* gdb.base/expand-psymtabs.c: New testcase
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
6aba47ca
DJ
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
777ea8f1 5 Free Software Foundation, Inc.
8926118c 6
c906108c
SS
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
a9762ec7 13 the Free Software Foundation; either version 3 of the License, or
c5aa993b 14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b 21 You should have received a copy of the GNU General Public License
a9762ec7 22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
23
24#include "defs.h"
086df311 25#include "bfdlink.h"
c906108c
SS
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "gdbcore.h"
29#include "frame.h"
30#include "target.h"
31#include "value.h"
32#include "symfile.h"
33#include "objfiles.h"
0378c332 34#include "source.h"
c906108c
SS
35#include "gdbcmd.h"
36#include "breakpoint.h"
37#include "language.h"
38#include "complaints.h"
39#include "demangle.h"
c5aa993b 40#include "inferior.h" /* for write_pc */
5b5d99cf 41#include "filenames.h" /* for DOSish file names */
c906108c 42#include "gdb-stabs.h"
04ea0df1 43#include "gdb_obstack.h"
d75b5104 44#include "completer.h"
af5f3db6 45#include "bcache.h"
2de7ced7 46#include "hashtab.h"
dbda9972 47#include "readline/readline.h"
7e8580c1 48#include "gdb_assert.h"
fe898f56 49#include "block.h"
ea53e89f 50#include "observer.h"
c1bd25fd 51#include "exec.h"
9bdcbae7 52#include "parser-defs.h"
8756216b 53#include "varobj.h"
77069918 54#include "elf-bfd.h"
c906108c 55
c906108c
SS
56#include <sys/types.h>
57#include <fcntl.h>
58#include "gdb_string.h"
59#include "gdb_stat.h"
60#include <ctype.h>
61#include <time.h>
2b71414d 62#include <sys/time.h>
c906108c 63
c906108c 64
9a4105ab
AC
65int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
66void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
67 unsigned long section_sent,
68 unsigned long section_size,
69 unsigned long total_sent,
c2d11a7d 70 unsigned long total_size);
769d7dc4
AC
71void (*deprecated_pre_add_symbol_hook) (const char *);
72void (*deprecated_post_add_symbol_hook) (void);
c906108c 73
74b7792f
AC
74static void clear_symtab_users_cleanup (void *ignore);
75
c906108c 76/* Global variables owned by this file */
c5aa993b 77int readnow_symbol_files; /* Read full symbols immediately */
c906108c 78
c906108c
SS
79/* External variables and functions referenced. */
80
a14ed312 81extern void report_transfer_performance (unsigned long, time_t, time_t);
c906108c
SS
82
83/* Functions this file defines */
84
85#if 0
a14ed312
KB
86static int simple_read_overlay_region_table (void);
87static void simple_free_overlay_region_table (void);
c906108c
SS
88#endif
89
a14ed312 90static void set_initial_language (void);
c906108c 91
a14ed312 92static void load_command (char *, int);
c906108c 93
d7db6da9
FN
94static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
95
a14ed312 96static void add_symbol_file_command (char *, int);
c906108c 97
a14ed312 98static void add_shared_symbol_files_command (char *, int);
c906108c 99
5b5d99cf
JB
100static void reread_separate_symbols (struct objfile *objfile);
101
a14ed312 102static void cashier_psymtab (struct partial_symtab *);
c906108c 103
a14ed312 104bfd *symfile_bfd_open (char *);
c906108c 105
0e931cf0
JB
106int get_section_index (struct objfile *, char *);
107
31d99776 108static struct sym_fns *find_sym_fns (bfd *);
c906108c 109
a14ed312 110static void decrement_reading_symtab (void *);
c906108c 111
a14ed312 112static void overlay_invalidate_all (void);
c906108c 113
a14ed312 114static int overlay_is_mapped (struct obj_section *);
c906108c 115
a14ed312 116void list_overlays_command (char *, int);
c906108c 117
a14ed312 118void map_overlay_command (char *, int);
c906108c 119
a14ed312 120void unmap_overlay_command (char *, int);
c906108c 121
a14ed312 122static void overlay_auto_command (char *, int);
c906108c 123
a14ed312 124static void overlay_manual_command (char *, int);
c906108c 125
a14ed312 126static void overlay_off_command (char *, int);
c906108c 127
a14ed312 128static void overlay_load_command (char *, int);
c906108c 129
a14ed312 130static void overlay_command (char *, int);
c906108c 131
a14ed312 132static void simple_free_overlay_table (void);
c906108c 133
a14ed312 134static void read_target_long_array (CORE_ADDR, unsigned int *, int);
c906108c 135
a14ed312 136static int simple_read_overlay_table (void);
c906108c 137
a14ed312 138static int simple_overlay_update_1 (struct obj_section *);
c906108c 139
a14ed312 140static void add_filename_language (char *ext, enum language lang);
392a587b 141
a14ed312 142static void info_ext_lang_command (char *args, int from_tty);
392a587b 143
5b5d99cf
JB
144static char *find_separate_debug_file (struct objfile *objfile);
145
a14ed312 146static void init_filename_language_table (void);
392a587b 147
31d99776
DJ
148static void symfile_find_segment_sections (struct objfile *objfile);
149
a14ed312 150void _initialize_symfile (void);
c906108c
SS
151
152/* List of all available sym_fns. On gdb startup, each object file reader
153 calls add_symtab_fns() to register information on each format it is
154 prepared to read. */
155
156static struct sym_fns *symtab_fns = NULL;
157
158/* Flag for whether user will be reloading symbols multiple times.
159 Defaults to ON for VxWorks, otherwise OFF. */
160
161#ifdef SYMBOL_RELOADING_DEFAULT
162int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
163#else
164int symbol_reloading = 0;
165#endif
920d2a44
AC
166static void
167show_symbol_reloading (struct ui_file *file, int from_tty,
168 struct cmd_list_element *c, const char *value)
169{
170 fprintf_filtered (file, _("\
171Dynamic symbol table reloading multiple times in one run is %s.\n"),
172 value);
173}
174
c906108c 175
b7209cb4
FF
176/* If non-zero, shared library symbols will be added automatically
177 when the inferior is created, new libraries are loaded, or when
178 attaching to the inferior. This is almost always what users will
179 want to have happen; but for very large programs, the startup time
180 will be excessive, and so if this is a problem, the user can clear
181 this flag and then add the shared library symbols as needed. Note
182 that there is a potential for confusion, since if the shared
c906108c 183 library symbols are not loaded, commands like "info fun" will *not*
b7209cb4 184 report all the functions that are actually present. */
c906108c
SS
185
186int auto_solib_add = 1;
b7209cb4
FF
187
188/* For systems that support it, a threshold size in megabytes. If
189 automatically adding a new library's symbol table to those already
190 known to the debugger would cause the total shared library symbol
191 size to exceed this threshhold, then the shlib's symbols are not
192 added. The threshold is ignored if the user explicitly asks for a
193 shlib to be added, such as when using the "sharedlibrary"
194 command. */
195
196int auto_solib_limit;
c906108c 197\f
c5aa993b 198
0fe19209
DC
199/* This compares two partial symbols by names, using strcmp_iw_ordered
200 for the comparison. */
c906108c
SS
201
202static int
0cd64fe2 203compare_psymbols (const void *s1p, const void *s2p)
c906108c 204{
0fe19209
DC
205 struct partial_symbol *const *s1 = s1p;
206 struct partial_symbol *const *s2 = s2p;
207
4725b721
PH
208 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
209 SYMBOL_SEARCH_NAME (*s2));
c906108c
SS
210}
211
212void
fba45db2 213sort_pst_symbols (struct partial_symtab *pst)
c906108c
SS
214{
215 /* Sort the global list; don't sort the static list */
216
c5aa993b
JM
217 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
218 pst->n_global_syms, sizeof (struct partial_symbol *),
c906108c
SS
219 compare_psymbols);
220}
221
c906108c
SS
222/* Make a null terminated copy of the string at PTR with SIZE characters in
223 the obstack pointed to by OBSTACKP . Returns the address of the copy.
224 Note that the string at PTR does not have to be null terminated, I.E. it
225 may be part of a larger string and we are only saving a substring. */
226
227char *
63ca651f 228obsavestring (const char *ptr, int size, struct obstack *obstackp)
c906108c 229{
52f0bd74 230 char *p = (char *) obstack_alloc (obstackp, size + 1);
c906108c
SS
231 /* Open-coded memcpy--saves function call time. These strings are usually
232 short. FIXME: Is this really still true with a compiler that can
233 inline memcpy? */
234 {
aa1ee363
AC
235 const char *p1 = ptr;
236 char *p2 = p;
63ca651f 237 const char *end = ptr + size;
c906108c
SS
238 while (p1 != end)
239 *p2++ = *p1++;
240 }
241 p[size] = 0;
242 return p;
243}
244
245/* Concatenate strings S1, S2 and S3; return the new string. Space is found
246 in the obstack pointed to by OBSTACKP. */
247
248char *
fba45db2
KB
249obconcat (struct obstack *obstackp, const char *s1, const char *s2,
250 const char *s3)
c906108c 251{
52f0bd74
AC
252 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
253 char *val = (char *) obstack_alloc (obstackp, len);
c906108c
SS
254 strcpy (val, s1);
255 strcat (val, s2);
256 strcat (val, s3);
257 return val;
258}
259
260/* True if we are nested inside psymtab_to_symtab. */
261
262int currently_reading_symtab = 0;
263
264static void
fba45db2 265decrement_reading_symtab (void *dummy)
c906108c
SS
266{
267 currently_reading_symtab--;
268}
269
270/* Get the symbol table that corresponds to a partial_symtab.
271 This is fast after the first time you do it. In fact, there
272 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
273 case inline. */
274
275struct symtab *
aa1ee363 276psymtab_to_symtab (struct partial_symtab *pst)
c906108c
SS
277{
278 /* If it's been looked up before, return it. */
279 if (pst->symtab)
280 return pst->symtab;
281
282 /* If it has not yet been read in, read it. */
283 if (!pst->readin)
c5aa993b 284 {
c906108c
SS
285 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
286 currently_reading_symtab++;
287 (*pst->read_symtab) (pst);
288 do_cleanups (back_to);
289 }
290
291 return pst->symtab;
292}
293
5417f6dc
RM
294/* Remember the lowest-addressed loadable section we've seen.
295 This function is called via bfd_map_over_sections.
c906108c
SS
296
297 In case of equal vmas, the section with the largest size becomes the
298 lowest-addressed loadable section.
299
300 If the vmas and sizes are equal, the last section is considered the
301 lowest-addressed loadable section. */
302
303void
4efb68b1 304find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 305{
c5aa993b 306 asection **lowest = (asection **) obj;
c906108c
SS
307
308 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
309 return;
310 if (!*lowest)
311 *lowest = sect; /* First loadable section */
312 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
313 *lowest = sect; /* A lower loadable section */
314 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
315 && (bfd_section_size (abfd, (*lowest))
316 <= bfd_section_size (abfd, sect)))
317 *lowest = sect;
318}
319
a39a16c4
MM
320/* Create a new section_addr_info, with room for NUM_SECTIONS. */
321
322struct section_addr_info *
323alloc_section_addr_info (size_t num_sections)
324{
325 struct section_addr_info *sap;
326 size_t size;
327
328 size = (sizeof (struct section_addr_info)
329 + sizeof (struct other_sections) * (num_sections - 1));
330 sap = (struct section_addr_info *) xmalloc (size);
331 memset (sap, 0, size);
332 sap->num_sections = num_sections;
333
334 return sap;
335}
62557bbc 336
7b90c3f9
JB
337
338/* Return a freshly allocated copy of ADDRS. The section names, if
339 any, are also freshly allocated copies of those in ADDRS. */
340struct section_addr_info *
341copy_section_addr_info (struct section_addr_info *addrs)
342{
343 struct section_addr_info *copy
344 = alloc_section_addr_info (addrs->num_sections);
345 int i;
346
347 copy->num_sections = addrs->num_sections;
348 for (i = 0; i < addrs->num_sections; i++)
349 {
350 copy->other[i].addr = addrs->other[i].addr;
351 if (addrs->other[i].name)
352 copy->other[i].name = xstrdup (addrs->other[i].name);
353 else
354 copy->other[i].name = NULL;
355 copy->other[i].sectindex = addrs->other[i].sectindex;
356 }
357
358 return copy;
359}
360
361
362
62557bbc
KB
363/* Build (allocate and populate) a section_addr_info struct from
364 an existing section table. */
365
366extern struct section_addr_info *
367build_section_addr_info_from_section_table (const struct section_table *start,
368 const struct section_table *end)
369{
370 struct section_addr_info *sap;
371 const struct section_table *stp;
372 int oidx;
373
a39a16c4 374 sap = alloc_section_addr_info (end - start);
62557bbc
KB
375
376 for (stp = start, oidx = 0; stp != end; stp++)
377 {
5417f6dc 378 if (bfd_get_section_flags (stp->bfd,
fbd35540 379 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 380 && oidx < end - start)
62557bbc
KB
381 {
382 sap->other[oidx].addr = stp->addr;
5417f6dc 383 sap->other[oidx].name
fbd35540 384 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
62557bbc
KB
385 sap->other[oidx].sectindex = stp->the_bfd_section->index;
386 oidx++;
387 }
388 }
389
390 return sap;
391}
392
393
394/* Free all memory allocated by build_section_addr_info_from_section_table. */
395
396extern void
397free_section_addr_info (struct section_addr_info *sap)
398{
399 int idx;
400
a39a16c4 401 for (idx = 0; idx < sap->num_sections; idx++)
62557bbc 402 if (sap->other[idx].name)
b8c9b27d
KB
403 xfree (sap->other[idx].name);
404 xfree (sap);
62557bbc
KB
405}
406
407
e8289572
JB
408/* Initialize OBJFILE's sect_index_* members. */
409static void
410init_objfile_sect_indices (struct objfile *objfile)
c906108c 411{
e8289572 412 asection *sect;
c906108c 413 int i;
5417f6dc 414
b8fbeb18 415 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 416 if (sect)
b8fbeb18
EZ
417 objfile->sect_index_text = sect->index;
418
419 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 420 if (sect)
b8fbeb18
EZ
421 objfile->sect_index_data = sect->index;
422
423 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 424 if (sect)
b8fbeb18
EZ
425 objfile->sect_index_bss = sect->index;
426
427 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 428 if (sect)
b8fbeb18
EZ
429 objfile->sect_index_rodata = sect->index;
430
bbcd32ad
FF
431 /* This is where things get really weird... We MUST have valid
432 indices for the various sect_index_* members or gdb will abort.
433 So if for example, there is no ".text" section, we have to
31d99776
DJ
434 accomodate that. First, check for a file with the standard
435 one or two segments. */
436
437 symfile_find_segment_sections (objfile);
438
439 /* Except when explicitly adding symbol files at some address,
440 section_offsets contains nothing but zeros, so it doesn't matter
441 which slot in section_offsets the individual sect_index_* members
442 index into. So if they are all zero, it is safe to just point
443 all the currently uninitialized indices to the first slot. But
444 beware: if this is the main executable, it may be relocated
445 later, e.g. by the remote qOffsets packet, and then this will
446 be wrong! That's why we try segments first. */
bbcd32ad
FF
447
448 for (i = 0; i < objfile->num_sections; i++)
449 {
450 if (ANOFFSET (objfile->section_offsets, i) != 0)
451 {
452 break;
453 }
454 }
455 if (i == objfile->num_sections)
456 {
457 if (objfile->sect_index_text == -1)
458 objfile->sect_index_text = 0;
459 if (objfile->sect_index_data == -1)
460 objfile->sect_index_data = 0;
461 if (objfile->sect_index_bss == -1)
462 objfile->sect_index_bss = 0;
463 if (objfile->sect_index_rodata == -1)
464 objfile->sect_index_rodata = 0;
465 }
b8fbeb18 466}
c906108c 467
c1bd25fd
DJ
468/* The arguments to place_section. */
469
470struct place_section_arg
471{
472 struct section_offsets *offsets;
473 CORE_ADDR lowest;
474};
475
476/* Find a unique offset to use for loadable section SECT if
477 the user did not provide an offset. */
478
479void
480place_section (bfd *abfd, asection *sect, void *obj)
481{
482 struct place_section_arg *arg = obj;
483 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
484 int done;
3bd72c6f 485 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 486
2711e456
DJ
487 /* We are only interested in allocated sections. */
488 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
489 return;
490
491 /* If the user specified an offset, honor it. */
492 if (offsets[sect->index] != 0)
493 return;
494
495 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
496 start_addr = (arg->lowest + align - 1) & -align;
497
c1bd25fd
DJ
498 do {
499 asection *cur_sec;
c1bd25fd 500
c1bd25fd
DJ
501 done = 1;
502
503 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
504 {
505 int indx = cur_sec->index;
506 CORE_ADDR cur_offset;
507
508 /* We don't need to compare against ourself. */
509 if (cur_sec == sect)
510 continue;
511
2711e456
DJ
512 /* We can only conflict with allocated sections. */
513 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
514 continue;
515
516 /* If the section offset is 0, either the section has not been placed
517 yet, or it was the lowest section placed (in which case LOWEST
518 will be past its end). */
519 if (offsets[indx] == 0)
520 continue;
521
522 /* If this section would overlap us, then we must move up. */
523 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
524 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
525 {
526 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
527 start_addr = (start_addr + align - 1) & -align;
528 done = 0;
3bd72c6f 529 break;
c1bd25fd
DJ
530 }
531
532 /* Otherwise, we appear to be OK. So far. */
533 }
534 }
535 while (!done);
536
537 offsets[sect->index] = start_addr;
538 arg->lowest = start_addr + bfd_get_section_size (sect);
539
540 exec_set_section_address (bfd_get_filename (abfd), sect->index, start_addr);
541}
e8289572
JB
542
543/* Parse the user's idea of an offset for dynamic linking, into our idea
5417f6dc 544 of how to represent it for fast symbol reading. This is the default
e8289572
JB
545 version of the sym_fns.sym_offsets function for symbol readers that
546 don't need to do anything special. It allocates a section_offsets table
547 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
548
549void
550default_symfile_offsets (struct objfile *objfile,
551 struct section_addr_info *addrs)
552{
553 int i;
554
a39a16c4 555 objfile->num_sections = bfd_count_sections (objfile->obfd);
e8289572 556 objfile->section_offsets = (struct section_offsets *)
5417f6dc 557 obstack_alloc (&objfile->objfile_obstack,
a39a16c4 558 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
5417f6dc 559 memset (objfile->section_offsets, 0,
a39a16c4 560 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
e8289572
JB
561
562 /* Now calculate offsets for section that were specified by the
563 caller. */
a39a16c4 564 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
e8289572
JB
565 {
566 struct other_sections *osp ;
567
568 osp = &addrs->other[i] ;
569 if (osp->addr == 0)
570 continue;
571
572 /* Record all sections in offsets */
573 /* The section_offsets in the objfile are here filled in using
574 the BFD index. */
575 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
576 }
577
c1bd25fd
DJ
578 /* For relocatable files, all loadable sections will start at zero.
579 The zero is meaningless, so try to pick arbitrary addresses such
580 that no loadable sections overlap. This algorithm is quadratic,
581 but the number of sections in a single object file is generally
582 small. */
583 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
584 {
585 struct place_section_arg arg;
2711e456
DJ
586 bfd *abfd = objfile->obfd;
587 asection *cur_sec;
588 CORE_ADDR lowest = 0;
589
590 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
591 /* We do not expect this to happen; just skip this step if the
592 relocatable file has a section with an assigned VMA. */
593 if (bfd_section_vma (abfd, cur_sec) != 0)
594 break;
595
596 if (cur_sec == NULL)
597 {
598 CORE_ADDR *offsets = objfile->section_offsets->offsets;
599
600 /* Pick non-overlapping offsets for sections the user did not
601 place explicitly. */
602 arg.offsets = objfile->section_offsets;
603 arg.lowest = 0;
604 bfd_map_over_sections (objfile->obfd, place_section, &arg);
605
606 /* Correctly filling in the section offsets is not quite
607 enough. Relocatable files have two properties that
608 (most) shared objects do not:
609
610 - Their debug information will contain relocations. Some
611 shared libraries do also, but many do not, so this can not
612 be assumed.
613
614 - If there are multiple code sections they will be loaded
615 at different relative addresses in memory than they are
616 in the objfile, since all sections in the file will start
617 at address zero.
618
619 Because GDB has very limited ability to map from an
620 address in debug info to the correct code section,
621 it relies on adding SECT_OFF_TEXT to things which might be
622 code. If we clear all the section offsets, and set the
623 section VMAs instead, then symfile_relocate_debug_section
624 will return meaningful debug information pointing at the
625 correct sections.
626
627 GDB has too many different data structures for section
628 addresses - a bfd, objfile, and so_list all have section
629 tables, as does exec_ops. Some of these could probably
630 be eliminated. */
631
632 for (cur_sec = abfd->sections; cur_sec != NULL;
633 cur_sec = cur_sec->next)
634 {
635 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
636 continue;
637
638 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
639 offsets[cur_sec->index] = 0;
640 }
641 }
c1bd25fd
DJ
642 }
643
e8289572
JB
644 /* Remember the bfd indexes for the .text, .data, .bss and
645 .rodata sections. */
646 init_objfile_sect_indices (objfile);
647}
648
649
31d99776
DJ
650/* Divide the file into segments, which are individual relocatable units.
651 This is the default version of the sym_fns.sym_segments function for
652 symbol readers that do not have an explicit representation of segments.
653 It assumes that object files do not have segments, and fully linked
654 files have a single segment. */
655
656struct symfile_segment_data *
657default_symfile_segments (bfd *abfd)
658{
659 int num_sections, i;
660 asection *sect;
661 struct symfile_segment_data *data;
662 CORE_ADDR low, high;
663
664 /* Relocatable files contain enough information to position each
665 loadable section independently; they should not be relocated
666 in segments. */
667 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
668 return NULL;
669
670 /* Make sure there is at least one loadable section in the file. */
671 for (sect = abfd->sections; sect != NULL; sect = sect->next)
672 {
673 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
674 continue;
675
676 break;
677 }
678 if (sect == NULL)
679 return NULL;
680
681 low = bfd_get_section_vma (abfd, sect);
682 high = low + bfd_get_section_size (sect);
683
684 data = XZALLOC (struct symfile_segment_data);
685 data->num_segments = 1;
686 data->segment_bases = XCALLOC (1, CORE_ADDR);
687 data->segment_sizes = XCALLOC (1, CORE_ADDR);
688
689 num_sections = bfd_count_sections (abfd);
690 data->segment_info = XCALLOC (num_sections, int);
691
692 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
693 {
694 CORE_ADDR vma;
695
696 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
697 continue;
698
699 vma = bfd_get_section_vma (abfd, sect);
700 if (vma < low)
701 low = vma;
702 if (vma + bfd_get_section_size (sect) > high)
703 high = vma + bfd_get_section_size (sect);
704
705 data->segment_info[i] = 1;
706 }
707
708 data->segment_bases[0] = low;
709 data->segment_sizes[0] = high - low;
710
711 return data;
712}
713
c906108c
SS
714/* Process a symbol file, as either the main file or as a dynamically
715 loaded file.
716
96baa820
JM
717 OBJFILE is where the symbols are to be read from.
718
7e8580c1
JB
719 ADDRS is the list of section load addresses. If the user has given
720 an 'add-symbol-file' command, then this is the list of offsets and
721 addresses he or she provided as arguments to the command; or, if
722 we're handling a shared library, these are the actual addresses the
723 sections are loaded at, according to the inferior's dynamic linker
724 (as gleaned by GDB's shared library code). We convert each address
725 into an offset from the section VMA's as it appears in the object
726 file, and then call the file's sym_offsets function to convert this
727 into a format-specific offset table --- a `struct section_offsets'.
728 If ADDRS is non-zero, OFFSETS must be zero.
729
730 OFFSETS is a table of section offsets already in the right
731 format-specific representation. NUM_OFFSETS is the number of
732 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
733 assume this is the proper table the call to sym_offsets described
734 above would produce. Instead of calling sym_offsets, we just dump
735 it right into objfile->section_offsets. (When we're re-reading
736 symbols from an objfile, we don't have the original load address
737 list any more; all we have is the section offset table.) If
738 OFFSETS is non-zero, ADDRS must be zero.
96baa820
JM
739
740 MAINLINE is nonzero if this is the main symbol file, or zero if
741 it's an extra symbol file such as dynamically loaded code.
742
743 VERBO is nonzero if the caller has printed a verbose message about
744 the symbol reading (and complaints can be more terse about it). */
c906108c
SS
745
746void
7e8580c1
JB
747syms_from_objfile (struct objfile *objfile,
748 struct section_addr_info *addrs,
749 struct section_offsets *offsets,
750 int num_offsets,
751 int mainline,
752 int verbo)
c906108c 753{
a39a16c4 754 struct section_addr_info *local_addr = NULL;
c906108c 755 struct cleanup *old_chain;
2acceee2 756
7e8580c1 757 gdb_assert (! (addrs && offsets));
2acceee2 758
c906108c 759 init_entry_point_info (objfile);
31d99776 760 objfile->sf = find_sym_fns (objfile->obfd);
c906108c 761
75245b24
MS
762 if (objfile->sf == NULL)
763 return; /* No symbols. */
764
c906108c
SS
765 /* Make sure that partially constructed symbol tables will be cleaned up
766 if an error occurs during symbol reading. */
74b7792f 767 old_chain = make_cleanup_free_objfile (objfile);
c906108c 768
a39a16c4
MM
769 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
770 list. We now establish the convention that an addr of zero means
771 no load address was specified. */
772 if (! addrs && ! offsets)
773 {
5417f6dc 774 local_addr
a39a16c4
MM
775 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
776 make_cleanup (xfree, local_addr);
777 addrs = local_addr;
778 }
779
780 /* Now either addrs or offsets is non-zero. */
781
c5aa993b 782 if (mainline)
c906108c
SS
783 {
784 /* We will modify the main symbol table, make sure that all its users
c5aa993b 785 will be cleaned up if an error occurs during symbol reading. */
74b7792f 786 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
787
788 /* Since no error yet, throw away the old symbol table. */
789
790 if (symfile_objfile != NULL)
791 {
792 free_objfile (symfile_objfile);
793 symfile_objfile = NULL;
794 }
795
796 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
797 If the user wants to get rid of them, they should do "symbol-file"
798 without arguments first. Not sure this is the best behavior
799 (PR 2207). */
c906108c 800
c5aa993b 801 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
802 }
803
804 /* Convert addr into an offset rather than an absolute address.
805 We find the lowest address of a loaded segment in the objfile,
53a5351d 806 and assume that <addr> is where that got loaded.
c906108c 807
53a5351d
JM
808 We no longer warn if the lowest section is not a text segment (as
809 happens for the PA64 port. */
1549f619 810 if (!mainline && addrs && addrs->other[0].name)
c906108c 811 {
1549f619
EZ
812 asection *lower_sect;
813 asection *sect;
814 CORE_ADDR lower_offset;
815 int i;
816
5417f6dc 817 /* Find lowest loadable section to be used as starting point for
2acceee2
JM
818 continguous sections. FIXME!! won't work without call to find
819 .text first, but this assumes text is lowest section. */
820 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
821 if (lower_sect == NULL)
c906108c 822 bfd_map_over_sections (objfile->obfd, find_lowest_section,
4efb68b1 823 &lower_sect);
2acceee2 824 if (lower_sect == NULL)
8a3fe4f8 825 warning (_("no loadable sections found in added symbol-file %s"),
c906108c 826 objfile->name);
5417f6dc 827 else
b8fbeb18 828 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
8a3fe4f8 829 warning (_("Lowest section in %s is %s at %s"),
b8fbeb18
EZ
830 objfile->name,
831 bfd_section_name (objfile->obfd, lower_sect),
832 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
2acceee2
JM
833 if (lower_sect != NULL)
834 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
835 else
836 lower_offset = 0;
5417f6dc 837
13de58df 838 /* Calculate offsets for the loadable sections.
2acceee2
JM
839 FIXME! Sections must be in order of increasing loadable section
840 so that contiguous sections can use the lower-offset!!!
5417f6dc 841
13de58df
JB
842 Adjust offsets if the segments are not contiguous.
843 If the section is contiguous, its offset should be set to
2acceee2
JM
844 the offset of the highest loadable section lower than it
845 (the loadable section directly below it in memory).
846 this_offset = lower_offset = lower_addr - lower_orig_addr */
847
1549f619 848 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
7e8580c1
JB
849 {
850 if (addrs->other[i].addr != 0)
851 {
852 sect = bfd_get_section_by_name (objfile->obfd,
853 addrs->other[i].name);
854 if (sect)
855 {
856 addrs->other[i].addr
857 -= bfd_section_vma (objfile->obfd, sect);
858 lower_offset = addrs->other[i].addr;
859 /* This is the index used by BFD. */
860 addrs->other[i].sectindex = sect->index ;
861 }
862 else
863 {
8a3fe4f8 864 warning (_("section %s not found in %s"),
5417f6dc 865 addrs->other[i].name,
7e8580c1
JB
866 objfile->name);
867 addrs->other[i].addr = 0;
868 }
869 }
870 else
871 addrs->other[i].addr = lower_offset;
872 }
c906108c
SS
873 }
874
875 /* Initialize symbol reading routines for this objfile, allow complaints to
876 appear for this new file, and record how verbose to be, then do the
877 initial symbol reading for this file. */
878
c5aa993b 879 (*objfile->sf->sym_init) (objfile);
b9caf505 880 clear_complaints (&symfile_complaints, 1, verbo);
c906108c 881
7e8580c1
JB
882 if (addrs)
883 (*objfile->sf->sym_offsets) (objfile, addrs);
884 else
885 {
886 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
887
888 /* Just copy in the offset table directly as given to us. */
889 objfile->num_sections = num_offsets;
890 objfile->section_offsets
891 = ((struct section_offsets *)
8b92e4d5 892 obstack_alloc (&objfile->objfile_obstack, size));
7e8580c1
JB
893 memcpy (objfile->section_offsets, offsets, size);
894
895 init_objfile_sect_indices (objfile);
896 }
c906108c 897
52d16ba8 898#ifndef DEPRECATED_IBM6000_TARGET
c906108c
SS
899 /* This is a SVR4/SunOS specific hack, I think. In any event, it
900 screws RS/6000. sym_offsets should be doing this sort of thing,
901 because it knows the mapping between bfd sections and
902 section_offsets. */
903 /* This is a hack. As far as I can tell, section offsets are not
904 target dependent. They are all set to addr with a couple of
905 exceptions. The exceptions are sysvr4 shared libraries, whose
906 offsets are kept in solib structures anyway and rs6000 xcoff
907 which handles shared libraries in a completely unique way.
908
909 Section offsets are built similarly, except that they are built
910 by adding addr in all cases because there is no clear mapping
911 from section_offsets into actual sections. Note that solib.c
96baa820 912 has a different algorithm for finding section offsets.
c906108c
SS
913
914 These should probably all be collapsed into some target
915 independent form of shared library support. FIXME. */
916
2acceee2 917 if (addrs)
c906108c
SS
918 {
919 struct obj_section *s;
920
5417f6dc
RM
921 /* Map section offsets in "addr" back to the object's
922 sections by comparing the section names with bfd's
2acceee2
JM
923 section names. Then adjust the section address by
924 the offset. */ /* for gdb/13815 */
5417f6dc 925
96baa820 926 ALL_OBJFILE_OSECTIONS (objfile, s)
c906108c 927 {
2acceee2
JM
928 CORE_ADDR s_addr = 0;
929 int i;
930
5417f6dc 931 for (i = 0;
a39a16c4 932 !s_addr && i < addrs->num_sections && addrs->other[i].name;
62557bbc 933 i++)
5417f6dc
RM
934 if (strcmp (bfd_section_name (s->objfile->obfd,
935 s->the_bfd_section),
fbd35540 936 addrs->other[i].name) == 0)
2acceee2 937 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
5417f6dc 938
c906108c 939 s->addr -= s->offset;
2acceee2 940 s->addr += s_addr;
c906108c 941 s->endaddr -= s->offset;
2acceee2
JM
942 s->endaddr += s_addr;
943 s->offset += s_addr;
c906108c
SS
944 }
945 }
52d16ba8 946#endif /* not DEPRECATED_IBM6000_TARGET */
c906108c 947
96baa820 948 (*objfile->sf->sym_read) (objfile, mainline);
c906108c 949
c906108c
SS
950 /* Don't allow char * to have a typename (else would get caddr_t).
951 Ditto void *. FIXME: Check whether this is now done by all the
952 symbol readers themselves (many of them now do), and if so remove
953 it from here. */
954
955 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
956 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
957
958 /* Mark the objfile has having had initial symbol read attempted. Note
959 that this does not mean we found any symbols... */
960
c5aa993b 961 objfile->flags |= OBJF_SYMS;
c906108c
SS
962
963 /* Discard cleanups as symbol reading was successful. */
964
965 discard_cleanups (old_chain);
c906108c
SS
966}
967
968/* Perform required actions after either reading in the initial
969 symbols for a new objfile, or mapping in the symbols from a reusable
970 objfile. */
c5aa993b 971
c906108c 972void
fba45db2 973new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
c906108c
SS
974{
975
976 /* If this is the main symbol file we have to clean up all users of the
977 old main symbol file. Otherwise it is sufficient to fixup all the
978 breakpoints that may have been redefined by this symbol file. */
979 if (mainline)
980 {
981 /* OK, make it the "real" symbol file. */
982 symfile_objfile = objfile;
983
984 clear_symtab_users ();
985 }
986 else
987 {
988 breakpoint_re_set ();
989 }
990
991 /* We're done reading the symbol file; finish off complaints. */
b9caf505 992 clear_complaints (&symfile_complaints, 0, verbo);
c906108c
SS
993}
994
995/* Process a symbol file, as either the main file or as a dynamically
996 loaded file.
997
5417f6dc
RM
998 ABFD is a BFD already open on the file, as from symfile_bfd_open.
999 This BFD will be closed on error, and is always consumed by this function.
7904e09f
JB
1000
1001 FROM_TTY says how verbose to be.
1002
1003 MAINLINE specifies whether this is the main symbol file, or whether
1004 it's an extra symbol file such as dynamically loaded code.
1005
1006 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
1007 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
1008 non-zero.
c906108c 1009
c906108c
SS
1010 Upon success, returns a pointer to the objfile that was added.
1011 Upon failure, jumps back to command level (never returns). */
7904e09f 1012static struct objfile *
5417f6dc 1013symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
7904e09f
JB
1014 struct section_addr_info *addrs,
1015 struct section_offsets *offsets,
1016 int num_offsets,
1017 int mainline, int flags)
c906108c
SS
1018{
1019 struct objfile *objfile;
1020 struct partial_symtab *psymtab;
77069918 1021 char *debugfile = NULL;
7b90c3f9 1022 struct section_addr_info *orig_addrs = NULL;
a39a16c4 1023 struct cleanup *my_cleanups;
5417f6dc 1024 const char *name = bfd_get_filename (abfd);
c906108c 1025
5417f6dc 1026 my_cleanups = make_cleanup_bfd_close (abfd);
c906108c 1027
5417f6dc
RM
1028 /* Give user a chance to burp if we'd be
1029 interactively wiping out any existing symbols. */
c906108c
SS
1030
1031 if ((have_full_symbols () || have_partial_symbols ())
1032 && mainline
1033 && from_tty
1034 && !query ("Load new symbol table from \"%s\"? ", name))
8a3fe4f8 1035 error (_("Not confirmed."));
c906108c 1036
2df3850c 1037 objfile = allocate_objfile (abfd, flags);
5417f6dc 1038 discard_cleanups (my_cleanups);
c906108c 1039
a39a16c4 1040 if (addrs)
63cd24fe 1041 {
7b90c3f9
JB
1042 orig_addrs = copy_section_addr_info (addrs);
1043 make_cleanup_free_section_addr_info (orig_addrs);
63cd24fe 1044 }
a39a16c4 1045
78a4a9b9
AC
1046 /* We either created a new mapped symbol table, mapped an existing
1047 symbol table file which has not had initial symbol reading
1048 performed, or need to read an unmapped symbol table. */
1049 if (from_tty || info_verbose)
c906108c 1050 {
769d7dc4
AC
1051 if (deprecated_pre_add_symbol_hook)
1052 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1053 else
c906108c 1054 {
a3f17187 1055 printf_unfiltered (_("Reading symbols from %s..."), name);
c906108c
SS
1056 wrap_here ("");
1057 gdb_flush (gdb_stdout);
1058 }
c906108c 1059 }
78a4a9b9
AC
1060 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1061 mainline, from_tty);
c906108c
SS
1062
1063 /* We now have at least a partial symbol table. Check to see if the
1064 user requested that all symbols be read on initial access via either
1065 the gdb startup command line or on a per symbol file basis. Expand
1066 all partial symbol tables for this objfile if so. */
1067
2acceee2 1068 if ((flags & OBJF_READNOW) || readnow_symbol_files)
c906108c
SS
1069 {
1070 if (from_tty || info_verbose)
1071 {
a3f17187 1072 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1073 wrap_here ("");
1074 gdb_flush (gdb_stdout);
1075 }
1076
c5aa993b 1077 for (psymtab = objfile->psymtabs;
c906108c 1078 psymtab != NULL;
c5aa993b 1079 psymtab = psymtab->next)
c906108c
SS
1080 {
1081 psymtab_to_symtab (psymtab);
1082 }
1083 }
1084
77069918
JK
1085 /* If the file has its own symbol tables it has no separate debug info.
1086 `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to SYMTABS/PSYMTABS.
1087 `.gnu_debuglink' may no longer be present with `.note.gnu.build-id'. */
1088 if (objfile->psymtabs == NULL)
1089 debugfile = find_separate_debug_file (objfile);
5b5d99cf
JB
1090 if (debugfile)
1091 {
5b5d99cf
JB
1092 if (addrs != NULL)
1093 {
1094 objfile->separate_debug_objfile
a39a16c4 1095 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
5b5d99cf
JB
1096 }
1097 else
1098 {
1099 objfile->separate_debug_objfile
1100 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
1101 }
1102 objfile->separate_debug_objfile->separate_debug_objfile_backlink
1103 = objfile;
5417f6dc 1104
5b5d99cf
JB
1105 /* Put the separate debug object before the normal one, this is so that
1106 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
1107 put_objfile_before (objfile->separate_debug_objfile, objfile);
5417f6dc 1108
5b5d99cf
JB
1109 xfree (debugfile);
1110 }
5417f6dc 1111
cb3c37b2
JB
1112 if (!have_partial_symbols () && !have_full_symbols ())
1113 {
1114 wrap_here ("");
a3f17187 1115 printf_filtered (_("(no debugging symbols found)"));
8f5ba92b
JG
1116 if (from_tty || info_verbose)
1117 printf_filtered ("...");
1118 else
1119 printf_filtered ("\n");
cb3c37b2
JB
1120 wrap_here ("");
1121 }
1122
c906108c
SS
1123 if (from_tty || info_verbose)
1124 {
769d7dc4
AC
1125 if (deprecated_post_add_symbol_hook)
1126 deprecated_post_add_symbol_hook ();
c906108c 1127 else
c5aa993b 1128 {
a3f17187 1129 printf_unfiltered (_("done.\n"));
c5aa993b 1130 }
c906108c
SS
1131 }
1132
481d0f41
JB
1133 /* We print some messages regardless of whether 'from_tty ||
1134 info_verbose' is true, so make sure they go out at the right
1135 time. */
1136 gdb_flush (gdb_stdout);
1137
a39a16c4
MM
1138 do_cleanups (my_cleanups);
1139
109f874e
MS
1140 if (objfile->sf == NULL)
1141 return objfile; /* No symbols. */
1142
c906108c
SS
1143 new_symfile_objfile (objfile, mainline, from_tty);
1144
06d3b283 1145 observer_notify_new_objfile (objfile);
c906108c 1146
ce7d4522 1147 bfd_cache_close_all ();
c906108c
SS
1148 return (objfile);
1149}
1150
7904e09f 1151
eb4556d7
JB
1152/* Process the symbol file ABFD, as either the main file or as a
1153 dynamically loaded file.
1154
1155 See symbol_file_add_with_addrs_or_offsets's comments for
1156 details. */
1157struct objfile *
1158symbol_file_add_from_bfd (bfd *abfd, int from_tty,
1159 struct section_addr_info *addrs,
1160 int mainline, int flags)
1161{
1162 return symbol_file_add_with_addrs_or_offsets (abfd,
1163 from_tty, addrs, 0, 0,
1164 mainline, flags);
1165}
1166
1167
7904e09f
JB
1168/* Process a symbol file, as either the main file or as a dynamically
1169 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1170 for details. */
1171struct objfile *
1172symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1173 int mainline, int flags)
1174{
eb4556d7
JB
1175 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
1176 addrs, mainline, flags);
7904e09f
JB
1177}
1178
1179
d7db6da9
FN
1180/* Call symbol_file_add() with default values and update whatever is
1181 affected by the loading of a new main().
1182 Used when the file is supplied in the gdb command line
1183 and by some targets with special loading requirements.
1184 The auxiliary function, symbol_file_add_main_1(), has the flags
1185 argument for the switches that can only be specified in the symbol_file
1186 command itself. */
5417f6dc 1187
1adeb98a
FN
1188void
1189symbol_file_add_main (char *args, int from_tty)
1190{
d7db6da9
FN
1191 symbol_file_add_main_1 (args, from_tty, 0);
1192}
1193
1194static void
1195symbol_file_add_main_1 (char *args, int from_tty, int flags)
1196{
1197 symbol_file_add (args, from_tty, NULL, 1, flags);
1198
d7db6da9
FN
1199 /* Getting new symbols may change our opinion about
1200 what is frameless. */
1201 reinit_frame_cache ();
1202
1203 set_initial_language ();
1adeb98a
FN
1204}
1205
1206void
1207symbol_file_clear (int from_tty)
1208{
1209 if ((have_full_symbols () || have_partial_symbols ())
1210 && from_tty
0430b0d6
AS
1211 && (symfile_objfile
1212 ? !query (_("Discard symbol table from `%s'? "),
1213 symfile_objfile->name)
1214 : !query (_("Discard symbol table? "))))
8a3fe4f8 1215 error (_("Not confirmed."));
1adeb98a
FN
1216 free_all_objfiles ();
1217
1218 /* solib descriptors may have handles to objfiles. Since their
1219 storage has just been released, we'd better wipe the solib
1220 descriptors as well.
1221 */
1222#if defined(SOLIB_RESTART)
1223 SOLIB_RESTART ();
1224#endif
1225
1226 symfile_objfile = NULL;
1227 if (from_tty)
a3f17187 1228 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1229}
1230
77069918
JK
1231struct build_id
1232 {
1233 size_t size;
1234 gdb_byte data[1];
1235 };
1236
1237/* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
1238
1239static struct build_id *
1240build_id_bfd_get (bfd *abfd)
1241{
1242 struct build_id *retval;
1243
1244 if (!bfd_check_format (abfd, bfd_object)
1245 || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1246 || elf_tdata (abfd)->build_id == NULL)
1247 return NULL;
1248
1249 retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size);
1250 retval->size = elf_tdata (abfd)->build_id_size;
1251 memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size);
1252
1253 return retval;
1254}
1255
1256/* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
1257
1258static int
1259build_id_verify (const char *filename, struct build_id *check)
1260{
1261 bfd *abfd;
1262 struct build_id *found = NULL;
1263 int retval = 0;
1264
1265 /* We expect to be silent on the non-existing files. */
1266 abfd = bfd_openr (filename, gnutarget);
1267 if (abfd == NULL)
1268 return 0;
1269
1270 found = build_id_bfd_get (abfd);
1271
1272 if (found == NULL)
1273 warning (_("File \"%s\" has no build-id, file skipped"), filename);
1274 else if (found->size != check->size
1275 || memcmp (found->data, check->data, found->size) != 0)
1276 warning (_("File \"%s\" has a different build-id, file skipped"), filename);
1277 else
1278 retval = 1;
1279
1280 if (!bfd_close (abfd))
1281 warning (_("cannot close \"%s\": %s"), filename,
1282 bfd_errmsg (bfd_get_error ()));
1283 return retval;
1284}
1285
1286static char *
1287build_id_to_debug_filename (struct build_id *build_id)
1288{
1289 char *link, *s, *retval = NULL;
1290 gdb_byte *data = build_id->data;
1291 size_t size = build_id->size;
1292
1293 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1294 link = xmalloc (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1295 + 2 * size + (sizeof ".debug" - 1) + 1);
1296 s = link + sprintf (link, "%s/.build-id/", debug_file_directory);
1297 if (size > 0)
1298 {
1299 size--;
1300 s += sprintf (s, "%02x", (unsigned) *data++);
1301 }
1302 if (size > 0)
1303 *s++ = '/';
1304 while (size-- > 0)
1305 s += sprintf (s, "%02x", (unsigned) *data++);
1306 strcpy (s, ".debug");
1307
1308 /* lrealpath() is expensive even for the usually non-existent files. */
1309 if (access (link, F_OK) == 0)
1310 retval = lrealpath (link);
1311 xfree (link);
1312
1313 if (retval != NULL && !build_id_verify (retval, build_id))
1314 {
1315 xfree (retval);
1316 retval = NULL;
1317 }
1318
1319 return retval;
1320}
1321
5b5d99cf
JB
1322static char *
1323get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1324{
1325 asection *sect;
1326 bfd_size_type debuglink_size;
1327 unsigned long crc32;
1328 char *contents;
1329 int crc_offset;
1330 unsigned char *p;
5417f6dc 1331
5b5d99cf
JB
1332 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1333
1334 if (sect == NULL)
1335 return NULL;
1336
1337 debuglink_size = bfd_section_size (objfile->obfd, sect);
5417f6dc 1338
5b5d99cf
JB
1339 contents = xmalloc (debuglink_size);
1340 bfd_get_section_contents (objfile->obfd, sect, contents,
1341 (file_ptr)0, (bfd_size_type)debuglink_size);
1342
1343 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1344 crc_offset = strlen (contents) + 1;
1345 crc_offset = (crc_offset + 3) & ~3;
1346
1347 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
5417f6dc 1348
5b5d99cf
JB
1349 *crc32_out = crc32;
1350 return contents;
1351}
1352
1353static int
1354separate_debug_file_exists (const char *name, unsigned long crc)
1355{
1356 unsigned long file_crc = 0;
1357 int fd;
777ea8f1 1358 gdb_byte buffer[8*1024];
5b5d99cf
JB
1359 int count;
1360
1361 fd = open (name, O_RDONLY | O_BINARY);
1362 if (fd < 0)
1363 return 0;
1364
1365 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1366 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1367
1368 close (fd);
1369
1370 return crc == file_crc;
1371}
1372
aa28a74e 1373char *debug_file_directory = NULL;
920d2a44
AC
1374static void
1375show_debug_file_directory (struct ui_file *file, int from_tty,
1376 struct cmd_list_element *c, const char *value)
1377{
1378 fprintf_filtered (file, _("\
1379The directory where separate debug symbols are searched for is \"%s\".\n"),
1380 value);
1381}
5b5d99cf
JB
1382
1383#if ! defined (DEBUG_SUBDIRECTORY)
1384#define DEBUG_SUBDIRECTORY ".debug"
1385#endif
1386
1387static char *
1388find_separate_debug_file (struct objfile *objfile)
1389{
1390 asection *sect;
1391 char *basename;
1392 char *dir;
1393 char *debugfile;
1394 char *name_copy;
aa28a74e 1395 char *canon_name;
5b5d99cf
JB
1396 bfd_size_type debuglink_size;
1397 unsigned long crc32;
1398 int i;
77069918
JK
1399 struct build_id *build_id;
1400
1401 build_id = build_id_bfd_get (objfile->obfd);
1402 if (build_id != NULL)
1403 {
1404 char *build_id_name;
1405
1406 build_id_name = build_id_to_debug_filename (build_id);
1407 free (build_id);
1408 /* Prevent looping on a stripped .debug file. */
1409 if (build_id_name != NULL && strcmp (build_id_name, objfile->name) == 0)
1410 {
1411 warning (_("\"%s\": separate debug info file has no debug info"),
1412 build_id_name);
1413 xfree (build_id_name);
1414 }
1415 else if (build_id_name != NULL)
1416 return build_id_name;
1417 }
5b5d99cf
JB
1418
1419 basename = get_debug_link_info (objfile, &crc32);
1420
1421 if (basename == NULL)
1422 return NULL;
5417f6dc 1423
5b5d99cf
JB
1424 dir = xstrdup (objfile->name);
1425
fe36c4f4
JB
1426 /* Strip off the final filename part, leaving the directory name,
1427 followed by a slash. Objfile names should always be absolute and
1428 tilde-expanded, so there should always be a slash in there
1429 somewhere. */
5b5d99cf
JB
1430 for (i = strlen(dir) - 1; i >= 0; i--)
1431 {
1432 if (IS_DIR_SEPARATOR (dir[i]))
1433 break;
1434 }
fe36c4f4 1435 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
5b5d99cf 1436 dir[i+1] = '\0';
5417f6dc 1437
5b5d99cf
JB
1438 debugfile = alloca (strlen (debug_file_directory) + 1
1439 + strlen (dir)
1440 + strlen (DEBUG_SUBDIRECTORY)
1441 + strlen ("/")
5417f6dc 1442 + strlen (basename)
5b5d99cf
JB
1443 + 1);
1444
1445 /* First try in the same directory as the original file. */
1446 strcpy (debugfile, dir);
1447 strcat (debugfile, basename);
1448
1449 if (separate_debug_file_exists (debugfile, crc32))
1450 {
1451 xfree (basename);
1452 xfree (dir);
1453 return xstrdup (debugfile);
1454 }
5417f6dc 1455
5b5d99cf
JB
1456 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1457 strcpy (debugfile, dir);
1458 strcat (debugfile, DEBUG_SUBDIRECTORY);
1459 strcat (debugfile, "/");
1460 strcat (debugfile, basename);
1461
1462 if (separate_debug_file_exists (debugfile, crc32))
1463 {
1464 xfree (basename);
1465 xfree (dir);
1466 return xstrdup (debugfile);
1467 }
5417f6dc 1468
5b5d99cf
JB
1469 /* Then try in the global debugfile directory. */
1470 strcpy (debugfile, debug_file_directory);
1471 strcat (debugfile, "/");
1472 strcat (debugfile, dir);
5b5d99cf
JB
1473 strcat (debugfile, basename);
1474
1475 if (separate_debug_file_exists (debugfile, crc32))
1476 {
1477 xfree (basename);
1478 xfree (dir);
1479 return xstrdup (debugfile);
1480 }
5417f6dc 1481
aa28a74e
DJ
1482 /* If the file is in the sysroot, try using its base path in the
1483 global debugfile directory. */
1484 canon_name = lrealpath (dir);
1485 if (canon_name
1486 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1487 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1488 {
1489 strcpy (debugfile, debug_file_directory);
1490 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1491 strcat (debugfile, "/");
1492 strcat (debugfile, basename);
1493
1494 if (separate_debug_file_exists (debugfile, crc32))
1495 {
1496 xfree (canon_name);
1497 xfree (basename);
1498 xfree (dir);
1499 return xstrdup (debugfile);
1500 }
1501 }
1502
1503 if (canon_name)
1504 xfree (canon_name);
1505
5b5d99cf
JB
1506 xfree (basename);
1507 xfree (dir);
1508 return NULL;
1509}
1510
1511
c906108c
SS
1512/* This is the symbol-file command. Read the file, analyze its
1513 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1514 the command is rather bizarre:
1515
1516 1. The function buildargv implements various quoting conventions
1517 which are undocumented and have little or nothing in common with
1518 the way things are quoted (or not quoted) elsewhere in GDB.
1519
1520 2. Options are used, which are not generally used in GDB (perhaps
1521 "set mapped on", "set readnow on" would be better)
1522
1523 3. The order of options matters, which is contrary to GNU
c906108c
SS
1524 conventions (because it is confusing and inconvenient). */
1525
1526void
fba45db2 1527symbol_file_command (char *args, int from_tty)
c906108c 1528{
c906108c
SS
1529 dont_repeat ();
1530
1531 if (args == NULL)
1532 {
1adeb98a 1533 symbol_file_clear (from_tty);
c906108c
SS
1534 }
1535 else
1536 {
cb2f3a29
MK
1537 char **argv = buildargv (args);
1538 int flags = OBJF_USERLOADED;
1539 struct cleanup *cleanups;
1540 char *name = NULL;
1541
1542 if (argv == NULL)
1543 nomem (0);
1544
7a292a7a 1545 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1546 while (*argv != NULL)
1547 {
78a4a9b9
AC
1548 if (strcmp (*argv, "-readnow") == 0)
1549 flags |= OBJF_READNOW;
1550 else if (**argv == '-')
8a3fe4f8 1551 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1552 else
1553 {
cb2f3a29 1554 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1555 name = *argv;
78a4a9b9 1556 }
cb2f3a29 1557
c906108c
SS
1558 argv++;
1559 }
1560
1561 if (name == NULL)
cb2f3a29
MK
1562 error (_("no symbol file name was specified"));
1563
c906108c
SS
1564 do_cleanups (cleanups);
1565 }
1566}
1567
1568/* Set the initial language.
1569
cb2f3a29
MK
1570 FIXME: A better solution would be to record the language in the
1571 psymtab when reading partial symbols, and then use it (if known) to
1572 set the language. This would be a win for formats that encode the
1573 language in an easily discoverable place, such as DWARF. For
1574 stabs, we can jump through hoops looking for specially named
1575 symbols or try to intuit the language from the specific type of
1576 stabs we find, but we can't do that until later when we read in
1577 full symbols. */
c906108c
SS
1578
1579static void
fba45db2 1580set_initial_language (void)
c906108c
SS
1581{
1582 struct partial_symtab *pst;
c5aa993b 1583 enum language lang = language_unknown;
c906108c
SS
1584
1585 pst = find_main_psymtab ();
1586 if (pst != NULL)
1587 {
c5aa993b 1588 if (pst->filename != NULL)
cb2f3a29
MK
1589 lang = deduce_language_from_filename (pst->filename);
1590
c906108c
SS
1591 if (lang == language_unknown)
1592 {
c5aa993b
JM
1593 /* Make C the default language */
1594 lang = language_c;
c906108c 1595 }
cb2f3a29 1596
c906108c 1597 set_language (lang);
cb2f3a29 1598 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1599 }
1600}
1601
cb2f3a29
MK
1602/* Open the file specified by NAME and hand it off to BFD for
1603 preliminary analysis. Return a newly initialized bfd *, which
1604 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1605 absolute). In case of trouble, error() is called. */
c906108c
SS
1606
1607bfd *
fba45db2 1608symfile_bfd_open (char *name)
c906108c
SS
1609{
1610 bfd *sym_bfd;
1611 int desc;
1612 char *absolute_name;
1613
cb2f3a29 1614 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c
SS
1615
1616 /* Look down path for it, allocate 2nd new malloc'd copy. */
cb2f3a29
MK
1617 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1618 O_RDONLY | O_BINARY, 0, &absolute_name);
608506ed 1619#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1620 if (desc < 0)
1621 {
1622 char *exename = alloca (strlen (name) + 5);
1623 strcat (strcpy (exename, name), ".exe");
014d698b
EZ
1624 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1625 O_RDONLY | O_BINARY, 0, &absolute_name);
c906108c
SS
1626 }
1627#endif
1628 if (desc < 0)
1629 {
b8c9b27d 1630 make_cleanup (xfree, name);
c906108c
SS
1631 perror_with_name (name);
1632 }
cb2f3a29
MK
1633
1634 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1635 bfd. It'll be freed in free_objfile(). */
1636 xfree (name);
1637 name = absolute_name;
c906108c 1638
9f76c2cd 1639 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
c906108c
SS
1640 if (!sym_bfd)
1641 {
1642 close (desc);
b8c9b27d 1643 make_cleanup (xfree, name);
8a3fe4f8 1644 error (_("\"%s\": can't open to read symbols: %s."), name,
c906108c
SS
1645 bfd_errmsg (bfd_get_error ()));
1646 }
549c1eea 1647 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1648
1649 if (!bfd_check_format (sym_bfd, bfd_object))
1650 {
cb2f3a29
MK
1651 /* FIXME: should be checking for errors from bfd_close (for one
1652 thing, on error it does not free all the storage associated
1653 with the bfd). */
1654 bfd_close (sym_bfd); /* This also closes desc. */
b8c9b27d 1655 make_cleanup (xfree, name);
8a3fe4f8 1656 error (_("\"%s\": can't read symbols: %s."), name,
c906108c
SS
1657 bfd_errmsg (bfd_get_error ()));
1658 }
cb2f3a29
MK
1659
1660 return sym_bfd;
c906108c
SS
1661}
1662
cb2f3a29
MK
1663/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1664 the section was not found. */
1665
0e931cf0
JB
1666int
1667get_section_index (struct objfile *objfile, char *section_name)
1668{
1669 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1670
0e931cf0
JB
1671 if (sect)
1672 return sect->index;
1673 else
1674 return -1;
1675}
1676
cb2f3a29
MK
1677/* Link SF into the global symtab_fns list. Called on startup by the
1678 _initialize routine in each object file format reader, to register
1679 information about each format the the reader is prepared to
1680 handle. */
c906108c
SS
1681
1682void
fba45db2 1683add_symtab_fns (struct sym_fns *sf)
c906108c
SS
1684{
1685 sf->next = symtab_fns;
1686 symtab_fns = sf;
1687}
1688
cb2f3a29
MK
1689/* Initialize OBJFILE to read symbols from its associated BFD. It
1690 either returns or calls error(). The result is an initialized
1691 struct sym_fns in the objfile structure, that contains cached
1692 information about the symbol file. */
c906108c 1693
31d99776
DJ
1694static struct sym_fns *
1695find_sym_fns (bfd *abfd)
c906108c
SS
1696{
1697 struct sym_fns *sf;
31d99776 1698 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
c906108c 1699
75245b24
MS
1700 if (our_flavour == bfd_target_srec_flavour
1701 || our_flavour == bfd_target_ihex_flavour
1702 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1703 return NULL; /* No symbols. */
75245b24 1704
c5aa993b 1705 for (sf = symtab_fns; sf != NULL; sf = sf->next)
31d99776
DJ
1706 if (our_flavour == sf->sym_flavour)
1707 return sf;
cb2f3a29 1708
8a3fe4f8 1709 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1710 bfd_get_target (abfd));
c906108c
SS
1711}
1712\f
cb2f3a29 1713
c906108c
SS
1714/* This function runs the load command of our current target. */
1715
1716static void
fba45db2 1717load_command (char *arg, int from_tty)
c906108c
SS
1718{
1719 if (arg == NULL)
1986bccd
AS
1720 {
1721 char *parg;
1722 int count = 0;
1723
1724 parg = arg = get_exec_file (1);
1725
1726 /* Count how many \ " ' tab space there are in the name. */
1727 while ((parg = strpbrk (parg, "\\\"'\t ")))
1728 {
1729 parg++;
1730 count++;
1731 }
1732
1733 if (count)
1734 {
1735 /* We need to quote this string so buildargv can pull it apart. */
1736 char *temp = xmalloc (strlen (arg) + count + 1 );
1737 char *ptemp = temp;
1738 char *prev;
1739
1740 make_cleanup (xfree, temp);
1741
1742 prev = parg = arg;
1743 while ((parg = strpbrk (parg, "\\\"'\t ")))
1744 {
1745 strncpy (ptemp, prev, parg - prev);
1746 ptemp += parg - prev;
1747 prev = parg++;
1748 *ptemp++ = '\\';
1749 }
1750 strcpy (ptemp, prev);
1751
1752 arg = temp;
1753 }
1754 }
1755
6490cafe
DJ
1756 /* The user might be reloading because the binary has changed. Take
1757 this opportunity to check. */
1758 reopen_exec_file ();
1759 reread_symbols ();
1760
c906108c 1761 target_load (arg, from_tty);
2889e661
JB
1762
1763 /* After re-loading the executable, we don't really know which
1764 overlays are mapped any more. */
1765 overlay_cache_invalid = 1;
c906108c
SS
1766}
1767
1768/* This version of "load" should be usable for any target. Currently
1769 it is just used for remote targets, not inftarg.c or core files,
1770 on the theory that only in that case is it useful.
1771
1772 Avoiding xmodem and the like seems like a win (a) because we don't have
1773 to worry about finding it, and (b) On VMS, fork() is very slow and so
1774 we don't want to run a subprocess. On the other hand, I'm not sure how
1775 performance compares. */
917317f4 1776
917317f4
JM
1777static int validate_download = 0;
1778
e4f9b4d5
MS
1779/* Callback service function for generic_load (bfd_map_over_sections). */
1780
1781static void
1782add_section_size_callback (bfd *abfd, asection *asec, void *data)
1783{
1784 bfd_size_type *sum = data;
1785
2c500098 1786 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1787}
1788
1789/* Opaque data for load_section_callback. */
1790struct load_section_data {
1791 unsigned long load_offset;
a76d924d
DJ
1792 struct load_progress_data *progress_data;
1793 VEC(memory_write_request_s) *requests;
1794};
1795
1796/* Opaque data for load_progress. */
1797struct load_progress_data {
1798 /* Cumulative data. */
e4f9b4d5
MS
1799 unsigned long write_count;
1800 unsigned long data_count;
1801 bfd_size_type total_size;
a76d924d
DJ
1802};
1803
1804/* Opaque data for load_progress for a single section. */
1805struct load_progress_section_data {
1806 struct load_progress_data *cumulative;
cf7a04e8 1807
a76d924d 1808 /* Per-section data. */
cf7a04e8
DJ
1809 const char *section_name;
1810 ULONGEST section_sent;
1811 ULONGEST section_size;
1812 CORE_ADDR lma;
1813 gdb_byte *buffer;
e4f9b4d5
MS
1814};
1815
a76d924d 1816/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1817
1818static void
1819load_progress (ULONGEST bytes, void *untyped_arg)
1820{
a76d924d
DJ
1821 struct load_progress_section_data *args = untyped_arg;
1822 struct load_progress_data *totals;
1823
1824 if (args == NULL)
1825 /* Writing padding data. No easy way to get at the cumulative
1826 stats, so just ignore this. */
1827 return;
1828
1829 totals = args->cumulative;
1830
1831 if (bytes == 0 && args->section_sent == 0)
1832 {
1833 /* The write is just starting. Let the user know we've started
1834 this section. */
1835 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1836 args->section_name, paddr_nz (args->section_size),
1837 paddr_nz (args->lma));
1838 return;
1839 }
cf7a04e8
DJ
1840
1841 if (validate_download)
1842 {
1843 /* Broken memories and broken monitors manifest themselves here
1844 when bring new computers to life. This doubles already slow
1845 downloads. */
1846 /* NOTE: cagney/1999-10-18: A more efficient implementation
1847 might add a verify_memory() method to the target vector and
1848 then use that. remote.c could implement that method using
1849 the ``qCRC'' packet. */
1850 gdb_byte *check = xmalloc (bytes);
1851 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1852
1853 if (target_read_memory (args->lma, check, bytes) != 0)
1854 error (_("Download verify read failed at 0x%s"),
1855 paddr (args->lma));
1856 if (memcmp (args->buffer, check, bytes) != 0)
1857 error (_("Download verify compare failed at 0x%s"),
1858 paddr (args->lma));
1859 do_cleanups (verify_cleanups);
1860 }
a76d924d 1861 totals->data_count += bytes;
cf7a04e8
DJ
1862 args->lma += bytes;
1863 args->buffer += bytes;
a76d924d 1864 totals->write_count += 1;
cf7a04e8
DJ
1865 args->section_sent += bytes;
1866 if (quit_flag
1867 || (deprecated_ui_load_progress_hook != NULL
1868 && deprecated_ui_load_progress_hook (args->section_name,
1869 args->section_sent)))
1870 error (_("Canceled the download"));
1871
1872 if (deprecated_show_load_progress != NULL)
1873 deprecated_show_load_progress (args->section_name,
1874 args->section_sent,
1875 args->section_size,
a76d924d
DJ
1876 totals->data_count,
1877 totals->total_size);
cf7a04e8
DJ
1878}
1879
e4f9b4d5
MS
1880/* Callback service function for generic_load (bfd_map_over_sections). */
1881
1882static void
1883load_section_callback (bfd *abfd, asection *asec, void *data)
1884{
a76d924d 1885 struct memory_write_request *new_request;
e4f9b4d5 1886 struct load_section_data *args = data;
a76d924d 1887 struct load_progress_section_data *section_data;
cf7a04e8
DJ
1888 bfd_size_type size = bfd_get_section_size (asec);
1889 gdb_byte *buffer;
cf7a04e8 1890 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 1891
cf7a04e8
DJ
1892 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1893 return;
e4f9b4d5 1894
cf7a04e8
DJ
1895 if (size == 0)
1896 return;
e4f9b4d5 1897
a76d924d
DJ
1898 new_request = VEC_safe_push (memory_write_request_s,
1899 args->requests, NULL);
1900 memset (new_request, 0, sizeof (struct memory_write_request));
1901 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1902 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1903 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1904 new_request->data = xmalloc (size);
1905 new_request->baton = section_data;
cf7a04e8 1906
a76d924d 1907 buffer = new_request->data;
cf7a04e8 1908
a76d924d
DJ
1909 section_data->cumulative = args->progress_data;
1910 section_data->section_name = sect_name;
1911 section_data->section_size = size;
1912 section_data->lma = new_request->begin;
1913 section_data->buffer = buffer;
cf7a04e8
DJ
1914
1915 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
1916}
1917
1918/* Clean up an entire memory request vector, including load
1919 data and progress records. */
cf7a04e8 1920
a76d924d
DJ
1921static void
1922clear_memory_write_data (void *arg)
1923{
1924 VEC(memory_write_request_s) **vec_p = arg;
1925 VEC(memory_write_request_s) *vec = *vec_p;
1926 int i;
1927 struct memory_write_request *mr;
cf7a04e8 1928
a76d924d
DJ
1929 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1930 {
1931 xfree (mr->data);
1932 xfree (mr->baton);
1933 }
1934 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
1935}
1936
c906108c 1937void
917317f4 1938generic_load (char *args, int from_tty)
c906108c 1939{
c906108c 1940 bfd *loadfile_bfd;
2b71414d 1941 struct timeval start_time, end_time;
917317f4 1942 char *filename;
1986bccd 1943 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 1944 struct load_section_data cbdata;
a76d924d
DJ
1945 struct load_progress_data total_progress;
1946
e4f9b4d5 1947 CORE_ADDR entry;
1986bccd 1948 char **argv;
e4f9b4d5 1949
a76d924d
DJ
1950 memset (&cbdata, 0, sizeof (cbdata));
1951 memset (&total_progress, 0, sizeof (total_progress));
1952 cbdata.progress_data = &total_progress;
1953
1954 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 1955
1986bccd
AS
1956 argv = buildargv (args);
1957
1958 if (argv == NULL)
1959 nomem(0);
1960
1961 make_cleanup_freeargv (argv);
1962
1963 filename = tilde_expand (argv[0]);
1964 make_cleanup (xfree, filename);
1965
1966 if (argv[1] != NULL)
917317f4
JM
1967 {
1968 char *endptr;
ba5f2f8a 1969
1986bccd
AS
1970 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1971
1972 /* If the last word was not a valid number then
1973 treat it as a file name with spaces in. */
1974 if (argv[1] == endptr)
1975 error (_("Invalid download offset:%s."), argv[1]);
1976
1977 if (argv[2] != NULL)
1978 error (_("Too many parameters."));
917317f4 1979 }
c906108c 1980
917317f4 1981 /* Open the file for loading. */
c906108c
SS
1982 loadfile_bfd = bfd_openr (filename, gnutarget);
1983 if (loadfile_bfd == NULL)
1984 {
1985 perror_with_name (filename);
1986 return;
1987 }
917317f4 1988
c906108c
SS
1989 /* FIXME: should be checking for errors from bfd_close (for one thing,
1990 on error it does not free all the storage associated with the
1991 bfd). */
5c65bbb6 1992 make_cleanup_bfd_close (loadfile_bfd);
c906108c 1993
c5aa993b 1994 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 1995 {
8a3fe4f8 1996 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
1997 bfd_errmsg (bfd_get_error ()));
1998 }
c5aa993b 1999
5417f6dc 2000 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
2001 (void *) &total_progress.total_size);
2002
2003 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 2004
2b71414d 2005 gettimeofday (&start_time, NULL);
c906108c 2006
a76d924d
DJ
2007 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2008 load_progress) != 0)
2009 error (_("Load failed"));
c906108c 2010
2b71414d 2011 gettimeofday (&end_time, NULL);
ba5f2f8a 2012
e4f9b4d5 2013 entry = bfd_get_start_address (loadfile_bfd);
e4f9b4d5
MS
2014 ui_out_text (uiout, "Start address ");
2015 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
2016 ui_out_text (uiout, ", load size ");
a76d924d 2017 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 2018 ui_out_text (uiout, "\n");
e4f9b4d5
MS
2019 /* We were doing this in remote-mips.c, I suspect it is right
2020 for other targets too. */
2021 write_pc (entry);
c906108c 2022
7ca9f392
AC
2023 /* FIXME: are we supposed to call symbol_file_add or not? According
2024 to a comment from remote-mips.c (where a call to symbol_file_add
2025 was commented out), making the call confuses GDB if more than one
2026 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 2027 others don't (or didn't - perhaps they have all been deleted). */
c906108c 2028
a76d924d
DJ
2029 print_transfer_performance (gdb_stdout, total_progress.data_count,
2030 total_progress.write_count,
2031 &start_time, &end_time);
c906108c
SS
2032
2033 do_cleanups (old_cleanups);
2034}
2035
2036/* Report how fast the transfer went. */
2037
917317f4
JM
2038/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2039 replaced by print_transfer_performance (with a very different
2040 function signature). */
2041
c906108c 2042void
fba45db2
KB
2043report_transfer_performance (unsigned long data_count, time_t start_time,
2044 time_t end_time)
c906108c 2045{
2b71414d
DJ
2046 struct timeval start, end;
2047
2048 start.tv_sec = start_time;
2049 start.tv_usec = 0;
2050 end.tv_sec = end_time;
2051 end.tv_usec = 0;
2052
2053 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
917317f4
JM
2054}
2055
2056void
d9fcf2fb 2057print_transfer_performance (struct ui_file *stream,
917317f4
JM
2058 unsigned long data_count,
2059 unsigned long write_count,
2b71414d
DJ
2060 const struct timeval *start_time,
2061 const struct timeval *end_time)
917317f4 2062{
9f43d28c 2063 ULONGEST time_count;
2b71414d
DJ
2064
2065 /* Compute the elapsed time in milliseconds, as a tradeoff between
2066 accuracy and overflow. */
2067 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2068 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2069
8b93c638
JM
2070 ui_out_text (uiout, "Transfer rate: ");
2071 if (time_count > 0)
2072 {
9f43d28c
DJ
2073 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2074
2075 if (ui_out_is_mi_like_p (uiout))
2076 {
2077 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2078 ui_out_text (uiout, " bits/sec");
2079 }
2080 else if (rate < 1024)
2081 {
2082 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2083 ui_out_text (uiout, " bytes/sec");
2084 }
2085 else
2086 {
2087 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2088 ui_out_text (uiout, " KB/sec");
2089 }
8b93c638
JM
2090 }
2091 else
2092 {
ba5f2f8a 2093 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 2094 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
2095 }
2096 if (write_count > 0)
2097 {
2098 ui_out_text (uiout, ", ");
ba5f2f8a 2099 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
2100 ui_out_text (uiout, " bytes/write");
2101 }
2102 ui_out_text (uiout, ".\n");
c906108c
SS
2103}
2104
2105/* This function allows the addition of incrementally linked object files.
2106 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2107/* Note: ezannoni 2000-04-13 This function/command used to have a
2108 special case syntax for the rombug target (Rombug is the boot
2109 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2110 rombug case, the user doesn't need to supply a text address,
2111 instead a call to target_link() (in target.c) would supply the
2112 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2113
c906108c 2114static void
fba45db2 2115add_symbol_file_command (char *args, int from_tty)
c906108c 2116{
db162d44 2117 char *filename = NULL;
2df3850c 2118 int flags = OBJF_USERLOADED;
c906108c 2119 char *arg;
2acceee2 2120 int expecting_option = 0;
db162d44 2121 int section_index = 0;
2acceee2
JM
2122 int argcnt = 0;
2123 int sec_num = 0;
2124 int i;
db162d44
EZ
2125 int expecting_sec_name = 0;
2126 int expecting_sec_addr = 0;
5b96932b 2127 char **argv;
db162d44 2128
a39a16c4 2129 struct sect_opt
2acceee2 2130 {
2acceee2
JM
2131 char *name;
2132 char *value;
a39a16c4 2133 };
db162d44 2134
a39a16c4
MM
2135 struct section_addr_info *section_addrs;
2136 struct sect_opt *sect_opts = NULL;
2137 size_t num_sect_opts = 0;
3017564a 2138 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2139
a39a16c4 2140 num_sect_opts = 16;
5417f6dc 2141 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
2142 * sizeof (struct sect_opt));
2143
c906108c
SS
2144 dont_repeat ();
2145
2146 if (args == NULL)
8a3fe4f8 2147 error (_("add-symbol-file takes a file name and an address"));
c906108c 2148
5b96932b
AS
2149 argv = buildargv (args);
2150 make_cleanup_freeargv (argv);
db162d44 2151
5b96932b
AS
2152 if (argv == NULL)
2153 nomem (0);
db162d44 2154
5b96932b
AS
2155 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2156 {
2157 /* Process the argument. */
db162d44 2158 if (argcnt == 0)
c906108c 2159 {
db162d44
EZ
2160 /* The first argument is the file name. */
2161 filename = tilde_expand (arg);
3017564a 2162 make_cleanup (xfree, filename);
c906108c 2163 }
db162d44 2164 else
7a78ae4e
ND
2165 if (argcnt == 1)
2166 {
2167 /* The second argument is always the text address at which
2168 to load the program. */
2169 sect_opts[section_index].name = ".text";
2170 sect_opts[section_index].value = arg;
f414f22f 2171 if (++section_index >= num_sect_opts)
a39a16c4
MM
2172 {
2173 num_sect_opts *= 2;
5417f6dc 2174 sect_opts = ((struct sect_opt *)
a39a16c4 2175 xrealloc (sect_opts,
5417f6dc 2176 num_sect_opts
a39a16c4
MM
2177 * sizeof (struct sect_opt)));
2178 }
7a78ae4e
ND
2179 }
2180 else
2181 {
2182 /* It's an option (starting with '-') or it's an argument
2183 to an option */
2184
2185 if (*arg == '-')
2186 {
78a4a9b9
AC
2187 if (strcmp (arg, "-readnow") == 0)
2188 flags |= OBJF_READNOW;
2189 else if (strcmp (arg, "-s") == 0)
2190 {
2191 expecting_sec_name = 1;
2192 expecting_sec_addr = 1;
2193 }
7a78ae4e
ND
2194 }
2195 else
2196 {
2197 if (expecting_sec_name)
db162d44 2198 {
7a78ae4e
ND
2199 sect_opts[section_index].name = arg;
2200 expecting_sec_name = 0;
db162d44
EZ
2201 }
2202 else
7a78ae4e
ND
2203 if (expecting_sec_addr)
2204 {
2205 sect_opts[section_index].value = arg;
2206 expecting_sec_addr = 0;
f414f22f 2207 if (++section_index >= num_sect_opts)
a39a16c4
MM
2208 {
2209 num_sect_opts *= 2;
5417f6dc 2210 sect_opts = ((struct sect_opt *)
a39a16c4 2211 xrealloc (sect_opts,
5417f6dc 2212 num_sect_opts
a39a16c4
MM
2213 * sizeof (struct sect_opt)));
2214 }
7a78ae4e
ND
2215 }
2216 else
8a3fe4f8 2217 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
7a78ae4e
ND
2218 }
2219 }
c906108c 2220 }
c906108c 2221
927890d0
JB
2222 /* This command takes at least two arguments. The first one is a
2223 filename, and the second is the address where this file has been
2224 loaded. Abort now if this address hasn't been provided by the
2225 user. */
2226 if (section_index < 1)
2227 error (_("The address where %s has been loaded is missing"), filename);
2228
db162d44
EZ
2229 /* Print the prompt for the query below. And save the arguments into
2230 a sect_addr_info structure to be passed around to other
2231 functions. We have to split this up into separate print
bb599908 2232 statements because hex_string returns a local static
db162d44 2233 string. */
5417f6dc 2234
a3f17187 2235 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2236 section_addrs = alloc_section_addr_info (section_index);
2237 make_cleanup (xfree, section_addrs);
db162d44 2238 for (i = 0; i < section_index; i++)
c906108c 2239 {
db162d44
EZ
2240 CORE_ADDR addr;
2241 char *val = sect_opts[i].value;
2242 char *sec = sect_opts[i].name;
5417f6dc 2243
ae822768 2244 addr = parse_and_eval_address (val);
db162d44 2245
db162d44
EZ
2246 /* Here we store the section offsets in the order they were
2247 entered on the command line. */
a39a16c4
MM
2248 section_addrs->other[sec_num].name = sec;
2249 section_addrs->other[sec_num].addr = addr;
46f45a4a 2250 printf_unfiltered ("\t%s_addr = %s\n",
bb599908 2251 sec, hex_string ((unsigned long)addr));
db162d44
EZ
2252 sec_num++;
2253
5417f6dc 2254 /* The object's sections are initialized when a
db162d44 2255 call is made to build_objfile_section_table (objfile).
5417f6dc 2256 This happens in reread_symbols.
db162d44
EZ
2257 At this point, we don't know what file type this is,
2258 so we can't determine what section names are valid. */
2acceee2 2259 }
db162d44 2260
2acceee2 2261 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2262 error (_("Not confirmed."));
c906108c 2263
a39a16c4 2264 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
c906108c
SS
2265
2266 /* Getting new symbols may change our opinion about what is
2267 frameless. */
2268 reinit_frame_cache ();
db162d44 2269 do_cleanups (my_cleanups);
c906108c
SS
2270}
2271\f
2272static void
fba45db2 2273add_shared_symbol_files_command (char *args, int from_tty)
c906108c
SS
2274{
2275#ifdef ADD_SHARED_SYMBOL_FILES
2276 ADD_SHARED_SYMBOL_FILES (args, from_tty);
2277#else
8a3fe4f8 2278 error (_("This command is not available in this configuration of GDB."));
c5aa993b 2279#endif
c906108c
SS
2280}
2281\f
2282/* Re-read symbols if a symbol-file has changed. */
2283void
fba45db2 2284reread_symbols (void)
c906108c
SS
2285{
2286 struct objfile *objfile;
2287 long new_modtime;
2288 int reread_one = 0;
2289 struct stat new_statbuf;
2290 int res;
2291
2292 /* With the addition of shared libraries, this should be modified,
2293 the load time should be saved in the partial symbol tables, since
2294 different tables may come from different source files. FIXME.
2295 This routine should then walk down each partial symbol table
2296 and see if the symbol table that it originates from has been changed */
2297
c5aa993b
JM
2298 for (objfile = object_files; objfile; objfile = objfile->next)
2299 {
2300 if (objfile->obfd)
2301 {
52d16ba8 2302#ifdef DEPRECATED_IBM6000_TARGET
c5aa993b
JM
2303 /* If this object is from a shared library, then you should
2304 stat on the library name, not member name. */
c906108c 2305
c5aa993b
JM
2306 if (objfile->obfd->my_archive)
2307 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2308 else
c906108c 2309#endif
c5aa993b
JM
2310 res = stat (objfile->name, &new_statbuf);
2311 if (res != 0)
c906108c 2312 {
c5aa993b 2313 /* FIXME, should use print_sys_errmsg but it's not filtered. */
a3f17187 2314 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
c5aa993b
JM
2315 objfile->name);
2316 continue;
c906108c 2317 }
c5aa993b
JM
2318 new_modtime = new_statbuf.st_mtime;
2319 if (new_modtime != objfile->mtime)
c906108c 2320 {
c5aa993b
JM
2321 struct cleanup *old_cleanups;
2322 struct section_offsets *offsets;
2323 int num_offsets;
c5aa993b
JM
2324 char *obfd_filename;
2325
a3f17187 2326 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
c5aa993b
JM
2327 objfile->name);
2328
2329 /* There are various functions like symbol_file_add,
2330 symfile_bfd_open, syms_from_objfile, etc., which might
2331 appear to do what we want. But they have various other
2332 effects which we *don't* want. So we just do stuff
2333 ourselves. We don't worry about mapped files (for one thing,
2334 any mapped file will be out of date). */
2335
2336 /* If we get an error, blow away this objfile (not sure if
2337 that is the correct response for things like shared
2338 libraries). */
74b7792f 2339 old_cleanups = make_cleanup_free_objfile (objfile);
c5aa993b 2340 /* We need to do this whenever any symbols go away. */
74b7792f 2341 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c5aa993b
JM
2342
2343 /* Clean up any state BFD has sitting around. We don't need
2344 to close the descriptor but BFD lacks a way of closing the
2345 BFD without closing the descriptor. */
2346 obfd_filename = bfd_get_filename (objfile->obfd);
2347 if (!bfd_close (objfile->obfd))
8a3fe4f8 2348 error (_("Can't close BFD for %s: %s"), objfile->name,
c5aa993b
JM
2349 bfd_errmsg (bfd_get_error ()));
2350 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2351 if (objfile->obfd == NULL)
8a3fe4f8 2352 error (_("Can't open %s to read symbols."), objfile->name);
c5aa993b
JM
2353 /* bfd_openr sets cacheable to true, which is what we want. */
2354 if (!bfd_check_format (objfile->obfd, bfd_object))
8a3fe4f8 2355 error (_("Can't read symbols from %s: %s."), objfile->name,
c5aa993b
JM
2356 bfd_errmsg (bfd_get_error ()));
2357
2358 /* Save the offsets, we will nuke them with the rest of the
8b92e4d5 2359 objfile_obstack. */
c5aa993b 2360 num_offsets = objfile->num_sections;
5417f6dc 2361 offsets = ((struct section_offsets *)
a39a16c4 2362 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
5417f6dc 2363 memcpy (offsets, objfile->section_offsets,
a39a16c4 2364 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b 2365
ae5a43e0
DJ
2366 /* Remove any references to this objfile in the global
2367 value lists. */
2368 preserve_values (objfile);
2369
c5aa993b
JM
2370 /* Nuke all the state that we will re-read. Much of the following
2371 code which sets things to NULL really is necessary to tell
2372 other parts of GDB that there is nothing currently there. */
2373
2374 /* FIXME: Do we have to free a whole linked list, or is this
2375 enough? */
2376 if (objfile->global_psymbols.list)
2dc74dc1 2377 xfree (objfile->global_psymbols.list);
c5aa993b
JM
2378 memset (&objfile->global_psymbols, 0,
2379 sizeof (objfile->global_psymbols));
2380 if (objfile->static_psymbols.list)
2dc74dc1 2381 xfree (objfile->static_psymbols.list);
c5aa993b
JM
2382 memset (&objfile->static_psymbols, 0,
2383 sizeof (objfile->static_psymbols));
2384
2385 /* Free the obstacks for non-reusable objfiles */
af5f3db6
AC
2386 bcache_xfree (objfile->psymbol_cache);
2387 objfile->psymbol_cache = bcache_xmalloc ();
2388 bcache_xfree (objfile->macro_cache);
2389 objfile->macro_cache = bcache_xmalloc ();
2de7ced7
DJ
2390 if (objfile->demangled_names_hash != NULL)
2391 {
2392 htab_delete (objfile->demangled_names_hash);
2393 objfile->demangled_names_hash = NULL;
2394 }
b99607ea 2395 obstack_free (&objfile->objfile_obstack, 0);
c5aa993b
JM
2396 objfile->sections = NULL;
2397 objfile->symtabs = NULL;
2398 objfile->psymtabs = NULL;
2399 objfile->free_psymtabs = NULL;
a1b8c067 2400 objfile->cp_namespace_symtab = NULL;
c5aa993b 2401 objfile->msymbols = NULL;
0a6ddd08 2402 objfile->deprecated_sym_private = NULL;
c5aa993b 2403 objfile->minimal_symbol_count = 0;
0a83117a
MS
2404 memset (&objfile->msymbol_hash, 0,
2405 sizeof (objfile->msymbol_hash));
2406 memset (&objfile->msymbol_demangled_hash, 0,
2407 sizeof (objfile->msymbol_demangled_hash));
7b097ae3 2408 clear_objfile_data (objfile);
c5aa993b
JM
2409 if (objfile->sf != NULL)
2410 {
2411 (*objfile->sf->sym_finish) (objfile);
2412 }
2413
2414 /* We never make this a mapped file. */
2415 objfile->md = NULL;
af5f3db6
AC
2416 objfile->psymbol_cache = bcache_xmalloc ();
2417 objfile->macro_cache = bcache_xmalloc ();
1ab21617
EZ
2418 /* obstack_init also initializes the obstack so it is
2419 empty. We could use obstack_specify_allocation but
2420 gdb_obstack.h specifies the alloc/dealloc
2421 functions. */
2422 obstack_init (&objfile->objfile_obstack);
c5aa993b
JM
2423 if (build_objfile_section_table (objfile))
2424 {
8a3fe4f8 2425 error (_("Can't find the file sections in `%s': %s"),
c5aa993b
JM
2426 objfile->name, bfd_errmsg (bfd_get_error ()));
2427 }
15831452 2428 terminate_minimal_symbol_table (objfile);
c5aa993b
JM
2429
2430 /* We use the same section offsets as from last time. I'm not
2431 sure whether that is always correct for shared libraries. */
2432 objfile->section_offsets = (struct section_offsets *)
5417f6dc 2433 obstack_alloc (&objfile->objfile_obstack,
a39a16c4 2434 SIZEOF_N_SECTION_OFFSETS (num_offsets));
5417f6dc 2435 memcpy (objfile->section_offsets, offsets,
a39a16c4 2436 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b
JM
2437 objfile->num_sections = num_offsets;
2438
2439 /* What the hell is sym_new_init for, anyway? The concept of
2440 distinguishing between the main file and additional files
2441 in this way seems rather dubious. */
2442 if (objfile == symfile_objfile)
2443 {
2444 (*objfile->sf->sym_new_init) (objfile);
c5aa993b
JM
2445 }
2446
2447 (*objfile->sf->sym_init) (objfile);
b9caf505 2448 clear_complaints (&symfile_complaints, 1, 1);
c5aa993b
JM
2449 /* The "mainline" parameter is a hideous hack; I think leaving it
2450 zero is OK since dbxread.c also does what it needs to do if
2451 objfile->global_psymbols.size is 0. */
96baa820 2452 (*objfile->sf->sym_read) (objfile, 0);
c5aa993b
JM
2453 if (!have_partial_symbols () && !have_full_symbols ())
2454 {
2455 wrap_here ("");
a3f17187 2456 printf_unfiltered (_("(no debugging symbols found)\n"));
c5aa993b
JM
2457 wrap_here ("");
2458 }
2459 objfile->flags |= OBJF_SYMS;
2460
2461 /* We're done reading the symbol file; finish off complaints. */
b9caf505 2462 clear_complaints (&symfile_complaints, 0, 1);
c906108c 2463
c5aa993b
JM
2464 /* Getting new symbols may change our opinion about what is
2465 frameless. */
c906108c 2466
c5aa993b 2467 reinit_frame_cache ();
c906108c 2468
c5aa993b
JM
2469 /* Discard cleanups as symbol reading was successful. */
2470 discard_cleanups (old_cleanups);
c906108c 2471
c5aa993b
JM
2472 /* If the mtime has changed between the time we set new_modtime
2473 and now, we *want* this to be out of date, so don't call stat
2474 again now. */
2475 objfile->mtime = new_modtime;
2476 reread_one = 1;
5b5d99cf 2477 reread_separate_symbols (objfile);
c5aa993b 2478 }
c906108c
SS
2479 }
2480 }
c906108c
SS
2481
2482 if (reread_one)
ea53e89f
JB
2483 {
2484 clear_symtab_users ();
2485 /* At least one objfile has changed, so we can consider that
2486 the executable we're debugging has changed too. */
2487 observer_notify_executable_changed (NULL);
2488 }
2489
c906108c 2490}
5b5d99cf
JB
2491
2492
2493/* Handle separate debug info for OBJFILE, which has just been
2494 re-read:
2495 - If we had separate debug info before, but now we don't, get rid
2496 of the separated objfile.
2497 - If we didn't have separated debug info before, but now we do,
2498 read in the new separated debug info file.
2499 - If the debug link points to a different file, toss the old one
2500 and read the new one.
2501 This function does *not* handle the case where objfile is still
2502 using the same separate debug info file, but that file's timestamp
2503 has changed. That case should be handled by the loop in
2504 reread_symbols already. */
2505static void
2506reread_separate_symbols (struct objfile *objfile)
2507{
2508 char *debug_file;
2509 unsigned long crc32;
2510
2511 /* Does the updated objfile's debug info live in a
2512 separate file? */
2513 debug_file = find_separate_debug_file (objfile);
2514
2515 if (objfile->separate_debug_objfile)
2516 {
2517 /* There are two cases where we need to get rid of
2518 the old separated debug info objfile:
2519 - if the new primary objfile doesn't have
2520 separated debug info, or
2521 - if the new primary objfile has separate debug
2522 info, but it's under a different filename.
5417f6dc 2523
5b5d99cf
JB
2524 If the old and new objfiles both have separate
2525 debug info, under the same filename, then we're
2526 okay --- if the separated file's contents have
2527 changed, we will have caught that when we
2528 visited it in this function's outermost
2529 loop. */
2530 if (! debug_file
2531 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2532 free_objfile (objfile->separate_debug_objfile);
2533 }
2534
2535 /* If the new objfile has separate debug info, and we
2536 haven't loaded it already, do so now. */
2537 if (debug_file
2538 && ! objfile->separate_debug_objfile)
2539 {
2540 /* Use the same section offset table as objfile itself.
2541 Preserve the flags from objfile that make sense. */
2542 objfile->separate_debug_objfile
2543 = (symbol_file_add_with_addrs_or_offsets
5417f6dc 2544 (symfile_bfd_open (debug_file),
5b5d99cf
JB
2545 info_verbose, /* from_tty: Don't override the default. */
2546 0, /* No addr table. */
2547 objfile->section_offsets, objfile->num_sections,
2548 0, /* Not mainline. See comments about this above. */
78a4a9b9 2549 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
5b5d99cf
JB
2550 | OBJF_USERLOADED)));
2551 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2552 = objfile;
2553 }
73780b3c
MS
2554 if (debug_file)
2555 xfree (debug_file);
5b5d99cf
JB
2556}
2557
2558
c906108c
SS
2559\f
2560
c5aa993b
JM
2561
2562typedef struct
2563{
2564 char *ext;
c906108c 2565 enum language lang;
c5aa993b
JM
2566}
2567filename_language;
c906108c 2568
c5aa993b 2569static filename_language *filename_language_table;
c906108c
SS
2570static int fl_table_size, fl_table_next;
2571
2572static void
fba45db2 2573add_filename_language (char *ext, enum language lang)
c906108c
SS
2574{
2575 if (fl_table_next >= fl_table_size)
2576 {
2577 fl_table_size += 10;
5417f6dc 2578 filename_language_table =
25bf3106
PM
2579 xrealloc (filename_language_table,
2580 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2581 }
2582
4fcf66da 2583 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2584 filename_language_table[fl_table_next].lang = lang;
2585 fl_table_next++;
2586}
2587
2588static char *ext_args;
920d2a44
AC
2589static void
2590show_ext_args (struct ui_file *file, int from_tty,
2591 struct cmd_list_element *c, const char *value)
2592{
2593 fprintf_filtered (file, _("\
2594Mapping between filename extension and source language is \"%s\".\n"),
2595 value);
2596}
c906108c
SS
2597
2598static void
26c41df3 2599set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2600{
2601 int i;
2602 char *cp = ext_args;
2603 enum language lang;
2604
2605 /* First arg is filename extension, starting with '.' */
2606 if (*cp != '.')
8a3fe4f8 2607 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2608
2609 /* Find end of first arg. */
c5aa993b 2610 while (*cp && !isspace (*cp))
c906108c
SS
2611 cp++;
2612
2613 if (*cp == '\0')
8a3fe4f8 2614 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2615 ext_args);
2616
2617 /* Null-terminate first arg */
c5aa993b 2618 *cp++ = '\0';
c906108c
SS
2619
2620 /* Find beginning of second arg, which should be a source language. */
2621 while (*cp && isspace (*cp))
2622 cp++;
2623
2624 if (*cp == '\0')
8a3fe4f8 2625 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2626 ext_args);
2627
2628 /* Lookup the language from among those we know. */
2629 lang = language_enum (cp);
2630
2631 /* Now lookup the filename extension: do we already know it? */
2632 for (i = 0; i < fl_table_next; i++)
2633 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2634 break;
2635
2636 if (i >= fl_table_next)
2637 {
2638 /* new file extension */
2639 add_filename_language (ext_args, lang);
2640 }
2641 else
2642 {
2643 /* redefining a previously known filename extension */
2644
2645 /* if (from_tty) */
2646 /* query ("Really make files of type %s '%s'?", */
2647 /* ext_args, language_str (lang)); */
2648
b8c9b27d 2649 xfree (filename_language_table[i].ext);
4fcf66da 2650 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2651 filename_language_table[i].lang = lang;
2652 }
2653}
2654
2655static void
fba45db2 2656info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2657{
2658 int i;
2659
a3f17187 2660 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2661 printf_filtered ("\n\n");
2662 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2663 printf_filtered ("\t%s\t- %s\n",
2664 filename_language_table[i].ext,
c906108c
SS
2665 language_str (filename_language_table[i].lang));
2666}
2667
2668static void
fba45db2 2669init_filename_language_table (void)
c906108c
SS
2670{
2671 if (fl_table_size == 0) /* protect against repetition */
2672 {
2673 fl_table_size = 20;
2674 fl_table_next = 0;
c5aa993b 2675 filename_language_table =
c906108c 2676 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b
JM
2677 add_filename_language (".c", language_c);
2678 add_filename_language (".C", language_cplus);
2679 add_filename_language (".cc", language_cplus);
2680 add_filename_language (".cp", language_cplus);
2681 add_filename_language (".cpp", language_cplus);
2682 add_filename_language (".cxx", language_cplus);
2683 add_filename_language (".c++", language_cplus);
2684 add_filename_language (".java", language_java);
c906108c 2685 add_filename_language (".class", language_java);
da2cf7e0 2686 add_filename_language (".m", language_objc);
c5aa993b
JM
2687 add_filename_language (".f", language_fortran);
2688 add_filename_language (".F", language_fortran);
2689 add_filename_language (".s", language_asm);
2690 add_filename_language (".S", language_asm);
c6fd39cd
PM
2691 add_filename_language (".pas", language_pascal);
2692 add_filename_language (".p", language_pascal);
2693 add_filename_language (".pp", language_pascal);
963a6417
PH
2694 add_filename_language (".adb", language_ada);
2695 add_filename_language (".ads", language_ada);
2696 add_filename_language (".a", language_ada);
2697 add_filename_language (".ada", language_ada);
c906108c
SS
2698 }
2699}
2700
2701enum language
fba45db2 2702deduce_language_from_filename (char *filename)
c906108c
SS
2703{
2704 int i;
2705 char *cp;
2706
2707 if (filename != NULL)
2708 if ((cp = strrchr (filename, '.')) != NULL)
2709 for (i = 0; i < fl_table_next; i++)
2710 if (strcmp (cp, filename_language_table[i].ext) == 0)
2711 return filename_language_table[i].lang;
2712
2713 return language_unknown;
2714}
2715\f
2716/* allocate_symtab:
2717
2718 Allocate and partly initialize a new symbol table. Return a pointer
2719 to it. error() if no space.
2720
2721 Caller must set these fields:
c5aa993b
JM
2722 LINETABLE(symtab)
2723 symtab->blockvector
2724 symtab->dirname
2725 symtab->free_code
2726 symtab->free_ptr
2727 possibly free_named_symtabs (symtab->filename);
c906108c
SS
2728 */
2729
2730struct symtab *
fba45db2 2731allocate_symtab (char *filename, struct objfile *objfile)
c906108c 2732{
52f0bd74 2733 struct symtab *symtab;
c906108c
SS
2734
2735 symtab = (struct symtab *)
4a146b47 2736 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2737 memset (symtab, 0, sizeof (*symtab));
c5aa993b 2738 symtab->filename = obsavestring (filename, strlen (filename),
4a146b47 2739 &objfile->objfile_obstack);
c5aa993b
JM
2740 symtab->fullname = NULL;
2741 symtab->language = deduce_language_from_filename (filename);
2742 symtab->debugformat = obsavestring ("unknown", 7,
4a146b47 2743 &objfile->objfile_obstack);
c906108c
SS
2744
2745 /* Hook it to the objfile it comes from */
2746
c5aa993b
JM
2747 symtab->objfile = objfile;
2748 symtab->next = objfile->symtabs;
2749 objfile->symtabs = symtab;
c906108c 2750
c906108c
SS
2751 return (symtab);
2752}
2753
2754struct partial_symtab *
fba45db2 2755allocate_psymtab (char *filename, struct objfile *objfile)
c906108c
SS
2756{
2757 struct partial_symtab *psymtab;
2758
c5aa993b 2759 if (objfile->free_psymtabs)
c906108c 2760 {
c5aa993b
JM
2761 psymtab = objfile->free_psymtabs;
2762 objfile->free_psymtabs = psymtab->next;
c906108c
SS
2763 }
2764 else
2765 psymtab = (struct partial_symtab *)
8b92e4d5 2766 obstack_alloc (&objfile->objfile_obstack,
c906108c
SS
2767 sizeof (struct partial_symtab));
2768
2769 memset (psymtab, 0, sizeof (struct partial_symtab));
c5aa993b 2770 psymtab->filename = obsavestring (filename, strlen (filename),
8b92e4d5 2771 &objfile->objfile_obstack);
c5aa993b 2772 psymtab->symtab = NULL;
c906108c
SS
2773
2774 /* Prepend it to the psymtab list for the objfile it belongs to.
2775 Psymtabs are searched in most recent inserted -> least recent
2776 inserted order. */
2777
c5aa993b
JM
2778 psymtab->objfile = objfile;
2779 psymtab->next = objfile->psymtabs;
2780 objfile->psymtabs = psymtab;
c906108c
SS
2781#if 0
2782 {
2783 struct partial_symtab **prev_pst;
c5aa993b
JM
2784 psymtab->objfile = objfile;
2785 psymtab->next = NULL;
2786 prev_pst = &(objfile->psymtabs);
c906108c 2787 while ((*prev_pst) != NULL)
c5aa993b 2788 prev_pst = &((*prev_pst)->next);
c906108c 2789 (*prev_pst) = psymtab;
c5aa993b 2790 }
c906108c 2791#endif
c5aa993b 2792
c906108c
SS
2793 return (psymtab);
2794}
2795
2796void
fba45db2 2797discard_psymtab (struct partial_symtab *pst)
c906108c
SS
2798{
2799 struct partial_symtab **prev_pst;
2800
2801 /* From dbxread.c:
2802 Empty psymtabs happen as a result of header files which don't
2803 have any symbols in them. There can be a lot of them. But this
2804 check is wrong, in that a psymtab with N_SLINE entries but
2805 nothing else is not empty, but we don't realize that. Fixing
2806 that without slowing things down might be tricky. */
2807
2808 /* First, snip it out of the psymtab chain */
2809
2810 prev_pst = &(pst->objfile->psymtabs);
2811 while ((*prev_pst) != pst)
2812 prev_pst = &((*prev_pst)->next);
2813 (*prev_pst) = pst->next;
2814
2815 /* Next, put it on a free list for recycling */
2816
2817 pst->next = pst->objfile->free_psymtabs;
2818 pst->objfile->free_psymtabs = pst;
2819}
c906108c 2820\f
c5aa993b 2821
c906108c
SS
2822/* Reset all data structures in gdb which may contain references to symbol
2823 table data. */
2824
2825void
fba45db2 2826clear_symtab_users (void)
c906108c
SS
2827{
2828 /* Someday, we should do better than this, by only blowing away
2829 the things that really need to be blown. */
c0501be5
DJ
2830
2831 /* Clear the "current" symtab first, because it is no longer valid.
2832 breakpoint_re_set may try to access the current symtab. */
2833 clear_current_source_symtab_and_line ();
2834
c906108c 2835 clear_displays ();
c906108c
SS
2836 breakpoint_re_set ();
2837 set_default_breakpoint (0, 0, 0, 0);
c906108c 2838 clear_pc_function_cache ();
06d3b283 2839 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2840
2841 /* Clear globals which might have pointed into a removed objfile.
2842 FIXME: It's not clear which of these are supposed to persist
2843 between expressions and which ought to be reset each time. */
2844 expression_context_block = NULL;
2845 innermost_block = NULL;
8756216b
DP
2846
2847 /* Varobj may refer to old symbols, perform a cleanup. */
2848 varobj_invalidate ();
2849
c906108c
SS
2850}
2851
74b7792f
AC
2852static void
2853clear_symtab_users_cleanup (void *ignore)
2854{
2855 clear_symtab_users ();
2856}
2857
c906108c
SS
2858/* clear_symtab_users_once:
2859
2860 This function is run after symbol reading, or from a cleanup.
2861 If an old symbol table was obsoleted, the old symbol table
5417f6dc 2862 has been blown away, but the other GDB data structures that may
c906108c
SS
2863 reference it have not yet been cleared or re-directed. (The old
2864 symtab was zapped, and the cleanup queued, in free_named_symtab()
2865 below.)
2866
2867 This function can be queued N times as a cleanup, or called
2868 directly; it will do all the work the first time, and then will be a
2869 no-op until the next time it is queued. This works by bumping a
2870 counter at queueing time. Much later when the cleanup is run, or at
2871 the end of symbol processing (in case the cleanup is discarded), if
2872 the queued count is greater than the "done-count", we do the work
2873 and set the done-count to the queued count. If the queued count is
2874 less than or equal to the done-count, we just ignore the call. This
2875 is needed because reading a single .o file will often replace many
2876 symtabs (one per .h file, for example), and we don't want to reset
2877 the breakpoints N times in the user's face.
2878
2879 The reason we both queue a cleanup, and call it directly after symbol
2880 reading, is because the cleanup protects us in case of errors, but is
2881 discarded if symbol reading is successful. */
2882
2883#if 0
2884/* FIXME: As free_named_symtabs is currently a big noop this function
2885 is no longer needed. */
a14ed312 2886static void clear_symtab_users_once (void);
c906108c
SS
2887
2888static int clear_symtab_users_queued;
2889static int clear_symtab_users_done;
2890
2891static void
fba45db2 2892clear_symtab_users_once (void)
c906108c
SS
2893{
2894 /* Enforce once-per-`do_cleanups'-semantics */
2895 if (clear_symtab_users_queued <= clear_symtab_users_done)
2896 return;
2897 clear_symtab_users_done = clear_symtab_users_queued;
2898
2899 clear_symtab_users ();
2900}
2901#endif
2902
2903/* Delete the specified psymtab, and any others that reference it. */
2904
2905static void
fba45db2 2906cashier_psymtab (struct partial_symtab *pst)
c906108c
SS
2907{
2908 struct partial_symtab *ps, *pprev = NULL;
2909 int i;
2910
2911 /* Find its previous psymtab in the chain */
c5aa993b
JM
2912 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2913 {
2914 if (ps == pst)
2915 break;
2916 pprev = ps;
2917 }
c906108c 2918
c5aa993b
JM
2919 if (ps)
2920 {
2921 /* Unhook it from the chain. */
2922 if (ps == pst->objfile->psymtabs)
2923 pst->objfile->psymtabs = ps->next;
2924 else
2925 pprev->next = ps->next;
2926
2927 /* FIXME, we can't conveniently deallocate the entries in the
2928 partial_symbol lists (global_psymbols/static_psymbols) that
2929 this psymtab points to. These just take up space until all
2930 the psymtabs are reclaimed. Ditto the dependencies list and
8b92e4d5 2931 filename, which are all in the objfile_obstack. */
c5aa993b
JM
2932
2933 /* We need to cashier any psymtab that has this one as a dependency... */
2934 again:
2935 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2936 {
2937 for (i = 0; i < ps->number_of_dependencies; i++)
2938 {
2939 if (ps->dependencies[i] == pst)
2940 {
2941 cashier_psymtab (ps);
2942 goto again; /* Must restart, chain has been munged. */
2943 }
2944 }
c906108c 2945 }
c906108c 2946 }
c906108c
SS
2947}
2948
2949/* If a symtab or psymtab for filename NAME is found, free it along
2950 with any dependent breakpoints, displays, etc.
2951 Used when loading new versions of object modules with the "add-file"
2952 command. This is only called on the top-level symtab or psymtab's name;
2953 it is not called for subsidiary files such as .h files.
2954
2955 Return value is 1 if we blew away the environment, 0 if not.
7e73cedf 2956 FIXME. The return value appears to never be used.
c906108c
SS
2957
2958 FIXME. I think this is not the best way to do this. We should
2959 work on being gentler to the environment while still cleaning up
2960 all stray pointers into the freed symtab. */
2961
2962int
fba45db2 2963free_named_symtabs (char *name)
c906108c
SS
2964{
2965#if 0
2966 /* FIXME: With the new method of each objfile having it's own
2967 psymtab list, this function needs serious rethinking. In particular,
2968 why was it ever necessary to toss psymtabs with specific compilation
2969 unit filenames, as opposed to all psymtabs from a particular symbol
2970 file? -- fnf
2971 Well, the answer is that some systems permit reloading of particular
2972 compilation units. We want to blow away any old info about these
2973 compilation units, regardless of which objfiles they arrived in. --gnu. */
2974
52f0bd74
AC
2975 struct symtab *s;
2976 struct symtab *prev;
2977 struct partial_symtab *ps;
c906108c
SS
2978 struct blockvector *bv;
2979 int blewit = 0;
2980
2981 /* We only wack things if the symbol-reload switch is set. */
2982 if (!symbol_reloading)
2983 return 0;
2984
2985 /* Some symbol formats have trouble providing file names... */
2986 if (name == 0 || *name == '\0')
2987 return 0;
2988
2989 /* Look for a psymtab with the specified name. */
2990
2991again2:
c5aa993b
JM
2992 for (ps = partial_symtab_list; ps; ps = ps->next)
2993 {
6314a349 2994 if (strcmp (name, ps->filename) == 0)
c5aa993b
JM
2995 {
2996 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2997 goto again2; /* Must restart, chain has been munged */
2998 }
c906108c 2999 }
c906108c
SS
3000
3001 /* Look for a symtab with the specified name. */
3002
3003 for (s = symtab_list; s; s = s->next)
3004 {
6314a349 3005 if (strcmp (name, s->filename) == 0)
c906108c
SS
3006 break;
3007 prev = s;
3008 }
3009
3010 if (s)
3011 {
3012 if (s == symtab_list)
3013 symtab_list = s->next;
3014 else
3015 prev->next = s->next;
3016
3017 /* For now, queue a delete for all breakpoints, displays, etc., whether
c5aa993b
JM
3018 or not they depend on the symtab being freed. This should be
3019 changed so that only those data structures affected are deleted. */
c906108c
SS
3020
3021 /* But don't delete anything if the symtab is empty.
c5aa993b
JM
3022 This test is necessary due to a bug in "dbxread.c" that
3023 causes empty symtabs to be created for N_SO symbols that
3024 contain the pathname of the object file. (This problem
3025 has been fixed in GDB 3.9x). */
c906108c
SS
3026
3027 bv = BLOCKVECTOR (s);
3028 if (BLOCKVECTOR_NBLOCKS (bv) > 2
3029 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
3030 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
3031 {
e2e0b3e5 3032 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
b9caf505 3033 name);
c906108c
SS
3034 clear_symtab_users_queued++;
3035 make_cleanup (clear_symtab_users_once, 0);
3036 blewit = 1;
c5aa993b
JM
3037 }
3038 else
e2e0b3e5
AC
3039 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
3040 name);
c906108c
SS
3041
3042 free_symtab (s);
3043 }
3044 else
3045 {
3046 /* It is still possible that some breakpoints will be affected
c5aa993b
JM
3047 even though no symtab was found, since the file might have
3048 been compiled without debugging, and hence not be associated
3049 with a symtab. In order to handle this correctly, we would need
3050 to keep a list of text address ranges for undebuggable files.
3051 For now, we do nothing, since this is a fairly obscure case. */
c906108c
SS
3052 ;
3053 }
3054
3055 /* FIXME, what about the minimal symbol table? */
3056 return blewit;
3057#else
3058 return (0);
3059#endif
3060}
3061\f
3062/* Allocate and partially fill a partial symtab. It will be
3063 completely filled at the end of the symbol list.
3064
d4f3574e 3065 FILENAME is the name of the symbol-file we are reading from. */
c906108c
SS
3066
3067struct partial_symtab *
fba45db2
KB
3068start_psymtab_common (struct objfile *objfile,
3069 struct section_offsets *section_offsets, char *filename,
3070 CORE_ADDR textlow, struct partial_symbol **global_syms,
3071 struct partial_symbol **static_syms)
c906108c
SS
3072{
3073 struct partial_symtab *psymtab;
3074
3075 psymtab = allocate_psymtab (filename, objfile);
c5aa993b
JM
3076 psymtab->section_offsets = section_offsets;
3077 psymtab->textlow = textlow;
3078 psymtab->texthigh = psymtab->textlow; /* default */
3079 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
3080 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
c906108c
SS
3081 return (psymtab);
3082}
3083\f
3084/* Add a symbol with a long value to a psymtab.
5417f6dc 3085 Since one arg is a struct, we pass in a ptr and deref it (sigh).
5c4e30ca
DC
3086 Return the partial symbol that has been added. */
3087
3088/* NOTE: carlton/2003-09-11: The reason why we return the partial
3089 symbol is so that callers can get access to the symbol's demangled
3090 name, which they don't have any cheap way to determine otherwise.
3091 (Currenly, dwarf2read.c is the only file who uses that information,
3092 though it's possible that other readers might in the future.)
3093 Elena wasn't thrilled about that, and I don't blame her, but we
3094 couldn't come up with a better way to get that information. If
3095 it's needed in other situations, we could consider breaking up
3096 SYMBOL_SET_NAMES to provide access to the demangled name lookup
3097 cache. */
3098
3099const struct partial_symbol *
176620f1 3100add_psymbol_to_list (char *name, int namelength, domain_enum domain,
fba45db2
KB
3101 enum address_class class,
3102 struct psymbol_allocation_list *list, long val, /* Value as a long */
3103 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3104 enum language language, struct objfile *objfile)
c906108c 3105{
52f0bd74 3106 struct partial_symbol *psym;
c906108c
SS
3107 char *buf = alloca (namelength + 1);
3108 /* psymbol is static so that there will be no uninitialized gaps in the
3109 structure which might contain random data, causing cache misses in
3110 bcache. */
3111 static struct partial_symbol psymbol;
3112
3113 /* Create local copy of the partial symbol */
3114 memcpy (buf, name, namelength);
3115 buf[namelength] = '\0';
c906108c
SS
3116 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
3117 if (val != 0)
3118 {
3119 SYMBOL_VALUE (&psymbol) = val;
3120 }
3121 else
3122 {
3123 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
3124 }
3125 SYMBOL_SECTION (&psymbol) = 0;
3126 SYMBOL_LANGUAGE (&psymbol) = language;
176620f1 3127 PSYMBOL_DOMAIN (&psymbol) = domain;
c906108c 3128 PSYMBOL_CLASS (&psymbol) = class;
2de7ced7
DJ
3129
3130 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
c906108c
SS
3131
3132 /* Stash the partial symbol away in the cache */
3a16a68c
AC
3133 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
3134 objfile->psymbol_cache);
c906108c
SS
3135
3136 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
3137 if (list->next >= list->list + list->size)
3138 {
3139 extend_psymbol_list (list, objfile);
3140 }
3141 *list->next++ = psym;
3142 OBJSTAT (objfile, n_psyms++);
5c4e30ca
DC
3143
3144 return psym;
c906108c
SS
3145}
3146
c906108c
SS
3147/* Initialize storage for partial symbols. */
3148
3149void
fba45db2 3150init_psymbol_list (struct objfile *objfile, int total_symbols)
c906108c
SS
3151{
3152 /* Free any previously allocated psymbol lists. */
c5aa993b
JM
3153
3154 if (objfile->global_psymbols.list)
c906108c 3155 {
2dc74dc1 3156 xfree (objfile->global_psymbols.list);
c906108c 3157 }
c5aa993b 3158 if (objfile->static_psymbols.list)
c906108c 3159 {
2dc74dc1 3160 xfree (objfile->static_psymbols.list);
c906108c 3161 }
c5aa993b 3162
c906108c
SS
3163 /* Current best guess is that approximately a twentieth
3164 of the total symbols (in a debugging file) are global or static
3165 oriented symbols */
c906108c 3166
c5aa993b
JM
3167 objfile->global_psymbols.size = total_symbols / 10;
3168 objfile->static_psymbols.size = total_symbols / 10;
3169
3170 if (objfile->global_psymbols.size > 0)
c906108c 3171 {
c5aa993b
JM
3172 objfile->global_psymbols.next =
3173 objfile->global_psymbols.list = (struct partial_symbol **)
7936743b
AC
3174 xmalloc ((objfile->global_psymbols.size
3175 * sizeof (struct partial_symbol *)));
c906108c 3176 }
c5aa993b 3177 if (objfile->static_psymbols.size > 0)
c906108c 3178 {
c5aa993b
JM
3179 objfile->static_psymbols.next =
3180 objfile->static_psymbols.list = (struct partial_symbol **)
7936743b
AC
3181 xmalloc ((objfile->static_psymbols.size
3182 * sizeof (struct partial_symbol *)));
c906108c
SS
3183 }
3184}
3185
3186/* OVERLAYS:
3187 The following code implements an abstraction for debugging overlay sections.
3188
3189 The target model is as follows:
3190 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 3191 same VMA, each with its own unique LMA (or load address).
c906108c 3192 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 3193 sections, one by one, from the load address into the VMA address.
5417f6dc 3194 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
3195 sections should be considered to be mapped from the VMA to the LMA.
3196 This information is used for symbol lookup, and memory read/write.
5417f6dc 3197 For instance, if a section has been mapped then its contents
c5aa993b 3198 should be read from the VMA, otherwise from the LMA.
c906108c
SS
3199
3200 Two levels of debugger support for overlays are available. One is
3201 "manual", in which the debugger relies on the user to tell it which
3202 overlays are currently mapped. This level of support is
3203 implemented entirely in the core debugger, and the information about
3204 whether a section is mapped is kept in the objfile->obj_section table.
3205
3206 The second level of support is "automatic", and is only available if
3207 the target-specific code provides functionality to read the target's
3208 overlay mapping table, and translate its contents for the debugger
3209 (by updating the mapped state information in the obj_section tables).
3210
3211 The interface is as follows:
c5aa993b
JM
3212 User commands:
3213 overlay map <name> -- tell gdb to consider this section mapped
3214 overlay unmap <name> -- tell gdb to consider this section unmapped
3215 overlay list -- list the sections that GDB thinks are mapped
3216 overlay read-target -- get the target's state of what's mapped
3217 overlay off/manual/auto -- set overlay debugging state
3218 Functional interface:
3219 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3220 section, return that section.
5417f6dc 3221 find_pc_overlay(pc): find any overlay section that contains
c5aa993b
JM
3222 the pc, either in its VMA or its LMA
3223 overlay_is_mapped(sect): true if overlay is marked as mapped
3224 section_is_overlay(sect): true if section's VMA != LMA
3225 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3226 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 3227 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
3228 overlay_mapped_address(...): map an address from section's LMA to VMA
3229 overlay_unmapped_address(...): map an address from section's VMA to LMA
3230 symbol_overlayed_address(...): Return a "current" address for symbol:
3231 either in VMA or LMA depending on whether
3232 the symbol's section is currently mapped
c906108c
SS
3233 */
3234
3235/* Overlay debugging state: */
3236
d874f1e2 3237enum overlay_debugging_state overlay_debugging = ovly_off;
c906108c
SS
3238int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
3239
c906108c 3240/* Function: section_is_overlay (SECTION)
5417f6dc 3241 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
3242 SECTION is loaded at an address different from where it will "run". */
3243
3244int
fba45db2 3245section_is_overlay (asection *section)
c906108c 3246{
fbd35540
MS
3247 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3248
c906108c
SS
3249 if (overlay_debugging)
3250 if (section && section->lma != 0 &&
3251 section->vma != section->lma)
3252 return 1;
3253
3254 return 0;
3255}
3256
3257/* Function: overlay_invalidate_all (void)
3258 Invalidate the mapped state of all overlay sections (mark it as stale). */
3259
3260static void
fba45db2 3261overlay_invalidate_all (void)
c906108c 3262{
c5aa993b 3263 struct objfile *objfile;
c906108c
SS
3264 struct obj_section *sect;
3265
3266 ALL_OBJSECTIONS (objfile, sect)
3267 if (section_is_overlay (sect->the_bfd_section))
c5aa993b 3268 sect->ovly_mapped = -1;
c906108c
SS
3269}
3270
3271/* Function: overlay_is_mapped (SECTION)
5417f6dc 3272 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3273 Private: public access is thru function section_is_mapped.
3274
3275 Access to the ovly_mapped flag is restricted to this function, so
3276 that we can do automatic update. If the global flag
3277 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3278 overlay_invalidate_all. If the mapped state of the particular
3279 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3280
c5aa993b 3281static int
fba45db2 3282overlay_is_mapped (struct obj_section *osect)
c906108c
SS
3283{
3284 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
3285 return 0;
3286
c5aa993b 3287 switch (overlay_debugging)
c906108c
SS
3288 {
3289 default:
d874f1e2 3290 case ovly_off:
c5aa993b 3291 return 0; /* overlay debugging off */
d874f1e2 3292 case ovly_auto: /* overlay debugging automatic */
1c772458 3293 /* Unles there is a gdbarch_overlay_update function,
c5aa993b 3294 there's really nothing useful to do here (can't really go auto) */
1c772458 3295 if (gdbarch_overlay_update_p (current_gdbarch))
c906108c
SS
3296 {
3297 if (overlay_cache_invalid)
3298 {
3299 overlay_invalidate_all ();
3300 overlay_cache_invalid = 0;
3301 }
3302 if (osect->ovly_mapped == -1)
1c772458 3303 gdbarch_overlay_update (current_gdbarch, osect);
c906108c
SS
3304 }
3305 /* fall thru to manual case */
d874f1e2 3306 case ovly_on: /* overlay debugging manual */
c906108c
SS
3307 return osect->ovly_mapped == 1;
3308 }
3309}
3310
3311/* Function: section_is_mapped
3312 Returns true if section is an overlay, and is currently mapped. */
3313
3314int
fba45db2 3315section_is_mapped (asection *section)
c906108c 3316{
c5aa993b 3317 struct objfile *objfile;
c906108c
SS
3318 struct obj_section *osect;
3319
3320 if (overlay_debugging)
3321 if (section && section_is_overlay (section))
3322 ALL_OBJSECTIONS (objfile, osect)
3323 if (osect->the_bfd_section == section)
c5aa993b 3324 return overlay_is_mapped (osect);
c906108c
SS
3325
3326 return 0;
3327}
3328
3329/* Function: pc_in_unmapped_range
3330 If PC falls into the lma range of SECTION, return true, else false. */
3331
3332CORE_ADDR
fba45db2 3333pc_in_unmapped_range (CORE_ADDR pc, asection *section)
c906108c 3334{
fbd35540
MS
3335 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3336
c906108c
SS
3337 int size;
3338
3339 if (overlay_debugging)
3340 if (section && section_is_overlay (section))
3341 {
2c500098 3342 size = bfd_get_section_size (section);
c906108c
SS
3343 if (section->lma <= pc && pc < section->lma + size)
3344 return 1;
3345 }
3346 return 0;
3347}
3348
3349/* Function: pc_in_mapped_range
3350 If PC falls into the vma range of SECTION, return true, else false. */
3351
3352CORE_ADDR
fba45db2 3353pc_in_mapped_range (CORE_ADDR pc, asection *section)
c906108c 3354{
fbd35540
MS
3355 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3356
c906108c
SS
3357 int size;
3358
3359 if (overlay_debugging)
3360 if (section && section_is_overlay (section))
3361 {
2c500098 3362 size = bfd_get_section_size (section);
c906108c
SS
3363 if (section->vma <= pc && pc < section->vma + size)
3364 return 1;
3365 }
3366 return 0;
3367}
3368
9ec8e6a0
JB
3369
3370/* Return true if the mapped ranges of sections A and B overlap, false
3371 otherwise. */
b9362cc7 3372static int
9ec8e6a0
JB
3373sections_overlap (asection *a, asection *b)
3374{
fbd35540
MS
3375 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3376
9ec8e6a0 3377 CORE_ADDR a_start = a->vma;
2c500098 3378 CORE_ADDR a_end = a->vma + bfd_get_section_size (a);
9ec8e6a0 3379 CORE_ADDR b_start = b->vma;
2c500098 3380 CORE_ADDR b_end = b->vma + bfd_get_section_size (b);
9ec8e6a0
JB
3381
3382 return (a_start < b_end && b_start < a_end);
3383}
3384
c906108c
SS
3385/* Function: overlay_unmapped_address (PC, SECTION)
3386 Returns the address corresponding to PC in the unmapped (load) range.
3387 May be the same as PC. */
3388
3389CORE_ADDR
fba45db2 3390overlay_unmapped_address (CORE_ADDR pc, asection *section)
c906108c 3391{
fbd35540
MS
3392 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3393
c906108c
SS
3394 if (overlay_debugging)
3395 if (section && section_is_overlay (section) &&
3396 pc_in_mapped_range (pc, section))
3397 return pc + section->lma - section->vma;
3398
3399 return pc;
3400}
3401
3402/* Function: overlay_mapped_address (PC, SECTION)
3403 Returns the address corresponding to PC in the mapped (runtime) range.
3404 May be the same as PC. */
3405
3406CORE_ADDR
fba45db2 3407overlay_mapped_address (CORE_ADDR pc, asection *section)
c906108c 3408{
fbd35540
MS
3409 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3410
c906108c
SS
3411 if (overlay_debugging)
3412 if (section && section_is_overlay (section) &&
3413 pc_in_unmapped_range (pc, section))
3414 return pc + section->vma - section->lma;
3415
3416 return pc;
3417}
3418
3419
5417f6dc 3420/* Function: symbol_overlayed_address
c906108c
SS
3421 Return one of two addresses (relative to the VMA or to the LMA),
3422 depending on whether the section is mapped or not. */
3423
c5aa993b 3424CORE_ADDR
fba45db2 3425symbol_overlayed_address (CORE_ADDR address, asection *section)
c906108c
SS
3426{
3427 if (overlay_debugging)
3428 {
3429 /* If the symbol has no section, just return its regular address. */
3430 if (section == 0)
3431 return address;
3432 /* If the symbol's section is not an overlay, just return its address */
3433 if (!section_is_overlay (section))
3434 return address;
3435 /* If the symbol's section is mapped, just return its address */
3436 if (section_is_mapped (section))
3437 return address;
3438 /*
3439 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3440 * then return its LOADED address rather than its vma address!!
3441 */
3442 return overlay_unmapped_address (address, section);
3443 }
3444 return address;
3445}
3446
5417f6dc 3447/* Function: find_pc_overlay (PC)
c906108c
SS
3448 Return the best-match overlay section for PC:
3449 If PC matches a mapped overlay section's VMA, return that section.
3450 Else if PC matches an unmapped section's VMA, return that section.
3451 Else if PC matches an unmapped section's LMA, return that section. */
3452
3453asection *
fba45db2 3454find_pc_overlay (CORE_ADDR pc)
c906108c 3455{
c5aa993b 3456 struct objfile *objfile;
c906108c
SS
3457 struct obj_section *osect, *best_match = NULL;
3458
3459 if (overlay_debugging)
3460 ALL_OBJSECTIONS (objfile, osect)
3461 if (section_is_overlay (osect->the_bfd_section))
c5aa993b
JM
3462 {
3463 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3464 {
3465 if (overlay_is_mapped (osect))
3466 return osect->the_bfd_section;
3467 else
3468 best_match = osect;
3469 }
3470 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3471 best_match = osect;
3472 }
c906108c
SS
3473 return best_match ? best_match->the_bfd_section : NULL;
3474}
3475
3476/* Function: find_pc_mapped_section (PC)
5417f6dc 3477 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3478 currently marked as MAPPED, return that section. Else return NULL. */
3479
3480asection *
fba45db2 3481find_pc_mapped_section (CORE_ADDR pc)
c906108c 3482{
c5aa993b 3483 struct objfile *objfile;
c906108c
SS
3484 struct obj_section *osect;
3485
3486 if (overlay_debugging)
3487 ALL_OBJSECTIONS (objfile, osect)
3488 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3489 overlay_is_mapped (osect))
c5aa993b 3490 return osect->the_bfd_section;
c906108c
SS
3491
3492 return NULL;
3493}
3494
3495/* Function: list_overlays_command
3496 Print a list of mapped sections and their PC ranges */
3497
3498void
fba45db2 3499list_overlays_command (char *args, int from_tty)
c906108c 3500{
c5aa993b
JM
3501 int nmapped = 0;
3502 struct objfile *objfile;
c906108c
SS
3503 struct obj_section *osect;
3504
3505 if (overlay_debugging)
3506 ALL_OBJSECTIONS (objfile, osect)
3507 if (overlay_is_mapped (osect))
c5aa993b
JM
3508 {
3509 const char *name;
3510 bfd_vma lma, vma;
3511 int size;
3512
3513 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3514 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3515 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3516 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3517
3518 printf_filtered ("Section %s, loaded at ", name);
66bf4b3a 3519 deprecated_print_address_numeric (lma, 1, gdb_stdout);
c5aa993b 3520 puts_filtered (" - ");
66bf4b3a 3521 deprecated_print_address_numeric (lma + size, 1, gdb_stdout);
c5aa993b 3522 printf_filtered (", mapped at ");
66bf4b3a 3523 deprecated_print_address_numeric (vma, 1, gdb_stdout);
c5aa993b 3524 puts_filtered (" - ");
66bf4b3a 3525 deprecated_print_address_numeric (vma + size, 1, gdb_stdout);
c5aa993b
JM
3526 puts_filtered ("\n");
3527
3528 nmapped++;
3529 }
c906108c 3530 if (nmapped == 0)
a3f17187 3531 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3532}
3533
3534/* Function: map_overlay_command
3535 Mark the named section as mapped (ie. residing at its VMA address). */
3536
3537void
fba45db2 3538map_overlay_command (char *args, int from_tty)
c906108c 3539{
c5aa993b
JM
3540 struct objfile *objfile, *objfile2;
3541 struct obj_section *sec, *sec2;
3542 asection *bfdsec;
c906108c
SS
3543
3544 if (!overlay_debugging)
8a3fe4f8 3545 error (_("\
515ad16c 3546Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3547the 'overlay manual' command."));
c906108c
SS
3548
3549 if (args == 0 || *args == 0)
8a3fe4f8 3550 error (_("Argument required: name of an overlay section"));
c906108c
SS
3551
3552 /* First, find a section matching the user supplied argument */
3553 ALL_OBJSECTIONS (objfile, sec)
3554 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3555 {
3556 /* Now, check to see if the section is an overlay. */
3557 bfdsec = sec->the_bfd_section;
3558 if (!section_is_overlay (bfdsec))
3559 continue; /* not an overlay section */
3560
3561 /* Mark the overlay as "mapped" */
3562 sec->ovly_mapped = 1;
3563
3564 /* Next, make a pass and unmap any sections that are
3565 overlapped by this new section: */
3566 ALL_OBJSECTIONS (objfile2, sec2)
9ec8e6a0
JB
3567 if (sec2->ovly_mapped
3568 && sec != sec2
3569 && sec->the_bfd_section != sec2->the_bfd_section
3570 && sections_overlap (sec->the_bfd_section,
3571 sec2->the_bfd_section))
c5aa993b
JM
3572 {
3573 if (info_verbose)
a3f17187 3574 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3575 bfd_section_name (objfile->obfd,
3576 sec2->the_bfd_section));
3577 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3578 }
3579 return;
3580 }
8a3fe4f8 3581 error (_("No overlay section called %s"), args);
c906108c
SS
3582}
3583
3584/* Function: unmap_overlay_command
5417f6dc 3585 Mark the overlay section as unmapped
c906108c
SS
3586 (ie. resident in its LMA address range, rather than the VMA range). */
3587
3588void
fba45db2 3589unmap_overlay_command (char *args, int from_tty)
c906108c 3590{
c5aa993b 3591 struct objfile *objfile;
c906108c
SS
3592 struct obj_section *sec;
3593
3594 if (!overlay_debugging)
8a3fe4f8 3595 error (_("\
515ad16c 3596Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3597the 'overlay manual' command."));
c906108c
SS
3598
3599 if (args == 0 || *args == 0)
8a3fe4f8 3600 error (_("Argument required: name of an overlay section"));
c906108c
SS
3601
3602 /* First, find a section matching the user supplied argument */
3603 ALL_OBJSECTIONS (objfile, sec)
3604 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3605 {
3606 if (!sec->ovly_mapped)
8a3fe4f8 3607 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3608 sec->ovly_mapped = 0;
3609 return;
3610 }
8a3fe4f8 3611 error (_("No overlay section called %s"), args);
c906108c
SS
3612}
3613
3614/* Function: overlay_auto_command
3615 A utility command to turn on overlay debugging.
3616 Possibly this should be done via a set/show command. */
3617
3618static void
fba45db2 3619overlay_auto_command (char *args, int from_tty)
c906108c 3620{
d874f1e2 3621 overlay_debugging = ovly_auto;
1900040c 3622 enable_overlay_breakpoints ();
c906108c 3623 if (info_verbose)
a3f17187 3624 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3625}
3626
3627/* Function: overlay_manual_command
3628 A utility command to turn on overlay debugging.
3629 Possibly this should be done via a set/show command. */
3630
3631static void
fba45db2 3632overlay_manual_command (char *args, int from_tty)
c906108c 3633{
d874f1e2 3634 overlay_debugging = ovly_on;
1900040c 3635 disable_overlay_breakpoints ();
c906108c 3636 if (info_verbose)
a3f17187 3637 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3638}
3639
3640/* Function: overlay_off_command
3641 A utility command to turn on overlay debugging.
3642 Possibly this should be done via a set/show command. */
3643
3644static void
fba45db2 3645overlay_off_command (char *args, int from_tty)
c906108c 3646{
d874f1e2 3647 overlay_debugging = ovly_off;
1900040c 3648 disable_overlay_breakpoints ();
c906108c 3649 if (info_verbose)
a3f17187 3650 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3651}
3652
3653static void
fba45db2 3654overlay_load_command (char *args, int from_tty)
c906108c 3655{
1c772458
UW
3656 if (gdbarch_overlay_update_p (current_gdbarch))
3657 gdbarch_overlay_update (current_gdbarch, NULL);
c906108c 3658 else
8a3fe4f8 3659 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3660}
3661
3662/* Function: overlay_command
3663 A place-holder for a mis-typed command */
3664
3665/* Command list chain containing all defined "overlay" subcommands. */
3666struct cmd_list_element *overlaylist;
3667
3668static void
fba45db2 3669overlay_command (char *args, int from_tty)
c906108c 3670{
c5aa993b 3671 printf_unfiltered
c906108c
SS
3672 ("\"overlay\" must be followed by the name of an overlay command.\n");
3673 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3674}
3675
3676
3677/* Target Overlays for the "Simplest" overlay manager:
3678
5417f6dc
RM
3679 This is GDB's default target overlay layer. It works with the
3680 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3681 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3682 so targets that use a different runtime overlay manager can
c906108c
SS
3683 substitute their own overlay_update function and take over the
3684 function pointer.
3685
3686 The overlay_update function pokes around in the target's data structures
3687 to see what overlays are mapped, and updates GDB's overlay mapping with
3688 this information.
3689
3690 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3691 unsigned _novlys; /# number of overlay sections #/
3692 unsigned _ovly_table[_novlys][4] = {
3693 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3694 {..., ..., ..., ...},
3695 }
3696 unsigned _novly_regions; /# number of overlay regions #/
3697 unsigned _ovly_region_table[_novly_regions][3] = {
3698 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3699 {..., ..., ...},
3700 }
c906108c
SS
3701 These functions will attempt to update GDB's mappedness state in the
3702 symbol section table, based on the target's mappedness state.
3703
3704 To do this, we keep a cached copy of the target's _ovly_table, and
3705 attempt to detect when the cached copy is invalidated. The main
3706 entry point is "simple_overlay_update(SECT), which looks up SECT in
3707 the cached table and re-reads only the entry for that section from
3708 the target (whenever possible).
3709 */
3710
3711/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3712static unsigned (*cache_ovly_table)[4] = 0;
c906108c 3713#if 0
c5aa993b 3714static unsigned (*cache_ovly_region_table)[3] = 0;
c906108c 3715#endif
c5aa993b 3716static unsigned cache_novlys = 0;
c906108c 3717#if 0
c5aa993b 3718static unsigned cache_novly_regions = 0;
c906108c
SS
3719#endif
3720static CORE_ADDR cache_ovly_table_base = 0;
3721#if 0
3722static CORE_ADDR cache_ovly_region_table_base = 0;
3723#endif
c5aa993b
JM
3724enum ovly_index
3725 {
3726 VMA, SIZE, LMA, MAPPED
3727 };
9a76efb6
UW
3728#define TARGET_LONG_BYTES (gdbarch_long_bit (current_gdbarch) \
3729 / TARGET_CHAR_BIT)
c906108c
SS
3730
3731/* Throw away the cached copy of _ovly_table */
3732static void
fba45db2 3733simple_free_overlay_table (void)
c906108c
SS
3734{
3735 if (cache_ovly_table)
b8c9b27d 3736 xfree (cache_ovly_table);
c5aa993b 3737 cache_novlys = 0;
c906108c
SS
3738 cache_ovly_table = NULL;
3739 cache_ovly_table_base = 0;
3740}
3741
3742#if 0
3743/* Throw away the cached copy of _ovly_region_table */
3744static void
fba45db2 3745simple_free_overlay_region_table (void)
c906108c
SS
3746{
3747 if (cache_ovly_region_table)
b8c9b27d 3748 xfree (cache_ovly_region_table);
c5aa993b 3749 cache_novly_regions = 0;
c906108c
SS
3750 cache_ovly_region_table = NULL;
3751 cache_ovly_region_table_base = 0;
3752}
3753#endif
3754
3755/* Read an array of ints from the target into a local buffer.
3756 Convert to host order. int LEN is number of ints */
3757static void
fba45db2 3758read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
c906108c 3759{
34c0bd93 3760 /* FIXME (alloca): Not safe if array is very large. */
777ea8f1 3761 gdb_byte *buf = alloca (len * TARGET_LONG_BYTES);
c5aa993b 3762 int i;
c906108c
SS
3763
3764 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3765 for (i = 0; i < len; i++)
c5aa993b 3766 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
c906108c
SS
3767 TARGET_LONG_BYTES);
3768}
3769
3770/* Find and grab a copy of the target _ovly_table
3771 (and _novlys, which is needed for the table's size) */
c5aa993b 3772static int
fba45db2 3773simple_read_overlay_table (void)
c906108c 3774{
0d43edd1 3775 struct minimal_symbol *novlys_msym, *ovly_table_msym;
c906108c
SS
3776
3777 simple_free_overlay_table ();
9b27852e 3778 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3779 if (! novlys_msym)
c906108c 3780 {
8a3fe4f8 3781 error (_("Error reading inferior's overlay table: "
0d43edd1 3782 "couldn't find `_novlys' variable\n"
8a3fe4f8 3783 "in inferior. Use `overlay manual' mode."));
0d43edd1 3784 return 0;
c906108c 3785 }
0d43edd1 3786
9b27852e 3787 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3788 if (! ovly_table_msym)
3789 {
8a3fe4f8 3790 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3791 "`_ovly_table' array\n"
8a3fe4f8 3792 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3793 return 0;
3794 }
3795
3796 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3797 cache_ovly_table
3798 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3799 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3800 read_target_long_array (cache_ovly_table_base,
777ea8f1 3801 (unsigned int *) cache_ovly_table,
0d43edd1
JB
3802 cache_novlys * 4);
3803
c5aa993b 3804 return 1; /* SUCCESS */
c906108c
SS
3805}
3806
3807#if 0
3808/* Find and grab a copy of the target _ovly_region_table
3809 (and _novly_regions, which is needed for the table's size) */
c5aa993b 3810static int
fba45db2 3811simple_read_overlay_region_table (void)
c906108c
SS
3812{
3813 struct minimal_symbol *msym;
3814
3815 simple_free_overlay_region_table ();
9b27852e 3816 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
c906108c
SS
3817 if (msym != NULL)
3818 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
c5aa993b
JM
3819 else
3820 return 0; /* failure */
c906108c
SS
3821 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3822 if (cache_ovly_region_table != NULL)
3823 {
9b27852e 3824 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
c906108c
SS
3825 if (msym != NULL)
3826 {
3827 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
c5aa993b 3828 read_target_long_array (cache_ovly_region_table_base,
777ea8f1 3829 (unsigned int *) cache_ovly_region_table,
c906108c
SS
3830 cache_novly_regions * 3);
3831 }
c5aa993b
JM
3832 else
3833 return 0; /* failure */
c906108c 3834 }
c5aa993b
JM
3835 else
3836 return 0; /* failure */
3837 return 1; /* SUCCESS */
c906108c
SS
3838}
3839#endif
3840
5417f6dc 3841/* Function: simple_overlay_update_1
c906108c
SS
3842 A helper function for simple_overlay_update. Assuming a cached copy
3843 of _ovly_table exists, look through it to find an entry whose vma,
3844 lma and size match those of OSECT. Re-read the entry and make sure
3845 it still matches OSECT (else the table may no longer be valid).
3846 Set OSECT's mapped state to match the entry. Return: 1 for
3847 success, 0 for failure. */
3848
3849static int
fba45db2 3850simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3851{
3852 int i, size;
fbd35540
MS
3853 bfd *obfd = osect->objfile->obfd;
3854 asection *bsect = osect->the_bfd_section;
c906108c 3855
2c500098 3856 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3857 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3858 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3859 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3860 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3861 {
3862 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
777ea8f1 3863 (unsigned int *) cache_ovly_table[i], 4);
fbd35540
MS
3864 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3865 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3866 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3867 {
3868 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3869 return 1;
3870 }
fbd35540 3871 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3872 return 0;
3873 }
3874 return 0;
3875}
3876
3877/* Function: simple_overlay_update
5417f6dc
RM
3878 If OSECT is NULL, then update all sections' mapped state
3879 (after re-reading the entire target _ovly_table).
3880 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3881 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3882 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3883 re-read the entire cache, and go ahead and update all sections. */
3884
1c772458 3885void
fba45db2 3886simple_overlay_update (struct obj_section *osect)
c906108c 3887{
c5aa993b 3888 struct objfile *objfile;
c906108c
SS
3889
3890 /* Were we given an osect to look up? NULL means do all of them. */
3891 if (osect)
3892 /* Have we got a cached copy of the target's overlay table? */
3893 if (cache_ovly_table != NULL)
3894 /* Does its cached location match what's currently in the symtab? */
c5aa993b 3895 if (cache_ovly_table_base ==
9b27852e 3896 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
c906108c
SS
3897 /* Then go ahead and try to look up this single section in the cache */
3898 if (simple_overlay_update_1 (osect))
3899 /* Found it! We're done. */
3900 return;
3901
3902 /* Cached table no good: need to read the entire table anew.
3903 Or else we want all the sections, in which case it's actually
3904 more efficient to read the whole table in one block anyway. */
3905
0d43edd1
JB
3906 if (! simple_read_overlay_table ())
3907 return;
3908
c906108c
SS
3909 /* Now may as well update all sections, even if only one was requested. */
3910 ALL_OBJSECTIONS (objfile, osect)
3911 if (section_is_overlay (osect->the_bfd_section))
c5aa993b
JM
3912 {
3913 int i, size;
fbd35540
MS
3914 bfd *obfd = osect->objfile->obfd;
3915 asection *bsect = osect->the_bfd_section;
c5aa993b 3916
2c500098 3917 size = bfd_get_section_size (bsect);
c5aa993b 3918 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3919 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3920 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3921 /* && cache_ovly_table[i][SIZE] == size */ )
3922 { /* obj_section matches i'th entry in ovly_table */
c5aa993b
JM
3923 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3924 break; /* finished with inner for loop: break out */
3925 }
3926 }
c906108c
SS
3927}
3928
086df311
DJ
3929/* Set the output sections and output offsets for section SECTP in
3930 ABFD. The relocation code in BFD will read these offsets, so we
3931 need to be sure they're initialized. We map each section to itself,
3932 with no offset; this means that SECTP->vma will be honored. */
3933
3934static void
3935symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3936{
3937 sectp->output_section = sectp;
3938 sectp->output_offset = 0;
3939}
3940
3941/* Relocate the contents of a debug section SECTP in ABFD. The
3942 contents are stored in BUF if it is non-NULL, or returned in a
3943 malloc'd buffer otherwise.
3944
3945 For some platforms and debug info formats, shared libraries contain
3946 relocations against the debug sections (particularly for DWARF-2;
3947 one affected platform is PowerPC GNU/Linux, although it depends on
3948 the version of the linker in use). Also, ELF object files naturally
3949 have unresolved relocations for their debug sections. We need to apply
3950 the relocations in order to get the locations of symbols correct. */
3951
3952bfd_byte *
3953symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3954{
3955 /* We're only interested in debugging sections with relocation
3956 information. */
3957 if ((sectp->flags & SEC_RELOC) == 0)
3958 return NULL;
3959 if ((sectp->flags & SEC_DEBUGGING) == 0)
3960 return NULL;
3961
3962 /* We will handle section offsets properly elsewhere, so relocate as if
3963 all sections begin at 0. */
3964 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3965
97606a13 3966 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
086df311 3967}
c906108c 3968
31d99776
DJ
3969struct symfile_segment_data *
3970get_symfile_segment_data (bfd *abfd)
3971{
3972 struct sym_fns *sf = find_sym_fns (abfd);
3973
3974 if (sf == NULL)
3975 return NULL;
3976
3977 return sf->sym_segments (abfd);
3978}
3979
3980void
3981free_symfile_segment_data (struct symfile_segment_data *data)
3982{
3983 xfree (data->segment_bases);
3984 xfree (data->segment_sizes);
3985 xfree (data->segment_info);
3986 xfree (data);
3987}
3988
28c32713
JB
3989
3990/* Given:
3991 - DATA, containing segment addresses from the object file ABFD, and
3992 the mapping from ABFD's sections onto the segments that own them,
3993 and
3994 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3995 segment addresses reported by the target,
3996 store the appropriate offsets for each section in OFFSETS.
3997
3998 If there are fewer entries in SEGMENT_BASES than there are segments
3999 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
4000
4001 If there are more, then verify that all the excess addresses are
4002 the same as the last legitimate one, and then ignore them. This
4003 allows "TextSeg=X;DataSeg=X" qOffset replies for files which have
4004 only a single segment. */
31d99776
DJ
4005int
4006symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
4007 struct section_offsets *offsets,
4008 int num_segment_bases,
4009 const CORE_ADDR *segment_bases)
4010{
4011 int i;
4012 asection *sect;
4013
28c32713
JB
4014 /* It doesn't make sense to call this function unless you have some
4015 segment base addresses. */
4016 gdb_assert (segment_bases > 0);
4017
31d99776
DJ
4018 /* If we do not have segment mappings for the object file, we
4019 can not relocate it by segments. */
4020 gdb_assert (data != NULL);
4021 gdb_assert (data->num_segments > 0);
4022
28c32713 4023 /* Check any extra SEGMENT_BASES entries. */
31d99776
DJ
4024 if (num_segment_bases > data->num_segments)
4025 for (i = data->num_segments; i < num_segment_bases; i++)
4026 if (segment_bases[i] != segment_bases[data->num_segments - 1])
4027 return 0;
4028
4029 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4030 {
31d99776
DJ
4031 int which = data->segment_info[i];
4032
28c32713
JB
4033 gdb_assert (0 <= which && which <= data->num_segments);
4034
4035 /* Don't bother computing offsets for sections that aren't
4036 loaded as part of any segment. */
4037 if (! which)
4038 continue;
4039
4040 /* Use the last SEGMENT_BASES entry as the address of any extra
4041 segments mentioned in DATA->segment_info. */
31d99776 4042 if (which > num_segment_bases)
28c32713 4043 which = num_segment_bases;
31d99776 4044
28c32713
JB
4045 offsets->offsets[i] = (segment_bases[which - 1]
4046 - data->segment_bases[which - 1]);
31d99776
DJ
4047 }
4048
4049 return 1;
4050}
4051
4052static void
4053symfile_find_segment_sections (struct objfile *objfile)
4054{
4055 bfd *abfd = objfile->obfd;
4056 int i;
4057 asection *sect;
4058 struct symfile_segment_data *data;
4059
4060 data = get_symfile_segment_data (objfile->obfd);
4061 if (data == NULL)
4062 return;
4063
4064 if (data->num_segments != 1 && data->num_segments != 2)
4065 {
4066 free_symfile_segment_data (data);
4067 return;
4068 }
4069
4070 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4071 {
4072 CORE_ADDR vma;
4073 int which = data->segment_info[i];
4074
4075 if (which == 1)
4076 {
4077 if (objfile->sect_index_text == -1)
4078 objfile->sect_index_text = sect->index;
4079
4080 if (objfile->sect_index_rodata == -1)
4081 objfile->sect_index_rodata = sect->index;
4082 }
4083 else if (which == 2)
4084 {
4085 if (objfile->sect_index_data == -1)
4086 objfile->sect_index_data = sect->index;
4087
4088 if (objfile->sect_index_bss == -1)
4089 objfile->sect_index_bss = sect->index;
4090 }
4091 }
4092
4093 free_symfile_segment_data (data);
4094}
4095
c906108c 4096void
fba45db2 4097_initialize_symfile (void)
c906108c
SS
4098{
4099 struct cmd_list_element *c;
c5aa993b 4100
1a966eab
AC
4101 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
4102Load symbol table from executable file FILE.\n\
c906108c 4103The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 4104to execute."), &cmdlist);
5ba2abeb 4105 set_cmd_completer (c, filename_completer);
c906108c 4106
1a966eab 4107 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 4108Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
1a966eab 4109Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
2acceee2 4110ADDR is the starting address of the file's text.\n\
db162d44
EZ
4111The optional arguments are section-name section-address pairs and\n\
4112should be specified if the data and bss segments are not contiguous\n\
1a966eab 4113with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 4114 &cmdlist);
5ba2abeb 4115 set_cmd_completer (c, filename_completer);
c906108c
SS
4116
4117 c = add_cmd ("add-shared-symbol-files", class_files,
1a966eab
AC
4118 add_shared_symbol_files_command, _("\
4119Load the symbols from shared objects in the dynamic linker's link map."),
c5aa993b 4120 &cmdlist);
c906108c
SS
4121 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
4122 &cmdlist);
4123
1a966eab
AC
4124 c = add_cmd ("load", class_files, load_command, _("\
4125Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
4126for access from GDB.\n\
4127A load OFFSET may also be given."), &cmdlist);
5ba2abeb 4128 set_cmd_completer (c, filename_completer);
c906108c 4129
5bf193a2
AC
4130 add_setshow_boolean_cmd ("symbol-reloading", class_support,
4131 &symbol_reloading, _("\
4132Set dynamic symbol table reloading multiple times in one run."), _("\
4133Show dynamic symbol table reloading multiple times in one run."), NULL,
4134 NULL,
920d2a44 4135 show_symbol_reloading,
5bf193a2 4136 &setlist, &showlist);
c906108c 4137
c5aa993b 4138 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 4139 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
4140 "overlay ", 0, &cmdlist);
4141
4142 add_com_alias ("ovly", "overlay", class_alias, 1);
4143 add_com_alias ("ov", "overlay", class_alias, 1);
4144
c5aa993b 4145 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 4146 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 4147
c5aa993b 4148 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 4149 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 4150
c5aa993b 4151 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 4152 _("List mappings of overlay sections."), &overlaylist);
c906108c 4153
c5aa993b 4154 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 4155 _("Enable overlay debugging."), &overlaylist);
c5aa993b 4156 add_cmd ("off", class_support, overlay_off_command,
1a966eab 4157 _("Disable overlay debugging."), &overlaylist);
c5aa993b 4158 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 4159 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 4160 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 4161 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
4162
4163 /* Filename extension to source language lookup table: */
4164 init_filename_language_table ();
26c41df3
AC
4165 add_setshow_string_noescape_cmd ("extension-language", class_files,
4166 &ext_args, _("\
4167Set mapping between filename extension and source language."), _("\
4168Show mapping between filename extension and source language."), _("\
4169Usage: set extension-language .foo bar"),
4170 set_ext_lang_command,
920d2a44 4171 show_ext_args,
26c41df3 4172 &setlist, &showlist);
c906108c 4173
c5aa993b 4174 add_info ("extensions", info_ext_lang_command,
1bedd215 4175 _("All filename extensions associated with a source language."));
917317f4 4176
525226b5
AC
4177 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4178 &debug_file_directory, _("\
4179Set the directory where separate debug symbols are searched for."), _("\
4180Show the directory where separate debug symbols are searched for."), _("\
4181Separate debug symbols are first searched for in the same\n\
4182directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4183and lastly at the path of the directory of the binary with\n\
4184the global debug-file directory prepended."),
4185 NULL,
920d2a44 4186 show_debug_file_directory,
525226b5 4187 &setlist, &showlist);
c906108c 4188}
This page took 1.069468 seconds and 4 git commands to generate.