections should be considered to be mapped from the VMA to the LMA.
2905 This information is used for symbol lookup, and memory read/write.
5417f6dc 2906 For instance, if a section has been mapped then its contents
c5aa993b 2907 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2908
2909 Two levels of debugger support for overlays are available. One is
2910 "manual", in which the debugger relies on the user to tell it which
2911 overlays are currently mapped. This level of support is
2912 implemented entirely in the core debugger, and the information about
2913 whether a section is mapped is kept in the objfile->obj_section table.
2914
2915 The second level of support is "automatic", and is only available if
2916 the target-specific code provides functionality to read the target's
2917 overlay mapping table, and translate its contents for the debugger
2918 (by updating the mapped state information in the obj_section tables).
2919
2920 The interface is as follows:
c5aa993b
JM
2921 User commands:
2922 overlay map <name> -- tell gdb to consider this section mapped
2923 overlay unmap <name> -- tell gdb to consider this section unmapped
2924 overlay list -- list the sections that GDB thinks are mapped
2925 overlay read-target -- get the target's state of what's mapped
2926 overlay off/manual/auto -- set overlay debugging state
2927 Functional interface:
2928 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2929 section, return that section.
5417f6dc 2930 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 2931 the pc, either in its VMA or its LMA
714835d5 2932 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
2933 section_is_overlay(sect): true if section's VMA != LMA
2934 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2935 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2936 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2937 overlay_mapped_address(...): map an address from section's LMA to VMA
2938 overlay_unmapped_address(...): map an address from section's VMA to LMA
2939 symbol_overlayed_address(...): Return a "current" address for symbol:
2940 either in VMA or LMA depending on whether
c378eb4e 2941 the symbol's section is currently mapped. */
c906108c
SS
2942
2943/* Overlay debugging state: */
2944
d874f1e2 2945enum overlay_debugging_state overlay_debugging = ovly_off;
c378eb4e 2946int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
c906108c 2947
c906108c 2948/* Function: section_is_overlay (SECTION)
5417f6dc 2949 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
2950 SECTION is loaded at an address different from where it will "run". */
2951
2952int
714835d5 2953section_is_overlay (struct obj_section *section)
c906108c 2954{
714835d5
UW
2955 if (overlay_debugging && section)
2956 {
2957 bfd *abfd = section->objfile->obfd;
2958 asection *bfd_section = section->the_bfd_section;
f888f159 2959
714835d5
UW
2960 if (bfd_section_lma (abfd, bfd_section) != 0
2961 && bfd_section_lma (abfd, bfd_section)
2962 != bfd_section_vma (abfd, bfd_section))
2963 return 1;
2964 }
c906108c
SS
2965
2966 return 0;
2967}
2968
2969/* Function: overlay_invalidate_all (void)
2970 Invalidate the mapped state of all overlay sections (mark it as stale). */
2971
2972static void
fba45db2 2973overlay_invalidate_all (void)
c906108c 2974{
c5aa993b 2975 struct objfile *objfile;
c906108c
SS
2976 struct obj_section *sect;
2977
2978 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
2979 if (section_is_overlay (sect))
2980 sect->ovly_mapped = -1;
c906108c
SS
2981}
2982
714835d5 2983/* Function: section_is_mapped (SECTION)
5417f6dc 2984 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
2985
2986 Access to the ovly_mapped flag is restricted to this function, so
2987 that we can do automatic update. If the global flag
2988 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2989 overlay_invalidate_all. If the mapped state of the particular
2990 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2991
714835d5
UW
2992int
2993section_is_mapped (struct obj_section *osect)
c906108c 2994{
9216df95
UW
2995 struct gdbarch *gdbarch;
2996
714835d5 2997 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
2998 return 0;
2999
c5aa993b 3000 switch (overlay_debugging)
c906108c
SS
3001 {
3002 default:
d874f1e2 3003 case ovly_off:
c5aa993b 3004 return 0; /* overlay debugging off */
d874f1e2 3005 case ovly_auto: /* overlay debugging automatic */
1c772458 3006 /* Unles there is a gdbarch_overlay_update function,
c378eb4e 3007 there's really nothing useful to do here (can't really go auto). */
9216df95
UW
3008 gdbarch = get_objfile_arch (osect->objfile);
3009 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
3010 {
3011 if (overlay_cache_invalid)
3012 {
3013 overlay_invalidate_all ();
3014 overlay_cache_invalid = 0;
3015 }
3016 if (osect->ovly_mapped == -1)
9216df95 3017 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
3018 }
3019 /* fall thru to manual case */
d874f1e2 3020 case ovly_on: /* overlay debugging manual */
c906108c
SS
3021 return osect->ovly_mapped == 1;
3022 }
3023}
3024
c906108c
SS
3025/* Function: pc_in_unmapped_range
3026 If PC falls into the lma range of SECTION, return true, else false. */
3027
3028CORE_ADDR
714835d5 3029pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3030{
714835d5
UW
3031 if (section_is_overlay (section))
3032 {
3033 bfd *abfd = section->objfile->obfd;
3034 asection *bfd_section = section->the_bfd_section;
fbd35540 3035
714835d5
UW
3036 /* We assume the LMA is relocated by the same offset as the VMA. */
3037 bfd_vma size = bfd_get_section_size (bfd_section);
3038 CORE_ADDR offset = obj_section_offset (section);
3039
3040 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3041 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3042 return 1;
3043 }
c906108c 3044
c906108c
SS
3045 return 0;
3046}
3047
3048/* Function: pc_in_mapped_range
3049 If PC falls into the vma range of SECTION, return true, else false. */
3050
3051CORE_ADDR
714835d5 3052pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3053{
714835d5
UW
3054 if (section_is_overlay (section))
3055 {
3056 if (obj_section_addr (section) <= pc
3057 && pc < obj_section_endaddr (section))
3058 return 1;
3059 }
c906108c 3060
c906108c
SS
3061 return 0;
3062}
3063
9ec8e6a0
JB
3064/* Return true if the mapped ranges of sections A and B overlap, false
3065 otherwise. */
3b7bacac 3066
b9362cc7 3067static int
714835d5 3068sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3069{
714835d5
UW
3070 CORE_ADDR a_start = obj_section_addr (a);
3071 CORE_ADDR a_end = obj_section_endaddr (a);
3072 CORE_ADDR b_start = obj_section_addr (b);
3073 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3074
3075 return (a_start < b_end && b_start < a_end);
3076}
3077
c906108c
SS
3078/* Function: overlay_unmapped_address (PC, SECTION)
3079 Returns the address corresponding to PC in the unmapped (load) range.
3080 May be the same as PC. */
3081
3082CORE_ADDR
714835d5 3083overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3084{
714835d5
UW
3085 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3086 {
3087 bfd *abfd = section->objfile->obfd;
3088 asection *bfd_section = section->the_bfd_section;
fbd35540 3089
714835d5
UW
3090 return pc + bfd_section_lma (abfd, bfd_section)
3091 - bfd_section_vma (abfd, bfd_section);
3092 }
c906108c
SS
3093
3094 return pc;
3095}
3096
3097/* Function: overlay_mapped_address (PC, SECTION)
3098 Returns the address corresponding to PC in the mapped (runtime) range.
3099 May be the same as PC. */
3100
3101CORE_ADDR
714835d5 3102overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3103{
714835d5
UW
3104 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3105 {
3106 bfd *abfd = section->objfile->obfd;
3107 asection *bfd_section = section->the_bfd_section;
fbd35540 3108
714835d5
UW
3109 return pc + bfd_section_vma (abfd, bfd_section)
3110 - bfd_section_lma (abfd, bfd_section);
3111 }
c906108c
SS
3112
3113 return pc;
3114}
3115
5417f6dc 3116/* Function: symbol_overlayed_address
c906108c
SS
3117 Return one of two addresses (relative to the VMA or to the LMA),
3118 depending on whether the section is mapped or not. */
3119
c5aa993b 3120CORE_ADDR
714835d5 3121symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3122{
3123 if (overlay_debugging)
3124 {
c378eb4e 3125 /* If the symbol has no section, just return its regular address. */
c906108c
SS
3126 if (section == 0)
3127 return address;
c378eb4e
MS
3128 /* If the symbol's section is not an overlay, just return its
3129 address. */
c906108c
SS
3130 if (!section_is_overlay (section))
3131 return address;
c378eb4e 3132 /* If the symbol's section is mapped, just return its address. */
c906108c
SS
3133 if (section_is_mapped (section))
3134 return address;
3135 /*
3136 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3137 * then return its LOADED address rather than its vma address!!
3138 */
3139 return overlay_unmapped_address (address, section);
3140 }
3141 return address;
3142}
3143
5417f6dc 3144/* Function: find_pc_overlay (PC)
c906108c
SS
3145 Return the best-match overlay section for PC:
3146 If PC matches a mapped overlay section's VMA, return that section.
3147 Else if PC matches an unmapped section's VMA, return that section.
3148 Else if PC matches an unmapped section's LMA, return that section. */
3149
714835d5 3150struct obj_section *
fba45db2 3151find_pc_overlay (CORE_ADDR pc)
c906108c 3152{
c5aa993b 3153 struct objfile *objfile;
c906108c
SS
3154 struct obj_section *osect, *best_match = NULL;
3155
3156 if (overlay_debugging)
b631e59b
KT
3157 {
3158 ALL_OBJSECTIONS (objfile, osect)
3159 if (section_is_overlay (osect))
c5aa993b 3160 {
b631e59b
KT
3161 if (pc_in_mapped_range (pc, osect))
3162 {
3163 if (section_is_mapped (osect))
3164 return osect;
3165 else
3166 best_match = osect;
3167 }
3168 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3169 best_match = osect;
3170 }
b631e59b 3171 }
714835d5 3172 return best_match;
c906108c
SS
3173}
3174
3175/* Function: find_pc_mapped_section (PC)
5417f6dc 3176 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3177 currently marked as MAPPED, return that section. Else return NULL. */
3178
714835d5 3179struct obj_section *
fba45db2 3180find_pc_mapped_section (CORE_ADDR pc)
c906108c 3181{
c5aa993b 3182 struct objfile *objfile;
c906108c
SS
3183 struct obj_section *osect;
3184
3185 if (overlay_debugging)
b631e59b
KT
3186 {
3187 ALL_OBJSECTIONS (objfile, osect)
3188 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3189 return osect;
3190 }
c906108c
SS
3191
3192 return NULL;
3193}
3194
3195/* Function: list_overlays_command
c378eb4e 3196 Print a list of mapped sections and their PC ranges. */
c906108c 3197
5d3055ad 3198static void
2cf311eb 3199list_overlays_command (const char *args, int from_tty)
c906108c 3200{
c5aa993b
JM
3201 int nmapped = 0;
3202 struct objfile *objfile;
c906108c
SS
3203 struct obj_section *osect;
3204
3205 if (overlay_debugging)
b631e59b
KT
3206 {
3207 ALL_OBJSECTIONS (objfile, osect)
714835d5 3208 if (section_is_mapped (osect))
b631e59b
KT
3209 {
3210 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3211 const char *name;
3212 bfd_vma lma, vma;
3213 int size;
3214
3215 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3216 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3217 size = bfd_get_section_size (osect->the_bfd_section);
3218 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3219
3220 printf_filtered ("Section %s, loaded at ", name);
3221 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3222 puts_filtered (" - ");
3223 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3224 printf_filtered (", mapped at ");
3225 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3226 puts_filtered (" - ");
3227 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3228 puts_filtered ("\n");
3229
3230 nmapped++;
3231 }
3232 }
c906108c 3233 if (nmapped == 0)
a3f17187 3234 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3235}
3236
3237/* Function: map_overlay_command
3238 Mark the named section as mapped (ie. residing at its VMA address). */
3239
5d3055ad 3240static void
2cf311eb 3241map_overlay_command (const char *args, int from_tty)
c906108c 3242{
c5aa993b
JM
3243 struct objfile *objfile, *objfile2;
3244 struct obj_section *sec, *sec2;
c906108c
SS
3245
3246 if (!overlay_debugging)
3e43a32a
MS
3247 error (_("Overlay debugging not enabled. Use "
3248 "either the 'overlay auto' or\n"
3249 "the 'overlay manual' command."));
c906108c
SS
3250
3251 if (args == 0 || *args == 0)
8a3fe4f8 3252 error (_("Argument required: name of an overlay section"));
c906108c 3253
c378eb4e 3254 /* First, find a section matching the user supplied argument. */
c906108c
SS
3255 ALL_OBJSECTIONS (objfile, sec)
3256 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b 3257 {
c378eb4e 3258 /* Now, check to see if the section is an overlay. */
714835d5 3259 if (!section_is_overlay (sec))
c5aa993b
JM
3260 continue; /* not an overlay section */
3261
c378eb4e 3262 /* Mark the overlay as "mapped". */
c5aa993b
JM
3263 sec->ovly_mapped = 1;
3264
3265 /* Next, make a pass and unmap any sections that are
3266 overlapped by this new section: */
3267 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3268 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3269 {
3270 if (info_verbose)
a3f17187 3271 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3272 bfd_section_name (objfile->obfd,
3273 sec2->the_bfd_section));
c378eb4e 3274 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
c5aa993b
JM
3275 }
3276 return;
3277 }
8a3fe4f8 3278 error (_("No overlay section called %s"), args);
c906108c
SS
3279}
3280
3281/* Function: unmap_overlay_command
5417f6dc 3282 Mark the overlay section as unmapped
c906108c
SS
3283 (ie. resident in its LMA address range, rather than the VMA range). */
3284
5d3055ad 3285static void
2cf311eb 3286unmap_overlay_command (const char *args, int from_tty)
c906108c 3287{
c5aa993b 3288 struct objfile *objfile;
7a270e0c 3289 struct obj_section *sec = NULL;
c906108c
SS
3290
3291 if (!overlay_debugging)
3e43a32a
MS
3292 error (_("Overlay debugging not enabled. "
3293 "Use either the 'overlay auto' or\n"
3294 "the 'overlay manual' command."));
c906108c
SS
3295
3296 if (args == 0 || *args == 0)
8a3fe4f8 3297 error (_("Argument required: name of an overlay section"));
c906108c 3298
c378eb4e 3299 /* First, find a section matching the user supplied argument. */
c906108c
SS
3300 ALL_OBJSECTIONS (objfile, sec)
3301 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3302 {
3303 if (!sec->ovly_mapped)
8a3fe4f8 3304 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3305 sec->ovly_mapped = 0;
3306 return;
3307 }
8a3fe4f8 3308 error (_("No overlay section called %s"), args);
c906108c
SS
3309}
3310
3311/* Function: overlay_auto_command
3312 A utility command to turn on overlay debugging.
c378eb4e 3313 Possibly this should be done via a set/show command. */
c906108c
SS
3314
3315static void
2cf311eb 3316overlay_auto_command (const char *args, int from_tty)
c906108c 3317{
d874f1e2 3318 overlay_debugging = ovly_auto;
1900040c 3319 enable_overlay_breakpoints ();
c906108c 3320 if (info_verbose)
a3f17187 3321 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3322}
3323
3324/* Function: overlay_manual_command
3325 A utility command to turn on overlay debugging.
c378eb4e 3326 Possibly this should be done via a set/show command. */
c906108c
SS
3327
3328static void
2cf311eb 3329overlay_manual_command (const char *args, int from_tty)
c906108c 3330{
d874f1e2 3331 overlay_debugging = ovly_on;
1900040c 3332 disable_overlay_breakpoints ();
c906108c 3333 if (info_verbose)
a3f17187 3334 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3335}
3336
3337/* Function: overlay_off_command
3338 A utility command to turn on overlay debugging.
c378eb4e 3339 Possibly this should be done via a set/show command. */
c906108c
SS
3340
3341static void
2cf311eb 3342overlay_off_command (const char *args, int from_tty)
c906108c 3343{
d874f1e2 3344 overlay_debugging = ovly_off;
1900040c 3345 disable_overlay_breakpoints ();
c906108c 3346 if (info_verbose)
a3f17187 3347 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3348}
3349
3350static void
2cf311eb 3351overlay_load_command (const char *args, int from_tty)
c906108c 3352{
e17c207e
UW
3353 struct gdbarch *gdbarch = get_current_arch ();
3354
3355 if (gdbarch_overlay_update_p (gdbarch))
3356 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3357 else
8a3fe4f8 3358 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3359}
3360
3361/* Function: overlay_command
c378eb4e 3362 A place-holder for a mis-typed command. */
c906108c 3363
c378eb4e 3364/* Command list chain containing all defined "overlay" subcommands. */
28578e6b 3365static struct cmd_list_element *overlaylist;
c906108c
SS
3366
3367static void
981a3fb3 3368overlay_command (const char *args, int from_tty)
c906108c 3369{
c5aa993b 3370 printf_unfiltered
c906108c 3371 ("\"overlay\" must be followed by the name of an overlay command.\n");
635c7e8a 3372 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
c906108c
SS
3373}
3374
c906108c
SS
3375/* Target Overlays for the "Simplest" overlay manager:
3376
5417f6dc
RM
3377 This is GDB's default target overlay layer. It works with the
3378 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3379 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3380 so targets that use a different runtime overlay manager can
c906108c
SS
3381 substitute their own overlay_update function and take over the
3382 function pointer.
3383
3384 The overlay_update function pokes around in the target's data structures
3385 to see what overlays are mapped, and updates GDB's overlay mapping with
3386 this information.
3387
3388 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3389 unsigned _novlys; /# number of overlay sections #/
3390 unsigned _ovly_table[_novlys][4] = {
438e1e42 3391 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
c5aa993b
JM
3392 {..., ..., ..., ...},
3393 }
3394 unsigned _novly_regions; /# number of overlay regions #/
3395 unsigned _ovly_region_table[_novly_regions][3] = {
438e1e42 3396 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
c5aa993b
JM
3397 {..., ..., ...},
3398 }
c906108c
SS
3399 These functions will attempt to update GDB's mappedness state in the
3400 symbol section table, based on the target's mappedness state.
3401
3402 To do this, we keep a cached copy of the target's _ovly_table, and
3403 attempt to detect when the cached copy is invalidated. The main
3404 entry point is "simple_overlay_update(SECT), which looks up SECT in
3405 the cached table and re-reads only the entry for that section from
c378eb4e 3406 the target (whenever possible). */
c906108c
SS
3407
3408/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3409static unsigned (*cache_ovly_table)[4] = 0;
c5aa993b 3410static unsigned cache_novlys = 0;
c906108c 3411static CORE_ADDR cache_ovly_table_base = 0;
c5aa993b
JM
3412enum ovly_index
3413 {
438e1e42 3414 VMA, OSIZE, LMA, MAPPED
c5aa993b 3415 };
c906108c 3416
c378eb4e 3417/* Throw away the cached copy of _ovly_table. */
3b7bacac 3418
c906108c 3419static void
fba45db2 3420simple_free_overlay_table (void)
c906108c
SS
3421{
3422 if (cache_ovly_table)
b8c9b27d 3423 xfree (cache_ovly_table);
c5aa993b 3424 cache_novlys = 0;
c906108c
SS
3425 cache_ovly_table = NULL;
3426 cache_ovly_table_base = 0;
3427}
3428
9216df95 3429/* Read an array of ints of size SIZE from the target into a local buffer.
c378eb4e 3430 Convert to host order. int LEN is number of ints. */
3b7bacac 3431
c906108c 3432static void
9216df95 3433read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3434 int len, int size, enum bfd_endian byte_order)
c906108c 3435{
c378eb4e 3436 /* FIXME (alloca): Not safe if array is very large. */
224c3ddb 3437 gdb_byte *buf = (gdb_byte *) alloca (len * size);
c5aa993b 3438 int i;
c906108c 3439
9216df95 3440 read_memory (memaddr, buf, len * size);
c906108c 3441 for (i = 0; i < len; i++)
e17a4113 3442 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3443}
3444
3445/* Find and grab a copy of the target _ovly_table
c378eb4e 3446 (and _novlys, which is needed for the table's size). */
3b7bacac 3447
c5aa993b 3448static int
fba45db2 3449simple_read_overlay_table (void)
c906108c 3450{
3b7344d5 3451 struct bound_minimal_symbol novlys_msym;
7c7b6655 3452 struct bound_minimal_symbol ovly_table_msym;
9216df95
UW
3453 struct gdbarch *gdbarch;
3454 int word_size;
e17a4113 3455 enum bfd_endian byte_order;
c906108c
SS
3456
3457 simple_free_overlay_table ();
9b27852e 3458 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3b7344d5 3459 if (! novlys_msym.minsym)
c906108c 3460 {
8a3fe4f8 3461 error (_("Error reading inferior's overlay table: "
0d43edd1 3462 "couldn't find `_novlys' variable\n"
8a3fe4f8 3463 "in inferior. Use `overlay manual' mode."));
0d43edd1 3464 return 0;
c906108c 3465 }
0d43edd1 3466
7c7b6655
TT
3467 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3468 if (! ovly_table_msym.minsym)
0d43edd1 3469 {
8a3fe4f8 3470 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3471 "`_ovly_table' array\n"
8a3fe4f8 3472 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3473 return 0;
3474 }
3475
7c7b6655 3476 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
9216df95 3477 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3478 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3479
77e371c0
TT
3480 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3481 4, byte_order);
0d43edd1 3482 cache_ovly_table
224c3ddb 3483 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
77e371c0 3484 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
0d43edd1 3485 read_target_long_array (cache_ovly_table_base,
777ea8f1 3486 (unsigned int *) cache_ovly_table,
e17a4113 3487 cache_novlys * 4, word_size, byte_order);
0d43edd1 3488
c5aa993b 3489 return 1; /* SUCCESS */
c906108c
SS
3490}
3491
5417f6dc 3492/* Function: simple_overlay_update_1
c906108c
SS
3493 A helper function for simple_overlay_update. Assuming a cached copy
3494 of _ovly_table exists, look through it to find an entry whose vma,
3495 lma and size match those of OSECT. Re-read the entry and make sure
3496 it still matches OSECT (else the table may no longer be valid).
3497 Set OSECT's mapped state to match the entry. Return: 1 for
3498 success, 0 for failure. */
3499
3500static int
fba45db2 3501simple_overlay_update_1 (struct obj_section *osect)
c906108c 3502{
764c99c1 3503 int i;
fbd35540
MS
3504 bfd *obfd = osect->objfile->obfd;
3505 asection *bsect = osect->the_bfd_section;
9216df95
UW
3506 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3507 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3508 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3509
c906108c 3510 for (i = 0; i < cache_novlys; i++)
fbd35540 3511 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3512 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c906108c 3513 {
9216df95
UW
3514 read_target_long_array (cache_ovly_table_base + i * word_size,
3515 (unsigned int *) cache_ovly_table[i],
e17a4113 3516 4, word_size, byte_order);
fbd35540 3517 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3518 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c906108c
SS
3519 {
3520 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3521 return 1;
3522 }
c378eb4e 3523 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3524 return 0;
3525 }
3526 return 0;
3527}
3528
3529/* Function: simple_overlay_update
5417f6dc
RM
3530 If OSECT is NULL, then update all sections' mapped state
3531 (after re-reading the entire target _ovly_table).
3532 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3533 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3534 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3535 re-read the entire cache, and go ahead and update all sections. */
3536
1c772458 3537void
fba45db2 3538simple_overlay_update (struct obj_section *osect)
c906108c 3539{
c5aa993b 3540 struct objfile *objfile;
c906108c 3541
c378eb4e 3542 /* Were we given an osect to look up? NULL means do all of them. */
c906108c 3543 if (osect)
c378eb4e 3544 /* Have we got a cached copy of the target's overlay table? */
c906108c 3545 if (cache_ovly_table != NULL)
9cc89665
MS
3546 {
3547 /* Does its cached location match what's currently in the
3548 symtab? */
3b7344d5 3549 struct bound_minimal_symbol minsym
9cc89665
MS
3550 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3551
3b7344d5 3552 if (minsym.minsym == NULL)
9cc89665
MS
3553 error (_("Error reading inferior's overlay table: couldn't "
3554 "find `_ovly_table' array\n"
3555 "in inferior. Use `overlay manual' mode."));
3556
77e371c0 3557 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
9cc89665
MS
3558 /* Then go ahead and try to look up this single section in
3559 the cache. */
3560 if (simple_overlay_update_1 (osect))
3561 /* Found it! We're done. */
3562 return;
3563 }
c906108c
SS
3564
3565 /* Cached table no good: need to read the entire table anew.
3566 Or else we want all the sections, in which case it's actually
3567 more efficient to read the whole table in one block anyway. */
3568
0d43edd1
JB
3569 if (! simple_read_overlay_table ())
3570 return;
3571
c378eb4e 3572 /* Now may as well update all sections, even if only one was requested. */
c906108c 3573 ALL_OBJSECTIONS (objfile, osect)
714835d5 3574 if (section_is_overlay (osect))
c5aa993b 3575 {
764c99c1 3576 int i;
fbd35540
MS
3577 bfd *obfd = osect->objfile->obfd;
3578 asection *bsect = osect->the_bfd_section;
c5aa993b 3579
c5aa993b 3580 for (i = 0; i < cache_novlys; i++)
fbd35540 3581 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3582 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c378eb4e 3583 { /* obj_section matches i'th entry in ovly_table. */
c5aa993b 3584 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
c378eb4e 3585 break; /* finished with inner for loop: break out. */
c5aa993b
JM
3586 }
3587 }
c906108c
SS
3588}
3589
086df311
DJ
3590/* Set the output sections and output offsets for section SECTP in
3591 ABFD. The relocation code in BFD will read these offsets, so we
3592 need to be sure they're initialized. We map each section to itself,
3593 with no offset; this means that SECTP->vma will be honored. */
3594
3595static void
3596symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3597{
3598 sectp->output_section = sectp;
3599 sectp->output_offset = 0;
3600}
3601
ac8035ab
TG
3602/* Default implementation for sym_relocate. */
3603
ac8035ab
TG
3604bfd_byte *
3605default_symfile_relocate (struct objfile *objfile, asection *sectp,
3606 bfd_byte *buf)
3607{
3019eac3
DE
3608 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3609 DWO file. */
3610 bfd *abfd = sectp->owner;
ac8035ab
TG
3611
3612 /* We're only interested in sections with relocation
3613 information. */
3614 if ((sectp->flags & SEC_RELOC) == 0)
3615 return NULL;
3616
3617 /* We will handle section offsets properly elsewhere, so relocate as if
3618 all sections begin at 0. */
3619 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3620
3621 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3622}
3623
086df311
DJ
3624/* Relocate the contents of a debug section SECTP in ABFD. The
3625 contents are stored in BUF if it is non-NULL, or returned in a
3626 malloc'd buffer otherwise.
3627
3628 For some platforms and debug info formats, shared libraries contain
3629 relocations against the debug sections (particularly for DWARF-2;
3630 one affected platform is PowerPC GNU/Linux, although it depends on
3631 the version of the linker in use). Also, ELF object files naturally
3632 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3633 the relocations in order to get the locations of symbols correct.
3634 Another example that may require relocation processing, is the
3635 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3636 debug section. */
086df311
DJ
3637
3638bfd_byte *
ac8035ab
TG
3639symfile_relocate_debug_section (struct objfile *objfile,
3640 asection *sectp, bfd_byte *buf)
086df311 3641{
ac8035ab 3642 gdb_assert (objfile->sf->sym_relocate);
086df311 3643
ac8035ab 3644 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3645}
c906108c 3646
31d99776
DJ
3647struct symfile_segment_data *
3648get_symfile_segment_data (bfd *abfd)
3649{
00b5771c 3650 const struct sym_fns *sf = find_sym_fns (abfd);
31d99776
DJ
3651
3652 if (sf == NULL)
3653 return NULL;
3654
3655 return sf->sym_segments (abfd);
3656}
3657
3658void
3659free_symfile_segment_data (struct symfile_segment_data *data)
3660{
3661 xfree (data->segment_bases);
3662 xfree (data->segment_sizes);
3663 xfree (data->segment_info);
3664 xfree (data);
3665}
3666
28c32713
JB
3667/* Given:
3668 - DATA, containing segment addresses from the object file ABFD, and
3669 the mapping from ABFD's sections onto the segments that own them,
3670 and
3671 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3672 segment addresses reported by the target,
3673 store the appropriate offsets for each section in OFFSETS.
3674
3675 If there are fewer entries in SEGMENT_BASES than there are segments
3676 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3677
8d385431
DJ
3678 If there are more entries, then ignore the extra. The target may
3679 not be able to distinguish between an empty data segment and a
3680 missing data segment; a missing text segment is less plausible. */
3b7bacac 3681
31d99776 3682int
3189cb12
DE
3683symfile_map_offsets_to_segments (bfd *abfd,
3684 const struct symfile_segment_data *data,
31d99776
DJ
3685 struct section_offsets *offsets,
3686 int num_segment_bases,
3687 const CORE_ADDR *segment_bases)
3688{
3689 int i;
3690 asection *sect;
3691
28c32713
JB
3692 /* It doesn't make sense to call this function unless you have some
3693 segment base addresses. */
202b96c1 3694 gdb_assert (num_segment_bases > 0);
28c32713 3695
31d99776
DJ
3696 /* If we do not have segment mappings for the object file, we
3697 can not relocate it by segments. */
3698 gdb_assert (data != NULL);
3699 gdb_assert (data->num_segments > 0);
3700
31d99776
DJ
3701 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3702 {
31d99776
DJ
3703 int which = data->segment_info[i];
3704
28c32713
JB
3705 gdb_assert (0 <= which && which <= data->num_segments);
3706
3707 /* Don't bother computing offsets for sections that aren't
3708 loaded as part of any segment. */
3709 if (! which)
3710 continue;
3711
3712 /* Use the last SEGMENT_BASES entry as the address of any extra
3713 segments mentioned in DATA->segment_info. */
31d99776 3714 if (which > num_segment_bases)
28c32713 3715 which = num_segment_bases;
31d99776 3716
28c32713
JB
3717 offsets->offsets[i] = (segment_bases[which - 1]
3718 - data->segment_bases[which - 1]);
31d99776
DJ
3719 }
3720
3721 return 1;
3722}
3723
3724static void
3725symfile_find_segment_sections (struct objfile *objfile)
3726{
3727 bfd *abfd = objfile->obfd;
3728 int i;
3729 asection *sect;
3730 struct symfile_segment_data *data;
3731
3732 data = get_symfile_segment_data (objfile->obfd);
3733 if (data == NULL)
3734 return;
3735
3736 if (data->num_segments != 1 && data->num_segments != 2)
3737 {
3738 free_symfile_segment_data (data);
3739 return;
3740 }
3741
3742 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3743 {
31d99776
DJ
3744 int which = data->segment_info[i];
3745
3746 if (which == 1)
3747 {
3748 if (objfile->sect_index_text == -1)
3749 objfile->sect_index_text = sect->index;
3750
3751 if (objfile->sect_index_rodata == -1)
3752 objfile->sect_index_rodata = sect->index;
3753 }
3754 else if (which == 2)
3755 {
3756 if (objfile->sect_index_data == -1)
3757 objfile->sect_index_data = sect->index;
3758
3759 if (objfile->sect_index_bss == -1)
3760 objfile->sect_index_bss = sect->index;
3761 }
3762 }
3763
3764 free_symfile_segment_data (data);
3765}
3766
76ad5e1e
NB
3767/* Listen for free_objfile events. */
3768
3769static void
3770symfile_free_objfile (struct objfile *objfile)
3771{
c33b2f12
MM
3772 /* Remove the target sections owned by this objfile. */
3773 if (objfile != NULL)
76ad5e1e
NB
3774 remove_target_sections ((void *) objfile);
3775}
3776
540c2971
DE
3777/* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3778 Expand all symtabs that match the specified criteria.
3779 See quick_symbol_functions.expand_symtabs_matching for details. */
3780
3781void
14bc53a8
PA
3782expand_symtabs_matching
3783 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
b5ec771e 3784 const lookup_name_info &lookup_name,
14bc53a8
PA
3785 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3786 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3787 enum search_domain kind)
540c2971
DE
3788{
3789 struct objfile *objfile;
3790
3791 ALL_OBJFILES (objfile)
3792 {
3793 if (objfile->sf)
bb4142cf 3794 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
b5ec771e 3795 lookup_name,
276d885b 3796 symbol_matcher,
14bc53a8 3797 expansion_notify, kind);
540c2971
DE
3798 }
3799}
3800
3801/* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3802 Map function FUN over every file.
3803 See quick_symbol_functions.map_symbol_filenames for details. */
3804
3805void
bb4142cf
DE
3806map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3807 int need_fullname)
540c2971
DE
3808{
3809 struct objfile *objfile;
3810
3811 ALL_OBJFILES (objfile)
3812 {
3813 if (objfile->sf)
3814 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3815 need_fullname);
3816 }
3817}
3818
32fa66eb
SM
3819#if GDB_SELF_TEST
3820
3821namespace selftests {
3822namespace filename_language {
3823
32fa66eb
SM
3824static void test_filename_language ()
3825{
3826 /* This test messes up the filename_language_table global. */
593e3209 3827 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
32fa66eb
SM
3828
3829 /* Test deducing an unknown extension. */
3830 language lang = deduce_language_from_filename ("myfile.blah");
3831 SELF_CHECK (lang == language_unknown);
3832
3833 /* Test deducing a known extension. */
3834 lang = deduce_language_from_filename ("myfile.c");
3835 SELF_CHECK (lang == language_c);
3836
3837 /* Test adding a new extension using the internal API. */
3838 add_filename_language (".blah", language_pascal);
3839 lang = deduce_language_from_filename ("myfile.blah");
3840 SELF_CHECK (lang == language_pascal);
3841}
3842
3843static void
3844test_set_ext_lang_command ()
3845{
3846 /* This test messes up the filename_language_table global. */
593e3209 3847 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
32fa66eb
SM
3848
3849 /* Confirm that the .hello extension is not known. */
3850 language lang = deduce_language_from_filename ("cake.hello");
3851 SELF_CHECK (lang == language_unknown);
3852
3853 /* Test adding a new extension using the CLI command. */
3854 gdb::unique_xmalloc_ptr<char> args_holder (xstrdup (".hello rust"));
3855 ext_args = args_holder.get ();
3856 set_ext_lang_command (NULL, 1, NULL);
3857
3858 lang = deduce_language_from_filename ("cake.hello");
3859 SELF_CHECK (lang == language_rust);
3860
3861 /* Test overriding an existing extension using the CLI command. */
593e3209 3862 int size_before = filename_language_table.size ();
32fa66eb
SM
3863 args_holder.reset (xstrdup (".hello pascal"));
3864 ext_args = args_holder.get ();
3865 set_ext_lang_command (NULL, 1, NULL);
593e3209 3866 int size_after = filename_language_table.size ();
32fa66eb
SM
3867
3868 lang = deduce_language_from_filename ("cake.hello");
3869 SELF_CHECK (lang == language_pascal);
3870 SELF_CHECK (size_before == size_after);
3871}
3872
3873} /* namespace filename_language */
3874} /* namespace selftests */
3875
3876#endif /* GDB_SELF_TEST */
3877
c906108c 3878void
fba45db2 3879_initialize_symfile (void)
c906108c
SS
3880{
3881 struct cmd_list_element *c;
c5aa993b 3882
76ad5e1e
NB
3883 observer_attach_free_objfile (symfile_free_objfile);
3884
7f0f8ac8 3885#define READNOW_HELP \
8ca2f0b9
TT
3886 "The '-readnow' option will cause GDB to read the entire symbol file\n\
3887immediately. This makes the command slower, but may make future operations\n\
7f0f8ac8 3888faster."
8ca2f0b9 3889
1a966eab
AC
3890 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3891Load symbol table from executable file FILE.\n\
7f0f8ac8 3892Usage: symbol-file [-readnow] FILE\n\
c906108c 3893The `file' command can also load symbol tables, as well as setting the file\n\
7f0f8ac8 3894to execute.\n" READNOW_HELP), &cmdlist);
5ba2abeb 3895 set_cmd_completer (c, filename_completer);
c906108c 3896
1a966eab 3897 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3898Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
7f0f8ac8 3899Usage: add-symbol-file FILE ADDR [-readnow | -s SECT-NAME SECT-ADDR]...\n\
02ca603a
TT
3900ADDR is the starting address of the file's text.\n\
3901Each '-s' argument provides a section name and address, and\n\
db162d44 3902should be specified if the data and bss segments are not contiguous\n\
8ca2f0b9 3903with the text. SECT-NAME is a section name to be loaded at SECT-ADDR.\n"
7f0f8ac8 3904READNOW_HELP),
c906108c 3905 &cmdlist);
5ba2abeb 3906 set_cmd_completer (c, filename_completer);
c906108c 3907
63644780
NB
3908 c = add_cmd ("remove-symbol-file", class_files,
3909 remove_symbol_file_command, _("\
3910Remove a symbol file added via the add-symbol-file command.\n\
3911Usage: remove-symbol-file FILENAME\n\
3912 remove-symbol-file -a ADDRESS\n\
3913The file to remove can be identified by its filename or by an address\n\
3914that lies within the boundaries of this symbol file in memory."),
3915 &cmdlist);
3916
1a966eab
AC
3917 c = add_cmd ("load", class_files, load_command, _("\
3918Dynamically load FILE into the running program, and record its symbols\n\
1986bccd 3919for access from GDB.\n\
8ca2f0b9 3920Usage: load [FILE] [OFFSET]\n\
5cf30ebf
LM
3921An optional load OFFSET may also be given as a literal address.\n\
3922When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
8ca2f0b9 3923on its own."), &cmdlist);
5ba2abeb 3924 set_cmd_completer (c, filename_completer);
c906108c 3925
c5aa993b 3926 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3927 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3928 "overlay ", 0, &cmdlist);
3929
3930 add_com_alias ("ovly", "overlay", class_alias, 1);
3931 add_com_alias ("ov", "overlay", class_alias, 1);
3932
c5aa993b 3933 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3934 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3935
c5aa993b 3936 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3937 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3938
c5aa993b 3939 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3940 _("List mappings of overlay sections."), &overlaylist);
c906108c 3941
c5aa993b 3942 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3943 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3944 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3945 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3946 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3947 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3948 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3949 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3950
3951 /* Filename extension to source language lookup table: */
26c41df3
AC
3952 add_setshow_string_noescape_cmd ("extension-language", class_files,
3953 &ext_args, _("\
3954Set mapping between filename extension and source language."), _("\
3955Show mapping between filename extension and source language."), _("\
3956Usage: set extension-language .foo bar"),
3957 set_ext_lang_command,
920d2a44 3958 show_ext_args,
26c41df3 3959 &setlist, &showlist);
c906108c 3960
c5aa993b 3961 add_info ("extensions", info_ext_lang_command,
1bedd215 3962 _("All filename extensions associated with a source language."));
917317f4 3963
525226b5
AC
3964 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3965 &debug_file_directory, _("\
24ddea62
JK
3966Set the directories where separate debug symbols are searched for."), _("\
3967Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
3968Separate debug symbols are first searched for in the same\n\
3969directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3970and lastly at the path of the directory of the binary with\n\
24ddea62 3971each global debug-file-directory component prepended."),
525226b5 3972 NULL,
920d2a44 3973 show_debug_file_directory,
525226b5 3974 &setlist, &showlist);
770e7fc7
DE
3975
3976 add_setshow_enum_cmd ("symbol-loading", no_class,
3977 print_symbol_loading_enums, &print_symbol_loading,
3978 _("\
3979Set printing of symbol loading messages."), _("\
3980Show printing of symbol loading messages."), _("\
3981off == turn all messages off\n\
3982brief == print messages for the executable,\n\
3983 and brief messages for shared libraries\n\
3984full == print messages for the executable,\n\
3985 and messages for each shared library."),
3986 NULL,
3987 NULL,
3988 &setprintlist, &showprintlist);
c4dcb155
SM
3989
3990 add_setshow_boolean_cmd ("separate-debug-file", no_class,
3991 &separate_debug_file_debug, _("\
3992Set printing of separate debug info file search debug."), _("\
3993Show printing of separate debug info file search debug."), _("\
3994When on, GDB prints the searched locations while looking for separate debug \
3995info files."), NULL, NULL, &setdebuglist, &showdebuglist);
32fa66eb
SM
3996
3997#if GDB_SELF_TEST
3998 selftests::register_test
3999 ("filename_language", selftests::filename_language::test_filename_language);
4000 selftests::register_test
4001 ("set_ext_lang_command",
4002 selftests::filename_language::test_set_ext_lang_command);
4003#endif
c906108c 4004}
This page took 3.071898 seconds and 4 git commands to generate.