include/coff/
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
6aba47ca 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
0fb0cc75 4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
777ea8f1 5 Free Software Foundation, Inc.
8926118c 6
c906108c
SS
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
a9762ec7 13 the Free Software Foundation; either version 3 of the License, or
c5aa993b 14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b 21 You should have received a copy of the GNU General Public License
a9762ec7 22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
23
24#include "defs.h"
e17c207e 25#include "arch-utils.h"
086df311 26#include "bfdlink.h"
c906108c
SS
27#include "symtab.h"
28#include "gdbtypes.h"
29#include "gdbcore.h"
30#include "frame.h"
31#include "target.h"
32#include "value.h"
33#include "symfile.h"
34#include "objfiles.h"
0378c332 35#include "source.h"
c906108c
SS
36#include "gdbcmd.h"
37#include "breakpoint.h"
38#include "language.h"
39#include "complaints.h"
40#include "demangle.h"
fb14de7b
UW
41#include "inferior.h"
42#include "regcache.h"
5b5d99cf 43#include "filenames.h" /* for DOSish file names */
c906108c 44#include "gdb-stabs.h"
04ea0df1 45#include "gdb_obstack.h"
d75b5104 46#include "completer.h"
af5f3db6 47#include "bcache.h"
2de7ced7 48#include "hashtab.h"
dbda9972 49#include "readline/readline.h"
7e8580c1 50#include "gdb_assert.h"
fe898f56 51#include "block.h"
ea53e89f 52#include "observer.h"
c1bd25fd 53#include "exec.h"
9bdcbae7 54#include "parser-defs.h"
8756216b 55#include "varobj.h"
77069918 56#include "elf-bfd.h"
e85a822c 57#include "solib.h"
f1838a98 58#include "remote.h"
c906108c 59
c906108c
SS
60#include <sys/types.h>
61#include <fcntl.h>
62#include "gdb_string.h"
63#include "gdb_stat.h"
64#include <ctype.h>
65#include <time.h>
2b71414d 66#include <sys/time.h>
c906108c 67
c906108c 68
9a4105ab
AC
69int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
70void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
71 unsigned long section_sent,
72 unsigned long section_size,
73 unsigned long total_sent,
c2d11a7d 74 unsigned long total_size);
769d7dc4
AC
75void (*deprecated_pre_add_symbol_hook) (const char *);
76void (*deprecated_post_add_symbol_hook) (void);
c906108c 77
74b7792f
AC
78static void clear_symtab_users_cleanup (void *ignore);
79
c906108c 80/* Global variables owned by this file */
c5aa993b 81int readnow_symbol_files; /* Read full symbols immediately */
c906108c 82
c906108c
SS
83/* External variables and functions referenced. */
84
a14ed312 85extern void report_transfer_performance (unsigned long, time_t, time_t);
c906108c
SS
86
87/* Functions this file defines */
88
89#if 0
a14ed312
KB
90static int simple_read_overlay_region_table (void);
91static void simple_free_overlay_region_table (void);
c906108c
SS
92#endif
93
a14ed312 94static void load_command (char *, int);
c906108c 95
d7db6da9
FN
96static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
97
a14ed312 98static void add_symbol_file_command (char *, int);
c906108c 99
5b5d99cf
JB
100static void reread_separate_symbols (struct objfile *objfile);
101
a14ed312 102static void cashier_psymtab (struct partial_symtab *);
c906108c 103
a14ed312 104bfd *symfile_bfd_open (char *);
c906108c 105
0e931cf0
JB
106int get_section_index (struct objfile *, char *);
107
31d99776 108static struct sym_fns *find_sym_fns (bfd *);
c906108c 109
a14ed312 110static void decrement_reading_symtab (void *);
c906108c 111
a14ed312 112static void overlay_invalidate_all (void);
c906108c 113
a14ed312 114void list_overlays_command (char *, int);
c906108c 115
a14ed312 116void map_overlay_command (char *, int);
c906108c 117
a14ed312 118void unmap_overlay_command (char *, int);
c906108c 119
a14ed312 120static void overlay_auto_command (char *, int);
c906108c 121
a14ed312 122static void overlay_manual_command (char *, int);
c906108c 123
a14ed312 124static void overlay_off_command (char *, int);
c906108c 125
a14ed312 126static void overlay_load_command (char *, int);
c906108c 127
a14ed312 128static void overlay_command (char *, int);
c906108c 129
a14ed312 130static void simple_free_overlay_table (void);
c906108c 131
e17a4113
UW
132static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
133 enum bfd_endian);
c906108c 134
a14ed312 135static int simple_read_overlay_table (void);
c906108c 136
a14ed312 137static int simple_overlay_update_1 (struct obj_section *);
c906108c 138
a14ed312 139static void add_filename_language (char *ext, enum language lang);
392a587b 140
a14ed312 141static void info_ext_lang_command (char *args, int from_tty);
392a587b 142
5b5d99cf
JB
143static char *find_separate_debug_file (struct objfile *objfile);
144
a14ed312 145static void init_filename_language_table (void);
392a587b 146
31d99776
DJ
147static void symfile_find_segment_sections (struct objfile *objfile);
148
a14ed312 149void _initialize_symfile (void);
c906108c
SS
150
151/* List of all available sym_fns. On gdb startup, each object file reader
152 calls add_symtab_fns() to register information on each format it is
153 prepared to read. */
154
155static struct sym_fns *symtab_fns = NULL;
156
157/* Flag for whether user will be reloading symbols multiple times.
158 Defaults to ON for VxWorks, otherwise OFF. */
159
160#ifdef SYMBOL_RELOADING_DEFAULT
161int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
162#else
163int symbol_reloading = 0;
164#endif
920d2a44
AC
165static void
166show_symbol_reloading (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
168{
169 fprintf_filtered (file, _("\
170Dynamic symbol table reloading multiple times in one run is %s.\n"),
171 value);
172}
173
bf250677
DE
174/* If non-zero, gdb will notify the user when it is loading symbols
175 from a file. This is almost always what users will want to have happen;
176 but for programs with lots of dynamically linked libraries, the output
177 can be more noise than signal. */
178
179int print_symbol_loading = 1;
c906108c 180
b7209cb4
FF
181/* If non-zero, shared library symbols will be added automatically
182 when the inferior is created, new libraries are loaded, or when
183 attaching to the inferior. This is almost always what users will
184 want to have happen; but for very large programs, the startup time
185 will be excessive, and so if this is a problem, the user can clear
186 this flag and then add the shared library symbols as needed. Note
187 that there is a potential for confusion, since if the shared
c906108c 188 library symbols are not loaded, commands like "info fun" will *not*
b7209cb4 189 report all the functions that are actually present. */
c906108c
SS
190
191int auto_solib_add = 1;
b7209cb4
FF
192
193/* For systems that support it, a threshold size in megabytes. If
194 automatically adding a new library's symbol table to those already
195 known to the debugger would cause the total shared library symbol
196 size to exceed this threshhold, then the shlib's symbols are not
197 added. The threshold is ignored if the user explicitly asks for a
198 shlib to be added, such as when using the "sharedlibrary"
199 command. */
200
201int auto_solib_limit;
c906108c 202\f
c5aa993b 203
0fe19209
DC
204/* This compares two partial symbols by names, using strcmp_iw_ordered
205 for the comparison. */
c906108c
SS
206
207static int
0cd64fe2 208compare_psymbols (const void *s1p, const void *s2p)
c906108c 209{
0fe19209
DC
210 struct partial_symbol *const *s1 = s1p;
211 struct partial_symbol *const *s2 = s2p;
212
4725b721
PH
213 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
214 SYMBOL_SEARCH_NAME (*s2));
c906108c
SS
215}
216
217void
fba45db2 218sort_pst_symbols (struct partial_symtab *pst)
c906108c
SS
219{
220 /* Sort the global list; don't sort the static list */
221
c5aa993b
JM
222 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
223 pst->n_global_syms, sizeof (struct partial_symbol *),
c906108c
SS
224 compare_psymbols);
225}
226
c906108c
SS
227/* Make a null terminated copy of the string at PTR with SIZE characters in
228 the obstack pointed to by OBSTACKP . Returns the address of the copy.
229 Note that the string at PTR does not have to be null terminated, I.E. it
230 may be part of a larger string and we are only saving a substring. */
231
232char *
63ca651f 233obsavestring (const char *ptr, int size, struct obstack *obstackp)
c906108c 234{
52f0bd74 235 char *p = (char *) obstack_alloc (obstackp, size + 1);
c906108c
SS
236 /* Open-coded memcpy--saves function call time. These strings are usually
237 short. FIXME: Is this really still true with a compiler that can
238 inline memcpy? */
239 {
aa1ee363
AC
240 const char *p1 = ptr;
241 char *p2 = p;
63ca651f 242 const char *end = ptr + size;
c906108c
SS
243 while (p1 != end)
244 *p2++ = *p1++;
245 }
246 p[size] = 0;
247 return p;
248}
249
250/* Concatenate strings S1, S2 and S3; return the new string. Space is found
251 in the obstack pointed to by OBSTACKP. */
252
253char *
fba45db2
KB
254obconcat (struct obstack *obstackp, const char *s1, const char *s2,
255 const char *s3)
c906108c 256{
52f0bd74
AC
257 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
258 char *val = (char *) obstack_alloc (obstackp, len);
c906108c
SS
259 strcpy (val, s1);
260 strcat (val, s2);
261 strcat (val, s3);
262 return val;
263}
264
265/* True if we are nested inside psymtab_to_symtab. */
266
267int currently_reading_symtab = 0;
268
269static void
fba45db2 270decrement_reading_symtab (void *dummy)
c906108c
SS
271{
272 currently_reading_symtab--;
273}
274
275/* Get the symbol table that corresponds to a partial_symtab.
276 This is fast after the first time you do it. In fact, there
277 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
278 case inline. */
279
280struct symtab *
aa1ee363 281psymtab_to_symtab (struct partial_symtab *pst)
c906108c
SS
282{
283 /* If it's been looked up before, return it. */
284 if (pst->symtab)
285 return pst->symtab;
286
287 /* If it has not yet been read in, read it. */
288 if (!pst->readin)
c5aa993b 289 {
c906108c
SS
290 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
291 currently_reading_symtab++;
292 (*pst->read_symtab) (pst);
293 do_cleanups (back_to);
294 }
295
296 return pst->symtab;
297}
298
5417f6dc
RM
299/* Remember the lowest-addressed loadable section we've seen.
300 This function is called via bfd_map_over_sections.
c906108c
SS
301
302 In case of equal vmas, the section with the largest size becomes the
303 lowest-addressed loadable section.
304
305 If the vmas and sizes are equal, the last section is considered the
306 lowest-addressed loadable section. */
307
308void
4efb68b1 309find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 310{
c5aa993b 311 asection **lowest = (asection **) obj;
c906108c
SS
312
313 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
314 return;
315 if (!*lowest)
316 *lowest = sect; /* First loadable section */
317 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
318 *lowest = sect; /* A lower loadable section */
319 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
320 && (bfd_section_size (abfd, (*lowest))
321 <= bfd_section_size (abfd, sect)))
322 *lowest = sect;
323}
324
a39a16c4
MM
325/* Create a new section_addr_info, with room for NUM_SECTIONS. */
326
327struct section_addr_info *
328alloc_section_addr_info (size_t num_sections)
329{
330 struct section_addr_info *sap;
331 size_t size;
332
333 size = (sizeof (struct section_addr_info)
334 + sizeof (struct other_sections) * (num_sections - 1));
335 sap = (struct section_addr_info *) xmalloc (size);
336 memset (sap, 0, size);
337 sap->num_sections = num_sections;
338
339 return sap;
340}
62557bbc 341
7b90c3f9
JB
342
343/* Return a freshly allocated copy of ADDRS. The section names, if
344 any, are also freshly allocated copies of those in ADDRS. */
345struct section_addr_info *
346copy_section_addr_info (struct section_addr_info *addrs)
347{
348 struct section_addr_info *copy
349 = alloc_section_addr_info (addrs->num_sections);
350 int i;
351
352 copy->num_sections = addrs->num_sections;
353 for (i = 0; i < addrs->num_sections; i++)
354 {
355 copy->other[i].addr = addrs->other[i].addr;
356 if (addrs->other[i].name)
357 copy->other[i].name = xstrdup (addrs->other[i].name);
358 else
359 copy->other[i].name = NULL;
360 copy->other[i].sectindex = addrs->other[i].sectindex;
361 }
362
363 return copy;
364}
365
366
367
62557bbc
KB
368/* Build (allocate and populate) a section_addr_info struct from
369 an existing section table. */
370
371extern struct section_addr_info *
0542c86d
PA
372build_section_addr_info_from_section_table (const struct target_section *start,
373 const struct target_section *end)
62557bbc
KB
374{
375 struct section_addr_info *sap;
0542c86d 376 const struct target_section *stp;
62557bbc
KB
377 int oidx;
378
a39a16c4 379 sap = alloc_section_addr_info (end - start);
62557bbc
KB
380
381 for (stp = start, oidx = 0; stp != end; stp++)
382 {
5417f6dc 383 if (bfd_get_section_flags (stp->bfd,
fbd35540 384 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 385 && oidx < end - start)
62557bbc
KB
386 {
387 sap->other[oidx].addr = stp->addr;
5417f6dc 388 sap->other[oidx].name
fbd35540 389 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
62557bbc
KB
390 sap->other[oidx].sectindex = stp->the_bfd_section->index;
391 oidx++;
392 }
393 }
394
395 return sap;
396}
397
398
399/* Free all memory allocated by build_section_addr_info_from_section_table. */
400
401extern void
402free_section_addr_info (struct section_addr_info *sap)
403{
404 int idx;
405
a39a16c4 406 for (idx = 0; idx < sap->num_sections; idx++)
62557bbc 407 if (sap->other[idx].name)
b8c9b27d
KB
408 xfree (sap->other[idx].name);
409 xfree (sap);
62557bbc
KB
410}
411
412
e8289572
JB
413/* Initialize OBJFILE's sect_index_* members. */
414static void
415init_objfile_sect_indices (struct objfile *objfile)
c906108c 416{
e8289572 417 asection *sect;
c906108c 418 int i;
5417f6dc 419
b8fbeb18 420 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 421 if (sect)
b8fbeb18
EZ
422 objfile->sect_index_text = sect->index;
423
424 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 425 if (sect)
b8fbeb18
EZ
426 objfile->sect_index_data = sect->index;
427
428 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 429 if (sect)
b8fbeb18
EZ
430 objfile->sect_index_bss = sect->index;
431
432 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 433 if (sect)
b8fbeb18
EZ
434 objfile->sect_index_rodata = sect->index;
435
bbcd32ad
FF
436 /* This is where things get really weird... We MUST have valid
437 indices for the various sect_index_* members or gdb will abort.
438 So if for example, there is no ".text" section, we have to
31d99776
DJ
439 accomodate that. First, check for a file with the standard
440 one or two segments. */
441
442 symfile_find_segment_sections (objfile);
443
444 /* Except when explicitly adding symbol files at some address,
445 section_offsets contains nothing but zeros, so it doesn't matter
446 which slot in section_offsets the individual sect_index_* members
447 index into. So if they are all zero, it is safe to just point
448 all the currently uninitialized indices to the first slot. But
449 beware: if this is the main executable, it may be relocated
450 later, e.g. by the remote qOffsets packet, and then this will
451 be wrong! That's why we try segments first. */
bbcd32ad
FF
452
453 for (i = 0; i < objfile->num_sections; i++)
454 {
455 if (ANOFFSET (objfile->section_offsets, i) != 0)
456 {
457 break;
458 }
459 }
460 if (i == objfile->num_sections)
461 {
462 if (objfile->sect_index_text == -1)
463 objfile->sect_index_text = 0;
464 if (objfile->sect_index_data == -1)
465 objfile->sect_index_data = 0;
466 if (objfile->sect_index_bss == -1)
467 objfile->sect_index_bss = 0;
468 if (objfile->sect_index_rodata == -1)
469 objfile->sect_index_rodata = 0;
470 }
b8fbeb18 471}
c906108c 472
c1bd25fd
DJ
473/* The arguments to place_section. */
474
475struct place_section_arg
476{
477 struct section_offsets *offsets;
478 CORE_ADDR lowest;
479};
480
481/* Find a unique offset to use for loadable section SECT if
482 the user did not provide an offset. */
483
2c0b251b 484static void
c1bd25fd
DJ
485place_section (bfd *abfd, asection *sect, void *obj)
486{
487 struct place_section_arg *arg = obj;
488 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
489 int done;
3bd72c6f 490 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 491
2711e456
DJ
492 /* We are only interested in allocated sections. */
493 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
494 return;
495
496 /* If the user specified an offset, honor it. */
497 if (offsets[sect->index] != 0)
498 return;
499
500 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
501 start_addr = (arg->lowest + align - 1) & -align;
502
c1bd25fd
DJ
503 do {
504 asection *cur_sec;
c1bd25fd 505
c1bd25fd
DJ
506 done = 1;
507
508 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
509 {
510 int indx = cur_sec->index;
511 CORE_ADDR cur_offset;
512
513 /* We don't need to compare against ourself. */
514 if (cur_sec == sect)
515 continue;
516
2711e456
DJ
517 /* We can only conflict with allocated sections. */
518 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
519 continue;
520
521 /* If the section offset is 0, either the section has not been placed
522 yet, or it was the lowest section placed (in which case LOWEST
523 will be past its end). */
524 if (offsets[indx] == 0)
525 continue;
526
527 /* If this section would overlap us, then we must move up. */
528 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
529 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
530 {
531 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
532 start_addr = (start_addr + align - 1) & -align;
533 done = 0;
3bd72c6f 534 break;
c1bd25fd
DJ
535 }
536
537 /* Otherwise, we appear to be OK. So far. */
538 }
539 }
540 while (!done);
541
542 offsets[sect->index] = start_addr;
543 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 544}
e8289572
JB
545
546/* Parse the user's idea of an offset for dynamic linking, into our idea
5417f6dc 547 of how to represent it for fast symbol reading. This is the default
e8289572
JB
548 version of the sym_fns.sym_offsets function for symbol readers that
549 don't need to do anything special. It allocates a section_offsets table
550 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
551
552void
553default_symfile_offsets (struct objfile *objfile,
554 struct section_addr_info *addrs)
555{
556 int i;
557
a39a16c4 558 objfile->num_sections = bfd_count_sections (objfile->obfd);
e8289572 559 objfile->section_offsets = (struct section_offsets *)
5417f6dc 560 obstack_alloc (&objfile->objfile_obstack,
a39a16c4 561 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
5417f6dc 562 memset (objfile->section_offsets, 0,
a39a16c4 563 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
e8289572
JB
564
565 /* Now calculate offsets for section that were specified by the
566 caller. */
a39a16c4 567 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
e8289572
JB
568 {
569 struct other_sections *osp ;
570
571 osp = &addrs->other[i] ;
572 if (osp->addr == 0)
573 continue;
574
575 /* Record all sections in offsets */
576 /* The section_offsets in the objfile are here filled in using
577 the BFD index. */
578 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
579 }
580
c1bd25fd
DJ
581 /* For relocatable files, all loadable sections will start at zero.
582 The zero is meaningless, so try to pick arbitrary addresses such
583 that no loadable sections overlap. This algorithm is quadratic,
584 but the number of sections in a single object file is generally
585 small. */
586 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
587 {
588 struct place_section_arg arg;
2711e456
DJ
589 bfd *abfd = objfile->obfd;
590 asection *cur_sec;
591 CORE_ADDR lowest = 0;
592
593 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
594 /* We do not expect this to happen; just skip this step if the
595 relocatable file has a section with an assigned VMA. */
596 if (bfd_section_vma (abfd, cur_sec) != 0)
597 break;
598
599 if (cur_sec == NULL)
600 {
601 CORE_ADDR *offsets = objfile->section_offsets->offsets;
602
603 /* Pick non-overlapping offsets for sections the user did not
604 place explicitly. */
605 arg.offsets = objfile->section_offsets;
606 arg.lowest = 0;
607 bfd_map_over_sections (objfile->obfd, place_section, &arg);
608
609 /* Correctly filling in the section offsets is not quite
610 enough. Relocatable files have two properties that
611 (most) shared objects do not:
612
613 - Their debug information will contain relocations. Some
614 shared libraries do also, but many do not, so this can not
615 be assumed.
616
617 - If there are multiple code sections they will be loaded
618 at different relative addresses in memory than they are
619 in the objfile, since all sections in the file will start
620 at address zero.
621
622 Because GDB has very limited ability to map from an
623 address in debug info to the correct code section,
624 it relies on adding SECT_OFF_TEXT to things which might be
625 code. If we clear all the section offsets, and set the
626 section VMAs instead, then symfile_relocate_debug_section
627 will return meaningful debug information pointing at the
628 correct sections.
629
630 GDB has too many different data structures for section
631 addresses - a bfd, objfile, and so_list all have section
632 tables, as does exec_ops. Some of these could probably
633 be eliminated. */
634
635 for (cur_sec = abfd->sections; cur_sec != NULL;
636 cur_sec = cur_sec->next)
637 {
638 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
639 continue;
640
641 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
30510692
DJ
642 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
643 offsets[cur_sec->index]);
2711e456
DJ
644 offsets[cur_sec->index] = 0;
645 }
646 }
c1bd25fd
DJ
647 }
648
e8289572
JB
649 /* Remember the bfd indexes for the .text, .data, .bss and
650 .rodata sections. */
651 init_objfile_sect_indices (objfile);
652}
653
654
31d99776
DJ
655/* Divide the file into segments, which are individual relocatable units.
656 This is the default version of the sym_fns.sym_segments function for
657 symbol readers that do not have an explicit representation of segments.
658 It assumes that object files do not have segments, and fully linked
659 files have a single segment. */
660
661struct symfile_segment_data *
662default_symfile_segments (bfd *abfd)
663{
664 int num_sections, i;
665 asection *sect;
666 struct symfile_segment_data *data;
667 CORE_ADDR low, high;
668
669 /* Relocatable files contain enough information to position each
670 loadable section independently; they should not be relocated
671 in segments. */
672 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
673 return NULL;
674
675 /* Make sure there is at least one loadable section in the file. */
676 for (sect = abfd->sections; sect != NULL; sect = sect->next)
677 {
678 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
679 continue;
680
681 break;
682 }
683 if (sect == NULL)
684 return NULL;
685
686 low = bfd_get_section_vma (abfd, sect);
687 high = low + bfd_get_section_size (sect);
688
689 data = XZALLOC (struct symfile_segment_data);
690 data->num_segments = 1;
691 data->segment_bases = XCALLOC (1, CORE_ADDR);
692 data->segment_sizes = XCALLOC (1, CORE_ADDR);
693
694 num_sections = bfd_count_sections (abfd);
695 data->segment_info = XCALLOC (num_sections, int);
696
697 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
698 {
699 CORE_ADDR vma;
700
701 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
702 continue;
703
704 vma = bfd_get_section_vma (abfd, sect);
705 if (vma < low)
706 low = vma;
707 if (vma + bfd_get_section_size (sect) > high)
708 high = vma + bfd_get_section_size (sect);
709
710 data->segment_info[i] = 1;
711 }
712
713 data->segment_bases[0] = low;
714 data->segment_sizes[0] = high - low;
715
716 return data;
717}
718
c906108c
SS
719/* Process a symbol file, as either the main file or as a dynamically
720 loaded file.
721
96baa820
JM
722 OBJFILE is where the symbols are to be read from.
723
7e8580c1
JB
724 ADDRS is the list of section load addresses. If the user has given
725 an 'add-symbol-file' command, then this is the list of offsets and
726 addresses he or she provided as arguments to the command; or, if
727 we're handling a shared library, these are the actual addresses the
728 sections are loaded at, according to the inferior's dynamic linker
729 (as gleaned by GDB's shared library code). We convert each address
730 into an offset from the section VMA's as it appears in the object
731 file, and then call the file's sym_offsets function to convert this
732 into a format-specific offset table --- a `struct section_offsets'.
733 If ADDRS is non-zero, OFFSETS must be zero.
734
735 OFFSETS is a table of section offsets already in the right
736 format-specific representation. NUM_OFFSETS is the number of
737 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
738 assume this is the proper table the call to sym_offsets described
739 above would produce. Instead of calling sym_offsets, we just dump
740 it right into objfile->section_offsets. (When we're re-reading
741 symbols from an objfile, we don't have the original load address
742 list any more; all we have is the section offset table.) If
743 OFFSETS is non-zero, ADDRS must be zero.
96baa820 744
7eedccfa
PP
745 ADD_FLAGS encodes verbosity level, whether this is main symbol or
746 an extra symbol file such as dynamically loaded code, and wether
747 breakpoint reset should be deferred. */
c906108c
SS
748
749void
7e8580c1
JB
750syms_from_objfile (struct objfile *objfile,
751 struct section_addr_info *addrs,
752 struct section_offsets *offsets,
753 int num_offsets,
7eedccfa 754 int add_flags)
c906108c 755{
a39a16c4 756 struct section_addr_info *local_addr = NULL;
c906108c 757 struct cleanup *old_chain;
7eedccfa 758 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 759
7e8580c1 760 gdb_assert (! (addrs && offsets));
2acceee2 761
c906108c 762 init_entry_point_info (objfile);
31d99776 763 objfile->sf = find_sym_fns (objfile->obfd);
c906108c 764
75245b24
MS
765 if (objfile->sf == NULL)
766 return; /* No symbols. */
767
c906108c
SS
768 /* Make sure that partially constructed symbol tables will be cleaned up
769 if an error occurs during symbol reading. */
74b7792f 770 old_chain = make_cleanup_free_objfile (objfile);
c906108c 771
a39a16c4
MM
772 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
773 list. We now establish the convention that an addr of zero means
774 no load address was specified. */
775 if (! addrs && ! offsets)
776 {
5417f6dc 777 local_addr
a39a16c4
MM
778 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
779 make_cleanup (xfree, local_addr);
780 addrs = local_addr;
781 }
782
783 /* Now either addrs or offsets is non-zero. */
784
c5aa993b 785 if (mainline)
c906108c
SS
786 {
787 /* We will modify the main symbol table, make sure that all its users
c5aa993b 788 will be cleaned up if an error occurs during symbol reading. */
74b7792f 789 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
790
791 /* Since no error yet, throw away the old symbol table. */
792
793 if (symfile_objfile != NULL)
794 {
795 free_objfile (symfile_objfile);
796 symfile_objfile = NULL;
797 }
798
799 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
800 If the user wants to get rid of them, they should do "symbol-file"
801 without arguments first. Not sure this is the best behavior
802 (PR 2207). */
c906108c 803
c5aa993b 804 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
805 }
806
807 /* Convert addr into an offset rather than an absolute address.
808 We find the lowest address of a loaded segment in the objfile,
53a5351d 809 and assume that <addr> is where that got loaded.
c906108c 810
53a5351d
JM
811 We no longer warn if the lowest section is not a text segment (as
812 happens for the PA64 port. */
1549f619 813 if (!mainline && addrs && addrs->other[0].name)
c906108c 814 {
1549f619
EZ
815 asection *lower_sect;
816 asection *sect;
817 CORE_ADDR lower_offset;
818 int i;
819
5417f6dc 820 /* Find lowest loadable section to be used as starting point for
2acceee2
JM
821 continguous sections. FIXME!! won't work without call to find
822 .text first, but this assumes text is lowest section. */
823 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
824 if (lower_sect == NULL)
c906108c 825 bfd_map_over_sections (objfile->obfd, find_lowest_section,
4efb68b1 826 &lower_sect);
2acceee2 827 if (lower_sect == NULL)
ff8e85c3
PA
828 {
829 warning (_("no loadable sections found in added symbol-file %s"),
830 objfile->name);
831 lower_offset = 0;
832 }
2acceee2 833 else
ff8e85c3 834 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
5417f6dc 835
13de58df 836 /* Calculate offsets for the loadable sections.
2acceee2
JM
837 FIXME! Sections must be in order of increasing loadable section
838 so that contiguous sections can use the lower-offset!!!
5417f6dc 839
13de58df
JB
840 Adjust offsets if the segments are not contiguous.
841 If the section is contiguous, its offset should be set to
2acceee2
JM
842 the offset of the highest loadable section lower than it
843 (the loadable section directly below it in memory).
844 this_offset = lower_offset = lower_addr - lower_orig_addr */
845
1549f619 846 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
7e8580c1
JB
847 {
848 if (addrs->other[i].addr != 0)
849 {
850 sect = bfd_get_section_by_name (objfile->obfd,
851 addrs->other[i].name);
852 if (sect)
853 {
854 addrs->other[i].addr
855 -= bfd_section_vma (objfile->obfd, sect);
856 lower_offset = addrs->other[i].addr;
857 /* This is the index used by BFD. */
858 addrs->other[i].sectindex = sect->index ;
859 }
860 else
861 {
8a3fe4f8 862 warning (_("section %s not found in %s"),
5417f6dc 863 addrs->other[i].name,
7e8580c1
JB
864 objfile->name);
865 addrs->other[i].addr = 0;
866 }
867 }
868 else
869 addrs->other[i].addr = lower_offset;
870 }
c906108c
SS
871 }
872
873 /* Initialize symbol reading routines for this objfile, allow complaints to
874 appear for this new file, and record how verbose to be, then do the
875 initial symbol reading for this file. */
876
c5aa993b 877 (*objfile->sf->sym_init) (objfile);
7eedccfa 878 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 879
7e8580c1
JB
880 if (addrs)
881 (*objfile->sf->sym_offsets) (objfile, addrs);
882 else
883 {
884 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
885
886 /* Just copy in the offset table directly as given to us. */
887 objfile->num_sections = num_offsets;
888 objfile->section_offsets
889 = ((struct section_offsets *)
8b92e4d5 890 obstack_alloc (&objfile->objfile_obstack, size));
7e8580c1
JB
891 memcpy (objfile->section_offsets, offsets, size);
892
893 init_objfile_sect_indices (objfile);
894 }
c906108c 895
96baa820 896 (*objfile->sf->sym_read) (objfile, mainline);
c906108c 897
c906108c
SS
898 /* Discard cleanups as symbol reading was successful. */
899
900 discard_cleanups (old_chain);
f7545552 901 xfree (local_addr);
c906108c
SS
902}
903
904/* Perform required actions after either reading in the initial
905 symbols for a new objfile, or mapping in the symbols from a reusable
906 objfile. */
c5aa993b 907
c906108c 908void
7eedccfa 909new_symfile_objfile (struct objfile *objfile, int add_flags)
c906108c
SS
910{
911
912 /* If this is the main symbol file we have to clean up all users of the
913 old main symbol file. Otherwise it is sufficient to fixup all the
914 breakpoints that may have been redefined by this symbol file. */
7eedccfa 915 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
916 {
917 /* OK, make it the "real" symbol file. */
918 symfile_objfile = objfile;
919
920 clear_symtab_users ();
921 }
7eedccfa 922 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 923 {
69de3c6a 924 breakpoint_re_set ();
c906108c
SS
925 }
926
927 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 928 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
929}
930
931/* Process a symbol file, as either the main file or as a dynamically
932 loaded file.
933
5417f6dc
RM
934 ABFD is a BFD already open on the file, as from symfile_bfd_open.
935 This BFD will be closed on error, and is always consumed by this function.
7904e09f 936
7eedccfa
PP
937 ADD_FLAGS encodes verbosity, whether this is main symbol file or
938 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f
JB
939
940 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
7eedccfa
PP
941 syms_from_objfile, above.
942 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 943
c906108c
SS
944 Upon success, returns a pointer to the objfile that was added.
945 Upon failure, jumps back to command level (never returns). */
7eedccfa 946
7904e09f 947static struct objfile *
7eedccfa
PP
948symbol_file_add_with_addrs_or_offsets (bfd *abfd,
949 int add_flags,
7904e09f
JB
950 struct section_addr_info *addrs,
951 struct section_offsets *offsets,
952 int num_offsets,
7eedccfa 953 int flags)
c906108c
SS
954{
955 struct objfile *objfile;
956 struct partial_symtab *psymtab;
77069918 957 char *debugfile = NULL;
7b90c3f9 958 struct section_addr_info *orig_addrs = NULL;
a39a16c4 959 struct cleanup *my_cleanups;
5417f6dc 960 const char *name = bfd_get_filename (abfd);
7eedccfa 961 const int from_tty = add_flags & SYMFILE_VERBOSE;
c906108c 962
5417f6dc 963 my_cleanups = make_cleanup_bfd_close (abfd);
c906108c 964
5417f6dc
RM
965 /* Give user a chance to burp if we'd be
966 interactively wiping out any existing symbols. */
c906108c
SS
967
968 if ((have_full_symbols () || have_partial_symbols ())
7eedccfa 969 && (add_flags & SYMFILE_MAINLINE)
c906108c 970 && from_tty
9e2f0ad4 971 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 972 error (_("Not confirmed."));
c906108c 973
2df3850c 974 objfile = allocate_objfile (abfd, flags);
5417f6dc 975 discard_cleanups (my_cleanups);
c906108c 976
a39a16c4 977 if (addrs)
63cd24fe 978 {
7b90c3f9
JB
979 orig_addrs = copy_section_addr_info (addrs);
980 make_cleanup_free_section_addr_info (orig_addrs);
63cd24fe 981 }
a39a16c4 982
78a4a9b9
AC
983 /* We either created a new mapped symbol table, mapped an existing
984 symbol table file which has not had initial symbol reading
985 performed, or need to read an unmapped symbol table. */
986 if (from_tty || info_verbose)
c906108c 987 {
769d7dc4
AC
988 if (deprecated_pre_add_symbol_hook)
989 deprecated_pre_add_symbol_hook (name);
78a4a9b9 990 else
c906108c 991 {
bf250677
DE
992 if (print_symbol_loading)
993 {
994 printf_unfiltered (_("Reading symbols from %s..."), name);
995 wrap_here ("");
996 gdb_flush (gdb_stdout);
997 }
c906108c 998 }
c906108c 999 }
78a4a9b9 1000 syms_from_objfile (objfile, addrs, offsets, num_offsets,
7eedccfa 1001 add_flags);
c906108c
SS
1002
1003 /* We now have at least a partial symbol table. Check to see if the
1004 user requested that all symbols be read on initial access via either
1005 the gdb startup command line or on a per symbol file basis. Expand
1006 all partial symbol tables for this objfile if so. */
1007
2acceee2 1008 if ((flags & OBJF_READNOW) || readnow_symbol_files)
c906108c 1009 {
bf250677 1010 if ((from_tty || info_verbose) && print_symbol_loading)
c906108c 1011 {
a3f17187 1012 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1013 wrap_here ("");
1014 gdb_flush (gdb_stdout);
1015 }
1016
c5aa993b 1017 for (psymtab = objfile->psymtabs;
c906108c 1018 psymtab != NULL;
c5aa993b 1019 psymtab = psymtab->next)
c906108c
SS
1020 {
1021 psymtab_to_symtab (psymtab);
1022 }
1023 }
1024
77069918
JK
1025 /* If the file has its own symbol tables it has no separate debug info.
1026 `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to SYMTABS/PSYMTABS.
1027 `.gnu_debuglink' may no longer be present with `.note.gnu.build-id'. */
1028 if (objfile->psymtabs == NULL)
1029 debugfile = find_separate_debug_file (objfile);
5b5d99cf
JB
1030 if (debugfile)
1031 {
5b5d99cf
JB
1032 if (addrs != NULL)
1033 {
1034 objfile->separate_debug_objfile
7eedccfa 1035 = symbol_file_add (debugfile, add_flags, orig_addrs, flags);
5b5d99cf
JB
1036 }
1037 else
1038 {
1039 objfile->separate_debug_objfile
7eedccfa 1040 = symbol_file_add (debugfile, add_flags, NULL, flags);
5b5d99cf
JB
1041 }
1042 objfile->separate_debug_objfile->separate_debug_objfile_backlink
1043 = objfile;
5417f6dc 1044
5b5d99cf
JB
1045 /* Put the separate debug object before the normal one, this is so that
1046 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
1047 put_objfile_before (objfile->separate_debug_objfile, objfile);
5417f6dc 1048
5b5d99cf
JB
1049 xfree (debugfile);
1050 }
5417f6dc 1051
bf250677
DE
1052 if (!have_partial_symbols () && !have_full_symbols ()
1053 && print_symbol_loading)
cb3c37b2
JB
1054 {
1055 wrap_here ("");
d4c0a7a0 1056 printf_unfiltered (_("(no debugging symbols found)"));
8f5ba92b 1057 if (from_tty || info_verbose)
d4c0a7a0 1058 printf_unfiltered ("...");
8f5ba92b 1059 else
d4c0a7a0 1060 printf_unfiltered ("\n");
cb3c37b2
JB
1061 wrap_here ("");
1062 }
1063
c906108c
SS
1064 if (from_tty || info_verbose)
1065 {
769d7dc4
AC
1066 if (deprecated_post_add_symbol_hook)
1067 deprecated_post_add_symbol_hook ();
c906108c 1068 else
c5aa993b 1069 {
bf250677
DE
1070 if (print_symbol_loading)
1071 printf_unfiltered (_("done.\n"));
c5aa993b 1072 }
c906108c
SS
1073 }
1074
481d0f41
JB
1075 /* We print some messages regardless of whether 'from_tty ||
1076 info_verbose' is true, so make sure they go out at the right
1077 time. */
1078 gdb_flush (gdb_stdout);
1079
a39a16c4
MM
1080 do_cleanups (my_cleanups);
1081
109f874e 1082 if (objfile->sf == NULL)
8caee43b
PP
1083 {
1084 observer_notify_new_objfile (objfile);
1085 return objfile; /* No symbols. */
1086 }
109f874e 1087
7eedccfa 1088 new_symfile_objfile (objfile, add_flags);
c906108c 1089
06d3b283 1090 observer_notify_new_objfile (objfile);
c906108c 1091
ce7d4522 1092 bfd_cache_close_all ();
c906108c
SS
1093 return (objfile);
1094}
1095
7904e09f 1096
eb4556d7
JB
1097/* Process the symbol file ABFD, as either the main file or as a
1098 dynamically loaded file.
1099
1100 See symbol_file_add_with_addrs_or_offsets's comments for
1101 details. */
1102struct objfile *
7eedccfa 1103symbol_file_add_from_bfd (bfd *abfd, int add_flags,
eb4556d7 1104 struct section_addr_info *addrs,
7eedccfa 1105 int flags)
eb4556d7 1106{
7eedccfa
PP
1107 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1108 flags);
eb4556d7
JB
1109}
1110
1111
7904e09f
JB
1112/* Process a symbol file, as either the main file or as a dynamically
1113 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1114 for details. */
1115struct objfile *
7eedccfa
PP
1116symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1117 int flags)
7904e09f 1118{
7eedccfa
PP
1119 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1120 flags);
7904e09f
JB
1121}
1122
1123
d7db6da9
FN
1124/* Call symbol_file_add() with default values and update whatever is
1125 affected by the loading of a new main().
1126 Used when the file is supplied in the gdb command line
1127 and by some targets with special loading requirements.
1128 The auxiliary function, symbol_file_add_main_1(), has the flags
1129 argument for the switches that can only be specified in the symbol_file
1130 command itself. */
5417f6dc 1131
1adeb98a
FN
1132void
1133symbol_file_add_main (char *args, int from_tty)
1134{
d7db6da9
FN
1135 symbol_file_add_main_1 (args, from_tty, 0);
1136}
1137
1138static void
1139symbol_file_add_main_1 (char *args, int from_tty, int flags)
1140{
7eedccfa
PP
1141 const int add_flags = SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0);
1142 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1143
d7db6da9
FN
1144 /* Getting new symbols may change our opinion about
1145 what is frameless. */
1146 reinit_frame_cache ();
1147
1148 set_initial_language ();
1adeb98a
FN
1149}
1150
1151void
1152symbol_file_clear (int from_tty)
1153{
1154 if ((have_full_symbols () || have_partial_symbols ())
1155 && from_tty
0430b0d6
AS
1156 && (symfile_objfile
1157 ? !query (_("Discard symbol table from `%s'? "),
1158 symfile_objfile->name)
1159 : !query (_("Discard symbol table? "))))
8a3fe4f8 1160 error (_("Not confirmed."));
1adeb98a 1161
d10c338d 1162 free_all_objfiles ();
1adeb98a 1163
d10c338d
DE
1164 /* solib descriptors may have handles to objfiles. Since their
1165 storage has just been released, we'd better wipe the solib
1166 descriptors as well. */
1167 no_shared_libraries (NULL, from_tty);
1168
1169 symfile_objfile = NULL;
1170 if (from_tty)
1171 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1172}
1173
77069918
JK
1174struct build_id
1175 {
1176 size_t size;
1177 gdb_byte data[1];
1178 };
1179
1180/* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
1181
1182static struct build_id *
1183build_id_bfd_get (bfd *abfd)
1184{
1185 struct build_id *retval;
1186
1187 if (!bfd_check_format (abfd, bfd_object)
1188 || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1189 || elf_tdata (abfd)->build_id == NULL)
1190 return NULL;
1191
1192 retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size);
1193 retval->size = elf_tdata (abfd)->build_id_size;
1194 memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size);
1195
1196 return retval;
1197}
1198
1199/* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
1200
1201static int
1202build_id_verify (const char *filename, struct build_id *check)
1203{
1204 bfd *abfd;
1205 struct build_id *found = NULL;
1206 int retval = 0;
1207
1208 /* We expect to be silent on the non-existing files. */
f1838a98
UW
1209 if (remote_filename_p (filename))
1210 abfd = remote_bfd_open (filename, gnutarget);
1211 else
1212 abfd = bfd_openr (filename, gnutarget);
77069918
JK
1213 if (abfd == NULL)
1214 return 0;
1215
1216 found = build_id_bfd_get (abfd);
1217
1218 if (found == NULL)
1219 warning (_("File \"%s\" has no build-id, file skipped"), filename);
1220 else if (found->size != check->size
1221 || memcmp (found->data, check->data, found->size) != 0)
1222 warning (_("File \"%s\" has a different build-id, file skipped"), filename);
1223 else
1224 retval = 1;
1225
1226 if (!bfd_close (abfd))
1227 warning (_("cannot close \"%s\": %s"), filename,
1228 bfd_errmsg (bfd_get_error ()));
bb01da77
TT
1229
1230 xfree (found);
1231
77069918
JK
1232 return retval;
1233}
1234
1235static char *
1236build_id_to_debug_filename (struct build_id *build_id)
1237{
1238 char *link, *s, *retval = NULL;
1239 gdb_byte *data = build_id->data;
1240 size_t size = build_id->size;
1241
1242 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1243 link = xmalloc (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1244 + 2 * size + (sizeof ".debug" - 1) + 1);
1245 s = link + sprintf (link, "%s/.build-id/", debug_file_directory);
1246 if (size > 0)
1247 {
1248 size--;
1249 s += sprintf (s, "%02x", (unsigned) *data++);
1250 }
1251 if (size > 0)
1252 *s++ = '/';
1253 while (size-- > 0)
1254 s += sprintf (s, "%02x", (unsigned) *data++);
1255 strcpy (s, ".debug");
1256
1257 /* lrealpath() is expensive even for the usually non-existent files. */
1258 if (access (link, F_OK) == 0)
1259 retval = lrealpath (link);
1260 xfree (link);
1261
1262 if (retval != NULL && !build_id_verify (retval, build_id))
1263 {
1264 xfree (retval);
1265 retval = NULL;
1266 }
1267
1268 return retval;
1269}
1270
5b5d99cf
JB
1271static char *
1272get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1273{
1274 asection *sect;
1275 bfd_size_type debuglink_size;
1276 unsigned long crc32;
1277 char *contents;
1278 int crc_offset;
1279 unsigned char *p;
5417f6dc 1280
5b5d99cf
JB
1281 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1282
1283 if (sect == NULL)
1284 return NULL;
1285
1286 debuglink_size = bfd_section_size (objfile->obfd, sect);
5417f6dc 1287
5b5d99cf
JB
1288 contents = xmalloc (debuglink_size);
1289 bfd_get_section_contents (objfile->obfd, sect, contents,
1290 (file_ptr)0, (bfd_size_type)debuglink_size);
1291
1292 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1293 crc_offset = strlen (contents) + 1;
1294 crc_offset = (crc_offset + 3) & ~3;
1295
1296 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
5417f6dc 1297
5b5d99cf
JB
1298 *crc32_out = crc32;
1299 return contents;
1300}
1301
1302static int
1303separate_debug_file_exists (const char *name, unsigned long crc)
1304{
1305 unsigned long file_crc = 0;
f1838a98 1306 bfd *abfd;
777ea8f1 1307 gdb_byte buffer[8*1024];
5b5d99cf
JB
1308 int count;
1309
f1838a98
UW
1310 if (remote_filename_p (name))
1311 abfd = remote_bfd_open (name, gnutarget);
1312 else
1313 abfd = bfd_openr (name, gnutarget);
1314
1315 if (!abfd)
5b5d99cf
JB
1316 return 0;
1317
f1838a98 1318 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
5b5d99cf
JB
1319 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1320
f1838a98 1321 bfd_close (abfd);
5b5d99cf
JB
1322
1323 return crc == file_crc;
1324}
1325
aa28a74e 1326char *debug_file_directory = NULL;
920d2a44
AC
1327static void
1328show_debug_file_directory (struct ui_file *file, int from_tty,
1329 struct cmd_list_element *c, const char *value)
1330{
1331 fprintf_filtered (file, _("\
1332The directory where separate debug symbols are searched for is \"%s\".\n"),
1333 value);
1334}
5b5d99cf
JB
1335
1336#if ! defined (DEBUG_SUBDIRECTORY)
1337#define DEBUG_SUBDIRECTORY ".debug"
1338#endif
1339
1340static char *
1341find_separate_debug_file (struct objfile *objfile)
1342{
1343 asection *sect;
1344 char *basename;
1345 char *dir;
1346 char *debugfile;
1347 char *name_copy;
aa28a74e 1348 char *canon_name;
5b5d99cf
JB
1349 bfd_size_type debuglink_size;
1350 unsigned long crc32;
1351 int i;
77069918
JK
1352 struct build_id *build_id;
1353
1354 build_id = build_id_bfd_get (objfile->obfd);
1355 if (build_id != NULL)
1356 {
1357 char *build_id_name;
1358
1359 build_id_name = build_id_to_debug_filename (build_id);
bb01da77 1360 xfree (build_id);
77069918
JK
1361 /* Prevent looping on a stripped .debug file. */
1362 if (build_id_name != NULL && strcmp (build_id_name, objfile->name) == 0)
1363 {
1364 warning (_("\"%s\": separate debug info file has no debug info"),
1365 build_id_name);
1366 xfree (build_id_name);
1367 }
1368 else if (build_id_name != NULL)
1369 return build_id_name;
1370 }
5b5d99cf
JB
1371
1372 basename = get_debug_link_info (objfile, &crc32);
1373
1374 if (basename == NULL)
1375 return NULL;
5417f6dc 1376
5b5d99cf
JB
1377 dir = xstrdup (objfile->name);
1378
fe36c4f4
JB
1379 /* Strip off the final filename part, leaving the directory name,
1380 followed by a slash. Objfile names should always be absolute and
1381 tilde-expanded, so there should always be a slash in there
1382 somewhere. */
5b5d99cf
JB
1383 for (i = strlen(dir) - 1; i >= 0; i--)
1384 {
1385 if (IS_DIR_SEPARATOR (dir[i]))
1386 break;
1387 }
fe36c4f4 1388 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
5b5d99cf 1389 dir[i+1] = '\0';
5417f6dc 1390
1ffa32ee
JK
1391 /* Set I to max (strlen (canon_name), strlen (dir)). */
1392 canon_name = lrealpath (dir);
1393 i = strlen (dir);
1394 if (canon_name && strlen (canon_name) > i)
1395 i = strlen (canon_name);
1396
5b5d99cf 1397 debugfile = alloca (strlen (debug_file_directory) + 1
1ffa32ee 1398 + i
5b5d99cf
JB
1399 + strlen (DEBUG_SUBDIRECTORY)
1400 + strlen ("/")
5417f6dc 1401 + strlen (basename)
5b5d99cf
JB
1402 + 1);
1403
1404 /* First try in the same directory as the original file. */
1405 strcpy (debugfile, dir);
1406 strcat (debugfile, basename);
1407
1408 if (separate_debug_file_exists (debugfile, crc32))
1409 {
1410 xfree (basename);
1411 xfree (dir);
1ffa32ee 1412 xfree (canon_name);
5b5d99cf
JB
1413 return xstrdup (debugfile);
1414 }
5417f6dc 1415
5b5d99cf
JB
1416 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1417 strcpy (debugfile, dir);
1418 strcat (debugfile, DEBUG_SUBDIRECTORY);
1419 strcat (debugfile, "/");
1420 strcat (debugfile, basename);
1421
1422 if (separate_debug_file_exists (debugfile, crc32))
1423 {
1424 xfree (basename);
1425 xfree (dir);
1ffa32ee 1426 xfree (canon_name);
5b5d99cf
JB
1427 return xstrdup (debugfile);
1428 }
5417f6dc 1429
5b5d99cf
JB
1430 /* Then try in the global debugfile directory. */
1431 strcpy (debugfile, debug_file_directory);
1432 strcat (debugfile, "/");
1433 strcat (debugfile, dir);
5b5d99cf
JB
1434 strcat (debugfile, basename);
1435
1436 if (separate_debug_file_exists (debugfile, crc32))
1437 {
1438 xfree (basename);
1439 xfree (dir);
1ffa32ee 1440 xfree (canon_name);
5b5d99cf
JB
1441 return xstrdup (debugfile);
1442 }
5417f6dc 1443
aa28a74e
DJ
1444 /* If the file is in the sysroot, try using its base path in the
1445 global debugfile directory. */
aa28a74e
DJ
1446 if (canon_name
1447 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1448 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1449 {
1450 strcpy (debugfile, debug_file_directory);
1451 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1452 strcat (debugfile, "/");
1453 strcat (debugfile, basename);
1454
1455 if (separate_debug_file_exists (debugfile, crc32))
1456 {
1457 xfree (canon_name);
1458 xfree (basename);
1459 xfree (dir);
1ffa32ee 1460 xfree (canon_name);
aa28a74e
DJ
1461 return xstrdup (debugfile);
1462 }
1463 }
1464
1465 if (canon_name)
1466 xfree (canon_name);
1467
5b5d99cf
JB
1468 xfree (basename);
1469 xfree (dir);
1470 return NULL;
1471}
1472
1473
c906108c
SS
1474/* This is the symbol-file command. Read the file, analyze its
1475 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1476 the command is rather bizarre:
1477
1478 1. The function buildargv implements various quoting conventions
1479 which are undocumented and have little or nothing in common with
1480 the way things are quoted (or not quoted) elsewhere in GDB.
1481
1482 2. Options are used, which are not generally used in GDB (perhaps
1483 "set mapped on", "set readnow on" would be better)
1484
1485 3. The order of options matters, which is contrary to GNU
c906108c
SS
1486 conventions (because it is confusing and inconvenient). */
1487
1488void
fba45db2 1489symbol_file_command (char *args, int from_tty)
c906108c 1490{
c906108c
SS
1491 dont_repeat ();
1492
1493 if (args == NULL)
1494 {
1adeb98a 1495 symbol_file_clear (from_tty);
c906108c
SS
1496 }
1497 else
1498 {
d1a41061 1499 char **argv = gdb_buildargv (args);
cb2f3a29
MK
1500 int flags = OBJF_USERLOADED;
1501 struct cleanup *cleanups;
1502 char *name = NULL;
1503
7a292a7a 1504 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1505 while (*argv != NULL)
1506 {
78a4a9b9
AC
1507 if (strcmp (*argv, "-readnow") == 0)
1508 flags |= OBJF_READNOW;
1509 else if (**argv == '-')
8a3fe4f8 1510 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1511 else
1512 {
cb2f3a29 1513 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1514 name = *argv;
78a4a9b9 1515 }
cb2f3a29 1516
c906108c
SS
1517 argv++;
1518 }
1519
1520 if (name == NULL)
cb2f3a29
MK
1521 error (_("no symbol file name was specified"));
1522
c906108c
SS
1523 do_cleanups (cleanups);
1524 }
1525}
1526
1527/* Set the initial language.
1528
cb2f3a29
MK
1529 FIXME: A better solution would be to record the language in the
1530 psymtab when reading partial symbols, and then use it (if known) to
1531 set the language. This would be a win for formats that encode the
1532 language in an easily discoverable place, such as DWARF. For
1533 stabs, we can jump through hoops looking for specially named
1534 symbols or try to intuit the language from the specific type of
1535 stabs we find, but we can't do that until later when we read in
1536 full symbols. */
c906108c 1537
8b60591b 1538void
fba45db2 1539set_initial_language (void)
c906108c
SS
1540{
1541 struct partial_symtab *pst;
c5aa993b 1542 enum language lang = language_unknown;
c906108c
SS
1543
1544 pst = find_main_psymtab ();
1545 if (pst != NULL)
1546 {
c5aa993b 1547 if (pst->filename != NULL)
cb2f3a29
MK
1548 lang = deduce_language_from_filename (pst->filename);
1549
c906108c
SS
1550 if (lang == language_unknown)
1551 {
c5aa993b
JM
1552 /* Make C the default language */
1553 lang = language_c;
c906108c 1554 }
cb2f3a29 1555
c906108c 1556 set_language (lang);
cb2f3a29 1557 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1558 }
1559}
1560
cb2f3a29
MK
1561/* Open the file specified by NAME and hand it off to BFD for
1562 preliminary analysis. Return a newly initialized bfd *, which
1563 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1564 absolute). In case of trouble, error() is called. */
c906108c
SS
1565
1566bfd *
fba45db2 1567symfile_bfd_open (char *name)
c906108c
SS
1568{
1569 bfd *sym_bfd;
1570 int desc;
1571 char *absolute_name;
1572
f1838a98
UW
1573 if (remote_filename_p (name))
1574 {
1575 name = xstrdup (name);
1576 sym_bfd = remote_bfd_open (name, gnutarget);
1577 if (!sym_bfd)
1578 {
1579 make_cleanup (xfree, name);
1580 error (_("`%s': can't open to read symbols: %s."), name,
1581 bfd_errmsg (bfd_get_error ()));
1582 }
1583
1584 if (!bfd_check_format (sym_bfd, bfd_object))
1585 {
1586 bfd_close (sym_bfd);
1587 make_cleanup (xfree, name);
1588 error (_("`%s': can't read symbols: %s."), name,
1589 bfd_errmsg (bfd_get_error ()));
1590 }
1591
1592 return sym_bfd;
1593 }
1594
cb2f3a29 1595 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c
SS
1596
1597 /* Look down path for it, allocate 2nd new malloc'd copy. */
cb2f3a29 1598 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
fbdebf46 1599 O_RDONLY | O_BINARY, &absolute_name);
608506ed 1600#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1601 if (desc < 0)
1602 {
1603 char *exename = alloca (strlen (name) + 5);
1604 strcat (strcpy (exename, name), ".exe");
014d698b 1605 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
fbdebf46 1606 O_RDONLY | O_BINARY, &absolute_name);
c906108c
SS
1607 }
1608#endif
1609 if (desc < 0)
1610 {
b8c9b27d 1611 make_cleanup (xfree, name);
c906108c
SS
1612 perror_with_name (name);
1613 }
cb2f3a29
MK
1614
1615 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1616 bfd. It'll be freed in free_objfile(). */
1617 xfree (name);
1618 name = absolute_name;
c906108c 1619
9f76c2cd 1620 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
c906108c
SS
1621 if (!sym_bfd)
1622 {
1623 close (desc);
b8c9b27d 1624 make_cleanup (xfree, name);
f1838a98 1625 error (_("`%s': can't open to read symbols: %s."), name,
c906108c
SS
1626 bfd_errmsg (bfd_get_error ()));
1627 }
549c1eea 1628 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1629
1630 if (!bfd_check_format (sym_bfd, bfd_object))
1631 {
cb2f3a29
MK
1632 /* FIXME: should be checking for errors from bfd_close (for one
1633 thing, on error it does not free all the storage associated
1634 with the bfd). */
1635 bfd_close (sym_bfd); /* This also closes desc. */
b8c9b27d 1636 make_cleanup (xfree, name);
f1838a98 1637 error (_("`%s': can't read symbols: %s."), name,
c906108c
SS
1638 bfd_errmsg (bfd_get_error ()));
1639 }
cb2f3a29
MK
1640
1641 return sym_bfd;
c906108c
SS
1642}
1643
cb2f3a29
MK
1644/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1645 the section was not found. */
1646
0e931cf0
JB
1647int
1648get_section_index (struct objfile *objfile, char *section_name)
1649{
1650 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1651
0e931cf0
JB
1652 if (sect)
1653 return sect->index;
1654 else
1655 return -1;
1656}
1657
cb2f3a29
MK
1658/* Link SF into the global symtab_fns list. Called on startup by the
1659 _initialize routine in each object file format reader, to register
1660 information about each format the the reader is prepared to
1661 handle. */
c906108c
SS
1662
1663void
fba45db2 1664add_symtab_fns (struct sym_fns *sf)
c906108c
SS
1665{
1666 sf->next = symtab_fns;
1667 symtab_fns = sf;
1668}
1669
cb2f3a29
MK
1670/* Initialize OBJFILE to read symbols from its associated BFD. It
1671 either returns or calls error(). The result is an initialized
1672 struct sym_fns in the objfile structure, that contains cached
1673 information about the symbol file. */
c906108c 1674
31d99776
DJ
1675static struct sym_fns *
1676find_sym_fns (bfd *abfd)
c906108c
SS
1677{
1678 struct sym_fns *sf;
31d99776 1679 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
c906108c 1680
75245b24
MS
1681 if (our_flavour == bfd_target_srec_flavour
1682 || our_flavour == bfd_target_ihex_flavour
1683 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1684 return NULL; /* No symbols. */
75245b24 1685
c5aa993b 1686 for (sf = symtab_fns; sf != NULL; sf = sf->next)
31d99776
DJ
1687 if (our_flavour == sf->sym_flavour)
1688 return sf;
cb2f3a29 1689
8a3fe4f8 1690 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1691 bfd_get_target (abfd));
c906108c
SS
1692}
1693\f
cb2f3a29 1694
c906108c
SS
1695/* This function runs the load command of our current target. */
1696
1697static void
fba45db2 1698load_command (char *arg, int from_tty)
c906108c 1699{
4487aabf
PA
1700 /* The user might be reloading because the binary has changed. Take
1701 this opportunity to check. */
1702 reopen_exec_file ();
1703 reread_symbols ();
1704
c906108c 1705 if (arg == NULL)
1986bccd
AS
1706 {
1707 char *parg;
1708 int count = 0;
1709
1710 parg = arg = get_exec_file (1);
1711
1712 /* Count how many \ " ' tab space there are in the name. */
1713 while ((parg = strpbrk (parg, "\\\"'\t ")))
1714 {
1715 parg++;
1716 count++;
1717 }
1718
1719 if (count)
1720 {
1721 /* We need to quote this string so buildargv can pull it apart. */
1722 char *temp = xmalloc (strlen (arg) + count + 1 );
1723 char *ptemp = temp;
1724 char *prev;
1725
1726 make_cleanup (xfree, temp);
1727
1728 prev = parg = arg;
1729 while ((parg = strpbrk (parg, "\\\"'\t ")))
1730 {
1731 strncpy (ptemp, prev, parg - prev);
1732 ptemp += parg - prev;
1733 prev = parg++;
1734 *ptemp++ = '\\';
1735 }
1736 strcpy (ptemp, prev);
1737
1738 arg = temp;
1739 }
1740 }
1741
c906108c 1742 target_load (arg, from_tty);
2889e661
JB
1743
1744 /* After re-loading the executable, we don't really know which
1745 overlays are mapped any more. */
1746 overlay_cache_invalid = 1;
c906108c
SS
1747}
1748
1749/* This version of "load" should be usable for any target. Currently
1750 it is just used for remote targets, not inftarg.c or core files,
1751 on the theory that only in that case is it useful.
1752
1753 Avoiding xmodem and the like seems like a win (a) because we don't have
1754 to worry about finding it, and (b) On VMS, fork() is very slow and so
1755 we don't want to run a subprocess. On the other hand, I'm not sure how
1756 performance compares. */
917317f4 1757
917317f4
JM
1758static int validate_download = 0;
1759
e4f9b4d5
MS
1760/* Callback service function for generic_load (bfd_map_over_sections). */
1761
1762static void
1763add_section_size_callback (bfd *abfd, asection *asec, void *data)
1764{
1765 bfd_size_type *sum = data;
1766
2c500098 1767 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1768}
1769
1770/* Opaque data for load_section_callback. */
1771struct load_section_data {
1772 unsigned long load_offset;
a76d924d
DJ
1773 struct load_progress_data *progress_data;
1774 VEC(memory_write_request_s) *requests;
1775};
1776
1777/* Opaque data for load_progress. */
1778struct load_progress_data {
1779 /* Cumulative data. */
e4f9b4d5
MS
1780 unsigned long write_count;
1781 unsigned long data_count;
1782 bfd_size_type total_size;
a76d924d
DJ
1783};
1784
1785/* Opaque data for load_progress for a single section. */
1786struct load_progress_section_data {
1787 struct load_progress_data *cumulative;
cf7a04e8 1788
a76d924d 1789 /* Per-section data. */
cf7a04e8
DJ
1790 const char *section_name;
1791 ULONGEST section_sent;
1792 ULONGEST section_size;
1793 CORE_ADDR lma;
1794 gdb_byte *buffer;
e4f9b4d5
MS
1795};
1796
a76d924d 1797/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1798
1799static void
1800load_progress (ULONGEST bytes, void *untyped_arg)
1801{
a76d924d
DJ
1802 struct load_progress_section_data *args = untyped_arg;
1803 struct load_progress_data *totals;
1804
1805 if (args == NULL)
1806 /* Writing padding data. No easy way to get at the cumulative
1807 stats, so just ignore this. */
1808 return;
1809
1810 totals = args->cumulative;
1811
1812 if (bytes == 0 && args->section_sent == 0)
1813 {
1814 /* The write is just starting. Let the user know we've started
1815 this section. */
5af949e3
UW
1816 ui_out_message (uiout, 0, "Loading section %s, size %s lma %s\n",
1817 args->section_name, hex_string (args->section_size),
1818 paddress (target_gdbarch, args->lma));
a76d924d
DJ
1819 return;
1820 }
cf7a04e8
DJ
1821
1822 if (validate_download)
1823 {
1824 /* Broken memories and broken monitors manifest themselves here
1825 when bring new computers to life. This doubles already slow
1826 downloads. */
1827 /* NOTE: cagney/1999-10-18: A more efficient implementation
1828 might add a verify_memory() method to the target vector and
1829 then use that. remote.c could implement that method using
1830 the ``qCRC'' packet. */
1831 gdb_byte *check = xmalloc (bytes);
1832 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1833
1834 if (target_read_memory (args->lma, check, bytes) != 0)
5af949e3
UW
1835 error (_("Download verify read failed at %s"),
1836 paddress (target_gdbarch, args->lma));
cf7a04e8 1837 if (memcmp (args->buffer, check, bytes) != 0)
5af949e3
UW
1838 error (_("Download verify compare failed at %s"),
1839 paddress (target_gdbarch, args->lma));
cf7a04e8
DJ
1840 do_cleanups (verify_cleanups);
1841 }
a76d924d 1842 totals->data_count += bytes;
cf7a04e8
DJ
1843 args->lma += bytes;
1844 args->buffer += bytes;
a76d924d 1845 totals->write_count += 1;
cf7a04e8
DJ
1846 args->section_sent += bytes;
1847 if (quit_flag
1848 || (deprecated_ui_load_progress_hook != NULL
1849 && deprecated_ui_load_progress_hook (args->section_name,
1850 args->section_sent)))
1851 error (_("Canceled the download"));
1852
1853 if (deprecated_show_load_progress != NULL)
1854 deprecated_show_load_progress (args->section_name,
1855 args->section_sent,
1856 args->section_size,
a76d924d
DJ
1857 totals->data_count,
1858 totals->total_size);
cf7a04e8
DJ
1859}
1860
e4f9b4d5
MS
1861/* Callback service function for generic_load (bfd_map_over_sections). */
1862
1863static void
1864load_section_callback (bfd *abfd, asection *asec, void *data)
1865{
a76d924d 1866 struct memory_write_request *new_request;
e4f9b4d5 1867 struct load_section_data *args = data;
a76d924d 1868 struct load_progress_section_data *section_data;
cf7a04e8
DJ
1869 bfd_size_type size = bfd_get_section_size (asec);
1870 gdb_byte *buffer;
cf7a04e8 1871 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 1872
cf7a04e8
DJ
1873 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1874 return;
e4f9b4d5 1875
cf7a04e8
DJ
1876 if (size == 0)
1877 return;
e4f9b4d5 1878
a76d924d
DJ
1879 new_request = VEC_safe_push (memory_write_request_s,
1880 args->requests, NULL);
1881 memset (new_request, 0, sizeof (struct memory_write_request));
1882 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1883 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1884 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1885 new_request->data = xmalloc (size);
1886 new_request->baton = section_data;
cf7a04e8 1887
a76d924d 1888 buffer = new_request->data;
cf7a04e8 1889
a76d924d
DJ
1890 section_data->cumulative = args->progress_data;
1891 section_data->section_name = sect_name;
1892 section_data->section_size = size;
1893 section_data->lma = new_request->begin;
1894 section_data->buffer = buffer;
cf7a04e8
DJ
1895
1896 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
1897}
1898
1899/* Clean up an entire memory request vector, including load
1900 data and progress records. */
cf7a04e8 1901
a76d924d
DJ
1902static void
1903clear_memory_write_data (void *arg)
1904{
1905 VEC(memory_write_request_s) **vec_p = arg;
1906 VEC(memory_write_request_s) *vec = *vec_p;
1907 int i;
1908 struct memory_write_request *mr;
cf7a04e8 1909
a76d924d
DJ
1910 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1911 {
1912 xfree (mr->data);
1913 xfree (mr->baton);
1914 }
1915 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
1916}
1917
c906108c 1918void
917317f4 1919generic_load (char *args, int from_tty)
c906108c 1920{
c906108c 1921 bfd *loadfile_bfd;
2b71414d 1922 struct timeval start_time, end_time;
917317f4 1923 char *filename;
1986bccd 1924 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 1925 struct load_section_data cbdata;
a76d924d
DJ
1926 struct load_progress_data total_progress;
1927
e4f9b4d5 1928 CORE_ADDR entry;
1986bccd 1929 char **argv;
e4f9b4d5 1930
a76d924d
DJ
1931 memset (&cbdata, 0, sizeof (cbdata));
1932 memset (&total_progress, 0, sizeof (total_progress));
1933 cbdata.progress_data = &total_progress;
1934
1935 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 1936
d1a41061
PP
1937 if (args == NULL)
1938 error_no_arg (_("file to load"));
1986bccd 1939
d1a41061 1940 argv = gdb_buildargv (args);
1986bccd
AS
1941 make_cleanup_freeargv (argv);
1942
1943 filename = tilde_expand (argv[0]);
1944 make_cleanup (xfree, filename);
1945
1946 if (argv[1] != NULL)
917317f4
JM
1947 {
1948 char *endptr;
ba5f2f8a 1949
1986bccd
AS
1950 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1951
1952 /* If the last word was not a valid number then
1953 treat it as a file name with spaces in. */
1954 if (argv[1] == endptr)
1955 error (_("Invalid download offset:%s."), argv[1]);
1956
1957 if (argv[2] != NULL)
1958 error (_("Too many parameters."));
917317f4 1959 }
c906108c 1960
917317f4 1961 /* Open the file for loading. */
c906108c
SS
1962 loadfile_bfd = bfd_openr (filename, gnutarget);
1963 if (loadfile_bfd == NULL)
1964 {
1965 perror_with_name (filename);
1966 return;
1967 }
917317f4 1968
c906108c
SS
1969 /* FIXME: should be checking for errors from bfd_close (for one thing,
1970 on error it does not free all the storage associated with the
1971 bfd). */
5c65bbb6 1972 make_cleanup_bfd_close (loadfile_bfd);
c906108c 1973
c5aa993b 1974 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 1975 {
8a3fe4f8 1976 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
1977 bfd_errmsg (bfd_get_error ()));
1978 }
c5aa993b 1979
5417f6dc 1980 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
1981 (void *) &total_progress.total_size);
1982
1983 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 1984
2b71414d 1985 gettimeofday (&start_time, NULL);
c906108c 1986
a76d924d
DJ
1987 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1988 load_progress) != 0)
1989 error (_("Load failed"));
c906108c 1990
2b71414d 1991 gettimeofday (&end_time, NULL);
ba5f2f8a 1992
e4f9b4d5 1993 entry = bfd_get_start_address (loadfile_bfd);
e4f9b4d5 1994 ui_out_text (uiout, "Start address ");
5af949e3 1995 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
e4f9b4d5 1996 ui_out_text (uiout, ", load size ");
a76d924d 1997 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 1998 ui_out_text (uiout, "\n");
e4f9b4d5
MS
1999 /* We were doing this in remote-mips.c, I suspect it is right
2000 for other targets too. */
fb14de7b 2001 regcache_write_pc (get_current_regcache (), entry);
c906108c 2002
7ca9f392
AC
2003 /* FIXME: are we supposed to call symbol_file_add or not? According
2004 to a comment from remote-mips.c (where a call to symbol_file_add
2005 was commented out), making the call confuses GDB if more than one
2006 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 2007 others don't (or didn't - perhaps they have all been deleted). */
c906108c 2008
a76d924d
DJ
2009 print_transfer_performance (gdb_stdout, total_progress.data_count,
2010 total_progress.write_count,
2011 &start_time, &end_time);
c906108c
SS
2012
2013 do_cleanups (old_cleanups);
2014}
2015
2016/* Report how fast the transfer went. */
2017
917317f4
JM
2018/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2019 replaced by print_transfer_performance (with a very different
2020 function signature). */
2021
c906108c 2022void
fba45db2
KB
2023report_transfer_performance (unsigned long data_count, time_t start_time,
2024 time_t end_time)
c906108c 2025{
2b71414d
DJ
2026 struct timeval start, end;
2027
2028 start.tv_sec = start_time;
2029 start.tv_usec = 0;
2030 end.tv_sec = end_time;
2031 end.tv_usec = 0;
2032
2033 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
917317f4
JM
2034}
2035
2036void
d9fcf2fb 2037print_transfer_performance (struct ui_file *stream,
917317f4
JM
2038 unsigned long data_count,
2039 unsigned long write_count,
2b71414d
DJ
2040 const struct timeval *start_time,
2041 const struct timeval *end_time)
917317f4 2042{
9f43d28c 2043 ULONGEST time_count;
2b71414d
DJ
2044
2045 /* Compute the elapsed time in milliseconds, as a tradeoff between
2046 accuracy and overflow. */
2047 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2048 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2049
8b93c638
JM
2050 ui_out_text (uiout, "Transfer rate: ");
2051 if (time_count > 0)
2052 {
9f43d28c
DJ
2053 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2054
2055 if (ui_out_is_mi_like_p (uiout))
2056 {
2057 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2058 ui_out_text (uiout, " bits/sec");
2059 }
2060 else if (rate < 1024)
2061 {
2062 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2063 ui_out_text (uiout, " bytes/sec");
2064 }
2065 else
2066 {
2067 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2068 ui_out_text (uiout, " KB/sec");
2069 }
8b93c638
JM
2070 }
2071 else
2072 {
ba5f2f8a 2073 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 2074 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
2075 }
2076 if (write_count > 0)
2077 {
2078 ui_out_text (uiout, ", ");
ba5f2f8a 2079 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
2080 ui_out_text (uiout, " bytes/write");
2081 }
2082 ui_out_text (uiout, ".\n");
c906108c
SS
2083}
2084
2085/* This function allows the addition of incrementally linked object files.
2086 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2087/* Note: ezannoni 2000-04-13 This function/command used to have a
2088 special case syntax for the rombug target (Rombug is the boot
2089 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2090 rombug case, the user doesn't need to supply a text address,
2091 instead a call to target_link() (in target.c) would supply the
2092 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2093
c906108c 2094static void
fba45db2 2095add_symbol_file_command (char *args, int from_tty)
c906108c 2096{
5af949e3 2097 struct gdbarch *gdbarch = get_current_arch ();
db162d44 2098 char *filename = NULL;
2df3850c 2099 int flags = OBJF_USERLOADED;
c906108c 2100 char *arg;
2acceee2 2101 int expecting_option = 0;
db162d44 2102 int section_index = 0;
2acceee2
JM
2103 int argcnt = 0;
2104 int sec_num = 0;
2105 int i;
db162d44
EZ
2106 int expecting_sec_name = 0;
2107 int expecting_sec_addr = 0;
5b96932b 2108 char **argv;
db162d44 2109
a39a16c4 2110 struct sect_opt
2acceee2 2111 {
2acceee2
JM
2112 char *name;
2113 char *value;
a39a16c4 2114 };
db162d44 2115
a39a16c4
MM
2116 struct section_addr_info *section_addrs;
2117 struct sect_opt *sect_opts = NULL;
2118 size_t num_sect_opts = 0;
3017564a 2119 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2120
a39a16c4 2121 num_sect_opts = 16;
5417f6dc 2122 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
2123 * sizeof (struct sect_opt));
2124
c906108c
SS
2125 dont_repeat ();
2126
2127 if (args == NULL)
8a3fe4f8 2128 error (_("add-symbol-file takes a file name and an address"));
c906108c 2129
d1a41061 2130 argv = gdb_buildargv (args);
5b96932b 2131 make_cleanup_freeargv (argv);
db162d44 2132
5b96932b
AS
2133 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2134 {
2135 /* Process the argument. */
db162d44 2136 if (argcnt == 0)
c906108c 2137 {
db162d44
EZ
2138 /* The first argument is the file name. */
2139 filename = tilde_expand (arg);
3017564a 2140 make_cleanup (xfree, filename);
c906108c 2141 }
db162d44 2142 else
7a78ae4e
ND
2143 if (argcnt == 1)
2144 {
2145 /* The second argument is always the text address at which
2146 to load the program. */
2147 sect_opts[section_index].name = ".text";
2148 sect_opts[section_index].value = arg;
f414f22f 2149 if (++section_index >= num_sect_opts)
a39a16c4
MM
2150 {
2151 num_sect_opts *= 2;
5417f6dc 2152 sect_opts = ((struct sect_opt *)
a39a16c4 2153 xrealloc (sect_opts,
5417f6dc 2154 num_sect_opts
a39a16c4
MM
2155 * sizeof (struct sect_opt)));
2156 }
7a78ae4e
ND
2157 }
2158 else
2159 {
2160 /* It's an option (starting with '-') or it's an argument
2161 to an option */
2162
2163 if (*arg == '-')
2164 {
78a4a9b9
AC
2165 if (strcmp (arg, "-readnow") == 0)
2166 flags |= OBJF_READNOW;
2167 else if (strcmp (arg, "-s") == 0)
2168 {
2169 expecting_sec_name = 1;
2170 expecting_sec_addr = 1;
2171 }
7a78ae4e
ND
2172 }
2173 else
2174 {
2175 if (expecting_sec_name)
db162d44 2176 {
7a78ae4e
ND
2177 sect_opts[section_index].name = arg;
2178 expecting_sec_name = 0;
db162d44
EZ
2179 }
2180 else
7a78ae4e
ND
2181 if (expecting_sec_addr)
2182 {
2183 sect_opts[section_index].value = arg;
2184 expecting_sec_addr = 0;
f414f22f 2185 if (++section_index >= num_sect_opts)
a39a16c4
MM
2186 {
2187 num_sect_opts *= 2;
5417f6dc 2188 sect_opts = ((struct sect_opt *)
a39a16c4 2189 xrealloc (sect_opts,
5417f6dc 2190 num_sect_opts
a39a16c4
MM
2191 * sizeof (struct sect_opt)));
2192 }
7a78ae4e
ND
2193 }
2194 else
8a3fe4f8 2195 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
7a78ae4e
ND
2196 }
2197 }
c906108c 2198 }
c906108c 2199
927890d0
JB
2200 /* This command takes at least two arguments. The first one is a
2201 filename, and the second is the address where this file has been
2202 loaded. Abort now if this address hasn't been provided by the
2203 user. */
2204 if (section_index < 1)
2205 error (_("The address where %s has been loaded is missing"), filename);
2206
db162d44
EZ
2207 /* Print the prompt for the query below. And save the arguments into
2208 a sect_addr_info structure to be passed around to other
2209 functions. We have to split this up into separate print
bb599908 2210 statements because hex_string returns a local static
db162d44 2211 string. */
5417f6dc 2212
a3f17187 2213 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2214 section_addrs = alloc_section_addr_info (section_index);
2215 make_cleanup (xfree, section_addrs);
db162d44 2216 for (i = 0; i < section_index; i++)
c906108c 2217 {
db162d44
EZ
2218 CORE_ADDR addr;
2219 char *val = sect_opts[i].value;
2220 char *sec = sect_opts[i].name;
5417f6dc 2221
ae822768 2222 addr = parse_and_eval_address (val);
db162d44 2223
db162d44
EZ
2224 /* Here we store the section offsets in the order they were
2225 entered on the command line. */
a39a16c4
MM
2226 section_addrs->other[sec_num].name = sec;
2227 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2228 printf_unfiltered ("\t%s_addr = %s\n", sec,
2229 paddress (gdbarch, addr));
db162d44
EZ
2230 sec_num++;
2231
5417f6dc 2232 /* The object's sections are initialized when a
db162d44 2233 call is made to build_objfile_section_table (objfile).
5417f6dc 2234 This happens in reread_symbols.
db162d44
EZ
2235 At this point, we don't know what file type this is,
2236 so we can't determine what section names are valid. */
2acceee2 2237 }
db162d44 2238
2acceee2 2239 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2240 error (_("Not confirmed."));
c906108c 2241
7eedccfa
PP
2242 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2243 section_addrs, flags);
c906108c
SS
2244
2245 /* Getting new symbols may change our opinion about what is
2246 frameless. */
2247 reinit_frame_cache ();
db162d44 2248 do_cleanups (my_cleanups);
c906108c
SS
2249}
2250\f
70992597 2251
c906108c
SS
2252/* Re-read symbols if a symbol-file has changed. */
2253void
fba45db2 2254reread_symbols (void)
c906108c
SS
2255{
2256 struct objfile *objfile;
2257 long new_modtime;
2258 int reread_one = 0;
2259 struct stat new_statbuf;
2260 int res;
2261
2262 /* With the addition of shared libraries, this should be modified,
2263 the load time should be saved in the partial symbol tables, since
2264 different tables may come from different source files. FIXME.
2265 This routine should then walk down each partial symbol table
2266 and see if the symbol table that it originates from has been changed */
2267
c5aa993b
JM
2268 for (objfile = object_files; objfile; objfile = objfile->next)
2269 {
2270 if (objfile->obfd)
2271 {
52d16ba8 2272#ifdef DEPRECATED_IBM6000_TARGET
c5aa993b
JM
2273 /* If this object is from a shared library, then you should
2274 stat on the library name, not member name. */
c906108c 2275
c5aa993b
JM
2276 if (objfile->obfd->my_archive)
2277 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2278 else
c906108c 2279#endif
c5aa993b
JM
2280 res = stat (objfile->name, &new_statbuf);
2281 if (res != 0)
c906108c 2282 {
c5aa993b 2283 /* FIXME, should use print_sys_errmsg but it's not filtered. */
a3f17187 2284 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
c5aa993b
JM
2285 objfile->name);
2286 continue;
c906108c 2287 }
c5aa993b
JM
2288 new_modtime = new_statbuf.st_mtime;
2289 if (new_modtime != objfile->mtime)
c906108c 2290 {
c5aa993b
JM
2291 struct cleanup *old_cleanups;
2292 struct section_offsets *offsets;
2293 int num_offsets;
c5aa993b
JM
2294 char *obfd_filename;
2295
a3f17187 2296 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
c5aa993b
JM
2297 objfile->name);
2298
2299 /* There are various functions like symbol_file_add,
2300 symfile_bfd_open, syms_from_objfile, etc., which might
2301 appear to do what we want. But they have various other
2302 effects which we *don't* want. So we just do stuff
2303 ourselves. We don't worry about mapped files (for one thing,
2304 any mapped file will be out of date). */
2305
2306 /* If we get an error, blow away this objfile (not sure if
2307 that is the correct response for things like shared
2308 libraries). */
74b7792f 2309 old_cleanups = make_cleanup_free_objfile (objfile);
c5aa993b 2310 /* We need to do this whenever any symbols go away. */
74b7792f 2311 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c5aa993b 2312
b2de52bb
JK
2313 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2314 bfd_get_filename (exec_bfd)) == 0)
2315 {
2316 /* Reload EXEC_BFD without asking anything. */
2317
2318 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2319 }
2320
c5aa993b
JM
2321 /* Clean up any state BFD has sitting around. We don't need
2322 to close the descriptor but BFD lacks a way of closing the
2323 BFD without closing the descriptor. */
2324 obfd_filename = bfd_get_filename (objfile->obfd);
2325 if (!bfd_close (objfile->obfd))
8a3fe4f8 2326 error (_("Can't close BFD for %s: %s"), objfile->name,
c5aa993b 2327 bfd_errmsg (bfd_get_error ()));
f1838a98
UW
2328 if (remote_filename_p (obfd_filename))
2329 objfile->obfd = remote_bfd_open (obfd_filename, gnutarget);
2330 else
2331 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
c5aa993b 2332 if (objfile->obfd == NULL)
8a3fe4f8 2333 error (_("Can't open %s to read symbols."), objfile->name);
c5aa993b
JM
2334 /* bfd_openr sets cacheable to true, which is what we want. */
2335 if (!bfd_check_format (objfile->obfd, bfd_object))
8a3fe4f8 2336 error (_("Can't read symbols from %s: %s."), objfile->name,
c5aa993b
JM
2337 bfd_errmsg (bfd_get_error ()));
2338
2339 /* Save the offsets, we will nuke them with the rest of the
8b92e4d5 2340 objfile_obstack. */
c5aa993b 2341 num_offsets = objfile->num_sections;
5417f6dc 2342 offsets = ((struct section_offsets *)
a39a16c4 2343 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
5417f6dc 2344 memcpy (offsets, objfile->section_offsets,
a39a16c4 2345 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b 2346
ae5a43e0
DJ
2347 /* Remove any references to this objfile in the global
2348 value lists. */
2349 preserve_values (objfile);
2350
c5aa993b
JM
2351 /* Nuke all the state that we will re-read. Much of the following
2352 code which sets things to NULL really is necessary to tell
5b2ab461
JK
2353 other parts of GDB that there is nothing currently there.
2354
2355 Try to keep the freeing order compatible with free_objfile. */
2356
2357 if (objfile->sf != NULL)
2358 {
2359 (*objfile->sf->sym_finish) (objfile);
2360 }
2361
2362 clear_objfile_data (objfile);
c5aa993b
JM
2363
2364 /* FIXME: Do we have to free a whole linked list, or is this
2365 enough? */
2366 if (objfile->global_psymbols.list)
2dc74dc1 2367 xfree (objfile->global_psymbols.list);
c5aa993b
JM
2368 memset (&objfile->global_psymbols, 0,
2369 sizeof (objfile->global_psymbols));
2370 if (objfile->static_psymbols.list)
2dc74dc1 2371 xfree (objfile->static_psymbols.list);
c5aa993b
JM
2372 memset (&objfile->static_psymbols, 0,
2373 sizeof (objfile->static_psymbols));
2374
2375 /* Free the obstacks for non-reusable objfiles */
af5f3db6
AC
2376 bcache_xfree (objfile->psymbol_cache);
2377 objfile->psymbol_cache = bcache_xmalloc ();
2378 bcache_xfree (objfile->macro_cache);
2379 objfile->macro_cache = bcache_xmalloc ();
2de7ced7
DJ
2380 if (objfile->demangled_names_hash != NULL)
2381 {
2382 htab_delete (objfile->demangled_names_hash);
2383 objfile->demangled_names_hash = NULL;
2384 }
b99607ea 2385 obstack_free (&objfile->objfile_obstack, 0);
c5aa993b
JM
2386 objfile->sections = NULL;
2387 objfile->symtabs = NULL;
2388 objfile->psymtabs = NULL;
930123b7 2389 objfile->psymtabs_addrmap = NULL;
c5aa993b 2390 objfile->free_psymtabs = NULL;
a1b8c067 2391 objfile->cp_namespace_symtab = NULL;
c5aa993b 2392 objfile->msymbols = NULL;
0a6ddd08 2393 objfile->deprecated_sym_private = NULL;
c5aa993b 2394 objfile->minimal_symbol_count = 0;
0a83117a
MS
2395 memset (&objfile->msymbol_hash, 0,
2396 sizeof (objfile->msymbol_hash));
2397 memset (&objfile->msymbol_demangled_hash, 0,
2398 sizeof (objfile->msymbol_demangled_hash));
c5aa993b 2399
af5f3db6
AC
2400 objfile->psymbol_cache = bcache_xmalloc ();
2401 objfile->macro_cache = bcache_xmalloc ();
1ab21617
EZ
2402 /* obstack_init also initializes the obstack so it is
2403 empty. We could use obstack_specify_allocation but
2404 gdb_obstack.h specifies the alloc/dealloc
2405 functions. */
2406 obstack_init (&objfile->objfile_obstack);
c5aa993b
JM
2407 if (build_objfile_section_table (objfile))
2408 {
8a3fe4f8 2409 error (_("Can't find the file sections in `%s': %s"),
c5aa993b
JM
2410 objfile->name, bfd_errmsg (bfd_get_error ()));
2411 }
15831452 2412 terminate_minimal_symbol_table (objfile);
c5aa993b
JM
2413
2414 /* We use the same section offsets as from last time. I'm not
2415 sure whether that is always correct for shared libraries. */
2416 objfile->section_offsets = (struct section_offsets *)
5417f6dc 2417 obstack_alloc (&objfile->objfile_obstack,
a39a16c4 2418 SIZEOF_N_SECTION_OFFSETS (num_offsets));
5417f6dc 2419 memcpy (objfile->section_offsets, offsets,
a39a16c4 2420 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b
JM
2421 objfile->num_sections = num_offsets;
2422
2423 /* What the hell is sym_new_init for, anyway? The concept of
2424 distinguishing between the main file and additional files
2425 in this way seems rather dubious. */
2426 if (objfile == symfile_objfile)
2427 {
2428 (*objfile->sf->sym_new_init) (objfile);
c5aa993b
JM
2429 }
2430
2431 (*objfile->sf->sym_init) (objfile);
b9caf505 2432 clear_complaints (&symfile_complaints, 1, 1);
c5aa993b
JM
2433 /* The "mainline" parameter is a hideous hack; I think leaving it
2434 zero is OK since dbxread.c also does what it needs to do if
2435 objfile->global_psymbols.size is 0. */
96baa820 2436 (*objfile->sf->sym_read) (objfile, 0);
c5aa993b
JM
2437 if (!have_partial_symbols () && !have_full_symbols ())
2438 {
2439 wrap_here ("");
a3f17187 2440 printf_unfiltered (_("(no debugging symbols found)\n"));
c5aa993b
JM
2441 wrap_here ("");
2442 }
c5aa993b
JM
2443
2444 /* We're done reading the symbol file; finish off complaints. */
b9caf505 2445 clear_complaints (&symfile_complaints, 0, 1);
c906108c 2446
c5aa993b
JM
2447 /* Getting new symbols may change our opinion about what is
2448 frameless. */
c906108c 2449
c5aa993b 2450 reinit_frame_cache ();
c906108c 2451
c5aa993b
JM
2452 /* Discard cleanups as symbol reading was successful. */
2453 discard_cleanups (old_cleanups);
c906108c 2454
c5aa993b
JM
2455 /* If the mtime has changed between the time we set new_modtime
2456 and now, we *want* this to be out of date, so don't call stat
2457 again now. */
2458 objfile->mtime = new_modtime;
2459 reread_one = 1;
5b5d99cf 2460 reread_separate_symbols (objfile);
6528a9ea 2461 init_entry_point_info (objfile);
c5aa993b 2462 }
c906108c
SS
2463 }
2464 }
c906108c
SS
2465
2466 if (reread_one)
ea53e89f
JB
2467 {
2468 clear_symtab_users ();
2469 /* At least one objfile has changed, so we can consider that
2470 the executable we're debugging has changed too. */
781b42b0 2471 observer_notify_executable_changed ();
bb272892
PP
2472
2473 /* Notify objfiles that we've modified objfile sections. */
2474 objfiles_changed ();
ea53e89f 2475 }
c906108c 2476}
5b5d99cf
JB
2477
2478
2479/* Handle separate debug info for OBJFILE, which has just been
2480 re-read:
2481 - If we had separate debug info before, but now we don't, get rid
2482 of the separated objfile.
2483 - If we didn't have separated debug info before, but now we do,
2484 read in the new separated debug info file.
2485 - If the debug link points to a different file, toss the old one
2486 and read the new one.
2487 This function does *not* handle the case where objfile is still
2488 using the same separate debug info file, but that file's timestamp
2489 has changed. That case should be handled by the loop in
2490 reread_symbols already. */
2491static void
2492reread_separate_symbols (struct objfile *objfile)
2493{
2494 char *debug_file;
2495 unsigned long crc32;
2496
2497 /* Does the updated objfile's debug info live in a
2498 separate file? */
2499 debug_file = find_separate_debug_file (objfile);
2500
2501 if (objfile->separate_debug_objfile)
2502 {
2503 /* There are two cases where we need to get rid of
2504 the old separated debug info objfile:
2505 - if the new primary objfile doesn't have
2506 separated debug info, or
2507 - if the new primary objfile has separate debug
2508 info, but it's under a different filename.
5417f6dc 2509
5b5d99cf
JB
2510 If the old and new objfiles both have separate
2511 debug info, under the same filename, then we're
2512 okay --- if the separated file's contents have
2513 changed, we will have caught that when we
2514 visited it in this function's outermost
2515 loop. */
2516 if (! debug_file
2517 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2518 free_objfile (objfile->separate_debug_objfile);
2519 }
2520
2521 /* If the new objfile has separate debug info, and we
2522 haven't loaded it already, do so now. */
2523 if (debug_file
2524 && ! objfile->separate_debug_objfile)
2525 {
2526 /* Use the same section offset table as objfile itself.
2527 Preserve the flags from objfile that make sense. */
2528 objfile->separate_debug_objfile
2529 = (symbol_file_add_with_addrs_or_offsets
5417f6dc 2530 (symfile_bfd_open (debug_file),
7eedccfa 2531 info_verbose ? SYMFILE_VERBOSE : 0,
5b5d99cf
JB
2532 0, /* No addr table. */
2533 objfile->section_offsets, objfile->num_sections,
78a4a9b9 2534 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
5b5d99cf
JB
2535 | OBJF_USERLOADED)));
2536 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2537 = objfile;
2538 }
73780b3c
MS
2539 if (debug_file)
2540 xfree (debug_file);
5b5d99cf
JB
2541}
2542
2543
c906108c
SS
2544\f
2545
c5aa993b
JM
2546
2547typedef struct
2548{
2549 char *ext;
c906108c 2550 enum language lang;
c5aa993b
JM
2551}
2552filename_language;
c906108c 2553
c5aa993b 2554static filename_language *filename_language_table;
c906108c
SS
2555static int fl_table_size, fl_table_next;
2556
2557static void
fba45db2 2558add_filename_language (char *ext, enum language lang)
c906108c
SS
2559{
2560 if (fl_table_next >= fl_table_size)
2561 {
2562 fl_table_size += 10;
5417f6dc 2563 filename_language_table =
25bf3106
PM
2564 xrealloc (filename_language_table,
2565 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2566 }
2567
4fcf66da 2568 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2569 filename_language_table[fl_table_next].lang = lang;
2570 fl_table_next++;
2571}
2572
2573static char *ext_args;
920d2a44
AC
2574static void
2575show_ext_args (struct ui_file *file, int from_tty,
2576 struct cmd_list_element *c, const char *value)
2577{
2578 fprintf_filtered (file, _("\
2579Mapping between filename extension and source language is \"%s\".\n"),
2580 value);
2581}
c906108c
SS
2582
2583static void
26c41df3 2584set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2585{
2586 int i;
2587 char *cp = ext_args;
2588 enum language lang;
2589
2590 /* First arg is filename extension, starting with '.' */
2591 if (*cp != '.')
8a3fe4f8 2592 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2593
2594 /* Find end of first arg. */
c5aa993b 2595 while (*cp && !isspace (*cp))
c906108c
SS
2596 cp++;
2597
2598 if (*cp == '\0')
8a3fe4f8 2599 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2600 ext_args);
2601
2602 /* Null-terminate first arg */
c5aa993b 2603 *cp++ = '\0';
c906108c
SS
2604
2605 /* Find beginning of second arg, which should be a source language. */
2606 while (*cp && isspace (*cp))
2607 cp++;
2608
2609 if (*cp == '\0')
8a3fe4f8 2610 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2611 ext_args);
2612
2613 /* Lookup the language from among those we know. */
2614 lang = language_enum (cp);
2615
2616 /* Now lookup the filename extension: do we already know it? */
2617 for (i = 0; i < fl_table_next; i++)
2618 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2619 break;
2620
2621 if (i >= fl_table_next)
2622 {
2623 /* new file extension */
2624 add_filename_language (ext_args, lang);
2625 }
2626 else
2627 {
2628 /* redefining a previously known filename extension */
2629
2630 /* if (from_tty) */
2631 /* query ("Really make files of type %s '%s'?", */
2632 /* ext_args, language_str (lang)); */
2633
b8c9b27d 2634 xfree (filename_language_table[i].ext);
4fcf66da 2635 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2636 filename_language_table[i].lang = lang;
2637 }
2638}
2639
2640static void
fba45db2 2641info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2642{
2643 int i;
2644
a3f17187 2645 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2646 printf_filtered ("\n\n");
2647 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2648 printf_filtered ("\t%s\t- %s\n",
2649 filename_language_table[i].ext,
c906108c
SS
2650 language_str (filename_language_table[i].lang));
2651}
2652
2653static void
fba45db2 2654init_filename_language_table (void)
c906108c
SS
2655{
2656 if (fl_table_size == 0) /* protect against repetition */
2657 {
2658 fl_table_size = 20;
2659 fl_table_next = 0;
c5aa993b 2660 filename_language_table =
c906108c 2661 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b
JM
2662 add_filename_language (".c", language_c);
2663 add_filename_language (".C", language_cplus);
2664 add_filename_language (".cc", language_cplus);
2665 add_filename_language (".cp", language_cplus);
2666 add_filename_language (".cpp", language_cplus);
2667 add_filename_language (".cxx", language_cplus);
2668 add_filename_language (".c++", language_cplus);
2669 add_filename_language (".java", language_java);
c906108c 2670 add_filename_language (".class", language_java);
da2cf7e0 2671 add_filename_language (".m", language_objc);
c5aa993b
JM
2672 add_filename_language (".f", language_fortran);
2673 add_filename_language (".F", language_fortran);
2674 add_filename_language (".s", language_asm);
aa707ed0 2675 add_filename_language (".sx", language_asm);
c5aa993b 2676 add_filename_language (".S", language_asm);
c6fd39cd
PM
2677 add_filename_language (".pas", language_pascal);
2678 add_filename_language (".p", language_pascal);
2679 add_filename_language (".pp", language_pascal);
963a6417
PH
2680 add_filename_language (".adb", language_ada);
2681 add_filename_language (".ads", language_ada);
2682 add_filename_language (".a", language_ada);
2683 add_filename_language (".ada", language_ada);
c906108c
SS
2684 }
2685}
2686
2687enum language
fba45db2 2688deduce_language_from_filename (char *filename)
c906108c
SS
2689{
2690 int i;
2691 char *cp;
2692
2693 if (filename != NULL)
2694 if ((cp = strrchr (filename, '.')) != NULL)
2695 for (i = 0; i < fl_table_next; i++)
2696 if (strcmp (cp, filename_language_table[i].ext) == 0)
2697 return filename_language_table[i].lang;
2698
2699 return language_unknown;
2700}
2701\f
2702/* allocate_symtab:
2703
2704 Allocate and partly initialize a new symbol table. Return a pointer
2705 to it. error() if no space.
2706
2707 Caller must set these fields:
c5aa993b
JM
2708 LINETABLE(symtab)
2709 symtab->blockvector
2710 symtab->dirname
2711 symtab->free_code
2712 symtab->free_ptr
2713 possibly free_named_symtabs (symtab->filename);
c906108c
SS
2714 */
2715
2716struct symtab *
fba45db2 2717allocate_symtab (char *filename, struct objfile *objfile)
c906108c 2718{
52f0bd74 2719 struct symtab *symtab;
c906108c
SS
2720
2721 symtab = (struct symtab *)
4a146b47 2722 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2723 memset (symtab, 0, sizeof (*symtab));
c5aa993b 2724 symtab->filename = obsavestring (filename, strlen (filename),
4a146b47 2725 &objfile->objfile_obstack);
c5aa993b
JM
2726 symtab->fullname = NULL;
2727 symtab->language = deduce_language_from_filename (filename);
2728 symtab->debugformat = obsavestring ("unknown", 7,
4a146b47 2729 &objfile->objfile_obstack);
c906108c
SS
2730
2731 /* Hook it to the objfile it comes from */
2732
c5aa993b
JM
2733 symtab->objfile = objfile;
2734 symtab->next = objfile->symtabs;
2735 objfile->symtabs = symtab;
c906108c 2736
c906108c
SS
2737 return (symtab);
2738}
2739
2740struct partial_symtab *
fba45db2 2741allocate_psymtab (char *filename, struct objfile *objfile)
c906108c
SS
2742{
2743 struct partial_symtab *psymtab;
2744
c5aa993b 2745 if (objfile->free_psymtabs)
c906108c 2746 {
c5aa993b
JM
2747 psymtab = objfile->free_psymtabs;
2748 objfile->free_psymtabs = psymtab->next;
c906108c
SS
2749 }
2750 else
2751 psymtab = (struct partial_symtab *)
8b92e4d5 2752 obstack_alloc (&objfile->objfile_obstack,
c906108c
SS
2753 sizeof (struct partial_symtab));
2754
2755 memset (psymtab, 0, sizeof (struct partial_symtab));
c5aa993b 2756 psymtab->filename = obsavestring (filename, strlen (filename),
8b92e4d5 2757 &objfile->objfile_obstack);
c5aa993b 2758 psymtab->symtab = NULL;
c906108c
SS
2759
2760 /* Prepend it to the psymtab list for the objfile it belongs to.
2761 Psymtabs are searched in most recent inserted -> least recent
2762 inserted order. */
2763
c5aa993b
JM
2764 psymtab->objfile = objfile;
2765 psymtab->next = objfile->psymtabs;
2766 objfile->psymtabs = psymtab;
c906108c
SS
2767#if 0
2768 {
2769 struct partial_symtab **prev_pst;
c5aa993b
JM
2770 psymtab->objfile = objfile;
2771 psymtab->next = NULL;
2772 prev_pst = &(objfile->psymtabs);
c906108c 2773 while ((*prev_pst) != NULL)
c5aa993b 2774 prev_pst = &((*prev_pst)->next);
c906108c 2775 (*prev_pst) = psymtab;
c5aa993b 2776 }
c906108c 2777#endif
c5aa993b 2778
c906108c
SS
2779 return (psymtab);
2780}
2781
2782void
fba45db2 2783discard_psymtab (struct partial_symtab *pst)
c906108c
SS
2784{
2785 struct partial_symtab **prev_pst;
2786
2787 /* From dbxread.c:
2788 Empty psymtabs happen as a result of header files which don't
2789 have any symbols in them. There can be a lot of them. But this
2790 check is wrong, in that a psymtab with N_SLINE entries but
2791 nothing else is not empty, but we don't realize that. Fixing
2792 that without slowing things down might be tricky. */
2793
2794 /* First, snip it out of the psymtab chain */
2795
2796 prev_pst = &(pst->objfile->psymtabs);
2797 while ((*prev_pst) != pst)
2798 prev_pst = &((*prev_pst)->next);
2799 (*prev_pst) = pst->next;
2800
2801 /* Next, put it on a free list for recycling */
2802
2803 pst->next = pst->objfile->free_psymtabs;
2804 pst->objfile->free_psymtabs = pst;
2805}
c906108c 2806\f
c5aa993b 2807
c906108c
SS
2808/* Reset all data structures in gdb which may contain references to symbol
2809 table data. */
2810
2811void
fba45db2 2812clear_symtab_users (void)
c906108c
SS
2813{
2814 /* Someday, we should do better than this, by only blowing away
2815 the things that really need to be blown. */
c0501be5
DJ
2816
2817 /* Clear the "current" symtab first, because it is no longer valid.
2818 breakpoint_re_set may try to access the current symtab. */
2819 clear_current_source_symtab_and_line ();
2820
c906108c 2821 clear_displays ();
c906108c
SS
2822 breakpoint_re_set ();
2823 set_default_breakpoint (0, 0, 0, 0);
c906108c 2824 clear_pc_function_cache ();
06d3b283 2825 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2826
2827 /* Clear globals which might have pointed into a removed objfile.
2828 FIXME: It's not clear which of these are supposed to persist
2829 between expressions and which ought to be reset each time. */
2830 expression_context_block = NULL;
2831 innermost_block = NULL;
8756216b
DP
2832
2833 /* Varobj may refer to old symbols, perform a cleanup. */
2834 varobj_invalidate ();
2835
c906108c
SS
2836}
2837
74b7792f
AC
2838static void
2839clear_symtab_users_cleanup (void *ignore)
2840{
2841 clear_symtab_users ();
2842}
2843
c906108c
SS
2844/* clear_symtab_users_once:
2845
2846 This function is run after symbol reading, or from a cleanup.
2847 If an old symbol table was obsoleted, the old symbol table
5417f6dc 2848 has been blown away, but the other GDB data structures that may
c906108c
SS
2849 reference it have not yet been cleared or re-directed. (The old
2850 symtab was zapped, and the cleanup queued, in free_named_symtab()
2851 below.)
2852
2853 This function can be queued N times as a cleanup, or called
2854 directly; it will do all the work the first time, and then will be a
2855 no-op until the next time it is queued. This works by bumping a
2856 counter at queueing time. Much later when the cleanup is run, or at
2857 the end of symbol processing (in case the cleanup is discarded), if
2858 the queued count is greater than the "done-count", we do the work
2859 and set the done-count to the queued count. If the queued count is
2860 less than or equal to the done-count, we just ignore the call. This
2861 is needed because reading a single .o file will often replace many
2862 symtabs (one per .h file, for example), and we don't want to reset
2863 the breakpoints N times in the user's face.
2864
2865 The reason we both queue a cleanup, and call it directly after symbol
2866 reading, is because the cleanup protects us in case of errors, but is
2867 discarded if symbol reading is successful. */
2868
2869#if 0
2870/* FIXME: As free_named_symtabs is currently a big noop this function
2871 is no longer needed. */
a14ed312 2872static void clear_symtab_users_once (void);
c906108c
SS
2873
2874static int clear_symtab_users_queued;
2875static int clear_symtab_users_done;
2876
2877static void
fba45db2 2878clear_symtab_users_once (void)
c906108c
SS
2879{
2880 /* Enforce once-per-`do_cleanups'-semantics */
2881 if (clear_symtab_users_queued <= clear_symtab_users_done)
2882 return;
2883 clear_symtab_users_done = clear_symtab_users_queued;
2884
2885 clear_symtab_users ();
2886}
2887#endif
2888
2889/* Delete the specified psymtab, and any others that reference it. */
2890
2891static void
fba45db2 2892cashier_psymtab (struct partial_symtab *pst)
c906108c
SS
2893{
2894 struct partial_symtab *ps, *pprev = NULL;
2895 int i;
2896
2897 /* Find its previous psymtab in the chain */
c5aa993b
JM
2898 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2899 {
2900 if (ps == pst)
2901 break;
2902 pprev = ps;
2903 }
c906108c 2904
c5aa993b
JM
2905 if (ps)
2906 {
2907 /* Unhook it from the chain. */
2908 if (ps == pst->objfile->psymtabs)
2909 pst->objfile->psymtabs = ps->next;
2910 else
2911 pprev->next = ps->next;
2912
2913 /* FIXME, we can't conveniently deallocate the entries in the
2914 partial_symbol lists (global_psymbols/static_psymbols) that
2915 this psymtab points to. These just take up space until all
2916 the psymtabs are reclaimed. Ditto the dependencies list and
8b92e4d5 2917 filename, which are all in the objfile_obstack. */
c5aa993b
JM
2918
2919 /* We need to cashier any psymtab that has this one as a dependency... */
2920 again:
2921 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2922 {
2923 for (i = 0; i < ps->number_of_dependencies; i++)
2924 {
2925 if (ps->dependencies[i] == pst)
2926 {
2927 cashier_psymtab (ps);
2928 goto again; /* Must restart, chain has been munged. */
2929 }
2930 }
c906108c 2931 }
c906108c 2932 }
c906108c
SS
2933}
2934
2935/* If a symtab or psymtab for filename NAME is found, free it along
2936 with any dependent breakpoints, displays, etc.
2937 Used when loading new versions of object modules with the "add-file"
2938 command. This is only called on the top-level symtab or psymtab's name;
2939 it is not called for subsidiary files such as .h files.
2940
2941 Return value is 1 if we blew away the environment, 0 if not.
7e73cedf 2942 FIXME. The return value appears to never be used.
c906108c
SS
2943
2944 FIXME. I think this is not the best way to do this. We should
2945 work on being gentler to the environment while still cleaning up
2946 all stray pointers into the freed symtab. */
2947
2948int
fba45db2 2949free_named_symtabs (char *name)
c906108c
SS
2950{
2951#if 0
2952 /* FIXME: With the new method of each objfile having it's own
2953 psymtab list, this function needs serious rethinking. In particular,
2954 why was it ever necessary to toss psymtabs with specific compilation
2955 unit filenames, as opposed to all psymtabs from a particular symbol
2956 file? -- fnf
2957 Well, the answer is that some systems permit reloading of particular
2958 compilation units. We want to blow away any old info about these
2959 compilation units, regardless of which objfiles they arrived in. --gnu. */
2960
52f0bd74
AC
2961 struct symtab *s;
2962 struct symtab *prev;
2963 struct partial_symtab *ps;
c906108c
SS
2964 struct blockvector *bv;
2965 int blewit = 0;
2966
2967 /* We only wack things if the symbol-reload switch is set. */
2968 if (!symbol_reloading)
2969 return 0;
2970
2971 /* Some symbol formats have trouble providing file names... */
2972 if (name == 0 || *name == '\0')
2973 return 0;
2974
2975 /* Look for a psymtab with the specified name. */
2976
2977again2:
c5aa993b
JM
2978 for (ps = partial_symtab_list; ps; ps = ps->next)
2979 {
6314a349 2980 if (strcmp (name, ps->filename) == 0)
c5aa993b
JM
2981 {
2982 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2983 goto again2; /* Must restart, chain has been munged */
2984 }
c906108c 2985 }
c906108c
SS
2986
2987 /* Look for a symtab with the specified name. */
2988
2989 for (s = symtab_list; s; s = s->next)
2990 {
6314a349 2991 if (strcmp (name, s->filename) == 0)
c906108c
SS
2992 break;
2993 prev = s;
2994 }
2995
2996 if (s)
2997 {
2998 if (s == symtab_list)
2999 symtab_list = s->next;
3000 else
3001 prev->next = s->next;
3002
3003 /* For now, queue a delete for all breakpoints, displays, etc., whether
c5aa993b
JM
3004 or not they depend on the symtab being freed. This should be
3005 changed so that only those data structures affected are deleted. */
c906108c
SS
3006
3007 /* But don't delete anything if the symtab is empty.
c5aa993b
JM
3008 This test is necessary due to a bug in "dbxread.c" that
3009 causes empty symtabs to be created for N_SO symbols that
3010 contain the pathname of the object file. (This problem
3011 has been fixed in GDB 3.9x). */
c906108c
SS
3012
3013 bv = BLOCKVECTOR (s);
3014 if (BLOCKVECTOR_NBLOCKS (bv) > 2
3015 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
3016 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
3017 {
e2e0b3e5 3018 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
b9caf505 3019 name);
c906108c
SS
3020 clear_symtab_users_queued++;
3021 make_cleanup (clear_symtab_users_once, 0);
3022 blewit = 1;
c5aa993b
JM
3023 }
3024 else
e2e0b3e5
AC
3025 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
3026 name);
c906108c
SS
3027
3028 free_symtab (s);
3029 }
3030 else
3031 {
3032 /* It is still possible that some breakpoints will be affected
c5aa993b
JM
3033 even though no symtab was found, since the file might have
3034 been compiled without debugging, and hence not be associated
3035 with a symtab. In order to handle this correctly, we would need
3036 to keep a list of text address ranges for undebuggable files.
3037 For now, we do nothing, since this is a fairly obscure case. */
c906108c
SS
3038 ;
3039 }
3040
3041 /* FIXME, what about the minimal symbol table? */
3042 return blewit;
3043#else
3044 return (0);
3045#endif
3046}
3047\f
3048/* Allocate and partially fill a partial symtab. It will be
3049 completely filled at the end of the symbol list.
3050
d4f3574e 3051 FILENAME is the name of the symbol-file we are reading from. */
c906108c
SS
3052
3053struct partial_symtab *
fba45db2
KB
3054start_psymtab_common (struct objfile *objfile,
3055 struct section_offsets *section_offsets, char *filename,
3056 CORE_ADDR textlow, struct partial_symbol **global_syms,
3057 struct partial_symbol **static_syms)
c906108c
SS
3058{
3059 struct partial_symtab *psymtab;
3060
3061 psymtab = allocate_psymtab (filename, objfile);
c5aa993b
JM
3062 psymtab->section_offsets = section_offsets;
3063 psymtab->textlow = textlow;
3064 psymtab->texthigh = psymtab->textlow; /* default */
3065 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
3066 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
c906108c
SS
3067 return (psymtab);
3068}
3069\f
2e618c13
AR
3070/* Helper function, initialises partial symbol structure and stashes
3071 it into objfile's bcache. Note that our caching mechanism will
3072 use all fields of struct partial_symbol to determine hash value of the
3073 structure. In other words, having two symbols with the same name but
3074 different domain (or address) is possible and correct. */
3075
11d31d94 3076static const struct partial_symbol *
2e618c13
AR
3077add_psymbol_to_bcache (char *name, int namelength, domain_enum domain,
3078 enum address_class class,
3079 long val, /* Value as a long */
3080 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3081 enum language language, struct objfile *objfile,
3082 int *added)
3083{
3084 char *buf = name;
3085 /* psymbol is static so that there will be no uninitialized gaps in the
3086 structure which might contain random data, causing cache misses in
3087 bcache. */
3088 static struct partial_symbol psymbol;
3089
3090 if (name[namelength] != '\0')
3091 {
3092 buf = alloca (namelength + 1);
3093 /* Create local copy of the partial symbol */
3094 memcpy (buf, name, namelength);
3095 buf[namelength] = '\0';
3096 }
3097 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
3098 if (val != 0)
3099 {
3100 SYMBOL_VALUE (&psymbol) = val;
3101 }
3102 else
3103 {
3104 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
3105 }
3106 SYMBOL_SECTION (&psymbol) = 0;
3107 SYMBOL_LANGUAGE (&psymbol) = language;
3108 PSYMBOL_DOMAIN (&psymbol) = domain;
3109 PSYMBOL_CLASS (&psymbol) = class;
3110
3111 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
3112
3113 /* Stash the partial symbol away in the cache */
11d31d94
TT
3114 return bcache_full (&psymbol, sizeof (struct partial_symbol),
3115 objfile->psymbol_cache, added);
2e618c13
AR
3116}
3117
3118/* Helper function, adds partial symbol to the given partial symbol
3119 list. */
3120
3121static void
3122append_psymbol_to_list (struct psymbol_allocation_list *list,
11d31d94 3123 const struct partial_symbol *psym,
2e618c13
AR
3124 struct objfile *objfile)
3125{
3126 if (list->next >= list->list + list->size)
3127 extend_psymbol_list (list, objfile);
11d31d94 3128 *list->next++ = (struct partial_symbol *) psym;
2e618c13
AR
3129 OBJSTAT (objfile, n_psyms++);
3130}
3131
c906108c 3132/* Add a symbol with a long value to a psymtab.
5417f6dc 3133 Since one arg is a struct, we pass in a ptr and deref it (sigh).
5c4e30ca
DC
3134 Return the partial symbol that has been added. */
3135
3136/* NOTE: carlton/2003-09-11: The reason why we return the partial
3137 symbol is so that callers can get access to the symbol's demangled
3138 name, which they don't have any cheap way to determine otherwise.
3139 (Currenly, dwarf2read.c is the only file who uses that information,
3140 though it's possible that other readers might in the future.)
3141 Elena wasn't thrilled about that, and I don't blame her, but we
3142 couldn't come up with a better way to get that information. If
3143 it's needed in other situations, we could consider breaking up
3144 SYMBOL_SET_NAMES to provide access to the demangled name lookup
3145 cache. */
3146
3147const struct partial_symbol *
176620f1 3148add_psymbol_to_list (char *name, int namelength, domain_enum domain,
fba45db2 3149 enum address_class class,
2e618c13
AR
3150 struct psymbol_allocation_list *list,
3151 long val, /* Value as a long */
fba45db2
KB
3152 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3153 enum language language, struct objfile *objfile)
c906108c 3154{
11d31d94 3155 const struct partial_symbol *psym;
2de7ced7 3156
2e618c13 3157 int added;
c906108c
SS
3158
3159 /* Stash the partial symbol away in the cache */
2e618c13
AR
3160 psym = add_psymbol_to_bcache (name, namelength, domain, class,
3161 val, coreaddr, language, objfile, &added);
c906108c 3162
2e618c13
AR
3163 /* Do not duplicate global partial symbols. */
3164 if (list == &objfile->global_psymbols
3165 && !added)
3166 return psym;
5c4e30ca 3167
2e618c13
AR
3168 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
3169 append_psymbol_to_list (list, psym, objfile);
5c4e30ca 3170 return psym;
c906108c
SS
3171}
3172
c906108c
SS
3173/* Initialize storage for partial symbols. */
3174
3175void
fba45db2 3176init_psymbol_list (struct objfile *objfile, int total_symbols)
c906108c
SS
3177{
3178 /* Free any previously allocated psymbol lists. */
c5aa993b
JM
3179
3180 if (objfile->global_psymbols.list)
c906108c 3181 {
2dc74dc1 3182 xfree (objfile->global_psymbols.list);
c906108c 3183 }
c5aa993b 3184 if (objfile->static_psymbols.list)
c906108c 3185 {
2dc74dc1 3186 xfree (objfile->static_psymbols.list);
c906108c 3187 }
c5aa993b 3188
c906108c
SS
3189 /* Current best guess is that approximately a twentieth
3190 of the total symbols (in a debugging file) are global or static
3191 oriented symbols */
c906108c 3192
c5aa993b
JM
3193 objfile->global_psymbols.size = total_symbols / 10;
3194 objfile->static_psymbols.size = total_symbols / 10;
3195
3196 if (objfile->global_psymbols.size > 0)
c906108c 3197 {
c5aa993b
JM
3198 objfile->global_psymbols.next =
3199 objfile->global_psymbols.list = (struct partial_symbol **)
7936743b
AC
3200 xmalloc ((objfile->global_psymbols.size
3201 * sizeof (struct partial_symbol *)));
c906108c 3202 }
c5aa993b 3203 if (objfile->static_psymbols.size > 0)
c906108c 3204 {
c5aa993b
JM
3205 objfile->static_psymbols.next =
3206 objfile->static_psymbols.list = (struct partial_symbol **)
7936743b
AC
3207 xmalloc ((objfile->static_psymbols.size
3208 * sizeof (struct partial_symbol *)));
c906108c
SS
3209 }
3210}
3211
3212/* OVERLAYS:
3213 The following code implements an abstraction for debugging overlay sections.
3214
3215 The target model is as follows:
3216 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 3217 same VMA, each with its own unique LMA (or load address).
c906108c 3218 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 3219 sections, one by one, from the load address into the VMA address.
5417f6dc 3220 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
3221 sections should be considered to be mapped from the VMA to the LMA.
3222 This information is used for symbol lookup, and memory read/write.
5417f6dc 3223 For instance, if a section has been mapped then its contents
c5aa993b 3224 should be read from the VMA, otherwise from the LMA.
c906108c
SS
3225
3226 Two levels of debugger support for overlays are available. One is
3227 "manual", in which the debugger relies on the user to tell it which
3228 overlays are currently mapped. This level of support is
3229 implemented entirely in the core debugger, and the information about
3230 whether a section is mapped is kept in the objfile->obj_section table.
3231
3232 The second level of support is "automatic", and is only available if
3233 the target-specific code provides functionality to read the target's
3234 overlay mapping table, and translate its contents for the debugger
3235 (by updating the mapped state information in the obj_section tables).
3236
3237 The interface is as follows:
c5aa993b
JM
3238 User commands:
3239 overlay map <name> -- tell gdb to consider this section mapped
3240 overlay unmap <name> -- tell gdb to consider this section unmapped
3241 overlay list -- list the sections that GDB thinks are mapped
3242 overlay read-target -- get the target's state of what's mapped
3243 overlay off/manual/auto -- set overlay debugging state
3244 Functional interface:
3245 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3246 section, return that section.
5417f6dc 3247 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 3248 the pc, either in its VMA or its LMA
714835d5 3249 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
3250 section_is_overlay(sect): true if section's VMA != LMA
3251 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3252 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 3253 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
3254 overlay_mapped_address(...): map an address from section's LMA to VMA
3255 overlay_unmapped_address(...): map an address from section's VMA to LMA
3256 symbol_overlayed_address(...): Return a "current" address for symbol:
3257 either in VMA or LMA depending on whether
3258 the symbol's section is currently mapped
c906108c
SS
3259 */
3260
3261/* Overlay debugging state: */
3262
d874f1e2 3263enum overlay_debugging_state overlay_debugging = ovly_off;
c906108c
SS
3264int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
3265
c906108c 3266/* Function: section_is_overlay (SECTION)
5417f6dc 3267 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
3268 SECTION is loaded at an address different from where it will "run". */
3269
3270int
714835d5 3271section_is_overlay (struct obj_section *section)
c906108c 3272{
714835d5
UW
3273 if (overlay_debugging && section)
3274 {
3275 bfd *abfd = section->objfile->obfd;
3276 asection *bfd_section = section->the_bfd_section;
3277
3278 if (bfd_section_lma (abfd, bfd_section) != 0
3279 && bfd_section_lma (abfd, bfd_section)
3280 != bfd_section_vma (abfd, bfd_section))
3281 return 1;
3282 }
c906108c
SS
3283
3284 return 0;
3285}
3286
3287/* Function: overlay_invalidate_all (void)
3288 Invalidate the mapped state of all overlay sections (mark it as stale). */
3289
3290static void
fba45db2 3291overlay_invalidate_all (void)
c906108c 3292{
c5aa993b 3293 struct objfile *objfile;
c906108c
SS
3294 struct obj_section *sect;
3295
3296 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
3297 if (section_is_overlay (sect))
3298 sect->ovly_mapped = -1;
c906108c
SS
3299}
3300
714835d5 3301/* Function: section_is_mapped (SECTION)
5417f6dc 3302 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3303
3304 Access to the ovly_mapped flag is restricted to this function, so
3305 that we can do automatic update. If the global flag
3306 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3307 overlay_invalidate_all. If the mapped state of the particular
3308 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3309
714835d5
UW
3310int
3311section_is_mapped (struct obj_section *osect)
c906108c 3312{
9216df95
UW
3313 struct gdbarch *gdbarch;
3314
714835d5 3315 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
3316 return 0;
3317
c5aa993b 3318 switch (overlay_debugging)
c906108c
SS
3319 {
3320 default:
d874f1e2 3321 case ovly_off:
c5aa993b 3322 return 0; /* overlay debugging off */
d874f1e2 3323 case ovly_auto: /* overlay debugging automatic */
1c772458 3324 /* Unles there is a gdbarch_overlay_update function,
c5aa993b 3325 there's really nothing useful to do here (can't really go auto) */
9216df95
UW
3326 gdbarch = get_objfile_arch (osect->objfile);
3327 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
3328 {
3329 if (overlay_cache_invalid)
3330 {
3331 overlay_invalidate_all ();
3332 overlay_cache_invalid = 0;
3333 }
3334 if (osect->ovly_mapped == -1)
9216df95 3335 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
3336 }
3337 /* fall thru to manual case */
d874f1e2 3338 case ovly_on: /* overlay debugging manual */
c906108c
SS
3339 return osect->ovly_mapped == 1;
3340 }
3341}
3342
c906108c
SS
3343/* Function: pc_in_unmapped_range
3344 If PC falls into the lma range of SECTION, return true, else false. */
3345
3346CORE_ADDR
714835d5 3347pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3348{
714835d5
UW
3349 if (section_is_overlay (section))
3350 {
3351 bfd *abfd = section->objfile->obfd;
3352 asection *bfd_section = section->the_bfd_section;
fbd35540 3353
714835d5
UW
3354 /* We assume the LMA is relocated by the same offset as the VMA. */
3355 bfd_vma size = bfd_get_section_size (bfd_section);
3356 CORE_ADDR offset = obj_section_offset (section);
3357
3358 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3359 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3360 return 1;
3361 }
c906108c 3362
c906108c
SS
3363 return 0;
3364}
3365
3366/* Function: pc_in_mapped_range
3367 If PC falls into the vma range of SECTION, return true, else false. */
3368
3369CORE_ADDR
714835d5 3370pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3371{
714835d5
UW
3372 if (section_is_overlay (section))
3373 {
3374 if (obj_section_addr (section) <= pc
3375 && pc < obj_section_endaddr (section))
3376 return 1;
3377 }
c906108c 3378
c906108c
SS
3379 return 0;
3380}
3381
9ec8e6a0
JB
3382
3383/* Return true if the mapped ranges of sections A and B overlap, false
3384 otherwise. */
b9362cc7 3385static int
714835d5 3386sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3387{
714835d5
UW
3388 CORE_ADDR a_start = obj_section_addr (a);
3389 CORE_ADDR a_end = obj_section_endaddr (a);
3390 CORE_ADDR b_start = obj_section_addr (b);
3391 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3392
3393 return (a_start < b_end && b_start < a_end);
3394}
3395
c906108c
SS
3396/* Function: overlay_unmapped_address (PC, SECTION)
3397 Returns the address corresponding to PC in the unmapped (load) range.
3398 May be the same as PC. */
3399
3400CORE_ADDR
714835d5 3401overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3402{
714835d5
UW
3403 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3404 {
3405 bfd *abfd = section->objfile->obfd;
3406 asection *bfd_section = section->the_bfd_section;
fbd35540 3407
714835d5
UW
3408 return pc + bfd_section_lma (abfd, bfd_section)
3409 - bfd_section_vma (abfd, bfd_section);
3410 }
c906108c
SS
3411
3412 return pc;
3413}
3414
3415/* Function: overlay_mapped_address (PC, SECTION)
3416 Returns the address corresponding to PC in the mapped (runtime) range.
3417 May be the same as PC. */
3418
3419CORE_ADDR
714835d5 3420overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3421{
714835d5
UW
3422 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3423 {
3424 bfd *abfd = section->objfile->obfd;
3425 asection *bfd_section = section->the_bfd_section;
fbd35540 3426
714835d5
UW
3427 return pc + bfd_section_vma (abfd, bfd_section)
3428 - bfd_section_lma (abfd, bfd_section);
3429 }
c906108c
SS
3430
3431 return pc;
3432}
3433
3434
5417f6dc 3435/* Function: symbol_overlayed_address
c906108c
SS
3436 Return one of two addresses (relative to the VMA or to the LMA),
3437 depending on whether the section is mapped or not. */
3438
c5aa993b 3439CORE_ADDR
714835d5 3440symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3441{
3442 if (overlay_debugging)
3443 {
3444 /* If the symbol has no section, just return its regular address. */
3445 if (section == 0)
3446 return address;
3447 /* If the symbol's section is not an overlay, just return its address */
3448 if (!section_is_overlay (section))
3449 return address;
3450 /* If the symbol's section is mapped, just return its address */
3451 if (section_is_mapped (section))
3452 return address;
3453 /*
3454 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3455 * then return its LOADED address rather than its vma address!!
3456 */
3457 return overlay_unmapped_address (address, section);
3458 }
3459 return address;
3460}
3461
5417f6dc 3462/* Function: find_pc_overlay (PC)
c906108c
SS
3463 Return the best-match overlay section for PC:
3464 If PC matches a mapped overlay section's VMA, return that section.
3465 Else if PC matches an unmapped section's VMA, return that section.
3466 Else if PC matches an unmapped section's LMA, return that section. */
3467
714835d5 3468struct obj_section *
fba45db2 3469find_pc_overlay (CORE_ADDR pc)
c906108c 3470{
c5aa993b 3471 struct objfile *objfile;
c906108c
SS
3472 struct obj_section *osect, *best_match = NULL;
3473
3474 if (overlay_debugging)
3475 ALL_OBJSECTIONS (objfile, osect)
714835d5 3476 if (section_is_overlay (osect))
c5aa993b 3477 {
714835d5 3478 if (pc_in_mapped_range (pc, osect))
c5aa993b 3479 {
714835d5
UW
3480 if (section_is_mapped (osect))
3481 return osect;
c5aa993b
JM
3482 else
3483 best_match = osect;
3484 }
714835d5 3485 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3486 best_match = osect;
3487 }
714835d5 3488 return best_match;
c906108c
SS
3489}
3490
3491/* Function: find_pc_mapped_section (PC)
5417f6dc 3492 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3493 currently marked as MAPPED, return that section. Else return NULL. */
3494
714835d5 3495struct obj_section *
fba45db2 3496find_pc_mapped_section (CORE_ADDR pc)
c906108c 3497{
c5aa993b 3498 struct objfile *objfile;
c906108c
SS
3499 struct obj_section *osect;
3500
3501 if (overlay_debugging)
3502 ALL_OBJSECTIONS (objfile, osect)
714835d5
UW
3503 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3504 return osect;
c906108c
SS
3505
3506 return NULL;
3507}
3508
3509/* Function: list_overlays_command
3510 Print a list of mapped sections and their PC ranges */
3511
3512void
fba45db2 3513list_overlays_command (char *args, int from_tty)
c906108c 3514{
c5aa993b
JM
3515 int nmapped = 0;
3516 struct objfile *objfile;
c906108c
SS
3517 struct obj_section *osect;
3518
3519 if (overlay_debugging)
3520 ALL_OBJSECTIONS (objfile, osect)
714835d5 3521 if (section_is_mapped (osect))
c5aa993b 3522 {
5af949e3 3523 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c5aa993b
JM
3524 const char *name;
3525 bfd_vma lma, vma;
3526 int size;
3527
3528 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3529 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3530 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3531 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3532
3533 printf_filtered ("Section %s, loaded at ", name);
5af949e3 3534 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
c5aa993b 3535 puts_filtered (" - ");
5af949e3 3536 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
c5aa993b 3537 printf_filtered (", mapped at ");
5af949e3 3538 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
c5aa993b 3539 puts_filtered (" - ");
5af949e3 3540 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
c5aa993b
JM
3541 puts_filtered ("\n");
3542
3543 nmapped++;
3544 }
c906108c 3545 if (nmapped == 0)
a3f17187 3546 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3547}
3548
3549/* Function: map_overlay_command
3550 Mark the named section as mapped (ie. residing at its VMA address). */
3551
3552void
fba45db2 3553map_overlay_command (char *args, int from_tty)
c906108c 3554{
c5aa993b
JM
3555 struct objfile *objfile, *objfile2;
3556 struct obj_section *sec, *sec2;
c906108c
SS
3557
3558 if (!overlay_debugging)
8a3fe4f8 3559 error (_("\
515ad16c 3560Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3561the 'overlay manual' command."));
c906108c
SS
3562
3563 if (args == 0 || *args == 0)
8a3fe4f8 3564 error (_("Argument required: name of an overlay section"));
c906108c
SS
3565
3566 /* First, find a section matching the user supplied argument */
3567 ALL_OBJSECTIONS (objfile, sec)
3568 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3569 {
3570 /* Now, check to see if the section is an overlay. */
714835d5 3571 if (!section_is_overlay (sec))
c5aa993b
JM
3572 continue; /* not an overlay section */
3573
3574 /* Mark the overlay as "mapped" */
3575 sec->ovly_mapped = 1;
3576
3577 /* Next, make a pass and unmap any sections that are
3578 overlapped by this new section: */
3579 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3580 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3581 {
3582 if (info_verbose)
a3f17187 3583 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3584 bfd_section_name (objfile->obfd,
3585 sec2->the_bfd_section));
3586 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3587 }
3588 return;
3589 }
8a3fe4f8 3590 error (_("No overlay section called %s"), args);
c906108c
SS
3591}
3592
3593/* Function: unmap_overlay_command
5417f6dc 3594 Mark the overlay section as unmapped
c906108c
SS
3595 (ie. resident in its LMA address range, rather than the VMA range). */
3596
3597void
fba45db2 3598unmap_overlay_command (char *args, int from_tty)
c906108c 3599{
c5aa993b 3600 struct objfile *objfile;
c906108c
SS
3601 struct obj_section *sec;
3602
3603 if (!overlay_debugging)
8a3fe4f8 3604 error (_("\
515ad16c 3605Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3606the 'overlay manual' command."));
c906108c
SS
3607
3608 if (args == 0 || *args == 0)
8a3fe4f8 3609 error (_("Argument required: name of an overlay section"));
c906108c
SS
3610
3611 /* First, find a section matching the user supplied argument */
3612 ALL_OBJSECTIONS (objfile, sec)
3613 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3614 {
3615 if (!sec->ovly_mapped)
8a3fe4f8 3616 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3617 sec->ovly_mapped = 0;
3618 return;
3619 }
8a3fe4f8 3620 error (_("No overlay section called %s"), args);
c906108c
SS
3621}
3622
3623/* Function: overlay_auto_command
3624 A utility command to turn on overlay debugging.
3625 Possibly this should be done via a set/show command. */
3626
3627static void
fba45db2 3628overlay_auto_command (char *args, int from_tty)
c906108c 3629{
d874f1e2 3630 overlay_debugging = ovly_auto;
1900040c 3631 enable_overlay_breakpoints ();
c906108c 3632 if (info_verbose)
a3f17187 3633 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3634}
3635
3636/* Function: overlay_manual_command
3637 A utility command to turn on overlay debugging.
3638 Possibly this should be done via a set/show command. */
3639
3640static void
fba45db2 3641overlay_manual_command (char *args, int from_tty)
c906108c 3642{
d874f1e2 3643 overlay_debugging = ovly_on;
1900040c 3644 disable_overlay_breakpoints ();
c906108c 3645 if (info_verbose)
a3f17187 3646 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3647}
3648
3649/* Function: overlay_off_command
3650 A utility command to turn on overlay debugging.
3651 Possibly this should be done via a set/show command. */
3652
3653static void
fba45db2 3654overlay_off_command (char *args, int from_tty)
c906108c 3655{
d874f1e2 3656 overlay_debugging = ovly_off;
1900040c 3657 disable_overlay_breakpoints ();
c906108c 3658 if (info_verbose)
a3f17187 3659 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3660}
3661
3662static void
fba45db2 3663overlay_load_command (char *args, int from_tty)
c906108c 3664{
e17c207e
UW
3665 struct gdbarch *gdbarch = get_current_arch ();
3666
3667 if (gdbarch_overlay_update_p (gdbarch))
3668 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3669 else
8a3fe4f8 3670 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3671}
3672
3673/* Function: overlay_command
3674 A place-holder for a mis-typed command */
3675
3676/* Command list chain containing all defined "overlay" subcommands. */
3677struct cmd_list_element *overlaylist;
3678
3679static void
fba45db2 3680overlay_command (char *args, int from_tty)
c906108c 3681{
c5aa993b 3682 printf_unfiltered
c906108c
SS
3683 ("\"overlay\" must be followed by the name of an overlay command.\n");
3684 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3685}
3686
3687
3688/* Target Overlays for the "Simplest" overlay manager:
3689
5417f6dc
RM
3690 This is GDB's default target overlay layer. It works with the
3691 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3692 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3693 so targets that use a different runtime overlay manager can
c906108c
SS
3694 substitute their own overlay_update function and take over the
3695 function pointer.
3696
3697 The overlay_update function pokes around in the target's data structures
3698 to see what overlays are mapped, and updates GDB's overlay mapping with
3699 this information.
3700
3701 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3702 unsigned _novlys; /# number of overlay sections #/
3703 unsigned _ovly_table[_novlys][4] = {
3704 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3705 {..., ..., ..., ...},
3706 }
3707 unsigned _novly_regions; /# number of overlay regions #/
3708 unsigned _ovly_region_table[_novly_regions][3] = {
3709 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3710 {..., ..., ...},
3711 }
c906108c
SS
3712 These functions will attempt to update GDB's mappedness state in the
3713 symbol section table, based on the target's mappedness state.
3714
3715 To do this, we keep a cached copy of the target's _ovly_table, and
3716 attempt to detect when the cached copy is invalidated. The main
3717 entry point is "simple_overlay_update(SECT), which looks up SECT in
3718 the cached table and re-reads only the entry for that section from
3719 the target (whenever possible).
3720 */
3721
3722/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3723static unsigned (*cache_ovly_table)[4] = 0;
c906108c 3724#if 0
c5aa993b 3725static unsigned (*cache_ovly_region_table)[3] = 0;
c906108c 3726#endif
c5aa993b 3727static unsigned cache_novlys = 0;
c906108c 3728#if 0
c5aa993b 3729static unsigned cache_novly_regions = 0;
c906108c
SS
3730#endif
3731static CORE_ADDR cache_ovly_table_base = 0;
3732#if 0
3733static CORE_ADDR cache_ovly_region_table_base = 0;
3734#endif
c5aa993b
JM
3735enum ovly_index
3736 {
3737 VMA, SIZE, LMA, MAPPED
3738 };
c906108c
SS
3739
3740/* Throw away the cached copy of _ovly_table */
3741static void
fba45db2 3742simple_free_overlay_table (void)
c906108c
SS
3743{
3744 if (cache_ovly_table)
b8c9b27d 3745 xfree (cache_ovly_table);
c5aa993b 3746 cache_novlys = 0;
c906108c
SS
3747 cache_ovly_table = NULL;
3748 cache_ovly_table_base = 0;
3749}
3750
3751#if 0
3752/* Throw away the cached copy of _ovly_region_table */
3753static void
fba45db2 3754simple_free_overlay_region_table (void)
c906108c
SS
3755{
3756 if (cache_ovly_region_table)
b8c9b27d 3757 xfree (cache_ovly_region_table);
c5aa993b 3758 cache_novly_regions = 0;
c906108c
SS
3759 cache_ovly_region_table = NULL;
3760 cache_ovly_region_table_base = 0;
3761}
3762#endif
3763
9216df95 3764/* Read an array of ints of size SIZE from the target into a local buffer.
c906108c
SS
3765 Convert to host order. int LEN is number of ints */
3766static void
9216df95 3767read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3768 int len, int size, enum bfd_endian byte_order)
c906108c 3769{
34c0bd93 3770 /* FIXME (alloca): Not safe if array is very large. */
9216df95 3771 gdb_byte *buf = alloca (len * size);
c5aa993b 3772 int i;
c906108c 3773
9216df95 3774 read_memory (memaddr, buf, len * size);
c906108c 3775 for (i = 0; i < len; i++)
e17a4113 3776 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3777}
3778
3779/* Find and grab a copy of the target _ovly_table
3780 (and _novlys, which is needed for the table's size) */
c5aa993b 3781static int
fba45db2 3782simple_read_overlay_table (void)
c906108c 3783{
0d43edd1 3784 struct minimal_symbol *novlys_msym, *ovly_table_msym;
9216df95
UW
3785 struct gdbarch *gdbarch;
3786 int word_size;
e17a4113 3787 enum bfd_endian byte_order;
c906108c
SS
3788
3789 simple_free_overlay_table ();
9b27852e 3790 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3791 if (! novlys_msym)
c906108c 3792 {
8a3fe4f8 3793 error (_("Error reading inferior's overlay table: "
0d43edd1 3794 "couldn't find `_novlys' variable\n"
8a3fe4f8 3795 "in inferior. Use `overlay manual' mode."));
0d43edd1 3796 return 0;
c906108c 3797 }
0d43edd1 3798
9b27852e 3799 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3800 if (! ovly_table_msym)
3801 {
8a3fe4f8 3802 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3803 "`_ovly_table' array\n"
8a3fe4f8 3804 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3805 return 0;
3806 }
3807
9216df95
UW
3808 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3809 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3810 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3811
e17a4113
UW
3812 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3813 4, byte_order);
0d43edd1
JB
3814 cache_ovly_table
3815 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3816 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3817 read_target_long_array (cache_ovly_table_base,
777ea8f1 3818 (unsigned int *) cache_ovly_table,
e17a4113 3819 cache_novlys * 4, word_size, byte_order);
0d43edd1 3820
c5aa993b 3821 return 1; /* SUCCESS */
c906108c
SS
3822}
3823
3824#if 0
3825/* Find and grab a copy of the target _ovly_region_table
3826 (and _novly_regions, which is needed for the table's size) */
c5aa993b 3827static int
fba45db2 3828simple_read_overlay_region_table (void)
c906108c
SS
3829{
3830 struct minimal_symbol *msym;
e17a4113
UW
3831 struct gdbarch *gdbarch;
3832 int word_size;
3833 enum bfd_endian byte_order;
c906108c
SS
3834
3835 simple_free_overlay_region_table ();
9b27852e 3836 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
e17a4113 3837 if (msym == NULL)
c5aa993b 3838 return 0; /* failure */
e17a4113
UW
3839
3840 gdbarch = get_objfile_arch (msymbol_objfile (msym));
3841 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3842 byte_order = gdbarch_byte_order (gdbarch);
3843
3844 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym),
3845 4, byte_order);
3846
c906108c
SS
3847 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3848 if (cache_ovly_region_table != NULL)
3849 {
9b27852e 3850 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
c906108c
SS
3851 if (msym != NULL)
3852 {
3853 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
c5aa993b 3854 read_target_long_array (cache_ovly_region_table_base,
777ea8f1 3855 (unsigned int *) cache_ovly_region_table,
e17a4113
UW
3856 cache_novly_regions * 3,
3857 word_size, byte_order);
c906108c 3858 }
c5aa993b
JM
3859 else
3860 return 0; /* failure */
c906108c 3861 }
c5aa993b
JM
3862 else
3863 return 0; /* failure */
3864 return 1; /* SUCCESS */
c906108c
SS
3865}
3866#endif
3867
5417f6dc 3868/* Function: simple_overlay_update_1
c906108c
SS
3869 A helper function for simple_overlay_update. Assuming a cached copy
3870 of _ovly_table exists, look through it to find an entry whose vma,
3871 lma and size match those of OSECT. Re-read the entry and make sure
3872 it still matches OSECT (else the table may no longer be valid).
3873 Set OSECT's mapped state to match the entry. Return: 1 for
3874 success, 0 for failure. */
3875
3876static int
fba45db2 3877simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3878{
3879 int i, size;
fbd35540
MS
3880 bfd *obfd = osect->objfile->obfd;
3881 asection *bsect = osect->the_bfd_section;
9216df95
UW
3882 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3883 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3884 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3885
2c500098 3886 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3887 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3888 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3889 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3890 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c 3891 {
9216df95
UW
3892 read_target_long_array (cache_ovly_table_base + i * word_size,
3893 (unsigned int *) cache_ovly_table[i],
e17a4113 3894 4, word_size, byte_order);
fbd35540
MS
3895 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3896 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3897 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3898 {
3899 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3900 return 1;
3901 }
fbd35540 3902 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3903 return 0;
3904 }
3905 return 0;
3906}
3907
3908/* Function: simple_overlay_update
5417f6dc
RM
3909 If OSECT is NULL, then update all sections' mapped state
3910 (after re-reading the entire target _ovly_table).
3911 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3912 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3913 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3914 re-read the entire cache, and go ahead and update all sections. */
3915
1c772458 3916void
fba45db2 3917simple_overlay_update (struct obj_section *osect)
c906108c 3918{
c5aa993b 3919 struct objfile *objfile;
c906108c
SS
3920
3921 /* Were we given an osect to look up? NULL means do all of them. */
3922 if (osect)
3923 /* Have we got a cached copy of the target's overlay table? */
3924 if (cache_ovly_table != NULL)
3925 /* Does its cached location match what's currently in the symtab? */
c5aa993b 3926 if (cache_ovly_table_base ==
9b27852e 3927 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
c906108c
SS
3928 /* Then go ahead and try to look up this single section in the cache */
3929 if (simple_overlay_update_1 (osect))
3930 /* Found it! We're done. */
3931 return;
3932
3933 /* Cached table no good: need to read the entire table anew.
3934 Or else we want all the sections, in which case it's actually
3935 more efficient to read the whole table in one block anyway. */
3936
0d43edd1
JB
3937 if (! simple_read_overlay_table ())
3938 return;
3939
c906108c
SS
3940 /* Now may as well update all sections, even if only one was requested. */
3941 ALL_OBJSECTIONS (objfile, osect)
714835d5 3942 if (section_is_overlay (osect))
c5aa993b
JM
3943 {
3944 int i, size;
fbd35540
MS
3945 bfd *obfd = osect->objfile->obfd;
3946 asection *bsect = osect->the_bfd_section;
c5aa993b 3947
2c500098 3948 size = bfd_get_section_size (bsect);
c5aa993b 3949 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3950 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3951 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3952 /* && cache_ovly_table[i][SIZE] == size */ )
3953 { /* obj_section matches i'th entry in ovly_table */
c5aa993b
JM
3954 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3955 break; /* finished with inner for loop: break out */
3956 }
3957 }
c906108c
SS
3958}
3959
086df311
DJ
3960/* Set the output sections and output offsets for section SECTP in
3961 ABFD. The relocation code in BFD will read these offsets, so we
3962 need to be sure they're initialized. We map each section to itself,
3963 with no offset; this means that SECTP->vma will be honored. */
3964
3965static void
3966symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3967{
3968 sectp->output_section = sectp;
3969 sectp->output_offset = 0;
3970}
3971
3972/* Relocate the contents of a debug section SECTP in ABFD. The
3973 contents are stored in BUF if it is non-NULL, or returned in a
3974 malloc'd buffer otherwise.
3975
3976 For some platforms and debug info formats, shared libraries contain
3977 relocations against the debug sections (particularly for DWARF-2;
3978 one affected platform is PowerPC GNU/Linux, although it depends on
3979 the version of the linker in use). Also, ELF object files naturally
3980 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3981 the relocations in order to get the locations of symbols correct.
3982 Another example that may require relocation processing, is the
3983 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3984 debug section. */
086df311
DJ
3985
3986bfd_byte *
3987symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3988{
065a2c74 3989 /* We're only interested in sections with relocation
086df311
DJ
3990 information. */
3991 if ((sectp->flags & SEC_RELOC) == 0)
3992 return NULL;
086df311
DJ
3993
3994 /* We will handle section offsets properly elsewhere, so relocate as if
3995 all sections begin at 0. */
3996 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3997
97606a13 3998 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
086df311 3999}
c906108c 4000
31d99776
DJ
4001struct symfile_segment_data *
4002get_symfile_segment_data (bfd *abfd)
4003{
4004 struct sym_fns *sf = find_sym_fns (abfd);
4005
4006 if (sf == NULL)
4007 return NULL;
4008
4009 return sf->sym_segments (abfd);
4010}
4011
4012void
4013free_symfile_segment_data (struct symfile_segment_data *data)
4014{
4015 xfree (data->segment_bases);
4016 xfree (data->segment_sizes);
4017 xfree (data->segment_info);
4018 xfree (data);
4019}
4020
28c32713
JB
4021
4022/* Given:
4023 - DATA, containing segment addresses from the object file ABFD, and
4024 the mapping from ABFD's sections onto the segments that own them,
4025 and
4026 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
4027 segment addresses reported by the target,
4028 store the appropriate offsets for each section in OFFSETS.
4029
4030 If there are fewer entries in SEGMENT_BASES than there are segments
4031 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
4032
8d385431
DJ
4033 If there are more entries, then ignore the extra. The target may
4034 not be able to distinguish between an empty data segment and a
4035 missing data segment; a missing text segment is less plausible. */
31d99776
DJ
4036int
4037symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
4038 struct section_offsets *offsets,
4039 int num_segment_bases,
4040 const CORE_ADDR *segment_bases)
4041{
4042 int i;
4043 asection *sect;
4044
28c32713
JB
4045 /* It doesn't make sense to call this function unless you have some
4046 segment base addresses. */
4047 gdb_assert (segment_bases > 0);
4048
31d99776
DJ
4049 /* If we do not have segment mappings for the object file, we
4050 can not relocate it by segments. */
4051 gdb_assert (data != NULL);
4052 gdb_assert (data->num_segments > 0);
4053
31d99776
DJ
4054 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4055 {
31d99776
DJ
4056 int which = data->segment_info[i];
4057
28c32713
JB
4058 gdb_assert (0 <= which && which <= data->num_segments);
4059
4060 /* Don't bother computing offsets for sections that aren't
4061 loaded as part of any segment. */
4062 if (! which)
4063 continue;
4064
4065 /* Use the last SEGMENT_BASES entry as the address of any extra
4066 segments mentioned in DATA->segment_info. */
31d99776 4067 if (which > num_segment_bases)
28c32713 4068 which = num_segment_bases;
31d99776 4069
28c32713
JB
4070 offsets->offsets[i] = (segment_bases[which - 1]
4071 - data->segment_bases[which - 1]);
31d99776
DJ
4072 }
4073
4074 return 1;
4075}
4076
4077static void
4078symfile_find_segment_sections (struct objfile *objfile)
4079{
4080 bfd *abfd = objfile->obfd;
4081 int i;
4082 asection *sect;
4083 struct symfile_segment_data *data;
4084
4085 data = get_symfile_segment_data (objfile->obfd);
4086 if (data == NULL)
4087 return;
4088
4089 if (data->num_segments != 1 && data->num_segments != 2)
4090 {
4091 free_symfile_segment_data (data);
4092 return;
4093 }
4094
4095 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4096 {
4097 CORE_ADDR vma;
4098 int which = data->segment_info[i];
4099
4100 if (which == 1)
4101 {
4102 if (objfile->sect_index_text == -1)
4103 objfile->sect_index_text = sect->index;
4104
4105 if (objfile->sect_index_rodata == -1)
4106 objfile->sect_index_rodata = sect->index;
4107 }
4108 else if (which == 2)
4109 {
4110 if (objfile->sect_index_data == -1)
4111 objfile->sect_index_data = sect->index;
4112
4113 if (objfile->sect_index_bss == -1)
4114 objfile->sect_index_bss = sect->index;
4115 }
4116 }
4117
4118 free_symfile_segment_data (data);
4119}
4120
c906108c 4121void
fba45db2 4122_initialize_symfile (void)
c906108c
SS
4123{
4124 struct cmd_list_element *c;
c5aa993b 4125
1a966eab
AC
4126 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
4127Load symbol table from executable file FILE.\n\
c906108c 4128The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 4129to execute."), &cmdlist);
5ba2abeb 4130 set_cmd_completer (c, filename_completer);
c906108c 4131
1a966eab 4132 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 4133Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
1a966eab 4134Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
2acceee2 4135ADDR is the starting address of the file's text.\n\
db162d44
EZ
4136The optional arguments are section-name section-address pairs and\n\
4137should be specified if the data and bss segments are not contiguous\n\
1a966eab 4138with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 4139 &cmdlist);
5ba2abeb 4140 set_cmd_completer (c, filename_completer);
c906108c 4141
1a966eab
AC
4142 c = add_cmd ("load", class_files, load_command, _("\
4143Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
4144for access from GDB.\n\
4145A load OFFSET may also be given."), &cmdlist);
5ba2abeb 4146 set_cmd_completer (c, filename_completer);
c906108c 4147
5bf193a2
AC
4148 add_setshow_boolean_cmd ("symbol-reloading", class_support,
4149 &symbol_reloading, _("\
4150Set dynamic symbol table reloading multiple times in one run."), _("\
4151Show dynamic symbol table reloading multiple times in one run."), NULL,
4152 NULL,
920d2a44 4153 show_symbol_reloading,
5bf193a2 4154 &setlist, &showlist);
c906108c 4155
c5aa993b 4156 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 4157 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
4158 "overlay ", 0, &cmdlist);
4159
4160 add_com_alias ("ovly", "overlay", class_alias, 1);
4161 add_com_alias ("ov", "overlay", class_alias, 1);
4162
c5aa993b 4163 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 4164 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 4165
c5aa993b 4166 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 4167 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 4168
c5aa993b 4169 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 4170 _("List mappings of overlay sections."), &overlaylist);
c906108c 4171
c5aa993b 4172 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 4173 _("Enable overlay debugging."), &overlaylist);
c5aa993b 4174 add_cmd ("off", class_support, overlay_off_command,
1a966eab 4175 _("Disable overlay debugging."), &overlaylist);
c5aa993b 4176 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 4177 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 4178 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 4179 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
4180
4181 /* Filename extension to source language lookup table: */
4182 init_filename_language_table ();
26c41df3
AC
4183 add_setshow_string_noescape_cmd ("extension-language", class_files,
4184 &ext_args, _("\
4185Set mapping between filename extension and source language."), _("\
4186Show mapping between filename extension and source language."), _("\
4187Usage: set extension-language .foo bar"),
4188 set_ext_lang_command,
920d2a44 4189 show_ext_args,
26c41df3 4190 &setlist, &showlist);
c906108c 4191
c5aa993b 4192 add_info ("extensions", info_ext_lang_command,
1bedd215 4193 _("All filename extensions associated with a source language."));
917317f4 4194
525226b5
AC
4195 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4196 &debug_file_directory, _("\
4197Set the directory where separate debug symbols are searched for."), _("\
4198Show the directory where separate debug symbols are searched for."), _("\
4199Separate debug symbols are first searched for in the same\n\
4200directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4201and lastly at the path of the directory of the binary with\n\
4202the global debug-file directory prepended."),
4203 NULL,
920d2a44 4204 show_debug_file_directory,
525226b5 4205 &setlist, &showlist);
bf250677
DE
4206
4207 add_setshow_boolean_cmd ("symbol-loading", no_class,
4208 &print_symbol_loading, _("\
4209Set printing of symbol loading messages."), _("\
4210Show printing of symbol loading messages."), NULL,
4211 NULL,
4212 NULL,
4213 &setprintlist, &showprintlist);
c906108c 4214}
This page took 1.420511 seconds and 4 git commands to generate.