Updated last commit's date.
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
0b302171 3 Copyright (C) 1990-2012 Free Software Foundation, Inc.
8926118c 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
086df311 24#include "bfdlink.h"
c906108c
SS
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "target.h"
30#include "value.h"
31#include "symfile.h"
32#include "objfiles.h"
0378c332 33#include "source.h"
c906108c
SS
34#include "gdbcmd.h"
35#include "breakpoint.h"
36#include "language.h"
37#include "complaints.h"
38#include "demangle.h"
fb14de7b
UW
39#include "inferior.h"
40#include "regcache.h"
5b5d99cf 41#include "filenames.h" /* for DOSish file names */
c906108c 42#include "gdb-stabs.h"
04ea0df1 43#include "gdb_obstack.h"
d75b5104 44#include "completer.h"
af5f3db6 45#include "bcache.h"
2de7ced7 46#include "hashtab.h"
dbda9972 47#include "readline/readline.h"
7e8580c1 48#include "gdb_assert.h"
fe898f56 49#include "block.h"
ea53e89f 50#include "observer.h"
c1bd25fd 51#include "exec.h"
9bdcbae7 52#include "parser-defs.h"
8756216b 53#include "varobj.h"
77069918 54#include "elf-bfd.h"
e85a822c 55#include "solib.h"
f1838a98 56#include "remote.h"
1bfeeb0f 57#include "stack.h"
cbb099e8 58#include "gdb_bfd.h"
c906108c 59
c906108c
SS
60#include <sys/types.h>
61#include <fcntl.h>
62#include "gdb_string.h"
63#include "gdb_stat.h"
64#include <ctype.h>
65#include <time.h>
2b71414d 66#include <sys/time.h>
c906108c 67
ccefe4c4 68#include "psymtab.h"
c906108c 69
3e43a32a
MS
70int (*deprecated_ui_load_progress_hook) (const char *section,
71 unsigned long num);
9a4105ab 72void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
73 unsigned long section_sent,
74 unsigned long section_size,
75 unsigned long total_sent,
c2d11a7d 76 unsigned long total_size);
769d7dc4
AC
77void (*deprecated_pre_add_symbol_hook) (const char *);
78void (*deprecated_post_add_symbol_hook) (void);
c906108c 79
74b7792f
AC
80static void clear_symtab_users_cleanup (void *ignore);
81
c378eb4e
MS
82/* Global variables owned by this file. */
83int readnow_symbol_files; /* Read full symbols immediately. */
c906108c 84
c378eb4e 85/* External variables and functions referenced. */
c906108c 86
a14ed312 87extern void report_transfer_performance (unsigned long, time_t, time_t);
c906108c 88
c378eb4e 89/* Functions this file defines. */
c906108c 90
a14ed312 91static void load_command (char *, int);
c906108c 92
d7db6da9
FN
93static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
94
a14ed312 95static void add_symbol_file_command (char *, int);
c906108c 96
a14ed312 97bfd *symfile_bfd_open (char *);
c906108c 98
0e931cf0
JB
99int get_section_index (struct objfile *, char *);
100
00b5771c 101static const struct sym_fns *find_sym_fns (bfd *);
c906108c 102
a14ed312 103static void decrement_reading_symtab (void *);
c906108c 104
a14ed312 105static void overlay_invalidate_all (void);
c906108c 106
a14ed312 107void list_overlays_command (char *, int);
c906108c 108
a14ed312 109void map_overlay_command (char *, int);
c906108c 110
a14ed312 111void unmap_overlay_command (char *, int);
c906108c 112
a14ed312 113static void overlay_auto_command (char *, int);
c906108c 114
a14ed312 115static void overlay_manual_command (char *, int);
c906108c 116
a14ed312 117static void overlay_off_command (char *, int);
c906108c 118
a14ed312 119static void overlay_load_command (char *, int);
c906108c 120
a14ed312 121static void overlay_command (char *, int);
c906108c 122
a14ed312 123static void simple_free_overlay_table (void);
c906108c 124
e17a4113
UW
125static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
126 enum bfd_endian);
c906108c 127
a14ed312 128static int simple_read_overlay_table (void);
c906108c 129
a14ed312 130static int simple_overlay_update_1 (struct obj_section *);
c906108c 131
a14ed312 132static void add_filename_language (char *ext, enum language lang);
392a587b 133
a14ed312 134static void info_ext_lang_command (char *args, int from_tty);
392a587b 135
a14ed312 136static void init_filename_language_table (void);
392a587b 137
31d99776
DJ
138static void symfile_find_segment_sections (struct objfile *objfile);
139
a14ed312 140void _initialize_symfile (void);
c906108c
SS
141
142/* List of all available sym_fns. On gdb startup, each object file reader
143 calls add_symtab_fns() to register information on each format it is
c378eb4e 144 prepared to read. */
c906108c 145
00b5771c
TT
146typedef const struct sym_fns *sym_fns_ptr;
147DEF_VEC_P (sym_fns_ptr);
148
149static VEC (sym_fns_ptr) *symtab_fns = NULL;
c906108c 150
b7209cb4
FF
151/* If non-zero, shared library symbols will be added automatically
152 when the inferior is created, new libraries are loaded, or when
153 attaching to the inferior. This is almost always what users will
154 want to have happen; but for very large programs, the startup time
155 will be excessive, and so if this is a problem, the user can clear
156 this flag and then add the shared library symbols as needed. Note
157 that there is a potential for confusion, since if the shared
c906108c 158 library symbols are not loaded, commands like "info fun" will *not*
0d14a781 159 report all the functions that are actually present. */
c906108c
SS
160
161int auto_solib_add = 1;
c906108c 162\f
c5aa993b 163
c906108c
SS
164/* Make a null terminated copy of the string at PTR with SIZE characters in
165 the obstack pointed to by OBSTACKP . Returns the address of the copy.
c378eb4e 166 Note that the string at PTR does not have to be null terminated, I.e. it
0d14a781 167 may be part of a larger string and we are only saving a substring. */
c906108c
SS
168
169char *
63ca651f 170obsavestring (const char *ptr, int size, struct obstack *obstackp)
c906108c 171{
52f0bd74 172 char *p = (char *) obstack_alloc (obstackp, size + 1);
c906108c
SS
173 /* Open-coded memcpy--saves function call time. These strings are usually
174 short. FIXME: Is this really still true with a compiler that can
c378eb4e 175 inline memcpy? */
c906108c 176 {
aa1ee363
AC
177 const char *p1 = ptr;
178 char *p2 = p;
63ca651f 179 const char *end = ptr + size;
433759f7 180
c906108c
SS
181 while (p1 != end)
182 *p2++ = *p1++;
183 }
184 p[size] = 0;
185 return p;
186}
187
3e43a32a
MS
188/* Concatenate NULL terminated variable argument list of `const char *'
189 strings; return the new string. Space is found in the OBSTACKP.
190 Argument list must be terminated by a sentinel expression `(char *)
191 NULL'. */
c906108c
SS
192
193char *
48cb83fd 194obconcat (struct obstack *obstackp, ...)
c906108c 195{
48cb83fd
JK
196 va_list ap;
197
198 va_start (ap, obstackp);
199 for (;;)
200 {
201 const char *s = va_arg (ap, const char *);
202
203 if (s == NULL)
204 break;
205
206 obstack_grow_str (obstackp, s);
207 }
208 va_end (ap);
209 obstack_1grow (obstackp, 0);
210
211 return obstack_finish (obstackp);
c906108c
SS
212}
213
0d14a781 214/* True if we are reading a symbol table. */
c906108c
SS
215
216int currently_reading_symtab = 0;
217
218static void
fba45db2 219decrement_reading_symtab (void *dummy)
c906108c
SS
220{
221 currently_reading_symtab--;
222}
223
ccefe4c4
TT
224/* Increment currently_reading_symtab and return a cleanup that can be
225 used to decrement it. */
226struct cleanup *
227increment_reading_symtab (void)
c906108c 228{
ccefe4c4
TT
229 ++currently_reading_symtab;
230 return make_cleanup (decrement_reading_symtab, NULL);
c906108c
SS
231}
232
5417f6dc
RM
233/* Remember the lowest-addressed loadable section we've seen.
234 This function is called via bfd_map_over_sections.
c906108c
SS
235
236 In case of equal vmas, the section with the largest size becomes the
237 lowest-addressed loadable section.
238
239 If the vmas and sizes are equal, the last section is considered the
240 lowest-addressed loadable section. */
241
242void
4efb68b1 243find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 244{
c5aa993b 245 asection **lowest = (asection **) obj;
c906108c 246
eb73e134 247 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
248 return;
249 if (!*lowest)
250 *lowest = sect; /* First loadable section */
251 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
252 *lowest = sect; /* A lower loadable section */
253 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
254 && (bfd_section_size (abfd, (*lowest))
255 <= bfd_section_size (abfd, sect)))
256 *lowest = sect;
257}
258
a39a16c4
MM
259/* Create a new section_addr_info, with room for NUM_SECTIONS. */
260
261struct section_addr_info *
262alloc_section_addr_info (size_t num_sections)
263{
264 struct section_addr_info *sap;
265 size_t size;
266
267 size = (sizeof (struct section_addr_info)
268 + sizeof (struct other_sections) * (num_sections - 1));
269 sap = (struct section_addr_info *) xmalloc (size);
270 memset (sap, 0, size);
271 sap->num_sections = num_sections;
272
273 return sap;
274}
62557bbc
KB
275
276/* Build (allocate and populate) a section_addr_info struct from
c378eb4e 277 an existing section table. */
62557bbc
KB
278
279extern struct section_addr_info *
0542c86d
PA
280build_section_addr_info_from_section_table (const struct target_section *start,
281 const struct target_section *end)
62557bbc
KB
282{
283 struct section_addr_info *sap;
0542c86d 284 const struct target_section *stp;
62557bbc
KB
285 int oidx;
286
a39a16c4 287 sap = alloc_section_addr_info (end - start);
62557bbc
KB
288
289 for (stp = start, oidx = 0; stp != end; stp++)
290 {
5417f6dc 291 if (bfd_get_section_flags (stp->bfd,
fbd35540 292 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 293 && oidx < end - start)
62557bbc
KB
294 {
295 sap->other[oidx].addr = stp->addr;
5417f6dc 296 sap->other[oidx].name
fbd35540 297 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
62557bbc
KB
298 sap->other[oidx].sectindex = stp->the_bfd_section->index;
299 oidx++;
300 }
301 }
302
303 return sap;
304}
305
82ccf5a5 306/* Create a section_addr_info from section offsets in ABFD. */
089b4803 307
82ccf5a5
JK
308static struct section_addr_info *
309build_section_addr_info_from_bfd (bfd *abfd)
089b4803
TG
310{
311 struct section_addr_info *sap;
312 int i;
313 struct bfd_section *sec;
314
82ccf5a5
JK
315 sap = alloc_section_addr_info (bfd_count_sections (abfd));
316 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
317 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
012836ea 318 {
82ccf5a5
JK
319 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
320 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
012836ea
JK
321 sap->other[i].sectindex = sec->index;
322 i++;
323 }
089b4803
TG
324 return sap;
325}
326
82ccf5a5
JK
327/* Create a section_addr_info from section offsets in OBJFILE. */
328
329struct section_addr_info *
330build_section_addr_info_from_objfile (const struct objfile *objfile)
331{
332 struct section_addr_info *sap;
333 int i;
334
335 /* Before reread_symbols gets rewritten it is not safe to call:
336 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
337 */
338 sap = build_section_addr_info_from_bfd (objfile->obfd);
339 for (i = 0; i < sap->num_sections && sap->other[i].name; i++)
340 {
341 int sectindex = sap->other[i].sectindex;
342
343 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
344 }
345 return sap;
346}
62557bbc 347
c378eb4e 348/* Free all memory allocated by build_section_addr_info_from_section_table. */
62557bbc
KB
349
350extern void
351free_section_addr_info (struct section_addr_info *sap)
352{
353 int idx;
354
a39a16c4 355 for (idx = 0; idx < sap->num_sections; idx++)
62557bbc 356 if (sap->other[idx].name)
b8c9b27d
KB
357 xfree (sap->other[idx].name);
358 xfree (sap);
62557bbc
KB
359}
360
361
e8289572
JB
362/* Initialize OBJFILE's sect_index_* members. */
363static void
364init_objfile_sect_indices (struct objfile *objfile)
c906108c 365{
e8289572 366 asection *sect;
c906108c 367 int i;
5417f6dc 368
b8fbeb18 369 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 370 if (sect)
b8fbeb18
EZ
371 objfile->sect_index_text = sect->index;
372
373 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 374 if (sect)
b8fbeb18
EZ
375 objfile->sect_index_data = sect->index;
376
377 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 378 if (sect)
b8fbeb18
EZ
379 objfile->sect_index_bss = sect->index;
380
381 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 382 if (sect)
b8fbeb18
EZ
383 objfile->sect_index_rodata = sect->index;
384
bbcd32ad
FF
385 /* This is where things get really weird... We MUST have valid
386 indices for the various sect_index_* members or gdb will abort.
387 So if for example, there is no ".text" section, we have to
31d99776
DJ
388 accomodate that. First, check for a file with the standard
389 one or two segments. */
390
391 symfile_find_segment_sections (objfile);
392
393 /* Except when explicitly adding symbol files at some address,
394 section_offsets contains nothing but zeros, so it doesn't matter
395 which slot in section_offsets the individual sect_index_* members
396 index into. So if they are all zero, it is safe to just point
397 all the currently uninitialized indices to the first slot. But
398 beware: if this is the main executable, it may be relocated
399 later, e.g. by the remote qOffsets packet, and then this will
400 be wrong! That's why we try segments first. */
bbcd32ad
FF
401
402 for (i = 0; i < objfile->num_sections; i++)
403 {
404 if (ANOFFSET (objfile->section_offsets, i) != 0)
405 {
406 break;
407 }
408 }
409 if (i == objfile->num_sections)
410 {
411 if (objfile->sect_index_text == -1)
412 objfile->sect_index_text = 0;
413 if (objfile->sect_index_data == -1)
414 objfile->sect_index_data = 0;
415 if (objfile->sect_index_bss == -1)
416 objfile->sect_index_bss = 0;
417 if (objfile->sect_index_rodata == -1)
418 objfile->sect_index_rodata = 0;
419 }
b8fbeb18 420}
c906108c 421
c1bd25fd
DJ
422/* The arguments to place_section. */
423
424struct place_section_arg
425{
426 struct section_offsets *offsets;
427 CORE_ADDR lowest;
428};
429
430/* Find a unique offset to use for loadable section SECT if
431 the user did not provide an offset. */
432
2c0b251b 433static void
c1bd25fd
DJ
434place_section (bfd *abfd, asection *sect, void *obj)
435{
436 struct place_section_arg *arg = obj;
437 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
438 int done;
3bd72c6f 439 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 440
2711e456
DJ
441 /* We are only interested in allocated sections. */
442 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
443 return;
444
445 /* If the user specified an offset, honor it. */
446 if (offsets[sect->index] != 0)
447 return;
448
449 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
450 start_addr = (arg->lowest + align - 1) & -align;
451
c1bd25fd
DJ
452 do {
453 asection *cur_sec;
c1bd25fd 454
c1bd25fd
DJ
455 done = 1;
456
457 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
458 {
459 int indx = cur_sec->index;
c1bd25fd
DJ
460
461 /* We don't need to compare against ourself. */
462 if (cur_sec == sect)
463 continue;
464
2711e456
DJ
465 /* We can only conflict with allocated sections. */
466 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
467 continue;
468
469 /* If the section offset is 0, either the section has not been placed
470 yet, or it was the lowest section placed (in which case LOWEST
471 will be past its end). */
472 if (offsets[indx] == 0)
473 continue;
474
475 /* If this section would overlap us, then we must move up. */
476 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
477 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
478 {
479 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
480 start_addr = (start_addr + align - 1) & -align;
481 done = 0;
3bd72c6f 482 break;
c1bd25fd
DJ
483 }
484
485 /* Otherwise, we appear to be OK. So far. */
486 }
487 }
488 while (!done);
489
490 offsets[sect->index] = start_addr;
491 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 492}
e8289572 493
75242ef4
JK
494/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
495 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
496 entries. */
e8289572
JB
497
498void
75242ef4
JK
499relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
500 int num_sections,
501 struct section_addr_info *addrs)
e8289572
JB
502{
503 int i;
504
75242ef4 505 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 506
c378eb4e 507 /* Now calculate offsets for section that were specified by the caller. */
a39a16c4 508 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
e8289572 509 {
75242ef4 510 struct other_sections *osp;
e8289572 511
75242ef4 512 osp = &addrs->other[i];
5488dafb 513 if (osp->sectindex == -1)
e8289572
JB
514 continue;
515
c378eb4e 516 /* Record all sections in offsets. */
e8289572 517 /* The section_offsets in the objfile are here filled in using
c378eb4e 518 the BFD index. */
75242ef4
JK
519 section_offsets->offsets[osp->sectindex] = osp->addr;
520 }
521}
522
1276c759
JK
523/* Transform section name S for a name comparison. prelink can split section
524 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
525 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
526 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
527 (`.sbss') section has invalid (increased) virtual address. */
528
529static const char *
530addr_section_name (const char *s)
531{
532 if (strcmp (s, ".dynbss") == 0)
533 return ".bss";
534 if (strcmp (s, ".sdynbss") == 0)
535 return ".sbss";
536
537 return s;
538}
539
82ccf5a5
JK
540/* qsort comparator for addrs_section_sort. Sort entries in ascending order by
541 their (name, sectindex) pair. sectindex makes the sort by name stable. */
542
543static int
544addrs_section_compar (const void *ap, const void *bp)
545{
546 const struct other_sections *a = *((struct other_sections **) ap);
547 const struct other_sections *b = *((struct other_sections **) bp);
22e048c9 548 int retval;
82ccf5a5 549
1276c759 550 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
82ccf5a5
JK
551 if (retval)
552 return retval;
553
5488dafb 554 return a->sectindex - b->sectindex;
82ccf5a5
JK
555}
556
557/* Provide sorted array of pointers to sections of ADDRS. The array is
558 terminated by NULL. Caller is responsible to call xfree for it. */
559
560static struct other_sections **
561addrs_section_sort (struct section_addr_info *addrs)
562{
563 struct other_sections **array;
564 int i;
565
566 /* `+ 1' for the NULL terminator. */
567 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
568 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
569 array[i] = &addrs->other[i];
570 array[i] = NULL;
571
572 qsort (array, i, sizeof (*array), addrs_section_compar);
573
574 return array;
575}
576
75242ef4 577/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
578 also SECTINDEXes specific to ABFD there. This function can be used to
579 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
580
581void
582addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
583{
584 asection *lower_sect;
75242ef4
JK
585 CORE_ADDR lower_offset;
586 int i;
82ccf5a5
JK
587 struct cleanup *my_cleanup;
588 struct section_addr_info *abfd_addrs;
589 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
590 struct other_sections **addrs_to_abfd_addrs;
75242ef4
JK
591
592 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
593 continguous sections. */
594 lower_sect = NULL;
595 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
596 if (lower_sect == NULL)
597 {
598 warning (_("no loadable sections found in added symbol-file %s"),
599 bfd_get_filename (abfd));
600 lower_offset = 0;
e8289572 601 }
75242ef4
JK
602 else
603 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
604
82ccf5a5
JK
605 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
606 in ABFD. Section names are not unique - there can be multiple sections of
607 the same name. Also the sections of the same name do not have to be
608 adjacent to each other. Some sections may be present only in one of the
609 files. Even sections present in both files do not have to be in the same
610 order.
611
612 Use stable sort by name for the sections in both files. Then linearly
613 scan both lists matching as most of the entries as possible. */
614
615 addrs_sorted = addrs_section_sort (addrs);
616 my_cleanup = make_cleanup (xfree, addrs_sorted);
617
618 abfd_addrs = build_section_addr_info_from_bfd (abfd);
619 make_cleanup_free_section_addr_info (abfd_addrs);
620 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
621 make_cleanup (xfree, abfd_addrs_sorted);
622
c378eb4e
MS
623 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
624 ABFD_ADDRS_SORTED. */
82ccf5a5
JK
625
626 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
627 * addrs->num_sections);
628 make_cleanup (xfree, addrs_to_abfd_addrs);
629
630 while (*addrs_sorted)
631 {
1276c759 632 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
82ccf5a5
JK
633
634 while (*abfd_addrs_sorted
1276c759
JK
635 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
636 sect_name) < 0)
82ccf5a5
JK
637 abfd_addrs_sorted++;
638
639 if (*abfd_addrs_sorted
1276c759
JK
640 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
641 sect_name) == 0)
82ccf5a5
JK
642 {
643 int index_in_addrs;
644
645 /* Make the found item directly addressable from ADDRS. */
646 index_in_addrs = *addrs_sorted - addrs->other;
647 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
648 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
649
650 /* Never use the same ABFD entry twice. */
651 abfd_addrs_sorted++;
652 }
653
654 addrs_sorted++;
655 }
656
75242ef4
JK
657 /* Calculate offsets for the loadable sections.
658 FIXME! Sections must be in order of increasing loadable section
659 so that contiguous sections can use the lower-offset!!!
660
661 Adjust offsets if the segments are not contiguous.
662 If the section is contiguous, its offset should be set to
663 the offset of the highest loadable section lower than it
664 (the loadable section directly below it in memory).
665 this_offset = lower_offset = lower_addr - lower_orig_addr */
666
667 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
668 {
82ccf5a5 669 struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
670
671 if (sect)
75242ef4 672 {
c378eb4e 673 /* This is the index used by BFD. */
82ccf5a5 674 addrs->other[i].sectindex = sect->sectindex;
672d9c23
JK
675
676 if (addrs->other[i].addr != 0)
75242ef4 677 {
82ccf5a5 678 addrs->other[i].addr -= sect->addr;
75242ef4 679 lower_offset = addrs->other[i].addr;
75242ef4
JK
680 }
681 else
672d9c23 682 addrs->other[i].addr = lower_offset;
75242ef4
JK
683 }
684 else
672d9c23 685 {
1276c759
JK
686 /* addr_section_name transformation is not used for SECT_NAME. */
687 const char *sect_name = addrs->other[i].name;
688
b0fcb67f
JK
689 /* This section does not exist in ABFD, which is normally
690 unexpected and we want to issue a warning.
691
4d9743af
JK
692 However, the ELF prelinker does create a few sections which are
693 marked in the main executable as loadable (they are loaded in
694 memory from the DYNAMIC segment) and yet are not present in
695 separate debug info files. This is fine, and should not cause
696 a warning. Shared libraries contain just the section
697 ".gnu.liblist" but it is not marked as loadable there. There is
698 no other way to identify them than by their name as the sections
1276c759
JK
699 created by prelink have no special flags.
700
701 For the sections `.bss' and `.sbss' see addr_section_name. */
b0fcb67f
JK
702
703 if (!(strcmp (sect_name, ".gnu.liblist") == 0
4d9743af 704 || strcmp (sect_name, ".gnu.conflict") == 0
1276c759
JK
705 || (strcmp (sect_name, ".bss") == 0
706 && i > 0
707 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
708 && addrs_to_abfd_addrs[i - 1] != NULL)
709 || (strcmp (sect_name, ".sbss") == 0
710 && i > 0
711 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
712 && addrs_to_abfd_addrs[i - 1] != NULL)))
b0fcb67f
JK
713 warning (_("section %s not found in %s"), sect_name,
714 bfd_get_filename (abfd));
715
672d9c23 716 addrs->other[i].addr = 0;
5488dafb 717 addrs->other[i].sectindex = -1;
672d9c23 718 }
75242ef4 719 }
82ccf5a5
JK
720
721 do_cleanups (my_cleanup);
75242ef4
JK
722}
723
724/* Parse the user's idea of an offset for dynamic linking, into our idea
725 of how to represent it for fast symbol reading. This is the default
726 version of the sym_fns.sym_offsets function for symbol readers that
727 don't need to do anything special. It allocates a section_offsets table
728 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
729
730void
731default_symfile_offsets (struct objfile *objfile,
732 struct section_addr_info *addrs)
733{
734 objfile->num_sections = bfd_count_sections (objfile->obfd);
735 objfile->section_offsets = (struct section_offsets *)
736 obstack_alloc (&objfile->objfile_obstack,
737 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
738 relative_addr_info_to_section_offsets (objfile->section_offsets,
739 objfile->num_sections, addrs);
e8289572 740
c1bd25fd
DJ
741 /* For relocatable files, all loadable sections will start at zero.
742 The zero is meaningless, so try to pick arbitrary addresses such
743 that no loadable sections overlap. This algorithm is quadratic,
744 but the number of sections in a single object file is generally
745 small. */
746 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
747 {
748 struct place_section_arg arg;
2711e456
DJ
749 bfd *abfd = objfile->obfd;
750 asection *cur_sec;
2711e456
DJ
751
752 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
753 /* We do not expect this to happen; just skip this step if the
754 relocatable file has a section with an assigned VMA. */
755 if (bfd_section_vma (abfd, cur_sec) != 0)
756 break;
757
758 if (cur_sec == NULL)
759 {
760 CORE_ADDR *offsets = objfile->section_offsets->offsets;
761
762 /* Pick non-overlapping offsets for sections the user did not
763 place explicitly. */
764 arg.offsets = objfile->section_offsets;
765 arg.lowest = 0;
766 bfd_map_over_sections (objfile->obfd, place_section, &arg);
767
768 /* Correctly filling in the section offsets is not quite
769 enough. Relocatable files have two properties that
770 (most) shared objects do not:
771
772 - Their debug information will contain relocations. Some
773 shared libraries do also, but many do not, so this can not
774 be assumed.
775
776 - If there are multiple code sections they will be loaded
777 at different relative addresses in memory than they are
778 in the objfile, since all sections in the file will start
779 at address zero.
780
781 Because GDB has very limited ability to map from an
782 address in debug info to the correct code section,
783 it relies on adding SECT_OFF_TEXT to things which might be
784 code. If we clear all the section offsets, and set the
785 section VMAs instead, then symfile_relocate_debug_section
786 will return meaningful debug information pointing at the
787 correct sections.
788
789 GDB has too many different data structures for section
790 addresses - a bfd, objfile, and so_list all have section
791 tables, as does exec_ops. Some of these could probably
792 be eliminated. */
793
794 for (cur_sec = abfd->sections; cur_sec != NULL;
795 cur_sec = cur_sec->next)
796 {
797 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
798 continue;
799
800 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
3e43a32a
MS
801 exec_set_section_address (bfd_get_filename (abfd),
802 cur_sec->index,
30510692 803 offsets[cur_sec->index]);
2711e456
DJ
804 offsets[cur_sec->index] = 0;
805 }
806 }
c1bd25fd
DJ
807 }
808
e8289572 809 /* Remember the bfd indexes for the .text, .data, .bss and
c378eb4e 810 .rodata sections. */
e8289572
JB
811 init_objfile_sect_indices (objfile);
812}
813
814
31d99776
DJ
815/* Divide the file into segments, which are individual relocatable units.
816 This is the default version of the sym_fns.sym_segments function for
817 symbol readers that do not have an explicit representation of segments.
818 It assumes that object files do not have segments, and fully linked
819 files have a single segment. */
820
821struct symfile_segment_data *
822default_symfile_segments (bfd *abfd)
823{
824 int num_sections, i;
825 asection *sect;
826 struct symfile_segment_data *data;
827 CORE_ADDR low, high;
828
829 /* Relocatable files contain enough information to position each
830 loadable section independently; they should not be relocated
831 in segments. */
832 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
833 return NULL;
834
835 /* Make sure there is at least one loadable section in the file. */
836 for (sect = abfd->sections; sect != NULL; sect = sect->next)
837 {
838 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
839 continue;
840
841 break;
842 }
843 if (sect == NULL)
844 return NULL;
845
846 low = bfd_get_section_vma (abfd, sect);
847 high = low + bfd_get_section_size (sect);
848
849 data = XZALLOC (struct symfile_segment_data);
850 data->num_segments = 1;
851 data->segment_bases = XCALLOC (1, CORE_ADDR);
852 data->segment_sizes = XCALLOC (1, CORE_ADDR);
853
854 num_sections = bfd_count_sections (abfd);
855 data->segment_info = XCALLOC (num_sections, int);
856
857 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
858 {
859 CORE_ADDR vma;
860
861 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
862 continue;
863
864 vma = bfd_get_section_vma (abfd, sect);
865 if (vma < low)
866 low = vma;
867 if (vma + bfd_get_section_size (sect) > high)
868 high = vma + bfd_get_section_size (sect);
869
870 data->segment_info[i] = 1;
871 }
872
873 data->segment_bases[0] = low;
874 data->segment_sizes[0] = high - low;
875
876 return data;
877}
878
c906108c
SS
879/* Process a symbol file, as either the main file or as a dynamically
880 loaded file.
881
96baa820
JM
882 OBJFILE is where the symbols are to be read from.
883
7e8580c1
JB
884 ADDRS is the list of section load addresses. If the user has given
885 an 'add-symbol-file' command, then this is the list of offsets and
886 addresses he or she provided as arguments to the command; or, if
887 we're handling a shared library, these are the actual addresses the
888 sections are loaded at, according to the inferior's dynamic linker
889 (as gleaned by GDB's shared library code). We convert each address
890 into an offset from the section VMA's as it appears in the object
891 file, and then call the file's sym_offsets function to convert this
892 into a format-specific offset table --- a `struct section_offsets'.
893 If ADDRS is non-zero, OFFSETS must be zero.
894
895 OFFSETS is a table of section offsets already in the right
896 format-specific representation. NUM_OFFSETS is the number of
897 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
898 assume this is the proper table the call to sym_offsets described
899 above would produce. Instead of calling sym_offsets, we just dump
900 it right into objfile->section_offsets. (When we're re-reading
901 symbols from an objfile, we don't have the original load address
902 list any more; all we have is the section offset table.) If
903 OFFSETS is non-zero, ADDRS must be zero.
96baa820 904
7eedccfa
PP
905 ADD_FLAGS encodes verbosity level, whether this is main symbol or
906 an extra symbol file such as dynamically loaded code, and wether
907 breakpoint reset should be deferred. */
c906108c
SS
908
909void
7e8580c1
JB
910syms_from_objfile (struct objfile *objfile,
911 struct section_addr_info *addrs,
912 struct section_offsets *offsets,
913 int num_offsets,
7eedccfa 914 int add_flags)
c906108c 915{
a39a16c4 916 struct section_addr_info *local_addr = NULL;
c906108c 917 struct cleanup *old_chain;
7eedccfa 918 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 919
7e8580c1 920 gdb_assert (! (addrs && offsets));
2acceee2 921
c906108c 922 init_entry_point_info (objfile);
31d99776 923 objfile->sf = find_sym_fns (objfile->obfd);
c906108c 924
75245b24 925 if (objfile->sf == NULL)
c378eb4e 926 return; /* No symbols. */
75245b24 927
c906108c
SS
928 /* Make sure that partially constructed symbol tables will be cleaned up
929 if an error occurs during symbol reading. */
74b7792f 930 old_chain = make_cleanup_free_objfile (objfile);
c906108c 931
a39a16c4
MM
932 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
933 list. We now establish the convention that an addr of zero means
c378eb4e 934 no load address was specified. */
a39a16c4
MM
935 if (! addrs && ! offsets)
936 {
5417f6dc 937 local_addr
a39a16c4
MM
938 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
939 make_cleanup (xfree, local_addr);
940 addrs = local_addr;
941 }
942
943 /* Now either addrs or offsets is non-zero. */
944
c5aa993b 945 if (mainline)
c906108c
SS
946 {
947 /* We will modify the main symbol table, make sure that all its users
c5aa993b 948 will be cleaned up if an error occurs during symbol reading. */
74b7792f 949 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
950
951 /* Since no error yet, throw away the old symbol table. */
952
953 if (symfile_objfile != NULL)
954 {
955 free_objfile (symfile_objfile);
adb7f338 956 gdb_assert (symfile_objfile == NULL);
c906108c
SS
957 }
958
959 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
960 If the user wants to get rid of them, they should do "symbol-file"
961 without arguments first. Not sure this is the best behavior
962 (PR 2207). */
c906108c 963
c5aa993b 964 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
965 }
966
967 /* Convert addr into an offset rather than an absolute address.
968 We find the lowest address of a loaded segment in the objfile,
53a5351d 969 and assume that <addr> is where that got loaded.
c906108c 970
53a5351d
JM
971 We no longer warn if the lowest section is not a text segment (as
972 happens for the PA64 port. */
0d15807d 973 if (addrs && addrs->other[0].name)
75242ef4 974 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
975
976 /* Initialize symbol reading routines for this objfile, allow complaints to
977 appear for this new file, and record how verbose to be, then do the
c378eb4e 978 initial symbol reading for this file. */
c906108c 979
c5aa993b 980 (*objfile->sf->sym_init) (objfile);
7eedccfa 981 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 982
7e8580c1
JB
983 if (addrs)
984 (*objfile->sf->sym_offsets) (objfile, addrs);
985 else
986 {
987 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
988
989 /* Just copy in the offset table directly as given to us. */
990 objfile->num_sections = num_offsets;
991 objfile->section_offsets
992 = ((struct section_offsets *)
8b92e4d5 993 obstack_alloc (&objfile->objfile_obstack, size));
7e8580c1
JB
994 memcpy (objfile->section_offsets, offsets, size);
995
996 init_objfile_sect_indices (objfile);
997 }
c906108c 998
f4352531 999 (*objfile->sf->sym_read) (objfile, add_flags);
c906108c 1000
b11896a5
TT
1001 if ((add_flags & SYMFILE_NO_READ) == 0)
1002 require_partial_symbols (objfile, 0);
1003
c906108c
SS
1004 /* Discard cleanups as symbol reading was successful. */
1005
1006 discard_cleanups (old_chain);
f7545552 1007 xfree (local_addr);
c906108c
SS
1008}
1009
1010/* Perform required actions after either reading in the initial
1011 symbols for a new objfile, or mapping in the symbols from a reusable
c1e56572 1012 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c5aa993b 1013
c906108c 1014void
7eedccfa 1015new_symfile_objfile (struct objfile *objfile, int add_flags)
c906108c 1016{
c906108c 1017 /* If this is the main symbol file we have to clean up all users of the
c378eb4e 1018 old main symbol file. Otherwise it is sufficient to fixup all the
c906108c 1019 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1020 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1021 {
1022 /* OK, make it the "real" symbol file. */
1023 symfile_objfile = objfile;
1024
c1e56572 1025 clear_symtab_users (add_flags);
c906108c 1026 }
7eedccfa 1027 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1028 {
69de3c6a 1029 breakpoint_re_set ();
c906108c
SS
1030 }
1031
1032 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 1033 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
1034}
1035
1036/* Process a symbol file, as either the main file or as a dynamically
1037 loaded file.
1038
5417f6dc 1039 ABFD is a BFD already open on the file, as from symfile_bfd_open.
8ac244b4 1040 A new reference is acquired by this function.
7904e09f 1041
7eedccfa
PP
1042 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1043 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f
JB
1044
1045 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
7eedccfa
PP
1046 syms_from_objfile, above.
1047 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1048
63524580
JK
1049 PARENT is the original objfile if ABFD is a separate debug info file.
1050 Otherwise PARENT is NULL.
1051
c906108c 1052 Upon success, returns a pointer to the objfile that was added.
c378eb4e 1053 Upon failure, jumps back to command level (never returns). */
7eedccfa 1054
7904e09f 1055static struct objfile *
7eedccfa
PP
1056symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1057 int add_flags,
7904e09f
JB
1058 struct section_addr_info *addrs,
1059 struct section_offsets *offsets,
1060 int num_offsets,
63524580 1061 int flags, struct objfile *parent)
c906108c
SS
1062{
1063 struct objfile *objfile;
5417f6dc 1064 const char *name = bfd_get_filename (abfd);
7eedccfa 1065 const int from_tty = add_flags & SYMFILE_VERBOSE;
0838fb57 1066 const int mainline = add_flags & SYMFILE_MAINLINE;
b11896a5
TT
1067 const int should_print = ((from_tty || info_verbose)
1068 && (readnow_symbol_files
1069 || (add_flags & SYMFILE_NO_READ) == 0));
c906108c 1070
9291a0cd 1071 if (readnow_symbol_files)
b11896a5
TT
1072 {
1073 flags |= OBJF_READNOW;
1074 add_flags &= ~SYMFILE_NO_READ;
1075 }
9291a0cd 1076
5417f6dc
RM
1077 /* Give user a chance to burp if we'd be
1078 interactively wiping out any existing symbols. */
c906108c
SS
1079
1080 if ((have_full_symbols () || have_partial_symbols ())
0838fb57 1081 && mainline
c906108c 1082 && from_tty
9e2f0ad4 1083 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1084 error (_("Not confirmed."));
c906108c 1085
0838fb57 1086 objfile = allocate_objfile (abfd, flags | (mainline ? OBJF_MAINLINE : 0));
c906108c 1087
63524580
JK
1088 if (parent)
1089 add_separate_debug_objfile (objfile, parent);
1090
78a4a9b9
AC
1091 /* We either created a new mapped symbol table, mapped an existing
1092 symbol table file which has not had initial symbol reading
c378eb4e 1093 performed, or need to read an unmapped symbol table. */
b11896a5 1094 if (should_print)
c906108c 1095 {
769d7dc4
AC
1096 if (deprecated_pre_add_symbol_hook)
1097 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1098 else
c906108c 1099 {
55333a84
DE
1100 printf_unfiltered (_("Reading symbols from %s..."), name);
1101 wrap_here ("");
1102 gdb_flush (gdb_stdout);
c906108c 1103 }
c906108c 1104 }
78a4a9b9 1105 syms_from_objfile (objfile, addrs, offsets, num_offsets,
7eedccfa 1106 add_flags);
c906108c
SS
1107
1108 /* We now have at least a partial symbol table. Check to see if the
1109 user requested that all symbols be read on initial access via either
1110 the gdb startup command line or on a per symbol file basis. Expand
c378eb4e 1111 all partial symbol tables for this objfile if so. */
c906108c 1112
9291a0cd 1113 if ((flags & OBJF_READNOW))
c906108c 1114 {
b11896a5 1115 if (should_print)
c906108c 1116 {
a3f17187 1117 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1118 wrap_here ("");
1119 gdb_flush (gdb_stdout);
1120 }
1121
ccefe4c4
TT
1122 if (objfile->sf)
1123 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1124 }
1125
b11896a5 1126 if (should_print && !objfile_has_symbols (objfile))
cb3c37b2
JB
1127 {
1128 wrap_here ("");
55333a84 1129 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1130 wrap_here ("");
1131 }
1132
b11896a5 1133 if (should_print)
c906108c 1134 {
769d7dc4
AC
1135 if (deprecated_post_add_symbol_hook)
1136 deprecated_post_add_symbol_hook ();
c906108c 1137 else
55333a84 1138 printf_unfiltered (_("done.\n"));
c906108c
SS
1139 }
1140
481d0f41
JB
1141 /* We print some messages regardless of whether 'from_tty ||
1142 info_verbose' is true, so make sure they go out at the right
1143 time. */
1144 gdb_flush (gdb_stdout);
1145
109f874e 1146 if (objfile->sf == NULL)
8caee43b
PP
1147 {
1148 observer_notify_new_objfile (objfile);
c378eb4e 1149 return objfile; /* No symbols. */
8caee43b 1150 }
109f874e 1151
7eedccfa 1152 new_symfile_objfile (objfile, add_flags);
c906108c 1153
06d3b283 1154 observer_notify_new_objfile (objfile);
c906108c 1155
ce7d4522 1156 bfd_cache_close_all ();
c906108c
SS
1157 return (objfile);
1158}
1159
9cce227f
TG
1160/* Add BFD as a separate debug file for OBJFILE. */
1161
1162void
1163symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1164{
15d123c9 1165 struct objfile *new_objfile;
089b4803
TG
1166 struct section_addr_info *sap;
1167 struct cleanup *my_cleanup;
1168
1169 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1170 because sections of BFD may not match sections of OBJFILE and because
1171 vma may have been modified by tools such as prelink. */
1172 sap = build_section_addr_info_from_objfile (objfile);
1173 my_cleanup = make_cleanup_free_section_addr_info (sap);
9cce227f 1174
15d123c9 1175 new_objfile = symbol_file_add_with_addrs_or_offsets
9cce227f 1176 (bfd, symfile_flags,
089b4803 1177 sap, NULL, 0,
9cce227f 1178 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
63524580
JK
1179 | OBJF_USERLOADED),
1180 objfile);
089b4803
TG
1181
1182 do_cleanups (my_cleanup);
9cce227f 1183}
7904e09f 1184
eb4556d7
JB
1185/* Process the symbol file ABFD, as either the main file or as a
1186 dynamically loaded file.
1187
1188 See symbol_file_add_with_addrs_or_offsets's comments for
1189 details. */
1190struct objfile *
7eedccfa 1191symbol_file_add_from_bfd (bfd *abfd, int add_flags,
eb4556d7 1192 struct section_addr_info *addrs,
63524580 1193 int flags, struct objfile *parent)
eb4556d7 1194{
7eedccfa 1195 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
63524580 1196 flags, parent);
eb4556d7
JB
1197}
1198
1199
7904e09f
JB
1200/* Process a symbol file, as either the main file or as a dynamically
1201 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1202 for details. */
1203struct objfile *
7eedccfa
PP
1204symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1205 int flags)
7904e09f 1206{
8ac244b4
TT
1207 bfd *bfd = symfile_bfd_open (name);
1208 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1209 struct objfile *objf;
1210
1211 objf = symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
63524580 1212 flags, NULL);
8ac244b4
TT
1213 do_cleanups (cleanup);
1214 return objf;
7904e09f
JB
1215}
1216
1217
d7db6da9
FN
1218/* Call symbol_file_add() with default values and update whatever is
1219 affected by the loading of a new main().
1220 Used when the file is supplied in the gdb command line
1221 and by some targets with special loading requirements.
1222 The auxiliary function, symbol_file_add_main_1(), has the flags
1223 argument for the switches that can only be specified in the symbol_file
1224 command itself. */
5417f6dc 1225
1adeb98a
FN
1226void
1227symbol_file_add_main (char *args, int from_tty)
1228{
d7db6da9
FN
1229 symbol_file_add_main_1 (args, from_tty, 0);
1230}
1231
1232static void
1233symbol_file_add_main_1 (char *args, int from_tty, int flags)
1234{
7dcd53a0
TT
1235 const int add_flags = (current_inferior ()->symfile_flags
1236 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1237
7eedccfa 1238 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1239
d7db6da9
FN
1240 /* Getting new symbols may change our opinion about
1241 what is frameless. */
1242 reinit_frame_cache ();
1243
7dcd53a0
TT
1244 if ((flags & SYMFILE_NO_READ) == 0)
1245 set_initial_language ();
1adeb98a
FN
1246}
1247
1248void
1249symbol_file_clear (int from_tty)
1250{
1251 if ((have_full_symbols () || have_partial_symbols ())
1252 && from_tty
0430b0d6
AS
1253 && (symfile_objfile
1254 ? !query (_("Discard symbol table from `%s'? "),
1255 symfile_objfile->name)
1256 : !query (_("Discard symbol table? "))))
8a3fe4f8 1257 error (_("Not confirmed."));
1adeb98a 1258
0133421a
JK
1259 /* solib descriptors may have handles to objfiles. Wipe them before their
1260 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1261 no_shared_libraries (NULL, from_tty);
1262
0133421a
JK
1263 free_all_objfiles ();
1264
adb7f338 1265 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1266 if (from_tty)
1267 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1268}
1269
5b5d99cf
JB
1270static char *
1271get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1272{
1273 asection *sect;
1274 bfd_size_type debuglink_size;
1275 unsigned long crc32;
1276 char *contents;
1277 int crc_offset;
5417f6dc 1278
5b5d99cf
JB
1279 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1280
1281 if (sect == NULL)
1282 return NULL;
1283
1284 debuglink_size = bfd_section_size (objfile->obfd, sect);
5417f6dc 1285
5b5d99cf
JB
1286 contents = xmalloc (debuglink_size);
1287 bfd_get_section_contents (objfile->obfd, sect, contents,
1288 (file_ptr)0, (bfd_size_type)debuglink_size);
1289
c378eb4e 1290 /* Crc value is stored after the filename, aligned up to 4 bytes. */
5b5d99cf
JB
1291 crc_offset = strlen (contents) + 1;
1292 crc_offset = (crc_offset + 3) & ~3;
1293
1294 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
5417f6dc 1295
5b5d99cf
JB
1296 *crc32_out = crc32;
1297 return contents;
1298}
1299
904578ed
JK
1300/* Return 32-bit CRC for ABFD. If successful store it to *FILE_CRC_RETURN and
1301 return 1. Otherwise print a warning and return 0. ABFD seek position is
1302 not preserved. */
1303
1304static int
1305get_file_crc (bfd *abfd, unsigned long *file_crc_return)
1306{
1307 unsigned long file_crc = 0;
1308
1309 if (bfd_seek (abfd, 0, SEEK_SET) != 0)
1310 {
1311 warning (_("Problem reading \"%s\" for CRC: %s"),
1312 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
1313 return 0;
1314 }
1315
1316 for (;;)
1317 {
1318 gdb_byte buffer[8 * 1024];
1319 bfd_size_type count;
1320
1321 count = bfd_bread (buffer, sizeof (buffer), abfd);
1322 if (count == (bfd_size_type) -1)
1323 {
1324 warning (_("Problem reading \"%s\" for CRC: %s"),
1325 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
1326 return 0;
1327 }
1328 if (count == 0)
1329 break;
1330 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1331 }
1332
1333 *file_crc_return = file_crc;
1334 return 1;
1335}
1336
5b5d99cf 1337static int
287ccc17 1338separate_debug_file_exists (const char *name, unsigned long crc,
32a0e547 1339 struct objfile *parent_objfile)
5b5d99cf 1340{
904578ed
JK
1341 unsigned long file_crc;
1342 int file_crc_p;
f1838a98 1343 bfd *abfd;
32a0e547 1344 struct stat parent_stat, abfd_stat;
904578ed 1345 int verified_as_different;
32a0e547
JK
1346
1347 /* Find a separate debug info file as if symbols would be present in
1348 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1349 section can contain just the basename of PARENT_OBJFILE without any
1350 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
c378eb4e 1351 the separate debug infos with the same basename can exist. */
32a0e547 1352
0ba1096a 1353 if (filename_cmp (name, parent_objfile->name) == 0)
32a0e547 1354 return 0;
5b5d99cf 1355
08d2cd74 1356 abfd = gdb_bfd_open_maybe_remote (name);
f1838a98
UW
1357
1358 if (!abfd)
5b5d99cf
JB
1359 return 0;
1360
0ba1096a 1361 /* Verify symlinks were not the cause of filename_cmp name difference above.
32a0e547
JK
1362
1363 Some operating systems, e.g. Windows, do not provide a meaningful
1364 st_ino; they always set it to zero. (Windows does provide a
1365 meaningful st_dev.) Do not indicate a duplicate library in that
1366 case. While there is no guarantee that a system that provides
1367 meaningful inode numbers will never set st_ino to zero, this is
1368 merely an optimization, so we do not need to worry about false
1369 negatives. */
1370
1371 if (bfd_stat (abfd, &abfd_stat) == 0
904578ed
JK
1372 && abfd_stat.st_ino != 0
1373 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
32a0e547 1374 {
904578ed
JK
1375 if (abfd_stat.st_dev == parent_stat.st_dev
1376 && abfd_stat.st_ino == parent_stat.st_ino)
1377 {
cbb099e8 1378 gdb_bfd_unref (abfd);
904578ed
JK
1379 return 0;
1380 }
1381 verified_as_different = 1;
32a0e547 1382 }
904578ed
JK
1383 else
1384 verified_as_different = 0;
32a0e547 1385
904578ed 1386 file_crc_p = get_file_crc (abfd, &file_crc);
5b5d99cf 1387
cbb099e8 1388 gdb_bfd_unref (abfd);
5b5d99cf 1389
904578ed
JK
1390 if (!file_crc_p)
1391 return 0;
1392
287ccc17
JK
1393 if (crc != file_crc)
1394 {
904578ed
JK
1395 /* If one (or both) the files are accessed for example the via "remote:"
1396 gdbserver way it does not support the bfd_stat operation. Verify
1397 whether those two files are not the same manually. */
1398
1399 if (!verified_as_different && !parent_objfile->crc32_p)
1400 {
1401 parent_objfile->crc32_p = get_file_crc (parent_objfile->obfd,
1402 &parent_objfile->crc32);
1403 if (!parent_objfile->crc32_p)
1404 return 0;
1405 }
1406
0e8aefe7 1407 if (verified_as_different || parent_objfile->crc32 != file_crc)
904578ed
JK
1408 warning (_("the debug information found in \"%s\""
1409 " does not match \"%s\" (CRC mismatch).\n"),
1410 name, parent_objfile->name);
1411
287ccc17
JK
1412 return 0;
1413 }
1414
1415 return 1;
5b5d99cf
JB
1416}
1417
aa28a74e 1418char *debug_file_directory = NULL;
920d2a44
AC
1419static void
1420show_debug_file_directory (struct ui_file *file, int from_tty,
1421 struct cmd_list_element *c, const char *value)
1422{
3e43a32a
MS
1423 fprintf_filtered (file,
1424 _("The directory where separate debug "
1425 "symbols are searched for is \"%s\".\n"),
920d2a44
AC
1426 value);
1427}
5b5d99cf
JB
1428
1429#if ! defined (DEBUG_SUBDIRECTORY)
1430#define DEBUG_SUBDIRECTORY ".debug"
1431#endif
1432
1db33378
PP
1433/* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1434 where the original file resides (may not be the same as
1435 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1436 looking for. Returns the name of the debuginfo, of NULL. */
1437
1438static char *
1439find_separate_debug_file (const char *dir,
1440 const char *canon_dir,
1441 const char *debuglink,
1442 unsigned long crc32, struct objfile *objfile)
9cce227f 1443{
1db33378
PP
1444 char *debugdir;
1445 char *debugfile;
9cce227f 1446 int i;
e4ab2fad
JK
1447 VEC (char_ptr) *debugdir_vec;
1448 struct cleanup *back_to;
1449 int ix;
5b5d99cf 1450
1db33378 1451 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1ffa32ee 1452 i = strlen (dir);
1db33378
PP
1453 if (canon_dir != NULL && strlen (canon_dir) > i)
1454 i = strlen (canon_dir);
1ffa32ee 1455
25522fae
JK
1456 debugfile = xmalloc (strlen (debug_file_directory) + 1
1457 + i
1458 + strlen (DEBUG_SUBDIRECTORY)
1459 + strlen ("/")
1db33378 1460 + strlen (debuglink)
25522fae 1461 + 1);
5b5d99cf
JB
1462
1463 /* First try in the same directory as the original file. */
1464 strcpy (debugfile, dir);
1db33378 1465 strcat (debugfile, debuglink);
5b5d99cf 1466
32a0e547 1467 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1468 return debugfile;
5417f6dc 1469
5b5d99cf
JB
1470 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1471 strcpy (debugfile, dir);
1472 strcat (debugfile, DEBUG_SUBDIRECTORY);
1473 strcat (debugfile, "/");
1db33378 1474 strcat (debugfile, debuglink);
5b5d99cf 1475
32a0e547 1476 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1477 return debugfile;
5417f6dc 1478
24ddea62 1479 /* Then try in the global debugfile directories.
f888f159 1480
24ddea62
JK
1481 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1482 cause "/..." lookups. */
5417f6dc 1483
e4ab2fad
JK
1484 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1485 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
24ddea62 1486
e4ab2fad
JK
1487 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1488 {
1489 strcpy (debugfile, debugdir);
aa28a74e 1490 strcat (debugfile, "/");
24ddea62 1491 strcat (debugfile, dir);
1db33378 1492 strcat (debugfile, debuglink);
aa28a74e 1493
32a0e547 1494 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1495 return debugfile;
24ddea62
JK
1496
1497 /* If the file is in the sysroot, try using its base path in the
1498 global debugfile directory. */
1db33378
PP
1499 if (canon_dir != NULL
1500 && filename_ncmp (canon_dir, gdb_sysroot,
0ba1096a 1501 strlen (gdb_sysroot)) == 0
1db33378 1502 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
24ddea62 1503 {
e4ab2fad 1504 strcpy (debugfile, debugdir);
1db33378 1505 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
24ddea62 1506 strcat (debugfile, "/");
1db33378 1507 strcat (debugfile, debuglink);
24ddea62 1508
32a0e547 1509 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1510 return debugfile;
24ddea62 1511 }
aa28a74e 1512 }
f888f159 1513
e4ab2fad 1514 do_cleanups (back_to);
25522fae 1515 xfree (debugfile);
1db33378
PP
1516 return NULL;
1517}
1518
1519/* Modify PATH to contain only "directory/" part of PATH.
1520 If there were no directory separators in PATH, PATH will be empty
1521 string on return. */
1522
1523static void
1524terminate_after_last_dir_separator (char *path)
1525{
1526 int i;
1527
1528 /* Strip off the final filename part, leaving the directory name,
1529 followed by a slash. The directory can be relative or absolute. */
1530 for (i = strlen(path) - 1; i >= 0; i--)
1531 if (IS_DIR_SEPARATOR (path[i]))
1532 break;
1533
1534 /* If I is -1 then no directory is present there and DIR will be "". */
1535 path[i + 1] = '\0';
1536}
1537
1538/* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1539 Returns pathname, or NULL. */
1540
1541char *
1542find_separate_debug_file_by_debuglink (struct objfile *objfile)
1543{
1544 char *debuglink;
1545 char *dir, *canon_dir;
1546 char *debugfile;
1547 unsigned long crc32;
1548 struct cleanup *cleanups;
1549
1550 debuglink = get_debug_link_info (objfile, &crc32);
1551
1552 if (debuglink == NULL)
1553 {
1554 /* There's no separate debug info, hence there's no way we could
1555 load it => no warning. */
1556 return NULL;
1557 }
1558
71bdabee 1559 cleanups = make_cleanup (xfree, debuglink);
1db33378 1560 dir = xstrdup (objfile->name);
71bdabee 1561 make_cleanup (xfree, dir);
1db33378
PP
1562 terminate_after_last_dir_separator (dir);
1563 canon_dir = lrealpath (dir);
1564
1565 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1566 crc32, objfile);
1567 xfree (canon_dir);
1568
1569 if (debugfile == NULL)
1570 {
1571#ifdef HAVE_LSTAT
1572 /* For PR gdb/9538, try again with realpath (if different from the
1573 original). */
1574
1575 struct stat st_buf;
1576
1577 if (lstat (objfile->name, &st_buf) == 0 && S_ISLNK(st_buf.st_mode))
1578 {
1579 char *symlink_dir;
1580
1581 symlink_dir = lrealpath (objfile->name);
1582 if (symlink_dir != NULL)
1583 {
1584 make_cleanup (xfree, symlink_dir);
1585 terminate_after_last_dir_separator (symlink_dir);
1586 if (strcmp (dir, symlink_dir) != 0)
1587 {
1588 /* Different directory, so try using it. */
1589 debugfile = find_separate_debug_file (symlink_dir,
1590 symlink_dir,
1591 debuglink,
1592 crc32,
1593 objfile);
1594 }
1595 }
1596 }
1597#endif /* HAVE_LSTAT */
1598 }
aa28a74e 1599
1db33378 1600 do_cleanups (cleanups);
25522fae 1601 return debugfile;
5b5d99cf
JB
1602}
1603
1604
c906108c
SS
1605/* This is the symbol-file command. Read the file, analyze its
1606 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1607 the command is rather bizarre:
1608
1609 1. The function buildargv implements various quoting conventions
1610 which are undocumented and have little or nothing in common with
1611 the way things are quoted (or not quoted) elsewhere in GDB.
1612
1613 2. Options are used, which are not generally used in GDB (perhaps
1614 "set mapped on", "set readnow on" would be better)
1615
1616 3. The order of options matters, which is contrary to GNU
c906108c
SS
1617 conventions (because it is confusing and inconvenient). */
1618
1619void
fba45db2 1620symbol_file_command (char *args, int from_tty)
c906108c 1621{
c906108c
SS
1622 dont_repeat ();
1623
1624 if (args == NULL)
1625 {
1adeb98a 1626 symbol_file_clear (from_tty);
c906108c
SS
1627 }
1628 else
1629 {
d1a41061 1630 char **argv = gdb_buildargv (args);
cb2f3a29
MK
1631 int flags = OBJF_USERLOADED;
1632 struct cleanup *cleanups;
1633 char *name = NULL;
1634
7a292a7a 1635 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1636 while (*argv != NULL)
1637 {
78a4a9b9
AC
1638 if (strcmp (*argv, "-readnow") == 0)
1639 flags |= OBJF_READNOW;
1640 else if (**argv == '-')
8a3fe4f8 1641 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1642 else
1643 {
cb2f3a29 1644 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1645 name = *argv;
78a4a9b9 1646 }
cb2f3a29 1647
c906108c
SS
1648 argv++;
1649 }
1650
1651 if (name == NULL)
cb2f3a29
MK
1652 error (_("no symbol file name was specified"));
1653
c906108c
SS
1654 do_cleanups (cleanups);
1655 }
1656}
1657
1658/* Set the initial language.
1659
cb2f3a29
MK
1660 FIXME: A better solution would be to record the language in the
1661 psymtab when reading partial symbols, and then use it (if known) to
1662 set the language. This would be a win for formats that encode the
1663 language in an easily discoverable place, such as DWARF. For
1664 stabs, we can jump through hoops looking for specially named
1665 symbols or try to intuit the language from the specific type of
1666 stabs we find, but we can't do that until later when we read in
1667 full symbols. */
c906108c 1668
8b60591b 1669void
fba45db2 1670set_initial_language (void)
c906108c 1671{
c5aa993b 1672 enum language lang = language_unknown;
c906108c 1673
01f8c46d
JK
1674 if (language_of_main != language_unknown)
1675 lang = language_of_main;
1676 else
1677 {
1678 const char *filename;
f888f159 1679
01f8c46d
JK
1680 filename = find_main_filename ();
1681 if (filename != NULL)
1682 lang = deduce_language_from_filename (filename);
1683 }
cb2f3a29 1684
ccefe4c4
TT
1685 if (lang == language_unknown)
1686 {
1687 /* Make C the default language */
1688 lang = language_c;
c906108c 1689 }
ccefe4c4
TT
1690
1691 set_language (lang);
1692 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1693}
1694
874f5765 1695/* If NAME is a remote name open the file using remote protocol, otherwise
cbb099e8
TT
1696 open it normally. Returns a new reference to the BFD. On error,
1697 returns NULL with the BFD error set. */
874f5765
TG
1698
1699bfd *
08d2cd74 1700gdb_bfd_open_maybe_remote (const char *name)
874f5765 1701{
520b0001
TT
1702 bfd *result;
1703
874f5765 1704 if (remote_filename_p (name))
520b0001 1705 result = remote_bfd_open (name, gnutarget);
874f5765 1706 else
64c31149 1707 result = gdb_bfd_openr (name, gnutarget);
520b0001 1708
520b0001 1709 return result;
874f5765
TG
1710}
1711
1712
cb2f3a29
MK
1713/* Open the file specified by NAME and hand it off to BFD for
1714 preliminary analysis. Return a newly initialized bfd *, which
1715 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1716 absolute). In case of trouble, error() is called. */
c906108c
SS
1717
1718bfd *
fba45db2 1719symfile_bfd_open (char *name)
c906108c
SS
1720{
1721 bfd *sym_bfd;
1722 int desc;
1723 char *absolute_name;
1724
f1838a98
UW
1725 if (remote_filename_p (name))
1726 {
520b0001 1727 sym_bfd = remote_bfd_open (name, gnutarget);
f1838a98 1728 if (!sym_bfd)
a4453b7e
TT
1729 error (_("`%s': can't open to read symbols: %s."), name,
1730 bfd_errmsg (bfd_get_error ()));
f1838a98
UW
1731
1732 if (!bfd_check_format (sym_bfd, bfd_object))
1733 {
f9a062ff 1734 make_cleanup_bfd_unref (sym_bfd);
f1838a98
UW
1735 error (_("`%s': can't read symbols: %s."), name,
1736 bfd_errmsg (bfd_get_error ()));
1737 }
1738
1739 return sym_bfd;
1740 }
1741
cb2f3a29 1742 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c
SS
1743
1744 /* Look down path for it, allocate 2nd new malloc'd copy. */
cb2f3a29 1745 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
fbdebf46 1746 O_RDONLY | O_BINARY, &absolute_name);
608506ed 1747#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1748 if (desc < 0)
1749 {
1750 char *exename = alloca (strlen (name) + 5);
433759f7 1751
c906108c 1752 strcat (strcpy (exename, name), ".exe");
014d698b 1753 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
fbdebf46 1754 O_RDONLY | O_BINARY, &absolute_name);
c906108c
SS
1755 }
1756#endif
1757 if (desc < 0)
1758 {
b8c9b27d 1759 make_cleanup (xfree, name);
c906108c
SS
1760 perror_with_name (name);
1761 }
cb2f3a29 1762
cb2f3a29
MK
1763 xfree (name);
1764 name = absolute_name;
a4453b7e 1765 make_cleanup (xfree, name);
c906108c 1766
64c31149 1767 sym_bfd = gdb_bfd_fopen (name, gnutarget, FOPEN_RB, desc);
c906108c
SS
1768 if (!sym_bfd)
1769 {
b8c9b27d 1770 make_cleanup (xfree, name);
f1838a98 1771 error (_("`%s': can't open to read symbols: %s."), name,
c906108c
SS
1772 bfd_errmsg (bfd_get_error ()));
1773 }
549c1eea 1774 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1775
1776 if (!bfd_check_format (sym_bfd, bfd_object))
1777 {
f9a062ff 1778 make_cleanup_bfd_unref (sym_bfd);
f1838a98 1779 error (_("`%s': can't read symbols: %s."), name,
c906108c
SS
1780 bfd_errmsg (bfd_get_error ()));
1781 }
cb2f3a29
MK
1782
1783 return sym_bfd;
c906108c
SS
1784}
1785
cb2f3a29
MK
1786/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1787 the section was not found. */
1788
0e931cf0
JB
1789int
1790get_section_index (struct objfile *objfile, char *section_name)
1791{
1792 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1793
0e931cf0
JB
1794 if (sect)
1795 return sect->index;
1796 else
1797 return -1;
1798}
1799
cb2f3a29
MK
1800/* Link SF into the global symtab_fns list. Called on startup by the
1801 _initialize routine in each object file format reader, to register
b021a221 1802 information about each format the reader is prepared to handle. */
c906108c
SS
1803
1804void
00b5771c 1805add_symtab_fns (const struct sym_fns *sf)
c906108c 1806{
00b5771c 1807 VEC_safe_push (sym_fns_ptr, symtab_fns, sf);
c906108c
SS
1808}
1809
cb2f3a29
MK
1810/* Initialize OBJFILE to read symbols from its associated BFD. It
1811 either returns or calls error(). The result is an initialized
1812 struct sym_fns in the objfile structure, that contains cached
1813 information about the symbol file. */
c906108c 1814
00b5771c 1815static const struct sym_fns *
31d99776 1816find_sym_fns (bfd *abfd)
c906108c 1817{
00b5771c 1818 const struct sym_fns *sf;
31d99776 1819 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
00b5771c 1820 int i;
c906108c 1821
75245b24
MS
1822 if (our_flavour == bfd_target_srec_flavour
1823 || our_flavour == bfd_target_ihex_flavour
1824 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1825 return NULL; /* No symbols. */
75245b24 1826
00b5771c 1827 for (i = 0; VEC_iterate (sym_fns_ptr, symtab_fns, i, sf); ++i)
31d99776
DJ
1828 if (our_flavour == sf->sym_flavour)
1829 return sf;
cb2f3a29 1830
8a3fe4f8 1831 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1832 bfd_get_target (abfd));
c906108c
SS
1833}
1834\f
cb2f3a29 1835
c906108c
SS
1836/* This function runs the load command of our current target. */
1837
1838static void
fba45db2 1839load_command (char *arg, int from_tty)
c906108c 1840{
e5cc9f32
JB
1841 dont_repeat ();
1842
4487aabf
PA
1843 /* The user might be reloading because the binary has changed. Take
1844 this opportunity to check. */
1845 reopen_exec_file ();
1846 reread_symbols ();
1847
c906108c 1848 if (arg == NULL)
1986bccd
AS
1849 {
1850 char *parg;
1851 int count = 0;
1852
1853 parg = arg = get_exec_file (1);
1854
1855 /* Count how many \ " ' tab space there are in the name. */
1856 while ((parg = strpbrk (parg, "\\\"'\t ")))
1857 {
1858 parg++;
1859 count++;
1860 }
1861
1862 if (count)
1863 {
1864 /* We need to quote this string so buildargv can pull it apart. */
1865 char *temp = xmalloc (strlen (arg) + count + 1 );
1866 char *ptemp = temp;
1867 char *prev;
1868
1869 make_cleanup (xfree, temp);
1870
1871 prev = parg = arg;
1872 while ((parg = strpbrk (parg, "\\\"'\t ")))
1873 {
1874 strncpy (ptemp, prev, parg - prev);
1875 ptemp += parg - prev;
1876 prev = parg++;
1877 *ptemp++ = '\\';
1878 }
1879 strcpy (ptemp, prev);
1880
1881 arg = temp;
1882 }
1883 }
1884
c906108c 1885 target_load (arg, from_tty);
2889e661
JB
1886
1887 /* After re-loading the executable, we don't really know which
1888 overlays are mapped any more. */
1889 overlay_cache_invalid = 1;
c906108c
SS
1890}
1891
1892/* This version of "load" should be usable for any target. Currently
1893 it is just used for remote targets, not inftarg.c or core files,
1894 on the theory that only in that case is it useful.
1895
1896 Avoiding xmodem and the like seems like a win (a) because we don't have
1897 to worry about finding it, and (b) On VMS, fork() is very slow and so
1898 we don't want to run a subprocess. On the other hand, I'm not sure how
1899 performance compares. */
917317f4 1900
917317f4
JM
1901static int validate_download = 0;
1902
e4f9b4d5
MS
1903/* Callback service function for generic_load (bfd_map_over_sections). */
1904
1905static void
1906add_section_size_callback (bfd *abfd, asection *asec, void *data)
1907{
1908 bfd_size_type *sum = data;
1909
2c500098 1910 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1911}
1912
1913/* Opaque data for load_section_callback. */
1914struct load_section_data {
1915 unsigned long load_offset;
a76d924d
DJ
1916 struct load_progress_data *progress_data;
1917 VEC(memory_write_request_s) *requests;
1918};
1919
1920/* Opaque data for load_progress. */
1921struct load_progress_data {
1922 /* Cumulative data. */
e4f9b4d5
MS
1923 unsigned long write_count;
1924 unsigned long data_count;
1925 bfd_size_type total_size;
a76d924d
DJ
1926};
1927
1928/* Opaque data for load_progress for a single section. */
1929struct load_progress_section_data {
1930 struct load_progress_data *cumulative;
cf7a04e8 1931
a76d924d 1932 /* Per-section data. */
cf7a04e8
DJ
1933 const char *section_name;
1934 ULONGEST section_sent;
1935 ULONGEST section_size;
1936 CORE_ADDR lma;
1937 gdb_byte *buffer;
e4f9b4d5
MS
1938};
1939
a76d924d 1940/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1941
1942static void
1943load_progress (ULONGEST bytes, void *untyped_arg)
1944{
a76d924d
DJ
1945 struct load_progress_section_data *args = untyped_arg;
1946 struct load_progress_data *totals;
1947
1948 if (args == NULL)
1949 /* Writing padding data. No easy way to get at the cumulative
1950 stats, so just ignore this. */
1951 return;
1952
1953 totals = args->cumulative;
1954
1955 if (bytes == 0 && args->section_sent == 0)
1956 {
1957 /* The write is just starting. Let the user know we've started
1958 this section. */
79a45e25 1959 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
5af949e3
UW
1960 args->section_name, hex_string (args->section_size),
1961 paddress (target_gdbarch, args->lma));
a76d924d
DJ
1962 return;
1963 }
cf7a04e8
DJ
1964
1965 if (validate_download)
1966 {
1967 /* Broken memories and broken monitors manifest themselves here
1968 when bring new computers to life. This doubles already slow
1969 downloads. */
1970 /* NOTE: cagney/1999-10-18: A more efficient implementation
1971 might add a verify_memory() method to the target vector and
1972 then use that. remote.c could implement that method using
1973 the ``qCRC'' packet. */
1974 gdb_byte *check = xmalloc (bytes);
1975 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1976
1977 if (target_read_memory (args->lma, check, bytes) != 0)
5af949e3
UW
1978 error (_("Download verify read failed at %s"),
1979 paddress (target_gdbarch, args->lma));
cf7a04e8 1980 if (memcmp (args->buffer, check, bytes) != 0)
5af949e3
UW
1981 error (_("Download verify compare failed at %s"),
1982 paddress (target_gdbarch, args->lma));
cf7a04e8
DJ
1983 do_cleanups (verify_cleanups);
1984 }
a76d924d 1985 totals->data_count += bytes;
cf7a04e8
DJ
1986 args->lma += bytes;
1987 args->buffer += bytes;
a76d924d 1988 totals->write_count += 1;
cf7a04e8
DJ
1989 args->section_sent += bytes;
1990 if (quit_flag
1991 || (deprecated_ui_load_progress_hook != NULL
1992 && deprecated_ui_load_progress_hook (args->section_name,
1993 args->section_sent)))
1994 error (_("Canceled the download"));
1995
1996 if (deprecated_show_load_progress != NULL)
1997 deprecated_show_load_progress (args->section_name,
1998 args->section_sent,
1999 args->section_size,
a76d924d
DJ
2000 totals->data_count,
2001 totals->total_size);
cf7a04e8
DJ
2002}
2003
e4f9b4d5
MS
2004/* Callback service function for generic_load (bfd_map_over_sections). */
2005
2006static void
2007load_section_callback (bfd *abfd, asection *asec, void *data)
2008{
a76d924d 2009 struct memory_write_request *new_request;
e4f9b4d5 2010 struct load_section_data *args = data;
a76d924d 2011 struct load_progress_section_data *section_data;
cf7a04e8
DJ
2012 bfd_size_type size = bfd_get_section_size (asec);
2013 gdb_byte *buffer;
cf7a04e8 2014 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 2015
cf7a04e8
DJ
2016 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2017 return;
e4f9b4d5 2018
cf7a04e8
DJ
2019 if (size == 0)
2020 return;
e4f9b4d5 2021
a76d924d
DJ
2022 new_request = VEC_safe_push (memory_write_request_s,
2023 args->requests, NULL);
2024 memset (new_request, 0, sizeof (struct memory_write_request));
2025 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
2026 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
3e43a32a
MS
2027 new_request->end = new_request->begin + size; /* FIXME Should size
2028 be in instead? */
a76d924d
DJ
2029 new_request->data = xmalloc (size);
2030 new_request->baton = section_data;
cf7a04e8 2031
a76d924d 2032 buffer = new_request->data;
cf7a04e8 2033
a76d924d
DJ
2034 section_data->cumulative = args->progress_data;
2035 section_data->section_name = sect_name;
2036 section_data->section_size = size;
2037 section_data->lma = new_request->begin;
2038 section_data->buffer = buffer;
cf7a04e8
DJ
2039
2040 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
2041}
2042
2043/* Clean up an entire memory request vector, including load
2044 data and progress records. */
cf7a04e8 2045
a76d924d
DJ
2046static void
2047clear_memory_write_data (void *arg)
2048{
2049 VEC(memory_write_request_s) **vec_p = arg;
2050 VEC(memory_write_request_s) *vec = *vec_p;
2051 int i;
2052 struct memory_write_request *mr;
cf7a04e8 2053
a76d924d
DJ
2054 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2055 {
2056 xfree (mr->data);
2057 xfree (mr->baton);
2058 }
2059 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
2060}
2061
c906108c 2062void
917317f4 2063generic_load (char *args, int from_tty)
c906108c 2064{
c906108c 2065 bfd *loadfile_bfd;
2b71414d 2066 struct timeval start_time, end_time;
917317f4 2067 char *filename;
1986bccd 2068 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 2069 struct load_section_data cbdata;
a76d924d 2070 struct load_progress_data total_progress;
79a45e25 2071 struct ui_out *uiout = current_uiout;
a76d924d 2072
e4f9b4d5 2073 CORE_ADDR entry;
1986bccd 2074 char **argv;
e4f9b4d5 2075
a76d924d
DJ
2076 memset (&cbdata, 0, sizeof (cbdata));
2077 memset (&total_progress, 0, sizeof (total_progress));
2078 cbdata.progress_data = &total_progress;
2079
2080 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 2081
d1a41061
PP
2082 if (args == NULL)
2083 error_no_arg (_("file to load"));
1986bccd 2084
d1a41061 2085 argv = gdb_buildargv (args);
1986bccd
AS
2086 make_cleanup_freeargv (argv);
2087
2088 filename = tilde_expand (argv[0]);
2089 make_cleanup (xfree, filename);
2090
2091 if (argv[1] != NULL)
917317f4
JM
2092 {
2093 char *endptr;
ba5f2f8a 2094
1986bccd
AS
2095 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
2096
2097 /* If the last word was not a valid number then
2098 treat it as a file name with spaces in. */
2099 if (argv[1] == endptr)
2100 error (_("Invalid download offset:%s."), argv[1]);
2101
2102 if (argv[2] != NULL)
2103 error (_("Too many parameters."));
917317f4 2104 }
c906108c 2105
c378eb4e 2106 /* Open the file for loading. */
64c31149 2107 loadfile_bfd = gdb_bfd_openr (filename, gnutarget);
c906108c
SS
2108 if (loadfile_bfd == NULL)
2109 {
2110 perror_with_name (filename);
2111 return;
2112 }
917317f4 2113
f9a062ff 2114 make_cleanup_bfd_unref (loadfile_bfd);
c906108c 2115
c5aa993b 2116 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 2117 {
8a3fe4f8 2118 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
2119 bfd_errmsg (bfd_get_error ()));
2120 }
c5aa993b 2121
5417f6dc 2122 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
2123 (void *) &total_progress.total_size);
2124
2125 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 2126
2b71414d 2127 gettimeofday (&start_time, NULL);
c906108c 2128
a76d924d
DJ
2129 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2130 load_progress) != 0)
2131 error (_("Load failed"));
c906108c 2132
2b71414d 2133 gettimeofday (&end_time, NULL);
ba5f2f8a 2134
e4f9b4d5 2135 entry = bfd_get_start_address (loadfile_bfd);
e4f9b4d5 2136 ui_out_text (uiout, "Start address ");
5af949e3 2137 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
e4f9b4d5 2138 ui_out_text (uiout, ", load size ");
a76d924d 2139 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 2140 ui_out_text (uiout, "\n");
e4f9b4d5
MS
2141 /* We were doing this in remote-mips.c, I suspect it is right
2142 for other targets too. */
fb14de7b 2143 regcache_write_pc (get_current_regcache (), entry);
c906108c 2144
38963c97
DJ
2145 /* Reset breakpoints, now that we have changed the load image. For
2146 instance, breakpoints may have been set (or reset, by
2147 post_create_inferior) while connected to the target but before we
2148 loaded the program. In that case, the prologue analyzer could
2149 have read instructions from the target to find the right
2150 breakpoint locations. Loading has changed the contents of that
2151 memory. */
2152
2153 breakpoint_re_set ();
2154
7ca9f392
AC
2155 /* FIXME: are we supposed to call symbol_file_add or not? According
2156 to a comment from remote-mips.c (where a call to symbol_file_add
2157 was commented out), making the call confuses GDB if more than one
2158 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 2159 others don't (or didn't - perhaps they have all been deleted). */
c906108c 2160
a76d924d
DJ
2161 print_transfer_performance (gdb_stdout, total_progress.data_count,
2162 total_progress.write_count,
2163 &start_time, &end_time);
c906108c
SS
2164
2165 do_cleanups (old_cleanups);
2166}
2167
c378eb4e 2168/* Report how fast the transfer went. */
c906108c 2169
917317f4
JM
2170/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2171 replaced by print_transfer_performance (with a very different
c378eb4e 2172 function signature). */
917317f4 2173
c906108c 2174void
fba45db2
KB
2175report_transfer_performance (unsigned long data_count, time_t start_time,
2176 time_t end_time)
c906108c 2177{
2b71414d
DJ
2178 struct timeval start, end;
2179
2180 start.tv_sec = start_time;
2181 start.tv_usec = 0;
2182 end.tv_sec = end_time;
2183 end.tv_usec = 0;
2184
2185 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
917317f4
JM
2186}
2187
2188void
d9fcf2fb 2189print_transfer_performance (struct ui_file *stream,
917317f4
JM
2190 unsigned long data_count,
2191 unsigned long write_count,
2b71414d
DJ
2192 const struct timeval *start_time,
2193 const struct timeval *end_time)
917317f4 2194{
9f43d28c 2195 ULONGEST time_count;
79a45e25 2196 struct ui_out *uiout = current_uiout;
2b71414d
DJ
2197
2198 /* Compute the elapsed time in milliseconds, as a tradeoff between
2199 accuracy and overflow. */
2200 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2201 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2202
8b93c638
JM
2203 ui_out_text (uiout, "Transfer rate: ");
2204 if (time_count > 0)
2205 {
9f43d28c
DJ
2206 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2207
2208 if (ui_out_is_mi_like_p (uiout))
2209 {
2210 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2211 ui_out_text (uiout, " bits/sec");
2212 }
2213 else if (rate < 1024)
2214 {
2215 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2216 ui_out_text (uiout, " bytes/sec");
2217 }
2218 else
2219 {
2220 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2221 ui_out_text (uiout, " KB/sec");
2222 }
8b93c638
JM
2223 }
2224 else
2225 {
ba5f2f8a 2226 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 2227 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
2228 }
2229 if (write_count > 0)
2230 {
2231 ui_out_text (uiout, ", ");
ba5f2f8a 2232 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
2233 ui_out_text (uiout, " bytes/write");
2234 }
2235 ui_out_text (uiout, ".\n");
c906108c
SS
2236}
2237
2238/* This function allows the addition of incrementally linked object files.
2239 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2240/* Note: ezannoni 2000-04-13 This function/command used to have a
2241 special case syntax for the rombug target (Rombug is the boot
2242 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2243 rombug case, the user doesn't need to supply a text address,
2244 instead a call to target_link() (in target.c) would supply the
c378eb4e 2245 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2246
c906108c 2247static void
fba45db2 2248add_symbol_file_command (char *args, int from_tty)
c906108c 2249{
5af949e3 2250 struct gdbarch *gdbarch = get_current_arch ();
db162d44 2251 char *filename = NULL;
2df3850c 2252 int flags = OBJF_USERLOADED;
c906108c 2253 char *arg;
db162d44 2254 int section_index = 0;
2acceee2
JM
2255 int argcnt = 0;
2256 int sec_num = 0;
2257 int i;
db162d44
EZ
2258 int expecting_sec_name = 0;
2259 int expecting_sec_addr = 0;
5b96932b 2260 char **argv;
db162d44 2261
a39a16c4 2262 struct sect_opt
2acceee2 2263 {
2acceee2
JM
2264 char *name;
2265 char *value;
a39a16c4 2266 };
db162d44 2267
a39a16c4
MM
2268 struct section_addr_info *section_addrs;
2269 struct sect_opt *sect_opts = NULL;
2270 size_t num_sect_opts = 0;
3017564a 2271 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2272
a39a16c4 2273 num_sect_opts = 16;
5417f6dc 2274 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
2275 * sizeof (struct sect_opt));
2276
c906108c
SS
2277 dont_repeat ();
2278
2279 if (args == NULL)
8a3fe4f8 2280 error (_("add-symbol-file takes a file name and an address"));
c906108c 2281
d1a41061 2282 argv = gdb_buildargv (args);
5b96932b 2283 make_cleanup_freeargv (argv);
db162d44 2284
5b96932b
AS
2285 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2286 {
c378eb4e 2287 /* Process the argument. */
db162d44 2288 if (argcnt == 0)
c906108c 2289 {
c378eb4e 2290 /* The first argument is the file name. */
db162d44 2291 filename = tilde_expand (arg);
3017564a 2292 make_cleanup (xfree, filename);
c906108c 2293 }
db162d44 2294 else
7a78ae4e
ND
2295 if (argcnt == 1)
2296 {
2297 /* The second argument is always the text address at which
c378eb4e 2298 to load the program. */
7a78ae4e
ND
2299 sect_opts[section_index].name = ".text";
2300 sect_opts[section_index].value = arg;
f414f22f 2301 if (++section_index >= num_sect_opts)
a39a16c4
MM
2302 {
2303 num_sect_opts *= 2;
5417f6dc 2304 sect_opts = ((struct sect_opt *)
a39a16c4 2305 xrealloc (sect_opts,
5417f6dc 2306 num_sect_opts
a39a16c4
MM
2307 * sizeof (struct sect_opt)));
2308 }
7a78ae4e
ND
2309 }
2310 else
2311 {
2312 /* It's an option (starting with '-') or it's an argument
c378eb4e 2313 to an option. */
7a78ae4e
ND
2314
2315 if (*arg == '-')
2316 {
78a4a9b9
AC
2317 if (strcmp (arg, "-readnow") == 0)
2318 flags |= OBJF_READNOW;
2319 else if (strcmp (arg, "-s") == 0)
2320 {
2321 expecting_sec_name = 1;
2322 expecting_sec_addr = 1;
2323 }
7a78ae4e
ND
2324 }
2325 else
2326 {
2327 if (expecting_sec_name)
db162d44 2328 {
7a78ae4e
ND
2329 sect_opts[section_index].name = arg;
2330 expecting_sec_name = 0;
db162d44
EZ
2331 }
2332 else
7a78ae4e
ND
2333 if (expecting_sec_addr)
2334 {
2335 sect_opts[section_index].value = arg;
2336 expecting_sec_addr = 0;
f414f22f 2337 if (++section_index >= num_sect_opts)
a39a16c4
MM
2338 {
2339 num_sect_opts *= 2;
5417f6dc 2340 sect_opts = ((struct sect_opt *)
a39a16c4 2341 xrealloc (sect_opts,
5417f6dc 2342 num_sect_opts
a39a16c4
MM
2343 * sizeof (struct sect_opt)));
2344 }
7a78ae4e
ND
2345 }
2346 else
3e43a32a 2347 error (_("USAGE: add-symbol-file <filename> <textaddress>"
412946b6 2348 " [-readnow] [-s <secname> <addr>]*"));
7a78ae4e
ND
2349 }
2350 }
c906108c 2351 }
c906108c 2352
927890d0
JB
2353 /* This command takes at least two arguments. The first one is a
2354 filename, and the second is the address where this file has been
2355 loaded. Abort now if this address hasn't been provided by the
2356 user. */
2357 if (section_index < 1)
2358 error (_("The address where %s has been loaded is missing"), filename);
2359
c378eb4e 2360 /* Print the prompt for the query below. And save the arguments into
db162d44
EZ
2361 a sect_addr_info structure to be passed around to other
2362 functions. We have to split this up into separate print
bb599908 2363 statements because hex_string returns a local static
c378eb4e 2364 string. */
5417f6dc 2365
a3f17187 2366 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2367 section_addrs = alloc_section_addr_info (section_index);
2368 make_cleanup (xfree, section_addrs);
db162d44 2369 for (i = 0; i < section_index; i++)
c906108c 2370 {
db162d44
EZ
2371 CORE_ADDR addr;
2372 char *val = sect_opts[i].value;
2373 char *sec = sect_opts[i].name;
5417f6dc 2374
ae822768 2375 addr = parse_and_eval_address (val);
db162d44 2376
db162d44 2377 /* Here we store the section offsets in the order they were
c378eb4e 2378 entered on the command line. */
a39a16c4
MM
2379 section_addrs->other[sec_num].name = sec;
2380 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2381 printf_unfiltered ("\t%s_addr = %s\n", sec,
2382 paddress (gdbarch, addr));
db162d44
EZ
2383 sec_num++;
2384
5417f6dc 2385 /* The object's sections are initialized when a
db162d44 2386 call is made to build_objfile_section_table (objfile).
5417f6dc 2387 This happens in reread_symbols.
db162d44
EZ
2388 At this point, we don't know what file type this is,
2389 so we can't determine what section names are valid. */
2acceee2 2390 }
db162d44 2391
2acceee2 2392 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2393 error (_("Not confirmed."));
c906108c 2394
7eedccfa
PP
2395 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2396 section_addrs, flags);
c906108c
SS
2397
2398 /* Getting new symbols may change our opinion about what is
2399 frameless. */
2400 reinit_frame_cache ();
db162d44 2401 do_cleanups (my_cleanups);
c906108c
SS
2402}
2403\f
70992597 2404
4ac39b97
JK
2405typedef struct objfile *objfilep;
2406
2407DEF_VEC_P (objfilep);
2408
c906108c
SS
2409/* Re-read symbols if a symbol-file has changed. */
2410void
fba45db2 2411reread_symbols (void)
c906108c
SS
2412{
2413 struct objfile *objfile;
2414 long new_modtime;
c906108c
SS
2415 struct stat new_statbuf;
2416 int res;
4ac39b97
JK
2417 VEC (objfilep) *new_objfiles = NULL;
2418 struct cleanup *all_cleanups;
2419
2420 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
c906108c
SS
2421
2422 /* With the addition of shared libraries, this should be modified,
2423 the load time should be saved in the partial symbol tables, since
2424 different tables may come from different source files. FIXME.
2425 This routine should then walk down each partial symbol table
c378eb4e 2426 and see if the symbol table that it originates from has been changed. */
c906108c 2427
c5aa993b
JM
2428 for (objfile = object_files; objfile; objfile = objfile->next)
2429 {
9cce227f
TG
2430 /* solib-sunos.c creates one objfile with obfd. */
2431 if (objfile->obfd == NULL)
2432 continue;
2433
2434 /* Separate debug objfiles are handled in the main objfile. */
2435 if (objfile->separate_debug_objfile_backlink)
2436 continue;
2437
02aeec7b
JB
2438 /* If this object is from an archive (what you usually create with
2439 `ar', often called a `static library' on most systems, though
2440 a `shared library' on AIX is also an archive), then you should
2441 stat on the archive name, not member name. */
9cce227f
TG
2442 if (objfile->obfd->my_archive)
2443 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2444 else
9cce227f
TG
2445 res = stat (objfile->name, &new_statbuf);
2446 if (res != 0)
2447 {
c378eb4e 2448 /* FIXME, should use print_sys_errmsg but it's not filtered. */
9cce227f
TG
2449 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2450 objfile->name);
2451 continue;
2452 }
2453 new_modtime = new_statbuf.st_mtime;
2454 if (new_modtime != objfile->mtime)
2455 {
2456 struct cleanup *old_cleanups;
2457 struct section_offsets *offsets;
2458 int num_offsets;
2459 char *obfd_filename;
2460
2461 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2462 objfile->name);
2463
2464 /* There are various functions like symbol_file_add,
2465 symfile_bfd_open, syms_from_objfile, etc., which might
2466 appear to do what we want. But they have various other
2467 effects which we *don't* want. So we just do stuff
2468 ourselves. We don't worry about mapped files (for one thing,
2469 any mapped file will be out of date). */
2470
2471 /* If we get an error, blow away this objfile (not sure if
2472 that is the correct response for things like shared
2473 libraries). */
2474 old_cleanups = make_cleanup_free_objfile (objfile);
2475 /* We need to do this whenever any symbols go away. */
2476 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2477
0ba1096a
KT
2478 if (exec_bfd != NULL
2479 && filename_cmp (bfd_get_filename (objfile->obfd),
2480 bfd_get_filename (exec_bfd)) == 0)
9cce227f
TG
2481 {
2482 /* Reload EXEC_BFD without asking anything. */
2483
2484 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2485 }
2486
f6eeced0
JK
2487 /* Keep the calls order approx. the same as in free_objfile. */
2488
2489 /* Free the separate debug objfiles. It will be
2490 automatically recreated by sym_read. */
2491 free_objfile_separate_debug (objfile);
2492
2493 /* Remove any references to this objfile in the global
2494 value lists. */
2495 preserve_values (objfile);
2496
2497 /* Nuke all the state that we will re-read. Much of the following
2498 code which sets things to NULL really is necessary to tell
2499 other parts of GDB that there is nothing currently there.
2500
2501 Try to keep the freeing order compatible with free_objfile. */
2502
2503 if (objfile->sf != NULL)
2504 {
2505 (*objfile->sf->sym_finish) (objfile);
2506 }
2507
2508 clear_objfile_data (objfile);
2509
9cce227f
TG
2510 /* Clean up any state BFD has sitting around. We don't need
2511 to close the descriptor but BFD lacks a way of closing the
2512 BFD without closing the descriptor. */
a4453b7e
TT
2513 {
2514 struct bfd *obfd = objfile->obfd;
2515
2516 obfd_filename = bfd_get_filename (objfile->obfd);
2517 /* Open the new BFD before freeing the old one, so that
2518 the filename remains live. */
08d2cd74 2519 objfile->obfd = gdb_bfd_open_maybe_remote (obfd_filename);
a4453b7e
TT
2520 gdb_bfd_unref (obfd);
2521 }
2522
9cce227f
TG
2523 if (objfile->obfd == NULL)
2524 error (_("Can't open %s to read symbols."), objfile->name);
9cce227f
TG
2525 /* bfd_openr sets cacheable to true, which is what we want. */
2526 if (!bfd_check_format (objfile->obfd, bfd_object))
2527 error (_("Can't read symbols from %s: %s."), objfile->name,
2528 bfd_errmsg (bfd_get_error ()));
2529
2530 /* Save the offsets, we will nuke them with the rest of the
2531 objfile_obstack. */
2532 num_offsets = objfile->num_sections;
2533 offsets = ((struct section_offsets *)
2534 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2535 memcpy (offsets, objfile->section_offsets,
2536 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2537
9cce227f
TG
2538 /* FIXME: Do we have to free a whole linked list, or is this
2539 enough? */
2540 if (objfile->global_psymbols.list)
2541 xfree (objfile->global_psymbols.list);
2542 memset (&objfile->global_psymbols, 0,
2543 sizeof (objfile->global_psymbols));
2544 if (objfile->static_psymbols.list)
2545 xfree (objfile->static_psymbols.list);
2546 memset (&objfile->static_psymbols, 0,
2547 sizeof (objfile->static_psymbols));
2548
c378eb4e 2549 /* Free the obstacks for non-reusable objfiles. */
710e1a31
SW
2550 psymbol_bcache_free (objfile->psymbol_cache);
2551 objfile->psymbol_cache = psymbol_bcache_init ();
9cce227f 2552 bcache_xfree (objfile->macro_cache);
cbd70537 2553 objfile->macro_cache = bcache_xmalloc (NULL, NULL);
9cce227f 2554 bcache_xfree (objfile->filename_cache);
cbd70537 2555 objfile->filename_cache = bcache_xmalloc (NULL,NULL);
9cce227f
TG
2556 if (objfile->demangled_names_hash != NULL)
2557 {
2558 htab_delete (objfile->demangled_names_hash);
2559 objfile->demangled_names_hash = NULL;
2560 }
2561 obstack_free (&objfile->objfile_obstack, 0);
2562 objfile->sections = NULL;
2563 objfile->symtabs = NULL;
2564 objfile->psymtabs = NULL;
2565 objfile->psymtabs_addrmap = NULL;
2566 objfile->free_psymtabs = NULL;
34eaf542 2567 objfile->template_symbols = NULL;
9cce227f
TG
2568 objfile->msymbols = NULL;
2569 objfile->deprecated_sym_private = NULL;
2570 objfile->minimal_symbol_count = 0;
2571 memset (&objfile->msymbol_hash, 0,
2572 sizeof (objfile->msymbol_hash));
2573 memset (&objfile->msymbol_demangled_hash, 0,
2574 sizeof (objfile->msymbol_demangled_hash));
2575
9cce227f
TG
2576 /* obstack_init also initializes the obstack so it is
2577 empty. We could use obstack_specify_allocation but
d82ea6a8 2578 gdb_obstack.h specifies the alloc/dealloc functions. */
9cce227f 2579 obstack_init (&objfile->objfile_obstack);
d82ea6a8 2580 build_objfile_section_table (objfile);
9cce227f
TG
2581 terminate_minimal_symbol_table (objfile);
2582
2583 /* We use the same section offsets as from last time. I'm not
2584 sure whether that is always correct for shared libraries. */
2585 objfile->section_offsets = (struct section_offsets *)
2586 obstack_alloc (&objfile->objfile_obstack,
2587 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2588 memcpy (objfile->section_offsets, offsets,
2589 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2590 objfile->num_sections = num_offsets;
2591
2592 /* What the hell is sym_new_init for, anyway? The concept of
2593 distinguishing between the main file and additional files
2594 in this way seems rather dubious. */
2595 if (objfile == symfile_objfile)
c906108c 2596 {
9cce227f 2597 (*objfile->sf->sym_new_init) (objfile);
c906108c 2598 }
9cce227f
TG
2599
2600 (*objfile->sf->sym_init) (objfile);
2601 clear_complaints (&symfile_complaints, 1, 1);
2602 /* Do not set flags as this is safe and we don't want to be
2603 verbose. */
2604 (*objfile->sf->sym_read) (objfile, 0);
b11896a5
TT
2605 if ((objfile->flags & OBJF_PSYMTABS_READ) != 0)
2606 {
2607 objfile->flags &= ~OBJF_PSYMTABS_READ;
2608 require_partial_symbols (objfile, 0);
2609 }
2610
9cce227f 2611 if (!objfile_has_symbols (objfile))
c906108c 2612 {
9cce227f
TG
2613 wrap_here ("");
2614 printf_unfiltered (_("(no debugging symbols found)\n"));
2615 wrap_here ("");
c5aa993b 2616 }
9cce227f
TG
2617
2618 /* We're done reading the symbol file; finish off complaints. */
2619 clear_complaints (&symfile_complaints, 0, 1);
2620
2621 /* Getting new symbols may change our opinion about what is
2622 frameless. */
2623
2624 reinit_frame_cache ();
2625
2626 /* Discard cleanups as symbol reading was successful. */
2627 discard_cleanups (old_cleanups);
2628
2629 /* If the mtime has changed between the time we set new_modtime
2630 and now, we *want* this to be out of date, so don't call stat
2631 again now. */
2632 objfile->mtime = new_modtime;
9cce227f 2633 init_entry_point_info (objfile);
4ac39b97
JK
2634
2635 VEC_safe_push (objfilep, new_objfiles, objfile);
c906108c
SS
2636 }
2637 }
c906108c 2638
4ac39b97 2639 if (new_objfiles)
ea53e89f 2640 {
4ac39b97
JK
2641 int ix;
2642
ff3536bc
UW
2643 /* Notify objfiles that we've modified objfile sections. */
2644 objfiles_changed ();
2645
c1e56572 2646 clear_symtab_users (0);
4ac39b97
JK
2647
2648 /* clear_objfile_data for each objfile was called before freeing it and
2649 observer_notify_new_objfile (NULL) has been called by
2650 clear_symtab_users above. Notify the new files now. */
2651 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2652 observer_notify_new_objfile (objfile);
2653
ea53e89f
JB
2654 /* At least one objfile has changed, so we can consider that
2655 the executable we're debugging has changed too. */
781b42b0 2656 observer_notify_executable_changed ();
ea53e89f 2657 }
4ac39b97
JK
2658
2659 do_cleanups (all_cleanups);
c906108c 2660}
c906108c
SS
2661\f
2662
c5aa993b
JM
2663
2664typedef struct
2665{
2666 char *ext;
c906108c 2667 enum language lang;
c5aa993b
JM
2668}
2669filename_language;
c906108c 2670
c5aa993b 2671static filename_language *filename_language_table;
c906108c
SS
2672static int fl_table_size, fl_table_next;
2673
2674static void
fba45db2 2675add_filename_language (char *ext, enum language lang)
c906108c
SS
2676{
2677 if (fl_table_next >= fl_table_size)
2678 {
2679 fl_table_size += 10;
5417f6dc 2680 filename_language_table =
25bf3106
PM
2681 xrealloc (filename_language_table,
2682 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2683 }
2684
4fcf66da 2685 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2686 filename_language_table[fl_table_next].lang = lang;
2687 fl_table_next++;
2688}
2689
2690static char *ext_args;
920d2a44
AC
2691static void
2692show_ext_args (struct ui_file *file, int from_tty,
2693 struct cmd_list_element *c, const char *value)
2694{
3e43a32a
MS
2695 fprintf_filtered (file,
2696 _("Mapping between filename extension "
2697 "and source language is \"%s\".\n"),
920d2a44
AC
2698 value);
2699}
c906108c
SS
2700
2701static void
26c41df3 2702set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2703{
2704 int i;
2705 char *cp = ext_args;
2706 enum language lang;
2707
c378eb4e 2708 /* First arg is filename extension, starting with '.' */
c906108c 2709 if (*cp != '.')
8a3fe4f8 2710 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2711
2712 /* Find end of first arg. */
c5aa993b 2713 while (*cp && !isspace (*cp))
c906108c
SS
2714 cp++;
2715
2716 if (*cp == '\0')
3e43a32a
MS
2717 error (_("'%s': two arguments required -- "
2718 "filename extension and language"),
c906108c
SS
2719 ext_args);
2720
c378eb4e 2721 /* Null-terminate first arg. */
c5aa993b 2722 *cp++ = '\0';
c906108c
SS
2723
2724 /* Find beginning of second arg, which should be a source language. */
2725 while (*cp && isspace (*cp))
2726 cp++;
2727
2728 if (*cp == '\0')
3e43a32a
MS
2729 error (_("'%s': two arguments required -- "
2730 "filename extension and language"),
c906108c
SS
2731 ext_args);
2732
2733 /* Lookup the language from among those we know. */
2734 lang = language_enum (cp);
2735
2736 /* Now lookup the filename extension: do we already know it? */
2737 for (i = 0; i < fl_table_next; i++)
2738 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2739 break;
2740
2741 if (i >= fl_table_next)
2742 {
c378eb4e 2743 /* New file extension. */
c906108c
SS
2744 add_filename_language (ext_args, lang);
2745 }
2746 else
2747 {
c378eb4e 2748 /* Redefining a previously known filename extension. */
c906108c
SS
2749
2750 /* if (from_tty) */
2751 /* query ("Really make files of type %s '%s'?", */
2752 /* ext_args, language_str (lang)); */
2753
b8c9b27d 2754 xfree (filename_language_table[i].ext);
4fcf66da 2755 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2756 filename_language_table[i].lang = lang;
2757 }
2758}
2759
2760static void
fba45db2 2761info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2762{
2763 int i;
2764
a3f17187 2765 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2766 printf_filtered ("\n\n");
2767 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2768 printf_filtered ("\t%s\t- %s\n",
2769 filename_language_table[i].ext,
c906108c
SS
2770 language_str (filename_language_table[i].lang));
2771}
2772
2773static void
fba45db2 2774init_filename_language_table (void)
c906108c 2775{
c378eb4e 2776 if (fl_table_size == 0) /* Protect against repetition. */
c906108c
SS
2777 {
2778 fl_table_size = 20;
2779 fl_table_next = 0;
c5aa993b 2780 filename_language_table =
c906108c 2781 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b 2782 add_filename_language (".c", language_c);
6aecb9c2 2783 add_filename_language (".d", language_d);
c5aa993b
JM
2784 add_filename_language (".C", language_cplus);
2785 add_filename_language (".cc", language_cplus);
2786 add_filename_language (".cp", language_cplus);
2787 add_filename_language (".cpp", language_cplus);
2788 add_filename_language (".cxx", language_cplus);
2789 add_filename_language (".c++", language_cplus);
2790 add_filename_language (".java", language_java);
c906108c 2791 add_filename_language (".class", language_java);
da2cf7e0 2792 add_filename_language (".m", language_objc);
c5aa993b
JM
2793 add_filename_language (".f", language_fortran);
2794 add_filename_language (".F", language_fortran);
fd5700c7
JK
2795 add_filename_language (".for", language_fortran);
2796 add_filename_language (".FOR", language_fortran);
2797 add_filename_language (".ftn", language_fortran);
2798 add_filename_language (".FTN", language_fortran);
2799 add_filename_language (".fpp", language_fortran);
2800 add_filename_language (".FPP", language_fortran);
2801 add_filename_language (".f90", language_fortran);
2802 add_filename_language (".F90", language_fortran);
2803 add_filename_language (".f95", language_fortran);
2804 add_filename_language (".F95", language_fortran);
2805 add_filename_language (".f03", language_fortran);
2806 add_filename_language (".F03", language_fortran);
2807 add_filename_language (".f08", language_fortran);
2808 add_filename_language (".F08", language_fortran);
c5aa993b 2809 add_filename_language (".s", language_asm);
aa707ed0 2810 add_filename_language (".sx", language_asm);
c5aa993b 2811 add_filename_language (".S", language_asm);
c6fd39cd
PM
2812 add_filename_language (".pas", language_pascal);
2813 add_filename_language (".p", language_pascal);
2814 add_filename_language (".pp", language_pascal);
963a6417
PH
2815 add_filename_language (".adb", language_ada);
2816 add_filename_language (".ads", language_ada);
2817 add_filename_language (".a", language_ada);
2818 add_filename_language (".ada", language_ada);
dde59185 2819 add_filename_language (".dg", language_ada);
c906108c
SS
2820 }
2821}
2822
2823enum language
dd786858 2824deduce_language_from_filename (const char *filename)
c906108c
SS
2825{
2826 int i;
2827 char *cp;
2828
2829 if (filename != NULL)
2830 if ((cp = strrchr (filename, '.')) != NULL)
2831 for (i = 0; i < fl_table_next; i++)
2832 if (strcmp (cp, filename_language_table[i].ext) == 0)
2833 return filename_language_table[i].lang;
2834
2835 return language_unknown;
2836}
2837\f
2838/* allocate_symtab:
2839
2840 Allocate and partly initialize a new symbol table. Return a pointer
2841 to it. error() if no space.
2842
2843 Caller must set these fields:
c5aa993b
JM
2844 LINETABLE(symtab)
2845 symtab->blockvector
2846 symtab->dirname
2847 symtab->free_code
2848 symtab->free_ptr
c906108c
SS
2849 */
2850
2851struct symtab *
72b9f47f 2852allocate_symtab (const char *filename, struct objfile *objfile)
c906108c 2853{
52f0bd74 2854 struct symtab *symtab;
c906108c
SS
2855
2856 symtab = (struct symtab *)
4a146b47 2857 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2858 memset (symtab, 0, sizeof (*symtab));
10abe6bf
TT
2859 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2860 objfile->filename_cache);
c5aa993b
JM
2861 symtab->fullname = NULL;
2862 symtab->language = deduce_language_from_filename (filename);
1c9e8358 2863 symtab->debugformat = "unknown";
c906108c 2864
c378eb4e 2865 /* Hook it to the objfile it comes from. */
c906108c 2866
c5aa993b
JM
2867 symtab->objfile = objfile;
2868 symtab->next = objfile->symtabs;
2869 objfile->symtabs = symtab;
c906108c 2870
45cfd468
DE
2871 if (symtab_create_debug)
2872 {
2873 /* Be a bit clever with debugging messages, and don't print objfile
2874 every time, only when it changes. */
2875 static char *last_objfile_name = NULL;
2876
2877 if (last_objfile_name == NULL
2878 || strcmp (last_objfile_name, objfile->name) != 0)
2879 {
2880 xfree (last_objfile_name);
2881 last_objfile_name = xstrdup (objfile->name);
2882 fprintf_unfiltered (gdb_stdlog,
2883 "Creating one or more symtabs for objfile %s ...\n",
2884 last_objfile_name);
2885 }
2886 fprintf_unfiltered (gdb_stdlog,
2887 "Created symtab 0x%lx for module %s.\n",
2888 (long) symtab, filename);
2889 }
2890
c906108c
SS
2891 return (symtab);
2892}
c906108c 2893\f
c5aa993b 2894
c906108c 2895/* Reset all data structures in gdb which may contain references to symbol
c1e56572 2896 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c906108c
SS
2897
2898void
c1e56572 2899clear_symtab_users (int add_flags)
c906108c
SS
2900{
2901 /* Someday, we should do better than this, by only blowing away
2902 the things that really need to be blown. */
c0501be5
DJ
2903
2904 /* Clear the "current" symtab first, because it is no longer valid.
2905 breakpoint_re_set may try to access the current symtab. */
2906 clear_current_source_symtab_and_line ();
2907
c906108c 2908 clear_displays ();
c1e56572
JK
2909 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2910 breakpoint_re_set ();
1bfeeb0f 2911 clear_last_displayed_sal ();
c906108c 2912 clear_pc_function_cache ();
06d3b283 2913 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2914
2915 /* Clear globals which might have pointed into a removed objfile.
2916 FIXME: It's not clear which of these are supposed to persist
2917 between expressions and which ought to be reset each time. */
2918 expression_context_block = NULL;
2919 innermost_block = NULL;
8756216b
DP
2920
2921 /* Varobj may refer to old symbols, perform a cleanup. */
2922 varobj_invalidate ();
2923
c906108c
SS
2924}
2925
74b7792f
AC
2926static void
2927clear_symtab_users_cleanup (void *ignore)
2928{
c1e56572 2929 clear_symtab_users (0);
74b7792f 2930}
c906108c 2931\f
c906108c
SS
2932/* OVERLAYS:
2933 The following code implements an abstraction for debugging overlay sections.
2934
2935 The target model is as follows:
2936 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2937 same VMA, each with its own unique LMA (or load address).
c906108c 2938 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2939 sections, one by one, from the load address into the VMA address.
5417f6dc 2940 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2941 sections should be considered to be mapped from the VMA to the LMA.
2942 This information is used for symbol lookup, and memory read/write.
5417f6dc 2943 For instance, if a section has been mapped then its contents
c5aa993b 2944 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2945
2946 Two levels of debugger support for overlays are available. One is
2947 "manual", in which the debugger relies on the user to tell it which
2948 overlays are currently mapped. This level of support is
2949 implemented entirely in the core debugger, and the information about
2950 whether a section is mapped is kept in the objfile->obj_section table.
2951
2952 The second level of support is "automatic", and is only available if
2953 the target-specific code provides functionality to read the target's
2954 overlay mapping table, and translate its contents for the debugger
2955 (by updating the mapped state information in the obj_section tables).
2956
2957 The interface is as follows:
c5aa993b
JM
2958 User commands:
2959 overlay map <name> -- tell gdb to consider this section mapped
2960 overlay unmap <name> -- tell gdb to consider this section unmapped
2961 overlay list -- list the sections that GDB thinks are mapped
2962 overlay read-target -- get the target's state of what's mapped
2963 overlay off/manual/auto -- set overlay debugging state
2964 Functional interface:
2965 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2966 section, return that section.
5417f6dc 2967 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 2968 the pc, either in its VMA or its LMA
714835d5 2969 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
2970 section_is_overlay(sect): true if section's VMA != LMA
2971 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2972 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2973 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2974 overlay_mapped_address(...): map an address from section's LMA to VMA
2975 overlay_unmapped_address(...): map an address from section's VMA to LMA
2976 symbol_overlayed_address(...): Return a "current" address for symbol:
2977 either in VMA or LMA depending on whether
c378eb4e 2978 the symbol's section is currently mapped. */
c906108c
SS
2979
2980/* Overlay debugging state: */
2981
d874f1e2 2982enum overlay_debugging_state overlay_debugging = ovly_off;
c378eb4e 2983int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
c906108c 2984
c906108c 2985/* Function: section_is_overlay (SECTION)
5417f6dc 2986 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
2987 SECTION is loaded at an address different from where it will "run". */
2988
2989int
714835d5 2990section_is_overlay (struct obj_section *section)
c906108c 2991{
714835d5
UW
2992 if (overlay_debugging && section)
2993 {
2994 bfd *abfd = section->objfile->obfd;
2995 asection *bfd_section = section->the_bfd_section;
f888f159 2996
714835d5
UW
2997 if (bfd_section_lma (abfd, bfd_section) != 0
2998 && bfd_section_lma (abfd, bfd_section)
2999 != bfd_section_vma (abfd, bfd_section))
3000 return 1;
3001 }
c906108c
SS
3002
3003 return 0;
3004}
3005
3006/* Function: overlay_invalidate_all (void)
3007 Invalidate the mapped state of all overlay sections (mark it as stale). */
3008
3009static void
fba45db2 3010overlay_invalidate_all (void)
c906108c 3011{
c5aa993b 3012 struct objfile *objfile;
c906108c
SS
3013 struct obj_section *sect;
3014
3015 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
3016 if (section_is_overlay (sect))
3017 sect->ovly_mapped = -1;
c906108c
SS
3018}
3019
714835d5 3020/* Function: section_is_mapped (SECTION)
5417f6dc 3021 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3022
3023 Access to the ovly_mapped flag is restricted to this function, so
3024 that we can do automatic update. If the global flag
3025 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3026 overlay_invalidate_all. If the mapped state of the particular
3027 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3028
714835d5
UW
3029int
3030section_is_mapped (struct obj_section *osect)
c906108c 3031{
9216df95
UW
3032 struct gdbarch *gdbarch;
3033
714835d5 3034 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
3035 return 0;
3036
c5aa993b 3037 switch (overlay_debugging)
c906108c
SS
3038 {
3039 default:
d874f1e2 3040 case ovly_off:
c5aa993b 3041 return 0; /* overlay debugging off */
d874f1e2 3042 case ovly_auto: /* overlay debugging automatic */
1c772458 3043 /* Unles there is a gdbarch_overlay_update function,
c378eb4e 3044 there's really nothing useful to do here (can't really go auto). */
9216df95
UW
3045 gdbarch = get_objfile_arch (osect->objfile);
3046 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
3047 {
3048 if (overlay_cache_invalid)
3049 {
3050 overlay_invalidate_all ();
3051 overlay_cache_invalid = 0;
3052 }
3053 if (osect->ovly_mapped == -1)
9216df95 3054 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
3055 }
3056 /* fall thru to manual case */
d874f1e2 3057 case ovly_on: /* overlay debugging manual */
c906108c
SS
3058 return osect->ovly_mapped == 1;
3059 }
3060}
3061
c906108c
SS
3062/* Function: pc_in_unmapped_range
3063 If PC falls into the lma range of SECTION, return true, else false. */
3064
3065CORE_ADDR
714835d5 3066pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3067{
714835d5
UW
3068 if (section_is_overlay (section))
3069 {
3070 bfd *abfd = section->objfile->obfd;
3071 asection *bfd_section = section->the_bfd_section;
fbd35540 3072
714835d5
UW
3073 /* We assume the LMA is relocated by the same offset as the VMA. */
3074 bfd_vma size = bfd_get_section_size (bfd_section);
3075 CORE_ADDR offset = obj_section_offset (section);
3076
3077 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3078 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3079 return 1;
3080 }
c906108c 3081
c906108c
SS
3082 return 0;
3083}
3084
3085/* Function: pc_in_mapped_range
3086 If PC falls into the vma range of SECTION, return true, else false. */
3087
3088CORE_ADDR
714835d5 3089pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3090{
714835d5
UW
3091 if (section_is_overlay (section))
3092 {
3093 if (obj_section_addr (section) <= pc
3094 && pc < obj_section_endaddr (section))
3095 return 1;
3096 }
c906108c 3097
c906108c
SS
3098 return 0;
3099}
3100
9ec8e6a0
JB
3101
3102/* Return true if the mapped ranges of sections A and B overlap, false
3103 otherwise. */
b9362cc7 3104static int
714835d5 3105sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3106{
714835d5
UW
3107 CORE_ADDR a_start = obj_section_addr (a);
3108 CORE_ADDR a_end = obj_section_endaddr (a);
3109 CORE_ADDR b_start = obj_section_addr (b);
3110 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3111
3112 return (a_start < b_end && b_start < a_end);
3113}
3114
c906108c
SS
3115/* Function: overlay_unmapped_address (PC, SECTION)
3116 Returns the address corresponding to PC in the unmapped (load) range.
3117 May be the same as PC. */
3118
3119CORE_ADDR
714835d5 3120overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3121{
714835d5
UW
3122 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3123 {
3124 bfd *abfd = section->objfile->obfd;
3125 asection *bfd_section = section->the_bfd_section;
fbd35540 3126
714835d5
UW
3127 return pc + bfd_section_lma (abfd, bfd_section)
3128 - bfd_section_vma (abfd, bfd_section);
3129 }
c906108c
SS
3130
3131 return pc;
3132}
3133
3134/* Function: overlay_mapped_address (PC, SECTION)
3135 Returns the address corresponding to PC in the mapped (runtime) range.
3136 May be the same as PC. */
3137
3138CORE_ADDR
714835d5 3139overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3140{
714835d5
UW
3141 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3142 {
3143 bfd *abfd = section->objfile->obfd;
3144 asection *bfd_section = section->the_bfd_section;
fbd35540 3145
714835d5
UW
3146 return pc + bfd_section_vma (abfd, bfd_section)
3147 - bfd_section_lma (abfd, bfd_section);
3148 }
c906108c
SS
3149
3150 return pc;
3151}
3152
3153
5417f6dc 3154/* Function: symbol_overlayed_address
c906108c
SS
3155 Return one of two addresses (relative to the VMA or to the LMA),
3156 depending on whether the section is mapped or not. */
3157
c5aa993b 3158CORE_ADDR
714835d5 3159symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3160{
3161 if (overlay_debugging)
3162 {
c378eb4e 3163 /* If the symbol has no section, just return its regular address. */
c906108c
SS
3164 if (section == 0)
3165 return address;
c378eb4e
MS
3166 /* If the symbol's section is not an overlay, just return its
3167 address. */
c906108c
SS
3168 if (!section_is_overlay (section))
3169 return address;
c378eb4e 3170 /* If the symbol's section is mapped, just return its address. */
c906108c
SS
3171 if (section_is_mapped (section))
3172 return address;
3173 /*
3174 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3175 * then return its LOADED address rather than its vma address!!
3176 */
3177 return overlay_unmapped_address (address, section);
3178 }
3179 return address;
3180}
3181
5417f6dc 3182/* Function: find_pc_overlay (PC)
c906108c
SS
3183 Return the best-match overlay section for PC:
3184 If PC matches a mapped overlay section's VMA, return that section.
3185 Else if PC matches an unmapped section's VMA, return that section.
3186 Else if PC matches an unmapped section's LMA, return that section. */
3187
714835d5 3188struct obj_section *
fba45db2 3189find_pc_overlay (CORE_ADDR pc)
c906108c 3190{
c5aa993b 3191 struct objfile *objfile;
c906108c
SS
3192 struct obj_section *osect, *best_match = NULL;
3193
3194 if (overlay_debugging)
3195 ALL_OBJSECTIONS (objfile, osect)
714835d5 3196 if (section_is_overlay (osect))
c5aa993b 3197 {
714835d5 3198 if (pc_in_mapped_range (pc, osect))
c5aa993b 3199 {
714835d5
UW
3200 if (section_is_mapped (osect))
3201 return osect;
c5aa993b
JM
3202 else
3203 best_match = osect;
3204 }
714835d5 3205 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3206 best_match = osect;
3207 }
714835d5 3208 return best_match;
c906108c
SS
3209}
3210
3211/* Function: find_pc_mapped_section (PC)
5417f6dc 3212 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3213 currently marked as MAPPED, return that section. Else return NULL. */
3214
714835d5 3215struct obj_section *
fba45db2 3216find_pc_mapped_section (CORE_ADDR pc)
c906108c 3217{
c5aa993b 3218 struct objfile *objfile;
c906108c
SS
3219 struct obj_section *osect;
3220
3221 if (overlay_debugging)
3222 ALL_OBJSECTIONS (objfile, osect)
714835d5
UW
3223 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3224 return osect;
c906108c
SS
3225
3226 return NULL;
3227}
3228
3229/* Function: list_overlays_command
c378eb4e 3230 Print a list of mapped sections and their PC ranges. */
c906108c
SS
3231
3232void
fba45db2 3233list_overlays_command (char *args, int from_tty)
c906108c 3234{
c5aa993b
JM
3235 int nmapped = 0;
3236 struct objfile *objfile;
c906108c
SS
3237 struct obj_section *osect;
3238
3239 if (overlay_debugging)
3240 ALL_OBJSECTIONS (objfile, osect)
714835d5 3241 if (section_is_mapped (osect))
c5aa993b 3242 {
5af949e3 3243 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c5aa993b
JM
3244 const char *name;
3245 bfd_vma lma, vma;
3246 int size;
3247
3248 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3249 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3250 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3251 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3252
3253 printf_filtered ("Section %s, loaded at ", name);
5af949e3 3254 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
c5aa993b 3255 puts_filtered (" - ");
5af949e3 3256 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
c5aa993b 3257 printf_filtered (", mapped at ");
5af949e3 3258 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
c5aa993b 3259 puts_filtered (" - ");
5af949e3 3260 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
c5aa993b
JM
3261 puts_filtered ("\n");
3262
3263 nmapped++;
3264 }
c906108c 3265 if (nmapped == 0)
a3f17187 3266 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3267}
3268
3269/* Function: map_overlay_command
3270 Mark the named section as mapped (ie. residing at its VMA address). */
3271
3272void
fba45db2 3273map_overlay_command (char *args, int from_tty)
c906108c 3274{
c5aa993b
JM
3275 struct objfile *objfile, *objfile2;
3276 struct obj_section *sec, *sec2;
c906108c
SS
3277
3278 if (!overlay_debugging)
3e43a32a
MS
3279 error (_("Overlay debugging not enabled. Use "
3280 "either the 'overlay auto' or\n"
3281 "the 'overlay manual' command."));
c906108c
SS
3282
3283 if (args == 0 || *args == 0)
8a3fe4f8 3284 error (_("Argument required: name of an overlay section"));
c906108c 3285
c378eb4e 3286 /* First, find a section matching the user supplied argument. */
c906108c
SS
3287 ALL_OBJSECTIONS (objfile, sec)
3288 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b 3289 {
c378eb4e 3290 /* Now, check to see if the section is an overlay. */
714835d5 3291 if (!section_is_overlay (sec))
c5aa993b
JM
3292 continue; /* not an overlay section */
3293
c378eb4e 3294 /* Mark the overlay as "mapped". */
c5aa993b
JM
3295 sec->ovly_mapped = 1;
3296
3297 /* Next, make a pass and unmap any sections that are
3298 overlapped by this new section: */
3299 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3300 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3301 {
3302 if (info_verbose)
a3f17187 3303 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3304 bfd_section_name (objfile->obfd,
3305 sec2->the_bfd_section));
c378eb4e 3306 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
c5aa993b
JM
3307 }
3308 return;
3309 }
8a3fe4f8 3310 error (_("No overlay section called %s"), args);
c906108c
SS
3311}
3312
3313/* Function: unmap_overlay_command
5417f6dc 3314 Mark the overlay section as unmapped
c906108c
SS
3315 (ie. resident in its LMA address range, rather than the VMA range). */
3316
3317void
fba45db2 3318unmap_overlay_command (char *args, int from_tty)
c906108c 3319{
c5aa993b 3320 struct objfile *objfile;
c906108c
SS
3321 struct obj_section *sec;
3322
3323 if (!overlay_debugging)
3e43a32a
MS
3324 error (_("Overlay debugging not enabled. "
3325 "Use either the 'overlay auto' or\n"
3326 "the 'overlay manual' command."));
c906108c
SS
3327
3328 if (args == 0 || *args == 0)
8a3fe4f8 3329 error (_("Argument required: name of an overlay section"));
c906108c 3330
c378eb4e 3331 /* First, find a section matching the user supplied argument. */
c906108c
SS
3332 ALL_OBJSECTIONS (objfile, sec)
3333 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3334 {
3335 if (!sec->ovly_mapped)
8a3fe4f8 3336 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3337 sec->ovly_mapped = 0;
3338 return;
3339 }
8a3fe4f8 3340 error (_("No overlay section called %s"), args);
c906108c
SS
3341}
3342
3343/* Function: overlay_auto_command
3344 A utility command to turn on overlay debugging.
c378eb4e 3345 Possibly this should be done via a set/show command. */
c906108c
SS
3346
3347static void
fba45db2 3348overlay_auto_command (char *args, int from_tty)
c906108c 3349{
d874f1e2 3350 overlay_debugging = ovly_auto;
1900040c 3351 enable_overlay_breakpoints ();
c906108c 3352 if (info_verbose)
a3f17187 3353 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3354}
3355
3356/* Function: overlay_manual_command
3357 A utility command to turn on overlay debugging.
c378eb4e 3358 Possibly this should be done via a set/show command. */
c906108c
SS
3359
3360static void
fba45db2 3361overlay_manual_command (char *args, int from_tty)
c906108c 3362{
d874f1e2 3363 overlay_debugging = ovly_on;
1900040c 3364 disable_overlay_breakpoints ();
c906108c 3365 if (info_verbose)
a3f17187 3366 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3367}
3368
3369/* Function: overlay_off_command
3370 A utility command to turn on overlay debugging.
c378eb4e 3371 Possibly this should be done via a set/show command. */
c906108c
SS
3372
3373static void
fba45db2 3374overlay_off_command (char *args, int from_tty)
c906108c 3375{
d874f1e2 3376 overlay_debugging = ovly_off;
1900040c 3377 disable_overlay_breakpoints ();
c906108c 3378 if (info_verbose)
a3f17187 3379 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3380}
3381
3382static void
fba45db2 3383overlay_load_command (char *args, int from_tty)
c906108c 3384{
e17c207e
UW
3385 struct gdbarch *gdbarch = get_current_arch ();
3386
3387 if (gdbarch_overlay_update_p (gdbarch))
3388 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3389 else
8a3fe4f8 3390 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3391}
3392
3393/* Function: overlay_command
c378eb4e 3394 A place-holder for a mis-typed command. */
c906108c 3395
c378eb4e 3396/* Command list chain containing all defined "overlay" subcommands. */
c906108c
SS
3397struct cmd_list_element *overlaylist;
3398
3399static void
fba45db2 3400overlay_command (char *args, int from_tty)
c906108c 3401{
c5aa993b 3402 printf_unfiltered
c906108c
SS
3403 ("\"overlay\" must be followed by the name of an overlay command.\n");
3404 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3405}
3406
3407
3408/* Target Overlays for the "Simplest" overlay manager:
3409
5417f6dc
RM
3410 This is GDB's default target overlay layer. It works with the
3411 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3412 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3413 so targets that use a different runtime overlay manager can
c906108c
SS
3414 substitute their own overlay_update function and take over the
3415 function pointer.
3416
3417 The overlay_update function pokes around in the target's data structures
3418 to see what overlays are mapped, and updates GDB's overlay mapping with
3419 this information.
3420
3421 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3422 unsigned _novlys; /# number of overlay sections #/
3423 unsigned _ovly_table[_novlys][4] = {
3424 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3425 {..., ..., ..., ...},
3426 }
3427 unsigned _novly_regions; /# number of overlay regions #/
3428 unsigned _ovly_region_table[_novly_regions][3] = {
3429 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3430 {..., ..., ...},
3431 }
c906108c
SS
3432 These functions will attempt to update GDB's mappedness state in the
3433 symbol section table, based on the target's mappedness state.
3434
3435 To do this, we keep a cached copy of the target's _ovly_table, and
3436 attempt to detect when the cached copy is invalidated. The main
3437 entry point is "simple_overlay_update(SECT), which looks up SECT in
3438 the cached table and re-reads only the entry for that section from
c378eb4e 3439 the target (whenever possible). */
c906108c
SS
3440
3441/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3442static unsigned (*cache_ovly_table)[4] = 0;
c5aa993b 3443static unsigned cache_novlys = 0;
c906108c 3444static CORE_ADDR cache_ovly_table_base = 0;
c5aa993b
JM
3445enum ovly_index
3446 {
3447 VMA, SIZE, LMA, MAPPED
3448 };
c906108c 3449
c378eb4e 3450/* Throw away the cached copy of _ovly_table. */
c906108c 3451static void
fba45db2 3452simple_free_overlay_table (void)
c906108c
SS
3453{
3454 if (cache_ovly_table)
b8c9b27d 3455 xfree (cache_ovly_table);
c5aa993b 3456 cache_novlys = 0;
c906108c
SS
3457 cache_ovly_table = NULL;
3458 cache_ovly_table_base = 0;
3459}
3460
9216df95 3461/* Read an array of ints of size SIZE from the target into a local buffer.
c378eb4e 3462 Convert to host order. int LEN is number of ints. */
c906108c 3463static void
9216df95 3464read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3465 int len, int size, enum bfd_endian byte_order)
c906108c 3466{
c378eb4e 3467 /* FIXME (alloca): Not safe if array is very large. */
9216df95 3468 gdb_byte *buf = alloca (len * size);
c5aa993b 3469 int i;
c906108c 3470
9216df95 3471 read_memory (memaddr, buf, len * size);
c906108c 3472 for (i = 0; i < len; i++)
e17a4113 3473 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3474}
3475
3476/* Find and grab a copy of the target _ovly_table
c378eb4e 3477 (and _novlys, which is needed for the table's size). */
c5aa993b 3478static int
fba45db2 3479simple_read_overlay_table (void)
c906108c 3480{
0d43edd1 3481 struct minimal_symbol *novlys_msym, *ovly_table_msym;
9216df95
UW
3482 struct gdbarch *gdbarch;
3483 int word_size;
e17a4113 3484 enum bfd_endian byte_order;
c906108c
SS
3485
3486 simple_free_overlay_table ();
9b27852e 3487 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3488 if (! novlys_msym)
c906108c 3489 {
8a3fe4f8 3490 error (_("Error reading inferior's overlay table: "
0d43edd1 3491 "couldn't find `_novlys' variable\n"
8a3fe4f8 3492 "in inferior. Use `overlay manual' mode."));
0d43edd1 3493 return 0;
c906108c 3494 }
0d43edd1 3495
9b27852e 3496 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3497 if (! ovly_table_msym)
3498 {
8a3fe4f8 3499 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3500 "`_ovly_table' array\n"
8a3fe4f8 3501 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3502 return 0;
3503 }
3504
9216df95
UW
3505 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3506 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3507 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3508
e17a4113
UW
3509 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3510 4, byte_order);
0d43edd1
JB
3511 cache_ovly_table
3512 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3513 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3514 read_target_long_array (cache_ovly_table_base,
777ea8f1 3515 (unsigned int *) cache_ovly_table,
e17a4113 3516 cache_novlys * 4, word_size, byte_order);
0d43edd1 3517
c5aa993b 3518 return 1; /* SUCCESS */
c906108c
SS
3519}
3520
5417f6dc 3521/* Function: simple_overlay_update_1
c906108c
SS
3522 A helper function for simple_overlay_update. Assuming a cached copy
3523 of _ovly_table exists, look through it to find an entry whose vma,
3524 lma and size match those of OSECT. Re-read the entry and make sure
3525 it still matches OSECT (else the table may no longer be valid).
3526 Set OSECT's mapped state to match the entry. Return: 1 for
3527 success, 0 for failure. */
3528
3529static int
fba45db2 3530simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3531{
3532 int i, size;
fbd35540
MS
3533 bfd *obfd = osect->objfile->obfd;
3534 asection *bsect = osect->the_bfd_section;
9216df95
UW
3535 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3536 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3537 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3538
2c500098 3539 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3540 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3541 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3542 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3543 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c 3544 {
9216df95
UW
3545 read_target_long_array (cache_ovly_table_base + i * word_size,
3546 (unsigned int *) cache_ovly_table[i],
e17a4113 3547 4, word_size, byte_order);
fbd35540
MS
3548 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3549 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3550 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3551 {
3552 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3553 return 1;
3554 }
c378eb4e 3555 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3556 return 0;
3557 }
3558 return 0;
3559}
3560
3561/* Function: simple_overlay_update
5417f6dc
RM
3562 If OSECT is NULL, then update all sections' mapped state
3563 (after re-reading the entire target _ovly_table).
3564 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3565 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3566 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3567 re-read the entire cache, and go ahead and update all sections. */
3568
1c772458 3569void
fba45db2 3570simple_overlay_update (struct obj_section *osect)
c906108c 3571{
c5aa993b 3572 struct objfile *objfile;
c906108c 3573
c378eb4e 3574 /* Were we given an osect to look up? NULL means do all of them. */
c906108c 3575 if (osect)
c378eb4e 3576 /* Have we got a cached copy of the target's overlay table? */
c906108c 3577 if (cache_ovly_table != NULL)
9cc89665
MS
3578 {
3579 /* Does its cached location match what's currently in the
3580 symtab? */
3581 struct minimal_symbol *minsym
3582 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3583
3584 if (minsym == NULL)
3585 error (_("Error reading inferior's overlay table: couldn't "
3586 "find `_ovly_table' array\n"
3587 "in inferior. Use `overlay manual' mode."));
3588
3589 if (cache_ovly_table_base == SYMBOL_VALUE_ADDRESS (minsym))
3590 /* Then go ahead and try to look up this single section in
3591 the cache. */
3592 if (simple_overlay_update_1 (osect))
3593 /* Found it! We're done. */
3594 return;
3595 }
c906108c
SS
3596
3597 /* Cached table no good: need to read the entire table anew.
3598 Or else we want all the sections, in which case it's actually
3599 more efficient to read the whole table in one block anyway. */
3600
0d43edd1
JB
3601 if (! simple_read_overlay_table ())
3602 return;
3603
c378eb4e 3604 /* Now may as well update all sections, even if only one was requested. */
c906108c 3605 ALL_OBJSECTIONS (objfile, osect)
714835d5 3606 if (section_is_overlay (osect))
c5aa993b
JM
3607 {
3608 int i, size;
fbd35540
MS
3609 bfd *obfd = osect->objfile->obfd;
3610 asection *bsect = osect->the_bfd_section;
c5aa993b 3611
2c500098 3612 size = bfd_get_section_size (bsect);
c5aa993b 3613 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3614 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3615 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3616 /* && cache_ovly_table[i][SIZE] == size */ )
c378eb4e 3617 { /* obj_section matches i'th entry in ovly_table. */
c5aa993b 3618 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
c378eb4e 3619 break; /* finished with inner for loop: break out. */
c5aa993b
JM
3620 }
3621 }
c906108c
SS
3622}
3623
086df311
DJ
3624/* Set the output sections and output offsets for section SECTP in
3625 ABFD. The relocation code in BFD will read these offsets, so we
3626 need to be sure they're initialized. We map each section to itself,
3627 with no offset; this means that SECTP->vma will be honored. */
3628
3629static void
3630symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3631{
3632 sectp->output_section = sectp;
3633 sectp->output_offset = 0;
3634}
3635
ac8035ab
TG
3636/* Default implementation for sym_relocate. */
3637
3638
3639bfd_byte *
3640default_symfile_relocate (struct objfile *objfile, asection *sectp,
3641 bfd_byte *buf)
3642{
3019eac3
DE
3643 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3644 DWO file. */
3645 bfd *abfd = sectp->owner;
ac8035ab
TG
3646
3647 /* We're only interested in sections with relocation
3648 information. */
3649 if ((sectp->flags & SEC_RELOC) == 0)
3650 return NULL;
3651
3652 /* We will handle section offsets properly elsewhere, so relocate as if
3653 all sections begin at 0. */
3654 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3655
3656 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3657}
3658
086df311
DJ
3659/* Relocate the contents of a debug section SECTP in ABFD. The
3660 contents are stored in BUF if it is non-NULL, or returned in a
3661 malloc'd buffer otherwise.
3662
3663 For some platforms and debug info formats, shared libraries contain
3664 relocations against the debug sections (particularly for DWARF-2;
3665 one affected platform is PowerPC GNU/Linux, although it depends on
3666 the version of the linker in use). Also, ELF object files naturally
3667 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3668 the relocations in order to get the locations of symbols correct.
3669 Another example that may require relocation processing, is the
3670 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3671 debug section. */
086df311
DJ
3672
3673bfd_byte *
ac8035ab
TG
3674symfile_relocate_debug_section (struct objfile *objfile,
3675 asection *sectp, bfd_byte *buf)
086df311 3676{
ac8035ab 3677 gdb_assert (objfile->sf->sym_relocate);
086df311 3678
ac8035ab 3679 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3680}
c906108c 3681
31d99776
DJ
3682struct symfile_segment_data *
3683get_symfile_segment_data (bfd *abfd)
3684{
00b5771c 3685 const struct sym_fns *sf = find_sym_fns (abfd);
31d99776
DJ
3686
3687 if (sf == NULL)
3688 return NULL;
3689
3690 return sf->sym_segments (abfd);
3691}
3692
3693void
3694free_symfile_segment_data (struct symfile_segment_data *data)
3695{
3696 xfree (data->segment_bases);
3697 xfree (data->segment_sizes);
3698 xfree (data->segment_info);
3699 xfree (data);
3700}
3701
28c32713
JB
3702
3703/* Given:
3704 - DATA, containing segment addresses from the object file ABFD, and
3705 the mapping from ABFD's sections onto the segments that own them,
3706 and
3707 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3708 segment addresses reported by the target,
3709 store the appropriate offsets for each section in OFFSETS.
3710
3711 If there are fewer entries in SEGMENT_BASES than there are segments
3712 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3713
8d385431
DJ
3714 If there are more entries, then ignore the extra. The target may
3715 not be able to distinguish between an empty data segment and a
3716 missing data segment; a missing text segment is less plausible. */
31d99776
DJ
3717int
3718symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3719 struct section_offsets *offsets,
3720 int num_segment_bases,
3721 const CORE_ADDR *segment_bases)
3722{
3723 int i;
3724 asection *sect;
3725
28c32713
JB
3726 /* It doesn't make sense to call this function unless you have some
3727 segment base addresses. */
202b96c1 3728 gdb_assert (num_segment_bases > 0);
28c32713 3729
31d99776
DJ
3730 /* If we do not have segment mappings for the object file, we
3731 can not relocate it by segments. */
3732 gdb_assert (data != NULL);
3733 gdb_assert (data->num_segments > 0);
3734
31d99776
DJ
3735 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3736 {
31d99776
DJ
3737 int which = data->segment_info[i];
3738
28c32713
JB
3739 gdb_assert (0 <= which && which <= data->num_segments);
3740
3741 /* Don't bother computing offsets for sections that aren't
3742 loaded as part of any segment. */
3743 if (! which)
3744 continue;
3745
3746 /* Use the last SEGMENT_BASES entry as the address of any extra
3747 segments mentioned in DATA->segment_info. */
31d99776 3748 if (which > num_segment_bases)
28c32713 3749 which = num_segment_bases;
31d99776 3750
28c32713
JB
3751 offsets->offsets[i] = (segment_bases[which - 1]
3752 - data->segment_bases[which - 1]);
31d99776
DJ
3753 }
3754
3755 return 1;
3756}
3757
3758static void
3759symfile_find_segment_sections (struct objfile *objfile)
3760{
3761 bfd *abfd = objfile->obfd;
3762 int i;
3763 asection *sect;
3764 struct symfile_segment_data *data;
3765
3766 data = get_symfile_segment_data (objfile->obfd);
3767 if (data == NULL)
3768 return;
3769
3770 if (data->num_segments != 1 && data->num_segments != 2)
3771 {
3772 free_symfile_segment_data (data);
3773 return;
3774 }
3775
3776 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3777 {
31d99776
DJ
3778 int which = data->segment_info[i];
3779
3780 if (which == 1)
3781 {
3782 if (objfile->sect_index_text == -1)
3783 objfile->sect_index_text = sect->index;
3784
3785 if (objfile->sect_index_rodata == -1)
3786 objfile->sect_index_rodata = sect->index;
3787 }
3788 else if (which == 2)
3789 {
3790 if (objfile->sect_index_data == -1)
3791 objfile->sect_index_data = sect->index;
3792
3793 if (objfile->sect_index_bss == -1)
3794 objfile->sect_index_bss = sect->index;
3795 }
3796 }
3797
3798 free_symfile_segment_data (data);
3799}
3800
c906108c 3801void
fba45db2 3802_initialize_symfile (void)
c906108c
SS
3803{
3804 struct cmd_list_element *c;
c5aa993b 3805
1a966eab
AC
3806 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3807Load symbol table from executable file FILE.\n\
c906108c 3808The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3809to execute."), &cmdlist);
5ba2abeb 3810 set_cmd_completer (c, filename_completer);
c906108c 3811
1a966eab 3812 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3813Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3e43a32a
MS
3814Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3815 ...]\nADDR is the starting address of the file's text.\n\
db162d44
EZ
3816The optional arguments are section-name section-address pairs and\n\
3817should be specified if the data and bss segments are not contiguous\n\
1a966eab 3818with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3819 &cmdlist);
5ba2abeb 3820 set_cmd_completer (c, filename_completer);
c906108c 3821
1a966eab
AC
3822 c = add_cmd ("load", class_files, load_command, _("\
3823Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
3824for access from GDB.\n\
3825A load OFFSET may also be given."), &cmdlist);
5ba2abeb 3826 set_cmd_completer (c, filename_completer);
c906108c 3827
c5aa993b 3828 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3829 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3830 "overlay ", 0, &cmdlist);
3831
3832 add_com_alias ("ovly", "overlay", class_alias, 1);
3833 add_com_alias ("ov", "overlay", class_alias, 1);
3834
c5aa993b 3835 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3836 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3837
c5aa993b 3838 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3839 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3840
c5aa993b 3841 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3842 _("List mappings of overlay sections."), &overlaylist);
c906108c 3843
c5aa993b 3844 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3845 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3846 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3847 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3848 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3849 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3850 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3851 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3852
3853 /* Filename extension to source language lookup table: */
3854 init_filename_language_table ();
26c41df3
AC
3855 add_setshow_string_noescape_cmd ("extension-language", class_files,
3856 &ext_args, _("\
3857Set mapping between filename extension and source language."), _("\
3858Show mapping between filename extension and source language."), _("\
3859Usage: set extension-language .foo bar"),
3860 set_ext_lang_command,
920d2a44 3861 show_ext_args,
26c41df3 3862 &setlist, &showlist);
c906108c 3863
c5aa993b 3864 add_info ("extensions", info_ext_lang_command,
1bedd215 3865 _("All filename extensions associated with a source language."));
917317f4 3866
525226b5
AC
3867 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3868 &debug_file_directory, _("\
24ddea62
JK
3869Set the directories where separate debug symbols are searched for."), _("\
3870Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
3871Separate debug symbols are first searched for in the same\n\
3872directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3873and lastly at the path of the directory of the binary with\n\
24ddea62 3874each global debug-file-directory component prepended."),
525226b5 3875 NULL,
920d2a44 3876 show_debug_file_directory,
525226b5 3877 &setlist, &showlist);
c906108c 3878}
This page took 1.738844 seconds and 4 git commands to generate.