Fix PR 21337: segfault when re-reading symbols.
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
61baf725 3 Copyright (C) 1990-2017 Free Software Foundation, Inc.
8926118c 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
086df311 24#include "bfdlink.h"
c906108c
SS
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "target.h"
30#include "value.h"
31#include "symfile.h"
32#include "objfiles.h"
0378c332 33#include "source.h"
c906108c
SS
34#include "gdbcmd.h"
35#include "breakpoint.h"
36#include "language.h"
37#include "complaints.h"
38#include "demangle.h"
fb14de7b
UW
39#include "inferior.h"
40#include "regcache.h"
5b5d99cf 41#include "filenames.h" /* for DOSish file names */
c906108c 42#include "gdb-stabs.h"
04ea0df1 43#include "gdb_obstack.h"
d75b5104 44#include "completer.h"
af5f3db6 45#include "bcache.h"
2de7ced7 46#include "hashtab.h"
dbda9972 47#include "readline/readline.h"
fe898f56 48#include "block.h"
ea53e89f 49#include "observer.h"
c1bd25fd 50#include "exec.h"
9bdcbae7 51#include "parser-defs.h"
8756216b 52#include "varobj.h"
77069918 53#include "elf-bfd.h"
e85a822c 54#include "solib.h"
f1838a98 55#include "remote.h"
1bfeeb0f 56#include "stack.h"
cbb099e8 57#include "gdb_bfd.h"
529480d0 58#include "cli/cli-utils.h"
c906108c 59
c906108c
SS
60#include <sys/types.h>
61#include <fcntl.h>
53ce3c39 62#include <sys/stat.h>
c906108c 63#include <ctype.h>
dcb07cfa 64#include <chrono>
c906108c 65
ccefe4c4 66#include "psymtab.h"
c906108c 67
3e43a32a
MS
68int (*deprecated_ui_load_progress_hook) (const char *section,
69 unsigned long num);
9a4105ab 70void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
71 unsigned long section_sent,
72 unsigned long section_size,
73 unsigned long total_sent,
c2d11a7d 74 unsigned long total_size);
769d7dc4
AC
75void (*deprecated_pre_add_symbol_hook) (const char *);
76void (*deprecated_post_add_symbol_hook) (void);
c906108c 77
74b7792f
AC
78static void clear_symtab_users_cleanup (void *ignore);
79
c378eb4e
MS
80/* Global variables owned by this file. */
81int readnow_symbol_files; /* Read full symbols immediately. */
c906108c 82
c378eb4e 83/* Functions this file defines. */
c906108c 84
a14ed312 85static void load_command (char *, int);
c906108c 86
ecf45d2c 87static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
b15cc25c 88 objfile_flags flags);
d7db6da9 89
a14ed312 90static void add_symbol_file_command (char *, int);
c906108c 91
00b5771c 92static const struct sym_fns *find_sym_fns (bfd *);
c906108c 93
a14ed312 94static void overlay_invalidate_all (void);
c906108c 95
a14ed312 96static void overlay_auto_command (char *, int);
c906108c 97
a14ed312 98static void overlay_manual_command (char *, int);
c906108c 99
a14ed312 100static void overlay_off_command (char *, int);
c906108c 101
a14ed312 102static void overlay_load_command (char *, int);
c906108c 103
a14ed312 104static void overlay_command (char *, int);
c906108c 105
a14ed312 106static void simple_free_overlay_table (void);
c906108c 107
e17a4113
UW
108static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
109 enum bfd_endian);
c906108c 110
a14ed312 111static int simple_read_overlay_table (void);
c906108c 112
a14ed312 113static int simple_overlay_update_1 (struct obj_section *);
c906108c 114
a14ed312 115static void info_ext_lang_command (char *args, int from_tty);
392a587b 116
31d99776
DJ
117static void symfile_find_segment_sections (struct objfile *objfile);
118
a14ed312 119void _initialize_symfile (void);
c906108c
SS
120
121/* List of all available sym_fns. On gdb startup, each object file reader
122 calls add_symtab_fns() to register information on each format it is
c378eb4e 123 prepared to read. */
c906108c 124
c256e171
DE
125typedef struct
126{
127 /* BFD flavour that we handle. */
128 enum bfd_flavour sym_flavour;
129
130 /* The "vtable" of symbol functions. */
131 const struct sym_fns *sym_fns;
132} registered_sym_fns;
00b5771c 133
c256e171
DE
134DEF_VEC_O (registered_sym_fns);
135
136static VEC (registered_sym_fns) *symtab_fns = NULL;
c906108c 137
770e7fc7
DE
138/* Values for "set print symbol-loading". */
139
140const char print_symbol_loading_off[] = "off";
141const char print_symbol_loading_brief[] = "brief";
142const char print_symbol_loading_full[] = "full";
143static const char *print_symbol_loading_enums[] =
144{
145 print_symbol_loading_off,
146 print_symbol_loading_brief,
147 print_symbol_loading_full,
148 NULL
149};
150static const char *print_symbol_loading = print_symbol_loading_full;
151
b7209cb4
FF
152/* If non-zero, shared library symbols will be added automatically
153 when the inferior is created, new libraries are loaded, or when
154 attaching to the inferior. This is almost always what users will
155 want to have happen; but for very large programs, the startup time
156 will be excessive, and so if this is a problem, the user can clear
157 this flag and then add the shared library symbols as needed. Note
158 that there is a potential for confusion, since if the shared
c906108c 159 library symbols are not loaded, commands like "info fun" will *not*
0d14a781 160 report all the functions that are actually present. */
c906108c
SS
161
162int auto_solib_add = 1;
c906108c 163\f
c5aa993b 164
770e7fc7
DE
165/* Return non-zero if symbol-loading messages should be printed.
166 FROM_TTY is the standard from_tty argument to gdb commands.
167 If EXEC is non-zero the messages are for the executable.
168 Otherwise, messages are for shared libraries.
169 If FULL is non-zero then the caller is printing a detailed message.
170 E.g., the message includes the shared library name.
171 Otherwise, the caller is printing a brief "summary" message. */
172
173int
174print_symbol_loading_p (int from_tty, int exec, int full)
175{
176 if (!from_tty && !info_verbose)
177 return 0;
178
179 if (exec)
180 {
181 /* We don't check FULL for executables, there are few such
182 messages, therefore brief == full. */
183 return print_symbol_loading != print_symbol_loading_off;
184 }
185 if (full)
186 return print_symbol_loading == print_symbol_loading_full;
187 return print_symbol_loading == print_symbol_loading_brief;
188}
189
0d14a781 190/* True if we are reading a symbol table. */
c906108c
SS
191
192int currently_reading_symtab = 0;
193
ccefe4c4
TT
194/* Increment currently_reading_symtab and return a cleanup that can be
195 used to decrement it. */
3b7bacac 196
c83dd867 197scoped_restore_tmpl<int>
ccefe4c4 198increment_reading_symtab (void)
c906108c 199{
c83dd867
TT
200 gdb_assert (currently_reading_symtab >= 0);
201 return make_scoped_restore (&currently_reading_symtab,
202 currently_reading_symtab + 1);
c906108c
SS
203}
204
5417f6dc
RM
205/* Remember the lowest-addressed loadable section we've seen.
206 This function is called via bfd_map_over_sections.
c906108c
SS
207
208 In case of equal vmas, the section with the largest size becomes the
209 lowest-addressed loadable section.
210
211 If the vmas and sizes are equal, the last section is considered the
212 lowest-addressed loadable section. */
213
214void
4efb68b1 215find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 216{
c5aa993b 217 asection **lowest = (asection **) obj;
c906108c 218
eb73e134 219 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
220 return;
221 if (!*lowest)
222 *lowest = sect; /* First loadable section */
223 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
224 *lowest = sect; /* A lower loadable section */
225 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
226 && (bfd_section_size (abfd, (*lowest))
227 <= bfd_section_size (abfd, sect)))
228 *lowest = sect;
229}
230
d76488d8
TT
231/* Create a new section_addr_info, with room for NUM_SECTIONS. The
232 new object's 'num_sections' field is set to 0; it must be updated
233 by the caller. */
a39a16c4
MM
234
235struct section_addr_info *
236alloc_section_addr_info (size_t num_sections)
237{
238 struct section_addr_info *sap;
239 size_t size;
240
241 size = (sizeof (struct section_addr_info)
242 + sizeof (struct other_sections) * (num_sections - 1));
243 sap = (struct section_addr_info *) xmalloc (size);
244 memset (sap, 0, size);
a39a16c4
MM
245
246 return sap;
247}
62557bbc
KB
248
249/* Build (allocate and populate) a section_addr_info struct from
c378eb4e 250 an existing section table. */
62557bbc
KB
251
252extern struct section_addr_info *
0542c86d
PA
253build_section_addr_info_from_section_table (const struct target_section *start,
254 const struct target_section *end)
62557bbc
KB
255{
256 struct section_addr_info *sap;
0542c86d 257 const struct target_section *stp;
62557bbc
KB
258 int oidx;
259
a39a16c4 260 sap = alloc_section_addr_info (end - start);
62557bbc
KB
261
262 for (stp = start, oidx = 0; stp != end; stp++)
263 {
2b2848e2
DE
264 struct bfd_section *asect = stp->the_bfd_section;
265 bfd *abfd = asect->owner;
266
267 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 268 && oidx < end - start)
62557bbc
KB
269 {
270 sap->other[oidx].addr = stp->addr;
2b2848e2
DE
271 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
272 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
62557bbc
KB
273 oidx++;
274 }
275 }
276
d76488d8
TT
277 sap->num_sections = oidx;
278
62557bbc
KB
279 return sap;
280}
281
82ccf5a5 282/* Create a section_addr_info from section offsets in ABFD. */
089b4803 283
82ccf5a5
JK
284static struct section_addr_info *
285build_section_addr_info_from_bfd (bfd *abfd)
089b4803
TG
286{
287 struct section_addr_info *sap;
288 int i;
289 struct bfd_section *sec;
290
82ccf5a5
JK
291 sap = alloc_section_addr_info (bfd_count_sections (abfd));
292 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
293 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
012836ea 294 {
82ccf5a5
JK
295 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
296 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
65cf3563 297 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
012836ea
JK
298 i++;
299 }
d76488d8
TT
300
301 sap->num_sections = i;
302
089b4803
TG
303 return sap;
304}
305
82ccf5a5
JK
306/* Create a section_addr_info from section offsets in OBJFILE. */
307
308struct section_addr_info *
309build_section_addr_info_from_objfile (const struct objfile *objfile)
310{
311 struct section_addr_info *sap;
312 int i;
313
314 /* Before reread_symbols gets rewritten it is not safe to call:
315 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
316 */
317 sap = build_section_addr_info_from_bfd (objfile->obfd);
d76488d8 318 for (i = 0; i < sap->num_sections; i++)
82ccf5a5
JK
319 {
320 int sectindex = sap->other[i].sectindex;
321
322 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
323 }
324 return sap;
325}
62557bbc 326
c378eb4e 327/* Free all memory allocated by build_section_addr_info_from_section_table. */
62557bbc
KB
328
329extern void
330free_section_addr_info (struct section_addr_info *sap)
331{
332 int idx;
333
a39a16c4 334 for (idx = 0; idx < sap->num_sections; idx++)
d76488d8 335 xfree (sap->other[idx].name);
b8c9b27d 336 xfree (sap);
62557bbc
KB
337}
338
e8289572 339/* Initialize OBJFILE's sect_index_* members. */
3b7bacac 340
e8289572
JB
341static void
342init_objfile_sect_indices (struct objfile *objfile)
c906108c 343{
e8289572 344 asection *sect;
c906108c 345 int i;
5417f6dc 346
b8fbeb18 347 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 348 if (sect)
b8fbeb18
EZ
349 objfile->sect_index_text = sect->index;
350
351 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 352 if (sect)
b8fbeb18
EZ
353 objfile->sect_index_data = sect->index;
354
355 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 356 if (sect)
b8fbeb18
EZ
357 objfile->sect_index_bss = sect->index;
358
359 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 360 if (sect)
b8fbeb18
EZ
361 objfile->sect_index_rodata = sect->index;
362
bbcd32ad
FF
363 /* This is where things get really weird... We MUST have valid
364 indices for the various sect_index_* members or gdb will abort.
365 So if for example, there is no ".text" section, we have to
31d99776
DJ
366 accomodate that. First, check for a file with the standard
367 one or two segments. */
368
369 symfile_find_segment_sections (objfile);
370
371 /* Except when explicitly adding symbol files at some address,
372 section_offsets contains nothing but zeros, so it doesn't matter
373 which slot in section_offsets the individual sect_index_* members
374 index into. So if they are all zero, it is safe to just point
375 all the currently uninitialized indices to the first slot. But
376 beware: if this is the main executable, it may be relocated
377 later, e.g. by the remote qOffsets packet, and then this will
378 be wrong! That's why we try segments first. */
bbcd32ad
FF
379
380 for (i = 0; i < objfile->num_sections; i++)
381 {
382 if (ANOFFSET (objfile->section_offsets, i) != 0)
383 {
384 break;
385 }
386 }
387 if (i == objfile->num_sections)
388 {
389 if (objfile->sect_index_text == -1)
390 objfile->sect_index_text = 0;
391 if (objfile->sect_index_data == -1)
392 objfile->sect_index_data = 0;
393 if (objfile->sect_index_bss == -1)
394 objfile->sect_index_bss = 0;
395 if (objfile->sect_index_rodata == -1)
396 objfile->sect_index_rodata = 0;
397 }
b8fbeb18 398}
c906108c 399
c1bd25fd
DJ
400/* The arguments to place_section. */
401
402struct place_section_arg
403{
404 struct section_offsets *offsets;
405 CORE_ADDR lowest;
406};
407
408/* Find a unique offset to use for loadable section SECT if
409 the user did not provide an offset. */
410
2c0b251b 411static void
c1bd25fd
DJ
412place_section (bfd *abfd, asection *sect, void *obj)
413{
19ba03f4 414 struct place_section_arg *arg = (struct place_section_arg *) obj;
c1bd25fd
DJ
415 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
416 int done;
3bd72c6f 417 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 418
2711e456
DJ
419 /* We are only interested in allocated sections. */
420 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
421 return;
422
423 /* If the user specified an offset, honor it. */
65cf3563 424 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
c1bd25fd
DJ
425 return;
426
427 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
428 start_addr = (arg->lowest + align - 1) & -align;
429
c1bd25fd
DJ
430 do {
431 asection *cur_sec;
c1bd25fd 432
c1bd25fd
DJ
433 done = 1;
434
435 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
436 {
437 int indx = cur_sec->index;
c1bd25fd
DJ
438
439 /* We don't need to compare against ourself. */
440 if (cur_sec == sect)
441 continue;
442
2711e456
DJ
443 /* We can only conflict with allocated sections. */
444 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
445 continue;
446
447 /* If the section offset is 0, either the section has not been placed
448 yet, or it was the lowest section placed (in which case LOWEST
449 will be past its end). */
450 if (offsets[indx] == 0)
451 continue;
452
453 /* If this section would overlap us, then we must move up. */
454 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
455 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
456 {
457 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
458 start_addr = (start_addr + align - 1) & -align;
459 done = 0;
3bd72c6f 460 break;
c1bd25fd
DJ
461 }
462
463 /* Otherwise, we appear to be OK. So far. */
464 }
465 }
466 while (!done);
467
65cf3563 468 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
c1bd25fd 469 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 470}
e8289572 471
75242ef4
JK
472/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
473 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
474 entries. */
e8289572
JB
475
476void
75242ef4
JK
477relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
478 int num_sections,
3189cb12 479 const struct section_addr_info *addrs)
e8289572
JB
480{
481 int i;
482
75242ef4 483 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 484
c378eb4e 485 /* Now calculate offsets for section that were specified by the caller. */
d76488d8 486 for (i = 0; i < addrs->num_sections; i++)
e8289572 487 {
3189cb12 488 const struct other_sections *osp;
e8289572 489
75242ef4 490 osp = &addrs->other[i];
5488dafb 491 if (osp->sectindex == -1)
e8289572
JB
492 continue;
493
c378eb4e 494 /* Record all sections in offsets. */
e8289572 495 /* The section_offsets in the objfile are here filled in using
c378eb4e 496 the BFD index. */
75242ef4
JK
497 section_offsets->offsets[osp->sectindex] = osp->addr;
498 }
499}
500
1276c759
JK
501/* Transform section name S for a name comparison. prelink can split section
502 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
503 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
504 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
505 (`.sbss') section has invalid (increased) virtual address. */
506
507static const char *
508addr_section_name (const char *s)
509{
510 if (strcmp (s, ".dynbss") == 0)
511 return ".bss";
512 if (strcmp (s, ".sdynbss") == 0)
513 return ".sbss";
514
515 return s;
516}
517
82ccf5a5
JK
518/* qsort comparator for addrs_section_sort. Sort entries in ascending order by
519 their (name, sectindex) pair. sectindex makes the sort by name stable. */
520
521static int
522addrs_section_compar (const void *ap, const void *bp)
523{
524 const struct other_sections *a = *((struct other_sections **) ap);
525 const struct other_sections *b = *((struct other_sections **) bp);
22e048c9 526 int retval;
82ccf5a5 527
1276c759 528 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
82ccf5a5
JK
529 if (retval)
530 return retval;
531
5488dafb 532 return a->sectindex - b->sectindex;
82ccf5a5
JK
533}
534
535/* Provide sorted array of pointers to sections of ADDRS. The array is
536 terminated by NULL. Caller is responsible to call xfree for it. */
537
538static struct other_sections **
539addrs_section_sort (struct section_addr_info *addrs)
540{
541 struct other_sections **array;
542 int i;
543
544 /* `+ 1' for the NULL terminator. */
8d749320 545 array = XNEWVEC (struct other_sections *, addrs->num_sections + 1);
d76488d8 546 for (i = 0; i < addrs->num_sections; i++)
82ccf5a5
JK
547 array[i] = &addrs->other[i];
548 array[i] = NULL;
549
550 qsort (array, i, sizeof (*array), addrs_section_compar);
551
552 return array;
553}
554
75242ef4 555/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
556 also SECTINDEXes specific to ABFD there. This function can be used to
557 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
558
559void
560addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
561{
562 asection *lower_sect;
75242ef4
JK
563 CORE_ADDR lower_offset;
564 int i;
82ccf5a5
JK
565 struct cleanup *my_cleanup;
566 struct section_addr_info *abfd_addrs;
567 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
568 struct other_sections **addrs_to_abfd_addrs;
75242ef4
JK
569
570 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
571 continguous sections. */
572 lower_sect = NULL;
573 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
574 if (lower_sect == NULL)
575 {
576 warning (_("no loadable sections found in added symbol-file %s"),
577 bfd_get_filename (abfd));
578 lower_offset = 0;
e8289572 579 }
75242ef4
JK
580 else
581 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
582
82ccf5a5
JK
583 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
584 in ABFD. Section names are not unique - there can be multiple sections of
585 the same name. Also the sections of the same name do not have to be
586 adjacent to each other. Some sections may be present only in one of the
587 files. Even sections present in both files do not have to be in the same
588 order.
589
590 Use stable sort by name for the sections in both files. Then linearly
591 scan both lists matching as most of the entries as possible. */
592
593 addrs_sorted = addrs_section_sort (addrs);
594 my_cleanup = make_cleanup (xfree, addrs_sorted);
595
596 abfd_addrs = build_section_addr_info_from_bfd (abfd);
597 make_cleanup_free_section_addr_info (abfd_addrs);
598 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
599 make_cleanup (xfree, abfd_addrs_sorted);
600
c378eb4e
MS
601 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
602 ABFD_ADDRS_SORTED. */
82ccf5a5 603
8d749320 604 addrs_to_abfd_addrs = XCNEWVEC (struct other_sections *, addrs->num_sections);
82ccf5a5
JK
605 make_cleanup (xfree, addrs_to_abfd_addrs);
606
607 while (*addrs_sorted)
608 {
1276c759 609 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
82ccf5a5
JK
610
611 while (*abfd_addrs_sorted
1276c759
JK
612 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
613 sect_name) < 0)
82ccf5a5
JK
614 abfd_addrs_sorted++;
615
616 if (*abfd_addrs_sorted
1276c759
JK
617 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
618 sect_name) == 0)
82ccf5a5
JK
619 {
620 int index_in_addrs;
621
622 /* Make the found item directly addressable from ADDRS. */
623 index_in_addrs = *addrs_sorted - addrs->other;
624 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
625 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
626
627 /* Never use the same ABFD entry twice. */
628 abfd_addrs_sorted++;
629 }
630
631 addrs_sorted++;
632 }
633
75242ef4
JK
634 /* Calculate offsets for the loadable sections.
635 FIXME! Sections must be in order of increasing loadable section
636 so that contiguous sections can use the lower-offset!!!
637
638 Adjust offsets if the segments are not contiguous.
639 If the section is contiguous, its offset should be set to
640 the offset of the highest loadable section lower than it
641 (the loadable section directly below it in memory).
642 this_offset = lower_offset = lower_addr - lower_orig_addr */
643
d76488d8 644 for (i = 0; i < addrs->num_sections; i++)
75242ef4 645 {
82ccf5a5 646 struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
647
648 if (sect)
75242ef4 649 {
c378eb4e 650 /* This is the index used by BFD. */
82ccf5a5 651 addrs->other[i].sectindex = sect->sectindex;
672d9c23
JK
652
653 if (addrs->other[i].addr != 0)
75242ef4 654 {
82ccf5a5 655 addrs->other[i].addr -= sect->addr;
75242ef4 656 lower_offset = addrs->other[i].addr;
75242ef4
JK
657 }
658 else
672d9c23 659 addrs->other[i].addr = lower_offset;
75242ef4
JK
660 }
661 else
672d9c23 662 {
1276c759
JK
663 /* addr_section_name transformation is not used for SECT_NAME. */
664 const char *sect_name = addrs->other[i].name;
665
b0fcb67f
JK
666 /* This section does not exist in ABFD, which is normally
667 unexpected and we want to issue a warning.
668
4d9743af
JK
669 However, the ELF prelinker does create a few sections which are
670 marked in the main executable as loadable (they are loaded in
671 memory from the DYNAMIC segment) and yet are not present in
672 separate debug info files. This is fine, and should not cause
673 a warning. Shared libraries contain just the section
674 ".gnu.liblist" but it is not marked as loadable there. There is
675 no other way to identify them than by their name as the sections
1276c759
JK
676 created by prelink have no special flags.
677
678 For the sections `.bss' and `.sbss' see addr_section_name. */
b0fcb67f
JK
679
680 if (!(strcmp (sect_name, ".gnu.liblist") == 0
4d9743af 681 || strcmp (sect_name, ".gnu.conflict") == 0
1276c759
JK
682 || (strcmp (sect_name, ".bss") == 0
683 && i > 0
684 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
685 && addrs_to_abfd_addrs[i - 1] != NULL)
686 || (strcmp (sect_name, ".sbss") == 0
687 && i > 0
688 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
689 && addrs_to_abfd_addrs[i - 1] != NULL)))
b0fcb67f
JK
690 warning (_("section %s not found in %s"), sect_name,
691 bfd_get_filename (abfd));
692
672d9c23 693 addrs->other[i].addr = 0;
5488dafb 694 addrs->other[i].sectindex = -1;
672d9c23 695 }
75242ef4 696 }
82ccf5a5
JK
697
698 do_cleanups (my_cleanup);
75242ef4
JK
699}
700
701/* Parse the user's idea of an offset for dynamic linking, into our idea
702 of how to represent it for fast symbol reading. This is the default
703 version of the sym_fns.sym_offsets function for symbol readers that
704 don't need to do anything special. It allocates a section_offsets table
705 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
706
707void
708default_symfile_offsets (struct objfile *objfile,
3189cb12 709 const struct section_addr_info *addrs)
75242ef4 710{
d445b2f6 711 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
75242ef4
JK
712 objfile->section_offsets = (struct section_offsets *)
713 obstack_alloc (&objfile->objfile_obstack,
714 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
715 relative_addr_info_to_section_offsets (objfile->section_offsets,
716 objfile->num_sections, addrs);
e8289572 717
c1bd25fd
DJ
718 /* For relocatable files, all loadable sections will start at zero.
719 The zero is meaningless, so try to pick arbitrary addresses such
720 that no loadable sections overlap. This algorithm is quadratic,
721 but the number of sections in a single object file is generally
722 small. */
723 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
724 {
725 struct place_section_arg arg;
2711e456
DJ
726 bfd *abfd = objfile->obfd;
727 asection *cur_sec;
2711e456
DJ
728
729 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
730 /* We do not expect this to happen; just skip this step if the
731 relocatable file has a section with an assigned VMA. */
732 if (bfd_section_vma (abfd, cur_sec) != 0)
733 break;
734
735 if (cur_sec == NULL)
736 {
737 CORE_ADDR *offsets = objfile->section_offsets->offsets;
738
739 /* Pick non-overlapping offsets for sections the user did not
740 place explicitly. */
741 arg.offsets = objfile->section_offsets;
742 arg.lowest = 0;
743 bfd_map_over_sections (objfile->obfd, place_section, &arg);
744
745 /* Correctly filling in the section offsets is not quite
746 enough. Relocatable files have two properties that
747 (most) shared objects do not:
748
749 - Their debug information will contain relocations. Some
750 shared libraries do also, but many do not, so this can not
751 be assumed.
752
753 - If there are multiple code sections they will be loaded
754 at different relative addresses in memory than they are
755 in the objfile, since all sections in the file will start
756 at address zero.
757
758 Because GDB has very limited ability to map from an
759 address in debug info to the correct code section,
760 it relies on adding SECT_OFF_TEXT to things which might be
761 code. If we clear all the section offsets, and set the
762 section VMAs instead, then symfile_relocate_debug_section
763 will return meaningful debug information pointing at the
764 correct sections.
765
766 GDB has too many different data structures for section
767 addresses - a bfd, objfile, and so_list all have section
768 tables, as does exec_ops. Some of these could probably
769 be eliminated. */
770
771 for (cur_sec = abfd->sections; cur_sec != NULL;
772 cur_sec = cur_sec->next)
773 {
774 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
775 continue;
776
777 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
3e43a32a
MS
778 exec_set_section_address (bfd_get_filename (abfd),
779 cur_sec->index,
30510692 780 offsets[cur_sec->index]);
2711e456
DJ
781 offsets[cur_sec->index] = 0;
782 }
783 }
c1bd25fd
DJ
784 }
785
e8289572 786 /* Remember the bfd indexes for the .text, .data, .bss and
c378eb4e 787 .rodata sections. */
e8289572
JB
788 init_objfile_sect_indices (objfile);
789}
790
31d99776
DJ
791/* Divide the file into segments, which are individual relocatable units.
792 This is the default version of the sym_fns.sym_segments function for
793 symbol readers that do not have an explicit representation of segments.
794 It assumes that object files do not have segments, and fully linked
795 files have a single segment. */
796
797struct symfile_segment_data *
798default_symfile_segments (bfd *abfd)
799{
800 int num_sections, i;
801 asection *sect;
802 struct symfile_segment_data *data;
803 CORE_ADDR low, high;
804
805 /* Relocatable files contain enough information to position each
806 loadable section independently; they should not be relocated
807 in segments. */
808 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
809 return NULL;
810
811 /* Make sure there is at least one loadable section in the file. */
812 for (sect = abfd->sections; sect != NULL; sect = sect->next)
813 {
814 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
815 continue;
816
817 break;
818 }
819 if (sect == NULL)
820 return NULL;
821
822 low = bfd_get_section_vma (abfd, sect);
823 high = low + bfd_get_section_size (sect);
824
41bf6aca 825 data = XCNEW (struct symfile_segment_data);
31d99776 826 data->num_segments = 1;
fc270c35
TT
827 data->segment_bases = XCNEW (CORE_ADDR);
828 data->segment_sizes = XCNEW (CORE_ADDR);
31d99776
DJ
829
830 num_sections = bfd_count_sections (abfd);
fc270c35 831 data->segment_info = XCNEWVEC (int, num_sections);
31d99776
DJ
832
833 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
834 {
835 CORE_ADDR vma;
836
837 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
838 continue;
839
840 vma = bfd_get_section_vma (abfd, sect);
841 if (vma < low)
842 low = vma;
843 if (vma + bfd_get_section_size (sect) > high)
844 high = vma + bfd_get_section_size (sect);
845
846 data->segment_info[i] = 1;
847 }
848
849 data->segment_bases[0] = low;
850 data->segment_sizes[0] = high - low;
851
852 return data;
853}
854
608e2dbb
TT
855/* This is a convenience function to call sym_read for OBJFILE and
856 possibly force the partial symbols to be read. */
857
858static void
b15cc25c 859read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
608e2dbb
TT
860{
861 (*objfile->sf->sym_read) (objfile, add_flags);
23732b1e 862 objfile->per_bfd->minsyms_read = true;
8a92335b
JK
863
864 /* find_separate_debug_file_in_section should be called only if there is
865 single binary with no existing separate debug info file. */
866 if (!objfile_has_partial_symbols (objfile)
867 && objfile->separate_debug_objfile == NULL
868 && objfile->separate_debug_objfile_backlink == NULL)
608e2dbb 869 {
192b62ce 870 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
608e2dbb
TT
871
872 if (abfd != NULL)
24ba069a
JK
873 {
874 /* find_separate_debug_file_in_section uses the same filename for the
875 virtual section-as-bfd like the bfd filename containing the
876 section. Therefore use also non-canonical name form for the same
877 file containing the section. */
192b62ce
TT
878 symbol_file_add_separate (abfd.get (), objfile->original_name,
879 add_flags, objfile);
24ba069a 880 }
608e2dbb
TT
881 }
882 if ((add_flags & SYMFILE_NO_READ) == 0)
883 require_partial_symbols (objfile, 0);
884}
885
3d6e24f0
JB
886/* Initialize entry point information for this objfile. */
887
888static void
889init_entry_point_info (struct objfile *objfile)
890{
6ef55de7
TT
891 struct entry_info *ei = &objfile->per_bfd->ei;
892
893 if (ei->initialized)
894 return;
895 ei->initialized = 1;
896
3d6e24f0
JB
897 /* Save startup file's range of PC addresses to help blockframe.c
898 decide where the bottom of the stack is. */
899
900 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
901 {
902 /* Executable file -- record its entry point so we'll recognize
903 the startup file because it contains the entry point. */
6ef55de7
TT
904 ei->entry_point = bfd_get_start_address (objfile->obfd);
905 ei->entry_point_p = 1;
3d6e24f0
JB
906 }
907 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
908 && bfd_get_start_address (objfile->obfd) != 0)
909 {
910 /* Some shared libraries may have entry points set and be
911 runnable. There's no clear way to indicate this, so just check
912 for values other than zero. */
6ef55de7
TT
913 ei->entry_point = bfd_get_start_address (objfile->obfd);
914 ei->entry_point_p = 1;
3d6e24f0
JB
915 }
916 else
917 {
918 /* Examination of non-executable.o files. Short-circuit this stuff. */
6ef55de7 919 ei->entry_point_p = 0;
3d6e24f0
JB
920 }
921
6ef55de7 922 if (ei->entry_point_p)
3d6e24f0 923 {
53eddfa6 924 struct obj_section *osect;
6ef55de7 925 CORE_ADDR entry_point = ei->entry_point;
53eddfa6 926 int found;
3d6e24f0
JB
927
928 /* Make certain that the address points at real code, and not a
929 function descriptor. */
930 entry_point
df6d5441 931 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
3d6e24f0
JB
932 entry_point,
933 &current_target);
934
935 /* Remove any ISA markers, so that this matches entries in the
936 symbol table. */
6ef55de7 937 ei->entry_point
df6d5441 938 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
53eddfa6
TT
939
940 found = 0;
941 ALL_OBJFILE_OSECTIONS (objfile, osect)
942 {
943 struct bfd_section *sect = osect->the_bfd_section;
944
945 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
946 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
947 + bfd_get_section_size (sect)))
948 {
6ef55de7 949 ei->the_bfd_section_index
53eddfa6
TT
950 = gdb_bfd_section_index (objfile->obfd, sect);
951 found = 1;
952 break;
953 }
954 }
955
956 if (!found)
6ef55de7 957 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
3d6e24f0
JB
958 }
959}
960
c906108c
SS
961/* Process a symbol file, as either the main file or as a dynamically
962 loaded file.
963
36e4d068
JB
964 This function does not set the OBJFILE's entry-point info.
965
96baa820
JM
966 OBJFILE is where the symbols are to be read from.
967
7e8580c1
JB
968 ADDRS is the list of section load addresses. If the user has given
969 an 'add-symbol-file' command, then this is the list of offsets and
970 addresses he or she provided as arguments to the command; or, if
971 we're handling a shared library, these are the actual addresses the
972 sections are loaded at, according to the inferior's dynamic linker
973 (as gleaned by GDB's shared library code). We convert each address
974 into an offset from the section VMA's as it appears in the object
975 file, and then call the file's sym_offsets function to convert this
976 into a format-specific offset table --- a `struct section_offsets'.
96baa820 977
7eedccfa
PP
978 ADD_FLAGS encodes verbosity level, whether this is main symbol or
979 an extra symbol file such as dynamically loaded code, and wether
980 breakpoint reset should be deferred. */
c906108c 981
36e4d068
JB
982static void
983syms_from_objfile_1 (struct objfile *objfile,
984 struct section_addr_info *addrs,
b15cc25c 985 symfile_add_flags add_flags)
c906108c 986{
a39a16c4 987 struct section_addr_info *local_addr = NULL;
c906108c 988 struct cleanup *old_chain;
7eedccfa 989 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 990
8fb8eb5c 991 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
c906108c 992
75245b24 993 if (objfile->sf == NULL)
36e4d068
JB
994 {
995 /* No symbols to load, but we still need to make sure
996 that the section_offsets table is allocated. */
d445b2f6 997 int num_sections = gdb_bfd_count_sections (objfile->obfd);
a7bfba49 998 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
36e4d068
JB
999
1000 objfile->num_sections = num_sections;
1001 objfile->section_offsets
224c3ddb
SM
1002 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
1003 size);
36e4d068
JB
1004 memset (objfile->section_offsets, 0, size);
1005 return;
1006 }
75245b24 1007
c906108c
SS
1008 /* Make sure that partially constructed symbol tables will be cleaned up
1009 if an error occurs during symbol reading. */
74b7792f 1010 old_chain = make_cleanup_free_objfile (objfile);
c906108c 1011
6bf667bb
DE
1012 /* If ADDRS is NULL, put together a dummy address list.
1013 We now establish the convention that an addr of zero means
c378eb4e 1014 no load address was specified. */
6bf667bb 1015 if (! addrs)
a39a16c4 1016 {
d445b2f6 1017 local_addr = alloc_section_addr_info (1);
a39a16c4
MM
1018 make_cleanup (xfree, local_addr);
1019 addrs = local_addr;
1020 }
1021
c5aa993b 1022 if (mainline)
c906108c
SS
1023 {
1024 /* We will modify the main symbol table, make sure that all its users
c5aa993b 1025 will be cleaned up if an error occurs during symbol reading. */
74b7792f 1026 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
1027
1028 /* Since no error yet, throw away the old symbol table. */
1029
1030 if (symfile_objfile != NULL)
1031 {
1032 free_objfile (symfile_objfile);
adb7f338 1033 gdb_assert (symfile_objfile == NULL);
c906108c
SS
1034 }
1035
1036 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
1037 If the user wants to get rid of them, they should do "symbol-file"
1038 without arguments first. Not sure this is the best behavior
1039 (PR 2207). */
c906108c 1040
c5aa993b 1041 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
1042 }
1043
1044 /* Convert addr into an offset rather than an absolute address.
1045 We find the lowest address of a loaded segment in the objfile,
53a5351d 1046 and assume that <addr> is where that got loaded.
c906108c 1047
53a5351d
JM
1048 We no longer warn if the lowest section is not a text segment (as
1049 happens for the PA64 port. */
6bf667bb 1050 if (addrs->num_sections > 0)
75242ef4 1051 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
1052
1053 /* Initialize symbol reading routines for this objfile, allow complaints to
1054 appear for this new file, and record how verbose to be, then do the
c378eb4e 1055 initial symbol reading for this file. */
c906108c 1056
c5aa993b 1057 (*objfile->sf->sym_init) (objfile);
7eedccfa 1058 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 1059
6bf667bb 1060 (*objfile->sf->sym_offsets) (objfile, addrs);
c906108c 1061
608e2dbb 1062 read_symbols (objfile, add_flags);
b11896a5 1063
c906108c
SS
1064 /* Discard cleanups as symbol reading was successful. */
1065
1066 discard_cleanups (old_chain);
f7545552 1067 xfree (local_addr);
c906108c
SS
1068}
1069
36e4d068
JB
1070/* Same as syms_from_objfile_1, but also initializes the objfile
1071 entry-point info. */
1072
6bf667bb 1073static void
36e4d068
JB
1074syms_from_objfile (struct objfile *objfile,
1075 struct section_addr_info *addrs,
b15cc25c 1076 symfile_add_flags add_flags)
36e4d068 1077{
6bf667bb 1078 syms_from_objfile_1 (objfile, addrs, add_flags);
36e4d068
JB
1079 init_entry_point_info (objfile);
1080}
1081
c906108c
SS
1082/* Perform required actions after either reading in the initial
1083 symbols for a new objfile, or mapping in the symbols from a reusable
c1e56572 1084 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c5aa993b 1085
e7d52ed3 1086static void
b15cc25c 1087finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
c906108c 1088{
c906108c 1089 /* If this is the main symbol file we have to clean up all users of the
c378eb4e 1090 old main symbol file. Otherwise it is sufficient to fixup all the
c906108c 1091 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1092 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1093 {
1094 /* OK, make it the "real" symbol file. */
1095 symfile_objfile = objfile;
1096
c1e56572 1097 clear_symtab_users (add_flags);
c906108c 1098 }
7eedccfa 1099 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1100 {
69de3c6a 1101 breakpoint_re_set ();
c906108c
SS
1102 }
1103
1104 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 1105 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
1106}
1107
1108/* Process a symbol file, as either the main file or as a dynamically
1109 loaded file.
1110
5417f6dc 1111 ABFD is a BFD already open on the file, as from symfile_bfd_open.
8ac244b4 1112 A new reference is acquired by this function.
7904e09f 1113
24ba069a
JK
1114 For NAME description see allocate_objfile's definition.
1115
7eedccfa
PP
1116 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1117 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f 1118
6bf667bb 1119 ADDRS is as described for syms_from_objfile_1, above.
7eedccfa 1120 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1121
63524580
JK
1122 PARENT is the original objfile if ABFD is a separate debug info file.
1123 Otherwise PARENT is NULL.
1124
c906108c 1125 Upon success, returns a pointer to the objfile that was added.
c378eb4e 1126 Upon failure, jumps back to command level (never returns). */
7eedccfa 1127
7904e09f 1128static struct objfile *
b15cc25c
PA
1129symbol_file_add_with_addrs (bfd *abfd, const char *name,
1130 symfile_add_flags add_flags,
6bf667bb 1131 struct section_addr_info *addrs,
b15cc25c 1132 objfile_flags flags, struct objfile *parent)
c906108c
SS
1133{
1134 struct objfile *objfile;
7eedccfa 1135 const int from_tty = add_flags & SYMFILE_VERBOSE;
0838fb57 1136 const int mainline = add_flags & SYMFILE_MAINLINE;
770e7fc7 1137 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
b11896a5
TT
1138 && (readnow_symbol_files
1139 || (add_flags & SYMFILE_NO_READ) == 0));
c906108c 1140
9291a0cd 1141 if (readnow_symbol_files)
b11896a5
TT
1142 {
1143 flags |= OBJF_READNOW;
1144 add_flags &= ~SYMFILE_NO_READ;
1145 }
9291a0cd 1146
5417f6dc
RM
1147 /* Give user a chance to burp if we'd be
1148 interactively wiping out any existing symbols. */
c906108c
SS
1149
1150 if ((have_full_symbols () || have_partial_symbols ())
0838fb57 1151 && mainline
c906108c 1152 && from_tty
9e2f0ad4 1153 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1154 error (_("Not confirmed."));
c906108c 1155
b15cc25c
PA
1156 if (mainline)
1157 flags |= OBJF_MAINLINE;
1158 objfile = allocate_objfile (abfd, name, flags);
c906108c 1159
63524580
JK
1160 if (parent)
1161 add_separate_debug_objfile (objfile, parent);
1162
78a4a9b9
AC
1163 /* We either created a new mapped symbol table, mapped an existing
1164 symbol table file which has not had initial symbol reading
c378eb4e 1165 performed, or need to read an unmapped symbol table. */
b11896a5 1166 if (should_print)
c906108c 1167 {
769d7dc4
AC
1168 if (deprecated_pre_add_symbol_hook)
1169 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1170 else
c906108c 1171 {
55333a84
DE
1172 printf_unfiltered (_("Reading symbols from %s..."), name);
1173 wrap_here ("");
1174 gdb_flush (gdb_stdout);
c906108c 1175 }
c906108c 1176 }
6bf667bb 1177 syms_from_objfile (objfile, addrs, add_flags);
c906108c
SS
1178
1179 /* We now have at least a partial symbol table. Check to see if the
1180 user requested that all symbols be read on initial access via either
1181 the gdb startup command line or on a per symbol file basis. Expand
c378eb4e 1182 all partial symbol tables for this objfile if so. */
c906108c 1183
9291a0cd 1184 if ((flags & OBJF_READNOW))
c906108c 1185 {
b11896a5 1186 if (should_print)
c906108c 1187 {
a3f17187 1188 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1189 wrap_here ("");
1190 gdb_flush (gdb_stdout);
1191 }
1192
ccefe4c4
TT
1193 if (objfile->sf)
1194 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1195 }
1196
b11896a5 1197 if (should_print && !objfile_has_symbols (objfile))
cb3c37b2
JB
1198 {
1199 wrap_here ("");
55333a84 1200 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1201 wrap_here ("");
1202 }
1203
b11896a5 1204 if (should_print)
c906108c 1205 {
769d7dc4
AC
1206 if (deprecated_post_add_symbol_hook)
1207 deprecated_post_add_symbol_hook ();
c906108c 1208 else
55333a84 1209 printf_unfiltered (_("done.\n"));
c906108c
SS
1210 }
1211
481d0f41
JB
1212 /* We print some messages regardless of whether 'from_tty ||
1213 info_verbose' is true, so make sure they go out at the right
1214 time. */
1215 gdb_flush (gdb_stdout);
1216
109f874e 1217 if (objfile->sf == NULL)
8caee43b
PP
1218 {
1219 observer_notify_new_objfile (objfile);
c378eb4e 1220 return objfile; /* No symbols. */
8caee43b 1221 }
109f874e 1222
e7d52ed3 1223 finish_new_objfile (objfile, add_flags);
c906108c 1224
06d3b283 1225 observer_notify_new_objfile (objfile);
c906108c 1226
ce7d4522 1227 bfd_cache_close_all ();
c906108c
SS
1228 return (objfile);
1229}
1230
24ba069a
JK
1231/* Add BFD as a separate debug file for OBJFILE. For NAME description
1232 see allocate_objfile's definition. */
9cce227f
TG
1233
1234void
b15cc25c
PA
1235symbol_file_add_separate (bfd *bfd, const char *name,
1236 symfile_add_flags symfile_flags,
24ba069a 1237 struct objfile *objfile)
9cce227f 1238{
089b4803
TG
1239 struct section_addr_info *sap;
1240 struct cleanup *my_cleanup;
1241
1242 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1243 because sections of BFD may not match sections of OBJFILE and because
1244 vma may have been modified by tools such as prelink. */
1245 sap = build_section_addr_info_from_objfile (objfile);
1246 my_cleanup = make_cleanup_free_section_addr_info (sap);
9cce227f 1247
870f88f7 1248 symbol_file_add_with_addrs
24ba069a 1249 (bfd, name, symfile_flags, sap,
9cce227f 1250 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
63524580
JK
1251 | OBJF_USERLOADED),
1252 objfile);
089b4803
TG
1253
1254 do_cleanups (my_cleanup);
9cce227f 1255}
7904e09f 1256
eb4556d7
JB
1257/* Process the symbol file ABFD, as either the main file or as a
1258 dynamically loaded file.
6bf667bb 1259 See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1260
eb4556d7 1261struct objfile *
b15cc25c
PA
1262symbol_file_add_from_bfd (bfd *abfd, const char *name,
1263 symfile_add_flags add_flags,
eb4556d7 1264 struct section_addr_info *addrs,
b15cc25c 1265 objfile_flags flags, struct objfile *parent)
eb4556d7 1266{
24ba069a
JK
1267 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1268 parent);
eb4556d7
JB
1269}
1270
7904e09f 1271/* Process a symbol file, as either the main file or as a dynamically
6bf667bb 1272 loaded file. See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1273
7904e09f 1274struct objfile *
b15cc25c
PA
1275symbol_file_add (const char *name, symfile_add_flags add_flags,
1276 struct section_addr_info *addrs, objfile_flags flags)
7904e09f 1277{
192b62ce 1278 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
8ac244b4 1279
192b62ce
TT
1280 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1281 flags, NULL);
7904e09f
JB
1282}
1283
d7db6da9
FN
1284/* Call symbol_file_add() with default values and update whatever is
1285 affected by the loading of a new main().
1286 Used when the file is supplied in the gdb command line
1287 and by some targets with special loading requirements.
1288 The auxiliary function, symbol_file_add_main_1(), has the flags
1289 argument for the switches that can only be specified in the symbol_file
1290 command itself. */
5417f6dc 1291
1adeb98a 1292void
ecf45d2c 1293symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1adeb98a 1294{
ecf45d2c 1295 symbol_file_add_main_1 (args, add_flags, 0);
d7db6da9
FN
1296}
1297
1298static void
ecf45d2c
SL
1299symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1300 objfile_flags flags)
d7db6da9 1301{
ecf45d2c 1302 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
7dcd53a0 1303
7eedccfa 1304 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1305
d7db6da9
FN
1306 /* Getting new symbols may change our opinion about
1307 what is frameless. */
1308 reinit_frame_cache ();
1309
b15cc25c 1310 if ((add_flags & SYMFILE_NO_READ) == 0)
7dcd53a0 1311 set_initial_language ();
1adeb98a
FN
1312}
1313
1314void
1315symbol_file_clear (int from_tty)
1316{
1317 if ((have_full_symbols () || have_partial_symbols ())
1318 && from_tty
0430b0d6
AS
1319 && (symfile_objfile
1320 ? !query (_("Discard symbol table from `%s'? "),
4262abfb 1321 objfile_name (symfile_objfile))
0430b0d6 1322 : !query (_("Discard symbol table? "))))
8a3fe4f8 1323 error (_("Not confirmed."));
1adeb98a 1324
0133421a
JK
1325 /* solib descriptors may have handles to objfiles. Wipe them before their
1326 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1327 no_shared_libraries (NULL, from_tty);
1328
0133421a
JK
1329 free_all_objfiles ();
1330
adb7f338 1331 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1332 if (from_tty)
1333 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1334}
1335
c4dcb155
SM
1336/* See symfile.h. */
1337
1338int separate_debug_file_debug = 0;
1339
5b5d99cf 1340static int
287ccc17 1341separate_debug_file_exists (const char *name, unsigned long crc,
32a0e547 1342 struct objfile *parent_objfile)
5b5d99cf 1343{
904578ed
JK
1344 unsigned long file_crc;
1345 int file_crc_p;
32a0e547 1346 struct stat parent_stat, abfd_stat;
904578ed 1347 int verified_as_different;
32a0e547
JK
1348
1349 /* Find a separate debug info file as if symbols would be present in
1350 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1351 section can contain just the basename of PARENT_OBJFILE without any
1352 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
c378eb4e 1353 the separate debug infos with the same basename can exist. */
32a0e547 1354
4262abfb 1355 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
32a0e547 1356 return 0;
5b5d99cf 1357
c4dcb155
SM
1358 if (separate_debug_file_debug)
1359 printf_unfiltered (_(" Trying %s\n"), name);
1360
192b62ce 1361 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name, gnutarget, -1));
f1838a98 1362
192b62ce 1363 if (abfd == NULL)
5b5d99cf
JB
1364 return 0;
1365
0ba1096a 1366 /* Verify symlinks were not the cause of filename_cmp name difference above.
32a0e547
JK
1367
1368 Some operating systems, e.g. Windows, do not provide a meaningful
1369 st_ino; they always set it to zero. (Windows does provide a
0a93529c
GB
1370 meaningful st_dev.) Files accessed from gdbservers that do not
1371 support the vFile:fstat packet will also have st_ino set to zero.
1372 Do not indicate a duplicate library in either case. While there
1373 is no guarantee that a system that provides meaningful inode
1374 numbers will never set st_ino to zero, this is merely an
1375 optimization, so we do not need to worry about false negatives. */
32a0e547 1376
192b62ce 1377 if (bfd_stat (abfd.get (), &abfd_stat) == 0
904578ed
JK
1378 && abfd_stat.st_ino != 0
1379 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
32a0e547 1380 {
904578ed
JK
1381 if (abfd_stat.st_dev == parent_stat.st_dev
1382 && abfd_stat.st_ino == parent_stat.st_ino)
192b62ce 1383 return 0;
904578ed 1384 verified_as_different = 1;
32a0e547 1385 }
904578ed
JK
1386 else
1387 verified_as_different = 0;
32a0e547 1388
192b62ce 1389 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
5b5d99cf 1390
904578ed
JK
1391 if (!file_crc_p)
1392 return 0;
1393
287ccc17
JK
1394 if (crc != file_crc)
1395 {
dccee2de
TT
1396 unsigned long parent_crc;
1397
0a93529c
GB
1398 /* If the files could not be verified as different with
1399 bfd_stat then we need to calculate the parent's CRC
1400 to verify whether the files are different or not. */
904578ed 1401
dccee2de 1402 if (!verified_as_different)
904578ed 1403 {
dccee2de 1404 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
904578ed
JK
1405 return 0;
1406 }
1407
dccee2de 1408 if (verified_as_different || parent_crc != file_crc)
904578ed
JK
1409 warning (_("the debug information found in \"%s\""
1410 " does not match \"%s\" (CRC mismatch).\n"),
4262abfb 1411 name, objfile_name (parent_objfile));
904578ed 1412
287ccc17
JK
1413 return 0;
1414 }
1415
1416 return 1;
5b5d99cf
JB
1417}
1418
aa28a74e 1419char *debug_file_directory = NULL;
920d2a44
AC
1420static void
1421show_debug_file_directory (struct ui_file *file, int from_tty,
1422 struct cmd_list_element *c, const char *value)
1423{
3e43a32a
MS
1424 fprintf_filtered (file,
1425 _("The directory where separate debug "
1426 "symbols are searched for is \"%s\".\n"),
920d2a44
AC
1427 value);
1428}
5b5d99cf
JB
1429
1430#if ! defined (DEBUG_SUBDIRECTORY)
1431#define DEBUG_SUBDIRECTORY ".debug"
1432#endif
1433
1db33378
PP
1434/* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1435 where the original file resides (may not be the same as
1436 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
7edbb660
DE
1437 looking for. CANON_DIR is the "realpath" form of DIR.
1438 DIR must contain a trailing '/'.
1439 Returns the path of the file with separate debug info, of NULL. */
1db33378
PP
1440
1441static char *
1442find_separate_debug_file (const char *dir,
1443 const char *canon_dir,
1444 const char *debuglink,
1445 unsigned long crc32, struct objfile *objfile)
9cce227f 1446{
1db33378
PP
1447 char *debugdir;
1448 char *debugfile;
9cce227f 1449 int i;
e4ab2fad
JK
1450 VEC (char_ptr) *debugdir_vec;
1451 struct cleanup *back_to;
1452 int ix;
5b5d99cf 1453
c4dcb155
SM
1454 if (separate_debug_file_debug)
1455 printf_unfiltered (_("\nLooking for separate debug info (debug link) for "
1456 "%s\n"), objfile_name (objfile));
1457
325fac50 1458 /* Set I to std::max (strlen (canon_dir), strlen (dir)). */
1ffa32ee 1459 i = strlen (dir);
1db33378
PP
1460 if (canon_dir != NULL && strlen (canon_dir) > i)
1461 i = strlen (canon_dir);
1ffa32ee 1462
224c3ddb
SM
1463 debugfile
1464 = (char *) xmalloc (strlen (debug_file_directory) + 1
1465 + i
1466 + strlen (DEBUG_SUBDIRECTORY)
1467 + strlen ("/")
1468 + strlen (debuglink)
1469 + 1);
5b5d99cf
JB
1470
1471 /* First try in the same directory as the original file. */
1472 strcpy (debugfile, dir);
1db33378 1473 strcat (debugfile, debuglink);
5b5d99cf 1474
32a0e547 1475 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1476 return debugfile;
5417f6dc 1477
5b5d99cf
JB
1478 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1479 strcpy (debugfile, dir);
1480 strcat (debugfile, DEBUG_SUBDIRECTORY);
1481 strcat (debugfile, "/");
1db33378 1482 strcat (debugfile, debuglink);
5b5d99cf 1483
32a0e547 1484 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1485 return debugfile;
5417f6dc 1486
24ddea62 1487 /* Then try in the global debugfile directories.
f888f159 1488
24ddea62
JK
1489 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1490 cause "/..." lookups. */
5417f6dc 1491
e4ab2fad
JK
1492 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1493 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
24ddea62 1494
e4ab2fad
JK
1495 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1496 {
1497 strcpy (debugfile, debugdir);
aa28a74e 1498 strcat (debugfile, "/");
24ddea62 1499 strcat (debugfile, dir);
1db33378 1500 strcat (debugfile, debuglink);
aa28a74e 1501
32a0e547 1502 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1503 {
1504 do_cleanups (back_to);
1505 return debugfile;
1506 }
24ddea62
JK
1507
1508 /* If the file is in the sysroot, try using its base path in the
1509 global debugfile directory. */
1db33378
PP
1510 if (canon_dir != NULL
1511 && filename_ncmp (canon_dir, gdb_sysroot,
0ba1096a 1512 strlen (gdb_sysroot)) == 0
1db33378 1513 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
24ddea62 1514 {
e4ab2fad 1515 strcpy (debugfile, debugdir);
1db33378 1516 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
24ddea62 1517 strcat (debugfile, "/");
1db33378 1518 strcat (debugfile, debuglink);
24ddea62 1519
32a0e547 1520 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1521 {
1522 do_cleanups (back_to);
1523 return debugfile;
1524 }
24ddea62 1525 }
aa28a74e 1526 }
f888f159 1527
e4ab2fad 1528 do_cleanups (back_to);
25522fae 1529 xfree (debugfile);
1db33378
PP
1530 return NULL;
1531}
1532
7edbb660 1533/* Modify PATH to contain only "[/]directory/" part of PATH.
1db33378
PP
1534 If there were no directory separators in PATH, PATH will be empty
1535 string on return. */
1536
1537static void
1538terminate_after_last_dir_separator (char *path)
1539{
1540 int i;
1541
1542 /* Strip off the final filename part, leaving the directory name,
1543 followed by a slash. The directory can be relative or absolute. */
1544 for (i = strlen(path) - 1; i >= 0; i--)
1545 if (IS_DIR_SEPARATOR (path[i]))
1546 break;
1547
1548 /* If I is -1 then no directory is present there and DIR will be "". */
1549 path[i + 1] = '\0';
1550}
1551
1552/* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1553 Returns pathname, or NULL. */
1554
1555char *
1556find_separate_debug_file_by_debuglink (struct objfile *objfile)
1557{
1558 char *debuglink;
1559 char *dir, *canon_dir;
1560 char *debugfile;
1561 unsigned long crc32;
1562 struct cleanup *cleanups;
1563
cc0ea93c 1564 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1db33378
PP
1565
1566 if (debuglink == NULL)
1567 {
1568 /* There's no separate debug info, hence there's no way we could
1569 load it => no warning. */
1570 return NULL;
1571 }
1572
71bdabee 1573 cleanups = make_cleanup (xfree, debuglink);
4262abfb 1574 dir = xstrdup (objfile_name (objfile));
71bdabee 1575 make_cleanup (xfree, dir);
1db33378
PP
1576 terminate_after_last_dir_separator (dir);
1577 canon_dir = lrealpath (dir);
1578
1579 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1580 crc32, objfile);
1581 xfree (canon_dir);
1582
1583 if (debugfile == NULL)
1584 {
1db33378
PP
1585 /* For PR gdb/9538, try again with realpath (if different from the
1586 original). */
1587
1588 struct stat st_buf;
1589
4262abfb
JK
1590 if (lstat (objfile_name (objfile), &st_buf) == 0
1591 && S_ISLNK (st_buf.st_mode))
1db33378
PP
1592 {
1593 char *symlink_dir;
1594
4262abfb 1595 symlink_dir = lrealpath (objfile_name (objfile));
1db33378
PP
1596 if (symlink_dir != NULL)
1597 {
1598 make_cleanup (xfree, symlink_dir);
1599 terminate_after_last_dir_separator (symlink_dir);
1600 if (strcmp (dir, symlink_dir) != 0)
1601 {
1602 /* Different directory, so try using it. */
1603 debugfile = find_separate_debug_file (symlink_dir,
1604 symlink_dir,
1605 debuglink,
1606 crc32,
1607 objfile);
1608 }
1609 }
1610 }
1db33378 1611 }
aa28a74e 1612
1db33378 1613 do_cleanups (cleanups);
25522fae 1614 return debugfile;
5b5d99cf
JB
1615}
1616
c906108c
SS
1617/* This is the symbol-file command. Read the file, analyze its
1618 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1619 the command is rather bizarre:
1620
1621 1. The function buildargv implements various quoting conventions
1622 which are undocumented and have little or nothing in common with
1623 the way things are quoted (or not quoted) elsewhere in GDB.
1624
1625 2. Options are used, which are not generally used in GDB (perhaps
1626 "set mapped on", "set readnow on" would be better)
1627
1628 3. The order of options matters, which is contrary to GNU
c906108c
SS
1629 conventions (because it is confusing and inconvenient). */
1630
1631void
fba45db2 1632symbol_file_command (char *args, int from_tty)
c906108c 1633{
c906108c
SS
1634 dont_repeat ();
1635
1636 if (args == NULL)
1637 {
1adeb98a 1638 symbol_file_clear (from_tty);
c906108c
SS
1639 }
1640 else
1641 {
d1a41061 1642 char **argv = gdb_buildargv (args);
b15cc25c 1643 objfile_flags flags = OBJF_USERLOADED;
ecf45d2c 1644 symfile_add_flags add_flags = 0;
cb2f3a29
MK
1645 struct cleanup *cleanups;
1646 char *name = NULL;
1647
ecf45d2c
SL
1648 if (from_tty)
1649 add_flags |= SYMFILE_VERBOSE;
1650
7a292a7a 1651 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1652 while (*argv != NULL)
1653 {
78a4a9b9
AC
1654 if (strcmp (*argv, "-readnow") == 0)
1655 flags |= OBJF_READNOW;
1656 else if (**argv == '-')
8a3fe4f8 1657 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1658 else
1659 {
ecf45d2c 1660 symbol_file_add_main_1 (*argv, add_flags, flags);
78a4a9b9 1661 name = *argv;
78a4a9b9 1662 }
cb2f3a29 1663
c906108c
SS
1664 argv++;
1665 }
1666
1667 if (name == NULL)
cb2f3a29
MK
1668 error (_("no symbol file name was specified"));
1669
c906108c
SS
1670 do_cleanups (cleanups);
1671 }
1672}
1673
1674/* Set the initial language.
1675
cb2f3a29
MK
1676 FIXME: A better solution would be to record the language in the
1677 psymtab when reading partial symbols, and then use it (if known) to
1678 set the language. This would be a win for formats that encode the
1679 language in an easily discoverable place, such as DWARF. For
1680 stabs, we can jump through hoops looking for specially named
1681 symbols or try to intuit the language from the specific type of
1682 stabs we find, but we can't do that until later when we read in
1683 full symbols. */
c906108c 1684
8b60591b 1685void
fba45db2 1686set_initial_language (void)
c906108c 1687{
9e6c82ad 1688 enum language lang = main_language ();
c906108c 1689
9e6c82ad 1690 if (lang == language_unknown)
01f8c46d 1691 {
bf6d8a91 1692 char *name = main_name ();
d12307c1 1693 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
f888f159 1694
bf6d8a91
TT
1695 if (sym != NULL)
1696 lang = SYMBOL_LANGUAGE (sym);
01f8c46d 1697 }
cb2f3a29 1698
ccefe4c4
TT
1699 if (lang == language_unknown)
1700 {
1701 /* Make C the default language */
1702 lang = language_c;
c906108c 1703 }
ccefe4c4
TT
1704
1705 set_language (lang);
1706 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1707}
1708
cb2f3a29
MK
1709/* Open the file specified by NAME and hand it off to BFD for
1710 preliminary analysis. Return a newly initialized bfd *, which
1711 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1712 absolute). In case of trouble, error() is called. */
c906108c 1713
192b62ce 1714gdb_bfd_ref_ptr
97a41605 1715symfile_bfd_open (const char *name)
c906108c 1716{
97a41605
GB
1717 int desc = -1;
1718 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c 1719
97a41605 1720 if (!is_target_filename (name))
f1838a98 1721 {
97a41605 1722 char *expanded_name, *absolute_name;
f1838a98 1723
97a41605 1724 expanded_name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c 1725
97a41605
GB
1726 /* Look down path for it, allocate 2nd new malloc'd copy. */
1727 desc = openp (getenv ("PATH"),
1728 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1729 expanded_name, O_RDONLY | O_BINARY, &absolute_name);
608506ed 1730#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
97a41605
GB
1731 if (desc < 0)
1732 {
0ae1c716 1733 char *exename = (char *) alloca (strlen (expanded_name) + 5);
433759f7 1734
97a41605
GB
1735 strcat (strcpy (exename, expanded_name), ".exe");
1736 desc = openp (getenv ("PATH"),
1737 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1738 exename, O_RDONLY | O_BINARY, &absolute_name);
1739 }
c906108c 1740#endif
97a41605
GB
1741 if (desc < 0)
1742 {
1743 make_cleanup (xfree, expanded_name);
1744 perror_with_name (expanded_name);
1745 }
cb2f3a29 1746
97a41605
GB
1747 xfree (expanded_name);
1748 make_cleanup (xfree, absolute_name);
1749 name = absolute_name;
1750 }
c906108c 1751
192b62ce
TT
1752 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1753 if (sym_bfd == NULL)
faab9922
JK
1754 error (_("`%s': can't open to read symbols: %s."), name,
1755 bfd_errmsg (bfd_get_error ()));
97a41605 1756
192b62ce
TT
1757 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1758 bfd_set_cacheable (sym_bfd.get (), 1);
c906108c 1759
192b62ce
TT
1760 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1761 error (_("`%s': can't read symbols: %s."), name,
1762 bfd_errmsg (bfd_get_error ()));
cb2f3a29 1763
faab9922
JK
1764 do_cleanups (back_to);
1765
cb2f3a29 1766 return sym_bfd;
c906108c
SS
1767}
1768
cb2f3a29
MK
1769/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1770 the section was not found. */
1771
0e931cf0 1772int
a121b7c1 1773get_section_index (struct objfile *objfile, const char *section_name)
0e931cf0
JB
1774{
1775 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1776
0e931cf0
JB
1777 if (sect)
1778 return sect->index;
1779 else
1780 return -1;
1781}
1782
c256e171
DE
1783/* Link SF into the global symtab_fns list.
1784 FLAVOUR is the file format that SF handles.
1785 Called on startup by the _initialize routine in each object file format
1786 reader, to register information about each format the reader is prepared
1787 to handle. */
c906108c
SS
1788
1789void
c256e171 1790add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
c906108c 1791{
c256e171
DE
1792 registered_sym_fns fns = { flavour, sf };
1793
1794 VEC_safe_push (registered_sym_fns, symtab_fns, &fns);
c906108c
SS
1795}
1796
cb2f3a29
MK
1797/* Initialize OBJFILE to read symbols from its associated BFD. It
1798 either returns or calls error(). The result is an initialized
1799 struct sym_fns in the objfile structure, that contains cached
1800 information about the symbol file. */
c906108c 1801
00b5771c 1802static const struct sym_fns *
31d99776 1803find_sym_fns (bfd *abfd)
c906108c 1804{
c256e171 1805 registered_sym_fns *rsf;
31d99776 1806 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
00b5771c 1807 int i;
c906108c 1808
75245b24
MS
1809 if (our_flavour == bfd_target_srec_flavour
1810 || our_flavour == bfd_target_ihex_flavour
1811 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1812 return NULL; /* No symbols. */
75245b24 1813
c256e171
DE
1814 for (i = 0; VEC_iterate (registered_sym_fns, symtab_fns, i, rsf); ++i)
1815 if (our_flavour == rsf->sym_flavour)
1816 return rsf->sym_fns;
cb2f3a29 1817
8a3fe4f8 1818 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1819 bfd_get_target (abfd));
c906108c
SS
1820}
1821\f
cb2f3a29 1822
c906108c
SS
1823/* This function runs the load command of our current target. */
1824
1825static void
fba45db2 1826load_command (char *arg, int from_tty)
c906108c 1827{
5b3fca71
TT
1828 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1829
e5cc9f32
JB
1830 dont_repeat ();
1831
4487aabf
PA
1832 /* The user might be reloading because the binary has changed. Take
1833 this opportunity to check. */
1834 reopen_exec_file ();
1835 reread_symbols ();
1836
c906108c 1837 if (arg == NULL)
1986bccd
AS
1838 {
1839 char *parg;
1840 int count = 0;
1841
1842 parg = arg = get_exec_file (1);
1843
1844 /* Count how many \ " ' tab space there are in the name. */
1845 while ((parg = strpbrk (parg, "\\\"'\t ")))
1846 {
1847 parg++;
1848 count++;
1849 }
1850
1851 if (count)
1852 {
1853 /* We need to quote this string so buildargv can pull it apart. */
224c3ddb 1854 char *temp = (char *) xmalloc (strlen (arg) + count + 1 );
1986bccd
AS
1855 char *ptemp = temp;
1856 char *prev;
1857
1858 make_cleanup (xfree, temp);
1859
1860 prev = parg = arg;
1861 while ((parg = strpbrk (parg, "\\\"'\t ")))
1862 {
1863 strncpy (ptemp, prev, parg - prev);
1864 ptemp += parg - prev;
1865 prev = parg++;
1866 *ptemp++ = '\\';
1867 }
1868 strcpy (ptemp, prev);
1869
1870 arg = temp;
1871 }
1872 }
1873
c906108c 1874 target_load (arg, from_tty);
2889e661
JB
1875
1876 /* After re-loading the executable, we don't really know which
1877 overlays are mapped any more. */
1878 overlay_cache_invalid = 1;
5b3fca71
TT
1879
1880 do_cleanups (cleanup);
c906108c
SS
1881}
1882
1883/* This version of "load" should be usable for any target. Currently
1884 it is just used for remote targets, not inftarg.c or core files,
1885 on the theory that only in that case is it useful.
1886
1887 Avoiding xmodem and the like seems like a win (a) because we don't have
1888 to worry about finding it, and (b) On VMS, fork() is very slow and so
1889 we don't want to run a subprocess. On the other hand, I'm not sure how
1890 performance compares. */
917317f4 1891
917317f4
JM
1892static int validate_download = 0;
1893
e4f9b4d5
MS
1894/* Callback service function for generic_load (bfd_map_over_sections). */
1895
1896static void
1897add_section_size_callback (bfd *abfd, asection *asec, void *data)
1898{
19ba03f4 1899 bfd_size_type *sum = (bfd_size_type *) data;
e4f9b4d5 1900
2c500098 1901 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1902}
1903
1904/* Opaque data for load_section_callback. */
1905struct load_section_data {
f698ca8e 1906 CORE_ADDR load_offset;
a76d924d
DJ
1907 struct load_progress_data *progress_data;
1908 VEC(memory_write_request_s) *requests;
1909};
1910
1911/* Opaque data for load_progress. */
1912struct load_progress_data {
1913 /* Cumulative data. */
e4f9b4d5
MS
1914 unsigned long write_count;
1915 unsigned long data_count;
1916 bfd_size_type total_size;
a76d924d
DJ
1917};
1918
1919/* Opaque data for load_progress for a single section. */
1920struct load_progress_section_data {
1921 struct load_progress_data *cumulative;
cf7a04e8 1922
a76d924d 1923 /* Per-section data. */
cf7a04e8
DJ
1924 const char *section_name;
1925 ULONGEST section_sent;
1926 ULONGEST section_size;
1927 CORE_ADDR lma;
1928 gdb_byte *buffer;
e4f9b4d5
MS
1929};
1930
a76d924d 1931/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1932
1933static void
1934load_progress (ULONGEST bytes, void *untyped_arg)
1935{
19ba03f4
SM
1936 struct load_progress_section_data *args
1937 = (struct load_progress_section_data *) untyped_arg;
a76d924d
DJ
1938 struct load_progress_data *totals;
1939
1940 if (args == NULL)
1941 /* Writing padding data. No easy way to get at the cumulative
1942 stats, so just ignore this. */
1943 return;
1944
1945 totals = args->cumulative;
1946
1947 if (bytes == 0 && args->section_sent == 0)
1948 {
1949 /* The write is just starting. Let the user know we've started
1950 this section. */
112e8700
SM
1951 current_uiout->message ("Loading section %s, size %s lma %s\n",
1952 args->section_name,
1953 hex_string (args->section_size),
1954 paddress (target_gdbarch (), args->lma));
a76d924d
DJ
1955 return;
1956 }
cf7a04e8
DJ
1957
1958 if (validate_download)
1959 {
1960 /* Broken memories and broken monitors manifest themselves here
1961 when bring new computers to life. This doubles already slow
1962 downloads. */
1963 /* NOTE: cagney/1999-10-18: A more efficient implementation
1964 might add a verify_memory() method to the target vector and
1965 then use that. remote.c could implement that method using
1966 the ``qCRC'' packet. */
224c3ddb 1967 gdb_byte *check = (gdb_byte *) xmalloc (bytes);
cf7a04e8
DJ
1968 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1969
1970 if (target_read_memory (args->lma, check, bytes) != 0)
5af949e3 1971 error (_("Download verify read failed at %s"),
f5656ead 1972 paddress (target_gdbarch (), args->lma));
cf7a04e8 1973 if (memcmp (args->buffer, check, bytes) != 0)
5af949e3 1974 error (_("Download verify compare failed at %s"),
f5656ead 1975 paddress (target_gdbarch (), args->lma));
cf7a04e8
DJ
1976 do_cleanups (verify_cleanups);
1977 }
a76d924d 1978 totals->data_count += bytes;
cf7a04e8
DJ
1979 args->lma += bytes;
1980 args->buffer += bytes;
a76d924d 1981 totals->write_count += 1;
cf7a04e8 1982 args->section_sent += bytes;
522002f9 1983 if (check_quit_flag ()
cf7a04e8
DJ
1984 || (deprecated_ui_load_progress_hook != NULL
1985 && deprecated_ui_load_progress_hook (args->section_name,
1986 args->section_sent)))
1987 error (_("Canceled the download"));
1988
1989 if (deprecated_show_load_progress != NULL)
1990 deprecated_show_load_progress (args->section_name,
1991 args->section_sent,
1992 args->section_size,
a76d924d
DJ
1993 totals->data_count,
1994 totals->total_size);
cf7a04e8
DJ
1995}
1996
e4f9b4d5
MS
1997/* Callback service function for generic_load (bfd_map_over_sections). */
1998
1999static void
2000load_section_callback (bfd *abfd, asection *asec, void *data)
2001{
a76d924d 2002 struct memory_write_request *new_request;
19ba03f4 2003 struct load_section_data *args = (struct load_section_data *) data;
a76d924d 2004 struct load_progress_section_data *section_data;
cf7a04e8
DJ
2005 bfd_size_type size = bfd_get_section_size (asec);
2006 gdb_byte *buffer;
cf7a04e8 2007 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 2008
cf7a04e8
DJ
2009 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2010 return;
e4f9b4d5 2011
cf7a04e8
DJ
2012 if (size == 0)
2013 return;
e4f9b4d5 2014
a76d924d
DJ
2015 new_request = VEC_safe_push (memory_write_request_s,
2016 args->requests, NULL);
2017 memset (new_request, 0, sizeof (struct memory_write_request));
8d749320 2018 section_data = XCNEW (struct load_progress_section_data);
a76d924d 2019 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
3e43a32a
MS
2020 new_request->end = new_request->begin + size; /* FIXME Should size
2021 be in instead? */
224c3ddb 2022 new_request->data = (gdb_byte *) xmalloc (size);
a76d924d 2023 new_request->baton = section_data;
cf7a04e8 2024
a76d924d 2025 buffer = new_request->data;
cf7a04e8 2026
a76d924d
DJ
2027 section_data->cumulative = args->progress_data;
2028 section_data->section_name = sect_name;
2029 section_data->section_size = size;
2030 section_data->lma = new_request->begin;
2031 section_data->buffer = buffer;
cf7a04e8
DJ
2032
2033 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
2034}
2035
2036/* Clean up an entire memory request vector, including load
2037 data and progress records. */
cf7a04e8 2038
a76d924d
DJ
2039static void
2040clear_memory_write_data (void *arg)
2041{
19ba03f4 2042 VEC(memory_write_request_s) **vec_p = (VEC(memory_write_request_s) **) arg;
a76d924d
DJ
2043 VEC(memory_write_request_s) *vec = *vec_p;
2044 int i;
2045 struct memory_write_request *mr;
cf7a04e8 2046
a76d924d
DJ
2047 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2048 {
2049 xfree (mr->data);
2050 xfree (mr->baton);
2051 }
2052 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
2053}
2054
dcb07cfa
PA
2055static void print_transfer_performance (struct ui_file *stream,
2056 unsigned long data_count,
2057 unsigned long write_count,
2058 std::chrono::steady_clock::duration d);
2059
c906108c 2060void
9cbe5fff 2061generic_load (const char *args, int from_tty)
c906108c 2062{
917317f4 2063 char *filename;
1986bccd 2064 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 2065 struct load_section_data cbdata;
a76d924d 2066 struct load_progress_data total_progress;
79a45e25 2067 struct ui_out *uiout = current_uiout;
a76d924d 2068
e4f9b4d5 2069 CORE_ADDR entry;
1986bccd 2070 char **argv;
e4f9b4d5 2071
a76d924d
DJ
2072 memset (&cbdata, 0, sizeof (cbdata));
2073 memset (&total_progress, 0, sizeof (total_progress));
2074 cbdata.progress_data = &total_progress;
2075
2076 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 2077
d1a41061
PP
2078 if (args == NULL)
2079 error_no_arg (_("file to load"));
1986bccd 2080
d1a41061 2081 argv = gdb_buildargv (args);
1986bccd
AS
2082 make_cleanup_freeargv (argv);
2083
2084 filename = tilde_expand (argv[0]);
2085 make_cleanup (xfree, filename);
2086
2087 if (argv[1] != NULL)
917317f4 2088 {
f698ca8e 2089 const char *endptr;
ba5f2f8a 2090
f698ca8e 2091 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
1986bccd
AS
2092
2093 /* If the last word was not a valid number then
2094 treat it as a file name with spaces in. */
2095 if (argv[1] == endptr)
2096 error (_("Invalid download offset:%s."), argv[1]);
2097
2098 if (argv[2] != NULL)
2099 error (_("Too many parameters."));
917317f4 2100 }
c906108c 2101
c378eb4e 2102 /* Open the file for loading. */
192b62ce 2103 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename, gnutarget, -1));
c906108c
SS
2104 if (loadfile_bfd == NULL)
2105 {
2106 perror_with_name (filename);
2107 return;
2108 }
917317f4 2109
192b62ce 2110 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
c906108c 2111 {
8a3fe4f8 2112 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
2113 bfd_errmsg (bfd_get_error ()));
2114 }
c5aa993b 2115
192b62ce 2116 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
a76d924d
DJ
2117 (void *) &total_progress.total_size);
2118
192b62ce 2119 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
c2d11a7d 2120
dcb07cfa
PA
2121 using namespace std::chrono;
2122
2123 steady_clock::time_point start_time = steady_clock::now ();
c906108c 2124
a76d924d
DJ
2125 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2126 load_progress) != 0)
2127 error (_("Load failed"));
c906108c 2128
dcb07cfa 2129 steady_clock::time_point end_time = steady_clock::now ();
ba5f2f8a 2130
192b62ce 2131 entry = bfd_get_start_address (loadfile_bfd.get ());
8c2b9656 2132 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
112e8700
SM
2133 uiout->text ("Start address ");
2134 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
2135 uiout->text (", load size ");
2136 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
2137 uiout->text ("\n");
fb14de7b 2138 regcache_write_pc (get_current_regcache (), entry);
c906108c 2139
38963c97
DJ
2140 /* Reset breakpoints, now that we have changed the load image. For
2141 instance, breakpoints may have been set (or reset, by
2142 post_create_inferior) while connected to the target but before we
2143 loaded the program. In that case, the prologue analyzer could
2144 have read instructions from the target to find the right
2145 breakpoint locations. Loading has changed the contents of that
2146 memory. */
2147
2148 breakpoint_re_set ();
2149
a76d924d
DJ
2150 print_transfer_performance (gdb_stdout, total_progress.data_count,
2151 total_progress.write_count,
dcb07cfa 2152 end_time - start_time);
c906108c
SS
2153
2154 do_cleanups (old_cleanups);
2155}
2156
dcb07cfa
PA
2157/* Report on STREAM the performance of a memory transfer operation,
2158 such as 'load'. DATA_COUNT is the number of bytes transferred.
2159 WRITE_COUNT is the number of separate write operations, or 0, if
2160 that information is not available. TIME is how long the operation
2161 lasted. */
c906108c 2162
dcb07cfa 2163static void
d9fcf2fb 2164print_transfer_performance (struct ui_file *stream,
917317f4
JM
2165 unsigned long data_count,
2166 unsigned long write_count,
dcb07cfa 2167 std::chrono::steady_clock::duration time)
917317f4 2168{
dcb07cfa 2169 using namespace std::chrono;
79a45e25 2170 struct ui_out *uiout = current_uiout;
2b71414d 2171
dcb07cfa 2172 milliseconds ms = duration_cast<milliseconds> (time);
2b71414d 2173
112e8700 2174 uiout->text ("Transfer rate: ");
dcb07cfa 2175 if (ms.count () > 0)
8b93c638 2176 {
dcb07cfa 2177 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
9f43d28c 2178
112e8700 2179 if (uiout->is_mi_like_p ())
9f43d28c 2180 {
112e8700
SM
2181 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2182 uiout->text (" bits/sec");
9f43d28c
DJ
2183 }
2184 else if (rate < 1024)
2185 {
112e8700
SM
2186 uiout->field_fmt ("transfer-rate", "%lu", rate);
2187 uiout->text (" bytes/sec");
9f43d28c
DJ
2188 }
2189 else
2190 {
112e8700
SM
2191 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2192 uiout->text (" KB/sec");
9f43d28c 2193 }
8b93c638
JM
2194 }
2195 else
2196 {
112e8700
SM
2197 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2198 uiout->text (" bits in <1 sec");
8b93c638
JM
2199 }
2200 if (write_count > 0)
2201 {
112e8700
SM
2202 uiout->text (", ");
2203 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2204 uiout->text (" bytes/write");
8b93c638 2205 }
112e8700 2206 uiout->text (".\n");
c906108c
SS
2207}
2208
2209/* This function allows the addition of incrementally linked object files.
2210 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2211/* Note: ezannoni 2000-04-13 This function/command used to have a
2212 special case syntax for the rombug target (Rombug is the boot
2213 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2214 rombug case, the user doesn't need to supply a text address,
2215 instead a call to target_link() (in target.c) would supply the
c378eb4e 2216 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2217
c906108c 2218static void
fba45db2 2219add_symbol_file_command (char *args, int from_tty)
c906108c 2220{
5af949e3 2221 struct gdbarch *gdbarch = get_current_arch ();
db162d44 2222 char *filename = NULL;
c906108c 2223 char *arg;
db162d44 2224 int section_index = 0;
2acceee2
JM
2225 int argcnt = 0;
2226 int sec_num = 0;
2227 int i;
db162d44
EZ
2228 int expecting_sec_name = 0;
2229 int expecting_sec_addr = 0;
5b96932b 2230 char **argv;
76ad5e1e 2231 struct objfile *objf;
b15cc25c
PA
2232 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2233 symfile_add_flags add_flags = 0;
2234
2235 if (from_tty)
2236 add_flags |= SYMFILE_VERBOSE;
db162d44 2237
a39a16c4 2238 struct sect_opt
2acceee2 2239 {
a121b7c1
PA
2240 const char *name;
2241 const char *value;
a39a16c4 2242 };
db162d44 2243
a39a16c4
MM
2244 struct section_addr_info *section_addrs;
2245 struct sect_opt *sect_opts = NULL;
2246 size_t num_sect_opts = 0;
3017564a 2247 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2248
a39a16c4 2249 num_sect_opts = 16;
8d749320 2250 sect_opts = XNEWVEC (struct sect_opt, num_sect_opts);
a39a16c4 2251
c906108c
SS
2252 dont_repeat ();
2253
2254 if (args == NULL)
8a3fe4f8 2255 error (_("add-symbol-file takes a file name and an address"));
c906108c 2256
d1a41061 2257 argv = gdb_buildargv (args);
5b96932b 2258 make_cleanup_freeargv (argv);
db162d44 2259
5b96932b
AS
2260 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2261 {
c378eb4e 2262 /* Process the argument. */
db162d44 2263 if (argcnt == 0)
c906108c 2264 {
c378eb4e 2265 /* The first argument is the file name. */
db162d44 2266 filename = tilde_expand (arg);
3017564a 2267 make_cleanup (xfree, filename);
c906108c 2268 }
41dc8db8
MB
2269 else if (argcnt == 1)
2270 {
2271 /* The second argument is always the text address at which
2272 to load the program. */
2273 sect_opts[section_index].name = ".text";
2274 sect_opts[section_index].value = arg;
2275 if (++section_index >= num_sect_opts)
2276 {
2277 num_sect_opts *= 2;
2278 sect_opts = ((struct sect_opt *)
2279 xrealloc (sect_opts,
2280 num_sect_opts
2281 * sizeof (struct sect_opt)));
2282 }
2283 }
db162d44 2284 else
41dc8db8
MB
2285 {
2286 /* It's an option (starting with '-') or it's an argument
2287 to an option. */
41dc8db8
MB
2288 if (expecting_sec_name)
2289 {
2290 sect_opts[section_index].name = arg;
2291 expecting_sec_name = 0;
2292 }
2293 else if (expecting_sec_addr)
2294 {
2295 sect_opts[section_index].value = arg;
2296 expecting_sec_addr = 0;
2297 if (++section_index >= num_sect_opts)
2298 {
2299 num_sect_opts *= 2;
2300 sect_opts = ((struct sect_opt *)
2301 xrealloc (sect_opts,
2302 num_sect_opts
2303 * sizeof (struct sect_opt)));
2304 }
2305 }
2306 else if (strcmp (arg, "-readnow") == 0)
2307 flags |= OBJF_READNOW;
2308 else if (strcmp (arg, "-s") == 0)
2309 {
2310 expecting_sec_name = 1;
2311 expecting_sec_addr = 1;
2312 }
2313 else
2314 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2315 " [-readnow] [-s <secname> <addr>]*"));
2316 }
c906108c 2317 }
c906108c 2318
927890d0
JB
2319 /* This command takes at least two arguments. The first one is a
2320 filename, and the second is the address where this file has been
2321 loaded. Abort now if this address hasn't been provided by the
2322 user. */
2323 if (section_index < 1)
2324 error (_("The address where %s has been loaded is missing"), filename);
2325
c378eb4e 2326 /* Print the prompt for the query below. And save the arguments into
db162d44
EZ
2327 a sect_addr_info structure to be passed around to other
2328 functions. We have to split this up into separate print
bb599908 2329 statements because hex_string returns a local static
c378eb4e 2330 string. */
5417f6dc 2331
a3f17187 2332 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2333 section_addrs = alloc_section_addr_info (section_index);
2334 make_cleanup (xfree, section_addrs);
db162d44 2335 for (i = 0; i < section_index; i++)
c906108c 2336 {
db162d44 2337 CORE_ADDR addr;
a121b7c1
PA
2338 const char *val = sect_opts[i].value;
2339 const char *sec = sect_opts[i].name;
5417f6dc 2340
ae822768 2341 addr = parse_and_eval_address (val);
db162d44 2342
db162d44 2343 /* Here we store the section offsets in the order they were
c378eb4e 2344 entered on the command line. */
a121b7c1 2345 section_addrs->other[sec_num].name = (char *) sec;
a39a16c4 2346 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2347 printf_unfiltered ("\t%s_addr = %s\n", sec,
2348 paddress (gdbarch, addr));
db162d44
EZ
2349 sec_num++;
2350
5417f6dc 2351 /* The object's sections are initialized when a
db162d44 2352 call is made to build_objfile_section_table (objfile).
5417f6dc 2353 This happens in reread_symbols.
db162d44
EZ
2354 At this point, we don't know what file type this is,
2355 so we can't determine what section names are valid. */
2acceee2 2356 }
d76488d8 2357 section_addrs->num_sections = sec_num;
db162d44 2358
2acceee2 2359 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2360 error (_("Not confirmed."));
c906108c 2361
b15cc25c 2362 objf = symbol_file_add (filename, add_flags, section_addrs, flags);
76ad5e1e
NB
2363
2364 add_target_sections_of_objfile (objf);
c906108c
SS
2365
2366 /* Getting new symbols may change our opinion about what is
2367 frameless. */
2368 reinit_frame_cache ();
db162d44 2369 do_cleanups (my_cleanups);
c906108c
SS
2370}
2371\f
70992597 2372
63644780
NB
2373/* This function removes a symbol file that was added via add-symbol-file. */
2374
2375static void
2376remove_symbol_file_command (char *args, int from_tty)
2377{
2378 char **argv;
2379 struct objfile *objf = NULL;
2380 struct cleanup *my_cleanups;
2381 struct program_space *pspace = current_program_space;
63644780
NB
2382
2383 dont_repeat ();
2384
2385 if (args == NULL)
2386 error (_("remove-symbol-file: no symbol file provided"));
2387
2388 my_cleanups = make_cleanup (null_cleanup, NULL);
2389
2390 argv = gdb_buildargv (args);
2391
2392 if (strcmp (argv[0], "-a") == 0)
2393 {
2394 /* Interpret the next argument as an address. */
2395 CORE_ADDR addr;
2396
2397 if (argv[1] == NULL)
2398 error (_("Missing address argument"));
2399
2400 if (argv[2] != NULL)
2401 error (_("Junk after %s"), argv[1]);
2402
2403 addr = parse_and_eval_address (argv[1]);
2404
2405 ALL_OBJFILES (objf)
2406 {
d03de421
PA
2407 if ((objf->flags & OBJF_USERLOADED) != 0
2408 && (objf->flags & OBJF_SHARED) != 0
63644780
NB
2409 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2410 break;
2411 }
2412 }
2413 else if (argv[0] != NULL)
2414 {
2415 /* Interpret the current argument as a file name. */
2416 char *filename;
2417
2418 if (argv[1] != NULL)
2419 error (_("Junk after %s"), argv[0]);
2420
2421 filename = tilde_expand (argv[0]);
2422 make_cleanup (xfree, filename);
2423
2424 ALL_OBJFILES (objf)
2425 {
d03de421
PA
2426 if ((objf->flags & OBJF_USERLOADED) != 0
2427 && (objf->flags & OBJF_SHARED) != 0
63644780
NB
2428 && objf->pspace == pspace
2429 && filename_cmp (filename, objfile_name (objf)) == 0)
2430 break;
2431 }
2432 }
2433
2434 if (objf == NULL)
2435 error (_("No symbol file found"));
2436
2437 if (from_tty
2438 && !query (_("Remove symbol table from file \"%s\"? "),
2439 objfile_name (objf)))
2440 error (_("Not confirmed."));
2441
2442 free_objfile (objf);
2443 clear_symtab_users (0);
2444
2445 do_cleanups (my_cleanups);
2446}
2447
c906108c 2448/* Re-read symbols if a symbol-file has changed. */
3b7bacac 2449
c906108c 2450void
fba45db2 2451reread_symbols (void)
c906108c
SS
2452{
2453 struct objfile *objfile;
2454 long new_modtime;
c906108c
SS
2455 struct stat new_statbuf;
2456 int res;
4c404b8b 2457 std::vector<struct objfile *> new_objfiles;
c906108c
SS
2458
2459 /* With the addition of shared libraries, this should be modified,
2460 the load time should be saved in the partial symbol tables, since
2461 different tables may come from different source files. FIXME.
2462 This routine should then walk down each partial symbol table
c378eb4e 2463 and see if the symbol table that it originates from has been changed. */
c906108c 2464
c5aa993b
JM
2465 for (objfile = object_files; objfile; objfile = objfile->next)
2466 {
9cce227f
TG
2467 if (objfile->obfd == NULL)
2468 continue;
2469
2470 /* Separate debug objfiles are handled in the main objfile. */
2471 if (objfile->separate_debug_objfile_backlink)
2472 continue;
2473
02aeec7b
JB
2474 /* If this object is from an archive (what you usually create with
2475 `ar', often called a `static library' on most systems, though
2476 a `shared library' on AIX is also an archive), then you should
2477 stat on the archive name, not member name. */
9cce227f
TG
2478 if (objfile->obfd->my_archive)
2479 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2480 else
4262abfb 2481 res = stat (objfile_name (objfile), &new_statbuf);
9cce227f
TG
2482 if (res != 0)
2483 {
c378eb4e 2484 /* FIXME, should use print_sys_errmsg but it's not filtered. */
9cce227f 2485 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
4262abfb 2486 objfile_name (objfile));
9cce227f
TG
2487 continue;
2488 }
2489 new_modtime = new_statbuf.st_mtime;
2490 if (new_modtime != objfile->mtime)
2491 {
2492 struct cleanup *old_cleanups;
2493 struct section_offsets *offsets;
2494 int num_offsets;
24ba069a 2495 char *original_name;
9cce227f
TG
2496
2497 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
4262abfb 2498 objfile_name (objfile));
9cce227f
TG
2499
2500 /* There are various functions like symbol_file_add,
2501 symfile_bfd_open, syms_from_objfile, etc., which might
2502 appear to do what we want. But they have various other
2503 effects which we *don't* want. So we just do stuff
2504 ourselves. We don't worry about mapped files (for one thing,
2505 any mapped file will be out of date). */
2506
2507 /* If we get an error, blow away this objfile (not sure if
2508 that is the correct response for things like shared
2509 libraries). */
2510 old_cleanups = make_cleanup_free_objfile (objfile);
2511 /* We need to do this whenever any symbols go away. */
2512 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2513
0ba1096a
KT
2514 if (exec_bfd != NULL
2515 && filename_cmp (bfd_get_filename (objfile->obfd),
2516 bfd_get_filename (exec_bfd)) == 0)
9cce227f
TG
2517 {
2518 /* Reload EXEC_BFD without asking anything. */
2519
2520 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2521 }
2522
f6eeced0
JK
2523 /* Keep the calls order approx. the same as in free_objfile. */
2524
2525 /* Free the separate debug objfiles. It will be
2526 automatically recreated by sym_read. */
2527 free_objfile_separate_debug (objfile);
2528
2529 /* Remove any references to this objfile in the global
2530 value lists. */
2531 preserve_values (objfile);
2532
2533 /* Nuke all the state that we will re-read. Much of the following
2534 code which sets things to NULL really is necessary to tell
2535 other parts of GDB that there is nothing currently there.
2536
2537 Try to keep the freeing order compatible with free_objfile. */
2538
2539 if (objfile->sf != NULL)
2540 {
2541 (*objfile->sf->sym_finish) (objfile);
2542 }
2543
2544 clear_objfile_data (objfile);
2545
e1507e95 2546 /* Clean up any state BFD has sitting around. */
a4453b7e 2547 {
192b62ce 2548 gdb_bfd_ref_ptr obfd (objfile->obfd);
d3846e71 2549 char *obfd_filename;
a4453b7e
TT
2550
2551 obfd_filename = bfd_get_filename (objfile->obfd);
2552 /* Open the new BFD before freeing the old one, so that
2553 the filename remains live. */
192b62ce
TT
2554 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2555 objfile->obfd = temp.release ();
e1507e95 2556 if (objfile->obfd == NULL)
192b62ce 2557 error (_("Can't open %s to read symbols."), obfd_filename);
a4453b7e
TT
2558 }
2559
24ba069a
JK
2560 original_name = xstrdup (objfile->original_name);
2561 make_cleanup (xfree, original_name);
2562
9cce227f
TG
2563 /* bfd_openr sets cacheable to true, which is what we want. */
2564 if (!bfd_check_format (objfile->obfd, bfd_object))
4262abfb 2565 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
9cce227f
TG
2566 bfd_errmsg (bfd_get_error ()));
2567
2568 /* Save the offsets, we will nuke them with the rest of the
2569 objfile_obstack. */
2570 num_offsets = objfile->num_sections;
2571 offsets = ((struct section_offsets *)
2572 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2573 memcpy (offsets, objfile->section_offsets,
2574 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2575
9cce227f
TG
2576 /* FIXME: Do we have to free a whole linked list, or is this
2577 enough? */
2578 if (objfile->global_psymbols.list)
2579 xfree (objfile->global_psymbols.list);
2580 memset (&objfile->global_psymbols, 0,
2581 sizeof (objfile->global_psymbols));
2582 if (objfile->static_psymbols.list)
2583 xfree (objfile->static_psymbols.list);
2584 memset (&objfile->static_psymbols, 0,
2585 sizeof (objfile->static_psymbols));
2586
c378eb4e 2587 /* Free the obstacks for non-reusable objfiles. */
710e1a31
SW
2588 psymbol_bcache_free (objfile->psymbol_cache);
2589 objfile->psymbol_cache = psymbol_bcache_init ();
41664b45
DG
2590
2591 /* NB: after this call to obstack_free, objfiles_changed
2592 will need to be called (see discussion below). */
9cce227f
TG
2593 obstack_free (&objfile->objfile_obstack, 0);
2594 objfile->sections = NULL;
43f3e411 2595 objfile->compunit_symtabs = NULL;
9cce227f
TG
2596 objfile->psymtabs = NULL;
2597 objfile->psymtabs_addrmap = NULL;
2598 objfile->free_psymtabs = NULL;
34eaf542 2599 objfile->template_symbols = NULL;
9cce227f 2600
9cce227f
TG
2601 /* obstack_init also initializes the obstack so it is
2602 empty. We could use obstack_specify_allocation but
d82ea6a8 2603 gdb_obstack.h specifies the alloc/dealloc functions. */
9cce227f 2604 obstack_init (&objfile->objfile_obstack);
779bd270 2605
846060df
JB
2606 /* set_objfile_per_bfd potentially allocates the per-bfd
2607 data on the objfile's obstack (if sharing data across
2608 multiple users is not possible), so it's important to
2609 do it *after* the obstack has been initialized. */
2610 set_objfile_per_bfd (objfile);
2611
224c3ddb
SM
2612 objfile->original_name
2613 = (char *) obstack_copy0 (&objfile->objfile_obstack, original_name,
2614 strlen (original_name));
24ba069a 2615
779bd270
DE
2616 /* Reset the sym_fns pointer. The ELF reader can change it
2617 based on whether .gdb_index is present, and we need it to
2618 start over. PR symtab/15885 */
8fb8eb5c 2619 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
779bd270 2620
d82ea6a8 2621 build_objfile_section_table (objfile);
9cce227f
TG
2622 terminate_minimal_symbol_table (objfile);
2623
2624 /* We use the same section offsets as from last time. I'm not
2625 sure whether that is always correct for shared libraries. */
2626 objfile->section_offsets = (struct section_offsets *)
2627 obstack_alloc (&objfile->objfile_obstack,
2628 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2629 memcpy (objfile->section_offsets, offsets,
2630 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2631 objfile->num_sections = num_offsets;
2632
2633 /* What the hell is sym_new_init for, anyway? The concept of
2634 distinguishing between the main file and additional files
2635 in this way seems rather dubious. */
2636 if (objfile == symfile_objfile)
c906108c 2637 {
9cce227f 2638 (*objfile->sf->sym_new_init) (objfile);
c906108c 2639 }
9cce227f
TG
2640
2641 (*objfile->sf->sym_init) (objfile);
2642 clear_complaints (&symfile_complaints, 1, 1);
608e2dbb
TT
2643
2644 objfile->flags &= ~OBJF_PSYMTABS_READ;
41664b45
DG
2645
2646 /* We are about to read new symbols and potentially also
2647 DWARF information. Some targets may want to pass addresses
2648 read from DWARF DIE's through an adjustment function before
2649 saving them, like MIPS, which may call into
2650 "find_pc_section". When called, that function will make
2651 use of per-objfile program space data.
2652
2653 Since we discarded our section information above, we have
2654 dangling pointers in the per-objfile program space data
2655 structure. Force GDB to update the section mapping
2656 information by letting it know the objfile has changed,
2657 making the dangling pointers point to correct data
2658 again. */
2659
2660 objfiles_changed ();
2661
608e2dbb 2662 read_symbols (objfile, 0);
b11896a5 2663
9cce227f 2664 if (!objfile_has_symbols (objfile))
c906108c 2665 {
9cce227f
TG
2666 wrap_here ("");
2667 printf_unfiltered (_("(no debugging symbols found)\n"));
2668 wrap_here ("");
c5aa993b 2669 }
9cce227f
TG
2670
2671 /* We're done reading the symbol file; finish off complaints. */
2672 clear_complaints (&symfile_complaints, 0, 1);
2673
2674 /* Getting new symbols may change our opinion about what is
2675 frameless. */
2676
2677 reinit_frame_cache ();
2678
2679 /* Discard cleanups as symbol reading was successful. */
2680 discard_cleanups (old_cleanups);
2681
2682 /* If the mtime has changed between the time we set new_modtime
2683 and now, we *want* this to be out of date, so don't call stat
2684 again now. */
2685 objfile->mtime = new_modtime;
9cce227f 2686 init_entry_point_info (objfile);
4ac39b97 2687
4c404b8b 2688 new_objfiles.push_back (objfile);
c906108c
SS
2689 }
2690 }
c906108c 2691
4c404b8b 2692 if (!new_objfiles.empty ())
ea53e89f 2693 {
c1e56572 2694 clear_symtab_users (0);
4ac39b97
JK
2695
2696 /* clear_objfile_data for each objfile was called before freeing it and
2697 observer_notify_new_objfile (NULL) has been called by
2698 clear_symtab_users above. Notify the new files now. */
4c404b8b
TT
2699 for (auto iter : new_objfiles)
2700 observer_notify_new_objfile (iter);
4ac39b97 2701
ea53e89f
JB
2702 /* At least one objfile has changed, so we can consider that
2703 the executable we're debugging has changed too. */
781b42b0 2704 observer_notify_executable_changed ();
ea53e89f 2705 }
c906108c 2706}
c906108c
SS
2707\f
2708
c5aa993b
JM
2709typedef struct
2710{
2711 char *ext;
c906108c 2712 enum language lang;
3fcf0b0d
TT
2713} filename_language;
2714
2715DEF_VEC_O (filename_language);
c906108c 2716
3fcf0b0d 2717static VEC (filename_language) *filename_language_table;
c906108c 2718
56618e20
TT
2719/* See symfile.h. */
2720
2721void
2722add_filename_language (const char *ext, enum language lang)
c906108c 2723{
3fcf0b0d
TT
2724 filename_language entry;
2725
2726 entry.ext = xstrdup (ext);
2727 entry.lang = lang;
c906108c 2728
3fcf0b0d 2729 VEC_safe_push (filename_language, filename_language_table, &entry);
c906108c
SS
2730}
2731
2732static char *ext_args;
920d2a44
AC
2733static void
2734show_ext_args (struct ui_file *file, int from_tty,
2735 struct cmd_list_element *c, const char *value)
2736{
3e43a32a
MS
2737 fprintf_filtered (file,
2738 _("Mapping between filename extension "
2739 "and source language is \"%s\".\n"),
920d2a44
AC
2740 value);
2741}
c906108c
SS
2742
2743static void
26c41df3 2744set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2745{
2746 int i;
2747 char *cp = ext_args;
2748 enum language lang;
3fcf0b0d 2749 filename_language *entry;
c906108c 2750
c378eb4e 2751 /* First arg is filename extension, starting with '.' */
c906108c 2752 if (*cp != '.')
8a3fe4f8 2753 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2754
2755 /* Find end of first arg. */
c5aa993b 2756 while (*cp && !isspace (*cp))
c906108c
SS
2757 cp++;
2758
2759 if (*cp == '\0')
3e43a32a
MS
2760 error (_("'%s': two arguments required -- "
2761 "filename extension and language"),
c906108c
SS
2762 ext_args);
2763
c378eb4e 2764 /* Null-terminate first arg. */
c5aa993b 2765 *cp++ = '\0';
c906108c
SS
2766
2767 /* Find beginning of second arg, which should be a source language. */
529480d0 2768 cp = skip_spaces (cp);
c906108c
SS
2769
2770 if (*cp == '\0')
3e43a32a
MS
2771 error (_("'%s': two arguments required -- "
2772 "filename extension and language"),
c906108c
SS
2773 ext_args);
2774
2775 /* Lookup the language from among those we know. */
2776 lang = language_enum (cp);
2777
2778 /* Now lookup the filename extension: do we already know it? */
3fcf0b0d
TT
2779 for (i = 0;
2780 VEC_iterate (filename_language, filename_language_table, i, entry);
2781 ++i)
2782 {
2783 if (0 == strcmp (ext_args, entry->ext))
2784 break;
2785 }
c906108c 2786
3fcf0b0d 2787 if (entry == NULL)
c906108c 2788 {
c378eb4e 2789 /* New file extension. */
c906108c
SS
2790 add_filename_language (ext_args, lang);
2791 }
2792 else
2793 {
c378eb4e 2794 /* Redefining a previously known filename extension. */
c906108c
SS
2795
2796 /* if (from_tty) */
2797 /* query ("Really make files of type %s '%s'?", */
2798 /* ext_args, language_str (lang)); */
2799
3fcf0b0d
TT
2800 xfree (entry->ext);
2801 entry->ext = xstrdup (ext_args);
2802 entry->lang = lang;
c906108c
SS
2803 }
2804}
2805
2806static void
fba45db2 2807info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2808{
2809 int i;
3fcf0b0d 2810 filename_language *entry;
c906108c 2811
a3f17187 2812 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c 2813 printf_filtered ("\n\n");
3fcf0b0d
TT
2814 for (i = 0;
2815 VEC_iterate (filename_language, filename_language_table, i, entry);
2816 ++i)
2817 printf_filtered ("\t%s\t- %s\n", entry->ext, language_str (entry->lang));
c906108c
SS
2818}
2819
c906108c 2820enum language
dd786858 2821deduce_language_from_filename (const char *filename)
c906108c
SS
2822{
2823 int i;
e6a959d6 2824 const char *cp;
c906108c
SS
2825
2826 if (filename != NULL)
2827 if ((cp = strrchr (filename, '.')) != NULL)
3fcf0b0d
TT
2828 {
2829 filename_language *entry;
2830
2831 for (i = 0;
2832 VEC_iterate (filename_language, filename_language_table, i, entry);
2833 ++i)
2834 if (strcmp (cp, entry->ext) == 0)
2835 return entry->lang;
2836 }
c906108c
SS
2837
2838 return language_unknown;
2839}
2840\f
43f3e411
DE
2841/* Allocate and initialize a new symbol table.
2842 CUST is from the result of allocate_compunit_symtab. */
c906108c
SS
2843
2844struct symtab *
43f3e411 2845allocate_symtab (struct compunit_symtab *cust, const char *filename)
c906108c 2846{
43f3e411
DE
2847 struct objfile *objfile = cust->objfile;
2848 struct symtab *symtab
2849 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
c906108c 2850
19ba03f4
SM
2851 symtab->filename
2852 = (const char *) bcache (filename, strlen (filename) + 1,
21ea9eec 2853 objfile->per_bfd->filename_cache);
c5aa993b
JM
2854 symtab->fullname = NULL;
2855 symtab->language = deduce_language_from_filename (filename);
c906108c 2856
db0fec5c
DE
2857 /* This can be very verbose with lots of headers.
2858 Only print at higher debug levels. */
2859 if (symtab_create_debug >= 2)
45cfd468
DE
2860 {
2861 /* Be a bit clever with debugging messages, and don't print objfile
2862 every time, only when it changes. */
2863 static char *last_objfile_name = NULL;
2864
2865 if (last_objfile_name == NULL
4262abfb 2866 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
45cfd468
DE
2867 {
2868 xfree (last_objfile_name);
4262abfb 2869 last_objfile_name = xstrdup (objfile_name (objfile));
45cfd468
DE
2870 fprintf_unfiltered (gdb_stdlog,
2871 "Creating one or more symtabs for objfile %s ...\n",
2872 last_objfile_name);
2873 }
2874 fprintf_unfiltered (gdb_stdlog,
b3dbbd6f
PM
2875 "Created symtab %s for module %s.\n",
2876 host_address_to_string (symtab), filename);
45cfd468
DE
2877 }
2878
43f3e411
DE
2879 /* Add it to CUST's list of symtabs. */
2880 if (cust->filetabs == NULL)
2881 {
2882 cust->filetabs = symtab;
2883 cust->last_filetab = symtab;
2884 }
2885 else
2886 {
2887 cust->last_filetab->next = symtab;
2888 cust->last_filetab = symtab;
2889 }
2890
2891 /* Backlink to the containing compunit symtab. */
2892 symtab->compunit_symtab = cust;
2893
2894 return symtab;
2895}
2896
2897/* Allocate and initialize a new compunit.
2898 NAME is the name of the main source file, if there is one, or some
2899 descriptive text if there are no source files. */
2900
2901struct compunit_symtab *
2902allocate_compunit_symtab (struct objfile *objfile, const char *name)
2903{
2904 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2905 struct compunit_symtab);
2906 const char *saved_name;
2907
2908 cu->objfile = objfile;
2909
2910 /* The name we record here is only for display/debugging purposes.
2911 Just save the basename to avoid path issues (too long for display,
2912 relative vs absolute, etc.). */
2913 saved_name = lbasename (name);
224c3ddb
SM
2914 cu->name
2915 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2916 strlen (saved_name));
43f3e411
DE
2917
2918 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2919
2920 if (symtab_create_debug)
2921 {
2922 fprintf_unfiltered (gdb_stdlog,
2923 "Created compunit symtab %s for %s.\n",
2924 host_address_to_string (cu),
2925 cu->name);
2926 }
2927
2928 return cu;
2929}
2930
2931/* Hook CU to the objfile it comes from. */
2932
2933void
2934add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2935{
2936 cu->next = cu->objfile->compunit_symtabs;
2937 cu->objfile->compunit_symtabs = cu;
c906108c 2938}
c906108c 2939\f
c5aa993b 2940
b15cc25c
PA
2941/* Reset all data structures in gdb which may contain references to
2942 symbol table data. */
c906108c
SS
2943
2944void
b15cc25c 2945clear_symtab_users (symfile_add_flags add_flags)
c906108c
SS
2946{
2947 /* Someday, we should do better than this, by only blowing away
2948 the things that really need to be blown. */
c0501be5
DJ
2949
2950 /* Clear the "current" symtab first, because it is no longer valid.
2951 breakpoint_re_set may try to access the current symtab. */
2952 clear_current_source_symtab_and_line ();
2953
c906108c 2954 clear_displays ();
1bfeeb0f 2955 clear_last_displayed_sal ();
c906108c 2956 clear_pc_function_cache ();
06d3b283 2957 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2958
2959 /* Clear globals which might have pointed into a removed objfile.
2960 FIXME: It's not clear which of these are supposed to persist
2961 between expressions and which ought to be reset each time. */
2962 expression_context_block = NULL;
2963 innermost_block = NULL;
8756216b
DP
2964
2965 /* Varobj may refer to old symbols, perform a cleanup. */
2966 varobj_invalidate ();
2967
e700d1b2
JB
2968 /* Now that the various caches have been cleared, we can re_set
2969 our breakpoints without risking it using stale data. */
2970 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2971 breakpoint_re_set ();
c906108c
SS
2972}
2973
74b7792f
AC
2974static void
2975clear_symtab_users_cleanup (void *ignore)
2976{
c1e56572 2977 clear_symtab_users (0);
74b7792f 2978}
c906108c 2979\f
c906108c
SS
2980/* OVERLAYS:
2981 The following code implements an abstraction for debugging overlay sections.
2982
2983 The target model is as follows:
2984 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2985 same VMA, each with its own unique LMA (or load address).
c906108c 2986 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2987 sections, one by one, from the load address into the VMA address.
5417f6dc 2988 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2989 sections should be considered to be mapped from the VMA to the LMA.
2990 This information is used for symbol lookup, and memory read/write.
5417f6dc 2991 For instance, if a section has been mapped then its contents
c5aa993b 2992 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2993
2994 Two levels of debugger support for overlays are available. One is
2995 "manual", in which the debugger relies on the user to tell it which
2996 overlays are currently mapped. This level of support is
2997 implemented entirely in the core debugger, and the information about
2998 whether a section is mapped is kept in the objfile->obj_section table.
2999
3000 The second level of support is "automatic", and is only available if
3001 the target-specific code provides functionality to read the target's
3002 overlay mapping table, and translate its contents for the debugger
3003 (by updating the mapped state information in the obj_section tables).
3004
3005 The interface is as follows:
c5aa993b
JM
3006 User commands:
3007 overlay map <name> -- tell gdb to consider this section mapped
3008 overlay unmap <name> -- tell gdb to consider this section unmapped
3009 overlay list -- list the sections that GDB thinks are mapped
3010 overlay read-target -- get the target's state of what's mapped
3011 overlay off/manual/auto -- set overlay debugging state
3012 Functional interface:
3013 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3014 section, return that section.
5417f6dc 3015 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 3016 the pc, either in its VMA or its LMA
714835d5 3017 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
3018 section_is_overlay(sect): true if section's VMA != LMA
3019 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3020 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 3021 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
3022 overlay_mapped_address(...): map an address from section's LMA to VMA
3023 overlay_unmapped_address(...): map an address from section's VMA to LMA
3024 symbol_overlayed_address(...): Return a "current" address for symbol:
3025 either in VMA or LMA depending on whether
c378eb4e 3026 the symbol's section is currently mapped. */
c906108c
SS
3027
3028/* Overlay debugging state: */
3029
d874f1e2 3030enum overlay_debugging_state overlay_debugging = ovly_off;
c378eb4e 3031int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
c906108c 3032
c906108c 3033/* Function: section_is_overlay (SECTION)
5417f6dc 3034 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
3035 SECTION is loaded at an address different from where it will "run". */
3036
3037int
714835d5 3038section_is_overlay (struct obj_section *section)
c906108c 3039{
714835d5
UW
3040 if (overlay_debugging && section)
3041 {
3042 bfd *abfd = section->objfile->obfd;
3043 asection *bfd_section = section->the_bfd_section;
f888f159 3044
714835d5
UW
3045 if (bfd_section_lma (abfd, bfd_section) != 0
3046 && bfd_section_lma (abfd, bfd_section)
3047 != bfd_section_vma (abfd, bfd_section))
3048 return 1;
3049 }
c906108c
SS
3050
3051 return 0;
3052}
3053
3054/* Function: overlay_invalidate_all (void)
3055 Invalidate the mapped state of all overlay sections (mark it as stale). */
3056
3057static void
fba45db2 3058overlay_invalidate_all (void)
c906108c 3059{
c5aa993b 3060 struct objfile *objfile;
c906108c
SS
3061 struct obj_section *sect;
3062
3063 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
3064 if (section_is_overlay (sect))
3065 sect->ovly_mapped = -1;
c906108c
SS
3066}
3067
714835d5 3068/* Function: section_is_mapped (SECTION)
5417f6dc 3069 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3070
3071 Access to the ovly_mapped flag is restricted to this function, so
3072 that we can do automatic update. If the global flag
3073 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3074 overlay_invalidate_all. If the mapped state of the particular
3075 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3076
714835d5
UW
3077int
3078section_is_mapped (struct obj_section *osect)
c906108c 3079{
9216df95
UW
3080 struct gdbarch *gdbarch;
3081
714835d5 3082 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
3083 return 0;
3084
c5aa993b 3085 switch (overlay_debugging)
c906108c
SS
3086 {
3087 default:
d874f1e2 3088 case ovly_off:
c5aa993b 3089 return 0; /* overlay debugging off */
d874f1e2 3090 case ovly_auto: /* overlay debugging automatic */
1c772458 3091 /* Unles there is a gdbarch_overlay_update function,
c378eb4e 3092 there's really nothing useful to do here (can't really go auto). */
9216df95
UW
3093 gdbarch = get_objfile_arch (osect->objfile);
3094 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
3095 {
3096 if (overlay_cache_invalid)
3097 {
3098 overlay_invalidate_all ();
3099 overlay_cache_invalid = 0;
3100 }
3101 if (osect->ovly_mapped == -1)
9216df95 3102 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
3103 }
3104 /* fall thru to manual case */
d874f1e2 3105 case ovly_on: /* overlay debugging manual */
c906108c
SS
3106 return osect->ovly_mapped == 1;
3107 }
3108}
3109
c906108c
SS
3110/* Function: pc_in_unmapped_range
3111 If PC falls into the lma range of SECTION, return true, else false. */
3112
3113CORE_ADDR
714835d5 3114pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3115{
714835d5
UW
3116 if (section_is_overlay (section))
3117 {
3118 bfd *abfd = section->objfile->obfd;
3119 asection *bfd_section = section->the_bfd_section;
fbd35540 3120
714835d5
UW
3121 /* We assume the LMA is relocated by the same offset as the VMA. */
3122 bfd_vma size = bfd_get_section_size (bfd_section);
3123 CORE_ADDR offset = obj_section_offset (section);
3124
3125 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3126 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3127 return 1;
3128 }
c906108c 3129
c906108c
SS
3130 return 0;
3131}
3132
3133/* Function: pc_in_mapped_range
3134 If PC falls into the vma range of SECTION, return true, else false. */
3135
3136CORE_ADDR
714835d5 3137pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3138{
714835d5
UW
3139 if (section_is_overlay (section))
3140 {
3141 if (obj_section_addr (section) <= pc
3142 && pc < obj_section_endaddr (section))
3143 return 1;
3144 }
c906108c 3145
c906108c
SS
3146 return 0;
3147}
3148
9ec8e6a0
JB
3149/* Return true if the mapped ranges of sections A and B overlap, false
3150 otherwise. */
3b7bacac 3151
b9362cc7 3152static int
714835d5 3153sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3154{
714835d5
UW
3155 CORE_ADDR a_start = obj_section_addr (a);
3156 CORE_ADDR a_end = obj_section_endaddr (a);
3157 CORE_ADDR b_start = obj_section_addr (b);
3158 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3159
3160 return (a_start < b_end && b_start < a_end);
3161}
3162
c906108c
SS
3163/* Function: overlay_unmapped_address (PC, SECTION)
3164 Returns the address corresponding to PC in the unmapped (load) range.
3165 May be the same as PC. */
3166
3167CORE_ADDR
714835d5 3168overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3169{
714835d5
UW
3170 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3171 {
3172 bfd *abfd = section->objfile->obfd;
3173 asection *bfd_section = section->the_bfd_section;
fbd35540 3174
714835d5
UW
3175 return pc + bfd_section_lma (abfd, bfd_section)
3176 - bfd_section_vma (abfd, bfd_section);
3177 }
c906108c
SS
3178
3179 return pc;
3180}
3181
3182/* Function: overlay_mapped_address (PC, SECTION)
3183 Returns the address corresponding to PC in the mapped (runtime) range.
3184 May be the same as PC. */
3185
3186CORE_ADDR
714835d5 3187overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3188{
714835d5
UW
3189 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3190 {
3191 bfd *abfd = section->objfile->obfd;
3192 asection *bfd_section = section->the_bfd_section;
fbd35540 3193
714835d5
UW
3194 return pc + bfd_section_vma (abfd, bfd_section)
3195 - bfd_section_lma (abfd, bfd_section);
3196 }
c906108c
SS
3197
3198 return pc;
3199}
3200
5417f6dc 3201/* Function: symbol_overlayed_address
c906108c
SS
3202 Return one of two addresses (relative to the VMA or to the LMA),
3203 depending on whether the section is mapped or not. */
3204
c5aa993b 3205CORE_ADDR
714835d5 3206symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3207{
3208 if (overlay_debugging)
3209 {
c378eb4e 3210 /* If the symbol has no section, just return its regular address. */
c906108c
SS
3211 if (section == 0)
3212 return address;
c378eb4e
MS
3213 /* If the symbol's section is not an overlay, just return its
3214 address. */
c906108c
SS
3215 if (!section_is_overlay (section))
3216 return address;
c378eb4e 3217 /* If the symbol's section is mapped, just return its address. */
c906108c
SS
3218 if (section_is_mapped (section))
3219 return address;
3220 /*
3221 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3222 * then return its LOADED address rather than its vma address!!
3223 */
3224 return overlay_unmapped_address (address, section);
3225 }
3226 return address;
3227}
3228
5417f6dc 3229/* Function: find_pc_overlay (PC)
c906108c
SS
3230 Return the best-match overlay section for PC:
3231 If PC matches a mapped overlay section's VMA, return that section.
3232 Else if PC matches an unmapped section's VMA, return that section.
3233 Else if PC matches an unmapped section's LMA, return that section. */
3234
714835d5 3235struct obj_section *
fba45db2 3236find_pc_overlay (CORE_ADDR pc)
c906108c 3237{
c5aa993b 3238 struct objfile *objfile;
c906108c
SS
3239 struct obj_section *osect, *best_match = NULL;
3240
3241 if (overlay_debugging)
b631e59b
KT
3242 {
3243 ALL_OBJSECTIONS (objfile, osect)
3244 if (section_is_overlay (osect))
c5aa993b 3245 {
b631e59b
KT
3246 if (pc_in_mapped_range (pc, osect))
3247 {
3248 if (section_is_mapped (osect))
3249 return osect;
3250 else
3251 best_match = osect;
3252 }
3253 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3254 best_match = osect;
3255 }
b631e59b 3256 }
714835d5 3257 return best_match;
c906108c
SS
3258}
3259
3260/* Function: find_pc_mapped_section (PC)
5417f6dc 3261 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3262 currently marked as MAPPED, return that section. Else return NULL. */
3263
714835d5 3264struct obj_section *
fba45db2 3265find_pc_mapped_section (CORE_ADDR pc)
c906108c 3266{
c5aa993b 3267 struct objfile *objfile;
c906108c
SS
3268 struct obj_section *osect;
3269
3270 if (overlay_debugging)
b631e59b
KT
3271 {
3272 ALL_OBJSECTIONS (objfile, osect)
3273 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3274 return osect;
3275 }
c906108c
SS
3276
3277 return NULL;
3278}
3279
3280/* Function: list_overlays_command
c378eb4e 3281 Print a list of mapped sections and their PC ranges. */
c906108c 3282
5d3055ad 3283static void
fba45db2 3284list_overlays_command (char *args, int from_tty)
c906108c 3285{
c5aa993b
JM
3286 int nmapped = 0;
3287 struct objfile *objfile;
c906108c
SS
3288 struct obj_section *osect;
3289
3290 if (overlay_debugging)
b631e59b
KT
3291 {
3292 ALL_OBJSECTIONS (objfile, osect)
714835d5 3293 if (section_is_mapped (osect))
b631e59b
KT
3294 {
3295 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3296 const char *name;
3297 bfd_vma lma, vma;
3298 int size;
3299
3300 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3301 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3302 size = bfd_get_section_size (osect->the_bfd_section);
3303 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3304
3305 printf_filtered ("Section %s, loaded at ", name);
3306 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3307 puts_filtered (" - ");
3308 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3309 printf_filtered (", mapped at ");
3310 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3311 puts_filtered (" - ");
3312 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3313 puts_filtered ("\n");
3314
3315 nmapped++;
3316 }
3317 }
c906108c 3318 if (nmapped == 0)
a3f17187 3319 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3320}
3321
3322/* Function: map_overlay_command
3323 Mark the named section as mapped (ie. residing at its VMA address). */
3324
5d3055ad 3325static void
fba45db2 3326map_overlay_command (char *args, int from_tty)
c906108c 3327{
c5aa993b
JM
3328 struct objfile *objfile, *objfile2;
3329 struct obj_section *sec, *sec2;
c906108c
SS
3330
3331 if (!overlay_debugging)
3e43a32a
MS
3332 error (_("Overlay debugging not enabled. Use "
3333 "either the 'overlay auto' or\n"
3334 "the 'overlay manual' command."));
c906108c
SS
3335
3336 if (args == 0 || *args == 0)
8a3fe4f8 3337 error (_("Argument required: name of an overlay section"));
c906108c 3338
c378eb4e 3339 /* First, find a section matching the user supplied argument. */
c906108c
SS
3340 ALL_OBJSECTIONS (objfile, sec)
3341 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b 3342 {
c378eb4e 3343 /* Now, check to see if the section is an overlay. */
714835d5 3344 if (!section_is_overlay (sec))
c5aa993b
JM
3345 continue; /* not an overlay section */
3346
c378eb4e 3347 /* Mark the overlay as "mapped". */
c5aa993b
JM
3348 sec->ovly_mapped = 1;
3349
3350 /* Next, make a pass and unmap any sections that are
3351 overlapped by this new section: */
3352 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3353 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3354 {
3355 if (info_verbose)
a3f17187 3356 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3357 bfd_section_name (objfile->obfd,
3358 sec2->the_bfd_section));
c378eb4e 3359 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
c5aa993b
JM
3360 }
3361 return;
3362 }
8a3fe4f8 3363 error (_("No overlay section called %s"), args);
c906108c
SS
3364}
3365
3366/* Function: unmap_overlay_command
5417f6dc 3367 Mark the overlay section as unmapped
c906108c
SS
3368 (ie. resident in its LMA address range, rather than the VMA range). */
3369
5d3055ad 3370static void
fba45db2 3371unmap_overlay_command (char *args, int from_tty)
c906108c 3372{
c5aa993b 3373 struct objfile *objfile;
7a270e0c 3374 struct obj_section *sec = NULL;
c906108c
SS
3375
3376 if (!overlay_debugging)
3e43a32a
MS
3377 error (_("Overlay debugging not enabled. "
3378 "Use either the 'overlay auto' or\n"
3379 "the 'overlay manual' command."));
c906108c
SS
3380
3381 if (args == 0 || *args == 0)
8a3fe4f8 3382 error (_("Argument required: name of an overlay section"));
c906108c 3383
c378eb4e 3384 /* First, find a section matching the user supplied argument. */
c906108c
SS
3385 ALL_OBJSECTIONS (objfile, sec)
3386 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3387 {
3388 if (!sec->ovly_mapped)
8a3fe4f8 3389 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3390 sec->ovly_mapped = 0;
3391 return;
3392 }
8a3fe4f8 3393 error (_("No overlay section called %s"), args);
c906108c
SS
3394}
3395
3396/* Function: overlay_auto_command
3397 A utility command to turn on overlay debugging.
c378eb4e 3398 Possibly this should be done via a set/show command. */
c906108c
SS
3399
3400static void
fba45db2 3401overlay_auto_command (char *args, int from_tty)
c906108c 3402{
d874f1e2 3403 overlay_debugging = ovly_auto;
1900040c 3404 enable_overlay_breakpoints ();
c906108c 3405 if (info_verbose)
a3f17187 3406 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3407}
3408
3409/* Function: overlay_manual_command
3410 A utility command to turn on overlay debugging.
c378eb4e 3411 Possibly this should be done via a set/show command. */
c906108c
SS
3412
3413static void
fba45db2 3414overlay_manual_command (char *args, int from_tty)
c906108c 3415{
d874f1e2 3416 overlay_debugging = ovly_on;
1900040c 3417 disable_overlay_breakpoints ();
c906108c 3418 if (info_verbose)
a3f17187 3419 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3420}
3421
3422/* Function: overlay_off_command
3423 A utility command to turn on overlay debugging.
c378eb4e 3424 Possibly this should be done via a set/show command. */
c906108c
SS
3425
3426static void
fba45db2 3427overlay_off_command (char *args, int from_tty)
c906108c 3428{
d874f1e2 3429 overlay_debugging = ovly_off;
1900040c 3430 disable_overlay_breakpoints ();
c906108c 3431 if (info_verbose)
a3f17187 3432 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3433}
3434
3435static void
fba45db2 3436overlay_load_command (char *args, int from_tty)
c906108c 3437{
e17c207e
UW
3438 struct gdbarch *gdbarch = get_current_arch ();
3439
3440 if (gdbarch_overlay_update_p (gdbarch))
3441 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3442 else
8a3fe4f8 3443 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3444}
3445
3446/* Function: overlay_command
c378eb4e 3447 A place-holder for a mis-typed command. */
c906108c 3448
c378eb4e 3449/* Command list chain containing all defined "overlay" subcommands. */
28578e6b 3450static struct cmd_list_element *overlaylist;
c906108c
SS
3451
3452static void
fba45db2 3453overlay_command (char *args, int from_tty)
c906108c 3454{
c5aa993b 3455 printf_unfiltered
c906108c 3456 ("\"overlay\" must be followed by the name of an overlay command.\n");
635c7e8a 3457 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
c906108c
SS
3458}
3459
c906108c
SS
3460/* Target Overlays for the "Simplest" overlay manager:
3461
5417f6dc
RM
3462 This is GDB's default target overlay layer. It works with the
3463 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3464 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3465 so targets that use a different runtime overlay manager can
c906108c
SS
3466 substitute their own overlay_update function and take over the
3467 function pointer.
3468
3469 The overlay_update function pokes around in the target's data structures
3470 to see what overlays are mapped, and updates GDB's overlay mapping with
3471 this information.
3472
3473 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3474 unsigned _novlys; /# number of overlay sections #/
3475 unsigned _ovly_table[_novlys][4] = {
438e1e42 3476 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
c5aa993b
JM
3477 {..., ..., ..., ...},
3478 }
3479 unsigned _novly_regions; /# number of overlay regions #/
3480 unsigned _ovly_region_table[_novly_regions][3] = {
438e1e42 3481 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
c5aa993b
JM
3482 {..., ..., ...},
3483 }
c906108c
SS
3484 These functions will attempt to update GDB's mappedness state in the
3485 symbol section table, based on the target's mappedness state.
3486
3487 To do this, we keep a cached copy of the target's _ovly_table, and
3488 attempt to detect when the cached copy is invalidated. The main
3489 entry point is "simple_overlay_update(SECT), which looks up SECT in
3490 the cached table and re-reads only the entry for that section from
c378eb4e 3491 the target (whenever possible). */
c906108c
SS
3492
3493/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3494static unsigned (*cache_ovly_table)[4] = 0;
c5aa993b 3495static unsigned cache_novlys = 0;
c906108c 3496static CORE_ADDR cache_ovly_table_base = 0;
c5aa993b
JM
3497enum ovly_index
3498 {
438e1e42 3499 VMA, OSIZE, LMA, MAPPED
c5aa993b 3500 };
c906108c 3501
c378eb4e 3502/* Throw away the cached copy of _ovly_table. */
3b7bacac 3503
c906108c 3504static void
fba45db2 3505simple_free_overlay_table (void)
c906108c
SS
3506{
3507 if (cache_ovly_table)
b8c9b27d 3508 xfree (cache_ovly_table);
c5aa993b 3509 cache_novlys = 0;
c906108c
SS
3510 cache_ovly_table = NULL;
3511 cache_ovly_table_base = 0;
3512}
3513
9216df95 3514/* Read an array of ints of size SIZE from the target into a local buffer.
c378eb4e 3515 Convert to host order. int LEN is number of ints. */
3b7bacac 3516
c906108c 3517static void
9216df95 3518read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3519 int len, int size, enum bfd_endian byte_order)
c906108c 3520{
c378eb4e 3521 /* FIXME (alloca): Not safe if array is very large. */
224c3ddb 3522 gdb_byte *buf = (gdb_byte *) alloca (len * size);
c5aa993b 3523 int i;
c906108c 3524
9216df95 3525 read_memory (memaddr, buf, len * size);
c906108c 3526 for (i = 0; i < len; i++)
e17a4113 3527 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3528}
3529
3530/* Find and grab a copy of the target _ovly_table
c378eb4e 3531 (and _novlys, which is needed for the table's size). */
3b7bacac 3532
c5aa993b 3533static int
fba45db2 3534simple_read_overlay_table (void)
c906108c 3535{
3b7344d5 3536 struct bound_minimal_symbol novlys_msym;
7c7b6655 3537 struct bound_minimal_symbol ovly_table_msym;
9216df95
UW
3538 struct gdbarch *gdbarch;
3539 int word_size;
e17a4113 3540 enum bfd_endian byte_order;
c906108c
SS
3541
3542 simple_free_overlay_table ();
9b27852e 3543 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3b7344d5 3544 if (! novlys_msym.minsym)
c906108c 3545 {
8a3fe4f8 3546 error (_("Error reading inferior's overlay table: "
0d43edd1 3547 "couldn't find `_novlys' variable\n"
8a3fe4f8 3548 "in inferior. Use `overlay manual' mode."));
0d43edd1 3549 return 0;
c906108c 3550 }
0d43edd1 3551
7c7b6655
TT
3552 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3553 if (! ovly_table_msym.minsym)
0d43edd1 3554 {
8a3fe4f8 3555 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3556 "`_ovly_table' array\n"
8a3fe4f8 3557 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3558 return 0;
3559 }
3560
7c7b6655 3561 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
9216df95 3562 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3563 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3564
77e371c0
TT
3565 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3566 4, byte_order);
0d43edd1 3567 cache_ovly_table
224c3ddb 3568 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
77e371c0 3569 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
0d43edd1 3570 read_target_long_array (cache_ovly_table_base,
777ea8f1 3571 (unsigned int *) cache_ovly_table,
e17a4113 3572 cache_novlys * 4, word_size, byte_order);
0d43edd1 3573
c5aa993b 3574 return 1; /* SUCCESS */
c906108c
SS
3575}
3576
5417f6dc 3577/* Function: simple_overlay_update_1
c906108c
SS
3578 A helper function for simple_overlay_update. Assuming a cached copy
3579 of _ovly_table exists, look through it to find an entry whose vma,
3580 lma and size match those of OSECT. Re-read the entry and make sure
3581 it still matches OSECT (else the table may no longer be valid).
3582 Set OSECT's mapped state to match the entry. Return: 1 for
3583 success, 0 for failure. */
3584
3585static int
fba45db2 3586simple_overlay_update_1 (struct obj_section *osect)
c906108c 3587{
764c99c1 3588 int i;
fbd35540
MS
3589 bfd *obfd = osect->objfile->obfd;
3590 asection *bsect = osect->the_bfd_section;
9216df95
UW
3591 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3592 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3593 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3594
c906108c 3595 for (i = 0; i < cache_novlys; i++)
fbd35540 3596 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3597 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c906108c 3598 {
9216df95
UW
3599 read_target_long_array (cache_ovly_table_base + i * word_size,
3600 (unsigned int *) cache_ovly_table[i],
e17a4113 3601 4, word_size, byte_order);
fbd35540 3602 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3603 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c906108c
SS
3604 {
3605 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3606 return 1;
3607 }
c378eb4e 3608 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3609 return 0;
3610 }
3611 return 0;
3612}
3613
3614/* Function: simple_overlay_update
5417f6dc
RM
3615 If OSECT is NULL, then update all sections' mapped state
3616 (after re-reading the entire target _ovly_table).
3617 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3618 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3619 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3620 re-read the entire cache, and go ahead and update all sections. */
3621
1c772458 3622void
fba45db2 3623simple_overlay_update (struct obj_section *osect)
c906108c 3624{
c5aa993b 3625 struct objfile *objfile;
c906108c 3626
c378eb4e 3627 /* Were we given an osect to look up? NULL means do all of them. */
c906108c 3628 if (osect)
c378eb4e 3629 /* Have we got a cached copy of the target's overlay table? */
c906108c 3630 if (cache_ovly_table != NULL)
9cc89665
MS
3631 {
3632 /* Does its cached location match what's currently in the
3633 symtab? */
3b7344d5 3634 struct bound_minimal_symbol minsym
9cc89665
MS
3635 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3636
3b7344d5 3637 if (minsym.minsym == NULL)
9cc89665
MS
3638 error (_("Error reading inferior's overlay table: couldn't "
3639 "find `_ovly_table' array\n"
3640 "in inferior. Use `overlay manual' mode."));
3641
77e371c0 3642 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
9cc89665
MS
3643 /* Then go ahead and try to look up this single section in
3644 the cache. */
3645 if (simple_overlay_update_1 (osect))
3646 /* Found it! We're done. */
3647 return;
3648 }
c906108c
SS
3649
3650 /* Cached table no good: need to read the entire table anew.
3651 Or else we want all the sections, in which case it's actually
3652 more efficient to read the whole table in one block anyway. */
3653
0d43edd1
JB
3654 if (! simple_read_overlay_table ())
3655 return;
3656
c378eb4e 3657 /* Now may as well update all sections, even if only one was requested. */
c906108c 3658 ALL_OBJSECTIONS (objfile, osect)
714835d5 3659 if (section_is_overlay (osect))
c5aa993b 3660 {
764c99c1 3661 int i;
fbd35540
MS
3662 bfd *obfd = osect->objfile->obfd;
3663 asection *bsect = osect->the_bfd_section;
c5aa993b 3664
c5aa993b 3665 for (i = 0; i < cache_novlys; i++)
fbd35540 3666 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3667 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c378eb4e 3668 { /* obj_section matches i'th entry in ovly_table. */
c5aa993b 3669 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
c378eb4e 3670 break; /* finished with inner for loop: break out. */
c5aa993b
JM
3671 }
3672 }
c906108c
SS
3673}
3674
086df311
DJ
3675/* Set the output sections and output offsets for section SECTP in
3676 ABFD. The relocation code in BFD will read these offsets, so we
3677 need to be sure they're initialized. We map each section to itself,
3678 with no offset; this means that SECTP->vma will be honored. */
3679
3680static void
3681symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3682{
3683 sectp->output_section = sectp;
3684 sectp->output_offset = 0;
3685}
3686
ac8035ab
TG
3687/* Default implementation for sym_relocate. */
3688
ac8035ab
TG
3689bfd_byte *
3690default_symfile_relocate (struct objfile *objfile, asection *sectp,
3691 bfd_byte *buf)
3692{
3019eac3
DE
3693 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3694 DWO file. */
3695 bfd *abfd = sectp->owner;
ac8035ab
TG
3696
3697 /* We're only interested in sections with relocation
3698 information. */
3699 if ((sectp->flags & SEC_RELOC) == 0)
3700 return NULL;
3701
3702 /* We will handle section offsets properly elsewhere, so relocate as if
3703 all sections begin at 0. */
3704 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3705
3706 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3707}
3708
086df311
DJ
3709/* Relocate the contents of a debug section SECTP in ABFD. The
3710 contents are stored in BUF if it is non-NULL, or returned in a
3711 malloc'd buffer otherwise.
3712
3713 For some platforms and debug info formats, shared libraries contain
3714 relocations against the debug sections (particularly for DWARF-2;
3715 one affected platform is PowerPC GNU/Linux, although it depends on
3716 the version of the linker in use). Also, ELF object files naturally
3717 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3718 the relocations in order to get the locations of symbols correct.
3719 Another example that may require relocation processing, is the
3720 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3721 debug section. */
086df311
DJ
3722
3723bfd_byte *
ac8035ab
TG
3724symfile_relocate_debug_section (struct objfile *objfile,
3725 asection *sectp, bfd_byte *buf)
086df311 3726{
ac8035ab 3727 gdb_assert (objfile->sf->sym_relocate);
086df311 3728
ac8035ab 3729 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3730}
c906108c 3731
31d99776
DJ
3732struct symfile_segment_data *
3733get_symfile_segment_data (bfd *abfd)
3734{
00b5771c 3735 const struct sym_fns *sf = find_sym_fns (abfd);
31d99776
DJ
3736
3737 if (sf == NULL)
3738 return NULL;
3739
3740 return sf->sym_segments (abfd);
3741}
3742
3743void
3744free_symfile_segment_data (struct symfile_segment_data *data)
3745{
3746 xfree (data->segment_bases);
3747 xfree (data->segment_sizes);
3748 xfree (data->segment_info);
3749 xfree (data);
3750}
3751
28c32713
JB
3752/* Given:
3753 - DATA, containing segment addresses from the object file ABFD, and
3754 the mapping from ABFD's sections onto the segments that own them,
3755 and
3756 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3757 segment addresses reported by the target,
3758 store the appropriate offsets for each section in OFFSETS.
3759
3760 If there are fewer entries in SEGMENT_BASES than there are segments
3761 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3762
8d385431
DJ
3763 If there are more entries, then ignore the extra. The target may
3764 not be able to distinguish between an empty data segment and a
3765 missing data segment; a missing text segment is less plausible. */
3b7bacac 3766
31d99776 3767int
3189cb12
DE
3768symfile_map_offsets_to_segments (bfd *abfd,
3769 const struct symfile_segment_data *data,
31d99776
DJ
3770 struct section_offsets *offsets,
3771 int num_segment_bases,
3772 const CORE_ADDR *segment_bases)
3773{
3774 int i;
3775 asection *sect;
3776
28c32713
JB
3777 /* It doesn't make sense to call this function unless you have some
3778 segment base addresses. */
202b96c1 3779 gdb_assert (num_segment_bases > 0);
28c32713 3780
31d99776
DJ
3781 /* If we do not have segment mappings for the object file, we
3782 can not relocate it by segments. */
3783 gdb_assert (data != NULL);
3784 gdb_assert (data->num_segments > 0);
3785
31d99776
DJ
3786 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3787 {
31d99776
DJ
3788 int which = data->segment_info[i];
3789
28c32713
JB
3790 gdb_assert (0 <= which && which <= data->num_segments);
3791
3792 /* Don't bother computing offsets for sections that aren't
3793 loaded as part of any segment. */
3794 if (! which)
3795 continue;
3796
3797 /* Use the last SEGMENT_BASES entry as the address of any extra
3798 segments mentioned in DATA->segment_info. */
31d99776 3799 if (which > num_segment_bases)
28c32713 3800 which = num_segment_bases;
31d99776 3801
28c32713
JB
3802 offsets->offsets[i] = (segment_bases[which - 1]
3803 - data->segment_bases[which - 1]);
31d99776
DJ
3804 }
3805
3806 return 1;
3807}
3808
3809static void
3810symfile_find_segment_sections (struct objfile *objfile)
3811{
3812 bfd *abfd = objfile->obfd;
3813 int i;
3814 asection *sect;
3815 struct symfile_segment_data *data;
3816
3817 data = get_symfile_segment_data (objfile->obfd);
3818 if (data == NULL)
3819 return;
3820
3821 if (data->num_segments != 1 && data->num_segments != 2)
3822 {
3823 free_symfile_segment_data (data);
3824 return;
3825 }
3826
3827 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3828 {
31d99776
DJ
3829 int which = data->segment_info[i];
3830
3831 if (which == 1)
3832 {
3833 if (objfile->sect_index_text == -1)
3834 objfile->sect_index_text = sect->index;
3835
3836 if (objfile->sect_index_rodata == -1)
3837 objfile->sect_index_rodata = sect->index;
3838 }
3839 else if (which == 2)
3840 {
3841 if (objfile->sect_index_data == -1)
3842 objfile->sect_index_data = sect->index;
3843
3844 if (objfile->sect_index_bss == -1)
3845 objfile->sect_index_bss = sect->index;
3846 }
3847 }
3848
3849 free_symfile_segment_data (data);
3850}
3851
76ad5e1e
NB
3852/* Listen for free_objfile events. */
3853
3854static void
3855symfile_free_objfile (struct objfile *objfile)
3856{
c33b2f12
MM
3857 /* Remove the target sections owned by this objfile. */
3858 if (objfile != NULL)
76ad5e1e
NB
3859 remove_target_sections ((void *) objfile);
3860}
3861
540c2971
DE
3862/* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3863 Expand all symtabs that match the specified criteria.
3864 See quick_symbol_functions.expand_symtabs_matching for details. */
3865
3866void
14bc53a8
PA
3867expand_symtabs_matching
3868 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3869 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3870 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3871 enum search_domain kind)
540c2971
DE
3872{
3873 struct objfile *objfile;
3874
3875 ALL_OBJFILES (objfile)
3876 {
3877 if (objfile->sf)
bb4142cf 3878 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
276d885b 3879 symbol_matcher,
14bc53a8 3880 expansion_notify, kind);
540c2971
DE
3881 }
3882}
3883
3884/* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3885 Map function FUN over every file.
3886 See quick_symbol_functions.map_symbol_filenames for details. */
3887
3888void
bb4142cf
DE
3889map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3890 int need_fullname)
540c2971
DE
3891{
3892 struct objfile *objfile;
3893
3894 ALL_OBJFILES (objfile)
3895 {
3896 if (objfile->sf)
3897 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3898 need_fullname);
3899 }
3900}
3901
c906108c 3902void
fba45db2 3903_initialize_symfile (void)
c906108c
SS
3904{
3905 struct cmd_list_element *c;
c5aa993b 3906
76ad5e1e
NB
3907 observer_attach_free_objfile (symfile_free_objfile);
3908
1a966eab
AC
3909 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3910Load symbol table from executable file FILE.\n\
c906108c 3911The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3912to execute."), &cmdlist);
5ba2abeb 3913 set_cmd_completer (c, filename_completer);
c906108c 3914
1a966eab 3915 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3916Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3e43a32a
MS
3917Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3918 ...]\nADDR is the starting address of the file's text.\n\
db162d44
EZ
3919The optional arguments are section-name section-address pairs and\n\
3920should be specified if the data and bss segments are not contiguous\n\
1a966eab 3921with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3922 &cmdlist);
5ba2abeb 3923 set_cmd_completer (c, filename_completer);
c906108c 3924
63644780
NB
3925 c = add_cmd ("remove-symbol-file", class_files,
3926 remove_symbol_file_command, _("\
3927Remove a symbol file added via the add-symbol-file command.\n\
3928Usage: remove-symbol-file FILENAME\n\
3929 remove-symbol-file -a ADDRESS\n\
3930The file to remove can be identified by its filename or by an address\n\
3931that lies within the boundaries of this symbol file in memory."),
3932 &cmdlist);
3933
1a966eab
AC
3934 c = add_cmd ("load", class_files, load_command, _("\
3935Dynamically load FILE into the running program, and record its symbols\n\
1986bccd 3936for access from GDB.\n\
5cf30ebf
LM
3937An optional load OFFSET may also be given as a literal address.\n\
3938When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3939on its own.\n\
3940Usage: load [FILE] [OFFSET]"), &cmdlist);
5ba2abeb 3941 set_cmd_completer (c, filename_completer);
c906108c 3942
c5aa993b 3943 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3944 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3945 "overlay ", 0, &cmdlist);
3946
3947 add_com_alias ("ovly", "overlay", class_alias, 1);
3948 add_com_alias ("ov", "overlay", class_alias, 1);
3949
c5aa993b 3950 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3951 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3952
c5aa993b 3953 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3954 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3955
c5aa993b 3956 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3957 _("List mappings of overlay sections."), &overlaylist);
c906108c 3958
c5aa993b 3959 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3960 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3961 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3962 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3963 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3964 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3965 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3966 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3967
3968 /* Filename extension to source language lookup table: */
26c41df3
AC
3969 add_setshow_string_noescape_cmd ("extension-language", class_files,
3970 &ext_args, _("\
3971Set mapping between filename extension and source language."), _("\
3972Show mapping between filename extension and source language."), _("\
3973Usage: set extension-language .foo bar"),
3974 set_ext_lang_command,
920d2a44 3975 show_ext_args,
26c41df3 3976 &setlist, &showlist);
c906108c 3977
c5aa993b 3978 add_info ("extensions", info_ext_lang_command,
1bedd215 3979 _("All filename extensions associated with a source language."));
917317f4 3980
525226b5
AC
3981 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3982 &debug_file_directory, _("\
24ddea62
JK
3983Set the directories where separate debug symbols are searched for."), _("\
3984Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
3985Separate debug symbols are first searched for in the same\n\
3986directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3987and lastly at the path of the directory of the binary with\n\
24ddea62 3988each global debug-file-directory component prepended."),
525226b5 3989 NULL,
920d2a44 3990 show_debug_file_directory,
525226b5 3991 &setlist, &showlist);
770e7fc7
DE
3992
3993 add_setshow_enum_cmd ("symbol-loading", no_class,
3994 print_symbol_loading_enums, &print_symbol_loading,
3995 _("\
3996Set printing of symbol loading messages."), _("\
3997Show printing of symbol loading messages."), _("\
3998off == turn all messages off\n\
3999brief == print messages for the executable,\n\
4000 and brief messages for shared libraries\n\
4001full == print messages for the executable,\n\
4002 and messages for each shared library."),
4003 NULL,
4004 NULL,
4005 &setprintlist, &showprintlist);
c4dcb155
SM
4006
4007 add_setshow_boolean_cmd ("separate-debug-file", no_class,
4008 &separate_debug_file_debug, _("\
4009Set printing of separate debug info file search debug."), _("\
4010Show printing of separate debug info file search debug."), _("\
4011When on, GDB prints the searched locations while looking for separate debug \
4012info files."), NULL, NULL, &setdebuglist, &showdebuglist);
c906108c 4013}
This page took 2.436493 seconds and 4 git commands to generate.