2009-10-19 Pedro Alves <pedro@codesourcery.com>
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
6aba47ca 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
0fb0cc75 4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
777ea8f1 5 Free Software Foundation, Inc.
8926118c 6
c906108c
SS
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
a9762ec7 13 the Free Software Foundation; either version 3 of the License, or
c5aa993b 14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b 21 You should have received a copy of the GNU General Public License
a9762ec7 22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
23
24#include "defs.h"
e17c207e 25#include "arch-utils.h"
086df311 26#include "bfdlink.h"
c906108c
SS
27#include "symtab.h"
28#include "gdbtypes.h"
29#include "gdbcore.h"
30#include "frame.h"
31#include "target.h"
32#include "value.h"
33#include "symfile.h"
34#include "objfiles.h"
0378c332 35#include "source.h"
c906108c
SS
36#include "gdbcmd.h"
37#include "breakpoint.h"
38#include "language.h"
39#include "complaints.h"
40#include "demangle.h"
fb14de7b
UW
41#include "inferior.h"
42#include "regcache.h"
5b5d99cf 43#include "filenames.h" /* for DOSish file names */
c906108c 44#include "gdb-stabs.h"
04ea0df1 45#include "gdb_obstack.h"
d75b5104 46#include "completer.h"
af5f3db6 47#include "bcache.h"
2de7ced7 48#include "hashtab.h"
dbda9972 49#include "readline/readline.h"
7e8580c1 50#include "gdb_assert.h"
fe898f56 51#include "block.h"
ea53e89f 52#include "observer.h"
c1bd25fd 53#include "exec.h"
9bdcbae7 54#include "parser-defs.h"
8756216b 55#include "varobj.h"
77069918 56#include "elf-bfd.h"
e85a822c 57#include "solib.h"
f1838a98 58#include "remote.h"
c906108c 59
c906108c
SS
60#include <sys/types.h>
61#include <fcntl.h>
62#include "gdb_string.h"
63#include "gdb_stat.h"
64#include <ctype.h>
65#include <time.h>
2b71414d 66#include <sys/time.h>
c906108c 67
c906108c 68
9a4105ab
AC
69int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
70void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
71 unsigned long section_sent,
72 unsigned long section_size,
73 unsigned long total_sent,
c2d11a7d 74 unsigned long total_size);
769d7dc4
AC
75void (*deprecated_pre_add_symbol_hook) (const char *);
76void (*deprecated_post_add_symbol_hook) (void);
c906108c 77
74b7792f
AC
78static void clear_symtab_users_cleanup (void *ignore);
79
c906108c 80/* Global variables owned by this file */
c5aa993b 81int readnow_symbol_files; /* Read full symbols immediately */
c906108c 82
c906108c
SS
83/* External variables and functions referenced. */
84
a14ed312 85extern void report_transfer_performance (unsigned long, time_t, time_t);
c906108c
SS
86
87/* Functions this file defines */
88
89#if 0
a14ed312
KB
90static int simple_read_overlay_region_table (void);
91static void simple_free_overlay_region_table (void);
c906108c
SS
92#endif
93
a14ed312 94static void load_command (char *, int);
c906108c 95
d7db6da9
FN
96static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
97
a14ed312 98static void add_symbol_file_command (char *, int);
c906108c 99
5b5d99cf
JB
100static void reread_separate_symbols (struct objfile *objfile);
101
a14ed312 102static void cashier_psymtab (struct partial_symtab *);
c906108c 103
a14ed312 104bfd *symfile_bfd_open (char *);
c906108c 105
0e931cf0
JB
106int get_section_index (struct objfile *, char *);
107
31d99776 108static struct sym_fns *find_sym_fns (bfd *);
c906108c 109
a14ed312 110static void decrement_reading_symtab (void *);
c906108c 111
a14ed312 112static void overlay_invalidate_all (void);
c906108c 113
a14ed312 114void list_overlays_command (char *, int);
c906108c 115
a14ed312 116void map_overlay_command (char *, int);
c906108c 117
a14ed312 118void unmap_overlay_command (char *, int);
c906108c 119
a14ed312 120static void overlay_auto_command (char *, int);
c906108c 121
a14ed312 122static void overlay_manual_command (char *, int);
c906108c 123
a14ed312 124static void overlay_off_command (char *, int);
c906108c 125
a14ed312 126static void overlay_load_command (char *, int);
c906108c 127
a14ed312 128static void overlay_command (char *, int);
c906108c 129
a14ed312 130static void simple_free_overlay_table (void);
c906108c 131
e17a4113
UW
132static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
133 enum bfd_endian);
c906108c 134
a14ed312 135static int simple_read_overlay_table (void);
c906108c 136
a14ed312 137static int simple_overlay_update_1 (struct obj_section *);
c906108c 138
a14ed312 139static void add_filename_language (char *ext, enum language lang);
392a587b 140
a14ed312 141static void info_ext_lang_command (char *args, int from_tty);
392a587b 142
5b5d99cf
JB
143static char *find_separate_debug_file (struct objfile *objfile);
144
a14ed312 145static void init_filename_language_table (void);
392a587b 146
31d99776
DJ
147static void symfile_find_segment_sections (struct objfile *objfile);
148
a14ed312 149void _initialize_symfile (void);
c906108c
SS
150
151/* List of all available sym_fns. On gdb startup, each object file reader
152 calls add_symtab_fns() to register information on each format it is
153 prepared to read. */
154
155static struct sym_fns *symtab_fns = NULL;
156
157/* Flag for whether user will be reloading symbols multiple times.
158 Defaults to ON for VxWorks, otherwise OFF. */
159
160#ifdef SYMBOL_RELOADING_DEFAULT
161int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
162#else
163int symbol_reloading = 0;
164#endif
920d2a44
AC
165static void
166show_symbol_reloading (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
168{
169 fprintf_filtered (file, _("\
170Dynamic symbol table reloading multiple times in one run is %s.\n"),
171 value);
172}
173
b7209cb4
FF
174/* If non-zero, shared library symbols will be added automatically
175 when the inferior is created, new libraries are loaded, or when
176 attaching to the inferior. This is almost always what users will
177 want to have happen; but for very large programs, the startup time
178 will be excessive, and so if this is a problem, the user can clear
179 this flag and then add the shared library symbols as needed. Note
180 that there is a potential for confusion, since if the shared
c906108c 181 library symbols are not loaded, commands like "info fun" will *not*
b7209cb4 182 report all the functions that are actually present. */
c906108c
SS
183
184int auto_solib_add = 1;
b7209cb4
FF
185
186/* For systems that support it, a threshold size in megabytes. If
187 automatically adding a new library's symbol table to those already
188 known to the debugger would cause the total shared library symbol
189 size to exceed this threshhold, then the shlib's symbols are not
190 added. The threshold is ignored if the user explicitly asks for a
191 shlib to be added, such as when using the "sharedlibrary"
192 command. */
193
194int auto_solib_limit;
c906108c 195\f
c5aa993b 196
0fe19209
DC
197/* This compares two partial symbols by names, using strcmp_iw_ordered
198 for the comparison. */
c906108c
SS
199
200static int
0cd64fe2 201compare_psymbols (const void *s1p, const void *s2p)
c906108c 202{
0fe19209
DC
203 struct partial_symbol *const *s1 = s1p;
204 struct partial_symbol *const *s2 = s2p;
205
4725b721
PH
206 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
207 SYMBOL_SEARCH_NAME (*s2));
c906108c
SS
208}
209
210void
fba45db2 211sort_pst_symbols (struct partial_symtab *pst)
c906108c
SS
212{
213 /* Sort the global list; don't sort the static list */
214
c5aa993b
JM
215 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
216 pst->n_global_syms, sizeof (struct partial_symbol *),
c906108c
SS
217 compare_psymbols);
218}
219
c906108c
SS
220/* Make a null terminated copy of the string at PTR with SIZE characters in
221 the obstack pointed to by OBSTACKP . Returns the address of the copy.
222 Note that the string at PTR does not have to be null terminated, I.E. it
223 may be part of a larger string and we are only saving a substring. */
224
225char *
63ca651f 226obsavestring (const char *ptr, int size, struct obstack *obstackp)
c906108c 227{
52f0bd74 228 char *p = (char *) obstack_alloc (obstackp, size + 1);
c906108c
SS
229 /* Open-coded memcpy--saves function call time. These strings are usually
230 short. FIXME: Is this really still true with a compiler that can
231 inline memcpy? */
232 {
aa1ee363
AC
233 const char *p1 = ptr;
234 char *p2 = p;
63ca651f 235 const char *end = ptr + size;
c906108c
SS
236 while (p1 != end)
237 *p2++ = *p1++;
238 }
239 p[size] = 0;
240 return p;
241}
242
243/* Concatenate strings S1, S2 and S3; return the new string. Space is found
244 in the obstack pointed to by OBSTACKP. */
245
246char *
fba45db2
KB
247obconcat (struct obstack *obstackp, const char *s1, const char *s2,
248 const char *s3)
c906108c 249{
52f0bd74
AC
250 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
251 char *val = (char *) obstack_alloc (obstackp, len);
c906108c
SS
252 strcpy (val, s1);
253 strcat (val, s2);
254 strcat (val, s3);
255 return val;
256}
257
258/* True if we are nested inside psymtab_to_symtab. */
259
260int currently_reading_symtab = 0;
261
262static void
fba45db2 263decrement_reading_symtab (void *dummy)
c906108c
SS
264{
265 currently_reading_symtab--;
266}
267
268/* Get the symbol table that corresponds to a partial_symtab.
269 This is fast after the first time you do it. In fact, there
270 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
271 case inline. */
272
273struct symtab *
aa1ee363 274psymtab_to_symtab (struct partial_symtab *pst)
c906108c
SS
275{
276 /* If it's been looked up before, return it. */
277 if (pst->symtab)
278 return pst->symtab;
279
280 /* If it has not yet been read in, read it. */
281 if (!pst->readin)
c5aa993b 282 {
c906108c
SS
283 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
284 currently_reading_symtab++;
285 (*pst->read_symtab) (pst);
286 do_cleanups (back_to);
287 }
288
289 return pst->symtab;
290}
291
5417f6dc
RM
292/* Remember the lowest-addressed loadable section we've seen.
293 This function is called via bfd_map_over_sections.
c906108c
SS
294
295 In case of equal vmas, the section with the largest size becomes the
296 lowest-addressed loadable section.
297
298 If the vmas and sizes are equal, the last section is considered the
299 lowest-addressed loadable section. */
300
301void
4efb68b1 302find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 303{
c5aa993b 304 asection **lowest = (asection **) obj;
c906108c
SS
305
306 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
307 return;
308 if (!*lowest)
309 *lowest = sect; /* First loadable section */
310 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
311 *lowest = sect; /* A lower loadable section */
312 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
313 && (bfd_section_size (abfd, (*lowest))
314 <= bfd_section_size (abfd, sect)))
315 *lowest = sect;
316}
317
a39a16c4
MM
318/* Create a new section_addr_info, with room for NUM_SECTIONS. */
319
320struct section_addr_info *
321alloc_section_addr_info (size_t num_sections)
322{
323 struct section_addr_info *sap;
324 size_t size;
325
326 size = (sizeof (struct section_addr_info)
327 + sizeof (struct other_sections) * (num_sections - 1));
328 sap = (struct section_addr_info *) xmalloc (size);
329 memset (sap, 0, size);
330 sap->num_sections = num_sections;
331
332 return sap;
333}
62557bbc 334
7b90c3f9
JB
335
336/* Return a freshly allocated copy of ADDRS. The section names, if
337 any, are also freshly allocated copies of those in ADDRS. */
338struct section_addr_info *
339copy_section_addr_info (struct section_addr_info *addrs)
340{
341 struct section_addr_info *copy
342 = alloc_section_addr_info (addrs->num_sections);
343 int i;
344
345 copy->num_sections = addrs->num_sections;
346 for (i = 0; i < addrs->num_sections; i++)
347 {
348 copy->other[i].addr = addrs->other[i].addr;
349 if (addrs->other[i].name)
350 copy->other[i].name = xstrdup (addrs->other[i].name);
351 else
352 copy->other[i].name = NULL;
353 copy->other[i].sectindex = addrs->other[i].sectindex;
354 }
355
356 return copy;
357}
358
359
360
62557bbc
KB
361/* Build (allocate and populate) a section_addr_info struct from
362 an existing section table. */
363
364extern struct section_addr_info *
0542c86d
PA
365build_section_addr_info_from_section_table (const struct target_section *start,
366 const struct target_section *end)
62557bbc
KB
367{
368 struct section_addr_info *sap;
0542c86d 369 const struct target_section *stp;
62557bbc
KB
370 int oidx;
371
a39a16c4 372 sap = alloc_section_addr_info (end - start);
62557bbc
KB
373
374 for (stp = start, oidx = 0; stp != end; stp++)
375 {
5417f6dc 376 if (bfd_get_section_flags (stp->bfd,
fbd35540 377 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 378 && oidx < end - start)
62557bbc
KB
379 {
380 sap->other[oidx].addr = stp->addr;
5417f6dc 381 sap->other[oidx].name
fbd35540 382 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
62557bbc
KB
383 sap->other[oidx].sectindex = stp->the_bfd_section->index;
384 oidx++;
385 }
386 }
387
388 return sap;
389}
390
391
392/* Free all memory allocated by build_section_addr_info_from_section_table. */
393
394extern void
395free_section_addr_info (struct section_addr_info *sap)
396{
397 int idx;
398
a39a16c4 399 for (idx = 0; idx < sap->num_sections; idx++)
62557bbc 400 if (sap->other[idx].name)
b8c9b27d
KB
401 xfree (sap->other[idx].name);
402 xfree (sap);
62557bbc
KB
403}
404
405
e8289572
JB
406/* Initialize OBJFILE's sect_index_* members. */
407static void
408init_objfile_sect_indices (struct objfile *objfile)
c906108c 409{
e8289572 410 asection *sect;
c906108c 411 int i;
5417f6dc 412
b8fbeb18 413 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 414 if (sect)
b8fbeb18
EZ
415 objfile->sect_index_text = sect->index;
416
417 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 418 if (sect)
b8fbeb18
EZ
419 objfile->sect_index_data = sect->index;
420
421 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 422 if (sect)
b8fbeb18
EZ
423 objfile->sect_index_bss = sect->index;
424
425 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 426 if (sect)
b8fbeb18
EZ
427 objfile->sect_index_rodata = sect->index;
428
bbcd32ad
FF
429 /* This is where things get really weird... We MUST have valid
430 indices for the various sect_index_* members or gdb will abort.
431 So if for example, there is no ".text" section, we have to
31d99776
DJ
432 accomodate that. First, check for a file with the standard
433 one or two segments. */
434
435 symfile_find_segment_sections (objfile);
436
437 /* Except when explicitly adding symbol files at some address,
438 section_offsets contains nothing but zeros, so it doesn't matter
439 which slot in section_offsets the individual sect_index_* members
440 index into. So if they are all zero, it is safe to just point
441 all the currently uninitialized indices to the first slot. But
442 beware: if this is the main executable, it may be relocated
443 later, e.g. by the remote qOffsets packet, and then this will
444 be wrong! That's why we try segments first. */
bbcd32ad
FF
445
446 for (i = 0; i < objfile->num_sections; i++)
447 {
448 if (ANOFFSET (objfile->section_offsets, i) != 0)
449 {
450 break;
451 }
452 }
453 if (i == objfile->num_sections)
454 {
455 if (objfile->sect_index_text == -1)
456 objfile->sect_index_text = 0;
457 if (objfile->sect_index_data == -1)
458 objfile->sect_index_data = 0;
459 if (objfile->sect_index_bss == -1)
460 objfile->sect_index_bss = 0;
461 if (objfile->sect_index_rodata == -1)
462 objfile->sect_index_rodata = 0;
463 }
b8fbeb18 464}
c906108c 465
c1bd25fd
DJ
466/* The arguments to place_section. */
467
468struct place_section_arg
469{
470 struct section_offsets *offsets;
471 CORE_ADDR lowest;
472};
473
474/* Find a unique offset to use for loadable section SECT if
475 the user did not provide an offset. */
476
2c0b251b 477static void
c1bd25fd
DJ
478place_section (bfd *abfd, asection *sect, void *obj)
479{
480 struct place_section_arg *arg = obj;
481 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
482 int done;
3bd72c6f 483 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 484
2711e456
DJ
485 /* We are only interested in allocated sections. */
486 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
487 return;
488
489 /* If the user specified an offset, honor it. */
490 if (offsets[sect->index] != 0)
491 return;
492
493 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
494 start_addr = (arg->lowest + align - 1) & -align;
495
c1bd25fd
DJ
496 do {
497 asection *cur_sec;
c1bd25fd 498
c1bd25fd
DJ
499 done = 1;
500
501 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
502 {
503 int indx = cur_sec->index;
504 CORE_ADDR cur_offset;
505
506 /* We don't need to compare against ourself. */
507 if (cur_sec == sect)
508 continue;
509
2711e456
DJ
510 /* We can only conflict with allocated sections. */
511 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
512 continue;
513
514 /* If the section offset is 0, either the section has not been placed
515 yet, or it was the lowest section placed (in which case LOWEST
516 will be past its end). */
517 if (offsets[indx] == 0)
518 continue;
519
520 /* If this section would overlap us, then we must move up. */
521 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
522 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
523 {
524 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
525 start_addr = (start_addr + align - 1) & -align;
526 done = 0;
3bd72c6f 527 break;
c1bd25fd
DJ
528 }
529
530 /* Otherwise, we appear to be OK. So far. */
531 }
532 }
533 while (!done);
534
535 offsets[sect->index] = start_addr;
536 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 537}
e8289572
JB
538
539/* Parse the user's idea of an offset for dynamic linking, into our idea
5417f6dc 540 of how to represent it for fast symbol reading. This is the default
e8289572
JB
541 version of the sym_fns.sym_offsets function for symbol readers that
542 don't need to do anything special. It allocates a section_offsets table
543 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
544
545void
546default_symfile_offsets (struct objfile *objfile,
547 struct section_addr_info *addrs)
548{
549 int i;
550
a39a16c4 551 objfile->num_sections = bfd_count_sections (objfile->obfd);
e8289572 552 objfile->section_offsets = (struct section_offsets *)
5417f6dc 553 obstack_alloc (&objfile->objfile_obstack,
a39a16c4 554 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
5417f6dc 555 memset (objfile->section_offsets, 0,
a39a16c4 556 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
e8289572
JB
557
558 /* Now calculate offsets for section that were specified by the
559 caller. */
a39a16c4 560 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
e8289572
JB
561 {
562 struct other_sections *osp ;
563
564 osp = &addrs->other[i] ;
565 if (osp->addr == 0)
566 continue;
567
568 /* Record all sections in offsets */
569 /* The section_offsets in the objfile are here filled in using
570 the BFD index. */
571 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
572 }
573
c1bd25fd
DJ
574 /* For relocatable files, all loadable sections will start at zero.
575 The zero is meaningless, so try to pick arbitrary addresses such
576 that no loadable sections overlap. This algorithm is quadratic,
577 but the number of sections in a single object file is generally
578 small. */
579 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
580 {
581 struct place_section_arg arg;
2711e456
DJ
582 bfd *abfd = objfile->obfd;
583 asection *cur_sec;
584 CORE_ADDR lowest = 0;
585
586 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
587 /* We do not expect this to happen; just skip this step if the
588 relocatable file has a section with an assigned VMA. */
589 if (bfd_section_vma (abfd, cur_sec) != 0)
590 break;
591
592 if (cur_sec == NULL)
593 {
594 CORE_ADDR *offsets = objfile->section_offsets->offsets;
595
596 /* Pick non-overlapping offsets for sections the user did not
597 place explicitly. */
598 arg.offsets = objfile->section_offsets;
599 arg.lowest = 0;
600 bfd_map_over_sections (objfile->obfd, place_section, &arg);
601
602 /* Correctly filling in the section offsets is not quite
603 enough. Relocatable files have two properties that
604 (most) shared objects do not:
605
606 - Their debug information will contain relocations. Some
607 shared libraries do also, but many do not, so this can not
608 be assumed.
609
610 - If there are multiple code sections they will be loaded
611 at different relative addresses in memory than they are
612 in the objfile, since all sections in the file will start
613 at address zero.
614
615 Because GDB has very limited ability to map from an
616 address in debug info to the correct code section,
617 it relies on adding SECT_OFF_TEXT to things which might be
618 code. If we clear all the section offsets, and set the
619 section VMAs instead, then symfile_relocate_debug_section
620 will return meaningful debug information pointing at the
621 correct sections.
622
623 GDB has too many different data structures for section
624 addresses - a bfd, objfile, and so_list all have section
625 tables, as does exec_ops. Some of these could probably
626 be eliminated. */
627
628 for (cur_sec = abfd->sections; cur_sec != NULL;
629 cur_sec = cur_sec->next)
630 {
631 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
632 continue;
633
634 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
30510692
DJ
635 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
636 offsets[cur_sec->index]);
2711e456
DJ
637 offsets[cur_sec->index] = 0;
638 }
639 }
c1bd25fd
DJ
640 }
641
e8289572
JB
642 /* Remember the bfd indexes for the .text, .data, .bss and
643 .rodata sections. */
644 init_objfile_sect_indices (objfile);
645}
646
647
31d99776
DJ
648/* Divide the file into segments, which are individual relocatable units.
649 This is the default version of the sym_fns.sym_segments function for
650 symbol readers that do not have an explicit representation of segments.
651 It assumes that object files do not have segments, and fully linked
652 files have a single segment. */
653
654struct symfile_segment_data *
655default_symfile_segments (bfd *abfd)
656{
657 int num_sections, i;
658 asection *sect;
659 struct symfile_segment_data *data;
660 CORE_ADDR low, high;
661
662 /* Relocatable files contain enough information to position each
663 loadable section independently; they should not be relocated
664 in segments. */
665 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
666 return NULL;
667
668 /* Make sure there is at least one loadable section in the file. */
669 for (sect = abfd->sections; sect != NULL; sect = sect->next)
670 {
671 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
672 continue;
673
674 break;
675 }
676 if (sect == NULL)
677 return NULL;
678
679 low = bfd_get_section_vma (abfd, sect);
680 high = low + bfd_get_section_size (sect);
681
682 data = XZALLOC (struct symfile_segment_data);
683 data->num_segments = 1;
684 data->segment_bases = XCALLOC (1, CORE_ADDR);
685 data->segment_sizes = XCALLOC (1, CORE_ADDR);
686
687 num_sections = bfd_count_sections (abfd);
688 data->segment_info = XCALLOC (num_sections, int);
689
690 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
691 {
692 CORE_ADDR vma;
693
694 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
695 continue;
696
697 vma = bfd_get_section_vma (abfd, sect);
698 if (vma < low)
699 low = vma;
700 if (vma + bfd_get_section_size (sect) > high)
701 high = vma + bfd_get_section_size (sect);
702
703 data->segment_info[i] = 1;
704 }
705
706 data->segment_bases[0] = low;
707 data->segment_sizes[0] = high - low;
708
709 return data;
710}
711
c906108c
SS
712/* Process a symbol file, as either the main file or as a dynamically
713 loaded file.
714
96baa820
JM
715 OBJFILE is where the symbols are to be read from.
716
7e8580c1
JB
717 ADDRS is the list of section load addresses. If the user has given
718 an 'add-symbol-file' command, then this is the list of offsets and
719 addresses he or she provided as arguments to the command; or, if
720 we're handling a shared library, these are the actual addresses the
721 sections are loaded at, according to the inferior's dynamic linker
722 (as gleaned by GDB's shared library code). We convert each address
723 into an offset from the section VMA's as it appears in the object
724 file, and then call the file's sym_offsets function to convert this
725 into a format-specific offset table --- a `struct section_offsets'.
726 If ADDRS is non-zero, OFFSETS must be zero.
727
728 OFFSETS is a table of section offsets already in the right
729 format-specific representation. NUM_OFFSETS is the number of
730 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
731 assume this is the proper table the call to sym_offsets described
732 above would produce. Instead of calling sym_offsets, we just dump
733 it right into objfile->section_offsets. (When we're re-reading
734 symbols from an objfile, we don't have the original load address
735 list any more; all we have is the section offset table.) If
736 OFFSETS is non-zero, ADDRS must be zero.
96baa820 737
7eedccfa
PP
738 ADD_FLAGS encodes verbosity level, whether this is main symbol or
739 an extra symbol file such as dynamically loaded code, and wether
740 breakpoint reset should be deferred. */
c906108c
SS
741
742void
7e8580c1
JB
743syms_from_objfile (struct objfile *objfile,
744 struct section_addr_info *addrs,
745 struct section_offsets *offsets,
746 int num_offsets,
7eedccfa 747 int add_flags)
c906108c 748{
a39a16c4 749 struct section_addr_info *local_addr = NULL;
c906108c 750 struct cleanup *old_chain;
7eedccfa 751 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 752
7e8580c1 753 gdb_assert (! (addrs && offsets));
2acceee2 754
c906108c 755 init_entry_point_info (objfile);
31d99776 756 objfile->sf = find_sym_fns (objfile->obfd);
c906108c 757
75245b24
MS
758 if (objfile->sf == NULL)
759 return; /* No symbols. */
760
c906108c
SS
761 /* Make sure that partially constructed symbol tables will be cleaned up
762 if an error occurs during symbol reading. */
74b7792f 763 old_chain = make_cleanup_free_objfile (objfile);
c906108c 764
a39a16c4
MM
765 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
766 list. We now establish the convention that an addr of zero means
767 no load address was specified. */
768 if (! addrs && ! offsets)
769 {
5417f6dc 770 local_addr
a39a16c4
MM
771 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
772 make_cleanup (xfree, local_addr);
773 addrs = local_addr;
774 }
775
776 /* Now either addrs or offsets is non-zero. */
777
c5aa993b 778 if (mainline)
c906108c
SS
779 {
780 /* We will modify the main symbol table, make sure that all its users
c5aa993b 781 will be cleaned up if an error occurs during symbol reading. */
74b7792f 782 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
783
784 /* Since no error yet, throw away the old symbol table. */
785
786 if (symfile_objfile != NULL)
787 {
788 free_objfile (symfile_objfile);
adb7f338 789 gdb_assert (symfile_objfile == NULL);
c906108c
SS
790 }
791
792 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
793 If the user wants to get rid of them, they should do "symbol-file"
794 without arguments first. Not sure this is the best behavior
795 (PR 2207). */
c906108c 796
c5aa993b 797 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
798 }
799
800 /* Convert addr into an offset rather than an absolute address.
801 We find the lowest address of a loaded segment in the objfile,
53a5351d 802 and assume that <addr> is where that got loaded.
c906108c 803
53a5351d
JM
804 We no longer warn if the lowest section is not a text segment (as
805 happens for the PA64 port. */
1549f619 806 if (!mainline && addrs && addrs->other[0].name)
c906108c 807 {
1549f619
EZ
808 asection *lower_sect;
809 asection *sect;
810 CORE_ADDR lower_offset;
811 int i;
812
5417f6dc 813 /* Find lowest loadable section to be used as starting point for
2acceee2
JM
814 continguous sections. FIXME!! won't work without call to find
815 .text first, but this assumes text is lowest section. */
816 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
817 if (lower_sect == NULL)
c906108c 818 bfd_map_over_sections (objfile->obfd, find_lowest_section,
4efb68b1 819 &lower_sect);
2acceee2 820 if (lower_sect == NULL)
ff8e85c3
PA
821 {
822 warning (_("no loadable sections found in added symbol-file %s"),
823 objfile->name);
824 lower_offset = 0;
825 }
2acceee2 826 else
ff8e85c3 827 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
5417f6dc 828
13de58df 829 /* Calculate offsets for the loadable sections.
2acceee2
JM
830 FIXME! Sections must be in order of increasing loadable section
831 so that contiguous sections can use the lower-offset!!!
5417f6dc 832
13de58df
JB
833 Adjust offsets if the segments are not contiguous.
834 If the section is contiguous, its offset should be set to
2acceee2
JM
835 the offset of the highest loadable section lower than it
836 (the loadable section directly below it in memory).
837 this_offset = lower_offset = lower_addr - lower_orig_addr */
838
1549f619 839 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
7e8580c1
JB
840 {
841 if (addrs->other[i].addr != 0)
842 {
843 sect = bfd_get_section_by_name (objfile->obfd,
844 addrs->other[i].name);
845 if (sect)
846 {
847 addrs->other[i].addr
848 -= bfd_section_vma (objfile->obfd, sect);
849 lower_offset = addrs->other[i].addr;
850 /* This is the index used by BFD. */
851 addrs->other[i].sectindex = sect->index ;
852 }
853 else
854 {
8a3fe4f8 855 warning (_("section %s not found in %s"),
5417f6dc 856 addrs->other[i].name,
7e8580c1
JB
857 objfile->name);
858 addrs->other[i].addr = 0;
859 }
860 }
861 else
862 addrs->other[i].addr = lower_offset;
863 }
c906108c
SS
864 }
865
866 /* Initialize symbol reading routines for this objfile, allow complaints to
867 appear for this new file, and record how verbose to be, then do the
868 initial symbol reading for this file. */
869
c5aa993b 870 (*objfile->sf->sym_init) (objfile);
7eedccfa 871 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 872
7e8580c1
JB
873 if (addrs)
874 (*objfile->sf->sym_offsets) (objfile, addrs);
875 else
876 {
877 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
878
879 /* Just copy in the offset table directly as given to us. */
880 objfile->num_sections = num_offsets;
881 objfile->section_offsets
882 = ((struct section_offsets *)
8b92e4d5 883 obstack_alloc (&objfile->objfile_obstack, size));
7e8580c1
JB
884 memcpy (objfile->section_offsets, offsets, size);
885
886 init_objfile_sect_indices (objfile);
887 }
c906108c 888
96baa820 889 (*objfile->sf->sym_read) (objfile, mainline);
c906108c 890
c906108c
SS
891 /* Discard cleanups as symbol reading was successful. */
892
893 discard_cleanups (old_chain);
f7545552 894 xfree (local_addr);
c906108c
SS
895}
896
897/* Perform required actions after either reading in the initial
898 symbols for a new objfile, or mapping in the symbols from a reusable
899 objfile. */
c5aa993b 900
c906108c 901void
7eedccfa 902new_symfile_objfile (struct objfile *objfile, int add_flags)
c906108c
SS
903{
904
905 /* If this is the main symbol file we have to clean up all users of the
906 old main symbol file. Otherwise it is sufficient to fixup all the
907 breakpoints that may have been redefined by this symbol file. */
7eedccfa 908 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
909 {
910 /* OK, make it the "real" symbol file. */
911 symfile_objfile = objfile;
912
913 clear_symtab_users ();
914 }
7eedccfa 915 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 916 {
69de3c6a 917 breakpoint_re_set ();
c906108c
SS
918 }
919
920 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 921 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
922}
923
924/* Process a symbol file, as either the main file or as a dynamically
925 loaded file.
926
5417f6dc
RM
927 ABFD is a BFD already open on the file, as from symfile_bfd_open.
928 This BFD will be closed on error, and is always consumed by this function.
7904e09f 929
7eedccfa
PP
930 ADD_FLAGS encodes verbosity, whether this is main symbol file or
931 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f
JB
932
933 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
7eedccfa
PP
934 syms_from_objfile, above.
935 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 936
c906108c
SS
937 Upon success, returns a pointer to the objfile that was added.
938 Upon failure, jumps back to command level (never returns). */
7eedccfa 939
7904e09f 940static struct objfile *
7eedccfa
PP
941symbol_file_add_with_addrs_or_offsets (bfd *abfd,
942 int add_flags,
7904e09f
JB
943 struct section_addr_info *addrs,
944 struct section_offsets *offsets,
945 int num_offsets,
7eedccfa 946 int flags)
c906108c
SS
947{
948 struct objfile *objfile;
949 struct partial_symtab *psymtab;
77069918 950 char *debugfile = NULL;
7b90c3f9 951 struct section_addr_info *orig_addrs = NULL;
a39a16c4 952 struct cleanup *my_cleanups;
5417f6dc 953 const char *name = bfd_get_filename (abfd);
7eedccfa 954 const int from_tty = add_flags & SYMFILE_VERBOSE;
c906108c 955
5417f6dc 956 my_cleanups = make_cleanup_bfd_close (abfd);
c906108c 957
5417f6dc
RM
958 /* Give user a chance to burp if we'd be
959 interactively wiping out any existing symbols. */
c906108c
SS
960
961 if ((have_full_symbols () || have_partial_symbols ())
7eedccfa 962 && (add_flags & SYMFILE_MAINLINE)
c906108c 963 && from_tty
9e2f0ad4 964 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 965 error (_("Not confirmed."));
c906108c 966
2df3850c 967 objfile = allocate_objfile (abfd, flags);
5417f6dc 968 discard_cleanups (my_cleanups);
c906108c 969
a39a16c4 970 if (addrs)
63cd24fe 971 {
7b90c3f9
JB
972 orig_addrs = copy_section_addr_info (addrs);
973 make_cleanup_free_section_addr_info (orig_addrs);
63cd24fe 974 }
a39a16c4 975
78a4a9b9
AC
976 /* We either created a new mapped symbol table, mapped an existing
977 symbol table file which has not had initial symbol reading
978 performed, or need to read an unmapped symbol table. */
979 if (from_tty || info_verbose)
c906108c 980 {
769d7dc4
AC
981 if (deprecated_pre_add_symbol_hook)
982 deprecated_pre_add_symbol_hook (name);
78a4a9b9 983 else
c906108c 984 {
55333a84
DE
985 printf_unfiltered (_("Reading symbols from %s..."), name);
986 wrap_here ("");
987 gdb_flush (gdb_stdout);
c906108c 988 }
c906108c 989 }
78a4a9b9 990 syms_from_objfile (objfile, addrs, offsets, num_offsets,
7eedccfa 991 add_flags);
c906108c
SS
992
993 /* We now have at least a partial symbol table. Check to see if the
994 user requested that all symbols be read on initial access via either
995 the gdb startup command line or on a per symbol file basis. Expand
996 all partial symbol tables for this objfile if so. */
997
2acceee2 998 if ((flags & OBJF_READNOW) || readnow_symbol_files)
c906108c 999 {
55333a84 1000 if (from_tty || info_verbose)
c906108c 1001 {
a3f17187 1002 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1003 wrap_here ("");
1004 gdb_flush (gdb_stdout);
1005 }
1006
c5aa993b 1007 for (psymtab = objfile->psymtabs;
c906108c 1008 psymtab != NULL;
c5aa993b 1009 psymtab = psymtab->next)
c906108c
SS
1010 {
1011 psymtab_to_symtab (psymtab);
1012 }
1013 }
1014
77069918
JK
1015 /* If the file has its own symbol tables it has no separate debug info.
1016 `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to SYMTABS/PSYMTABS.
1017 `.gnu_debuglink' may no longer be present with `.note.gnu.build-id'. */
1018 if (objfile->psymtabs == NULL)
1019 debugfile = find_separate_debug_file (objfile);
5b5d99cf
JB
1020 if (debugfile)
1021 {
5b5d99cf
JB
1022 if (addrs != NULL)
1023 {
1024 objfile->separate_debug_objfile
7eedccfa 1025 = symbol_file_add (debugfile, add_flags, orig_addrs, flags);
5b5d99cf
JB
1026 }
1027 else
1028 {
1029 objfile->separate_debug_objfile
7eedccfa 1030 = symbol_file_add (debugfile, add_flags, NULL, flags);
5b5d99cf
JB
1031 }
1032 objfile->separate_debug_objfile->separate_debug_objfile_backlink
1033 = objfile;
5417f6dc 1034
5b5d99cf
JB
1035 /* Put the separate debug object before the normal one, this is so that
1036 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
1037 put_objfile_before (objfile->separate_debug_objfile, objfile);
5417f6dc 1038
5b5d99cf
JB
1039 xfree (debugfile);
1040 }
5417f6dc 1041
55333a84 1042 if ((from_tty || info_verbose)
e361b228 1043 && !objfile_has_symbols (objfile))
cb3c37b2
JB
1044 {
1045 wrap_here ("");
55333a84 1046 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1047 wrap_here ("");
1048 }
1049
c906108c
SS
1050 if (from_tty || info_verbose)
1051 {
769d7dc4
AC
1052 if (deprecated_post_add_symbol_hook)
1053 deprecated_post_add_symbol_hook ();
c906108c 1054 else
55333a84 1055 printf_unfiltered (_("done.\n"));
c906108c
SS
1056 }
1057
481d0f41
JB
1058 /* We print some messages regardless of whether 'from_tty ||
1059 info_verbose' is true, so make sure they go out at the right
1060 time. */
1061 gdb_flush (gdb_stdout);
1062
a39a16c4
MM
1063 do_cleanups (my_cleanups);
1064
109f874e 1065 if (objfile->sf == NULL)
8caee43b
PP
1066 {
1067 observer_notify_new_objfile (objfile);
1068 return objfile; /* No symbols. */
1069 }
109f874e 1070
7eedccfa 1071 new_symfile_objfile (objfile, add_flags);
c906108c 1072
06d3b283 1073 observer_notify_new_objfile (objfile);
c906108c 1074
ce7d4522 1075 bfd_cache_close_all ();
c906108c
SS
1076 return (objfile);
1077}
1078
7904e09f 1079
eb4556d7
JB
1080/* Process the symbol file ABFD, as either the main file or as a
1081 dynamically loaded file.
1082
1083 See symbol_file_add_with_addrs_or_offsets's comments for
1084 details. */
1085struct objfile *
7eedccfa 1086symbol_file_add_from_bfd (bfd *abfd, int add_flags,
eb4556d7 1087 struct section_addr_info *addrs,
7eedccfa 1088 int flags)
eb4556d7 1089{
7eedccfa
PP
1090 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1091 flags);
eb4556d7
JB
1092}
1093
1094
7904e09f
JB
1095/* Process a symbol file, as either the main file or as a dynamically
1096 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1097 for details. */
1098struct objfile *
7eedccfa
PP
1099symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1100 int flags)
7904e09f 1101{
7eedccfa
PP
1102 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1103 flags);
7904e09f
JB
1104}
1105
1106
d7db6da9
FN
1107/* Call symbol_file_add() with default values and update whatever is
1108 affected by the loading of a new main().
1109 Used when the file is supplied in the gdb command line
1110 and by some targets with special loading requirements.
1111 The auxiliary function, symbol_file_add_main_1(), has the flags
1112 argument for the switches that can only be specified in the symbol_file
1113 command itself. */
5417f6dc 1114
1adeb98a
FN
1115void
1116symbol_file_add_main (char *args, int from_tty)
1117{
d7db6da9
FN
1118 symbol_file_add_main_1 (args, from_tty, 0);
1119}
1120
1121static void
1122symbol_file_add_main_1 (char *args, int from_tty, int flags)
1123{
7eedccfa
PP
1124 const int add_flags = SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0);
1125 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1126
d7db6da9
FN
1127 /* Getting new symbols may change our opinion about
1128 what is frameless. */
1129 reinit_frame_cache ();
1130
1131 set_initial_language ();
1adeb98a
FN
1132}
1133
1134void
1135symbol_file_clear (int from_tty)
1136{
1137 if ((have_full_symbols () || have_partial_symbols ())
1138 && from_tty
0430b0d6
AS
1139 && (symfile_objfile
1140 ? !query (_("Discard symbol table from `%s'? "),
1141 symfile_objfile->name)
1142 : !query (_("Discard symbol table? "))))
8a3fe4f8 1143 error (_("Not confirmed."));
1adeb98a 1144
d10c338d 1145 free_all_objfiles ();
1adeb98a 1146
d10c338d
DE
1147 /* solib descriptors may have handles to objfiles. Since their
1148 storage has just been released, we'd better wipe the solib
1149 descriptors as well. */
1150 no_shared_libraries (NULL, from_tty);
1151
adb7f338 1152 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1153 if (from_tty)
1154 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1155}
1156
77069918
JK
1157struct build_id
1158 {
1159 size_t size;
1160 gdb_byte data[1];
1161 };
1162
1163/* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
1164
1165static struct build_id *
1166build_id_bfd_get (bfd *abfd)
1167{
1168 struct build_id *retval;
1169
1170 if (!bfd_check_format (abfd, bfd_object)
1171 || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1172 || elf_tdata (abfd)->build_id == NULL)
1173 return NULL;
1174
1175 retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size);
1176 retval->size = elf_tdata (abfd)->build_id_size;
1177 memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size);
1178
1179 return retval;
1180}
1181
1182/* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
1183
1184static int
1185build_id_verify (const char *filename, struct build_id *check)
1186{
1187 bfd *abfd;
1188 struct build_id *found = NULL;
1189 int retval = 0;
1190
1191 /* We expect to be silent on the non-existing files. */
f1838a98
UW
1192 if (remote_filename_p (filename))
1193 abfd = remote_bfd_open (filename, gnutarget);
1194 else
1195 abfd = bfd_openr (filename, gnutarget);
77069918
JK
1196 if (abfd == NULL)
1197 return 0;
1198
1199 found = build_id_bfd_get (abfd);
1200
1201 if (found == NULL)
1202 warning (_("File \"%s\" has no build-id, file skipped"), filename);
1203 else if (found->size != check->size
1204 || memcmp (found->data, check->data, found->size) != 0)
1205 warning (_("File \"%s\" has a different build-id, file skipped"), filename);
1206 else
1207 retval = 1;
1208
1209 if (!bfd_close (abfd))
1210 warning (_("cannot close \"%s\": %s"), filename,
1211 bfd_errmsg (bfd_get_error ()));
bb01da77
TT
1212
1213 xfree (found);
1214
77069918
JK
1215 return retval;
1216}
1217
1218static char *
1219build_id_to_debug_filename (struct build_id *build_id)
1220{
1221 char *link, *s, *retval = NULL;
1222 gdb_byte *data = build_id->data;
1223 size_t size = build_id->size;
1224
1225 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1226 link = xmalloc (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1227 + 2 * size + (sizeof ".debug" - 1) + 1);
1228 s = link + sprintf (link, "%s/.build-id/", debug_file_directory);
1229 if (size > 0)
1230 {
1231 size--;
1232 s += sprintf (s, "%02x", (unsigned) *data++);
1233 }
1234 if (size > 0)
1235 *s++ = '/';
1236 while (size-- > 0)
1237 s += sprintf (s, "%02x", (unsigned) *data++);
1238 strcpy (s, ".debug");
1239
1240 /* lrealpath() is expensive even for the usually non-existent files. */
1241 if (access (link, F_OK) == 0)
1242 retval = lrealpath (link);
1243 xfree (link);
1244
1245 if (retval != NULL && !build_id_verify (retval, build_id))
1246 {
1247 xfree (retval);
1248 retval = NULL;
1249 }
1250
1251 return retval;
1252}
1253
5b5d99cf
JB
1254static char *
1255get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1256{
1257 asection *sect;
1258 bfd_size_type debuglink_size;
1259 unsigned long crc32;
1260 char *contents;
1261 int crc_offset;
1262 unsigned char *p;
5417f6dc 1263
5b5d99cf
JB
1264 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1265
1266 if (sect == NULL)
1267 return NULL;
1268
1269 debuglink_size = bfd_section_size (objfile->obfd, sect);
5417f6dc 1270
5b5d99cf
JB
1271 contents = xmalloc (debuglink_size);
1272 bfd_get_section_contents (objfile->obfd, sect, contents,
1273 (file_ptr)0, (bfd_size_type)debuglink_size);
1274
1275 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1276 crc_offset = strlen (contents) + 1;
1277 crc_offset = (crc_offset + 3) & ~3;
1278
1279 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
5417f6dc 1280
5b5d99cf
JB
1281 *crc32_out = crc32;
1282 return contents;
1283}
1284
1285static int
1286separate_debug_file_exists (const char *name, unsigned long crc)
1287{
1288 unsigned long file_crc = 0;
f1838a98 1289 bfd *abfd;
777ea8f1 1290 gdb_byte buffer[8*1024];
5b5d99cf
JB
1291 int count;
1292
f1838a98
UW
1293 if (remote_filename_p (name))
1294 abfd = remote_bfd_open (name, gnutarget);
1295 else
1296 abfd = bfd_openr (name, gnutarget);
1297
1298 if (!abfd)
5b5d99cf
JB
1299 return 0;
1300
f1838a98 1301 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
5b5d99cf
JB
1302 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1303
f1838a98 1304 bfd_close (abfd);
5b5d99cf
JB
1305
1306 return crc == file_crc;
1307}
1308
aa28a74e 1309char *debug_file_directory = NULL;
920d2a44
AC
1310static void
1311show_debug_file_directory (struct ui_file *file, int from_tty,
1312 struct cmd_list_element *c, const char *value)
1313{
1314 fprintf_filtered (file, _("\
1315The directory where separate debug symbols are searched for is \"%s\".\n"),
1316 value);
1317}
5b5d99cf
JB
1318
1319#if ! defined (DEBUG_SUBDIRECTORY)
1320#define DEBUG_SUBDIRECTORY ".debug"
1321#endif
1322
1323static char *
1324find_separate_debug_file (struct objfile *objfile)
1325{
1326 asection *sect;
1327 char *basename;
1328 char *dir;
1329 char *debugfile;
1330 char *name_copy;
aa28a74e 1331 char *canon_name;
5b5d99cf
JB
1332 bfd_size_type debuglink_size;
1333 unsigned long crc32;
1334 int i;
77069918
JK
1335 struct build_id *build_id;
1336
1337 build_id = build_id_bfd_get (objfile->obfd);
1338 if (build_id != NULL)
1339 {
1340 char *build_id_name;
1341
1342 build_id_name = build_id_to_debug_filename (build_id);
bb01da77 1343 xfree (build_id);
77069918
JK
1344 /* Prevent looping on a stripped .debug file. */
1345 if (build_id_name != NULL && strcmp (build_id_name, objfile->name) == 0)
1346 {
1347 warning (_("\"%s\": separate debug info file has no debug info"),
1348 build_id_name);
1349 xfree (build_id_name);
1350 }
1351 else if (build_id_name != NULL)
1352 return build_id_name;
1353 }
5b5d99cf
JB
1354
1355 basename = get_debug_link_info (objfile, &crc32);
1356
1357 if (basename == NULL)
1358 return NULL;
5417f6dc 1359
5b5d99cf
JB
1360 dir = xstrdup (objfile->name);
1361
fe36c4f4
JB
1362 /* Strip off the final filename part, leaving the directory name,
1363 followed by a slash. Objfile names should always be absolute and
1364 tilde-expanded, so there should always be a slash in there
1365 somewhere. */
5b5d99cf
JB
1366 for (i = strlen(dir) - 1; i >= 0; i--)
1367 {
1368 if (IS_DIR_SEPARATOR (dir[i]))
1369 break;
1370 }
fe36c4f4 1371 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
5b5d99cf 1372 dir[i+1] = '\0';
5417f6dc 1373
1ffa32ee
JK
1374 /* Set I to max (strlen (canon_name), strlen (dir)). */
1375 canon_name = lrealpath (dir);
1376 i = strlen (dir);
1377 if (canon_name && strlen (canon_name) > i)
1378 i = strlen (canon_name);
1379
5b5d99cf 1380 debugfile = alloca (strlen (debug_file_directory) + 1
1ffa32ee 1381 + i
5b5d99cf
JB
1382 + strlen (DEBUG_SUBDIRECTORY)
1383 + strlen ("/")
5417f6dc 1384 + strlen (basename)
5b5d99cf
JB
1385 + 1);
1386
1387 /* First try in the same directory as the original file. */
1388 strcpy (debugfile, dir);
1389 strcat (debugfile, basename);
1390
1391 if (separate_debug_file_exists (debugfile, crc32))
1392 {
1393 xfree (basename);
1394 xfree (dir);
1ffa32ee 1395 xfree (canon_name);
5b5d99cf
JB
1396 return xstrdup (debugfile);
1397 }
5417f6dc 1398
5b5d99cf
JB
1399 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1400 strcpy (debugfile, dir);
1401 strcat (debugfile, DEBUG_SUBDIRECTORY);
1402 strcat (debugfile, "/");
1403 strcat (debugfile, basename);
1404
1405 if (separate_debug_file_exists (debugfile, crc32))
1406 {
1407 xfree (basename);
1408 xfree (dir);
1ffa32ee 1409 xfree (canon_name);
5b5d99cf
JB
1410 return xstrdup (debugfile);
1411 }
5417f6dc 1412
5b5d99cf
JB
1413 /* Then try in the global debugfile directory. */
1414 strcpy (debugfile, debug_file_directory);
1415 strcat (debugfile, "/");
1416 strcat (debugfile, dir);
5b5d99cf
JB
1417 strcat (debugfile, basename);
1418
1419 if (separate_debug_file_exists (debugfile, crc32))
1420 {
1421 xfree (basename);
1422 xfree (dir);
1ffa32ee 1423 xfree (canon_name);
5b5d99cf
JB
1424 return xstrdup (debugfile);
1425 }
5417f6dc 1426
aa28a74e
DJ
1427 /* If the file is in the sysroot, try using its base path in the
1428 global debugfile directory. */
aa28a74e
DJ
1429 if (canon_name
1430 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1431 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1432 {
1433 strcpy (debugfile, debug_file_directory);
1434 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1435 strcat (debugfile, "/");
1436 strcat (debugfile, basename);
1437
1438 if (separate_debug_file_exists (debugfile, crc32))
1439 {
1440 xfree (canon_name);
1441 xfree (basename);
1442 xfree (dir);
1443 return xstrdup (debugfile);
1444 }
1445 }
1446
1447 if (canon_name)
1448 xfree (canon_name);
1449
5b5d99cf
JB
1450 xfree (basename);
1451 xfree (dir);
1452 return NULL;
1453}
1454
1455
c906108c
SS
1456/* This is the symbol-file command. Read the file, analyze its
1457 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1458 the command is rather bizarre:
1459
1460 1. The function buildargv implements various quoting conventions
1461 which are undocumented and have little or nothing in common with
1462 the way things are quoted (or not quoted) elsewhere in GDB.
1463
1464 2. Options are used, which are not generally used in GDB (perhaps
1465 "set mapped on", "set readnow on" would be better)
1466
1467 3. The order of options matters, which is contrary to GNU
c906108c
SS
1468 conventions (because it is confusing and inconvenient). */
1469
1470void
fba45db2 1471symbol_file_command (char *args, int from_tty)
c906108c 1472{
c906108c
SS
1473 dont_repeat ();
1474
1475 if (args == NULL)
1476 {
1adeb98a 1477 symbol_file_clear (from_tty);
c906108c
SS
1478 }
1479 else
1480 {
d1a41061 1481 char **argv = gdb_buildargv (args);
cb2f3a29
MK
1482 int flags = OBJF_USERLOADED;
1483 struct cleanup *cleanups;
1484 char *name = NULL;
1485
7a292a7a 1486 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1487 while (*argv != NULL)
1488 {
78a4a9b9
AC
1489 if (strcmp (*argv, "-readnow") == 0)
1490 flags |= OBJF_READNOW;
1491 else if (**argv == '-')
8a3fe4f8 1492 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1493 else
1494 {
cb2f3a29 1495 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1496 name = *argv;
78a4a9b9 1497 }
cb2f3a29 1498
c906108c
SS
1499 argv++;
1500 }
1501
1502 if (name == NULL)
cb2f3a29
MK
1503 error (_("no symbol file name was specified"));
1504
c906108c
SS
1505 do_cleanups (cleanups);
1506 }
1507}
1508
1509/* Set the initial language.
1510
cb2f3a29
MK
1511 FIXME: A better solution would be to record the language in the
1512 psymtab when reading partial symbols, and then use it (if known) to
1513 set the language. This would be a win for formats that encode the
1514 language in an easily discoverable place, such as DWARF. For
1515 stabs, we can jump through hoops looking for specially named
1516 symbols or try to intuit the language from the specific type of
1517 stabs we find, but we can't do that until later when we read in
1518 full symbols. */
c906108c 1519
8b60591b 1520void
fba45db2 1521set_initial_language (void)
c906108c
SS
1522{
1523 struct partial_symtab *pst;
c5aa993b 1524 enum language lang = language_unknown;
c906108c
SS
1525
1526 pst = find_main_psymtab ();
1527 if (pst != NULL)
1528 {
c5aa993b 1529 if (pst->filename != NULL)
cb2f3a29
MK
1530 lang = deduce_language_from_filename (pst->filename);
1531
c906108c
SS
1532 if (lang == language_unknown)
1533 {
c5aa993b
JM
1534 /* Make C the default language */
1535 lang = language_c;
c906108c 1536 }
cb2f3a29 1537
c906108c 1538 set_language (lang);
cb2f3a29 1539 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1540 }
1541}
1542
cb2f3a29
MK
1543/* Open the file specified by NAME and hand it off to BFD for
1544 preliminary analysis. Return a newly initialized bfd *, which
1545 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1546 absolute). In case of trouble, error() is called. */
c906108c
SS
1547
1548bfd *
fba45db2 1549symfile_bfd_open (char *name)
c906108c
SS
1550{
1551 bfd *sym_bfd;
1552 int desc;
1553 char *absolute_name;
1554
f1838a98
UW
1555 if (remote_filename_p (name))
1556 {
1557 name = xstrdup (name);
1558 sym_bfd = remote_bfd_open (name, gnutarget);
1559 if (!sym_bfd)
1560 {
1561 make_cleanup (xfree, name);
1562 error (_("`%s': can't open to read symbols: %s."), name,
1563 bfd_errmsg (bfd_get_error ()));
1564 }
1565
1566 if (!bfd_check_format (sym_bfd, bfd_object))
1567 {
1568 bfd_close (sym_bfd);
1569 make_cleanup (xfree, name);
1570 error (_("`%s': can't read symbols: %s."), name,
1571 bfd_errmsg (bfd_get_error ()));
1572 }
1573
1574 return sym_bfd;
1575 }
1576
cb2f3a29 1577 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c
SS
1578
1579 /* Look down path for it, allocate 2nd new malloc'd copy. */
cb2f3a29 1580 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
fbdebf46 1581 O_RDONLY | O_BINARY, &absolute_name);
608506ed 1582#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1583 if (desc < 0)
1584 {
1585 char *exename = alloca (strlen (name) + 5);
1586 strcat (strcpy (exename, name), ".exe");
014d698b 1587 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
fbdebf46 1588 O_RDONLY | O_BINARY, &absolute_name);
c906108c
SS
1589 }
1590#endif
1591 if (desc < 0)
1592 {
b8c9b27d 1593 make_cleanup (xfree, name);
c906108c
SS
1594 perror_with_name (name);
1595 }
cb2f3a29
MK
1596
1597 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1598 bfd. It'll be freed in free_objfile(). */
1599 xfree (name);
1600 name = absolute_name;
c906108c 1601
9f76c2cd 1602 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
c906108c
SS
1603 if (!sym_bfd)
1604 {
1605 close (desc);
b8c9b27d 1606 make_cleanup (xfree, name);
f1838a98 1607 error (_("`%s': can't open to read symbols: %s."), name,
c906108c
SS
1608 bfd_errmsg (bfd_get_error ()));
1609 }
549c1eea 1610 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1611
1612 if (!bfd_check_format (sym_bfd, bfd_object))
1613 {
cb2f3a29
MK
1614 /* FIXME: should be checking for errors from bfd_close (for one
1615 thing, on error it does not free all the storage associated
1616 with the bfd). */
1617 bfd_close (sym_bfd); /* This also closes desc. */
b8c9b27d 1618 make_cleanup (xfree, name);
f1838a98 1619 error (_("`%s': can't read symbols: %s."), name,
c906108c
SS
1620 bfd_errmsg (bfd_get_error ()));
1621 }
cb2f3a29 1622
4f6f9936
JK
1623 /* bfd_usrdata exists for applications and libbfd must not touch it. */
1624 gdb_assert (bfd_usrdata (sym_bfd) == NULL);
1625
cb2f3a29 1626 return sym_bfd;
c906108c
SS
1627}
1628
cb2f3a29
MK
1629/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1630 the section was not found. */
1631
0e931cf0
JB
1632int
1633get_section_index (struct objfile *objfile, char *section_name)
1634{
1635 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1636
0e931cf0
JB
1637 if (sect)
1638 return sect->index;
1639 else
1640 return -1;
1641}
1642
cb2f3a29
MK
1643/* Link SF into the global symtab_fns list. Called on startup by the
1644 _initialize routine in each object file format reader, to register
1645 information about each format the the reader is prepared to
1646 handle. */
c906108c
SS
1647
1648void
fba45db2 1649add_symtab_fns (struct sym_fns *sf)
c906108c
SS
1650{
1651 sf->next = symtab_fns;
1652 symtab_fns = sf;
1653}
1654
cb2f3a29
MK
1655/* Initialize OBJFILE to read symbols from its associated BFD. It
1656 either returns or calls error(). The result is an initialized
1657 struct sym_fns in the objfile structure, that contains cached
1658 information about the symbol file. */
c906108c 1659
31d99776
DJ
1660static struct sym_fns *
1661find_sym_fns (bfd *abfd)
c906108c
SS
1662{
1663 struct sym_fns *sf;
31d99776 1664 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
c906108c 1665
75245b24
MS
1666 if (our_flavour == bfd_target_srec_flavour
1667 || our_flavour == bfd_target_ihex_flavour
1668 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1669 return NULL; /* No symbols. */
75245b24 1670
c5aa993b 1671 for (sf = symtab_fns; sf != NULL; sf = sf->next)
31d99776
DJ
1672 if (our_flavour == sf->sym_flavour)
1673 return sf;
cb2f3a29 1674
8a3fe4f8 1675 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1676 bfd_get_target (abfd));
c906108c
SS
1677}
1678\f
cb2f3a29 1679
c906108c
SS
1680/* This function runs the load command of our current target. */
1681
1682static void
fba45db2 1683load_command (char *arg, int from_tty)
c906108c 1684{
4487aabf
PA
1685 /* The user might be reloading because the binary has changed. Take
1686 this opportunity to check. */
1687 reopen_exec_file ();
1688 reread_symbols ();
1689
c906108c 1690 if (arg == NULL)
1986bccd
AS
1691 {
1692 char *parg;
1693 int count = 0;
1694
1695 parg = arg = get_exec_file (1);
1696
1697 /* Count how many \ " ' tab space there are in the name. */
1698 while ((parg = strpbrk (parg, "\\\"'\t ")))
1699 {
1700 parg++;
1701 count++;
1702 }
1703
1704 if (count)
1705 {
1706 /* We need to quote this string so buildargv can pull it apart. */
1707 char *temp = xmalloc (strlen (arg) + count + 1 );
1708 char *ptemp = temp;
1709 char *prev;
1710
1711 make_cleanup (xfree, temp);
1712
1713 prev = parg = arg;
1714 while ((parg = strpbrk (parg, "\\\"'\t ")))
1715 {
1716 strncpy (ptemp, prev, parg - prev);
1717 ptemp += parg - prev;
1718 prev = parg++;
1719 *ptemp++ = '\\';
1720 }
1721 strcpy (ptemp, prev);
1722
1723 arg = temp;
1724 }
1725 }
1726
c906108c 1727 target_load (arg, from_tty);
2889e661
JB
1728
1729 /* After re-loading the executable, we don't really know which
1730 overlays are mapped any more. */
1731 overlay_cache_invalid = 1;
c906108c
SS
1732}
1733
1734/* This version of "load" should be usable for any target. Currently
1735 it is just used for remote targets, not inftarg.c or core files,
1736 on the theory that only in that case is it useful.
1737
1738 Avoiding xmodem and the like seems like a win (a) because we don't have
1739 to worry about finding it, and (b) On VMS, fork() is very slow and so
1740 we don't want to run a subprocess. On the other hand, I'm not sure how
1741 performance compares. */
917317f4 1742
917317f4
JM
1743static int validate_download = 0;
1744
e4f9b4d5
MS
1745/* Callback service function for generic_load (bfd_map_over_sections). */
1746
1747static void
1748add_section_size_callback (bfd *abfd, asection *asec, void *data)
1749{
1750 bfd_size_type *sum = data;
1751
2c500098 1752 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1753}
1754
1755/* Opaque data for load_section_callback. */
1756struct load_section_data {
1757 unsigned long load_offset;
a76d924d
DJ
1758 struct load_progress_data *progress_data;
1759 VEC(memory_write_request_s) *requests;
1760};
1761
1762/* Opaque data for load_progress. */
1763struct load_progress_data {
1764 /* Cumulative data. */
e4f9b4d5
MS
1765 unsigned long write_count;
1766 unsigned long data_count;
1767 bfd_size_type total_size;
a76d924d
DJ
1768};
1769
1770/* Opaque data for load_progress for a single section. */
1771struct load_progress_section_data {
1772 struct load_progress_data *cumulative;
cf7a04e8 1773
a76d924d 1774 /* Per-section data. */
cf7a04e8
DJ
1775 const char *section_name;
1776 ULONGEST section_sent;
1777 ULONGEST section_size;
1778 CORE_ADDR lma;
1779 gdb_byte *buffer;
e4f9b4d5
MS
1780};
1781
a76d924d 1782/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1783
1784static void
1785load_progress (ULONGEST bytes, void *untyped_arg)
1786{
a76d924d
DJ
1787 struct load_progress_section_data *args = untyped_arg;
1788 struct load_progress_data *totals;
1789
1790 if (args == NULL)
1791 /* Writing padding data. No easy way to get at the cumulative
1792 stats, so just ignore this. */
1793 return;
1794
1795 totals = args->cumulative;
1796
1797 if (bytes == 0 && args->section_sent == 0)
1798 {
1799 /* The write is just starting. Let the user know we've started
1800 this section. */
5af949e3
UW
1801 ui_out_message (uiout, 0, "Loading section %s, size %s lma %s\n",
1802 args->section_name, hex_string (args->section_size),
1803 paddress (target_gdbarch, args->lma));
a76d924d
DJ
1804 return;
1805 }
cf7a04e8
DJ
1806
1807 if (validate_download)
1808 {
1809 /* Broken memories and broken monitors manifest themselves here
1810 when bring new computers to life. This doubles already slow
1811 downloads. */
1812 /* NOTE: cagney/1999-10-18: A more efficient implementation
1813 might add a verify_memory() method to the target vector and
1814 then use that. remote.c could implement that method using
1815 the ``qCRC'' packet. */
1816 gdb_byte *check = xmalloc (bytes);
1817 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1818
1819 if (target_read_memory (args->lma, check, bytes) != 0)
5af949e3
UW
1820 error (_("Download verify read failed at %s"),
1821 paddress (target_gdbarch, args->lma));
cf7a04e8 1822 if (memcmp (args->buffer, check, bytes) != 0)
5af949e3
UW
1823 error (_("Download verify compare failed at %s"),
1824 paddress (target_gdbarch, args->lma));
cf7a04e8
DJ
1825 do_cleanups (verify_cleanups);
1826 }
a76d924d 1827 totals->data_count += bytes;
cf7a04e8
DJ
1828 args->lma += bytes;
1829 args->buffer += bytes;
a76d924d 1830 totals->write_count += 1;
cf7a04e8
DJ
1831 args->section_sent += bytes;
1832 if (quit_flag
1833 || (deprecated_ui_load_progress_hook != NULL
1834 && deprecated_ui_load_progress_hook (args->section_name,
1835 args->section_sent)))
1836 error (_("Canceled the download"));
1837
1838 if (deprecated_show_load_progress != NULL)
1839 deprecated_show_load_progress (args->section_name,
1840 args->section_sent,
1841 args->section_size,
a76d924d
DJ
1842 totals->data_count,
1843 totals->total_size);
cf7a04e8
DJ
1844}
1845
e4f9b4d5
MS
1846/* Callback service function for generic_load (bfd_map_over_sections). */
1847
1848static void
1849load_section_callback (bfd *abfd, asection *asec, void *data)
1850{
a76d924d 1851 struct memory_write_request *new_request;
e4f9b4d5 1852 struct load_section_data *args = data;
a76d924d 1853 struct load_progress_section_data *section_data;
cf7a04e8
DJ
1854 bfd_size_type size = bfd_get_section_size (asec);
1855 gdb_byte *buffer;
cf7a04e8 1856 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 1857
cf7a04e8
DJ
1858 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1859 return;
e4f9b4d5 1860
cf7a04e8
DJ
1861 if (size == 0)
1862 return;
e4f9b4d5 1863
a76d924d
DJ
1864 new_request = VEC_safe_push (memory_write_request_s,
1865 args->requests, NULL);
1866 memset (new_request, 0, sizeof (struct memory_write_request));
1867 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1868 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1869 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1870 new_request->data = xmalloc (size);
1871 new_request->baton = section_data;
cf7a04e8 1872
a76d924d 1873 buffer = new_request->data;
cf7a04e8 1874
a76d924d
DJ
1875 section_data->cumulative = args->progress_data;
1876 section_data->section_name = sect_name;
1877 section_data->section_size = size;
1878 section_data->lma = new_request->begin;
1879 section_data->buffer = buffer;
cf7a04e8
DJ
1880
1881 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
1882}
1883
1884/* Clean up an entire memory request vector, including load
1885 data and progress records. */
cf7a04e8 1886
a76d924d
DJ
1887static void
1888clear_memory_write_data (void *arg)
1889{
1890 VEC(memory_write_request_s) **vec_p = arg;
1891 VEC(memory_write_request_s) *vec = *vec_p;
1892 int i;
1893 struct memory_write_request *mr;
cf7a04e8 1894
a76d924d
DJ
1895 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1896 {
1897 xfree (mr->data);
1898 xfree (mr->baton);
1899 }
1900 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
1901}
1902
c906108c 1903void
917317f4 1904generic_load (char *args, int from_tty)
c906108c 1905{
c906108c 1906 bfd *loadfile_bfd;
2b71414d 1907 struct timeval start_time, end_time;
917317f4 1908 char *filename;
1986bccd 1909 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 1910 struct load_section_data cbdata;
a76d924d
DJ
1911 struct load_progress_data total_progress;
1912
e4f9b4d5 1913 CORE_ADDR entry;
1986bccd 1914 char **argv;
e4f9b4d5 1915
a76d924d
DJ
1916 memset (&cbdata, 0, sizeof (cbdata));
1917 memset (&total_progress, 0, sizeof (total_progress));
1918 cbdata.progress_data = &total_progress;
1919
1920 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 1921
d1a41061
PP
1922 if (args == NULL)
1923 error_no_arg (_("file to load"));
1986bccd 1924
d1a41061 1925 argv = gdb_buildargv (args);
1986bccd
AS
1926 make_cleanup_freeargv (argv);
1927
1928 filename = tilde_expand (argv[0]);
1929 make_cleanup (xfree, filename);
1930
1931 if (argv[1] != NULL)
917317f4
JM
1932 {
1933 char *endptr;
ba5f2f8a 1934
1986bccd
AS
1935 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1936
1937 /* If the last word was not a valid number then
1938 treat it as a file name with spaces in. */
1939 if (argv[1] == endptr)
1940 error (_("Invalid download offset:%s."), argv[1]);
1941
1942 if (argv[2] != NULL)
1943 error (_("Too many parameters."));
917317f4 1944 }
c906108c 1945
917317f4 1946 /* Open the file for loading. */
c906108c
SS
1947 loadfile_bfd = bfd_openr (filename, gnutarget);
1948 if (loadfile_bfd == NULL)
1949 {
1950 perror_with_name (filename);
1951 return;
1952 }
917317f4 1953
c906108c
SS
1954 /* FIXME: should be checking for errors from bfd_close (for one thing,
1955 on error it does not free all the storage associated with the
1956 bfd). */
5c65bbb6 1957 make_cleanup_bfd_close (loadfile_bfd);
c906108c 1958
c5aa993b 1959 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 1960 {
8a3fe4f8 1961 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
1962 bfd_errmsg (bfd_get_error ()));
1963 }
c5aa993b 1964
5417f6dc 1965 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
1966 (void *) &total_progress.total_size);
1967
1968 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 1969
2b71414d 1970 gettimeofday (&start_time, NULL);
c906108c 1971
a76d924d
DJ
1972 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1973 load_progress) != 0)
1974 error (_("Load failed"));
c906108c 1975
2b71414d 1976 gettimeofday (&end_time, NULL);
ba5f2f8a 1977
e4f9b4d5 1978 entry = bfd_get_start_address (loadfile_bfd);
e4f9b4d5 1979 ui_out_text (uiout, "Start address ");
5af949e3 1980 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
e4f9b4d5 1981 ui_out_text (uiout, ", load size ");
a76d924d 1982 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 1983 ui_out_text (uiout, "\n");
e4f9b4d5
MS
1984 /* We were doing this in remote-mips.c, I suspect it is right
1985 for other targets too. */
fb14de7b 1986 regcache_write_pc (get_current_regcache (), entry);
c906108c 1987
7ca9f392
AC
1988 /* FIXME: are we supposed to call symbol_file_add or not? According
1989 to a comment from remote-mips.c (where a call to symbol_file_add
1990 was commented out), making the call confuses GDB if more than one
1991 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 1992 others don't (or didn't - perhaps they have all been deleted). */
c906108c 1993
a76d924d
DJ
1994 print_transfer_performance (gdb_stdout, total_progress.data_count,
1995 total_progress.write_count,
1996 &start_time, &end_time);
c906108c
SS
1997
1998 do_cleanups (old_cleanups);
1999}
2000
2001/* Report how fast the transfer went. */
2002
917317f4
JM
2003/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2004 replaced by print_transfer_performance (with a very different
2005 function signature). */
2006
c906108c 2007void
fba45db2
KB
2008report_transfer_performance (unsigned long data_count, time_t start_time,
2009 time_t end_time)
c906108c 2010{
2b71414d
DJ
2011 struct timeval start, end;
2012
2013 start.tv_sec = start_time;
2014 start.tv_usec = 0;
2015 end.tv_sec = end_time;
2016 end.tv_usec = 0;
2017
2018 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
917317f4
JM
2019}
2020
2021void
d9fcf2fb 2022print_transfer_performance (struct ui_file *stream,
917317f4
JM
2023 unsigned long data_count,
2024 unsigned long write_count,
2b71414d
DJ
2025 const struct timeval *start_time,
2026 const struct timeval *end_time)
917317f4 2027{
9f43d28c 2028 ULONGEST time_count;
2b71414d
DJ
2029
2030 /* Compute the elapsed time in milliseconds, as a tradeoff between
2031 accuracy and overflow. */
2032 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2033 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2034
8b93c638
JM
2035 ui_out_text (uiout, "Transfer rate: ");
2036 if (time_count > 0)
2037 {
9f43d28c
DJ
2038 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2039
2040 if (ui_out_is_mi_like_p (uiout))
2041 {
2042 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2043 ui_out_text (uiout, " bits/sec");
2044 }
2045 else if (rate < 1024)
2046 {
2047 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2048 ui_out_text (uiout, " bytes/sec");
2049 }
2050 else
2051 {
2052 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2053 ui_out_text (uiout, " KB/sec");
2054 }
8b93c638
JM
2055 }
2056 else
2057 {
ba5f2f8a 2058 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 2059 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
2060 }
2061 if (write_count > 0)
2062 {
2063 ui_out_text (uiout, ", ");
ba5f2f8a 2064 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
2065 ui_out_text (uiout, " bytes/write");
2066 }
2067 ui_out_text (uiout, ".\n");
c906108c
SS
2068}
2069
2070/* This function allows the addition of incrementally linked object files.
2071 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2072/* Note: ezannoni 2000-04-13 This function/command used to have a
2073 special case syntax for the rombug target (Rombug is the boot
2074 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2075 rombug case, the user doesn't need to supply a text address,
2076 instead a call to target_link() (in target.c) would supply the
2077 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2078
c906108c 2079static void
fba45db2 2080add_symbol_file_command (char *args, int from_tty)
c906108c 2081{
5af949e3 2082 struct gdbarch *gdbarch = get_current_arch ();
db162d44 2083 char *filename = NULL;
2df3850c 2084 int flags = OBJF_USERLOADED;
c906108c 2085 char *arg;
2acceee2 2086 int expecting_option = 0;
db162d44 2087 int section_index = 0;
2acceee2
JM
2088 int argcnt = 0;
2089 int sec_num = 0;
2090 int i;
db162d44
EZ
2091 int expecting_sec_name = 0;
2092 int expecting_sec_addr = 0;
5b96932b 2093 char **argv;
db162d44 2094
a39a16c4 2095 struct sect_opt
2acceee2 2096 {
2acceee2
JM
2097 char *name;
2098 char *value;
a39a16c4 2099 };
db162d44 2100
a39a16c4
MM
2101 struct section_addr_info *section_addrs;
2102 struct sect_opt *sect_opts = NULL;
2103 size_t num_sect_opts = 0;
3017564a 2104 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2105
a39a16c4 2106 num_sect_opts = 16;
5417f6dc 2107 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
2108 * sizeof (struct sect_opt));
2109
c906108c
SS
2110 dont_repeat ();
2111
2112 if (args == NULL)
8a3fe4f8 2113 error (_("add-symbol-file takes a file name and an address"));
c906108c 2114
d1a41061 2115 argv = gdb_buildargv (args);
5b96932b 2116 make_cleanup_freeargv (argv);
db162d44 2117
5b96932b
AS
2118 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2119 {
2120 /* Process the argument. */
db162d44 2121 if (argcnt == 0)
c906108c 2122 {
db162d44
EZ
2123 /* The first argument is the file name. */
2124 filename = tilde_expand (arg);
3017564a 2125 make_cleanup (xfree, filename);
c906108c 2126 }
db162d44 2127 else
7a78ae4e
ND
2128 if (argcnt == 1)
2129 {
2130 /* The second argument is always the text address at which
2131 to load the program. */
2132 sect_opts[section_index].name = ".text";
2133 sect_opts[section_index].value = arg;
f414f22f 2134 if (++section_index >= num_sect_opts)
a39a16c4
MM
2135 {
2136 num_sect_opts *= 2;
5417f6dc 2137 sect_opts = ((struct sect_opt *)
a39a16c4 2138 xrealloc (sect_opts,
5417f6dc 2139 num_sect_opts
a39a16c4
MM
2140 * sizeof (struct sect_opt)));
2141 }
7a78ae4e
ND
2142 }
2143 else
2144 {
2145 /* It's an option (starting with '-') or it's an argument
2146 to an option */
2147
2148 if (*arg == '-')
2149 {
78a4a9b9
AC
2150 if (strcmp (arg, "-readnow") == 0)
2151 flags |= OBJF_READNOW;
2152 else if (strcmp (arg, "-s") == 0)
2153 {
2154 expecting_sec_name = 1;
2155 expecting_sec_addr = 1;
2156 }
7a78ae4e
ND
2157 }
2158 else
2159 {
2160 if (expecting_sec_name)
db162d44 2161 {
7a78ae4e
ND
2162 sect_opts[section_index].name = arg;
2163 expecting_sec_name = 0;
db162d44
EZ
2164 }
2165 else
7a78ae4e
ND
2166 if (expecting_sec_addr)
2167 {
2168 sect_opts[section_index].value = arg;
2169 expecting_sec_addr = 0;
f414f22f 2170 if (++section_index >= num_sect_opts)
a39a16c4
MM
2171 {
2172 num_sect_opts *= 2;
5417f6dc 2173 sect_opts = ((struct sect_opt *)
a39a16c4 2174 xrealloc (sect_opts,
5417f6dc 2175 num_sect_opts
a39a16c4
MM
2176 * sizeof (struct sect_opt)));
2177 }
7a78ae4e
ND
2178 }
2179 else
8a3fe4f8 2180 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
7a78ae4e
ND
2181 }
2182 }
c906108c 2183 }
c906108c 2184
927890d0
JB
2185 /* This command takes at least two arguments. The first one is a
2186 filename, and the second is the address where this file has been
2187 loaded. Abort now if this address hasn't been provided by the
2188 user. */
2189 if (section_index < 1)
2190 error (_("The address where %s has been loaded is missing"), filename);
2191
db162d44
EZ
2192 /* Print the prompt for the query below. And save the arguments into
2193 a sect_addr_info structure to be passed around to other
2194 functions. We have to split this up into separate print
bb599908 2195 statements because hex_string returns a local static
db162d44 2196 string. */
5417f6dc 2197
a3f17187 2198 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2199 section_addrs = alloc_section_addr_info (section_index);
2200 make_cleanup (xfree, section_addrs);
db162d44 2201 for (i = 0; i < section_index; i++)
c906108c 2202 {
db162d44
EZ
2203 CORE_ADDR addr;
2204 char *val = sect_opts[i].value;
2205 char *sec = sect_opts[i].name;
5417f6dc 2206
ae822768 2207 addr = parse_and_eval_address (val);
db162d44 2208
db162d44
EZ
2209 /* Here we store the section offsets in the order they were
2210 entered on the command line. */
a39a16c4
MM
2211 section_addrs->other[sec_num].name = sec;
2212 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2213 printf_unfiltered ("\t%s_addr = %s\n", sec,
2214 paddress (gdbarch, addr));
db162d44
EZ
2215 sec_num++;
2216
5417f6dc 2217 /* The object's sections are initialized when a
db162d44 2218 call is made to build_objfile_section_table (objfile).
5417f6dc 2219 This happens in reread_symbols.
db162d44
EZ
2220 At this point, we don't know what file type this is,
2221 so we can't determine what section names are valid. */
2acceee2 2222 }
db162d44 2223
2acceee2 2224 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2225 error (_("Not confirmed."));
c906108c 2226
7eedccfa
PP
2227 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2228 section_addrs, flags);
c906108c
SS
2229
2230 /* Getting new symbols may change our opinion about what is
2231 frameless. */
2232 reinit_frame_cache ();
db162d44 2233 do_cleanups (my_cleanups);
c906108c
SS
2234}
2235\f
70992597 2236
c906108c
SS
2237/* Re-read symbols if a symbol-file has changed. */
2238void
fba45db2 2239reread_symbols (void)
c906108c
SS
2240{
2241 struct objfile *objfile;
2242 long new_modtime;
2243 int reread_one = 0;
2244 struct stat new_statbuf;
2245 int res;
2246
2247 /* With the addition of shared libraries, this should be modified,
2248 the load time should be saved in the partial symbol tables, since
2249 different tables may come from different source files. FIXME.
2250 This routine should then walk down each partial symbol table
2251 and see if the symbol table that it originates from has been changed */
2252
c5aa993b
JM
2253 for (objfile = object_files; objfile; objfile = objfile->next)
2254 {
2255 if (objfile->obfd)
2256 {
52d16ba8 2257#ifdef DEPRECATED_IBM6000_TARGET
c5aa993b
JM
2258 /* If this object is from a shared library, then you should
2259 stat on the library name, not member name. */
c906108c 2260
c5aa993b
JM
2261 if (objfile->obfd->my_archive)
2262 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2263 else
c906108c 2264#endif
c5aa993b
JM
2265 res = stat (objfile->name, &new_statbuf);
2266 if (res != 0)
c906108c 2267 {
c5aa993b 2268 /* FIXME, should use print_sys_errmsg but it's not filtered. */
a3f17187 2269 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
c5aa993b
JM
2270 objfile->name);
2271 continue;
c906108c 2272 }
c5aa993b
JM
2273 new_modtime = new_statbuf.st_mtime;
2274 if (new_modtime != objfile->mtime)
c906108c 2275 {
c5aa993b
JM
2276 struct cleanup *old_cleanups;
2277 struct section_offsets *offsets;
2278 int num_offsets;
c5aa993b
JM
2279 char *obfd_filename;
2280
a3f17187 2281 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
c5aa993b
JM
2282 objfile->name);
2283
2284 /* There are various functions like symbol_file_add,
2285 symfile_bfd_open, syms_from_objfile, etc., which might
2286 appear to do what we want. But they have various other
2287 effects which we *don't* want. So we just do stuff
2288 ourselves. We don't worry about mapped files (for one thing,
2289 any mapped file will be out of date). */
2290
2291 /* If we get an error, blow away this objfile (not sure if
2292 that is the correct response for things like shared
2293 libraries). */
74b7792f 2294 old_cleanups = make_cleanup_free_objfile (objfile);
c5aa993b 2295 /* We need to do this whenever any symbols go away. */
74b7792f 2296 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c5aa993b 2297
b2de52bb
JK
2298 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2299 bfd_get_filename (exec_bfd)) == 0)
2300 {
2301 /* Reload EXEC_BFD without asking anything. */
2302
2303 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2304 }
2305
c5aa993b
JM
2306 /* Clean up any state BFD has sitting around. We don't need
2307 to close the descriptor but BFD lacks a way of closing the
2308 BFD without closing the descriptor. */
2309 obfd_filename = bfd_get_filename (objfile->obfd);
2310 if (!bfd_close (objfile->obfd))
8a3fe4f8 2311 error (_("Can't close BFD for %s: %s"), objfile->name,
c5aa993b 2312 bfd_errmsg (bfd_get_error ()));
f1838a98
UW
2313 if (remote_filename_p (obfd_filename))
2314 objfile->obfd = remote_bfd_open (obfd_filename, gnutarget);
2315 else
2316 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
c5aa993b 2317 if (objfile->obfd == NULL)
8a3fe4f8 2318 error (_("Can't open %s to read symbols."), objfile->name);
3db741ef
PP
2319 else
2320 objfile->obfd = gdb_bfd_ref (objfile->obfd);
c5aa993b
JM
2321 /* bfd_openr sets cacheable to true, which is what we want. */
2322 if (!bfd_check_format (objfile->obfd, bfd_object))
8a3fe4f8 2323 error (_("Can't read symbols from %s: %s."), objfile->name,
c5aa993b
JM
2324 bfd_errmsg (bfd_get_error ()));
2325
2326 /* Save the offsets, we will nuke them with the rest of the
8b92e4d5 2327 objfile_obstack. */
c5aa993b 2328 num_offsets = objfile->num_sections;
5417f6dc 2329 offsets = ((struct section_offsets *)
a39a16c4 2330 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
5417f6dc 2331 memcpy (offsets, objfile->section_offsets,
a39a16c4 2332 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b 2333
ae5a43e0
DJ
2334 /* Remove any references to this objfile in the global
2335 value lists. */
2336 preserve_values (objfile);
2337
c5aa993b
JM
2338 /* Nuke all the state that we will re-read. Much of the following
2339 code which sets things to NULL really is necessary to tell
5b2ab461
JK
2340 other parts of GDB that there is nothing currently there.
2341
2342 Try to keep the freeing order compatible with free_objfile. */
2343
2344 if (objfile->sf != NULL)
2345 {
2346 (*objfile->sf->sym_finish) (objfile);
2347 }
2348
2349 clear_objfile_data (objfile);
c5aa993b
JM
2350
2351 /* FIXME: Do we have to free a whole linked list, or is this
2352 enough? */
2353 if (objfile->global_psymbols.list)
2dc74dc1 2354 xfree (objfile->global_psymbols.list);
c5aa993b
JM
2355 memset (&objfile->global_psymbols, 0,
2356 sizeof (objfile->global_psymbols));
2357 if (objfile->static_psymbols.list)
2dc74dc1 2358 xfree (objfile->static_psymbols.list);
c5aa993b
JM
2359 memset (&objfile->static_psymbols, 0,
2360 sizeof (objfile->static_psymbols));
2361
2362 /* Free the obstacks for non-reusable objfiles */
af5f3db6
AC
2363 bcache_xfree (objfile->psymbol_cache);
2364 objfile->psymbol_cache = bcache_xmalloc ();
2365 bcache_xfree (objfile->macro_cache);
2366 objfile->macro_cache = bcache_xmalloc ();
2de7ced7
DJ
2367 if (objfile->demangled_names_hash != NULL)
2368 {
2369 htab_delete (objfile->demangled_names_hash);
2370 objfile->demangled_names_hash = NULL;
2371 }
b99607ea 2372 obstack_free (&objfile->objfile_obstack, 0);
c5aa993b
JM
2373 objfile->sections = NULL;
2374 objfile->symtabs = NULL;
2375 objfile->psymtabs = NULL;
930123b7 2376 objfile->psymtabs_addrmap = NULL;
c5aa993b 2377 objfile->free_psymtabs = NULL;
a1b8c067 2378 objfile->cp_namespace_symtab = NULL;
c5aa993b 2379 objfile->msymbols = NULL;
0a6ddd08 2380 objfile->deprecated_sym_private = NULL;
c5aa993b 2381 objfile->minimal_symbol_count = 0;
0a83117a
MS
2382 memset (&objfile->msymbol_hash, 0,
2383 sizeof (objfile->msymbol_hash));
2384 memset (&objfile->msymbol_demangled_hash, 0,
2385 sizeof (objfile->msymbol_demangled_hash));
c5aa993b 2386
af5f3db6
AC
2387 objfile->psymbol_cache = bcache_xmalloc ();
2388 objfile->macro_cache = bcache_xmalloc ();
1ab21617
EZ
2389 /* obstack_init also initializes the obstack so it is
2390 empty. We could use obstack_specify_allocation but
2391 gdb_obstack.h specifies the alloc/dealloc
2392 functions. */
2393 obstack_init (&objfile->objfile_obstack);
c5aa993b
JM
2394 if (build_objfile_section_table (objfile))
2395 {
8a3fe4f8 2396 error (_("Can't find the file sections in `%s': %s"),
c5aa993b
JM
2397 objfile->name, bfd_errmsg (bfd_get_error ()));
2398 }
15831452 2399 terminate_minimal_symbol_table (objfile);
c5aa993b
JM
2400
2401 /* We use the same section offsets as from last time. I'm not
2402 sure whether that is always correct for shared libraries. */
2403 objfile->section_offsets = (struct section_offsets *)
5417f6dc 2404 obstack_alloc (&objfile->objfile_obstack,
a39a16c4 2405 SIZEOF_N_SECTION_OFFSETS (num_offsets));
5417f6dc 2406 memcpy (objfile->section_offsets, offsets,
a39a16c4 2407 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b
JM
2408 objfile->num_sections = num_offsets;
2409
2410 /* What the hell is sym_new_init for, anyway? The concept of
2411 distinguishing between the main file and additional files
2412 in this way seems rather dubious. */
2413 if (objfile == symfile_objfile)
2414 {
2415 (*objfile->sf->sym_new_init) (objfile);
c5aa993b
JM
2416 }
2417
2418 (*objfile->sf->sym_init) (objfile);
b9caf505 2419 clear_complaints (&symfile_complaints, 1, 1);
c5aa993b
JM
2420 /* The "mainline" parameter is a hideous hack; I think leaving it
2421 zero is OK since dbxread.c also does what it needs to do if
2422 objfile->global_psymbols.size is 0. */
96baa820 2423 (*objfile->sf->sym_read) (objfile, 0);
e361b228 2424 if (!objfile_has_symbols (objfile))
c5aa993b
JM
2425 {
2426 wrap_here ("");
a3f17187 2427 printf_unfiltered (_("(no debugging symbols found)\n"));
c5aa993b
JM
2428 wrap_here ("");
2429 }
c5aa993b
JM
2430
2431 /* We're done reading the symbol file; finish off complaints. */
b9caf505 2432 clear_complaints (&symfile_complaints, 0, 1);
c906108c 2433
c5aa993b
JM
2434 /* Getting new symbols may change our opinion about what is
2435 frameless. */
c906108c 2436
c5aa993b 2437 reinit_frame_cache ();
c906108c 2438
c5aa993b
JM
2439 /* Discard cleanups as symbol reading was successful. */
2440 discard_cleanups (old_cleanups);
c906108c 2441
c5aa993b
JM
2442 /* If the mtime has changed between the time we set new_modtime
2443 and now, we *want* this to be out of date, so don't call stat
2444 again now. */
2445 objfile->mtime = new_modtime;
2446 reread_one = 1;
5b5d99cf 2447 reread_separate_symbols (objfile);
6528a9ea 2448 init_entry_point_info (objfile);
c5aa993b 2449 }
c906108c
SS
2450 }
2451 }
c906108c
SS
2452
2453 if (reread_one)
ea53e89f 2454 {
ff3536bc
UW
2455 /* Notify objfiles that we've modified objfile sections. */
2456 objfiles_changed ();
2457
ea53e89f
JB
2458 clear_symtab_users ();
2459 /* At least one objfile has changed, so we can consider that
2460 the executable we're debugging has changed too. */
781b42b0 2461 observer_notify_executable_changed ();
ea53e89f 2462 }
c906108c 2463}
5b5d99cf
JB
2464
2465
2466/* Handle separate debug info for OBJFILE, which has just been
2467 re-read:
2468 - If we had separate debug info before, but now we don't, get rid
2469 of the separated objfile.
2470 - If we didn't have separated debug info before, but now we do,
2471 read in the new separated debug info file.
2472 - If the debug link points to a different file, toss the old one
2473 and read the new one.
2474 This function does *not* handle the case where objfile is still
2475 using the same separate debug info file, but that file's timestamp
2476 has changed. That case should be handled by the loop in
2477 reread_symbols already. */
2478static void
2479reread_separate_symbols (struct objfile *objfile)
2480{
2481 char *debug_file;
2482 unsigned long crc32;
2483
2484 /* Does the updated objfile's debug info live in a
2485 separate file? */
2486 debug_file = find_separate_debug_file (objfile);
2487
2488 if (objfile->separate_debug_objfile)
2489 {
2490 /* There are two cases where we need to get rid of
2491 the old separated debug info objfile:
2492 - if the new primary objfile doesn't have
2493 separated debug info, or
2494 - if the new primary objfile has separate debug
2495 info, but it's under a different filename.
5417f6dc 2496
5b5d99cf
JB
2497 If the old and new objfiles both have separate
2498 debug info, under the same filename, then we're
2499 okay --- if the separated file's contents have
2500 changed, we will have caught that when we
2501 visited it in this function's outermost
2502 loop. */
2503 if (! debug_file
2504 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2505 free_objfile (objfile->separate_debug_objfile);
2506 }
2507
2508 /* If the new objfile has separate debug info, and we
2509 haven't loaded it already, do so now. */
2510 if (debug_file
2511 && ! objfile->separate_debug_objfile)
2512 {
2513 /* Use the same section offset table as objfile itself.
2514 Preserve the flags from objfile that make sense. */
2515 objfile->separate_debug_objfile
2516 = (symbol_file_add_with_addrs_or_offsets
5417f6dc 2517 (symfile_bfd_open (debug_file),
7eedccfa 2518 info_verbose ? SYMFILE_VERBOSE : 0,
5b5d99cf
JB
2519 0, /* No addr table. */
2520 objfile->section_offsets, objfile->num_sections,
78a4a9b9 2521 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
5b5d99cf
JB
2522 | OBJF_USERLOADED)));
2523 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2524 = objfile;
2525 }
73780b3c
MS
2526 if (debug_file)
2527 xfree (debug_file);
5b5d99cf
JB
2528}
2529
2530
c906108c
SS
2531\f
2532
c5aa993b
JM
2533
2534typedef struct
2535{
2536 char *ext;
c906108c 2537 enum language lang;
c5aa993b
JM
2538}
2539filename_language;
c906108c 2540
c5aa993b 2541static filename_language *filename_language_table;
c906108c
SS
2542static int fl_table_size, fl_table_next;
2543
2544static void
fba45db2 2545add_filename_language (char *ext, enum language lang)
c906108c
SS
2546{
2547 if (fl_table_next >= fl_table_size)
2548 {
2549 fl_table_size += 10;
5417f6dc 2550 filename_language_table =
25bf3106
PM
2551 xrealloc (filename_language_table,
2552 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2553 }
2554
4fcf66da 2555 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2556 filename_language_table[fl_table_next].lang = lang;
2557 fl_table_next++;
2558}
2559
2560static char *ext_args;
920d2a44
AC
2561static void
2562show_ext_args (struct ui_file *file, int from_tty,
2563 struct cmd_list_element *c, const char *value)
2564{
2565 fprintf_filtered (file, _("\
2566Mapping between filename extension and source language is \"%s\".\n"),
2567 value);
2568}
c906108c
SS
2569
2570static void
26c41df3 2571set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2572{
2573 int i;
2574 char *cp = ext_args;
2575 enum language lang;
2576
2577 /* First arg is filename extension, starting with '.' */
2578 if (*cp != '.')
8a3fe4f8 2579 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2580
2581 /* Find end of first arg. */
c5aa993b 2582 while (*cp && !isspace (*cp))
c906108c
SS
2583 cp++;
2584
2585 if (*cp == '\0')
8a3fe4f8 2586 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2587 ext_args);
2588
2589 /* Null-terminate first arg */
c5aa993b 2590 *cp++ = '\0';
c906108c
SS
2591
2592 /* Find beginning of second arg, which should be a source language. */
2593 while (*cp && isspace (*cp))
2594 cp++;
2595
2596 if (*cp == '\0')
8a3fe4f8 2597 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2598 ext_args);
2599
2600 /* Lookup the language from among those we know. */
2601 lang = language_enum (cp);
2602
2603 /* Now lookup the filename extension: do we already know it? */
2604 for (i = 0; i < fl_table_next; i++)
2605 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2606 break;
2607
2608 if (i >= fl_table_next)
2609 {
2610 /* new file extension */
2611 add_filename_language (ext_args, lang);
2612 }
2613 else
2614 {
2615 /* redefining a previously known filename extension */
2616
2617 /* if (from_tty) */
2618 /* query ("Really make files of type %s '%s'?", */
2619 /* ext_args, language_str (lang)); */
2620
b8c9b27d 2621 xfree (filename_language_table[i].ext);
4fcf66da 2622 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2623 filename_language_table[i].lang = lang;
2624 }
2625}
2626
2627static void
fba45db2 2628info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2629{
2630 int i;
2631
a3f17187 2632 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2633 printf_filtered ("\n\n");
2634 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2635 printf_filtered ("\t%s\t- %s\n",
2636 filename_language_table[i].ext,
c906108c
SS
2637 language_str (filename_language_table[i].lang));
2638}
2639
2640static void
fba45db2 2641init_filename_language_table (void)
c906108c
SS
2642{
2643 if (fl_table_size == 0) /* protect against repetition */
2644 {
2645 fl_table_size = 20;
2646 fl_table_next = 0;
c5aa993b 2647 filename_language_table =
c906108c 2648 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b
JM
2649 add_filename_language (".c", language_c);
2650 add_filename_language (".C", language_cplus);
2651 add_filename_language (".cc", language_cplus);
2652 add_filename_language (".cp", language_cplus);
2653 add_filename_language (".cpp", language_cplus);
2654 add_filename_language (".cxx", language_cplus);
2655 add_filename_language (".c++", language_cplus);
2656 add_filename_language (".java", language_java);
c906108c 2657 add_filename_language (".class", language_java);
da2cf7e0 2658 add_filename_language (".m", language_objc);
c5aa993b
JM
2659 add_filename_language (".f", language_fortran);
2660 add_filename_language (".F", language_fortran);
2661 add_filename_language (".s", language_asm);
aa707ed0 2662 add_filename_language (".sx", language_asm);
c5aa993b 2663 add_filename_language (".S", language_asm);
c6fd39cd
PM
2664 add_filename_language (".pas", language_pascal);
2665 add_filename_language (".p", language_pascal);
2666 add_filename_language (".pp", language_pascal);
963a6417
PH
2667 add_filename_language (".adb", language_ada);
2668 add_filename_language (".ads", language_ada);
2669 add_filename_language (".a", language_ada);
2670 add_filename_language (".ada", language_ada);
c906108c
SS
2671 }
2672}
2673
2674enum language
fba45db2 2675deduce_language_from_filename (char *filename)
c906108c
SS
2676{
2677 int i;
2678 char *cp;
2679
2680 if (filename != NULL)
2681 if ((cp = strrchr (filename, '.')) != NULL)
2682 for (i = 0; i < fl_table_next; i++)
2683 if (strcmp (cp, filename_language_table[i].ext) == 0)
2684 return filename_language_table[i].lang;
2685
2686 return language_unknown;
2687}
2688\f
2689/* allocate_symtab:
2690
2691 Allocate and partly initialize a new symbol table. Return a pointer
2692 to it. error() if no space.
2693
2694 Caller must set these fields:
c5aa993b
JM
2695 LINETABLE(symtab)
2696 symtab->blockvector
2697 symtab->dirname
2698 symtab->free_code
2699 symtab->free_ptr
2700 possibly free_named_symtabs (symtab->filename);
c906108c
SS
2701 */
2702
2703struct symtab *
fba45db2 2704allocate_symtab (char *filename, struct objfile *objfile)
c906108c 2705{
52f0bd74 2706 struct symtab *symtab;
c906108c
SS
2707
2708 symtab = (struct symtab *)
4a146b47 2709 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2710 memset (symtab, 0, sizeof (*symtab));
c5aa993b 2711 symtab->filename = obsavestring (filename, strlen (filename),
4a146b47 2712 &objfile->objfile_obstack);
c5aa993b
JM
2713 symtab->fullname = NULL;
2714 symtab->language = deduce_language_from_filename (filename);
2715 symtab->debugformat = obsavestring ("unknown", 7,
4a146b47 2716 &objfile->objfile_obstack);
c906108c
SS
2717
2718 /* Hook it to the objfile it comes from */
2719
c5aa993b
JM
2720 symtab->objfile = objfile;
2721 symtab->next = objfile->symtabs;
2722 objfile->symtabs = symtab;
c906108c 2723
c906108c
SS
2724 return (symtab);
2725}
2726
2727struct partial_symtab *
fba45db2 2728allocate_psymtab (char *filename, struct objfile *objfile)
c906108c
SS
2729{
2730 struct partial_symtab *psymtab;
2731
c5aa993b 2732 if (objfile->free_psymtabs)
c906108c 2733 {
c5aa993b
JM
2734 psymtab = objfile->free_psymtabs;
2735 objfile->free_psymtabs = psymtab->next;
c906108c
SS
2736 }
2737 else
2738 psymtab = (struct partial_symtab *)
8b92e4d5 2739 obstack_alloc (&objfile->objfile_obstack,
c906108c
SS
2740 sizeof (struct partial_symtab));
2741
2742 memset (psymtab, 0, sizeof (struct partial_symtab));
c5aa993b 2743 psymtab->filename = obsavestring (filename, strlen (filename),
8b92e4d5 2744 &objfile->objfile_obstack);
c5aa993b 2745 psymtab->symtab = NULL;
c906108c
SS
2746
2747 /* Prepend it to the psymtab list for the objfile it belongs to.
2748 Psymtabs are searched in most recent inserted -> least recent
2749 inserted order. */
2750
c5aa993b
JM
2751 psymtab->objfile = objfile;
2752 psymtab->next = objfile->psymtabs;
2753 objfile->psymtabs = psymtab;
c906108c
SS
2754#if 0
2755 {
2756 struct partial_symtab **prev_pst;
c5aa993b
JM
2757 psymtab->objfile = objfile;
2758 psymtab->next = NULL;
2759 prev_pst = &(objfile->psymtabs);
c906108c 2760 while ((*prev_pst) != NULL)
c5aa993b 2761 prev_pst = &((*prev_pst)->next);
c906108c 2762 (*prev_pst) = psymtab;
c5aa993b 2763 }
c906108c 2764#endif
c5aa993b 2765
c906108c
SS
2766 return (psymtab);
2767}
2768
2769void
fba45db2 2770discard_psymtab (struct partial_symtab *pst)
c906108c
SS
2771{
2772 struct partial_symtab **prev_pst;
2773
2774 /* From dbxread.c:
2775 Empty psymtabs happen as a result of header files which don't
2776 have any symbols in them. There can be a lot of them. But this
2777 check is wrong, in that a psymtab with N_SLINE entries but
2778 nothing else is not empty, but we don't realize that. Fixing
2779 that without slowing things down might be tricky. */
2780
2781 /* First, snip it out of the psymtab chain */
2782
2783 prev_pst = &(pst->objfile->psymtabs);
2784 while ((*prev_pst) != pst)
2785 prev_pst = &((*prev_pst)->next);
2786 (*prev_pst) = pst->next;
2787
2788 /* Next, put it on a free list for recycling */
2789
2790 pst->next = pst->objfile->free_psymtabs;
2791 pst->objfile->free_psymtabs = pst;
2792}
c906108c 2793\f
c5aa993b 2794
c906108c
SS
2795/* Reset all data structures in gdb which may contain references to symbol
2796 table data. */
2797
2798void
fba45db2 2799clear_symtab_users (void)
c906108c
SS
2800{
2801 /* Someday, we should do better than this, by only blowing away
2802 the things that really need to be blown. */
c0501be5
DJ
2803
2804 /* Clear the "current" symtab first, because it is no longer valid.
2805 breakpoint_re_set may try to access the current symtab. */
2806 clear_current_source_symtab_and_line ();
2807
c906108c 2808 clear_displays ();
c906108c 2809 breakpoint_re_set ();
6c95b8df 2810 set_default_breakpoint (0, NULL, 0, 0, 0);
c906108c 2811 clear_pc_function_cache ();
06d3b283 2812 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2813
2814 /* Clear globals which might have pointed into a removed objfile.
2815 FIXME: It's not clear which of these are supposed to persist
2816 between expressions and which ought to be reset each time. */
2817 expression_context_block = NULL;
2818 innermost_block = NULL;
8756216b
DP
2819
2820 /* Varobj may refer to old symbols, perform a cleanup. */
2821 varobj_invalidate ();
2822
c906108c
SS
2823}
2824
74b7792f
AC
2825static void
2826clear_symtab_users_cleanup (void *ignore)
2827{
2828 clear_symtab_users ();
2829}
2830
c906108c
SS
2831/* clear_symtab_users_once:
2832
2833 This function is run after symbol reading, or from a cleanup.
2834 If an old symbol table was obsoleted, the old symbol table
5417f6dc 2835 has been blown away, but the other GDB data structures that may
c906108c
SS
2836 reference it have not yet been cleared or re-directed. (The old
2837 symtab was zapped, and the cleanup queued, in free_named_symtab()
2838 below.)
2839
2840 This function can be queued N times as a cleanup, or called
2841 directly; it will do all the work the first time, and then will be a
2842 no-op until the next time it is queued. This works by bumping a
2843 counter at queueing time. Much later when the cleanup is run, or at
2844 the end of symbol processing (in case the cleanup is discarded), if
2845 the queued count is greater than the "done-count", we do the work
2846 and set the done-count to the queued count. If the queued count is
2847 less than or equal to the done-count, we just ignore the call. This
2848 is needed because reading a single .o file will often replace many
2849 symtabs (one per .h file, for example), and we don't want to reset
2850 the breakpoints N times in the user's face.
2851
2852 The reason we both queue a cleanup, and call it directly after symbol
2853 reading, is because the cleanup protects us in case of errors, but is
2854 discarded if symbol reading is successful. */
2855
2856#if 0
2857/* FIXME: As free_named_symtabs is currently a big noop this function
2858 is no longer needed. */
a14ed312 2859static void clear_symtab_users_once (void);
c906108c
SS
2860
2861static int clear_symtab_users_queued;
2862static int clear_symtab_users_done;
2863
2864static void
fba45db2 2865clear_symtab_users_once (void)
c906108c
SS
2866{
2867 /* Enforce once-per-`do_cleanups'-semantics */
2868 if (clear_symtab_users_queued <= clear_symtab_users_done)
2869 return;
2870 clear_symtab_users_done = clear_symtab_users_queued;
2871
2872 clear_symtab_users ();
2873}
2874#endif
2875
2876/* Delete the specified psymtab, and any others that reference it. */
2877
2878static void
fba45db2 2879cashier_psymtab (struct partial_symtab *pst)
c906108c
SS
2880{
2881 struct partial_symtab *ps, *pprev = NULL;
2882 int i;
2883
2884 /* Find its previous psymtab in the chain */
c5aa993b
JM
2885 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2886 {
2887 if (ps == pst)
2888 break;
2889 pprev = ps;
2890 }
c906108c 2891
c5aa993b
JM
2892 if (ps)
2893 {
2894 /* Unhook it from the chain. */
2895 if (ps == pst->objfile->psymtabs)
2896 pst->objfile->psymtabs = ps->next;
2897 else
2898 pprev->next = ps->next;
2899
2900 /* FIXME, we can't conveniently deallocate the entries in the
2901 partial_symbol lists (global_psymbols/static_psymbols) that
2902 this psymtab points to. These just take up space until all
2903 the psymtabs are reclaimed. Ditto the dependencies list and
8b92e4d5 2904 filename, which are all in the objfile_obstack. */
c5aa993b
JM
2905
2906 /* We need to cashier any psymtab that has this one as a dependency... */
2907 again:
2908 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2909 {
2910 for (i = 0; i < ps->number_of_dependencies; i++)
2911 {
2912 if (ps->dependencies[i] == pst)
2913 {
2914 cashier_psymtab (ps);
2915 goto again; /* Must restart, chain has been munged. */
2916 }
2917 }
c906108c 2918 }
c906108c 2919 }
c906108c
SS
2920}
2921
2922/* If a symtab or psymtab for filename NAME is found, free it along
2923 with any dependent breakpoints, displays, etc.
2924 Used when loading new versions of object modules with the "add-file"
2925 command. This is only called on the top-level symtab or psymtab's name;
2926 it is not called for subsidiary files such as .h files.
2927
2928 Return value is 1 if we blew away the environment, 0 if not.
7e73cedf 2929 FIXME. The return value appears to never be used.
c906108c
SS
2930
2931 FIXME. I think this is not the best way to do this. We should
2932 work on being gentler to the environment while still cleaning up
2933 all stray pointers into the freed symtab. */
2934
2935int
fba45db2 2936free_named_symtabs (char *name)
c906108c
SS
2937{
2938#if 0
2939 /* FIXME: With the new method of each objfile having it's own
2940 psymtab list, this function needs serious rethinking. In particular,
2941 why was it ever necessary to toss psymtabs with specific compilation
2942 unit filenames, as opposed to all psymtabs from a particular symbol
2943 file? -- fnf
2944 Well, the answer is that some systems permit reloading of particular
2945 compilation units. We want to blow away any old info about these
2946 compilation units, regardless of which objfiles they arrived in. --gnu. */
2947
52f0bd74
AC
2948 struct symtab *s;
2949 struct symtab *prev;
2950 struct partial_symtab *ps;
c906108c
SS
2951 struct blockvector *bv;
2952 int blewit = 0;
2953
2954 /* We only wack things if the symbol-reload switch is set. */
2955 if (!symbol_reloading)
2956 return 0;
2957
2958 /* Some symbol formats have trouble providing file names... */
2959 if (name == 0 || *name == '\0')
2960 return 0;
2961
2962 /* Look for a psymtab with the specified name. */
2963
2964again2:
c5aa993b
JM
2965 for (ps = partial_symtab_list; ps; ps = ps->next)
2966 {
6314a349 2967 if (strcmp (name, ps->filename) == 0)
c5aa993b
JM
2968 {
2969 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2970 goto again2; /* Must restart, chain has been munged */
2971 }
c906108c 2972 }
c906108c
SS
2973
2974 /* Look for a symtab with the specified name. */
2975
2976 for (s = symtab_list; s; s = s->next)
2977 {
6314a349 2978 if (strcmp (name, s->filename) == 0)
c906108c
SS
2979 break;
2980 prev = s;
2981 }
2982
2983 if (s)
2984 {
2985 if (s == symtab_list)
2986 symtab_list = s->next;
2987 else
2988 prev->next = s->next;
2989
2990 /* For now, queue a delete for all breakpoints, displays, etc., whether
c5aa993b
JM
2991 or not they depend on the symtab being freed. This should be
2992 changed so that only those data structures affected are deleted. */
c906108c
SS
2993
2994 /* But don't delete anything if the symtab is empty.
c5aa993b
JM
2995 This test is necessary due to a bug in "dbxread.c" that
2996 causes empty symtabs to be created for N_SO symbols that
2997 contain the pathname of the object file. (This problem
2998 has been fixed in GDB 3.9x). */
c906108c
SS
2999
3000 bv = BLOCKVECTOR (s);
3001 if (BLOCKVECTOR_NBLOCKS (bv) > 2
3002 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
3003 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
3004 {
e2e0b3e5 3005 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
b9caf505 3006 name);
c906108c
SS
3007 clear_symtab_users_queued++;
3008 make_cleanup (clear_symtab_users_once, 0);
3009 blewit = 1;
c5aa993b
JM
3010 }
3011 else
e2e0b3e5
AC
3012 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
3013 name);
c906108c
SS
3014
3015 free_symtab (s);
3016 }
3017 else
3018 {
3019 /* It is still possible that some breakpoints will be affected
c5aa993b
JM
3020 even though no symtab was found, since the file might have
3021 been compiled without debugging, and hence not be associated
3022 with a symtab. In order to handle this correctly, we would need
3023 to keep a list of text address ranges for undebuggable files.
3024 For now, we do nothing, since this is a fairly obscure case. */
c906108c
SS
3025 ;
3026 }
3027
3028 /* FIXME, what about the minimal symbol table? */
3029 return blewit;
3030#else
3031 return (0);
3032#endif
3033}
3034\f
3035/* Allocate and partially fill a partial symtab. It will be
3036 completely filled at the end of the symbol list.
3037
d4f3574e 3038 FILENAME is the name of the symbol-file we are reading from. */
c906108c
SS
3039
3040struct partial_symtab *
fba45db2
KB
3041start_psymtab_common (struct objfile *objfile,
3042 struct section_offsets *section_offsets, char *filename,
3043 CORE_ADDR textlow, struct partial_symbol **global_syms,
3044 struct partial_symbol **static_syms)
c906108c
SS
3045{
3046 struct partial_symtab *psymtab;
3047
3048 psymtab = allocate_psymtab (filename, objfile);
c5aa993b
JM
3049 psymtab->section_offsets = section_offsets;
3050 psymtab->textlow = textlow;
3051 psymtab->texthigh = psymtab->textlow; /* default */
3052 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
3053 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
c906108c
SS
3054 return (psymtab);
3055}
3056\f
2e618c13
AR
3057/* Helper function, initialises partial symbol structure and stashes
3058 it into objfile's bcache. Note that our caching mechanism will
3059 use all fields of struct partial_symbol to determine hash value of the
3060 structure. In other words, having two symbols with the same name but
3061 different domain (or address) is possible and correct. */
3062
11d31d94 3063static const struct partial_symbol *
2e618c13
AR
3064add_psymbol_to_bcache (char *name, int namelength, domain_enum domain,
3065 enum address_class class,
3066 long val, /* Value as a long */
3067 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3068 enum language language, struct objfile *objfile,
3069 int *added)
3070{
3071 char *buf = name;
3072 /* psymbol is static so that there will be no uninitialized gaps in the
3073 structure which might contain random data, causing cache misses in
3074 bcache. */
3075 static struct partial_symbol psymbol;
3076
3077 if (name[namelength] != '\0')
3078 {
3079 buf = alloca (namelength + 1);
3080 /* Create local copy of the partial symbol */
3081 memcpy (buf, name, namelength);
3082 buf[namelength] = '\0';
3083 }
3084 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
3085 if (val != 0)
3086 {
3087 SYMBOL_VALUE (&psymbol) = val;
3088 }
3089 else
3090 {
3091 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
3092 }
3093 SYMBOL_SECTION (&psymbol) = 0;
3094 SYMBOL_LANGUAGE (&psymbol) = language;
3095 PSYMBOL_DOMAIN (&psymbol) = domain;
3096 PSYMBOL_CLASS (&psymbol) = class;
3097
3098 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
3099
3100 /* Stash the partial symbol away in the cache */
11d31d94
TT
3101 return bcache_full (&psymbol, sizeof (struct partial_symbol),
3102 objfile->psymbol_cache, added);
2e618c13
AR
3103}
3104
3105/* Helper function, adds partial symbol to the given partial symbol
3106 list. */
3107
3108static void
3109append_psymbol_to_list (struct psymbol_allocation_list *list,
11d31d94 3110 const struct partial_symbol *psym,
2e618c13
AR
3111 struct objfile *objfile)
3112{
3113 if (list->next >= list->list + list->size)
3114 extend_psymbol_list (list, objfile);
11d31d94 3115 *list->next++ = (struct partial_symbol *) psym;
2e618c13
AR
3116 OBJSTAT (objfile, n_psyms++);
3117}
3118
c906108c 3119/* Add a symbol with a long value to a psymtab.
5417f6dc 3120 Since one arg is a struct, we pass in a ptr and deref it (sigh).
5c4e30ca
DC
3121 Return the partial symbol that has been added. */
3122
3123/* NOTE: carlton/2003-09-11: The reason why we return the partial
3124 symbol is so that callers can get access to the symbol's demangled
3125 name, which they don't have any cheap way to determine otherwise.
3126 (Currenly, dwarf2read.c is the only file who uses that information,
3127 though it's possible that other readers might in the future.)
3128 Elena wasn't thrilled about that, and I don't blame her, but we
3129 couldn't come up with a better way to get that information. If
3130 it's needed in other situations, we could consider breaking up
3131 SYMBOL_SET_NAMES to provide access to the demangled name lookup
3132 cache. */
3133
3134const struct partial_symbol *
176620f1 3135add_psymbol_to_list (char *name, int namelength, domain_enum domain,
fba45db2 3136 enum address_class class,
2e618c13
AR
3137 struct psymbol_allocation_list *list,
3138 long val, /* Value as a long */
fba45db2
KB
3139 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3140 enum language language, struct objfile *objfile)
c906108c 3141{
11d31d94 3142 const struct partial_symbol *psym;
2de7ced7 3143
2e618c13 3144 int added;
c906108c
SS
3145
3146 /* Stash the partial symbol away in the cache */
2e618c13
AR
3147 psym = add_psymbol_to_bcache (name, namelength, domain, class,
3148 val, coreaddr, language, objfile, &added);
c906108c 3149
2e618c13
AR
3150 /* Do not duplicate global partial symbols. */
3151 if (list == &objfile->global_psymbols
3152 && !added)
3153 return psym;
5c4e30ca 3154
2e618c13
AR
3155 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
3156 append_psymbol_to_list (list, psym, objfile);
5c4e30ca 3157 return psym;
c906108c
SS
3158}
3159
c906108c
SS
3160/* Initialize storage for partial symbols. */
3161
3162void
fba45db2 3163init_psymbol_list (struct objfile *objfile, int total_symbols)
c906108c
SS
3164{
3165 /* Free any previously allocated psymbol lists. */
c5aa993b
JM
3166
3167 if (objfile->global_psymbols.list)
c906108c 3168 {
2dc74dc1 3169 xfree (objfile->global_psymbols.list);
c906108c 3170 }
c5aa993b 3171 if (objfile->static_psymbols.list)
c906108c 3172 {
2dc74dc1 3173 xfree (objfile->static_psymbols.list);
c906108c 3174 }
c5aa993b 3175
c906108c
SS
3176 /* Current best guess is that approximately a twentieth
3177 of the total symbols (in a debugging file) are global or static
3178 oriented symbols */
c906108c 3179
c5aa993b
JM
3180 objfile->global_psymbols.size = total_symbols / 10;
3181 objfile->static_psymbols.size = total_symbols / 10;
3182
3183 if (objfile->global_psymbols.size > 0)
c906108c 3184 {
c5aa993b
JM
3185 objfile->global_psymbols.next =
3186 objfile->global_psymbols.list = (struct partial_symbol **)
7936743b
AC
3187 xmalloc ((objfile->global_psymbols.size
3188 * sizeof (struct partial_symbol *)));
c906108c 3189 }
c5aa993b 3190 if (objfile->static_psymbols.size > 0)
c906108c 3191 {
c5aa993b
JM
3192 objfile->static_psymbols.next =
3193 objfile->static_psymbols.list = (struct partial_symbol **)
7936743b
AC
3194 xmalloc ((objfile->static_psymbols.size
3195 * sizeof (struct partial_symbol *)));
c906108c
SS
3196 }
3197}
3198
3199/* OVERLAYS:
3200 The following code implements an abstraction for debugging overlay sections.
3201
3202 The target model is as follows:
3203 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 3204 same VMA, each with its own unique LMA (or load address).
c906108c 3205 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 3206 sections, one by one, from the load address into the VMA address.
5417f6dc 3207 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
3208 sections should be considered to be mapped from the VMA to the LMA.
3209 This information is used for symbol lookup, and memory read/write.
5417f6dc 3210 For instance, if a section has been mapped then its contents
c5aa993b 3211 should be read from the VMA, otherwise from the LMA.
c906108c
SS
3212
3213 Two levels of debugger support for overlays are available. One is
3214 "manual", in which the debugger relies on the user to tell it which
3215 overlays are currently mapped. This level of support is
3216 implemented entirely in the core debugger, and the information about
3217 whether a section is mapped is kept in the objfile->obj_section table.
3218
3219 The second level of support is "automatic", and is only available if
3220 the target-specific code provides functionality to read the target's
3221 overlay mapping table, and translate its contents for the debugger
3222 (by updating the mapped state information in the obj_section tables).
3223
3224 The interface is as follows:
c5aa993b
JM
3225 User commands:
3226 overlay map <name> -- tell gdb to consider this section mapped
3227 overlay unmap <name> -- tell gdb to consider this section unmapped
3228 overlay list -- list the sections that GDB thinks are mapped
3229 overlay read-target -- get the target's state of what's mapped
3230 overlay off/manual/auto -- set overlay debugging state
3231 Functional interface:
3232 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3233 section, return that section.
5417f6dc 3234 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 3235 the pc, either in its VMA or its LMA
714835d5 3236 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
3237 section_is_overlay(sect): true if section's VMA != LMA
3238 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3239 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 3240 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
3241 overlay_mapped_address(...): map an address from section's LMA to VMA
3242 overlay_unmapped_address(...): map an address from section's VMA to LMA
3243 symbol_overlayed_address(...): Return a "current" address for symbol:
3244 either in VMA or LMA depending on whether
3245 the symbol's section is currently mapped
c906108c
SS
3246 */
3247
3248/* Overlay debugging state: */
3249
d874f1e2 3250enum overlay_debugging_state overlay_debugging = ovly_off;
c906108c
SS
3251int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
3252
c906108c 3253/* Function: section_is_overlay (SECTION)
5417f6dc 3254 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
3255 SECTION is loaded at an address different from where it will "run". */
3256
3257int
714835d5 3258section_is_overlay (struct obj_section *section)
c906108c 3259{
714835d5
UW
3260 if (overlay_debugging && section)
3261 {
3262 bfd *abfd = section->objfile->obfd;
3263 asection *bfd_section = section->the_bfd_section;
3264
3265 if (bfd_section_lma (abfd, bfd_section) != 0
3266 && bfd_section_lma (abfd, bfd_section)
3267 != bfd_section_vma (abfd, bfd_section))
3268 return 1;
3269 }
c906108c
SS
3270
3271 return 0;
3272}
3273
3274/* Function: overlay_invalidate_all (void)
3275 Invalidate the mapped state of all overlay sections (mark it as stale). */
3276
3277static void
fba45db2 3278overlay_invalidate_all (void)
c906108c 3279{
c5aa993b 3280 struct objfile *objfile;
c906108c
SS
3281 struct obj_section *sect;
3282
3283 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
3284 if (section_is_overlay (sect))
3285 sect->ovly_mapped = -1;
c906108c
SS
3286}
3287
714835d5 3288/* Function: section_is_mapped (SECTION)
5417f6dc 3289 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3290
3291 Access to the ovly_mapped flag is restricted to this function, so
3292 that we can do automatic update. If the global flag
3293 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3294 overlay_invalidate_all. If the mapped state of the particular
3295 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3296
714835d5
UW
3297int
3298section_is_mapped (struct obj_section *osect)
c906108c 3299{
9216df95
UW
3300 struct gdbarch *gdbarch;
3301
714835d5 3302 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
3303 return 0;
3304
c5aa993b 3305 switch (overlay_debugging)
c906108c
SS
3306 {
3307 default:
d874f1e2 3308 case ovly_off:
c5aa993b 3309 return 0; /* overlay debugging off */
d874f1e2 3310 case ovly_auto: /* overlay debugging automatic */
1c772458 3311 /* Unles there is a gdbarch_overlay_update function,
c5aa993b 3312 there's really nothing useful to do here (can't really go auto) */
9216df95
UW
3313 gdbarch = get_objfile_arch (osect->objfile);
3314 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
3315 {
3316 if (overlay_cache_invalid)
3317 {
3318 overlay_invalidate_all ();
3319 overlay_cache_invalid = 0;
3320 }
3321 if (osect->ovly_mapped == -1)
9216df95 3322 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
3323 }
3324 /* fall thru to manual case */
d874f1e2 3325 case ovly_on: /* overlay debugging manual */
c906108c
SS
3326 return osect->ovly_mapped == 1;
3327 }
3328}
3329
c906108c
SS
3330/* Function: pc_in_unmapped_range
3331 If PC falls into the lma range of SECTION, return true, else false. */
3332
3333CORE_ADDR
714835d5 3334pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3335{
714835d5
UW
3336 if (section_is_overlay (section))
3337 {
3338 bfd *abfd = section->objfile->obfd;
3339 asection *bfd_section = section->the_bfd_section;
fbd35540 3340
714835d5
UW
3341 /* We assume the LMA is relocated by the same offset as the VMA. */
3342 bfd_vma size = bfd_get_section_size (bfd_section);
3343 CORE_ADDR offset = obj_section_offset (section);
3344
3345 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3346 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3347 return 1;
3348 }
c906108c 3349
c906108c
SS
3350 return 0;
3351}
3352
3353/* Function: pc_in_mapped_range
3354 If PC falls into the vma range of SECTION, return true, else false. */
3355
3356CORE_ADDR
714835d5 3357pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3358{
714835d5
UW
3359 if (section_is_overlay (section))
3360 {
3361 if (obj_section_addr (section) <= pc
3362 && pc < obj_section_endaddr (section))
3363 return 1;
3364 }
c906108c 3365
c906108c
SS
3366 return 0;
3367}
3368
9ec8e6a0
JB
3369
3370/* Return true if the mapped ranges of sections A and B overlap, false
3371 otherwise. */
b9362cc7 3372static int
714835d5 3373sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3374{
714835d5
UW
3375 CORE_ADDR a_start = obj_section_addr (a);
3376 CORE_ADDR a_end = obj_section_endaddr (a);
3377 CORE_ADDR b_start = obj_section_addr (b);
3378 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3379
3380 return (a_start < b_end && b_start < a_end);
3381}
3382
c906108c
SS
3383/* Function: overlay_unmapped_address (PC, SECTION)
3384 Returns the address corresponding to PC in the unmapped (load) range.
3385 May be the same as PC. */
3386
3387CORE_ADDR
714835d5 3388overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3389{
714835d5
UW
3390 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3391 {
3392 bfd *abfd = section->objfile->obfd;
3393 asection *bfd_section = section->the_bfd_section;
fbd35540 3394
714835d5
UW
3395 return pc + bfd_section_lma (abfd, bfd_section)
3396 - bfd_section_vma (abfd, bfd_section);
3397 }
c906108c
SS
3398
3399 return pc;
3400}
3401
3402/* Function: overlay_mapped_address (PC, SECTION)
3403 Returns the address corresponding to PC in the mapped (runtime) range.
3404 May be the same as PC. */
3405
3406CORE_ADDR
714835d5 3407overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3408{
714835d5
UW
3409 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3410 {
3411 bfd *abfd = section->objfile->obfd;
3412 asection *bfd_section = section->the_bfd_section;
fbd35540 3413
714835d5
UW
3414 return pc + bfd_section_vma (abfd, bfd_section)
3415 - bfd_section_lma (abfd, bfd_section);
3416 }
c906108c
SS
3417
3418 return pc;
3419}
3420
3421
5417f6dc 3422/* Function: symbol_overlayed_address
c906108c
SS
3423 Return one of two addresses (relative to the VMA or to the LMA),
3424 depending on whether the section is mapped or not. */
3425
c5aa993b 3426CORE_ADDR
714835d5 3427symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3428{
3429 if (overlay_debugging)
3430 {
3431 /* If the symbol has no section, just return its regular address. */
3432 if (section == 0)
3433 return address;
3434 /* If the symbol's section is not an overlay, just return its address */
3435 if (!section_is_overlay (section))
3436 return address;
3437 /* If the symbol's section is mapped, just return its address */
3438 if (section_is_mapped (section))
3439 return address;
3440 /*
3441 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3442 * then return its LOADED address rather than its vma address!!
3443 */
3444 return overlay_unmapped_address (address, section);
3445 }
3446 return address;
3447}
3448
5417f6dc 3449/* Function: find_pc_overlay (PC)
c906108c
SS
3450 Return the best-match overlay section for PC:
3451 If PC matches a mapped overlay section's VMA, return that section.
3452 Else if PC matches an unmapped section's VMA, return that section.
3453 Else if PC matches an unmapped section's LMA, return that section. */
3454
714835d5 3455struct obj_section *
fba45db2 3456find_pc_overlay (CORE_ADDR pc)
c906108c 3457{
c5aa993b 3458 struct objfile *objfile;
c906108c
SS
3459 struct obj_section *osect, *best_match = NULL;
3460
3461 if (overlay_debugging)
3462 ALL_OBJSECTIONS (objfile, osect)
714835d5 3463 if (section_is_overlay (osect))
c5aa993b 3464 {
714835d5 3465 if (pc_in_mapped_range (pc, osect))
c5aa993b 3466 {
714835d5
UW
3467 if (section_is_mapped (osect))
3468 return osect;
c5aa993b
JM
3469 else
3470 best_match = osect;
3471 }
714835d5 3472 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3473 best_match = osect;
3474 }
714835d5 3475 return best_match;
c906108c
SS
3476}
3477
3478/* Function: find_pc_mapped_section (PC)
5417f6dc 3479 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3480 currently marked as MAPPED, return that section. Else return NULL. */
3481
714835d5 3482struct obj_section *
fba45db2 3483find_pc_mapped_section (CORE_ADDR pc)
c906108c 3484{
c5aa993b 3485 struct objfile *objfile;
c906108c
SS
3486 struct obj_section *osect;
3487
3488 if (overlay_debugging)
3489 ALL_OBJSECTIONS (objfile, osect)
714835d5
UW
3490 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3491 return osect;
c906108c
SS
3492
3493 return NULL;
3494}
3495
3496/* Function: list_overlays_command
3497 Print a list of mapped sections and their PC ranges */
3498
3499void
fba45db2 3500list_overlays_command (char *args, int from_tty)
c906108c 3501{
c5aa993b
JM
3502 int nmapped = 0;
3503 struct objfile *objfile;
c906108c
SS
3504 struct obj_section *osect;
3505
3506 if (overlay_debugging)
3507 ALL_OBJSECTIONS (objfile, osect)
714835d5 3508 if (section_is_mapped (osect))
c5aa993b 3509 {
5af949e3 3510 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c5aa993b
JM
3511 const char *name;
3512 bfd_vma lma, vma;
3513 int size;
3514
3515 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3516 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3517 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3518 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3519
3520 printf_filtered ("Section %s, loaded at ", name);
5af949e3 3521 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
c5aa993b 3522 puts_filtered (" - ");
5af949e3 3523 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
c5aa993b 3524 printf_filtered (", mapped at ");
5af949e3 3525 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
c5aa993b 3526 puts_filtered (" - ");
5af949e3 3527 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
c5aa993b
JM
3528 puts_filtered ("\n");
3529
3530 nmapped++;
3531 }
c906108c 3532 if (nmapped == 0)
a3f17187 3533 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3534}
3535
3536/* Function: map_overlay_command
3537 Mark the named section as mapped (ie. residing at its VMA address). */
3538
3539void
fba45db2 3540map_overlay_command (char *args, int from_tty)
c906108c 3541{
c5aa993b
JM
3542 struct objfile *objfile, *objfile2;
3543 struct obj_section *sec, *sec2;
c906108c
SS
3544
3545 if (!overlay_debugging)
8a3fe4f8 3546 error (_("\
515ad16c 3547Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3548the 'overlay manual' command."));
c906108c
SS
3549
3550 if (args == 0 || *args == 0)
8a3fe4f8 3551 error (_("Argument required: name of an overlay section"));
c906108c
SS
3552
3553 /* First, find a section matching the user supplied argument */
3554 ALL_OBJSECTIONS (objfile, sec)
3555 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3556 {
3557 /* Now, check to see if the section is an overlay. */
714835d5 3558 if (!section_is_overlay (sec))
c5aa993b
JM
3559 continue; /* not an overlay section */
3560
3561 /* Mark the overlay as "mapped" */
3562 sec->ovly_mapped = 1;
3563
3564 /* Next, make a pass and unmap any sections that are
3565 overlapped by this new section: */
3566 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3567 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3568 {
3569 if (info_verbose)
a3f17187 3570 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3571 bfd_section_name (objfile->obfd,
3572 sec2->the_bfd_section));
3573 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3574 }
3575 return;
3576 }
8a3fe4f8 3577 error (_("No overlay section called %s"), args);
c906108c
SS
3578}
3579
3580/* Function: unmap_overlay_command
5417f6dc 3581 Mark the overlay section as unmapped
c906108c
SS
3582 (ie. resident in its LMA address range, rather than the VMA range). */
3583
3584void
fba45db2 3585unmap_overlay_command (char *args, int from_tty)
c906108c 3586{
c5aa993b 3587 struct objfile *objfile;
c906108c
SS
3588 struct obj_section *sec;
3589
3590 if (!overlay_debugging)
8a3fe4f8 3591 error (_("\
515ad16c 3592Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3593the 'overlay manual' command."));
c906108c
SS
3594
3595 if (args == 0 || *args == 0)
8a3fe4f8 3596 error (_("Argument required: name of an overlay section"));
c906108c
SS
3597
3598 /* First, find a section matching the user supplied argument */
3599 ALL_OBJSECTIONS (objfile, sec)
3600 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3601 {
3602 if (!sec->ovly_mapped)
8a3fe4f8 3603 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3604 sec->ovly_mapped = 0;
3605 return;
3606 }
8a3fe4f8 3607 error (_("No overlay section called %s"), args);
c906108c
SS
3608}
3609
3610/* Function: overlay_auto_command
3611 A utility command to turn on overlay debugging.
3612 Possibly this should be done via a set/show command. */
3613
3614static void
fba45db2 3615overlay_auto_command (char *args, int from_tty)
c906108c 3616{
d874f1e2 3617 overlay_debugging = ovly_auto;
1900040c 3618 enable_overlay_breakpoints ();
c906108c 3619 if (info_verbose)
a3f17187 3620 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3621}
3622
3623/* Function: overlay_manual_command
3624 A utility command to turn on overlay debugging.
3625 Possibly this should be done via a set/show command. */
3626
3627static void
fba45db2 3628overlay_manual_command (char *args, int from_tty)
c906108c 3629{
d874f1e2 3630 overlay_debugging = ovly_on;
1900040c 3631 disable_overlay_breakpoints ();
c906108c 3632 if (info_verbose)
a3f17187 3633 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3634}
3635
3636/* Function: overlay_off_command
3637 A utility command to turn on overlay debugging.
3638 Possibly this should be done via a set/show command. */
3639
3640static void
fba45db2 3641overlay_off_command (char *args, int from_tty)
c906108c 3642{
d874f1e2 3643 overlay_debugging = ovly_off;
1900040c 3644 disable_overlay_breakpoints ();
c906108c 3645 if (info_verbose)
a3f17187 3646 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3647}
3648
3649static void
fba45db2 3650overlay_load_command (char *args, int from_tty)
c906108c 3651{
e17c207e
UW
3652 struct gdbarch *gdbarch = get_current_arch ();
3653
3654 if (gdbarch_overlay_update_p (gdbarch))
3655 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3656 else
8a3fe4f8 3657 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3658}
3659
3660/* Function: overlay_command
3661 A place-holder for a mis-typed command */
3662
3663/* Command list chain containing all defined "overlay" subcommands. */
3664struct cmd_list_element *overlaylist;
3665
3666static void
fba45db2 3667overlay_command (char *args, int from_tty)
c906108c 3668{
c5aa993b 3669 printf_unfiltered
c906108c
SS
3670 ("\"overlay\" must be followed by the name of an overlay command.\n");
3671 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3672}
3673
3674
3675/* Target Overlays for the "Simplest" overlay manager:
3676
5417f6dc
RM
3677 This is GDB's default target overlay layer. It works with the
3678 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3679 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3680 so targets that use a different runtime overlay manager can
c906108c
SS
3681 substitute their own overlay_update function and take over the
3682 function pointer.
3683
3684 The overlay_update function pokes around in the target's data structures
3685 to see what overlays are mapped, and updates GDB's overlay mapping with
3686 this information.
3687
3688 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3689 unsigned _novlys; /# number of overlay sections #/
3690 unsigned _ovly_table[_novlys][4] = {
3691 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3692 {..., ..., ..., ...},
3693 }
3694 unsigned _novly_regions; /# number of overlay regions #/
3695 unsigned _ovly_region_table[_novly_regions][3] = {
3696 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3697 {..., ..., ...},
3698 }
c906108c
SS
3699 These functions will attempt to update GDB's mappedness state in the
3700 symbol section table, based on the target's mappedness state.
3701
3702 To do this, we keep a cached copy of the target's _ovly_table, and
3703 attempt to detect when the cached copy is invalidated. The main
3704 entry point is "simple_overlay_update(SECT), which looks up SECT in
3705 the cached table and re-reads only the entry for that section from
3706 the target (whenever possible).
3707 */
3708
3709/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3710static unsigned (*cache_ovly_table)[4] = 0;
c906108c 3711#if 0
c5aa993b 3712static unsigned (*cache_ovly_region_table)[3] = 0;
c906108c 3713#endif
c5aa993b 3714static unsigned cache_novlys = 0;
c906108c 3715#if 0
c5aa993b 3716static unsigned cache_novly_regions = 0;
c906108c
SS
3717#endif
3718static CORE_ADDR cache_ovly_table_base = 0;
3719#if 0
3720static CORE_ADDR cache_ovly_region_table_base = 0;
3721#endif
c5aa993b
JM
3722enum ovly_index
3723 {
3724 VMA, SIZE, LMA, MAPPED
3725 };
c906108c
SS
3726
3727/* Throw away the cached copy of _ovly_table */
3728static void
fba45db2 3729simple_free_overlay_table (void)
c906108c
SS
3730{
3731 if (cache_ovly_table)
b8c9b27d 3732 xfree (cache_ovly_table);
c5aa993b 3733 cache_novlys = 0;
c906108c
SS
3734 cache_ovly_table = NULL;
3735 cache_ovly_table_base = 0;
3736}
3737
3738#if 0
3739/* Throw away the cached copy of _ovly_region_table */
3740static void
fba45db2 3741simple_free_overlay_region_table (void)
c906108c
SS
3742{
3743 if (cache_ovly_region_table)
b8c9b27d 3744 xfree (cache_ovly_region_table);
c5aa993b 3745 cache_novly_regions = 0;
c906108c
SS
3746 cache_ovly_region_table = NULL;
3747 cache_ovly_region_table_base = 0;
3748}
3749#endif
3750
9216df95 3751/* Read an array of ints of size SIZE from the target into a local buffer.
c906108c
SS
3752 Convert to host order. int LEN is number of ints */
3753static void
9216df95 3754read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3755 int len, int size, enum bfd_endian byte_order)
c906108c 3756{
34c0bd93 3757 /* FIXME (alloca): Not safe if array is very large. */
9216df95 3758 gdb_byte *buf = alloca (len * size);
c5aa993b 3759 int i;
c906108c 3760
9216df95 3761 read_memory (memaddr, buf, len * size);
c906108c 3762 for (i = 0; i < len; i++)
e17a4113 3763 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3764}
3765
3766/* Find and grab a copy of the target _ovly_table
3767 (and _novlys, which is needed for the table's size) */
c5aa993b 3768static int
fba45db2 3769simple_read_overlay_table (void)
c906108c 3770{
0d43edd1 3771 struct minimal_symbol *novlys_msym, *ovly_table_msym;
9216df95
UW
3772 struct gdbarch *gdbarch;
3773 int word_size;
e17a4113 3774 enum bfd_endian byte_order;
c906108c
SS
3775
3776 simple_free_overlay_table ();
9b27852e 3777 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3778 if (! novlys_msym)
c906108c 3779 {
8a3fe4f8 3780 error (_("Error reading inferior's overlay table: "
0d43edd1 3781 "couldn't find `_novlys' variable\n"
8a3fe4f8 3782 "in inferior. Use `overlay manual' mode."));
0d43edd1 3783 return 0;
c906108c 3784 }
0d43edd1 3785
9b27852e 3786 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3787 if (! ovly_table_msym)
3788 {
8a3fe4f8 3789 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3790 "`_ovly_table' array\n"
8a3fe4f8 3791 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3792 return 0;
3793 }
3794
9216df95
UW
3795 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3796 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3797 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3798
e17a4113
UW
3799 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3800 4, byte_order);
0d43edd1
JB
3801 cache_ovly_table
3802 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3803 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3804 read_target_long_array (cache_ovly_table_base,
777ea8f1 3805 (unsigned int *) cache_ovly_table,
e17a4113 3806 cache_novlys * 4, word_size, byte_order);
0d43edd1 3807
c5aa993b 3808 return 1; /* SUCCESS */
c906108c
SS
3809}
3810
3811#if 0
3812/* Find and grab a copy of the target _ovly_region_table
3813 (and _novly_regions, which is needed for the table's size) */
c5aa993b 3814static int
fba45db2 3815simple_read_overlay_region_table (void)
c906108c
SS
3816{
3817 struct minimal_symbol *msym;
e17a4113
UW
3818 struct gdbarch *gdbarch;
3819 int word_size;
3820 enum bfd_endian byte_order;
c906108c
SS
3821
3822 simple_free_overlay_region_table ();
9b27852e 3823 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
e17a4113 3824 if (msym == NULL)
c5aa993b 3825 return 0; /* failure */
e17a4113
UW
3826
3827 gdbarch = get_objfile_arch (msymbol_objfile (msym));
3828 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3829 byte_order = gdbarch_byte_order (gdbarch);
3830
3831 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym),
3832 4, byte_order);
3833
c906108c
SS
3834 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3835 if (cache_ovly_region_table != NULL)
3836 {
9b27852e 3837 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
c906108c
SS
3838 if (msym != NULL)
3839 {
3840 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
c5aa993b 3841 read_target_long_array (cache_ovly_region_table_base,
777ea8f1 3842 (unsigned int *) cache_ovly_region_table,
e17a4113
UW
3843 cache_novly_regions * 3,
3844 word_size, byte_order);
c906108c 3845 }
c5aa993b
JM
3846 else
3847 return 0; /* failure */
c906108c 3848 }
c5aa993b
JM
3849 else
3850 return 0; /* failure */
3851 return 1; /* SUCCESS */
c906108c
SS
3852}
3853#endif
3854
5417f6dc 3855/* Function: simple_overlay_update_1
c906108c
SS
3856 A helper function for simple_overlay_update. Assuming a cached copy
3857 of _ovly_table exists, look through it to find an entry whose vma,
3858 lma and size match those of OSECT. Re-read the entry and make sure
3859 it still matches OSECT (else the table may no longer be valid).
3860 Set OSECT's mapped state to match the entry. Return: 1 for
3861 success, 0 for failure. */
3862
3863static int
fba45db2 3864simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3865{
3866 int i, size;
fbd35540
MS
3867 bfd *obfd = osect->objfile->obfd;
3868 asection *bsect = osect->the_bfd_section;
9216df95
UW
3869 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3870 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3871 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3872
2c500098 3873 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3874 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3875 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3876 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3877 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c 3878 {
9216df95
UW
3879 read_target_long_array (cache_ovly_table_base + i * word_size,
3880 (unsigned int *) cache_ovly_table[i],
e17a4113 3881 4, word_size, byte_order);
fbd35540
MS
3882 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3883 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3884 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3885 {
3886 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3887 return 1;
3888 }
fbd35540 3889 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3890 return 0;
3891 }
3892 return 0;
3893}
3894
3895/* Function: simple_overlay_update
5417f6dc
RM
3896 If OSECT is NULL, then update all sections' mapped state
3897 (after re-reading the entire target _ovly_table).
3898 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3899 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3900 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3901 re-read the entire cache, and go ahead and update all sections. */
3902
1c772458 3903void
fba45db2 3904simple_overlay_update (struct obj_section *osect)
c906108c 3905{
c5aa993b 3906 struct objfile *objfile;
c906108c
SS
3907
3908 /* Were we given an osect to look up? NULL means do all of them. */
3909 if (osect)
3910 /* Have we got a cached copy of the target's overlay table? */
3911 if (cache_ovly_table != NULL)
3912 /* Does its cached location match what's currently in the symtab? */
c5aa993b 3913 if (cache_ovly_table_base ==
9b27852e 3914 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
c906108c
SS
3915 /* Then go ahead and try to look up this single section in the cache */
3916 if (simple_overlay_update_1 (osect))
3917 /* Found it! We're done. */
3918 return;
3919
3920 /* Cached table no good: need to read the entire table anew.
3921 Or else we want all the sections, in which case it's actually
3922 more efficient to read the whole table in one block anyway. */
3923
0d43edd1
JB
3924 if (! simple_read_overlay_table ())
3925 return;
3926
c906108c
SS
3927 /* Now may as well update all sections, even if only one was requested. */
3928 ALL_OBJSECTIONS (objfile, osect)
714835d5 3929 if (section_is_overlay (osect))
c5aa993b
JM
3930 {
3931 int i, size;
fbd35540
MS
3932 bfd *obfd = osect->objfile->obfd;
3933 asection *bsect = osect->the_bfd_section;
c5aa993b 3934
2c500098 3935 size = bfd_get_section_size (bsect);
c5aa993b 3936 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3937 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3938 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3939 /* && cache_ovly_table[i][SIZE] == size */ )
3940 { /* obj_section matches i'th entry in ovly_table */
c5aa993b
JM
3941 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3942 break; /* finished with inner for loop: break out */
3943 }
3944 }
c906108c
SS
3945}
3946
086df311
DJ
3947/* Set the output sections and output offsets for section SECTP in
3948 ABFD. The relocation code in BFD will read these offsets, so we
3949 need to be sure they're initialized. We map each section to itself,
3950 with no offset; this means that SECTP->vma will be honored. */
3951
3952static void
3953symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3954{
3955 sectp->output_section = sectp;
3956 sectp->output_offset = 0;
3957}
3958
3959/* Relocate the contents of a debug section SECTP in ABFD. The
3960 contents are stored in BUF if it is non-NULL, or returned in a
3961 malloc'd buffer otherwise.
3962
3963 For some platforms and debug info formats, shared libraries contain
3964 relocations against the debug sections (particularly for DWARF-2;
3965 one affected platform is PowerPC GNU/Linux, although it depends on
3966 the version of the linker in use). Also, ELF object files naturally
3967 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3968 the relocations in order to get the locations of symbols correct.
3969 Another example that may require relocation processing, is the
3970 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3971 debug section. */
086df311
DJ
3972
3973bfd_byte *
3974symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3975{
065a2c74 3976 /* We're only interested in sections with relocation
086df311
DJ
3977 information. */
3978 if ((sectp->flags & SEC_RELOC) == 0)
3979 return NULL;
086df311
DJ
3980
3981 /* We will handle section offsets properly elsewhere, so relocate as if
3982 all sections begin at 0. */
3983 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3984
97606a13 3985 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
086df311 3986}
c906108c 3987
31d99776
DJ
3988struct symfile_segment_data *
3989get_symfile_segment_data (bfd *abfd)
3990{
3991 struct sym_fns *sf = find_sym_fns (abfd);
3992
3993 if (sf == NULL)
3994 return NULL;
3995
3996 return sf->sym_segments (abfd);
3997}
3998
3999void
4000free_symfile_segment_data (struct symfile_segment_data *data)
4001{
4002 xfree (data->segment_bases);
4003 xfree (data->segment_sizes);
4004 xfree (data->segment_info);
4005 xfree (data);
4006}
4007
28c32713
JB
4008
4009/* Given:
4010 - DATA, containing segment addresses from the object file ABFD, and
4011 the mapping from ABFD's sections onto the segments that own them,
4012 and
4013 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
4014 segment addresses reported by the target,
4015 store the appropriate offsets for each section in OFFSETS.
4016
4017 If there are fewer entries in SEGMENT_BASES than there are segments
4018 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
4019
8d385431
DJ
4020 If there are more entries, then ignore the extra. The target may
4021 not be able to distinguish between an empty data segment and a
4022 missing data segment; a missing text segment is less plausible. */
31d99776
DJ
4023int
4024symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
4025 struct section_offsets *offsets,
4026 int num_segment_bases,
4027 const CORE_ADDR *segment_bases)
4028{
4029 int i;
4030 asection *sect;
4031
28c32713
JB
4032 /* It doesn't make sense to call this function unless you have some
4033 segment base addresses. */
4034 gdb_assert (segment_bases > 0);
4035
31d99776
DJ
4036 /* If we do not have segment mappings for the object file, we
4037 can not relocate it by segments. */
4038 gdb_assert (data != NULL);
4039 gdb_assert (data->num_segments > 0);
4040
31d99776
DJ
4041 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4042 {
31d99776
DJ
4043 int which = data->segment_info[i];
4044
28c32713
JB
4045 gdb_assert (0 <= which && which <= data->num_segments);
4046
4047 /* Don't bother computing offsets for sections that aren't
4048 loaded as part of any segment. */
4049 if (! which)
4050 continue;
4051
4052 /* Use the last SEGMENT_BASES entry as the address of any extra
4053 segments mentioned in DATA->segment_info. */
31d99776 4054 if (which > num_segment_bases)
28c32713 4055 which = num_segment_bases;
31d99776 4056
28c32713
JB
4057 offsets->offsets[i] = (segment_bases[which - 1]
4058 - data->segment_bases[which - 1]);
31d99776
DJ
4059 }
4060
4061 return 1;
4062}
4063
4064static void
4065symfile_find_segment_sections (struct objfile *objfile)
4066{
4067 bfd *abfd = objfile->obfd;
4068 int i;
4069 asection *sect;
4070 struct symfile_segment_data *data;
4071
4072 data = get_symfile_segment_data (objfile->obfd);
4073 if (data == NULL)
4074 return;
4075
4076 if (data->num_segments != 1 && data->num_segments != 2)
4077 {
4078 free_symfile_segment_data (data);
4079 return;
4080 }
4081
4082 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4083 {
4084 CORE_ADDR vma;
4085 int which = data->segment_info[i];
4086
4087 if (which == 1)
4088 {
4089 if (objfile->sect_index_text == -1)
4090 objfile->sect_index_text = sect->index;
4091
4092 if (objfile->sect_index_rodata == -1)
4093 objfile->sect_index_rodata = sect->index;
4094 }
4095 else if (which == 2)
4096 {
4097 if (objfile->sect_index_data == -1)
4098 objfile->sect_index_data = sect->index;
4099
4100 if (objfile->sect_index_bss == -1)
4101 objfile->sect_index_bss = sect->index;
4102 }
4103 }
4104
4105 free_symfile_segment_data (data);
4106}
4107
c906108c 4108void
fba45db2 4109_initialize_symfile (void)
c906108c
SS
4110{
4111 struct cmd_list_element *c;
c5aa993b 4112
1a966eab
AC
4113 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
4114Load symbol table from executable file FILE.\n\
c906108c 4115The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 4116to execute."), &cmdlist);
5ba2abeb 4117 set_cmd_completer (c, filename_completer);
c906108c 4118
1a966eab 4119 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 4120Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
1a966eab 4121Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
2acceee2 4122ADDR is the starting address of the file's text.\n\
db162d44
EZ
4123The optional arguments are section-name section-address pairs and\n\
4124should be specified if the data and bss segments are not contiguous\n\
1a966eab 4125with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 4126 &cmdlist);
5ba2abeb 4127 set_cmd_completer (c, filename_completer);
c906108c 4128
1a966eab
AC
4129 c = add_cmd ("load", class_files, load_command, _("\
4130Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
4131for access from GDB.\n\
4132A load OFFSET may also be given."), &cmdlist);
5ba2abeb 4133 set_cmd_completer (c, filename_completer);
c906108c 4134
5bf193a2
AC
4135 add_setshow_boolean_cmd ("symbol-reloading", class_support,
4136 &symbol_reloading, _("\
4137Set dynamic symbol table reloading multiple times in one run."), _("\
4138Show dynamic symbol table reloading multiple times in one run."), NULL,
4139 NULL,
920d2a44 4140 show_symbol_reloading,
5bf193a2 4141 &setlist, &showlist);
c906108c 4142
c5aa993b 4143 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 4144 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
4145 "overlay ", 0, &cmdlist);
4146
4147 add_com_alias ("ovly", "overlay", class_alias, 1);
4148 add_com_alias ("ov", "overlay", class_alias, 1);
4149
c5aa993b 4150 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 4151 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 4152
c5aa993b 4153 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 4154 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 4155
c5aa993b 4156 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 4157 _("List mappings of overlay sections."), &overlaylist);
c906108c 4158
c5aa993b 4159 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 4160 _("Enable overlay debugging."), &overlaylist);
c5aa993b 4161 add_cmd ("off", class_support, overlay_off_command,
1a966eab 4162 _("Disable overlay debugging."), &overlaylist);
c5aa993b 4163 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 4164 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 4165 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 4166 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
4167
4168 /* Filename extension to source language lookup table: */
4169 init_filename_language_table ();
26c41df3
AC
4170 add_setshow_string_noescape_cmd ("extension-language", class_files,
4171 &ext_args, _("\
4172Set mapping between filename extension and source language."), _("\
4173Show mapping between filename extension and source language."), _("\
4174Usage: set extension-language .foo bar"),
4175 set_ext_lang_command,
920d2a44 4176 show_ext_args,
26c41df3 4177 &setlist, &showlist);
c906108c 4178
c5aa993b 4179 add_info ("extensions", info_ext_lang_command,
1bedd215 4180 _("All filename extensions associated with a source language."));
917317f4 4181
525226b5
AC
4182 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4183 &debug_file_directory, _("\
4184Set the directory where separate debug symbols are searched for."), _("\
4185Show the directory where separate debug symbols are searched for."), _("\
4186Separate debug symbols are first searched for in the same\n\
4187directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4188and lastly at the path of the directory of the binary with\n\
4189the global debug-file directory prepended."),
4190 NULL,
920d2a44 4191 show_debug_file_directory,
525226b5 4192 &setlist, &showlist);
c906108c 4193}
This page took 1.340572 seconds and 4 git commands to generate.