2010-09-30 Ali Lakhia <lakhia@alumni.utexas.net>
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
6aba47ca 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4c38e0a4 4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
777ea8f1 5 Free Software Foundation, Inc.
8926118c 6
c906108c
SS
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
a9762ec7 13 the Free Software Foundation; either version 3 of the License, or
c5aa993b 14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b 21 You should have received a copy of the GNU General Public License
a9762ec7 22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
23
24#include "defs.h"
e17c207e 25#include "arch-utils.h"
086df311 26#include "bfdlink.h"
c906108c
SS
27#include "symtab.h"
28#include "gdbtypes.h"
29#include "gdbcore.h"
30#include "frame.h"
31#include "target.h"
32#include "value.h"
33#include "symfile.h"
34#include "objfiles.h"
0378c332 35#include "source.h"
c906108c
SS
36#include "gdbcmd.h"
37#include "breakpoint.h"
38#include "language.h"
39#include "complaints.h"
40#include "demangle.h"
fb14de7b
UW
41#include "inferior.h"
42#include "regcache.h"
5b5d99cf 43#include "filenames.h" /* for DOSish file names */
c906108c 44#include "gdb-stabs.h"
04ea0df1 45#include "gdb_obstack.h"
d75b5104 46#include "completer.h"
af5f3db6 47#include "bcache.h"
2de7ced7 48#include "hashtab.h"
dbda9972 49#include "readline/readline.h"
7e8580c1 50#include "gdb_assert.h"
fe898f56 51#include "block.h"
ea53e89f 52#include "observer.h"
c1bd25fd 53#include "exec.h"
9bdcbae7 54#include "parser-defs.h"
8756216b 55#include "varobj.h"
77069918 56#include "elf-bfd.h"
e85a822c 57#include "solib.h"
f1838a98 58#include "remote.h"
c906108c 59
c906108c
SS
60#include <sys/types.h>
61#include <fcntl.h>
62#include "gdb_string.h"
63#include "gdb_stat.h"
64#include <ctype.h>
65#include <time.h>
2b71414d 66#include <sys/time.h>
c906108c 67
ccefe4c4 68#include "psymtab.h"
c906108c 69
9a4105ab
AC
70int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
71void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
72 unsigned long section_sent,
73 unsigned long section_size,
74 unsigned long total_sent,
c2d11a7d 75 unsigned long total_size);
769d7dc4
AC
76void (*deprecated_pre_add_symbol_hook) (const char *);
77void (*deprecated_post_add_symbol_hook) (void);
c906108c 78
74b7792f
AC
79static void clear_symtab_users_cleanup (void *ignore);
80
c906108c 81/* Global variables owned by this file */
c5aa993b 82int readnow_symbol_files; /* Read full symbols immediately */
c906108c 83
c906108c
SS
84/* External variables and functions referenced. */
85
a14ed312 86extern void report_transfer_performance (unsigned long, time_t, time_t);
c906108c
SS
87
88/* Functions this file defines */
89
90#if 0
a14ed312
KB
91static int simple_read_overlay_region_table (void);
92static void simple_free_overlay_region_table (void);
c906108c
SS
93#endif
94
a14ed312 95static void load_command (char *, int);
c906108c 96
d7db6da9
FN
97static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
98
a14ed312 99static void add_symbol_file_command (char *, int);
c906108c 100
a14ed312 101bfd *symfile_bfd_open (char *);
c906108c 102
0e931cf0
JB
103int get_section_index (struct objfile *, char *);
104
00b5771c 105static const struct sym_fns *find_sym_fns (bfd *);
c906108c 106
a14ed312 107static void decrement_reading_symtab (void *);
c906108c 108
a14ed312 109static void overlay_invalidate_all (void);
c906108c 110
a14ed312 111void list_overlays_command (char *, int);
c906108c 112
a14ed312 113void map_overlay_command (char *, int);
c906108c 114
a14ed312 115void unmap_overlay_command (char *, int);
c906108c 116
a14ed312 117static void overlay_auto_command (char *, int);
c906108c 118
a14ed312 119static void overlay_manual_command (char *, int);
c906108c 120
a14ed312 121static void overlay_off_command (char *, int);
c906108c 122
a14ed312 123static void overlay_load_command (char *, int);
c906108c 124
a14ed312 125static void overlay_command (char *, int);
c906108c 126
a14ed312 127static void simple_free_overlay_table (void);
c906108c 128
e17a4113
UW
129static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
130 enum bfd_endian);
c906108c 131
a14ed312 132static int simple_read_overlay_table (void);
c906108c 133
a14ed312 134static int simple_overlay_update_1 (struct obj_section *);
c906108c 135
a14ed312 136static void add_filename_language (char *ext, enum language lang);
392a587b 137
a14ed312 138static void info_ext_lang_command (char *args, int from_tty);
392a587b 139
a14ed312 140static void init_filename_language_table (void);
392a587b 141
31d99776
DJ
142static void symfile_find_segment_sections (struct objfile *objfile);
143
a14ed312 144void _initialize_symfile (void);
c906108c
SS
145
146/* List of all available sym_fns. On gdb startup, each object file reader
147 calls add_symtab_fns() to register information on each format it is
148 prepared to read. */
149
00b5771c
TT
150typedef const struct sym_fns *sym_fns_ptr;
151DEF_VEC_P (sym_fns_ptr);
152
153static VEC (sym_fns_ptr) *symtab_fns = NULL;
c906108c
SS
154
155/* Flag for whether user will be reloading symbols multiple times.
156 Defaults to ON for VxWorks, otherwise OFF. */
157
158#ifdef SYMBOL_RELOADING_DEFAULT
159int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
160#else
161int symbol_reloading = 0;
162#endif
920d2a44
AC
163static void
164show_symbol_reloading (struct ui_file *file, int from_tty,
165 struct cmd_list_element *c, const char *value)
166{
167 fprintf_filtered (file, _("\
168Dynamic symbol table reloading multiple times in one run is %s.\n"),
169 value);
170}
171
b7209cb4
FF
172/* If non-zero, shared library symbols will be added automatically
173 when the inferior is created, new libraries are loaded, or when
174 attaching to the inferior. This is almost always what users will
175 want to have happen; but for very large programs, the startup time
176 will be excessive, and so if this is a problem, the user can clear
177 this flag and then add the shared library symbols as needed. Note
178 that there is a potential for confusion, since if the shared
c906108c 179 library symbols are not loaded, commands like "info fun" will *not*
b7209cb4 180 report all the functions that are actually present. */
c906108c
SS
181
182int auto_solib_add = 1;
b7209cb4
FF
183
184/* For systems that support it, a threshold size in megabytes. If
185 automatically adding a new library's symbol table to those already
186 known to the debugger would cause the total shared library symbol
187 size to exceed this threshhold, then the shlib's symbols are not
188 added. The threshold is ignored if the user explicitly asks for a
189 shlib to be added, such as when using the "sharedlibrary"
190 command. */
191
192int auto_solib_limit;
c906108c 193\f
c5aa993b 194
c906108c
SS
195/* Make a null terminated copy of the string at PTR with SIZE characters in
196 the obstack pointed to by OBSTACKP . Returns the address of the copy.
197 Note that the string at PTR does not have to be null terminated, I.E. it
198 may be part of a larger string and we are only saving a substring. */
199
200char *
63ca651f 201obsavestring (const char *ptr, int size, struct obstack *obstackp)
c906108c 202{
52f0bd74 203 char *p = (char *) obstack_alloc (obstackp, size + 1);
c906108c
SS
204 /* Open-coded memcpy--saves function call time. These strings are usually
205 short. FIXME: Is this really still true with a compiler that can
206 inline memcpy? */
207 {
aa1ee363
AC
208 const char *p1 = ptr;
209 char *p2 = p;
63ca651f 210 const char *end = ptr + size;
433759f7 211
c906108c
SS
212 while (p1 != end)
213 *p2++ = *p1++;
214 }
215 p[size] = 0;
216 return p;
217}
218
48cb83fd
JK
219/* Concatenate NULL terminated variable argument list of `const char *' strings;
220 return the new string. Space is found in the OBSTACKP. Argument list must
221 be terminated by a sentinel expression `(char *) NULL'. */
c906108c
SS
222
223char *
48cb83fd 224obconcat (struct obstack *obstackp, ...)
c906108c 225{
48cb83fd
JK
226 va_list ap;
227
228 va_start (ap, obstackp);
229 for (;;)
230 {
231 const char *s = va_arg (ap, const char *);
232
233 if (s == NULL)
234 break;
235
236 obstack_grow_str (obstackp, s);
237 }
238 va_end (ap);
239 obstack_1grow (obstackp, 0);
240
241 return obstack_finish (obstackp);
c906108c
SS
242}
243
ccefe4c4 244/* True if we are reading a symbol table. */
c906108c
SS
245
246int currently_reading_symtab = 0;
247
248static void
fba45db2 249decrement_reading_symtab (void *dummy)
c906108c
SS
250{
251 currently_reading_symtab--;
252}
253
ccefe4c4
TT
254/* Increment currently_reading_symtab and return a cleanup that can be
255 used to decrement it. */
256struct cleanup *
257increment_reading_symtab (void)
c906108c 258{
ccefe4c4
TT
259 ++currently_reading_symtab;
260 return make_cleanup (decrement_reading_symtab, NULL);
c906108c
SS
261}
262
5417f6dc
RM
263/* Remember the lowest-addressed loadable section we've seen.
264 This function is called via bfd_map_over_sections.
c906108c
SS
265
266 In case of equal vmas, the section with the largest size becomes the
267 lowest-addressed loadable section.
268
269 If the vmas and sizes are equal, the last section is considered the
270 lowest-addressed loadable section. */
271
272void
4efb68b1 273find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 274{
c5aa993b 275 asection **lowest = (asection **) obj;
c906108c 276
eb73e134 277 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
278 return;
279 if (!*lowest)
280 *lowest = sect; /* First loadable section */
281 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
282 *lowest = sect; /* A lower loadable section */
283 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
284 && (bfd_section_size (abfd, (*lowest))
285 <= bfd_section_size (abfd, sect)))
286 *lowest = sect;
287}
288
a39a16c4
MM
289/* Create a new section_addr_info, with room for NUM_SECTIONS. */
290
291struct section_addr_info *
292alloc_section_addr_info (size_t num_sections)
293{
294 struct section_addr_info *sap;
295 size_t size;
296
297 size = (sizeof (struct section_addr_info)
298 + sizeof (struct other_sections) * (num_sections - 1));
299 sap = (struct section_addr_info *) xmalloc (size);
300 memset (sap, 0, size);
301 sap->num_sections = num_sections;
302
303 return sap;
304}
62557bbc
KB
305
306/* Build (allocate and populate) a section_addr_info struct from
307 an existing section table. */
308
309extern struct section_addr_info *
0542c86d
PA
310build_section_addr_info_from_section_table (const struct target_section *start,
311 const struct target_section *end)
62557bbc
KB
312{
313 struct section_addr_info *sap;
0542c86d 314 const struct target_section *stp;
62557bbc
KB
315 int oidx;
316
a39a16c4 317 sap = alloc_section_addr_info (end - start);
62557bbc
KB
318
319 for (stp = start, oidx = 0; stp != end; stp++)
320 {
5417f6dc 321 if (bfd_get_section_flags (stp->bfd,
fbd35540 322 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 323 && oidx < end - start)
62557bbc
KB
324 {
325 sap->other[oidx].addr = stp->addr;
5417f6dc 326 sap->other[oidx].name
fbd35540 327 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
62557bbc
KB
328 sap->other[oidx].sectindex = stp->the_bfd_section->index;
329 oidx++;
330 }
331 }
332
333 return sap;
334}
335
82ccf5a5 336/* Create a section_addr_info from section offsets in ABFD. */
089b4803 337
82ccf5a5
JK
338static struct section_addr_info *
339build_section_addr_info_from_bfd (bfd *abfd)
089b4803
TG
340{
341 struct section_addr_info *sap;
342 int i;
343 struct bfd_section *sec;
344
82ccf5a5
JK
345 sap = alloc_section_addr_info (bfd_count_sections (abfd));
346 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
347 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
012836ea 348 {
82ccf5a5
JK
349 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
350 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
012836ea
JK
351 sap->other[i].sectindex = sec->index;
352 i++;
353 }
089b4803
TG
354 return sap;
355}
356
82ccf5a5
JK
357/* Create a section_addr_info from section offsets in OBJFILE. */
358
359struct section_addr_info *
360build_section_addr_info_from_objfile (const struct objfile *objfile)
361{
362 struct section_addr_info *sap;
363 int i;
364
365 /* Before reread_symbols gets rewritten it is not safe to call:
366 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
367 */
368 sap = build_section_addr_info_from_bfd (objfile->obfd);
369 for (i = 0; i < sap->num_sections && sap->other[i].name; i++)
370 {
371 int sectindex = sap->other[i].sectindex;
372
373 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
374 }
375 return sap;
376}
62557bbc
KB
377
378/* Free all memory allocated by build_section_addr_info_from_section_table. */
379
380extern void
381free_section_addr_info (struct section_addr_info *sap)
382{
383 int idx;
384
a39a16c4 385 for (idx = 0; idx < sap->num_sections; idx++)
62557bbc 386 if (sap->other[idx].name)
b8c9b27d
KB
387 xfree (sap->other[idx].name);
388 xfree (sap);
62557bbc
KB
389}
390
391
e8289572
JB
392/* Initialize OBJFILE's sect_index_* members. */
393static void
394init_objfile_sect_indices (struct objfile *objfile)
c906108c 395{
e8289572 396 asection *sect;
c906108c 397 int i;
5417f6dc 398
b8fbeb18 399 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 400 if (sect)
b8fbeb18
EZ
401 objfile->sect_index_text = sect->index;
402
403 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 404 if (sect)
b8fbeb18
EZ
405 objfile->sect_index_data = sect->index;
406
407 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 408 if (sect)
b8fbeb18
EZ
409 objfile->sect_index_bss = sect->index;
410
411 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 412 if (sect)
b8fbeb18
EZ
413 objfile->sect_index_rodata = sect->index;
414
bbcd32ad
FF
415 /* This is where things get really weird... We MUST have valid
416 indices for the various sect_index_* members or gdb will abort.
417 So if for example, there is no ".text" section, we have to
31d99776
DJ
418 accomodate that. First, check for a file with the standard
419 one or two segments. */
420
421 symfile_find_segment_sections (objfile);
422
423 /* Except when explicitly adding symbol files at some address,
424 section_offsets contains nothing but zeros, so it doesn't matter
425 which slot in section_offsets the individual sect_index_* members
426 index into. So if they are all zero, it is safe to just point
427 all the currently uninitialized indices to the first slot. But
428 beware: if this is the main executable, it may be relocated
429 later, e.g. by the remote qOffsets packet, and then this will
430 be wrong! That's why we try segments first. */
bbcd32ad
FF
431
432 for (i = 0; i < objfile->num_sections; i++)
433 {
434 if (ANOFFSET (objfile->section_offsets, i) != 0)
435 {
436 break;
437 }
438 }
439 if (i == objfile->num_sections)
440 {
441 if (objfile->sect_index_text == -1)
442 objfile->sect_index_text = 0;
443 if (objfile->sect_index_data == -1)
444 objfile->sect_index_data = 0;
445 if (objfile->sect_index_bss == -1)
446 objfile->sect_index_bss = 0;
447 if (objfile->sect_index_rodata == -1)
448 objfile->sect_index_rodata = 0;
449 }
b8fbeb18 450}
c906108c 451
c1bd25fd
DJ
452/* The arguments to place_section. */
453
454struct place_section_arg
455{
456 struct section_offsets *offsets;
457 CORE_ADDR lowest;
458};
459
460/* Find a unique offset to use for loadable section SECT if
461 the user did not provide an offset. */
462
2c0b251b 463static void
c1bd25fd
DJ
464place_section (bfd *abfd, asection *sect, void *obj)
465{
466 struct place_section_arg *arg = obj;
467 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
468 int done;
3bd72c6f 469 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 470
2711e456
DJ
471 /* We are only interested in allocated sections. */
472 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
473 return;
474
475 /* If the user specified an offset, honor it. */
476 if (offsets[sect->index] != 0)
477 return;
478
479 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
480 start_addr = (arg->lowest + align - 1) & -align;
481
c1bd25fd
DJ
482 do {
483 asection *cur_sec;
c1bd25fd 484
c1bd25fd
DJ
485 done = 1;
486
487 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
488 {
489 int indx = cur_sec->index;
c1bd25fd
DJ
490
491 /* We don't need to compare against ourself. */
492 if (cur_sec == sect)
493 continue;
494
2711e456
DJ
495 /* We can only conflict with allocated sections. */
496 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
497 continue;
498
499 /* If the section offset is 0, either the section has not been placed
500 yet, or it was the lowest section placed (in which case LOWEST
501 will be past its end). */
502 if (offsets[indx] == 0)
503 continue;
504
505 /* If this section would overlap us, then we must move up. */
506 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
507 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
508 {
509 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
510 start_addr = (start_addr + align - 1) & -align;
511 done = 0;
3bd72c6f 512 break;
c1bd25fd
DJ
513 }
514
515 /* Otherwise, we appear to be OK. So far. */
516 }
517 }
518 while (!done);
519
520 offsets[sect->index] = start_addr;
521 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 522}
e8289572 523
75242ef4
JK
524/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
525 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
526 entries. */
e8289572
JB
527
528void
75242ef4
JK
529relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
530 int num_sections,
531 struct section_addr_info *addrs)
e8289572
JB
532{
533 int i;
534
75242ef4 535 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 536
75242ef4 537 /* Now calculate offsets for section that were specified by the caller. */
a39a16c4 538 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
e8289572 539 {
75242ef4 540 struct other_sections *osp;
e8289572 541
75242ef4 542 osp = &addrs->other[i];
e8289572
JB
543 if (osp->addr == 0)
544 continue;
545
546 /* Record all sections in offsets */
547 /* The section_offsets in the objfile are here filled in using
548 the BFD index. */
75242ef4
JK
549 section_offsets->offsets[osp->sectindex] = osp->addr;
550 }
551}
552
1276c759
JK
553/* Transform section name S for a name comparison. prelink can split section
554 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
555 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
556 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
557 (`.sbss') section has invalid (increased) virtual address. */
558
559static const char *
560addr_section_name (const char *s)
561{
562 if (strcmp (s, ".dynbss") == 0)
563 return ".bss";
564 if (strcmp (s, ".sdynbss") == 0)
565 return ".sbss";
566
567 return s;
568}
569
82ccf5a5
JK
570/* qsort comparator for addrs_section_sort. Sort entries in ascending order by
571 their (name, sectindex) pair. sectindex makes the sort by name stable. */
572
573static int
574addrs_section_compar (const void *ap, const void *bp)
575{
576 const struct other_sections *a = *((struct other_sections **) ap);
577 const struct other_sections *b = *((struct other_sections **) bp);
578 int retval, a_idx, b_idx;
579
1276c759 580 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
82ccf5a5
JK
581 if (retval)
582 return retval;
583
584 /* SECTINDEX is undefined iff ADDR is zero. */
585 a_idx = a->addr == 0 ? 0 : a->sectindex;
586 b_idx = b->addr == 0 ? 0 : b->sectindex;
587 return a_idx - b_idx;
588}
589
590/* Provide sorted array of pointers to sections of ADDRS. The array is
591 terminated by NULL. Caller is responsible to call xfree for it. */
592
593static struct other_sections **
594addrs_section_sort (struct section_addr_info *addrs)
595{
596 struct other_sections **array;
597 int i;
598
599 /* `+ 1' for the NULL terminator. */
600 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
601 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
602 array[i] = &addrs->other[i];
603 array[i] = NULL;
604
605 qsort (array, i, sizeof (*array), addrs_section_compar);
606
607 return array;
608}
609
75242ef4 610/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
611 also SECTINDEXes specific to ABFD there. This function can be used to
612 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
613
614void
615addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
616{
617 asection *lower_sect;
75242ef4
JK
618 CORE_ADDR lower_offset;
619 int i;
82ccf5a5
JK
620 struct cleanup *my_cleanup;
621 struct section_addr_info *abfd_addrs;
622 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
623 struct other_sections **addrs_to_abfd_addrs;
75242ef4
JK
624
625 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
626 continguous sections. */
627 lower_sect = NULL;
628 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
629 if (lower_sect == NULL)
630 {
631 warning (_("no loadable sections found in added symbol-file %s"),
632 bfd_get_filename (abfd));
633 lower_offset = 0;
e8289572 634 }
75242ef4
JK
635 else
636 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
637
82ccf5a5
JK
638 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
639 in ABFD. Section names are not unique - there can be multiple sections of
640 the same name. Also the sections of the same name do not have to be
641 adjacent to each other. Some sections may be present only in one of the
642 files. Even sections present in both files do not have to be in the same
643 order.
644
645 Use stable sort by name for the sections in both files. Then linearly
646 scan both lists matching as most of the entries as possible. */
647
648 addrs_sorted = addrs_section_sort (addrs);
649 my_cleanup = make_cleanup (xfree, addrs_sorted);
650
651 abfd_addrs = build_section_addr_info_from_bfd (abfd);
652 make_cleanup_free_section_addr_info (abfd_addrs);
653 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
654 make_cleanup (xfree, abfd_addrs_sorted);
655
656 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and ABFD_ADDRS_SORTED. */
657
658 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
659 * addrs->num_sections);
660 make_cleanup (xfree, addrs_to_abfd_addrs);
661
662 while (*addrs_sorted)
663 {
1276c759 664 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
82ccf5a5
JK
665
666 while (*abfd_addrs_sorted
1276c759
JK
667 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
668 sect_name) < 0)
82ccf5a5
JK
669 abfd_addrs_sorted++;
670
671 if (*abfd_addrs_sorted
1276c759
JK
672 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
673 sect_name) == 0)
82ccf5a5
JK
674 {
675 int index_in_addrs;
676
677 /* Make the found item directly addressable from ADDRS. */
678 index_in_addrs = *addrs_sorted - addrs->other;
679 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
680 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
681
682 /* Never use the same ABFD entry twice. */
683 abfd_addrs_sorted++;
684 }
685
686 addrs_sorted++;
687 }
688
75242ef4
JK
689 /* Calculate offsets for the loadable sections.
690 FIXME! Sections must be in order of increasing loadable section
691 so that contiguous sections can use the lower-offset!!!
692
693 Adjust offsets if the segments are not contiguous.
694 If the section is contiguous, its offset should be set to
695 the offset of the highest loadable section lower than it
696 (the loadable section directly below it in memory).
697 this_offset = lower_offset = lower_addr - lower_orig_addr */
698
699 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
700 {
82ccf5a5 701 struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
702
703 if (sect)
75242ef4 704 {
672d9c23 705 /* This is the index used by BFD. */
82ccf5a5 706 addrs->other[i].sectindex = sect->sectindex;
672d9c23
JK
707
708 if (addrs->other[i].addr != 0)
75242ef4 709 {
82ccf5a5 710 addrs->other[i].addr -= sect->addr;
75242ef4 711 lower_offset = addrs->other[i].addr;
75242ef4
JK
712 }
713 else
672d9c23 714 addrs->other[i].addr = lower_offset;
75242ef4
JK
715 }
716 else
672d9c23 717 {
1276c759
JK
718 /* addr_section_name transformation is not used for SECT_NAME. */
719 const char *sect_name = addrs->other[i].name;
720
b0fcb67f
JK
721 /* This section does not exist in ABFD, which is normally
722 unexpected and we want to issue a warning.
723
4d9743af
JK
724 However, the ELF prelinker does create a few sections which are
725 marked in the main executable as loadable (they are loaded in
726 memory from the DYNAMIC segment) and yet are not present in
727 separate debug info files. This is fine, and should not cause
728 a warning. Shared libraries contain just the section
729 ".gnu.liblist" but it is not marked as loadable there. There is
730 no other way to identify them than by their name as the sections
1276c759
JK
731 created by prelink have no special flags.
732
733 For the sections `.bss' and `.sbss' see addr_section_name. */
b0fcb67f
JK
734
735 if (!(strcmp (sect_name, ".gnu.liblist") == 0
4d9743af 736 || strcmp (sect_name, ".gnu.conflict") == 0
1276c759
JK
737 || (strcmp (sect_name, ".bss") == 0
738 && i > 0
739 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
740 && addrs_to_abfd_addrs[i - 1] != NULL)
741 || (strcmp (sect_name, ".sbss") == 0
742 && i > 0
743 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
744 && addrs_to_abfd_addrs[i - 1] != NULL)))
b0fcb67f
JK
745 warning (_("section %s not found in %s"), sect_name,
746 bfd_get_filename (abfd));
747
672d9c23
JK
748 addrs->other[i].addr = 0;
749
750 /* SECTINDEX is invalid if ADDR is zero. */
751 }
75242ef4 752 }
82ccf5a5
JK
753
754 do_cleanups (my_cleanup);
75242ef4
JK
755}
756
757/* Parse the user's idea of an offset for dynamic linking, into our idea
758 of how to represent it for fast symbol reading. This is the default
759 version of the sym_fns.sym_offsets function for symbol readers that
760 don't need to do anything special. It allocates a section_offsets table
761 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
762
763void
764default_symfile_offsets (struct objfile *objfile,
765 struct section_addr_info *addrs)
766{
767 objfile->num_sections = bfd_count_sections (objfile->obfd);
768 objfile->section_offsets = (struct section_offsets *)
769 obstack_alloc (&objfile->objfile_obstack,
770 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
771 relative_addr_info_to_section_offsets (objfile->section_offsets,
772 objfile->num_sections, addrs);
e8289572 773
c1bd25fd
DJ
774 /* For relocatable files, all loadable sections will start at zero.
775 The zero is meaningless, so try to pick arbitrary addresses such
776 that no loadable sections overlap. This algorithm is quadratic,
777 but the number of sections in a single object file is generally
778 small. */
779 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
780 {
781 struct place_section_arg arg;
2711e456
DJ
782 bfd *abfd = objfile->obfd;
783 asection *cur_sec;
2711e456
DJ
784
785 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
786 /* We do not expect this to happen; just skip this step if the
787 relocatable file has a section with an assigned VMA. */
788 if (bfd_section_vma (abfd, cur_sec) != 0)
789 break;
790
791 if (cur_sec == NULL)
792 {
793 CORE_ADDR *offsets = objfile->section_offsets->offsets;
794
795 /* Pick non-overlapping offsets for sections the user did not
796 place explicitly. */
797 arg.offsets = objfile->section_offsets;
798 arg.lowest = 0;
799 bfd_map_over_sections (objfile->obfd, place_section, &arg);
800
801 /* Correctly filling in the section offsets is not quite
802 enough. Relocatable files have two properties that
803 (most) shared objects do not:
804
805 - Their debug information will contain relocations. Some
806 shared libraries do also, but many do not, so this can not
807 be assumed.
808
809 - If there are multiple code sections they will be loaded
810 at different relative addresses in memory than they are
811 in the objfile, since all sections in the file will start
812 at address zero.
813
814 Because GDB has very limited ability to map from an
815 address in debug info to the correct code section,
816 it relies on adding SECT_OFF_TEXT to things which might be
817 code. If we clear all the section offsets, and set the
818 section VMAs instead, then symfile_relocate_debug_section
819 will return meaningful debug information pointing at the
820 correct sections.
821
822 GDB has too many different data structures for section
823 addresses - a bfd, objfile, and so_list all have section
824 tables, as does exec_ops. Some of these could probably
825 be eliminated. */
826
827 for (cur_sec = abfd->sections; cur_sec != NULL;
828 cur_sec = cur_sec->next)
829 {
830 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
831 continue;
832
833 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
30510692
DJ
834 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
835 offsets[cur_sec->index]);
2711e456
DJ
836 offsets[cur_sec->index] = 0;
837 }
838 }
c1bd25fd
DJ
839 }
840
e8289572
JB
841 /* Remember the bfd indexes for the .text, .data, .bss and
842 .rodata sections. */
843 init_objfile_sect_indices (objfile);
844}
845
846
31d99776
DJ
847/* Divide the file into segments, which are individual relocatable units.
848 This is the default version of the sym_fns.sym_segments function for
849 symbol readers that do not have an explicit representation of segments.
850 It assumes that object files do not have segments, and fully linked
851 files have a single segment. */
852
853struct symfile_segment_data *
854default_symfile_segments (bfd *abfd)
855{
856 int num_sections, i;
857 asection *sect;
858 struct symfile_segment_data *data;
859 CORE_ADDR low, high;
860
861 /* Relocatable files contain enough information to position each
862 loadable section independently; they should not be relocated
863 in segments. */
864 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
865 return NULL;
866
867 /* Make sure there is at least one loadable section in the file. */
868 for (sect = abfd->sections; sect != NULL; sect = sect->next)
869 {
870 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
871 continue;
872
873 break;
874 }
875 if (sect == NULL)
876 return NULL;
877
878 low = bfd_get_section_vma (abfd, sect);
879 high = low + bfd_get_section_size (sect);
880
881 data = XZALLOC (struct symfile_segment_data);
882 data->num_segments = 1;
883 data->segment_bases = XCALLOC (1, CORE_ADDR);
884 data->segment_sizes = XCALLOC (1, CORE_ADDR);
885
886 num_sections = bfd_count_sections (abfd);
887 data->segment_info = XCALLOC (num_sections, int);
888
889 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
890 {
891 CORE_ADDR vma;
892
893 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
894 continue;
895
896 vma = bfd_get_section_vma (abfd, sect);
897 if (vma < low)
898 low = vma;
899 if (vma + bfd_get_section_size (sect) > high)
900 high = vma + bfd_get_section_size (sect);
901
902 data->segment_info[i] = 1;
903 }
904
905 data->segment_bases[0] = low;
906 data->segment_sizes[0] = high - low;
907
908 return data;
909}
910
c906108c
SS
911/* Process a symbol file, as either the main file or as a dynamically
912 loaded file.
913
96baa820
JM
914 OBJFILE is where the symbols are to be read from.
915
7e8580c1
JB
916 ADDRS is the list of section load addresses. If the user has given
917 an 'add-symbol-file' command, then this is the list of offsets and
918 addresses he or she provided as arguments to the command; or, if
919 we're handling a shared library, these are the actual addresses the
920 sections are loaded at, according to the inferior's dynamic linker
921 (as gleaned by GDB's shared library code). We convert each address
922 into an offset from the section VMA's as it appears in the object
923 file, and then call the file's sym_offsets function to convert this
924 into a format-specific offset table --- a `struct section_offsets'.
925 If ADDRS is non-zero, OFFSETS must be zero.
926
927 OFFSETS is a table of section offsets already in the right
928 format-specific representation. NUM_OFFSETS is the number of
929 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
930 assume this is the proper table the call to sym_offsets described
931 above would produce. Instead of calling sym_offsets, we just dump
932 it right into objfile->section_offsets. (When we're re-reading
933 symbols from an objfile, we don't have the original load address
934 list any more; all we have is the section offset table.) If
935 OFFSETS is non-zero, ADDRS must be zero.
96baa820 936
7eedccfa
PP
937 ADD_FLAGS encodes verbosity level, whether this is main symbol or
938 an extra symbol file such as dynamically loaded code, and wether
939 breakpoint reset should be deferred. */
c906108c
SS
940
941void
7e8580c1
JB
942syms_from_objfile (struct objfile *objfile,
943 struct section_addr_info *addrs,
944 struct section_offsets *offsets,
945 int num_offsets,
7eedccfa 946 int add_flags)
c906108c 947{
a39a16c4 948 struct section_addr_info *local_addr = NULL;
c906108c 949 struct cleanup *old_chain;
7eedccfa 950 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 951
7e8580c1 952 gdb_assert (! (addrs && offsets));
2acceee2 953
c906108c 954 init_entry_point_info (objfile);
31d99776 955 objfile->sf = find_sym_fns (objfile->obfd);
c906108c 956
75245b24
MS
957 if (objfile->sf == NULL)
958 return; /* No symbols. */
959
c906108c
SS
960 /* Make sure that partially constructed symbol tables will be cleaned up
961 if an error occurs during symbol reading. */
74b7792f 962 old_chain = make_cleanup_free_objfile (objfile);
c906108c 963
a39a16c4
MM
964 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
965 list. We now establish the convention that an addr of zero means
966 no load address was specified. */
967 if (! addrs && ! offsets)
968 {
5417f6dc 969 local_addr
a39a16c4
MM
970 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
971 make_cleanup (xfree, local_addr);
972 addrs = local_addr;
973 }
974
975 /* Now either addrs or offsets is non-zero. */
976
c5aa993b 977 if (mainline)
c906108c
SS
978 {
979 /* We will modify the main symbol table, make sure that all its users
c5aa993b 980 will be cleaned up if an error occurs during symbol reading. */
74b7792f 981 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
982
983 /* Since no error yet, throw away the old symbol table. */
984
985 if (symfile_objfile != NULL)
986 {
987 free_objfile (symfile_objfile);
adb7f338 988 gdb_assert (symfile_objfile == NULL);
c906108c
SS
989 }
990
991 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
992 If the user wants to get rid of them, they should do "symbol-file"
993 without arguments first. Not sure this is the best behavior
994 (PR 2207). */
c906108c 995
c5aa993b 996 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
997 }
998
999 /* Convert addr into an offset rather than an absolute address.
1000 We find the lowest address of a loaded segment in the objfile,
53a5351d 1001 and assume that <addr> is where that got loaded.
c906108c 1002
53a5351d
JM
1003 We no longer warn if the lowest section is not a text segment (as
1004 happens for the PA64 port. */
0d15807d 1005 if (addrs && addrs->other[0].name)
75242ef4 1006 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
1007
1008 /* Initialize symbol reading routines for this objfile, allow complaints to
1009 appear for this new file, and record how verbose to be, then do the
1010 initial symbol reading for this file. */
1011
c5aa993b 1012 (*objfile->sf->sym_init) (objfile);
7eedccfa 1013 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 1014
7e8580c1
JB
1015 if (addrs)
1016 (*objfile->sf->sym_offsets) (objfile, addrs);
1017 else
1018 {
1019 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
1020
1021 /* Just copy in the offset table directly as given to us. */
1022 objfile->num_sections = num_offsets;
1023 objfile->section_offsets
1024 = ((struct section_offsets *)
8b92e4d5 1025 obstack_alloc (&objfile->objfile_obstack, size));
7e8580c1
JB
1026 memcpy (objfile->section_offsets, offsets, size);
1027
1028 init_objfile_sect_indices (objfile);
1029 }
c906108c 1030
f4352531 1031 (*objfile->sf->sym_read) (objfile, add_flags);
c906108c 1032
c906108c
SS
1033 /* Discard cleanups as symbol reading was successful. */
1034
1035 discard_cleanups (old_chain);
f7545552 1036 xfree (local_addr);
c906108c
SS
1037}
1038
1039/* Perform required actions after either reading in the initial
1040 symbols for a new objfile, or mapping in the symbols from a reusable
1041 objfile. */
c5aa993b 1042
c906108c 1043void
7eedccfa 1044new_symfile_objfile (struct objfile *objfile, int add_flags)
c906108c 1045{
c906108c
SS
1046 /* If this is the main symbol file we have to clean up all users of the
1047 old main symbol file. Otherwise it is sufficient to fixup all the
1048 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1049 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1050 {
1051 /* OK, make it the "real" symbol file. */
1052 symfile_objfile = objfile;
1053
1054 clear_symtab_users ();
1055 }
7eedccfa 1056 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1057 {
69de3c6a 1058 breakpoint_re_set ();
c906108c
SS
1059 }
1060
1061 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 1062 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
1063}
1064
1065/* Process a symbol file, as either the main file or as a dynamically
1066 loaded file.
1067
5417f6dc
RM
1068 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1069 This BFD will be closed on error, and is always consumed by this function.
7904e09f 1070
7eedccfa
PP
1071 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1072 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f
JB
1073
1074 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
7eedccfa
PP
1075 syms_from_objfile, above.
1076 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1077
c906108c
SS
1078 Upon success, returns a pointer to the objfile that was added.
1079 Upon failure, jumps back to command level (never returns). */
7eedccfa 1080
7904e09f 1081static struct objfile *
7eedccfa
PP
1082symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1083 int add_flags,
7904e09f
JB
1084 struct section_addr_info *addrs,
1085 struct section_offsets *offsets,
1086 int num_offsets,
7eedccfa 1087 int flags)
c906108c
SS
1088{
1089 struct objfile *objfile;
a39a16c4 1090 struct cleanup *my_cleanups;
5417f6dc 1091 const char *name = bfd_get_filename (abfd);
7eedccfa 1092 const int from_tty = add_flags & SYMFILE_VERBOSE;
c906108c 1093
9291a0cd
TT
1094 if (readnow_symbol_files)
1095 flags |= OBJF_READNOW;
1096
5417f6dc 1097 my_cleanups = make_cleanup_bfd_close (abfd);
c906108c 1098
5417f6dc
RM
1099 /* Give user a chance to burp if we'd be
1100 interactively wiping out any existing symbols. */
c906108c
SS
1101
1102 if ((have_full_symbols () || have_partial_symbols ())
7eedccfa 1103 && (add_flags & SYMFILE_MAINLINE)
c906108c 1104 && from_tty
9e2f0ad4 1105 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1106 error (_("Not confirmed."));
c906108c 1107
2df3850c 1108 objfile = allocate_objfile (abfd, flags);
5417f6dc 1109 discard_cleanups (my_cleanups);
c906108c 1110
78a4a9b9
AC
1111 /* We either created a new mapped symbol table, mapped an existing
1112 symbol table file which has not had initial symbol reading
1113 performed, or need to read an unmapped symbol table. */
1114 if (from_tty || info_verbose)
c906108c 1115 {
769d7dc4
AC
1116 if (deprecated_pre_add_symbol_hook)
1117 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1118 else
c906108c 1119 {
55333a84
DE
1120 printf_unfiltered (_("Reading symbols from %s..."), name);
1121 wrap_here ("");
1122 gdb_flush (gdb_stdout);
c906108c 1123 }
c906108c 1124 }
78a4a9b9 1125 syms_from_objfile (objfile, addrs, offsets, num_offsets,
7eedccfa 1126 add_flags);
c906108c
SS
1127
1128 /* We now have at least a partial symbol table. Check to see if the
1129 user requested that all symbols be read on initial access via either
1130 the gdb startup command line or on a per symbol file basis. Expand
1131 all partial symbol tables for this objfile if so. */
1132
9291a0cd 1133 if ((flags & OBJF_READNOW))
c906108c 1134 {
55333a84 1135 if (from_tty || info_verbose)
c906108c 1136 {
a3f17187 1137 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1138 wrap_here ("");
1139 gdb_flush (gdb_stdout);
1140 }
1141
ccefe4c4
TT
1142 if (objfile->sf)
1143 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1144 }
1145
55333a84 1146 if ((from_tty || info_verbose)
e361b228 1147 && !objfile_has_symbols (objfile))
cb3c37b2
JB
1148 {
1149 wrap_here ("");
55333a84 1150 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1151 wrap_here ("");
1152 }
1153
c906108c
SS
1154 if (from_tty || info_verbose)
1155 {
769d7dc4
AC
1156 if (deprecated_post_add_symbol_hook)
1157 deprecated_post_add_symbol_hook ();
c906108c 1158 else
55333a84 1159 printf_unfiltered (_("done.\n"));
c906108c
SS
1160 }
1161
481d0f41
JB
1162 /* We print some messages regardless of whether 'from_tty ||
1163 info_verbose' is true, so make sure they go out at the right
1164 time. */
1165 gdb_flush (gdb_stdout);
1166
a39a16c4
MM
1167 do_cleanups (my_cleanups);
1168
109f874e 1169 if (objfile->sf == NULL)
8caee43b
PP
1170 {
1171 observer_notify_new_objfile (objfile);
1172 return objfile; /* No symbols. */
1173 }
109f874e 1174
7eedccfa 1175 new_symfile_objfile (objfile, add_flags);
c906108c 1176
06d3b283 1177 observer_notify_new_objfile (objfile);
c906108c 1178
ce7d4522 1179 bfd_cache_close_all ();
c906108c
SS
1180 return (objfile);
1181}
1182
9cce227f
TG
1183/* Add BFD as a separate debug file for OBJFILE. */
1184
1185void
1186symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1187{
15d123c9 1188 struct objfile *new_objfile;
089b4803
TG
1189 struct section_addr_info *sap;
1190 struct cleanup *my_cleanup;
1191
1192 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1193 because sections of BFD may not match sections of OBJFILE and because
1194 vma may have been modified by tools such as prelink. */
1195 sap = build_section_addr_info_from_objfile (objfile);
1196 my_cleanup = make_cleanup_free_section_addr_info (sap);
9cce227f 1197
15d123c9 1198 new_objfile = symbol_file_add_with_addrs_or_offsets
9cce227f 1199 (bfd, symfile_flags,
089b4803 1200 sap, NULL, 0,
9cce227f
TG
1201 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1202 | OBJF_USERLOADED));
089b4803
TG
1203
1204 do_cleanups (my_cleanup);
9cce227f 1205
15d123c9 1206 add_separate_debug_objfile (new_objfile, objfile);
9cce227f 1207}
7904e09f 1208
eb4556d7
JB
1209/* Process the symbol file ABFD, as either the main file or as a
1210 dynamically loaded file.
1211
1212 See symbol_file_add_with_addrs_or_offsets's comments for
1213 details. */
1214struct objfile *
7eedccfa 1215symbol_file_add_from_bfd (bfd *abfd, int add_flags,
eb4556d7 1216 struct section_addr_info *addrs,
7eedccfa 1217 int flags)
eb4556d7 1218{
7eedccfa
PP
1219 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1220 flags);
eb4556d7
JB
1221}
1222
1223
7904e09f
JB
1224/* Process a symbol file, as either the main file or as a dynamically
1225 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1226 for details. */
1227struct objfile *
7eedccfa
PP
1228symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1229 int flags)
7904e09f 1230{
7eedccfa
PP
1231 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1232 flags);
7904e09f
JB
1233}
1234
1235
d7db6da9
FN
1236/* Call symbol_file_add() with default values and update whatever is
1237 affected by the loading of a new main().
1238 Used when the file is supplied in the gdb command line
1239 and by some targets with special loading requirements.
1240 The auxiliary function, symbol_file_add_main_1(), has the flags
1241 argument for the switches that can only be specified in the symbol_file
1242 command itself. */
5417f6dc 1243
1adeb98a
FN
1244void
1245symbol_file_add_main (char *args, int from_tty)
1246{
d7db6da9
FN
1247 symbol_file_add_main_1 (args, from_tty, 0);
1248}
1249
1250static void
1251symbol_file_add_main_1 (char *args, int from_tty, int flags)
1252{
7eedccfa
PP
1253 const int add_flags = SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0);
1254 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1255
d7db6da9
FN
1256 /* Getting new symbols may change our opinion about
1257 what is frameless. */
1258 reinit_frame_cache ();
1259
1260 set_initial_language ();
1adeb98a
FN
1261}
1262
1263void
1264symbol_file_clear (int from_tty)
1265{
1266 if ((have_full_symbols () || have_partial_symbols ())
1267 && from_tty
0430b0d6
AS
1268 && (symfile_objfile
1269 ? !query (_("Discard symbol table from `%s'? "),
1270 symfile_objfile->name)
1271 : !query (_("Discard symbol table? "))))
8a3fe4f8 1272 error (_("Not confirmed."));
1adeb98a 1273
0133421a
JK
1274 /* solib descriptors may have handles to objfiles. Wipe them before their
1275 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1276 no_shared_libraries (NULL, from_tty);
1277
0133421a
JK
1278 free_all_objfiles ();
1279
adb7f338 1280 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1281 if (from_tty)
1282 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1283}
1284
5b5d99cf
JB
1285static char *
1286get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1287{
1288 asection *sect;
1289 bfd_size_type debuglink_size;
1290 unsigned long crc32;
1291 char *contents;
1292 int crc_offset;
5417f6dc 1293
5b5d99cf
JB
1294 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1295
1296 if (sect == NULL)
1297 return NULL;
1298
1299 debuglink_size = bfd_section_size (objfile->obfd, sect);
5417f6dc 1300
5b5d99cf
JB
1301 contents = xmalloc (debuglink_size);
1302 bfd_get_section_contents (objfile->obfd, sect, contents,
1303 (file_ptr)0, (bfd_size_type)debuglink_size);
1304
1305 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1306 crc_offset = strlen (contents) + 1;
1307 crc_offset = (crc_offset + 3) & ~3;
1308
1309 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
5417f6dc 1310
5b5d99cf
JB
1311 *crc32_out = crc32;
1312 return contents;
1313}
1314
1315static int
287ccc17 1316separate_debug_file_exists (const char *name, unsigned long crc,
32a0e547 1317 struct objfile *parent_objfile)
5b5d99cf
JB
1318{
1319 unsigned long file_crc = 0;
f1838a98 1320 bfd *abfd;
777ea8f1 1321 gdb_byte buffer[8*1024];
5b5d99cf 1322 int count;
32a0e547
JK
1323 struct stat parent_stat, abfd_stat;
1324
1325 /* Find a separate debug info file as if symbols would be present in
1326 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1327 section can contain just the basename of PARENT_OBJFILE without any
1328 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1329 the separate debug infos with the same basename can exist. */
1330
1331 if (strcmp (name, parent_objfile->name) == 0)
1332 return 0;
5b5d99cf 1333
874f5765 1334 abfd = bfd_open_maybe_remote (name);
f1838a98
UW
1335
1336 if (!abfd)
5b5d99cf
JB
1337 return 0;
1338
32a0e547
JK
1339 /* Verify symlinks were not the cause of strcmp name difference above.
1340
1341 Some operating systems, e.g. Windows, do not provide a meaningful
1342 st_ino; they always set it to zero. (Windows does provide a
1343 meaningful st_dev.) Do not indicate a duplicate library in that
1344 case. While there is no guarantee that a system that provides
1345 meaningful inode numbers will never set st_ino to zero, this is
1346 merely an optimization, so we do not need to worry about false
1347 negatives. */
1348
1349 if (bfd_stat (abfd, &abfd_stat) == 0
1350 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0
1351 && abfd_stat.st_dev == parent_stat.st_dev
1352 && abfd_stat.st_ino == parent_stat.st_ino
1353 && abfd_stat.st_ino != 0)
1354 {
1355 bfd_close (abfd);
1356 return 0;
1357 }
1358
f1838a98 1359 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
5b5d99cf
JB
1360 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1361
f1838a98 1362 bfd_close (abfd);
5b5d99cf 1363
287ccc17
JK
1364 if (crc != file_crc)
1365 {
1366 warning (_("the debug information found in \"%s\""
1367 " does not match \"%s\" (CRC mismatch).\n"),
32a0e547 1368 name, parent_objfile->name);
287ccc17
JK
1369 return 0;
1370 }
1371
1372 return 1;
5b5d99cf
JB
1373}
1374
aa28a74e 1375char *debug_file_directory = NULL;
920d2a44
AC
1376static void
1377show_debug_file_directory (struct ui_file *file, int from_tty,
1378 struct cmd_list_element *c, const char *value)
1379{
1380 fprintf_filtered (file, _("\
1381The directory where separate debug symbols are searched for is \"%s\".\n"),
1382 value);
1383}
5b5d99cf
JB
1384
1385#if ! defined (DEBUG_SUBDIRECTORY)
1386#define DEBUG_SUBDIRECTORY ".debug"
1387#endif
1388
9cce227f
TG
1389char *
1390find_separate_debug_file_by_debuglink (struct objfile *objfile)
1391{
952a6d41 1392 char *basename, *debugdir;
9cce227f
TG
1393 char *dir = NULL;
1394 char *debugfile = NULL;
1395 char *canon_name = NULL;
9cce227f
TG
1396 unsigned long crc32;
1397 int i;
5b5d99cf
JB
1398
1399 basename = get_debug_link_info (objfile, &crc32);
1400
1401 if (basename == NULL)
287ccc17
JK
1402 /* There's no separate debug info, hence there's no way we could
1403 load it => no warning. */
25522fae 1404 goto cleanup_return_debugfile;
5417f6dc 1405
5b5d99cf
JB
1406 dir = xstrdup (objfile->name);
1407
fe36c4f4 1408 /* Strip off the final filename part, leaving the directory name,
569b05a5 1409 followed by a slash. The directory can be relative or absolute. */
5b5d99cf
JB
1410 for (i = strlen(dir) - 1; i >= 0; i--)
1411 {
1412 if (IS_DIR_SEPARATOR (dir[i]))
1413 break;
1414 }
569b05a5 1415 /* If I is -1 then no directory is present there and DIR will be "". */
5b5d99cf 1416 dir[i+1] = '\0';
5417f6dc 1417
1ffa32ee
JK
1418 /* Set I to max (strlen (canon_name), strlen (dir)). */
1419 canon_name = lrealpath (dir);
1420 i = strlen (dir);
1421 if (canon_name && strlen (canon_name) > i)
1422 i = strlen (canon_name);
1423
25522fae
JK
1424 debugfile = xmalloc (strlen (debug_file_directory) + 1
1425 + i
1426 + strlen (DEBUG_SUBDIRECTORY)
1427 + strlen ("/")
1428 + strlen (basename)
1429 + 1);
5b5d99cf
JB
1430
1431 /* First try in the same directory as the original file. */
1432 strcpy (debugfile, dir);
1433 strcat (debugfile, basename);
1434
32a0e547 1435 if (separate_debug_file_exists (debugfile, crc32, objfile))
25522fae 1436 goto cleanup_return_debugfile;
5417f6dc 1437
5b5d99cf
JB
1438 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1439 strcpy (debugfile, dir);
1440 strcat (debugfile, DEBUG_SUBDIRECTORY);
1441 strcat (debugfile, "/");
1442 strcat (debugfile, basename);
1443
32a0e547 1444 if (separate_debug_file_exists (debugfile, crc32, objfile))
25522fae 1445 goto cleanup_return_debugfile;
5417f6dc 1446
24ddea62
JK
1447 /* Then try in the global debugfile directories.
1448
1449 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1450 cause "/..." lookups. */
5417f6dc 1451
24ddea62
JK
1452 debugdir = debug_file_directory;
1453 do
aa28a74e 1454 {
24ddea62
JK
1455 char *debugdir_end;
1456
1457 while (*debugdir == DIRNAME_SEPARATOR)
1458 debugdir++;
1459
1460 debugdir_end = strchr (debugdir, DIRNAME_SEPARATOR);
1461 if (debugdir_end == NULL)
1462 debugdir_end = &debugdir[strlen (debugdir)];
1463
1464 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1465 debugfile[debugdir_end - debugdir] = 0;
aa28a74e 1466 strcat (debugfile, "/");
24ddea62 1467 strcat (debugfile, dir);
aa28a74e
DJ
1468 strcat (debugfile, basename);
1469
32a0e547 1470 if (separate_debug_file_exists (debugfile, crc32, objfile))
25522fae 1471 goto cleanup_return_debugfile;
24ddea62
JK
1472
1473 /* If the file is in the sysroot, try using its base path in the
1474 global debugfile directory. */
1475 if (canon_name
1476 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1477 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1478 {
1479 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1480 debugfile[debugdir_end - debugdir] = 0;
1481 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1482 strcat (debugfile, "/");
1483 strcat (debugfile, basename);
1484
32a0e547 1485 if (separate_debug_file_exists (debugfile, crc32, objfile))
24ddea62
JK
1486 goto cleanup_return_debugfile;
1487 }
1488
1489 debugdir = debugdir_end;
aa28a74e 1490 }
24ddea62 1491 while (*debugdir != 0);
aa28a74e 1492
25522fae
JK
1493 xfree (debugfile);
1494 debugfile = NULL;
aa28a74e 1495
25522fae
JK
1496cleanup_return_debugfile:
1497 xfree (canon_name);
5b5d99cf
JB
1498 xfree (basename);
1499 xfree (dir);
25522fae 1500 return debugfile;
5b5d99cf
JB
1501}
1502
1503
c906108c
SS
1504/* This is the symbol-file command. Read the file, analyze its
1505 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1506 the command is rather bizarre:
1507
1508 1. The function buildargv implements various quoting conventions
1509 which are undocumented and have little or nothing in common with
1510 the way things are quoted (or not quoted) elsewhere in GDB.
1511
1512 2. Options are used, which are not generally used in GDB (perhaps
1513 "set mapped on", "set readnow on" would be better)
1514
1515 3. The order of options matters, which is contrary to GNU
c906108c
SS
1516 conventions (because it is confusing and inconvenient). */
1517
1518void
fba45db2 1519symbol_file_command (char *args, int from_tty)
c906108c 1520{
c906108c
SS
1521 dont_repeat ();
1522
1523 if (args == NULL)
1524 {
1adeb98a 1525 symbol_file_clear (from_tty);
c906108c
SS
1526 }
1527 else
1528 {
d1a41061 1529 char **argv = gdb_buildargv (args);
cb2f3a29
MK
1530 int flags = OBJF_USERLOADED;
1531 struct cleanup *cleanups;
1532 char *name = NULL;
1533
7a292a7a 1534 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1535 while (*argv != NULL)
1536 {
78a4a9b9
AC
1537 if (strcmp (*argv, "-readnow") == 0)
1538 flags |= OBJF_READNOW;
1539 else if (**argv == '-')
8a3fe4f8 1540 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1541 else
1542 {
cb2f3a29 1543 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1544 name = *argv;
78a4a9b9 1545 }
cb2f3a29 1546
c906108c
SS
1547 argv++;
1548 }
1549
1550 if (name == NULL)
cb2f3a29
MK
1551 error (_("no symbol file name was specified"));
1552
c906108c
SS
1553 do_cleanups (cleanups);
1554 }
1555}
1556
1557/* Set the initial language.
1558
cb2f3a29
MK
1559 FIXME: A better solution would be to record the language in the
1560 psymtab when reading partial symbols, and then use it (if known) to
1561 set the language. This would be a win for formats that encode the
1562 language in an easily discoverable place, such as DWARF. For
1563 stabs, we can jump through hoops looking for specially named
1564 symbols or try to intuit the language from the specific type of
1565 stabs we find, but we can't do that until later when we read in
1566 full symbols. */
c906108c 1567
8b60591b 1568void
fba45db2 1569set_initial_language (void)
c906108c 1570{
dd786858 1571 const char *filename;
c5aa993b 1572 enum language lang = language_unknown;
c906108c 1573
ccefe4c4
TT
1574 filename = find_main_filename ();
1575 if (filename != NULL)
1576 lang = deduce_language_from_filename (filename);
cb2f3a29 1577
ccefe4c4
TT
1578 if (lang == language_unknown)
1579 {
1580 /* Make C the default language */
1581 lang = language_c;
c906108c 1582 }
ccefe4c4
TT
1583
1584 set_language (lang);
1585 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1586}
1587
874f5765
TG
1588/* If NAME is a remote name open the file using remote protocol, otherwise
1589 open it normally. */
1590
1591bfd *
1592bfd_open_maybe_remote (const char *name)
1593{
1594 if (remote_filename_p (name))
1595 return remote_bfd_open (name, gnutarget);
1596 else
1597 return bfd_openr (name, gnutarget);
1598}
1599
1600
cb2f3a29
MK
1601/* Open the file specified by NAME and hand it off to BFD for
1602 preliminary analysis. Return a newly initialized bfd *, which
1603 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1604 absolute). In case of trouble, error() is called. */
c906108c
SS
1605
1606bfd *
fba45db2 1607symfile_bfd_open (char *name)
c906108c
SS
1608{
1609 bfd *sym_bfd;
1610 int desc;
1611 char *absolute_name;
1612
f1838a98
UW
1613 if (remote_filename_p (name))
1614 {
1615 name = xstrdup (name);
1616 sym_bfd = remote_bfd_open (name, gnutarget);
1617 if (!sym_bfd)
1618 {
1619 make_cleanup (xfree, name);
1620 error (_("`%s': can't open to read symbols: %s."), name,
1621 bfd_errmsg (bfd_get_error ()));
1622 }
1623
1624 if (!bfd_check_format (sym_bfd, bfd_object))
1625 {
1626 bfd_close (sym_bfd);
1627 make_cleanup (xfree, name);
1628 error (_("`%s': can't read symbols: %s."), name,
1629 bfd_errmsg (bfd_get_error ()));
1630 }
1631
1632 return sym_bfd;
1633 }
1634
cb2f3a29 1635 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c
SS
1636
1637 /* Look down path for it, allocate 2nd new malloc'd copy. */
cb2f3a29 1638 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
fbdebf46 1639 O_RDONLY | O_BINARY, &absolute_name);
608506ed 1640#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1641 if (desc < 0)
1642 {
1643 char *exename = alloca (strlen (name) + 5);
433759f7 1644
c906108c 1645 strcat (strcpy (exename, name), ".exe");
014d698b 1646 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
fbdebf46 1647 O_RDONLY | O_BINARY, &absolute_name);
c906108c
SS
1648 }
1649#endif
1650 if (desc < 0)
1651 {
b8c9b27d 1652 make_cleanup (xfree, name);
c906108c
SS
1653 perror_with_name (name);
1654 }
cb2f3a29
MK
1655
1656 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1657 bfd. It'll be freed in free_objfile(). */
1658 xfree (name);
1659 name = absolute_name;
c906108c 1660
9f76c2cd 1661 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
c906108c
SS
1662 if (!sym_bfd)
1663 {
1664 close (desc);
b8c9b27d 1665 make_cleanup (xfree, name);
f1838a98 1666 error (_("`%s': can't open to read symbols: %s."), name,
c906108c
SS
1667 bfd_errmsg (bfd_get_error ()));
1668 }
549c1eea 1669 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1670
1671 if (!bfd_check_format (sym_bfd, bfd_object))
1672 {
cb2f3a29
MK
1673 /* FIXME: should be checking for errors from bfd_close (for one
1674 thing, on error it does not free all the storage associated
1675 with the bfd). */
1676 bfd_close (sym_bfd); /* This also closes desc. */
b8c9b27d 1677 make_cleanup (xfree, name);
f1838a98 1678 error (_("`%s': can't read symbols: %s."), name,
c906108c
SS
1679 bfd_errmsg (bfd_get_error ()));
1680 }
cb2f3a29 1681
4f6f9936
JK
1682 /* bfd_usrdata exists for applications and libbfd must not touch it. */
1683 gdb_assert (bfd_usrdata (sym_bfd) == NULL);
1684
cb2f3a29 1685 return sym_bfd;
c906108c
SS
1686}
1687
cb2f3a29
MK
1688/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1689 the section was not found. */
1690
0e931cf0
JB
1691int
1692get_section_index (struct objfile *objfile, char *section_name)
1693{
1694 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1695
0e931cf0
JB
1696 if (sect)
1697 return sect->index;
1698 else
1699 return -1;
1700}
1701
cb2f3a29
MK
1702/* Link SF into the global symtab_fns list. Called on startup by the
1703 _initialize routine in each object file format reader, to register
1704 information about each format the the reader is prepared to
1705 handle. */
c906108c
SS
1706
1707void
00b5771c 1708add_symtab_fns (const struct sym_fns *sf)
c906108c 1709{
00b5771c 1710 VEC_safe_push (sym_fns_ptr, symtab_fns, sf);
c906108c
SS
1711}
1712
cb2f3a29
MK
1713/* Initialize OBJFILE to read symbols from its associated BFD. It
1714 either returns or calls error(). The result is an initialized
1715 struct sym_fns in the objfile structure, that contains cached
1716 information about the symbol file. */
c906108c 1717
00b5771c 1718static const struct sym_fns *
31d99776 1719find_sym_fns (bfd *abfd)
c906108c 1720{
00b5771c 1721 const struct sym_fns *sf;
31d99776 1722 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
00b5771c 1723 int i;
c906108c 1724
75245b24
MS
1725 if (our_flavour == bfd_target_srec_flavour
1726 || our_flavour == bfd_target_ihex_flavour
1727 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1728 return NULL; /* No symbols. */
75245b24 1729
00b5771c 1730 for (i = 0; VEC_iterate (sym_fns_ptr, symtab_fns, i, sf); ++i)
31d99776
DJ
1731 if (our_flavour == sf->sym_flavour)
1732 return sf;
cb2f3a29 1733
8a3fe4f8 1734 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1735 bfd_get_target (abfd));
c906108c
SS
1736}
1737\f
cb2f3a29 1738
c906108c
SS
1739/* This function runs the load command of our current target. */
1740
1741static void
fba45db2 1742load_command (char *arg, int from_tty)
c906108c 1743{
4487aabf
PA
1744 /* The user might be reloading because the binary has changed. Take
1745 this opportunity to check. */
1746 reopen_exec_file ();
1747 reread_symbols ();
1748
c906108c 1749 if (arg == NULL)
1986bccd
AS
1750 {
1751 char *parg;
1752 int count = 0;
1753
1754 parg = arg = get_exec_file (1);
1755
1756 /* Count how many \ " ' tab space there are in the name. */
1757 while ((parg = strpbrk (parg, "\\\"'\t ")))
1758 {
1759 parg++;
1760 count++;
1761 }
1762
1763 if (count)
1764 {
1765 /* We need to quote this string so buildargv can pull it apart. */
1766 char *temp = xmalloc (strlen (arg) + count + 1 );
1767 char *ptemp = temp;
1768 char *prev;
1769
1770 make_cleanup (xfree, temp);
1771
1772 prev = parg = arg;
1773 while ((parg = strpbrk (parg, "\\\"'\t ")))
1774 {
1775 strncpy (ptemp, prev, parg - prev);
1776 ptemp += parg - prev;
1777 prev = parg++;
1778 *ptemp++ = '\\';
1779 }
1780 strcpy (ptemp, prev);
1781
1782 arg = temp;
1783 }
1784 }
1785
c906108c 1786 target_load (arg, from_tty);
2889e661
JB
1787
1788 /* After re-loading the executable, we don't really know which
1789 overlays are mapped any more. */
1790 overlay_cache_invalid = 1;
c906108c
SS
1791}
1792
1793/* This version of "load" should be usable for any target. Currently
1794 it is just used for remote targets, not inftarg.c or core files,
1795 on the theory that only in that case is it useful.
1796
1797 Avoiding xmodem and the like seems like a win (a) because we don't have
1798 to worry about finding it, and (b) On VMS, fork() is very slow and so
1799 we don't want to run a subprocess. On the other hand, I'm not sure how
1800 performance compares. */
917317f4 1801
917317f4
JM
1802static int validate_download = 0;
1803
e4f9b4d5
MS
1804/* Callback service function for generic_load (bfd_map_over_sections). */
1805
1806static void
1807add_section_size_callback (bfd *abfd, asection *asec, void *data)
1808{
1809 bfd_size_type *sum = data;
1810
2c500098 1811 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1812}
1813
1814/* Opaque data for load_section_callback. */
1815struct load_section_data {
1816 unsigned long load_offset;
a76d924d
DJ
1817 struct load_progress_data *progress_data;
1818 VEC(memory_write_request_s) *requests;
1819};
1820
1821/* Opaque data for load_progress. */
1822struct load_progress_data {
1823 /* Cumulative data. */
e4f9b4d5
MS
1824 unsigned long write_count;
1825 unsigned long data_count;
1826 bfd_size_type total_size;
a76d924d
DJ
1827};
1828
1829/* Opaque data for load_progress for a single section. */
1830struct load_progress_section_data {
1831 struct load_progress_data *cumulative;
cf7a04e8 1832
a76d924d 1833 /* Per-section data. */
cf7a04e8
DJ
1834 const char *section_name;
1835 ULONGEST section_sent;
1836 ULONGEST section_size;
1837 CORE_ADDR lma;
1838 gdb_byte *buffer;
e4f9b4d5
MS
1839};
1840
a76d924d 1841/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1842
1843static void
1844load_progress (ULONGEST bytes, void *untyped_arg)
1845{
a76d924d
DJ
1846 struct load_progress_section_data *args = untyped_arg;
1847 struct load_progress_data *totals;
1848
1849 if (args == NULL)
1850 /* Writing padding data. No easy way to get at the cumulative
1851 stats, so just ignore this. */
1852 return;
1853
1854 totals = args->cumulative;
1855
1856 if (bytes == 0 && args->section_sent == 0)
1857 {
1858 /* The write is just starting. Let the user know we've started
1859 this section. */
5af949e3
UW
1860 ui_out_message (uiout, 0, "Loading section %s, size %s lma %s\n",
1861 args->section_name, hex_string (args->section_size),
1862 paddress (target_gdbarch, args->lma));
a76d924d
DJ
1863 return;
1864 }
cf7a04e8
DJ
1865
1866 if (validate_download)
1867 {
1868 /* Broken memories and broken monitors manifest themselves here
1869 when bring new computers to life. This doubles already slow
1870 downloads. */
1871 /* NOTE: cagney/1999-10-18: A more efficient implementation
1872 might add a verify_memory() method to the target vector and
1873 then use that. remote.c could implement that method using
1874 the ``qCRC'' packet. */
1875 gdb_byte *check = xmalloc (bytes);
1876 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1877
1878 if (target_read_memory (args->lma, check, bytes) != 0)
5af949e3
UW
1879 error (_("Download verify read failed at %s"),
1880 paddress (target_gdbarch, args->lma));
cf7a04e8 1881 if (memcmp (args->buffer, check, bytes) != 0)
5af949e3
UW
1882 error (_("Download verify compare failed at %s"),
1883 paddress (target_gdbarch, args->lma));
cf7a04e8
DJ
1884 do_cleanups (verify_cleanups);
1885 }
a76d924d 1886 totals->data_count += bytes;
cf7a04e8
DJ
1887 args->lma += bytes;
1888 args->buffer += bytes;
a76d924d 1889 totals->write_count += 1;
cf7a04e8
DJ
1890 args->section_sent += bytes;
1891 if (quit_flag
1892 || (deprecated_ui_load_progress_hook != NULL
1893 && deprecated_ui_load_progress_hook (args->section_name,
1894 args->section_sent)))
1895 error (_("Canceled the download"));
1896
1897 if (deprecated_show_load_progress != NULL)
1898 deprecated_show_load_progress (args->section_name,
1899 args->section_sent,
1900 args->section_size,
a76d924d
DJ
1901 totals->data_count,
1902 totals->total_size);
cf7a04e8
DJ
1903}
1904
e4f9b4d5
MS
1905/* Callback service function for generic_load (bfd_map_over_sections). */
1906
1907static void
1908load_section_callback (bfd *abfd, asection *asec, void *data)
1909{
a76d924d 1910 struct memory_write_request *new_request;
e4f9b4d5 1911 struct load_section_data *args = data;
a76d924d 1912 struct load_progress_section_data *section_data;
cf7a04e8
DJ
1913 bfd_size_type size = bfd_get_section_size (asec);
1914 gdb_byte *buffer;
cf7a04e8 1915 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 1916
cf7a04e8
DJ
1917 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1918 return;
e4f9b4d5 1919
cf7a04e8
DJ
1920 if (size == 0)
1921 return;
e4f9b4d5 1922
a76d924d
DJ
1923 new_request = VEC_safe_push (memory_write_request_s,
1924 args->requests, NULL);
1925 memset (new_request, 0, sizeof (struct memory_write_request));
1926 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1927 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1928 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1929 new_request->data = xmalloc (size);
1930 new_request->baton = section_data;
cf7a04e8 1931
a76d924d 1932 buffer = new_request->data;
cf7a04e8 1933
a76d924d
DJ
1934 section_data->cumulative = args->progress_data;
1935 section_data->section_name = sect_name;
1936 section_data->section_size = size;
1937 section_data->lma = new_request->begin;
1938 section_data->buffer = buffer;
cf7a04e8
DJ
1939
1940 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
1941}
1942
1943/* Clean up an entire memory request vector, including load
1944 data and progress records. */
cf7a04e8 1945
a76d924d
DJ
1946static void
1947clear_memory_write_data (void *arg)
1948{
1949 VEC(memory_write_request_s) **vec_p = arg;
1950 VEC(memory_write_request_s) *vec = *vec_p;
1951 int i;
1952 struct memory_write_request *mr;
cf7a04e8 1953
a76d924d
DJ
1954 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1955 {
1956 xfree (mr->data);
1957 xfree (mr->baton);
1958 }
1959 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
1960}
1961
c906108c 1962void
917317f4 1963generic_load (char *args, int from_tty)
c906108c 1964{
c906108c 1965 bfd *loadfile_bfd;
2b71414d 1966 struct timeval start_time, end_time;
917317f4 1967 char *filename;
1986bccd 1968 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 1969 struct load_section_data cbdata;
a76d924d
DJ
1970 struct load_progress_data total_progress;
1971
e4f9b4d5 1972 CORE_ADDR entry;
1986bccd 1973 char **argv;
e4f9b4d5 1974
a76d924d
DJ
1975 memset (&cbdata, 0, sizeof (cbdata));
1976 memset (&total_progress, 0, sizeof (total_progress));
1977 cbdata.progress_data = &total_progress;
1978
1979 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 1980
d1a41061
PP
1981 if (args == NULL)
1982 error_no_arg (_("file to load"));
1986bccd 1983
d1a41061 1984 argv = gdb_buildargv (args);
1986bccd
AS
1985 make_cleanup_freeargv (argv);
1986
1987 filename = tilde_expand (argv[0]);
1988 make_cleanup (xfree, filename);
1989
1990 if (argv[1] != NULL)
917317f4
JM
1991 {
1992 char *endptr;
ba5f2f8a 1993
1986bccd
AS
1994 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1995
1996 /* If the last word was not a valid number then
1997 treat it as a file name with spaces in. */
1998 if (argv[1] == endptr)
1999 error (_("Invalid download offset:%s."), argv[1]);
2000
2001 if (argv[2] != NULL)
2002 error (_("Too many parameters."));
917317f4 2003 }
c906108c 2004
917317f4 2005 /* Open the file for loading. */
c906108c
SS
2006 loadfile_bfd = bfd_openr (filename, gnutarget);
2007 if (loadfile_bfd == NULL)
2008 {
2009 perror_with_name (filename);
2010 return;
2011 }
917317f4 2012
c906108c
SS
2013 /* FIXME: should be checking for errors from bfd_close (for one thing,
2014 on error it does not free all the storage associated with the
2015 bfd). */
5c65bbb6 2016 make_cleanup_bfd_close (loadfile_bfd);
c906108c 2017
c5aa993b 2018 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 2019 {
8a3fe4f8 2020 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
2021 bfd_errmsg (bfd_get_error ()));
2022 }
c5aa993b 2023
5417f6dc 2024 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
2025 (void *) &total_progress.total_size);
2026
2027 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 2028
2b71414d 2029 gettimeofday (&start_time, NULL);
c906108c 2030
a76d924d
DJ
2031 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2032 load_progress) != 0)
2033 error (_("Load failed"));
c906108c 2034
2b71414d 2035 gettimeofday (&end_time, NULL);
ba5f2f8a 2036
e4f9b4d5 2037 entry = bfd_get_start_address (loadfile_bfd);
e4f9b4d5 2038 ui_out_text (uiout, "Start address ");
5af949e3 2039 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
e4f9b4d5 2040 ui_out_text (uiout, ", load size ");
a76d924d 2041 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 2042 ui_out_text (uiout, "\n");
e4f9b4d5
MS
2043 /* We were doing this in remote-mips.c, I suspect it is right
2044 for other targets too. */
fb14de7b 2045 regcache_write_pc (get_current_regcache (), entry);
c906108c 2046
38963c97
DJ
2047 /* Reset breakpoints, now that we have changed the load image. For
2048 instance, breakpoints may have been set (or reset, by
2049 post_create_inferior) while connected to the target but before we
2050 loaded the program. In that case, the prologue analyzer could
2051 have read instructions from the target to find the right
2052 breakpoint locations. Loading has changed the contents of that
2053 memory. */
2054
2055 breakpoint_re_set ();
2056
7ca9f392
AC
2057 /* FIXME: are we supposed to call symbol_file_add or not? According
2058 to a comment from remote-mips.c (where a call to symbol_file_add
2059 was commented out), making the call confuses GDB if more than one
2060 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 2061 others don't (or didn't - perhaps they have all been deleted). */
c906108c 2062
a76d924d
DJ
2063 print_transfer_performance (gdb_stdout, total_progress.data_count,
2064 total_progress.write_count,
2065 &start_time, &end_time);
c906108c
SS
2066
2067 do_cleanups (old_cleanups);
2068}
2069
2070/* Report how fast the transfer went. */
2071
917317f4
JM
2072/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2073 replaced by print_transfer_performance (with a very different
2074 function signature). */
2075
c906108c 2076void
fba45db2
KB
2077report_transfer_performance (unsigned long data_count, time_t start_time,
2078 time_t end_time)
c906108c 2079{
2b71414d
DJ
2080 struct timeval start, end;
2081
2082 start.tv_sec = start_time;
2083 start.tv_usec = 0;
2084 end.tv_sec = end_time;
2085 end.tv_usec = 0;
2086
2087 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
917317f4
JM
2088}
2089
2090void
d9fcf2fb 2091print_transfer_performance (struct ui_file *stream,
917317f4
JM
2092 unsigned long data_count,
2093 unsigned long write_count,
2b71414d
DJ
2094 const struct timeval *start_time,
2095 const struct timeval *end_time)
917317f4 2096{
9f43d28c 2097 ULONGEST time_count;
2b71414d
DJ
2098
2099 /* Compute the elapsed time in milliseconds, as a tradeoff between
2100 accuracy and overflow. */
2101 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2102 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2103
8b93c638
JM
2104 ui_out_text (uiout, "Transfer rate: ");
2105 if (time_count > 0)
2106 {
9f43d28c
DJ
2107 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2108
2109 if (ui_out_is_mi_like_p (uiout))
2110 {
2111 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2112 ui_out_text (uiout, " bits/sec");
2113 }
2114 else if (rate < 1024)
2115 {
2116 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2117 ui_out_text (uiout, " bytes/sec");
2118 }
2119 else
2120 {
2121 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2122 ui_out_text (uiout, " KB/sec");
2123 }
8b93c638
JM
2124 }
2125 else
2126 {
ba5f2f8a 2127 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 2128 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
2129 }
2130 if (write_count > 0)
2131 {
2132 ui_out_text (uiout, ", ");
ba5f2f8a 2133 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
2134 ui_out_text (uiout, " bytes/write");
2135 }
2136 ui_out_text (uiout, ".\n");
c906108c
SS
2137}
2138
2139/* This function allows the addition of incrementally linked object files.
2140 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2141/* Note: ezannoni 2000-04-13 This function/command used to have a
2142 special case syntax for the rombug target (Rombug is the boot
2143 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2144 rombug case, the user doesn't need to supply a text address,
2145 instead a call to target_link() (in target.c) would supply the
2146 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2147
c906108c 2148static void
fba45db2 2149add_symbol_file_command (char *args, int from_tty)
c906108c 2150{
5af949e3 2151 struct gdbarch *gdbarch = get_current_arch ();
db162d44 2152 char *filename = NULL;
2df3850c 2153 int flags = OBJF_USERLOADED;
c906108c 2154 char *arg;
db162d44 2155 int section_index = 0;
2acceee2
JM
2156 int argcnt = 0;
2157 int sec_num = 0;
2158 int i;
db162d44
EZ
2159 int expecting_sec_name = 0;
2160 int expecting_sec_addr = 0;
5b96932b 2161 char **argv;
db162d44 2162
a39a16c4 2163 struct sect_opt
2acceee2 2164 {
2acceee2
JM
2165 char *name;
2166 char *value;
a39a16c4 2167 };
db162d44 2168
a39a16c4
MM
2169 struct section_addr_info *section_addrs;
2170 struct sect_opt *sect_opts = NULL;
2171 size_t num_sect_opts = 0;
3017564a 2172 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2173
a39a16c4 2174 num_sect_opts = 16;
5417f6dc 2175 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
2176 * sizeof (struct sect_opt));
2177
c906108c
SS
2178 dont_repeat ();
2179
2180 if (args == NULL)
8a3fe4f8 2181 error (_("add-symbol-file takes a file name and an address"));
c906108c 2182
d1a41061 2183 argv = gdb_buildargv (args);
5b96932b 2184 make_cleanup_freeargv (argv);
db162d44 2185
5b96932b
AS
2186 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2187 {
2188 /* Process the argument. */
db162d44 2189 if (argcnt == 0)
c906108c 2190 {
db162d44
EZ
2191 /* The first argument is the file name. */
2192 filename = tilde_expand (arg);
3017564a 2193 make_cleanup (xfree, filename);
c906108c 2194 }
db162d44 2195 else
7a78ae4e
ND
2196 if (argcnt == 1)
2197 {
2198 /* The second argument is always the text address at which
2199 to load the program. */
2200 sect_opts[section_index].name = ".text";
2201 sect_opts[section_index].value = arg;
f414f22f 2202 if (++section_index >= num_sect_opts)
a39a16c4
MM
2203 {
2204 num_sect_opts *= 2;
5417f6dc 2205 sect_opts = ((struct sect_opt *)
a39a16c4 2206 xrealloc (sect_opts,
5417f6dc 2207 num_sect_opts
a39a16c4
MM
2208 * sizeof (struct sect_opt)));
2209 }
7a78ae4e
ND
2210 }
2211 else
2212 {
2213 /* It's an option (starting with '-') or it's an argument
2214 to an option */
2215
2216 if (*arg == '-')
2217 {
78a4a9b9
AC
2218 if (strcmp (arg, "-readnow") == 0)
2219 flags |= OBJF_READNOW;
2220 else if (strcmp (arg, "-s") == 0)
2221 {
2222 expecting_sec_name = 1;
2223 expecting_sec_addr = 1;
2224 }
7a78ae4e
ND
2225 }
2226 else
2227 {
2228 if (expecting_sec_name)
db162d44 2229 {
7a78ae4e
ND
2230 sect_opts[section_index].name = arg;
2231 expecting_sec_name = 0;
db162d44
EZ
2232 }
2233 else
7a78ae4e
ND
2234 if (expecting_sec_addr)
2235 {
2236 sect_opts[section_index].value = arg;
2237 expecting_sec_addr = 0;
f414f22f 2238 if (++section_index >= num_sect_opts)
a39a16c4
MM
2239 {
2240 num_sect_opts *= 2;
5417f6dc 2241 sect_opts = ((struct sect_opt *)
a39a16c4 2242 xrealloc (sect_opts,
5417f6dc 2243 num_sect_opts
a39a16c4
MM
2244 * sizeof (struct sect_opt)));
2245 }
7a78ae4e
ND
2246 }
2247 else
8a3fe4f8 2248 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
7a78ae4e
ND
2249 }
2250 }
c906108c 2251 }
c906108c 2252
927890d0
JB
2253 /* This command takes at least two arguments. The first one is a
2254 filename, and the second is the address where this file has been
2255 loaded. Abort now if this address hasn't been provided by the
2256 user. */
2257 if (section_index < 1)
2258 error (_("The address where %s has been loaded is missing"), filename);
2259
db162d44
EZ
2260 /* Print the prompt for the query below. And save the arguments into
2261 a sect_addr_info structure to be passed around to other
2262 functions. We have to split this up into separate print
bb599908 2263 statements because hex_string returns a local static
db162d44 2264 string. */
5417f6dc 2265
a3f17187 2266 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2267 section_addrs = alloc_section_addr_info (section_index);
2268 make_cleanup (xfree, section_addrs);
db162d44 2269 for (i = 0; i < section_index; i++)
c906108c 2270 {
db162d44
EZ
2271 CORE_ADDR addr;
2272 char *val = sect_opts[i].value;
2273 char *sec = sect_opts[i].name;
5417f6dc 2274
ae822768 2275 addr = parse_and_eval_address (val);
db162d44 2276
db162d44
EZ
2277 /* Here we store the section offsets in the order they were
2278 entered on the command line. */
a39a16c4
MM
2279 section_addrs->other[sec_num].name = sec;
2280 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2281 printf_unfiltered ("\t%s_addr = %s\n", sec,
2282 paddress (gdbarch, addr));
db162d44
EZ
2283 sec_num++;
2284
5417f6dc 2285 /* The object's sections are initialized when a
db162d44 2286 call is made to build_objfile_section_table (objfile).
5417f6dc 2287 This happens in reread_symbols.
db162d44
EZ
2288 At this point, we don't know what file type this is,
2289 so we can't determine what section names are valid. */
2acceee2 2290 }
db162d44 2291
2acceee2 2292 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2293 error (_("Not confirmed."));
c906108c 2294
7eedccfa
PP
2295 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2296 section_addrs, flags);
c906108c
SS
2297
2298 /* Getting new symbols may change our opinion about what is
2299 frameless. */
2300 reinit_frame_cache ();
db162d44 2301 do_cleanups (my_cleanups);
c906108c
SS
2302}
2303\f
70992597 2304
c906108c
SS
2305/* Re-read symbols if a symbol-file has changed. */
2306void
fba45db2 2307reread_symbols (void)
c906108c
SS
2308{
2309 struct objfile *objfile;
2310 long new_modtime;
2311 int reread_one = 0;
2312 struct stat new_statbuf;
2313 int res;
2314
2315 /* With the addition of shared libraries, this should be modified,
2316 the load time should be saved in the partial symbol tables, since
2317 different tables may come from different source files. FIXME.
2318 This routine should then walk down each partial symbol table
2319 and see if the symbol table that it originates from has been changed */
2320
c5aa993b
JM
2321 for (objfile = object_files; objfile; objfile = objfile->next)
2322 {
9cce227f
TG
2323 /* solib-sunos.c creates one objfile with obfd. */
2324 if (objfile->obfd == NULL)
2325 continue;
2326
2327 /* Separate debug objfiles are handled in the main objfile. */
2328 if (objfile->separate_debug_objfile_backlink)
2329 continue;
2330
02aeec7b
JB
2331 /* If this object is from an archive (what you usually create with
2332 `ar', often called a `static library' on most systems, though
2333 a `shared library' on AIX is also an archive), then you should
2334 stat on the archive name, not member name. */
9cce227f
TG
2335 if (objfile->obfd->my_archive)
2336 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2337 else
9cce227f
TG
2338 res = stat (objfile->name, &new_statbuf);
2339 if (res != 0)
2340 {
2341 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2342 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2343 objfile->name);
2344 continue;
2345 }
2346 new_modtime = new_statbuf.st_mtime;
2347 if (new_modtime != objfile->mtime)
2348 {
2349 struct cleanup *old_cleanups;
2350 struct section_offsets *offsets;
2351 int num_offsets;
2352 char *obfd_filename;
2353
2354 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2355 objfile->name);
2356
2357 /* There are various functions like symbol_file_add,
2358 symfile_bfd_open, syms_from_objfile, etc., which might
2359 appear to do what we want. But they have various other
2360 effects which we *don't* want. So we just do stuff
2361 ourselves. We don't worry about mapped files (for one thing,
2362 any mapped file will be out of date). */
2363
2364 /* If we get an error, blow away this objfile (not sure if
2365 that is the correct response for things like shared
2366 libraries). */
2367 old_cleanups = make_cleanup_free_objfile (objfile);
2368 /* We need to do this whenever any symbols go away. */
2369 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2370
2371 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2372 bfd_get_filename (exec_bfd)) == 0)
2373 {
2374 /* Reload EXEC_BFD without asking anything. */
2375
2376 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2377 }
2378
2379 /* Clean up any state BFD has sitting around. We don't need
2380 to close the descriptor but BFD lacks a way of closing the
2381 BFD without closing the descriptor. */
2382 obfd_filename = bfd_get_filename (objfile->obfd);
2383 if (!bfd_close (objfile->obfd))
2384 error (_("Can't close BFD for %s: %s"), objfile->name,
2385 bfd_errmsg (bfd_get_error ()));
874f5765 2386 objfile->obfd = bfd_open_maybe_remote (obfd_filename);
9cce227f
TG
2387 if (objfile->obfd == NULL)
2388 error (_("Can't open %s to read symbols."), objfile->name);
2389 else
2390 objfile->obfd = gdb_bfd_ref (objfile->obfd);
2391 /* bfd_openr sets cacheable to true, which is what we want. */
2392 if (!bfd_check_format (objfile->obfd, bfd_object))
2393 error (_("Can't read symbols from %s: %s."), objfile->name,
2394 bfd_errmsg (bfd_get_error ()));
2395
2396 /* Save the offsets, we will nuke them with the rest of the
2397 objfile_obstack. */
2398 num_offsets = objfile->num_sections;
2399 offsets = ((struct section_offsets *)
2400 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2401 memcpy (offsets, objfile->section_offsets,
2402 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2403
2404 /* Remove any references to this objfile in the global
2405 value lists. */
2406 preserve_values (objfile);
2407
2408 /* Nuke all the state that we will re-read. Much of the following
2409 code which sets things to NULL really is necessary to tell
2410 other parts of GDB that there is nothing currently there.
2411
2412 Try to keep the freeing order compatible with free_objfile. */
2413
2414 if (objfile->sf != NULL)
2415 {
2416 (*objfile->sf->sym_finish) (objfile);
2417 }
2418
2419 clear_objfile_data (objfile);
2420
15d123c9 2421 /* Free the separate debug objfiles. It will be
9cce227f 2422 automatically recreated by sym_read. */
15d123c9 2423 free_objfile_separate_debug (objfile);
9cce227f
TG
2424
2425 /* FIXME: Do we have to free a whole linked list, or is this
2426 enough? */
2427 if (objfile->global_psymbols.list)
2428 xfree (objfile->global_psymbols.list);
2429 memset (&objfile->global_psymbols, 0,
2430 sizeof (objfile->global_psymbols));
2431 if (objfile->static_psymbols.list)
2432 xfree (objfile->static_psymbols.list);
2433 memset (&objfile->static_psymbols, 0,
2434 sizeof (objfile->static_psymbols));
2435
2436 /* Free the obstacks for non-reusable objfiles */
710e1a31
SW
2437 psymbol_bcache_free (objfile->psymbol_cache);
2438 objfile->psymbol_cache = psymbol_bcache_init ();
9cce227f 2439 bcache_xfree (objfile->macro_cache);
cbd70537 2440 objfile->macro_cache = bcache_xmalloc (NULL, NULL);
9cce227f 2441 bcache_xfree (objfile->filename_cache);
cbd70537 2442 objfile->filename_cache = bcache_xmalloc (NULL,NULL);
9cce227f
TG
2443 if (objfile->demangled_names_hash != NULL)
2444 {
2445 htab_delete (objfile->demangled_names_hash);
2446 objfile->demangled_names_hash = NULL;
2447 }
2448 obstack_free (&objfile->objfile_obstack, 0);
2449 objfile->sections = NULL;
2450 objfile->symtabs = NULL;
2451 objfile->psymtabs = NULL;
2452 objfile->psymtabs_addrmap = NULL;
2453 objfile->free_psymtabs = NULL;
2454 objfile->cp_namespace_symtab = NULL;
34eaf542 2455 objfile->template_symbols = NULL;
9cce227f
TG
2456 objfile->msymbols = NULL;
2457 objfile->deprecated_sym_private = NULL;
2458 objfile->minimal_symbol_count = 0;
2459 memset (&objfile->msymbol_hash, 0,
2460 sizeof (objfile->msymbol_hash));
2461 memset (&objfile->msymbol_demangled_hash, 0,
2462 sizeof (objfile->msymbol_demangled_hash));
2463
710e1a31 2464 objfile->psymbol_cache = psymbol_bcache_init ();
cbd70537
SW
2465 objfile->macro_cache = bcache_xmalloc (NULL, NULL);
2466 objfile->filename_cache = bcache_xmalloc (NULL, NULL);
9cce227f
TG
2467 /* obstack_init also initializes the obstack so it is
2468 empty. We could use obstack_specify_allocation but
2469 gdb_obstack.h specifies the alloc/dealloc
2470 functions. */
2471 obstack_init (&objfile->objfile_obstack);
2472 if (build_objfile_section_table (objfile))
2473 {
2474 error (_("Can't find the file sections in `%s': %s"),
2475 objfile->name, bfd_errmsg (bfd_get_error ()));
2476 }
2477 terminate_minimal_symbol_table (objfile);
2478
2479 /* We use the same section offsets as from last time. I'm not
2480 sure whether that is always correct for shared libraries. */
2481 objfile->section_offsets = (struct section_offsets *)
2482 obstack_alloc (&objfile->objfile_obstack,
2483 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2484 memcpy (objfile->section_offsets, offsets,
2485 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2486 objfile->num_sections = num_offsets;
2487
2488 /* What the hell is sym_new_init for, anyway? The concept of
2489 distinguishing between the main file and additional files
2490 in this way seems rather dubious. */
2491 if (objfile == symfile_objfile)
c906108c 2492 {
9cce227f 2493 (*objfile->sf->sym_new_init) (objfile);
c906108c 2494 }
9cce227f
TG
2495
2496 (*objfile->sf->sym_init) (objfile);
2497 clear_complaints (&symfile_complaints, 1, 1);
2498 /* Do not set flags as this is safe and we don't want to be
2499 verbose. */
2500 (*objfile->sf->sym_read) (objfile, 0);
2501 if (!objfile_has_symbols (objfile))
c906108c 2502 {
9cce227f
TG
2503 wrap_here ("");
2504 printf_unfiltered (_("(no debugging symbols found)\n"));
2505 wrap_here ("");
c5aa993b 2506 }
9cce227f
TG
2507
2508 /* We're done reading the symbol file; finish off complaints. */
2509 clear_complaints (&symfile_complaints, 0, 1);
2510
2511 /* Getting new symbols may change our opinion about what is
2512 frameless. */
2513
2514 reinit_frame_cache ();
2515
2516 /* Discard cleanups as symbol reading was successful. */
2517 discard_cleanups (old_cleanups);
2518
2519 /* If the mtime has changed between the time we set new_modtime
2520 and now, we *want* this to be out of date, so don't call stat
2521 again now. */
2522 objfile->mtime = new_modtime;
2523 reread_one = 1;
2524 init_entry_point_info (objfile);
c906108c
SS
2525 }
2526 }
c906108c
SS
2527
2528 if (reread_one)
ea53e89f 2529 {
ff3536bc
UW
2530 /* Notify objfiles that we've modified objfile sections. */
2531 objfiles_changed ();
2532
ea53e89f
JB
2533 clear_symtab_users ();
2534 /* At least one objfile has changed, so we can consider that
2535 the executable we're debugging has changed too. */
781b42b0 2536 observer_notify_executable_changed ();
ea53e89f 2537 }
c906108c 2538}
c906108c
SS
2539\f
2540
c5aa993b
JM
2541
2542typedef struct
2543{
2544 char *ext;
c906108c 2545 enum language lang;
c5aa993b
JM
2546}
2547filename_language;
c906108c 2548
c5aa993b 2549static filename_language *filename_language_table;
c906108c
SS
2550static int fl_table_size, fl_table_next;
2551
2552static void
fba45db2 2553add_filename_language (char *ext, enum language lang)
c906108c
SS
2554{
2555 if (fl_table_next >= fl_table_size)
2556 {
2557 fl_table_size += 10;
5417f6dc 2558 filename_language_table =
25bf3106
PM
2559 xrealloc (filename_language_table,
2560 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2561 }
2562
4fcf66da 2563 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2564 filename_language_table[fl_table_next].lang = lang;
2565 fl_table_next++;
2566}
2567
2568static char *ext_args;
920d2a44
AC
2569static void
2570show_ext_args (struct ui_file *file, int from_tty,
2571 struct cmd_list_element *c, const char *value)
2572{
2573 fprintf_filtered (file, _("\
2574Mapping between filename extension and source language is \"%s\".\n"),
2575 value);
2576}
c906108c
SS
2577
2578static void
26c41df3 2579set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2580{
2581 int i;
2582 char *cp = ext_args;
2583 enum language lang;
2584
2585 /* First arg is filename extension, starting with '.' */
2586 if (*cp != '.')
8a3fe4f8 2587 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2588
2589 /* Find end of first arg. */
c5aa993b 2590 while (*cp && !isspace (*cp))
c906108c
SS
2591 cp++;
2592
2593 if (*cp == '\0')
8a3fe4f8 2594 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2595 ext_args);
2596
2597 /* Null-terminate first arg */
c5aa993b 2598 *cp++ = '\0';
c906108c
SS
2599
2600 /* Find beginning of second arg, which should be a source language. */
2601 while (*cp && isspace (*cp))
2602 cp++;
2603
2604 if (*cp == '\0')
8a3fe4f8 2605 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2606 ext_args);
2607
2608 /* Lookup the language from among those we know. */
2609 lang = language_enum (cp);
2610
2611 /* Now lookup the filename extension: do we already know it? */
2612 for (i = 0; i < fl_table_next; i++)
2613 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2614 break;
2615
2616 if (i >= fl_table_next)
2617 {
2618 /* new file extension */
2619 add_filename_language (ext_args, lang);
2620 }
2621 else
2622 {
2623 /* redefining a previously known filename extension */
2624
2625 /* if (from_tty) */
2626 /* query ("Really make files of type %s '%s'?", */
2627 /* ext_args, language_str (lang)); */
2628
b8c9b27d 2629 xfree (filename_language_table[i].ext);
4fcf66da 2630 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2631 filename_language_table[i].lang = lang;
2632 }
2633}
2634
2635static void
fba45db2 2636info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2637{
2638 int i;
2639
a3f17187 2640 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2641 printf_filtered ("\n\n");
2642 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2643 printf_filtered ("\t%s\t- %s\n",
2644 filename_language_table[i].ext,
c906108c
SS
2645 language_str (filename_language_table[i].lang));
2646}
2647
2648static void
fba45db2 2649init_filename_language_table (void)
c906108c
SS
2650{
2651 if (fl_table_size == 0) /* protect against repetition */
2652 {
2653 fl_table_size = 20;
2654 fl_table_next = 0;
c5aa993b 2655 filename_language_table =
c906108c 2656 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b 2657 add_filename_language (".c", language_c);
6aecb9c2 2658 add_filename_language (".d", language_d);
c5aa993b
JM
2659 add_filename_language (".C", language_cplus);
2660 add_filename_language (".cc", language_cplus);
2661 add_filename_language (".cp", language_cplus);
2662 add_filename_language (".cpp", language_cplus);
2663 add_filename_language (".cxx", language_cplus);
2664 add_filename_language (".c++", language_cplus);
2665 add_filename_language (".java", language_java);
c906108c 2666 add_filename_language (".class", language_java);
da2cf7e0 2667 add_filename_language (".m", language_objc);
c5aa993b
JM
2668 add_filename_language (".f", language_fortran);
2669 add_filename_language (".F", language_fortran);
fd5700c7
JK
2670 add_filename_language (".for", language_fortran);
2671 add_filename_language (".FOR", language_fortran);
2672 add_filename_language (".ftn", language_fortran);
2673 add_filename_language (".FTN", language_fortran);
2674 add_filename_language (".fpp", language_fortran);
2675 add_filename_language (".FPP", language_fortran);
2676 add_filename_language (".f90", language_fortran);
2677 add_filename_language (".F90", language_fortran);
2678 add_filename_language (".f95", language_fortran);
2679 add_filename_language (".F95", language_fortran);
2680 add_filename_language (".f03", language_fortran);
2681 add_filename_language (".F03", language_fortran);
2682 add_filename_language (".f08", language_fortran);
2683 add_filename_language (".F08", language_fortran);
c5aa993b 2684 add_filename_language (".s", language_asm);
aa707ed0 2685 add_filename_language (".sx", language_asm);
c5aa993b 2686 add_filename_language (".S", language_asm);
c6fd39cd
PM
2687 add_filename_language (".pas", language_pascal);
2688 add_filename_language (".p", language_pascal);
2689 add_filename_language (".pp", language_pascal);
963a6417
PH
2690 add_filename_language (".adb", language_ada);
2691 add_filename_language (".ads", language_ada);
2692 add_filename_language (".a", language_ada);
2693 add_filename_language (".ada", language_ada);
dde59185 2694 add_filename_language (".dg", language_ada);
c906108c
SS
2695 }
2696}
2697
2698enum language
dd786858 2699deduce_language_from_filename (const char *filename)
c906108c
SS
2700{
2701 int i;
2702 char *cp;
2703
2704 if (filename != NULL)
2705 if ((cp = strrchr (filename, '.')) != NULL)
2706 for (i = 0; i < fl_table_next; i++)
2707 if (strcmp (cp, filename_language_table[i].ext) == 0)
2708 return filename_language_table[i].lang;
2709
2710 return language_unknown;
2711}
2712\f
2713/* allocate_symtab:
2714
2715 Allocate and partly initialize a new symbol table. Return a pointer
2716 to it. error() if no space.
2717
2718 Caller must set these fields:
c5aa993b
JM
2719 LINETABLE(symtab)
2720 symtab->blockvector
2721 symtab->dirname
2722 symtab->free_code
2723 symtab->free_ptr
c906108c
SS
2724 */
2725
2726struct symtab *
fba45db2 2727allocate_symtab (char *filename, struct objfile *objfile)
c906108c 2728{
52f0bd74 2729 struct symtab *symtab;
c906108c
SS
2730
2731 symtab = (struct symtab *)
4a146b47 2732 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2733 memset (symtab, 0, sizeof (*symtab));
10abe6bf
TT
2734 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2735 objfile->filename_cache);
c5aa993b
JM
2736 symtab->fullname = NULL;
2737 symtab->language = deduce_language_from_filename (filename);
1c9e8358 2738 symtab->debugformat = "unknown";
c906108c
SS
2739
2740 /* Hook it to the objfile it comes from */
2741
c5aa993b
JM
2742 symtab->objfile = objfile;
2743 symtab->next = objfile->symtabs;
2744 objfile->symtabs = symtab;
c906108c 2745
c906108c
SS
2746 return (symtab);
2747}
c906108c 2748\f
c5aa993b 2749
c906108c
SS
2750/* Reset all data structures in gdb which may contain references to symbol
2751 table data. */
2752
2753void
fba45db2 2754clear_symtab_users (void)
c906108c
SS
2755{
2756 /* Someday, we should do better than this, by only blowing away
2757 the things that really need to be blown. */
c0501be5
DJ
2758
2759 /* Clear the "current" symtab first, because it is no longer valid.
2760 breakpoint_re_set may try to access the current symtab. */
2761 clear_current_source_symtab_and_line ();
2762
c906108c 2763 clear_displays ();
c906108c 2764 breakpoint_re_set ();
6c95b8df 2765 set_default_breakpoint (0, NULL, 0, 0, 0);
c906108c 2766 clear_pc_function_cache ();
06d3b283 2767 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2768
2769 /* Clear globals which might have pointed into a removed objfile.
2770 FIXME: It's not clear which of these are supposed to persist
2771 between expressions and which ought to be reset each time. */
2772 expression_context_block = NULL;
2773 innermost_block = NULL;
8756216b
DP
2774
2775 /* Varobj may refer to old symbols, perform a cleanup. */
2776 varobj_invalidate ();
2777
c906108c
SS
2778}
2779
74b7792f
AC
2780static void
2781clear_symtab_users_cleanup (void *ignore)
2782{
2783 clear_symtab_users ();
2784}
c906108c 2785\f
c906108c
SS
2786/* OVERLAYS:
2787 The following code implements an abstraction for debugging overlay sections.
2788
2789 The target model is as follows:
2790 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2791 same VMA, each with its own unique LMA (or load address).
c906108c 2792 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2793 sections, one by one, from the load address into the VMA address.
5417f6dc 2794 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2795 sections should be considered to be mapped from the VMA to the LMA.
2796 This information is used for symbol lookup, and memory read/write.
5417f6dc 2797 For instance, if a section has been mapped then its contents
c5aa993b 2798 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2799
2800 Two levels of debugger support for overlays are available. One is
2801 "manual", in which the debugger relies on the user to tell it which
2802 overlays are currently mapped. This level of support is
2803 implemented entirely in the core debugger, and the information about
2804 whether a section is mapped is kept in the objfile->obj_section table.
2805
2806 The second level of support is "automatic", and is only available if
2807 the target-specific code provides functionality to read the target's
2808 overlay mapping table, and translate its contents for the debugger
2809 (by updating the mapped state information in the obj_section tables).
2810
2811 The interface is as follows:
c5aa993b
JM
2812 User commands:
2813 overlay map <name> -- tell gdb to consider this section mapped
2814 overlay unmap <name> -- tell gdb to consider this section unmapped
2815 overlay list -- list the sections that GDB thinks are mapped
2816 overlay read-target -- get the target's state of what's mapped
2817 overlay off/manual/auto -- set overlay debugging state
2818 Functional interface:
2819 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2820 section, return that section.
5417f6dc 2821 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 2822 the pc, either in its VMA or its LMA
714835d5 2823 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
2824 section_is_overlay(sect): true if section's VMA != LMA
2825 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2826 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2827 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2828 overlay_mapped_address(...): map an address from section's LMA to VMA
2829 overlay_unmapped_address(...): map an address from section's VMA to LMA
2830 symbol_overlayed_address(...): Return a "current" address for symbol:
2831 either in VMA or LMA depending on whether
2832 the symbol's section is currently mapped
c906108c
SS
2833 */
2834
2835/* Overlay debugging state: */
2836
d874f1e2 2837enum overlay_debugging_state overlay_debugging = ovly_off;
c906108c
SS
2838int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2839
c906108c 2840/* Function: section_is_overlay (SECTION)
5417f6dc 2841 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
2842 SECTION is loaded at an address different from where it will "run". */
2843
2844int
714835d5 2845section_is_overlay (struct obj_section *section)
c906108c 2846{
714835d5
UW
2847 if (overlay_debugging && section)
2848 {
2849 bfd *abfd = section->objfile->obfd;
2850 asection *bfd_section = section->the_bfd_section;
2851
2852 if (bfd_section_lma (abfd, bfd_section) != 0
2853 && bfd_section_lma (abfd, bfd_section)
2854 != bfd_section_vma (abfd, bfd_section))
2855 return 1;
2856 }
c906108c
SS
2857
2858 return 0;
2859}
2860
2861/* Function: overlay_invalidate_all (void)
2862 Invalidate the mapped state of all overlay sections (mark it as stale). */
2863
2864static void
fba45db2 2865overlay_invalidate_all (void)
c906108c 2866{
c5aa993b 2867 struct objfile *objfile;
c906108c
SS
2868 struct obj_section *sect;
2869
2870 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
2871 if (section_is_overlay (sect))
2872 sect->ovly_mapped = -1;
c906108c
SS
2873}
2874
714835d5 2875/* Function: section_is_mapped (SECTION)
5417f6dc 2876 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
2877
2878 Access to the ovly_mapped flag is restricted to this function, so
2879 that we can do automatic update. If the global flag
2880 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2881 overlay_invalidate_all. If the mapped state of the particular
2882 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2883
714835d5
UW
2884int
2885section_is_mapped (struct obj_section *osect)
c906108c 2886{
9216df95
UW
2887 struct gdbarch *gdbarch;
2888
714835d5 2889 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
2890 return 0;
2891
c5aa993b 2892 switch (overlay_debugging)
c906108c
SS
2893 {
2894 default:
d874f1e2 2895 case ovly_off:
c5aa993b 2896 return 0; /* overlay debugging off */
d874f1e2 2897 case ovly_auto: /* overlay debugging automatic */
1c772458 2898 /* Unles there is a gdbarch_overlay_update function,
c5aa993b 2899 there's really nothing useful to do here (can't really go auto) */
9216df95
UW
2900 gdbarch = get_objfile_arch (osect->objfile);
2901 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
2902 {
2903 if (overlay_cache_invalid)
2904 {
2905 overlay_invalidate_all ();
2906 overlay_cache_invalid = 0;
2907 }
2908 if (osect->ovly_mapped == -1)
9216df95 2909 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
2910 }
2911 /* fall thru to manual case */
d874f1e2 2912 case ovly_on: /* overlay debugging manual */
c906108c
SS
2913 return osect->ovly_mapped == 1;
2914 }
2915}
2916
c906108c
SS
2917/* Function: pc_in_unmapped_range
2918 If PC falls into the lma range of SECTION, return true, else false. */
2919
2920CORE_ADDR
714835d5 2921pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 2922{
714835d5
UW
2923 if (section_is_overlay (section))
2924 {
2925 bfd *abfd = section->objfile->obfd;
2926 asection *bfd_section = section->the_bfd_section;
fbd35540 2927
714835d5
UW
2928 /* We assume the LMA is relocated by the same offset as the VMA. */
2929 bfd_vma size = bfd_get_section_size (bfd_section);
2930 CORE_ADDR offset = obj_section_offset (section);
2931
2932 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
2933 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
2934 return 1;
2935 }
c906108c 2936
c906108c
SS
2937 return 0;
2938}
2939
2940/* Function: pc_in_mapped_range
2941 If PC falls into the vma range of SECTION, return true, else false. */
2942
2943CORE_ADDR
714835d5 2944pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 2945{
714835d5
UW
2946 if (section_is_overlay (section))
2947 {
2948 if (obj_section_addr (section) <= pc
2949 && pc < obj_section_endaddr (section))
2950 return 1;
2951 }
c906108c 2952
c906108c
SS
2953 return 0;
2954}
2955
9ec8e6a0
JB
2956
2957/* Return true if the mapped ranges of sections A and B overlap, false
2958 otherwise. */
b9362cc7 2959static int
714835d5 2960sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 2961{
714835d5
UW
2962 CORE_ADDR a_start = obj_section_addr (a);
2963 CORE_ADDR a_end = obj_section_endaddr (a);
2964 CORE_ADDR b_start = obj_section_addr (b);
2965 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
2966
2967 return (a_start < b_end && b_start < a_end);
2968}
2969
c906108c
SS
2970/* Function: overlay_unmapped_address (PC, SECTION)
2971 Returns the address corresponding to PC in the unmapped (load) range.
2972 May be the same as PC. */
2973
2974CORE_ADDR
714835d5 2975overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 2976{
714835d5
UW
2977 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
2978 {
2979 bfd *abfd = section->objfile->obfd;
2980 asection *bfd_section = section->the_bfd_section;
fbd35540 2981
714835d5
UW
2982 return pc + bfd_section_lma (abfd, bfd_section)
2983 - bfd_section_vma (abfd, bfd_section);
2984 }
c906108c
SS
2985
2986 return pc;
2987}
2988
2989/* Function: overlay_mapped_address (PC, SECTION)
2990 Returns the address corresponding to PC in the mapped (runtime) range.
2991 May be the same as PC. */
2992
2993CORE_ADDR
714835d5 2994overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 2995{
714835d5
UW
2996 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
2997 {
2998 bfd *abfd = section->objfile->obfd;
2999 asection *bfd_section = section->the_bfd_section;
fbd35540 3000
714835d5
UW
3001 return pc + bfd_section_vma (abfd, bfd_section)
3002 - bfd_section_lma (abfd, bfd_section);
3003 }
c906108c
SS
3004
3005 return pc;
3006}
3007
3008
5417f6dc 3009/* Function: symbol_overlayed_address
c906108c
SS
3010 Return one of two addresses (relative to the VMA or to the LMA),
3011 depending on whether the section is mapped or not. */
3012
c5aa993b 3013CORE_ADDR
714835d5 3014symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3015{
3016 if (overlay_debugging)
3017 {
3018 /* If the symbol has no section, just return its regular address. */
3019 if (section == 0)
3020 return address;
3021 /* If the symbol's section is not an overlay, just return its address */
3022 if (!section_is_overlay (section))
3023 return address;
3024 /* If the symbol's section is mapped, just return its address */
3025 if (section_is_mapped (section))
3026 return address;
3027 /*
3028 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3029 * then return its LOADED address rather than its vma address!!
3030 */
3031 return overlay_unmapped_address (address, section);
3032 }
3033 return address;
3034}
3035
5417f6dc 3036/* Function: find_pc_overlay (PC)
c906108c
SS
3037 Return the best-match overlay section for PC:
3038 If PC matches a mapped overlay section's VMA, return that section.
3039 Else if PC matches an unmapped section's VMA, return that section.
3040 Else if PC matches an unmapped section's LMA, return that section. */
3041
714835d5 3042struct obj_section *
fba45db2 3043find_pc_overlay (CORE_ADDR pc)
c906108c 3044{
c5aa993b 3045 struct objfile *objfile;
c906108c
SS
3046 struct obj_section *osect, *best_match = NULL;
3047
3048 if (overlay_debugging)
3049 ALL_OBJSECTIONS (objfile, osect)
714835d5 3050 if (section_is_overlay (osect))
c5aa993b 3051 {
714835d5 3052 if (pc_in_mapped_range (pc, osect))
c5aa993b 3053 {
714835d5
UW
3054 if (section_is_mapped (osect))
3055 return osect;
c5aa993b
JM
3056 else
3057 best_match = osect;
3058 }
714835d5 3059 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3060 best_match = osect;
3061 }
714835d5 3062 return best_match;
c906108c
SS
3063}
3064
3065/* Function: find_pc_mapped_section (PC)
5417f6dc 3066 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3067 currently marked as MAPPED, return that section. Else return NULL. */
3068
714835d5 3069struct obj_section *
fba45db2 3070find_pc_mapped_section (CORE_ADDR pc)
c906108c 3071{
c5aa993b 3072 struct objfile *objfile;
c906108c
SS
3073 struct obj_section *osect;
3074
3075 if (overlay_debugging)
3076 ALL_OBJSECTIONS (objfile, osect)
714835d5
UW
3077 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3078 return osect;
c906108c
SS
3079
3080 return NULL;
3081}
3082
3083/* Function: list_overlays_command
3084 Print a list of mapped sections and their PC ranges */
3085
3086void
fba45db2 3087list_overlays_command (char *args, int from_tty)
c906108c 3088{
c5aa993b
JM
3089 int nmapped = 0;
3090 struct objfile *objfile;
c906108c
SS
3091 struct obj_section *osect;
3092
3093 if (overlay_debugging)
3094 ALL_OBJSECTIONS (objfile, osect)
714835d5 3095 if (section_is_mapped (osect))
c5aa993b 3096 {
5af949e3 3097 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c5aa993b
JM
3098 const char *name;
3099 bfd_vma lma, vma;
3100 int size;
3101
3102 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3103 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3104 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3105 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3106
3107 printf_filtered ("Section %s, loaded at ", name);
5af949e3 3108 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
c5aa993b 3109 puts_filtered (" - ");
5af949e3 3110 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
c5aa993b 3111 printf_filtered (", mapped at ");
5af949e3 3112 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
c5aa993b 3113 puts_filtered (" - ");
5af949e3 3114 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
c5aa993b
JM
3115 puts_filtered ("\n");
3116
3117 nmapped++;
3118 }
c906108c 3119 if (nmapped == 0)
a3f17187 3120 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3121}
3122
3123/* Function: map_overlay_command
3124 Mark the named section as mapped (ie. residing at its VMA address). */
3125
3126void
fba45db2 3127map_overlay_command (char *args, int from_tty)
c906108c 3128{
c5aa993b
JM
3129 struct objfile *objfile, *objfile2;
3130 struct obj_section *sec, *sec2;
c906108c
SS
3131
3132 if (!overlay_debugging)
8a3fe4f8 3133 error (_("\
515ad16c 3134Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3135the 'overlay manual' command."));
c906108c
SS
3136
3137 if (args == 0 || *args == 0)
8a3fe4f8 3138 error (_("Argument required: name of an overlay section"));
c906108c
SS
3139
3140 /* First, find a section matching the user supplied argument */
3141 ALL_OBJSECTIONS (objfile, sec)
3142 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3143 {
3144 /* Now, check to see if the section is an overlay. */
714835d5 3145 if (!section_is_overlay (sec))
c5aa993b
JM
3146 continue; /* not an overlay section */
3147
3148 /* Mark the overlay as "mapped" */
3149 sec->ovly_mapped = 1;
3150
3151 /* Next, make a pass and unmap any sections that are
3152 overlapped by this new section: */
3153 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3154 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3155 {
3156 if (info_verbose)
a3f17187 3157 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3158 bfd_section_name (objfile->obfd,
3159 sec2->the_bfd_section));
3160 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3161 }
3162 return;
3163 }
8a3fe4f8 3164 error (_("No overlay section called %s"), args);
c906108c
SS
3165}
3166
3167/* Function: unmap_overlay_command
5417f6dc 3168 Mark the overlay section as unmapped
c906108c
SS
3169 (ie. resident in its LMA address range, rather than the VMA range). */
3170
3171void
fba45db2 3172unmap_overlay_command (char *args, int from_tty)
c906108c 3173{
c5aa993b 3174 struct objfile *objfile;
c906108c
SS
3175 struct obj_section *sec;
3176
3177 if (!overlay_debugging)
8a3fe4f8 3178 error (_("\
515ad16c 3179Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3180the 'overlay manual' command."));
c906108c
SS
3181
3182 if (args == 0 || *args == 0)
8a3fe4f8 3183 error (_("Argument required: name of an overlay section"));
c906108c
SS
3184
3185 /* First, find a section matching the user supplied argument */
3186 ALL_OBJSECTIONS (objfile, sec)
3187 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3188 {
3189 if (!sec->ovly_mapped)
8a3fe4f8 3190 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3191 sec->ovly_mapped = 0;
3192 return;
3193 }
8a3fe4f8 3194 error (_("No overlay section called %s"), args);
c906108c
SS
3195}
3196
3197/* Function: overlay_auto_command
3198 A utility command to turn on overlay debugging.
3199 Possibly this should be done via a set/show command. */
3200
3201static void
fba45db2 3202overlay_auto_command (char *args, int from_tty)
c906108c 3203{
d874f1e2 3204 overlay_debugging = ovly_auto;
1900040c 3205 enable_overlay_breakpoints ();
c906108c 3206 if (info_verbose)
a3f17187 3207 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3208}
3209
3210/* Function: overlay_manual_command
3211 A utility command to turn on overlay debugging.
3212 Possibly this should be done via a set/show command. */
3213
3214static void
fba45db2 3215overlay_manual_command (char *args, int from_tty)
c906108c 3216{
d874f1e2 3217 overlay_debugging = ovly_on;
1900040c 3218 disable_overlay_breakpoints ();
c906108c 3219 if (info_verbose)
a3f17187 3220 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3221}
3222
3223/* Function: overlay_off_command
3224 A utility command to turn on overlay debugging.
3225 Possibly this should be done via a set/show command. */
3226
3227static void
fba45db2 3228overlay_off_command (char *args, int from_tty)
c906108c 3229{
d874f1e2 3230 overlay_debugging = ovly_off;
1900040c 3231 disable_overlay_breakpoints ();
c906108c 3232 if (info_verbose)
a3f17187 3233 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3234}
3235
3236static void
fba45db2 3237overlay_load_command (char *args, int from_tty)
c906108c 3238{
e17c207e
UW
3239 struct gdbarch *gdbarch = get_current_arch ();
3240
3241 if (gdbarch_overlay_update_p (gdbarch))
3242 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3243 else
8a3fe4f8 3244 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3245}
3246
3247/* Function: overlay_command
3248 A place-holder for a mis-typed command */
3249
3250/* Command list chain containing all defined "overlay" subcommands. */
3251struct cmd_list_element *overlaylist;
3252
3253static void
fba45db2 3254overlay_command (char *args, int from_tty)
c906108c 3255{
c5aa993b 3256 printf_unfiltered
c906108c
SS
3257 ("\"overlay\" must be followed by the name of an overlay command.\n");
3258 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3259}
3260
3261
3262/* Target Overlays for the "Simplest" overlay manager:
3263
5417f6dc
RM
3264 This is GDB's default target overlay layer. It works with the
3265 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3266 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3267 so targets that use a different runtime overlay manager can
c906108c
SS
3268 substitute their own overlay_update function and take over the
3269 function pointer.
3270
3271 The overlay_update function pokes around in the target's data structures
3272 to see what overlays are mapped, and updates GDB's overlay mapping with
3273 this information.
3274
3275 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3276 unsigned _novlys; /# number of overlay sections #/
3277 unsigned _ovly_table[_novlys][4] = {
3278 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3279 {..., ..., ..., ...},
3280 }
3281 unsigned _novly_regions; /# number of overlay regions #/
3282 unsigned _ovly_region_table[_novly_regions][3] = {
3283 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3284 {..., ..., ...},
3285 }
c906108c
SS
3286 These functions will attempt to update GDB's mappedness state in the
3287 symbol section table, based on the target's mappedness state.
3288
3289 To do this, we keep a cached copy of the target's _ovly_table, and
3290 attempt to detect when the cached copy is invalidated. The main
3291 entry point is "simple_overlay_update(SECT), which looks up SECT in
3292 the cached table and re-reads only the entry for that section from
3293 the target (whenever possible).
3294 */
3295
3296/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3297static unsigned (*cache_ovly_table)[4] = 0;
c906108c 3298#if 0
c5aa993b 3299static unsigned (*cache_ovly_region_table)[3] = 0;
c906108c 3300#endif
c5aa993b 3301static unsigned cache_novlys = 0;
c906108c 3302#if 0
c5aa993b 3303static unsigned cache_novly_regions = 0;
c906108c
SS
3304#endif
3305static CORE_ADDR cache_ovly_table_base = 0;
3306#if 0
3307static CORE_ADDR cache_ovly_region_table_base = 0;
3308#endif
c5aa993b
JM
3309enum ovly_index
3310 {
3311 VMA, SIZE, LMA, MAPPED
3312 };
c906108c
SS
3313
3314/* Throw away the cached copy of _ovly_table */
3315static void
fba45db2 3316simple_free_overlay_table (void)
c906108c
SS
3317{
3318 if (cache_ovly_table)
b8c9b27d 3319 xfree (cache_ovly_table);
c5aa993b 3320 cache_novlys = 0;
c906108c
SS
3321 cache_ovly_table = NULL;
3322 cache_ovly_table_base = 0;
3323}
3324
3325#if 0
3326/* Throw away the cached copy of _ovly_region_table */
3327static void
fba45db2 3328simple_free_overlay_region_table (void)
c906108c
SS
3329{
3330 if (cache_ovly_region_table)
b8c9b27d 3331 xfree (cache_ovly_region_table);
c5aa993b 3332 cache_novly_regions = 0;
c906108c
SS
3333 cache_ovly_region_table = NULL;
3334 cache_ovly_region_table_base = 0;
3335}
3336#endif
3337
9216df95 3338/* Read an array of ints of size SIZE from the target into a local buffer.
c906108c
SS
3339 Convert to host order. int LEN is number of ints */
3340static void
9216df95 3341read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3342 int len, int size, enum bfd_endian byte_order)
c906108c 3343{
34c0bd93 3344 /* FIXME (alloca): Not safe if array is very large. */
9216df95 3345 gdb_byte *buf = alloca (len * size);
c5aa993b 3346 int i;
c906108c 3347
9216df95 3348 read_memory (memaddr, buf, len * size);
c906108c 3349 for (i = 0; i < len; i++)
e17a4113 3350 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3351}
3352
3353/* Find and grab a copy of the target _ovly_table
3354 (and _novlys, which is needed for the table's size) */
c5aa993b 3355static int
fba45db2 3356simple_read_overlay_table (void)
c906108c 3357{
0d43edd1 3358 struct minimal_symbol *novlys_msym, *ovly_table_msym;
9216df95
UW
3359 struct gdbarch *gdbarch;
3360 int word_size;
e17a4113 3361 enum bfd_endian byte_order;
c906108c
SS
3362
3363 simple_free_overlay_table ();
9b27852e 3364 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3365 if (! novlys_msym)
c906108c 3366 {
8a3fe4f8 3367 error (_("Error reading inferior's overlay table: "
0d43edd1 3368 "couldn't find `_novlys' variable\n"
8a3fe4f8 3369 "in inferior. Use `overlay manual' mode."));
0d43edd1 3370 return 0;
c906108c 3371 }
0d43edd1 3372
9b27852e 3373 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3374 if (! ovly_table_msym)
3375 {
8a3fe4f8 3376 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3377 "`_ovly_table' array\n"
8a3fe4f8 3378 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3379 return 0;
3380 }
3381
9216df95
UW
3382 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3383 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3384 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3385
e17a4113
UW
3386 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3387 4, byte_order);
0d43edd1
JB
3388 cache_ovly_table
3389 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3390 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3391 read_target_long_array (cache_ovly_table_base,
777ea8f1 3392 (unsigned int *) cache_ovly_table,
e17a4113 3393 cache_novlys * 4, word_size, byte_order);
0d43edd1 3394
c5aa993b 3395 return 1; /* SUCCESS */
c906108c
SS
3396}
3397
3398#if 0
3399/* Find and grab a copy of the target _ovly_region_table
3400 (and _novly_regions, which is needed for the table's size) */
c5aa993b 3401static int
fba45db2 3402simple_read_overlay_region_table (void)
c906108c
SS
3403{
3404 struct minimal_symbol *msym;
e17a4113
UW
3405 struct gdbarch *gdbarch;
3406 int word_size;
3407 enum bfd_endian byte_order;
c906108c
SS
3408
3409 simple_free_overlay_region_table ();
9b27852e 3410 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
e17a4113 3411 if (msym == NULL)
c5aa993b 3412 return 0; /* failure */
e17a4113
UW
3413
3414 gdbarch = get_objfile_arch (msymbol_objfile (msym));
3415 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3416 byte_order = gdbarch_byte_order (gdbarch);
3417
3418 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym),
3419 4, byte_order);
3420
c906108c
SS
3421 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3422 if (cache_ovly_region_table != NULL)
3423 {
9b27852e 3424 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
c906108c
SS
3425 if (msym != NULL)
3426 {
3427 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
c5aa993b 3428 read_target_long_array (cache_ovly_region_table_base,
777ea8f1 3429 (unsigned int *) cache_ovly_region_table,
e17a4113
UW
3430 cache_novly_regions * 3,
3431 word_size, byte_order);
c906108c 3432 }
c5aa993b
JM
3433 else
3434 return 0; /* failure */
c906108c 3435 }
c5aa993b
JM
3436 else
3437 return 0; /* failure */
3438 return 1; /* SUCCESS */
c906108c
SS
3439}
3440#endif
3441
5417f6dc 3442/* Function: simple_overlay_update_1
c906108c
SS
3443 A helper function for simple_overlay_update. Assuming a cached copy
3444 of _ovly_table exists, look through it to find an entry whose vma,
3445 lma and size match those of OSECT. Re-read the entry and make sure
3446 it still matches OSECT (else the table may no longer be valid).
3447 Set OSECT's mapped state to match the entry. Return: 1 for
3448 success, 0 for failure. */
3449
3450static int
fba45db2 3451simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3452{
3453 int i, size;
fbd35540
MS
3454 bfd *obfd = osect->objfile->obfd;
3455 asection *bsect = osect->the_bfd_section;
9216df95
UW
3456 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3457 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3458 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3459
2c500098 3460 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3461 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3462 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3463 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3464 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c 3465 {
9216df95
UW
3466 read_target_long_array (cache_ovly_table_base + i * word_size,
3467 (unsigned int *) cache_ovly_table[i],
e17a4113 3468 4, word_size, byte_order);
fbd35540
MS
3469 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3470 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3471 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3472 {
3473 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3474 return 1;
3475 }
fbd35540 3476 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3477 return 0;
3478 }
3479 return 0;
3480}
3481
3482/* Function: simple_overlay_update
5417f6dc
RM
3483 If OSECT is NULL, then update all sections' mapped state
3484 (after re-reading the entire target _ovly_table).
3485 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3486 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3487 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3488 re-read the entire cache, and go ahead and update all sections. */
3489
1c772458 3490void
fba45db2 3491simple_overlay_update (struct obj_section *osect)
c906108c 3492{
c5aa993b 3493 struct objfile *objfile;
c906108c
SS
3494
3495 /* Were we given an osect to look up? NULL means do all of them. */
3496 if (osect)
3497 /* Have we got a cached copy of the target's overlay table? */
3498 if (cache_ovly_table != NULL)
3499 /* Does its cached location match what's currently in the symtab? */
c5aa993b 3500 if (cache_ovly_table_base ==
9b27852e 3501 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
c906108c
SS
3502 /* Then go ahead and try to look up this single section in the cache */
3503 if (simple_overlay_update_1 (osect))
3504 /* Found it! We're done. */
3505 return;
3506
3507 /* Cached table no good: need to read the entire table anew.
3508 Or else we want all the sections, in which case it's actually
3509 more efficient to read the whole table in one block anyway. */
3510
0d43edd1
JB
3511 if (! simple_read_overlay_table ())
3512 return;
3513
c906108c
SS
3514 /* Now may as well update all sections, even if only one was requested. */
3515 ALL_OBJSECTIONS (objfile, osect)
714835d5 3516 if (section_is_overlay (osect))
c5aa993b
JM
3517 {
3518 int i, size;
fbd35540
MS
3519 bfd *obfd = osect->objfile->obfd;
3520 asection *bsect = osect->the_bfd_section;
c5aa993b 3521
2c500098 3522 size = bfd_get_section_size (bsect);
c5aa993b 3523 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3524 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3525 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3526 /* && cache_ovly_table[i][SIZE] == size */ )
3527 { /* obj_section matches i'th entry in ovly_table */
c5aa993b
JM
3528 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3529 break; /* finished with inner for loop: break out */
3530 }
3531 }
c906108c
SS
3532}
3533
086df311
DJ
3534/* Set the output sections and output offsets for section SECTP in
3535 ABFD. The relocation code in BFD will read these offsets, so we
3536 need to be sure they're initialized. We map each section to itself,
3537 with no offset; this means that SECTP->vma will be honored. */
3538
3539static void
3540symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3541{
3542 sectp->output_section = sectp;
3543 sectp->output_offset = 0;
3544}
3545
ac8035ab
TG
3546/* Default implementation for sym_relocate. */
3547
3548
3549bfd_byte *
3550default_symfile_relocate (struct objfile *objfile, asection *sectp,
3551 bfd_byte *buf)
3552{
3553 bfd *abfd = objfile->obfd;
3554
3555 /* We're only interested in sections with relocation
3556 information. */
3557 if ((sectp->flags & SEC_RELOC) == 0)
3558 return NULL;
3559
3560 /* We will handle section offsets properly elsewhere, so relocate as if
3561 all sections begin at 0. */
3562 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3563
3564 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3565}
3566
086df311
DJ
3567/* Relocate the contents of a debug section SECTP in ABFD. The
3568 contents are stored in BUF if it is non-NULL, or returned in a
3569 malloc'd buffer otherwise.
3570
3571 For some platforms and debug info formats, shared libraries contain
3572 relocations against the debug sections (particularly for DWARF-2;
3573 one affected platform is PowerPC GNU/Linux, although it depends on
3574 the version of the linker in use). Also, ELF object files naturally
3575 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3576 the relocations in order to get the locations of symbols correct.
3577 Another example that may require relocation processing, is the
3578 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3579 debug section. */
086df311
DJ
3580
3581bfd_byte *
ac8035ab
TG
3582symfile_relocate_debug_section (struct objfile *objfile,
3583 asection *sectp, bfd_byte *buf)
086df311 3584{
ac8035ab 3585 gdb_assert (objfile->sf->sym_relocate);
086df311 3586
ac8035ab 3587 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3588}
c906108c 3589
31d99776
DJ
3590struct symfile_segment_data *
3591get_symfile_segment_data (bfd *abfd)
3592{
00b5771c 3593 const struct sym_fns *sf = find_sym_fns (abfd);
31d99776
DJ
3594
3595 if (sf == NULL)
3596 return NULL;
3597
3598 return sf->sym_segments (abfd);
3599}
3600
3601void
3602free_symfile_segment_data (struct symfile_segment_data *data)
3603{
3604 xfree (data->segment_bases);
3605 xfree (data->segment_sizes);
3606 xfree (data->segment_info);
3607 xfree (data);
3608}
3609
28c32713
JB
3610
3611/* Given:
3612 - DATA, containing segment addresses from the object file ABFD, and
3613 the mapping from ABFD's sections onto the segments that own them,
3614 and
3615 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3616 segment addresses reported by the target,
3617 store the appropriate offsets for each section in OFFSETS.
3618
3619 If there are fewer entries in SEGMENT_BASES than there are segments
3620 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3621
8d385431
DJ
3622 If there are more entries, then ignore the extra. The target may
3623 not be able to distinguish between an empty data segment and a
3624 missing data segment; a missing text segment is less plausible. */
31d99776
DJ
3625int
3626symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3627 struct section_offsets *offsets,
3628 int num_segment_bases,
3629 const CORE_ADDR *segment_bases)
3630{
3631 int i;
3632 asection *sect;
3633
28c32713
JB
3634 /* It doesn't make sense to call this function unless you have some
3635 segment base addresses. */
202b96c1 3636 gdb_assert (num_segment_bases > 0);
28c32713 3637
31d99776
DJ
3638 /* If we do not have segment mappings for the object file, we
3639 can not relocate it by segments. */
3640 gdb_assert (data != NULL);
3641 gdb_assert (data->num_segments > 0);
3642
31d99776
DJ
3643 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3644 {
31d99776
DJ
3645 int which = data->segment_info[i];
3646
28c32713
JB
3647 gdb_assert (0 <= which && which <= data->num_segments);
3648
3649 /* Don't bother computing offsets for sections that aren't
3650 loaded as part of any segment. */
3651 if (! which)
3652 continue;
3653
3654 /* Use the last SEGMENT_BASES entry as the address of any extra
3655 segments mentioned in DATA->segment_info. */
31d99776 3656 if (which > num_segment_bases)
28c32713 3657 which = num_segment_bases;
31d99776 3658
28c32713
JB
3659 offsets->offsets[i] = (segment_bases[which - 1]
3660 - data->segment_bases[which - 1]);
31d99776
DJ
3661 }
3662
3663 return 1;
3664}
3665
3666static void
3667symfile_find_segment_sections (struct objfile *objfile)
3668{
3669 bfd *abfd = objfile->obfd;
3670 int i;
3671 asection *sect;
3672 struct symfile_segment_data *data;
3673
3674 data = get_symfile_segment_data (objfile->obfd);
3675 if (data == NULL)
3676 return;
3677
3678 if (data->num_segments != 1 && data->num_segments != 2)
3679 {
3680 free_symfile_segment_data (data);
3681 return;
3682 }
3683
3684 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3685 {
31d99776
DJ
3686 int which = data->segment_info[i];
3687
3688 if (which == 1)
3689 {
3690 if (objfile->sect_index_text == -1)
3691 objfile->sect_index_text = sect->index;
3692
3693 if (objfile->sect_index_rodata == -1)
3694 objfile->sect_index_rodata = sect->index;
3695 }
3696 else if (which == 2)
3697 {
3698 if (objfile->sect_index_data == -1)
3699 objfile->sect_index_data = sect->index;
3700
3701 if (objfile->sect_index_bss == -1)
3702 objfile->sect_index_bss = sect->index;
3703 }
3704 }
3705
3706 free_symfile_segment_data (data);
3707}
3708
c906108c 3709void
fba45db2 3710_initialize_symfile (void)
c906108c
SS
3711{
3712 struct cmd_list_element *c;
c5aa993b 3713
1a966eab
AC
3714 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3715Load symbol table from executable file FILE.\n\
c906108c 3716The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3717to execute."), &cmdlist);
5ba2abeb 3718 set_cmd_completer (c, filename_completer);
c906108c 3719
1a966eab 3720 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3721Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
1a966eab 3722Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
2acceee2 3723ADDR is the starting address of the file's text.\n\
db162d44
EZ
3724The optional arguments are section-name section-address pairs and\n\
3725should be specified if the data and bss segments are not contiguous\n\
1a966eab 3726with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3727 &cmdlist);
5ba2abeb 3728 set_cmd_completer (c, filename_completer);
c906108c 3729
1a966eab
AC
3730 c = add_cmd ("load", class_files, load_command, _("\
3731Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
3732for access from GDB.\n\
3733A load OFFSET may also be given."), &cmdlist);
5ba2abeb 3734 set_cmd_completer (c, filename_completer);
c906108c 3735
5bf193a2
AC
3736 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3737 &symbol_reloading, _("\
3738Set dynamic symbol table reloading multiple times in one run."), _("\
3739Show dynamic symbol table reloading multiple times in one run."), NULL,
3740 NULL,
920d2a44 3741 show_symbol_reloading,
5bf193a2 3742 &setlist, &showlist);
c906108c 3743
c5aa993b 3744 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3745 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3746 "overlay ", 0, &cmdlist);
3747
3748 add_com_alias ("ovly", "overlay", class_alias, 1);
3749 add_com_alias ("ov", "overlay", class_alias, 1);
3750
c5aa993b 3751 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3752 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3753
c5aa993b 3754 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3755 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3756
c5aa993b 3757 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3758 _("List mappings of overlay sections."), &overlaylist);
c906108c 3759
c5aa993b 3760 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3761 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3762 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3763 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3764 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3765 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3766 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3767 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3768
3769 /* Filename extension to source language lookup table: */
3770 init_filename_language_table ();
26c41df3
AC
3771 add_setshow_string_noescape_cmd ("extension-language", class_files,
3772 &ext_args, _("\
3773Set mapping between filename extension and source language."), _("\
3774Show mapping between filename extension and source language."), _("\
3775Usage: set extension-language .foo bar"),
3776 set_ext_lang_command,
920d2a44 3777 show_ext_args,
26c41df3 3778 &setlist, &showlist);
c906108c 3779
c5aa993b 3780 add_info ("extensions", info_ext_lang_command,
1bedd215 3781 _("All filename extensions associated with a source language."));
917317f4 3782
525226b5
AC
3783 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3784 &debug_file_directory, _("\
24ddea62
JK
3785Set the directories where separate debug symbols are searched for."), _("\
3786Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
3787Separate debug symbols are first searched for in the same\n\
3788directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3789and lastly at the path of the directory of the binary with\n\
24ddea62 3790each global debug-file-directory component prepended."),
525226b5 3791 NULL,
920d2a44 3792 show_debug_file_directory,
525226b5 3793 &setlist, &showlist);
c906108c 3794}
This page took 1.669454 seconds and 4 git commands to generate.