2009-08-17 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
6aba47ca 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
0fb0cc75 4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
777ea8f1 5 Free Software Foundation, Inc.
8926118c 6
c906108c
SS
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
a9762ec7 13 the Free Software Foundation; either version 3 of the License, or
c5aa993b 14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b 21 You should have received a copy of the GNU General Public License
a9762ec7 22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
23
24#include "defs.h"
e17c207e 25#include "arch-utils.h"
086df311 26#include "bfdlink.h"
c906108c
SS
27#include "symtab.h"
28#include "gdbtypes.h"
29#include "gdbcore.h"
30#include "frame.h"
31#include "target.h"
32#include "value.h"
33#include "symfile.h"
34#include "objfiles.h"
0378c332 35#include "source.h"
c906108c
SS
36#include "gdbcmd.h"
37#include "breakpoint.h"
38#include "language.h"
39#include "complaints.h"
40#include "demangle.h"
fb14de7b
UW
41#include "inferior.h"
42#include "regcache.h"
5b5d99cf 43#include "filenames.h" /* for DOSish file names */
c906108c 44#include "gdb-stabs.h"
04ea0df1 45#include "gdb_obstack.h"
d75b5104 46#include "completer.h"
af5f3db6 47#include "bcache.h"
2de7ced7 48#include "hashtab.h"
dbda9972 49#include "readline/readline.h"
7e8580c1 50#include "gdb_assert.h"
fe898f56 51#include "block.h"
ea53e89f 52#include "observer.h"
c1bd25fd 53#include "exec.h"
9bdcbae7 54#include "parser-defs.h"
8756216b 55#include "varobj.h"
77069918 56#include "elf-bfd.h"
e85a822c 57#include "solib.h"
f1838a98 58#include "remote.h"
c906108c 59
c906108c
SS
60#include <sys/types.h>
61#include <fcntl.h>
62#include "gdb_string.h"
63#include "gdb_stat.h"
64#include <ctype.h>
65#include <time.h>
2b71414d 66#include <sys/time.h>
c906108c 67
c906108c 68
9a4105ab
AC
69int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
70void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
71 unsigned long section_sent,
72 unsigned long section_size,
73 unsigned long total_sent,
c2d11a7d 74 unsigned long total_size);
769d7dc4
AC
75void (*deprecated_pre_add_symbol_hook) (const char *);
76void (*deprecated_post_add_symbol_hook) (void);
c906108c 77
74b7792f
AC
78static void clear_symtab_users_cleanup (void *ignore);
79
c906108c 80/* Global variables owned by this file */
c5aa993b 81int readnow_symbol_files; /* Read full symbols immediately */
c906108c 82
c906108c
SS
83/* External variables and functions referenced. */
84
a14ed312 85extern void report_transfer_performance (unsigned long, time_t, time_t);
c906108c
SS
86
87/* Functions this file defines */
88
89#if 0
a14ed312
KB
90static int simple_read_overlay_region_table (void);
91static void simple_free_overlay_region_table (void);
c906108c
SS
92#endif
93
a14ed312 94static void load_command (char *, int);
c906108c 95
d7db6da9
FN
96static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
97
a14ed312 98static void add_symbol_file_command (char *, int);
c906108c 99
5b5d99cf
JB
100static void reread_separate_symbols (struct objfile *objfile);
101
a14ed312 102static void cashier_psymtab (struct partial_symtab *);
c906108c 103
a14ed312 104bfd *symfile_bfd_open (char *);
c906108c 105
0e931cf0
JB
106int get_section_index (struct objfile *, char *);
107
31d99776 108static struct sym_fns *find_sym_fns (bfd *);
c906108c 109
a14ed312 110static void decrement_reading_symtab (void *);
c906108c 111
a14ed312 112static void overlay_invalidate_all (void);
c906108c 113
a14ed312 114void list_overlays_command (char *, int);
c906108c 115
a14ed312 116void map_overlay_command (char *, int);
c906108c 117
a14ed312 118void unmap_overlay_command (char *, int);
c906108c 119
a14ed312 120static void overlay_auto_command (char *, int);
c906108c 121
a14ed312 122static void overlay_manual_command (char *, int);
c906108c 123
a14ed312 124static void overlay_off_command (char *, int);
c906108c 125
a14ed312 126static void overlay_load_command (char *, int);
c906108c 127
a14ed312 128static void overlay_command (char *, int);
c906108c 129
a14ed312 130static void simple_free_overlay_table (void);
c906108c 131
e17a4113
UW
132static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
133 enum bfd_endian);
c906108c 134
a14ed312 135static int simple_read_overlay_table (void);
c906108c 136
a14ed312 137static int simple_overlay_update_1 (struct obj_section *);
c906108c 138
a14ed312 139static void add_filename_language (char *ext, enum language lang);
392a587b 140
a14ed312 141static void info_ext_lang_command (char *args, int from_tty);
392a587b 142
5b5d99cf
JB
143static char *find_separate_debug_file (struct objfile *objfile);
144
a14ed312 145static void init_filename_language_table (void);
392a587b 146
31d99776
DJ
147static void symfile_find_segment_sections (struct objfile *objfile);
148
a14ed312 149void _initialize_symfile (void);
c906108c
SS
150
151/* List of all available sym_fns. On gdb startup, each object file reader
152 calls add_symtab_fns() to register information on each format it is
153 prepared to read. */
154
155static struct sym_fns *symtab_fns = NULL;
156
157/* Flag for whether user will be reloading symbols multiple times.
158 Defaults to ON for VxWorks, otherwise OFF. */
159
160#ifdef SYMBOL_RELOADING_DEFAULT
161int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
162#else
163int symbol_reloading = 0;
164#endif
920d2a44
AC
165static void
166show_symbol_reloading (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
168{
169 fprintf_filtered (file, _("\
170Dynamic symbol table reloading multiple times in one run is %s.\n"),
171 value);
172}
173
bf250677
DE
174/* If non-zero, gdb will notify the user when it is loading symbols
175 from a file. This is almost always what users will want to have happen;
176 but for programs with lots of dynamically linked libraries, the output
177 can be more noise than signal. */
178
179int print_symbol_loading = 1;
c906108c 180
b7209cb4
FF
181/* If non-zero, shared library symbols will be added automatically
182 when the inferior is created, new libraries are loaded, or when
183 attaching to the inferior. This is almost always what users will
184 want to have happen; but for very large programs, the startup time
185 will be excessive, and so if this is a problem, the user can clear
186 this flag and then add the shared library symbols as needed. Note
187 that there is a potential for confusion, since if the shared
c906108c 188 library symbols are not loaded, commands like "info fun" will *not*
b7209cb4 189 report all the functions that are actually present. */
c906108c
SS
190
191int auto_solib_add = 1;
b7209cb4
FF
192
193/* For systems that support it, a threshold size in megabytes. If
194 automatically adding a new library's symbol table to those already
195 known to the debugger would cause the total shared library symbol
196 size to exceed this threshhold, then the shlib's symbols are not
197 added. The threshold is ignored if the user explicitly asks for a
198 shlib to be added, such as when using the "sharedlibrary"
199 command. */
200
201int auto_solib_limit;
c906108c 202\f
c5aa993b 203
0fe19209
DC
204/* This compares two partial symbols by names, using strcmp_iw_ordered
205 for the comparison. */
c906108c
SS
206
207static int
0cd64fe2 208compare_psymbols (const void *s1p, const void *s2p)
c906108c 209{
0fe19209
DC
210 struct partial_symbol *const *s1 = s1p;
211 struct partial_symbol *const *s2 = s2p;
212
4725b721
PH
213 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
214 SYMBOL_SEARCH_NAME (*s2));
c906108c
SS
215}
216
217void
fba45db2 218sort_pst_symbols (struct partial_symtab *pst)
c906108c
SS
219{
220 /* Sort the global list; don't sort the static list */
221
c5aa993b
JM
222 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
223 pst->n_global_syms, sizeof (struct partial_symbol *),
c906108c
SS
224 compare_psymbols);
225}
226
c906108c
SS
227/* Make a null terminated copy of the string at PTR with SIZE characters in
228 the obstack pointed to by OBSTACKP . Returns the address of the copy.
229 Note that the string at PTR does not have to be null terminated, I.E. it
230 may be part of a larger string and we are only saving a substring. */
231
232char *
63ca651f 233obsavestring (const char *ptr, int size, struct obstack *obstackp)
c906108c 234{
52f0bd74 235 char *p = (char *) obstack_alloc (obstackp, size + 1);
c906108c
SS
236 /* Open-coded memcpy--saves function call time. These strings are usually
237 short. FIXME: Is this really still true with a compiler that can
238 inline memcpy? */
239 {
aa1ee363
AC
240 const char *p1 = ptr;
241 char *p2 = p;
63ca651f 242 const char *end = ptr + size;
c906108c
SS
243 while (p1 != end)
244 *p2++ = *p1++;
245 }
246 p[size] = 0;
247 return p;
248}
249
250/* Concatenate strings S1, S2 and S3; return the new string. Space is found
251 in the obstack pointed to by OBSTACKP. */
252
253char *
fba45db2
KB
254obconcat (struct obstack *obstackp, const char *s1, const char *s2,
255 const char *s3)
c906108c 256{
52f0bd74
AC
257 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
258 char *val = (char *) obstack_alloc (obstackp, len);
c906108c
SS
259 strcpy (val, s1);
260 strcat (val, s2);
261 strcat (val, s3);
262 return val;
263}
264
265/* True if we are nested inside psymtab_to_symtab. */
266
267int currently_reading_symtab = 0;
268
269static void
fba45db2 270decrement_reading_symtab (void *dummy)
c906108c
SS
271{
272 currently_reading_symtab--;
273}
274
275/* Get the symbol table that corresponds to a partial_symtab.
276 This is fast after the first time you do it. In fact, there
277 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
278 case inline. */
279
280struct symtab *
aa1ee363 281psymtab_to_symtab (struct partial_symtab *pst)
c906108c
SS
282{
283 /* If it's been looked up before, return it. */
284 if (pst->symtab)
285 return pst->symtab;
286
287 /* If it has not yet been read in, read it. */
288 if (!pst->readin)
c5aa993b 289 {
c906108c
SS
290 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
291 currently_reading_symtab++;
292 (*pst->read_symtab) (pst);
293 do_cleanups (back_to);
294 }
295
296 return pst->symtab;
297}
298
5417f6dc
RM
299/* Remember the lowest-addressed loadable section we've seen.
300 This function is called via bfd_map_over_sections.
c906108c
SS
301
302 In case of equal vmas, the section with the largest size becomes the
303 lowest-addressed loadable section.
304
305 If the vmas and sizes are equal, the last section is considered the
306 lowest-addressed loadable section. */
307
308void
4efb68b1 309find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 310{
c5aa993b 311 asection **lowest = (asection **) obj;
c906108c
SS
312
313 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
314 return;
315 if (!*lowest)
316 *lowest = sect; /* First loadable section */
317 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
318 *lowest = sect; /* A lower loadable section */
319 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
320 && (bfd_section_size (abfd, (*lowest))
321 <= bfd_section_size (abfd, sect)))
322 *lowest = sect;
323}
324
a39a16c4
MM
325/* Create a new section_addr_info, with room for NUM_SECTIONS. */
326
327struct section_addr_info *
328alloc_section_addr_info (size_t num_sections)
329{
330 struct section_addr_info *sap;
331 size_t size;
332
333 size = (sizeof (struct section_addr_info)
334 + sizeof (struct other_sections) * (num_sections - 1));
335 sap = (struct section_addr_info *) xmalloc (size);
336 memset (sap, 0, size);
337 sap->num_sections = num_sections;
338
339 return sap;
340}
62557bbc 341
7b90c3f9
JB
342
343/* Return a freshly allocated copy of ADDRS. The section names, if
344 any, are also freshly allocated copies of those in ADDRS. */
345struct section_addr_info *
346copy_section_addr_info (struct section_addr_info *addrs)
347{
348 struct section_addr_info *copy
349 = alloc_section_addr_info (addrs->num_sections);
350 int i;
351
352 copy->num_sections = addrs->num_sections;
353 for (i = 0; i < addrs->num_sections; i++)
354 {
355 copy->other[i].addr = addrs->other[i].addr;
356 if (addrs->other[i].name)
357 copy->other[i].name = xstrdup (addrs->other[i].name);
358 else
359 copy->other[i].name = NULL;
360 copy->other[i].sectindex = addrs->other[i].sectindex;
361 }
362
363 return copy;
364}
365
366
367
62557bbc
KB
368/* Build (allocate and populate) a section_addr_info struct from
369 an existing section table. */
370
371extern struct section_addr_info *
0542c86d
PA
372build_section_addr_info_from_section_table (const struct target_section *start,
373 const struct target_section *end)
62557bbc
KB
374{
375 struct section_addr_info *sap;
0542c86d 376 const struct target_section *stp;
62557bbc
KB
377 int oidx;
378
a39a16c4 379 sap = alloc_section_addr_info (end - start);
62557bbc
KB
380
381 for (stp = start, oidx = 0; stp != end; stp++)
382 {
5417f6dc 383 if (bfd_get_section_flags (stp->bfd,
fbd35540 384 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 385 && oidx < end - start)
62557bbc
KB
386 {
387 sap->other[oidx].addr = stp->addr;
5417f6dc 388 sap->other[oidx].name
fbd35540 389 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
62557bbc
KB
390 sap->other[oidx].sectindex = stp->the_bfd_section->index;
391 oidx++;
392 }
393 }
394
395 return sap;
396}
397
398
399/* Free all memory allocated by build_section_addr_info_from_section_table. */
400
401extern void
402free_section_addr_info (struct section_addr_info *sap)
403{
404 int idx;
405
a39a16c4 406 for (idx = 0; idx < sap->num_sections; idx++)
62557bbc 407 if (sap->other[idx].name)
b8c9b27d
KB
408 xfree (sap->other[idx].name);
409 xfree (sap);
62557bbc
KB
410}
411
412
e8289572
JB
413/* Initialize OBJFILE's sect_index_* members. */
414static void
415init_objfile_sect_indices (struct objfile *objfile)
c906108c 416{
e8289572 417 asection *sect;
c906108c 418 int i;
5417f6dc 419
b8fbeb18 420 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 421 if (sect)
b8fbeb18
EZ
422 objfile->sect_index_text = sect->index;
423
424 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 425 if (sect)
b8fbeb18
EZ
426 objfile->sect_index_data = sect->index;
427
428 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 429 if (sect)
b8fbeb18
EZ
430 objfile->sect_index_bss = sect->index;
431
432 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 433 if (sect)
b8fbeb18
EZ
434 objfile->sect_index_rodata = sect->index;
435
bbcd32ad
FF
436 /* This is where things get really weird... We MUST have valid
437 indices for the various sect_index_* members or gdb will abort.
438 So if for example, there is no ".text" section, we have to
31d99776
DJ
439 accomodate that. First, check for a file with the standard
440 one or two segments. */
441
442 symfile_find_segment_sections (objfile);
443
444 /* Except when explicitly adding symbol files at some address,
445 section_offsets contains nothing but zeros, so it doesn't matter
446 which slot in section_offsets the individual sect_index_* members
447 index into. So if they are all zero, it is safe to just point
448 all the currently uninitialized indices to the first slot. But
449 beware: if this is the main executable, it may be relocated
450 later, e.g. by the remote qOffsets packet, and then this will
451 be wrong! That's why we try segments first. */
bbcd32ad
FF
452
453 for (i = 0; i < objfile->num_sections; i++)
454 {
455 if (ANOFFSET (objfile->section_offsets, i) != 0)
456 {
457 break;
458 }
459 }
460 if (i == objfile->num_sections)
461 {
462 if (objfile->sect_index_text == -1)
463 objfile->sect_index_text = 0;
464 if (objfile->sect_index_data == -1)
465 objfile->sect_index_data = 0;
466 if (objfile->sect_index_bss == -1)
467 objfile->sect_index_bss = 0;
468 if (objfile->sect_index_rodata == -1)
469 objfile->sect_index_rodata = 0;
470 }
b8fbeb18 471}
c906108c 472
c1bd25fd
DJ
473/* The arguments to place_section. */
474
475struct place_section_arg
476{
477 struct section_offsets *offsets;
478 CORE_ADDR lowest;
479};
480
481/* Find a unique offset to use for loadable section SECT if
482 the user did not provide an offset. */
483
2c0b251b 484static void
c1bd25fd
DJ
485place_section (bfd *abfd, asection *sect, void *obj)
486{
487 struct place_section_arg *arg = obj;
488 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
489 int done;
3bd72c6f 490 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 491
2711e456
DJ
492 /* We are only interested in allocated sections. */
493 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
494 return;
495
496 /* If the user specified an offset, honor it. */
497 if (offsets[sect->index] != 0)
498 return;
499
500 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
501 start_addr = (arg->lowest + align - 1) & -align;
502
c1bd25fd
DJ
503 do {
504 asection *cur_sec;
c1bd25fd 505
c1bd25fd
DJ
506 done = 1;
507
508 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
509 {
510 int indx = cur_sec->index;
511 CORE_ADDR cur_offset;
512
513 /* We don't need to compare against ourself. */
514 if (cur_sec == sect)
515 continue;
516
2711e456
DJ
517 /* We can only conflict with allocated sections. */
518 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
519 continue;
520
521 /* If the section offset is 0, either the section has not been placed
522 yet, or it was the lowest section placed (in which case LOWEST
523 will be past its end). */
524 if (offsets[indx] == 0)
525 continue;
526
527 /* If this section would overlap us, then we must move up. */
528 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
529 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
530 {
531 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
532 start_addr = (start_addr + align - 1) & -align;
533 done = 0;
3bd72c6f 534 break;
c1bd25fd
DJ
535 }
536
537 /* Otherwise, we appear to be OK. So far. */
538 }
539 }
540 while (!done);
541
542 offsets[sect->index] = start_addr;
543 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 544}
e8289572
JB
545
546/* Parse the user's idea of an offset for dynamic linking, into our idea
5417f6dc 547 of how to represent it for fast symbol reading. This is the default
e8289572
JB
548 version of the sym_fns.sym_offsets function for symbol readers that
549 don't need to do anything special. It allocates a section_offsets table
550 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
551
552void
553default_symfile_offsets (struct objfile *objfile,
554 struct section_addr_info *addrs)
555{
556 int i;
557
a39a16c4 558 objfile->num_sections = bfd_count_sections (objfile->obfd);
e8289572 559 objfile->section_offsets = (struct section_offsets *)
5417f6dc 560 obstack_alloc (&objfile->objfile_obstack,
a39a16c4 561 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
5417f6dc 562 memset (objfile->section_offsets, 0,
a39a16c4 563 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
e8289572
JB
564
565 /* Now calculate offsets for section that were specified by the
566 caller. */
a39a16c4 567 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
e8289572
JB
568 {
569 struct other_sections *osp ;
570
571 osp = &addrs->other[i] ;
572 if (osp->addr == 0)
573 continue;
574
575 /* Record all sections in offsets */
576 /* The section_offsets in the objfile are here filled in using
577 the BFD index. */
578 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
579 }
580
c1bd25fd
DJ
581 /* For relocatable files, all loadable sections will start at zero.
582 The zero is meaningless, so try to pick arbitrary addresses such
583 that no loadable sections overlap. This algorithm is quadratic,
584 but the number of sections in a single object file is generally
585 small. */
586 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
587 {
588 struct place_section_arg arg;
2711e456
DJ
589 bfd *abfd = objfile->obfd;
590 asection *cur_sec;
591 CORE_ADDR lowest = 0;
592
593 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
594 /* We do not expect this to happen; just skip this step if the
595 relocatable file has a section with an assigned VMA. */
596 if (bfd_section_vma (abfd, cur_sec) != 0)
597 break;
598
599 if (cur_sec == NULL)
600 {
601 CORE_ADDR *offsets = objfile->section_offsets->offsets;
602
603 /* Pick non-overlapping offsets for sections the user did not
604 place explicitly. */
605 arg.offsets = objfile->section_offsets;
606 arg.lowest = 0;
607 bfd_map_over_sections (objfile->obfd, place_section, &arg);
608
609 /* Correctly filling in the section offsets is not quite
610 enough. Relocatable files have two properties that
611 (most) shared objects do not:
612
613 - Their debug information will contain relocations. Some
614 shared libraries do also, but many do not, so this can not
615 be assumed.
616
617 - If there are multiple code sections they will be loaded
618 at different relative addresses in memory than they are
619 in the objfile, since all sections in the file will start
620 at address zero.
621
622 Because GDB has very limited ability to map from an
623 address in debug info to the correct code section,
624 it relies on adding SECT_OFF_TEXT to things which might be
625 code. If we clear all the section offsets, and set the
626 section VMAs instead, then symfile_relocate_debug_section
627 will return meaningful debug information pointing at the
628 correct sections.
629
630 GDB has too many different data structures for section
631 addresses - a bfd, objfile, and so_list all have section
632 tables, as does exec_ops. Some of these could probably
633 be eliminated. */
634
635 for (cur_sec = abfd->sections; cur_sec != NULL;
636 cur_sec = cur_sec->next)
637 {
638 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
639 continue;
640
641 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
30510692
DJ
642 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
643 offsets[cur_sec->index]);
2711e456
DJ
644 offsets[cur_sec->index] = 0;
645 }
646 }
c1bd25fd
DJ
647 }
648
e8289572
JB
649 /* Remember the bfd indexes for the .text, .data, .bss and
650 .rodata sections. */
651 init_objfile_sect_indices (objfile);
652}
653
654
31d99776
DJ
655/* Divide the file into segments, which are individual relocatable units.
656 This is the default version of the sym_fns.sym_segments function for
657 symbol readers that do not have an explicit representation of segments.
658 It assumes that object files do not have segments, and fully linked
659 files have a single segment. */
660
661struct symfile_segment_data *
662default_symfile_segments (bfd *abfd)
663{
664 int num_sections, i;
665 asection *sect;
666 struct symfile_segment_data *data;
667 CORE_ADDR low, high;
668
669 /* Relocatable files contain enough information to position each
670 loadable section independently; they should not be relocated
671 in segments. */
672 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
673 return NULL;
674
675 /* Make sure there is at least one loadable section in the file. */
676 for (sect = abfd->sections; sect != NULL; sect = sect->next)
677 {
678 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
679 continue;
680
681 break;
682 }
683 if (sect == NULL)
684 return NULL;
685
686 low = bfd_get_section_vma (abfd, sect);
687 high = low + bfd_get_section_size (sect);
688
689 data = XZALLOC (struct symfile_segment_data);
690 data->num_segments = 1;
691 data->segment_bases = XCALLOC (1, CORE_ADDR);
692 data->segment_sizes = XCALLOC (1, CORE_ADDR);
693
694 num_sections = bfd_count_sections (abfd);
695 data->segment_info = XCALLOC (num_sections, int);
696
697 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
698 {
699 CORE_ADDR vma;
700
701 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
702 continue;
703
704 vma = bfd_get_section_vma (abfd, sect);
705 if (vma < low)
706 low = vma;
707 if (vma + bfd_get_section_size (sect) > high)
708 high = vma + bfd_get_section_size (sect);
709
710 data->segment_info[i] = 1;
711 }
712
713 data->segment_bases[0] = low;
714 data->segment_sizes[0] = high - low;
715
716 return data;
717}
718
c906108c
SS
719/* Process a symbol file, as either the main file or as a dynamically
720 loaded file.
721
96baa820
JM
722 OBJFILE is where the symbols are to be read from.
723
7e8580c1
JB
724 ADDRS is the list of section load addresses. If the user has given
725 an 'add-symbol-file' command, then this is the list of offsets and
726 addresses he or she provided as arguments to the command; or, if
727 we're handling a shared library, these are the actual addresses the
728 sections are loaded at, according to the inferior's dynamic linker
729 (as gleaned by GDB's shared library code). We convert each address
730 into an offset from the section VMA's as it appears in the object
731 file, and then call the file's sym_offsets function to convert this
732 into a format-specific offset table --- a `struct section_offsets'.
733 If ADDRS is non-zero, OFFSETS must be zero.
734
735 OFFSETS is a table of section offsets already in the right
736 format-specific representation. NUM_OFFSETS is the number of
737 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
738 assume this is the proper table the call to sym_offsets described
739 above would produce. Instead of calling sym_offsets, we just dump
740 it right into objfile->section_offsets. (When we're re-reading
741 symbols from an objfile, we don't have the original load address
742 list any more; all we have is the section offset table.) If
743 OFFSETS is non-zero, ADDRS must be zero.
96baa820 744
7eedccfa
PP
745 ADD_FLAGS encodes verbosity level, whether this is main symbol or
746 an extra symbol file such as dynamically loaded code, and wether
747 breakpoint reset should be deferred. */
c906108c
SS
748
749void
7e8580c1
JB
750syms_from_objfile (struct objfile *objfile,
751 struct section_addr_info *addrs,
752 struct section_offsets *offsets,
753 int num_offsets,
7eedccfa 754 int add_flags)
c906108c 755{
a39a16c4 756 struct section_addr_info *local_addr = NULL;
c906108c 757 struct cleanup *old_chain;
7eedccfa 758 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 759
7e8580c1 760 gdb_assert (! (addrs && offsets));
2acceee2 761
c906108c 762 init_entry_point_info (objfile);
31d99776 763 objfile->sf = find_sym_fns (objfile->obfd);
c906108c 764
75245b24
MS
765 if (objfile->sf == NULL)
766 return; /* No symbols. */
767
c906108c
SS
768 /* Make sure that partially constructed symbol tables will be cleaned up
769 if an error occurs during symbol reading. */
74b7792f 770 old_chain = make_cleanup_free_objfile (objfile);
c906108c 771
a39a16c4
MM
772 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
773 list. We now establish the convention that an addr of zero means
774 no load address was specified. */
775 if (! addrs && ! offsets)
776 {
5417f6dc 777 local_addr
a39a16c4
MM
778 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
779 make_cleanup (xfree, local_addr);
780 addrs = local_addr;
781 }
782
783 /* Now either addrs or offsets is non-zero. */
784
c5aa993b 785 if (mainline)
c906108c
SS
786 {
787 /* We will modify the main symbol table, make sure that all its users
c5aa993b 788 will be cleaned up if an error occurs during symbol reading. */
74b7792f 789 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
790
791 /* Since no error yet, throw away the old symbol table. */
792
793 if (symfile_objfile != NULL)
794 {
795 free_objfile (symfile_objfile);
796 symfile_objfile = NULL;
797 }
798
799 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
800 If the user wants to get rid of them, they should do "symbol-file"
801 without arguments first. Not sure this is the best behavior
802 (PR 2207). */
c906108c 803
c5aa993b 804 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
805 }
806
807 /* Convert addr into an offset rather than an absolute address.
808 We find the lowest address of a loaded segment in the objfile,
53a5351d 809 and assume that <addr> is where that got loaded.
c906108c 810
53a5351d
JM
811 We no longer warn if the lowest section is not a text segment (as
812 happens for the PA64 port. */
1549f619 813 if (!mainline && addrs && addrs->other[0].name)
c906108c 814 {
1549f619
EZ
815 asection *lower_sect;
816 asection *sect;
817 CORE_ADDR lower_offset;
818 int i;
819
5417f6dc 820 /* Find lowest loadable section to be used as starting point for
2acceee2
JM
821 continguous sections. FIXME!! won't work without call to find
822 .text first, but this assumes text is lowest section. */
823 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
824 if (lower_sect == NULL)
c906108c 825 bfd_map_over_sections (objfile->obfd, find_lowest_section,
4efb68b1 826 &lower_sect);
2acceee2 827 if (lower_sect == NULL)
ff8e85c3
PA
828 {
829 warning (_("no loadable sections found in added symbol-file %s"),
830 objfile->name);
831 lower_offset = 0;
832 }
2acceee2 833 else
ff8e85c3 834 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
5417f6dc 835
13de58df 836 /* Calculate offsets for the loadable sections.
2acceee2
JM
837 FIXME! Sections must be in order of increasing loadable section
838 so that contiguous sections can use the lower-offset!!!
5417f6dc 839
13de58df
JB
840 Adjust offsets if the segments are not contiguous.
841 If the section is contiguous, its offset should be set to
2acceee2
JM
842 the offset of the highest loadable section lower than it
843 (the loadable section directly below it in memory).
844 this_offset = lower_offset = lower_addr - lower_orig_addr */
845
1549f619 846 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
7e8580c1
JB
847 {
848 if (addrs->other[i].addr != 0)
849 {
850 sect = bfd_get_section_by_name (objfile->obfd,
851 addrs->other[i].name);
852 if (sect)
853 {
854 addrs->other[i].addr
855 -= bfd_section_vma (objfile->obfd, sect);
856 lower_offset = addrs->other[i].addr;
857 /* This is the index used by BFD. */
858 addrs->other[i].sectindex = sect->index ;
859 }
860 else
861 {
8a3fe4f8 862 warning (_("section %s not found in %s"),
5417f6dc 863 addrs->other[i].name,
7e8580c1
JB
864 objfile->name);
865 addrs->other[i].addr = 0;
866 }
867 }
868 else
869 addrs->other[i].addr = lower_offset;
870 }
c906108c
SS
871 }
872
873 /* Initialize symbol reading routines for this objfile, allow complaints to
874 appear for this new file, and record how verbose to be, then do the
875 initial symbol reading for this file. */
876
c5aa993b 877 (*objfile->sf->sym_init) (objfile);
7eedccfa 878 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 879
7e8580c1
JB
880 if (addrs)
881 (*objfile->sf->sym_offsets) (objfile, addrs);
882 else
883 {
884 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
885
886 /* Just copy in the offset table directly as given to us. */
887 objfile->num_sections = num_offsets;
888 objfile->section_offsets
889 = ((struct section_offsets *)
8b92e4d5 890 obstack_alloc (&objfile->objfile_obstack, size));
7e8580c1
JB
891 memcpy (objfile->section_offsets, offsets, size);
892
893 init_objfile_sect_indices (objfile);
894 }
c906108c 895
96baa820 896 (*objfile->sf->sym_read) (objfile, mainline);
c906108c 897
c906108c
SS
898 /* Discard cleanups as symbol reading was successful. */
899
900 discard_cleanups (old_chain);
f7545552 901 xfree (local_addr);
c906108c
SS
902}
903
904/* Perform required actions after either reading in the initial
905 symbols for a new objfile, or mapping in the symbols from a reusable
906 objfile. */
c5aa993b 907
c906108c 908void
7eedccfa 909new_symfile_objfile (struct objfile *objfile, int add_flags)
c906108c
SS
910{
911
912 /* If this is the main symbol file we have to clean up all users of the
913 old main symbol file. Otherwise it is sufficient to fixup all the
914 breakpoints that may have been redefined by this symbol file. */
7eedccfa 915 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
916 {
917 /* OK, make it the "real" symbol file. */
918 symfile_objfile = objfile;
919
920 clear_symtab_users ();
921 }
7eedccfa 922 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 923 {
69de3c6a 924 breakpoint_re_set ();
c906108c
SS
925 }
926
927 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 928 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
929}
930
931/* Process a symbol file, as either the main file or as a dynamically
932 loaded file.
933
5417f6dc
RM
934 ABFD is a BFD already open on the file, as from symfile_bfd_open.
935 This BFD will be closed on error, and is always consumed by this function.
7904e09f 936
7eedccfa
PP
937 ADD_FLAGS encodes verbosity, whether this is main symbol file or
938 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f
JB
939
940 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
7eedccfa
PP
941 syms_from_objfile, above.
942 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 943
c906108c
SS
944 Upon success, returns a pointer to the objfile that was added.
945 Upon failure, jumps back to command level (never returns). */
7eedccfa 946
7904e09f 947static struct objfile *
7eedccfa
PP
948symbol_file_add_with_addrs_or_offsets (bfd *abfd,
949 int add_flags,
7904e09f
JB
950 struct section_addr_info *addrs,
951 struct section_offsets *offsets,
952 int num_offsets,
7eedccfa 953 int flags)
c906108c
SS
954{
955 struct objfile *objfile;
956 struct partial_symtab *psymtab;
77069918 957 char *debugfile = NULL;
7b90c3f9 958 struct section_addr_info *orig_addrs = NULL;
a39a16c4 959 struct cleanup *my_cleanups;
5417f6dc 960 const char *name = bfd_get_filename (abfd);
7eedccfa 961 const int from_tty = add_flags & SYMFILE_VERBOSE;
c906108c 962
5417f6dc 963 my_cleanups = make_cleanup_bfd_close (abfd);
c906108c 964
5417f6dc
RM
965 /* Give user a chance to burp if we'd be
966 interactively wiping out any existing symbols. */
c906108c
SS
967
968 if ((have_full_symbols () || have_partial_symbols ())
7eedccfa 969 && (add_flags & SYMFILE_MAINLINE)
c906108c 970 && from_tty
9e2f0ad4 971 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 972 error (_("Not confirmed."));
c906108c 973
2df3850c 974 objfile = allocate_objfile (abfd, flags);
5417f6dc 975 discard_cleanups (my_cleanups);
c906108c 976
a39a16c4 977 if (addrs)
63cd24fe 978 {
7b90c3f9
JB
979 orig_addrs = copy_section_addr_info (addrs);
980 make_cleanup_free_section_addr_info (orig_addrs);
63cd24fe 981 }
a39a16c4 982
78a4a9b9
AC
983 /* We either created a new mapped symbol table, mapped an existing
984 symbol table file which has not had initial symbol reading
985 performed, or need to read an unmapped symbol table. */
986 if (from_tty || info_verbose)
c906108c 987 {
769d7dc4
AC
988 if (deprecated_pre_add_symbol_hook)
989 deprecated_pre_add_symbol_hook (name);
78a4a9b9 990 else
c906108c 991 {
bf250677
DE
992 if (print_symbol_loading)
993 {
994 printf_unfiltered (_("Reading symbols from %s..."), name);
995 wrap_here ("");
996 gdb_flush (gdb_stdout);
997 }
c906108c 998 }
c906108c 999 }
78a4a9b9 1000 syms_from_objfile (objfile, addrs, offsets, num_offsets,
7eedccfa 1001 add_flags);
c906108c
SS
1002
1003 /* We now have at least a partial symbol table. Check to see if the
1004 user requested that all symbols be read on initial access via either
1005 the gdb startup command line or on a per symbol file basis. Expand
1006 all partial symbol tables for this objfile if so. */
1007
2acceee2 1008 if ((flags & OBJF_READNOW) || readnow_symbol_files)
c906108c 1009 {
bf250677 1010 if ((from_tty || info_verbose) && print_symbol_loading)
c906108c 1011 {
a3f17187 1012 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1013 wrap_here ("");
1014 gdb_flush (gdb_stdout);
1015 }
1016
c5aa993b 1017 for (psymtab = objfile->psymtabs;
c906108c 1018 psymtab != NULL;
c5aa993b 1019 psymtab = psymtab->next)
c906108c
SS
1020 {
1021 psymtab_to_symtab (psymtab);
1022 }
1023 }
1024
77069918
JK
1025 /* If the file has its own symbol tables it has no separate debug info.
1026 `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to SYMTABS/PSYMTABS.
1027 `.gnu_debuglink' may no longer be present with `.note.gnu.build-id'. */
1028 if (objfile->psymtabs == NULL)
1029 debugfile = find_separate_debug_file (objfile);
5b5d99cf
JB
1030 if (debugfile)
1031 {
5b5d99cf
JB
1032 if (addrs != NULL)
1033 {
1034 objfile->separate_debug_objfile
7eedccfa 1035 = symbol_file_add (debugfile, add_flags, orig_addrs, flags);
5b5d99cf
JB
1036 }
1037 else
1038 {
1039 objfile->separate_debug_objfile
7eedccfa 1040 = symbol_file_add (debugfile, add_flags, NULL, flags);
5b5d99cf
JB
1041 }
1042 objfile->separate_debug_objfile->separate_debug_objfile_backlink
1043 = objfile;
5417f6dc 1044
5b5d99cf
JB
1045 /* Put the separate debug object before the normal one, this is so that
1046 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
1047 put_objfile_before (objfile->separate_debug_objfile, objfile);
5417f6dc 1048
5b5d99cf
JB
1049 xfree (debugfile);
1050 }
5417f6dc 1051
bf250677
DE
1052 if (!have_partial_symbols () && !have_full_symbols ()
1053 && print_symbol_loading)
cb3c37b2
JB
1054 {
1055 wrap_here ("");
d4c0a7a0 1056 printf_unfiltered (_("(no debugging symbols found)"));
8f5ba92b 1057 if (from_tty || info_verbose)
d4c0a7a0 1058 printf_unfiltered ("...");
8f5ba92b 1059 else
d4c0a7a0 1060 printf_unfiltered ("\n");
cb3c37b2
JB
1061 wrap_here ("");
1062 }
1063
c906108c
SS
1064 if (from_tty || info_verbose)
1065 {
769d7dc4
AC
1066 if (deprecated_post_add_symbol_hook)
1067 deprecated_post_add_symbol_hook ();
c906108c 1068 else
c5aa993b 1069 {
bf250677
DE
1070 if (print_symbol_loading)
1071 printf_unfiltered (_("done.\n"));
c5aa993b 1072 }
c906108c
SS
1073 }
1074
481d0f41
JB
1075 /* We print some messages regardless of whether 'from_tty ||
1076 info_verbose' is true, so make sure they go out at the right
1077 time. */
1078 gdb_flush (gdb_stdout);
1079
a39a16c4
MM
1080 do_cleanups (my_cleanups);
1081
109f874e 1082 if (objfile->sf == NULL)
8caee43b
PP
1083 {
1084 observer_notify_new_objfile (objfile);
1085 return objfile; /* No symbols. */
1086 }
109f874e 1087
7eedccfa 1088 new_symfile_objfile (objfile, add_flags);
c906108c 1089
06d3b283 1090 observer_notify_new_objfile (objfile);
c906108c 1091
ce7d4522 1092 bfd_cache_close_all ();
c906108c
SS
1093 return (objfile);
1094}
1095
7904e09f 1096
eb4556d7
JB
1097/* Process the symbol file ABFD, as either the main file or as a
1098 dynamically loaded file.
1099
1100 See symbol_file_add_with_addrs_or_offsets's comments for
1101 details. */
1102struct objfile *
7eedccfa 1103symbol_file_add_from_bfd (bfd *abfd, int add_flags,
eb4556d7 1104 struct section_addr_info *addrs,
7eedccfa 1105 int flags)
eb4556d7 1106{
7eedccfa
PP
1107 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1108 flags);
eb4556d7
JB
1109}
1110
1111
7904e09f
JB
1112/* Process a symbol file, as either the main file or as a dynamically
1113 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1114 for details. */
1115struct objfile *
7eedccfa
PP
1116symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1117 int flags)
7904e09f 1118{
7eedccfa
PP
1119 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1120 flags);
7904e09f
JB
1121}
1122
1123
d7db6da9
FN
1124/* Call symbol_file_add() with default values and update whatever is
1125 affected by the loading of a new main().
1126 Used when the file is supplied in the gdb command line
1127 and by some targets with special loading requirements.
1128 The auxiliary function, symbol_file_add_main_1(), has the flags
1129 argument for the switches that can only be specified in the symbol_file
1130 command itself. */
5417f6dc 1131
1adeb98a
FN
1132void
1133symbol_file_add_main (char *args, int from_tty)
1134{
d7db6da9
FN
1135 symbol_file_add_main_1 (args, from_tty, 0);
1136}
1137
1138static void
1139symbol_file_add_main_1 (char *args, int from_tty, int flags)
1140{
7eedccfa
PP
1141 const int add_flags = SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0);
1142 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1143
d7db6da9
FN
1144 /* Getting new symbols may change our opinion about
1145 what is frameless. */
1146 reinit_frame_cache ();
1147
1148 set_initial_language ();
1adeb98a
FN
1149}
1150
1151void
1152symbol_file_clear (int from_tty)
1153{
1154 if ((have_full_symbols () || have_partial_symbols ())
1155 && from_tty
0430b0d6
AS
1156 && (symfile_objfile
1157 ? !query (_("Discard symbol table from `%s'? "),
1158 symfile_objfile->name)
1159 : !query (_("Discard symbol table? "))))
8a3fe4f8 1160 error (_("Not confirmed."));
1adeb98a 1161
d10c338d 1162 free_all_objfiles ();
1adeb98a 1163
d10c338d
DE
1164 /* solib descriptors may have handles to objfiles. Since their
1165 storage has just been released, we'd better wipe the solib
1166 descriptors as well. */
1167 no_shared_libraries (NULL, from_tty);
1168
1169 symfile_objfile = NULL;
1170 if (from_tty)
1171 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1172}
1173
77069918
JK
1174struct build_id
1175 {
1176 size_t size;
1177 gdb_byte data[1];
1178 };
1179
1180/* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
1181
1182static struct build_id *
1183build_id_bfd_get (bfd *abfd)
1184{
1185 struct build_id *retval;
1186
1187 if (!bfd_check_format (abfd, bfd_object)
1188 || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1189 || elf_tdata (abfd)->build_id == NULL)
1190 return NULL;
1191
1192 retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size);
1193 retval->size = elf_tdata (abfd)->build_id_size;
1194 memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size);
1195
1196 return retval;
1197}
1198
1199/* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
1200
1201static int
1202build_id_verify (const char *filename, struct build_id *check)
1203{
1204 bfd *abfd;
1205 struct build_id *found = NULL;
1206 int retval = 0;
1207
1208 /* We expect to be silent on the non-existing files. */
f1838a98
UW
1209 if (remote_filename_p (filename))
1210 abfd = remote_bfd_open (filename, gnutarget);
1211 else
1212 abfd = bfd_openr (filename, gnutarget);
77069918
JK
1213 if (abfd == NULL)
1214 return 0;
1215
1216 found = build_id_bfd_get (abfd);
1217
1218 if (found == NULL)
1219 warning (_("File \"%s\" has no build-id, file skipped"), filename);
1220 else if (found->size != check->size
1221 || memcmp (found->data, check->data, found->size) != 0)
1222 warning (_("File \"%s\" has a different build-id, file skipped"), filename);
1223 else
1224 retval = 1;
1225
1226 if (!bfd_close (abfd))
1227 warning (_("cannot close \"%s\": %s"), filename,
1228 bfd_errmsg (bfd_get_error ()));
bb01da77
TT
1229
1230 xfree (found);
1231
77069918
JK
1232 return retval;
1233}
1234
1235static char *
1236build_id_to_debug_filename (struct build_id *build_id)
1237{
1238 char *link, *s, *retval = NULL;
1239 gdb_byte *data = build_id->data;
1240 size_t size = build_id->size;
1241
1242 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1243 link = xmalloc (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1244 + 2 * size + (sizeof ".debug" - 1) + 1);
1245 s = link + sprintf (link, "%s/.build-id/", debug_file_directory);
1246 if (size > 0)
1247 {
1248 size--;
1249 s += sprintf (s, "%02x", (unsigned) *data++);
1250 }
1251 if (size > 0)
1252 *s++ = '/';
1253 while (size-- > 0)
1254 s += sprintf (s, "%02x", (unsigned) *data++);
1255 strcpy (s, ".debug");
1256
1257 /* lrealpath() is expensive even for the usually non-existent files. */
1258 if (access (link, F_OK) == 0)
1259 retval = lrealpath (link);
1260 xfree (link);
1261
1262 if (retval != NULL && !build_id_verify (retval, build_id))
1263 {
1264 xfree (retval);
1265 retval = NULL;
1266 }
1267
1268 return retval;
1269}
1270
5b5d99cf
JB
1271static char *
1272get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1273{
1274 asection *sect;
1275 bfd_size_type debuglink_size;
1276 unsigned long crc32;
1277 char *contents;
1278 int crc_offset;
1279 unsigned char *p;
5417f6dc 1280
5b5d99cf
JB
1281 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1282
1283 if (sect == NULL)
1284 return NULL;
1285
1286 debuglink_size = bfd_section_size (objfile->obfd, sect);
5417f6dc 1287
5b5d99cf
JB
1288 contents = xmalloc (debuglink_size);
1289 bfd_get_section_contents (objfile->obfd, sect, contents,
1290 (file_ptr)0, (bfd_size_type)debuglink_size);
1291
1292 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1293 crc_offset = strlen (contents) + 1;
1294 crc_offset = (crc_offset + 3) & ~3;
1295
1296 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
5417f6dc 1297
5b5d99cf
JB
1298 *crc32_out = crc32;
1299 return contents;
1300}
1301
1302static int
1303separate_debug_file_exists (const char *name, unsigned long crc)
1304{
1305 unsigned long file_crc = 0;
f1838a98 1306 bfd *abfd;
777ea8f1 1307 gdb_byte buffer[8*1024];
5b5d99cf
JB
1308 int count;
1309
f1838a98
UW
1310 if (remote_filename_p (name))
1311 abfd = remote_bfd_open (name, gnutarget);
1312 else
1313 abfd = bfd_openr (name, gnutarget);
1314
1315 if (!abfd)
5b5d99cf
JB
1316 return 0;
1317
f1838a98 1318 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
5b5d99cf
JB
1319 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1320
f1838a98 1321 bfd_close (abfd);
5b5d99cf
JB
1322
1323 return crc == file_crc;
1324}
1325
aa28a74e 1326char *debug_file_directory = NULL;
920d2a44
AC
1327static void
1328show_debug_file_directory (struct ui_file *file, int from_tty,
1329 struct cmd_list_element *c, const char *value)
1330{
1331 fprintf_filtered (file, _("\
1332The directory where separate debug symbols are searched for is \"%s\".\n"),
1333 value);
1334}
5b5d99cf
JB
1335
1336#if ! defined (DEBUG_SUBDIRECTORY)
1337#define DEBUG_SUBDIRECTORY ".debug"
1338#endif
1339
1340static char *
1341find_separate_debug_file (struct objfile *objfile)
1342{
1343 asection *sect;
1344 char *basename;
1345 char *dir;
1346 char *debugfile;
1347 char *name_copy;
aa28a74e 1348 char *canon_name;
5b5d99cf
JB
1349 bfd_size_type debuglink_size;
1350 unsigned long crc32;
1351 int i;
77069918
JK
1352 struct build_id *build_id;
1353
1354 build_id = build_id_bfd_get (objfile->obfd);
1355 if (build_id != NULL)
1356 {
1357 char *build_id_name;
1358
1359 build_id_name = build_id_to_debug_filename (build_id);
bb01da77 1360 xfree (build_id);
77069918
JK
1361 /* Prevent looping on a stripped .debug file. */
1362 if (build_id_name != NULL && strcmp (build_id_name, objfile->name) == 0)
1363 {
1364 warning (_("\"%s\": separate debug info file has no debug info"),
1365 build_id_name);
1366 xfree (build_id_name);
1367 }
1368 else if (build_id_name != NULL)
1369 return build_id_name;
1370 }
5b5d99cf
JB
1371
1372 basename = get_debug_link_info (objfile, &crc32);
1373
1374 if (basename == NULL)
1375 return NULL;
5417f6dc 1376
5b5d99cf
JB
1377 dir = xstrdup (objfile->name);
1378
fe36c4f4
JB
1379 /* Strip off the final filename part, leaving the directory name,
1380 followed by a slash. Objfile names should always be absolute and
1381 tilde-expanded, so there should always be a slash in there
1382 somewhere. */
5b5d99cf
JB
1383 for (i = strlen(dir) - 1; i >= 0; i--)
1384 {
1385 if (IS_DIR_SEPARATOR (dir[i]))
1386 break;
1387 }
fe36c4f4 1388 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
5b5d99cf 1389 dir[i+1] = '\0';
5417f6dc 1390
1ffa32ee
JK
1391 /* Set I to max (strlen (canon_name), strlen (dir)). */
1392 canon_name = lrealpath (dir);
1393 i = strlen (dir);
1394 if (canon_name && strlen (canon_name) > i)
1395 i = strlen (canon_name);
1396
5b5d99cf 1397 debugfile = alloca (strlen (debug_file_directory) + 1
1ffa32ee 1398 + i
5b5d99cf
JB
1399 + strlen (DEBUG_SUBDIRECTORY)
1400 + strlen ("/")
5417f6dc 1401 + strlen (basename)
5b5d99cf
JB
1402 + 1);
1403
1404 /* First try in the same directory as the original file. */
1405 strcpy (debugfile, dir);
1406 strcat (debugfile, basename);
1407
1408 if (separate_debug_file_exists (debugfile, crc32))
1409 {
1410 xfree (basename);
1411 xfree (dir);
1ffa32ee 1412 xfree (canon_name);
5b5d99cf
JB
1413 return xstrdup (debugfile);
1414 }
5417f6dc 1415
5b5d99cf
JB
1416 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1417 strcpy (debugfile, dir);
1418 strcat (debugfile, DEBUG_SUBDIRECTORY);
1419 strcat (debugfile, "/");
1420 strcat (debugfile, basename);
1421
1422 if (separate_debug_file_exists (debugfile, crc32))
1423 {
1424 xfree (basename);
1425 xfree (dir);
1ffa32ee 1426 xfree (canon_name);
5b5d99cf
JB
1427 return xstrdup (debugfile);
1428 }
5417f6dc 1429
5b5d99cf
JB
1430 /* Then try in the global debugfile directory. */
1431 strcpy (debugfile, debug_file_directory);
1432 strcat (debugfile, "/");
1433 strcat (debugfile, dir);
5b5d99cf
JB
1434 strcat (debugfile, basename);
1435
1436 if (separate_debug_file_exists (debugfile, crc32))
1437 {
1438 xfree (basename);
1439 xfree (dir);
1ffa32ee 1440 xfree (canon_name);
5b5d99cf
JB
1441 return xstrdup (debugfile);
1442 }
5417f6dc 1443
aa28a74e
DJ
1444 /* If the file is in the sysroot, try using its base path in the
1445 global debugfile directory. */
aa28a74e
DJ
1446 if (canon_name
1447 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1448 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1449 {
1450 strcpy (debugfile, debug_file_directory);
1451 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1452 strcat (debugfile, "/");
1453 strcat (debugfile, basename);
1454
1455 if (separate_debug_file_exists (debugfile, crc32))
1456 {
1457 xfree (canon_name);
1458 xfree (basename);
1459 xfree (dir);
1460 return xstrdup (debugfile);
1461 }
1462 }
1463
1464 if (canon_name)
1465 xfree (canon_name);
1466
5b5d99cf
JB
1467 xfree (basename);
1468 xfree (dir);
1469 return NULL;
1470}
1471
1472
c906108c
SS
1473/* This is the symbol-file command. Read the file, analyze its
1474 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1475 the command is rather bizarre:
1476
1477 1. The function buildargv implements various quoting conventions
1478 which are undocumented and have little or nothing in common with
1479 the way things are quoted (or not quoted) elsewhere in GDB.
1480
1481 2. Options are used, which are not generally used in GDB (perhaps
1482 "set mapped on", "set readnow on" would be better)
1483
1484 3. The order of options matters, which is contrary to GNU
c906108c
SS
1485 conventions (because it is confusing and inconvenient). */
1486
1487void
fba45db2 1488symbol_file_command (char *args, int from_tty)
c906108c 1489{
c906108c
SS
1490 dont_repeat ();
1491
1492 if (args == NULL)
1493 {
1adeb98a 1494 symbol_file_clear (from_tty);
c906108c
SS
1495 }
1496 else
1497 {
d1a41061 1498 char **argv = gdb_buildargv (args);
cb2f3a29
MK
1499 int flags = OBJF_USERLOADED;
1500 struct cleanup *cleanups;
1501 char *name = NULL;
1502
7a292a7a 1503 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1504 while (*argv != NULL)
1505 {
78a4a9b9
AC
1506 if (strcmp (*argv, "-readnow") == 0)
1507 flags |= OBJF_READNOW;
1508 else if (**argv == '-')
8a3fe4f8 1509 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1510 else
1511 {
cb2f3a29 1512 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1513 name = *argv;
78a4a9b9 1514 }
cb2f3a29 1515
c906108c
SS
1516 argv++;
1517 }
1518
1519 if (name == NULL)
cb2f3a29
MK
1520 error (_("no symbol file name was specified"));
1521
c906108c
SS
1522 do_cleanups (cleanups);
1523 }
1524}
1525
1526/* Set the initial language.
1527
cb2f3a29
MK
1528 FIXME: A better solution would be to record the language in the
1529 psymtab when reading partial symbols, and then use it (if known) to
1530 set the language. This would be a win for formats that encode the
1531 language in an easily discoverable place, such as DWARF. For
1532 stabs, we can jump through hoops looking for specially named
1533 symbols or try to intuit the language from the specific type of
1534 stabs we find, but we can't do that until later when we read in
1535 full symbols. */
c906108c 1536
8b60591b 1537void
fba45db2 1538set_initial_language (void)
c906108c
SS
1539{
1540 struct partial_symtab *pst;
c5aa993b 1541 enum language lang = language_unknown;
c906108c
SS
1542
1543 pst = find_main_psymtab ();
1544 if (pst != NULL)
1545 {
c5aa993b 1546 if (pst->filename != NULL)
cb2f3a29
MK
1547 lang = deduce_language_from_filename (pst->filename);
1548
c906108c
SS
1549 if (lang == language_unknown)
1550 {
c5aa993b
JM
1551 /* Make C the default language */
1552 lang = language_c;
c906108c 1553 }
cb2f3a29 1554
c906108c 1555 set_language (lang);
cb2f3a29 1556 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1557 }
1558}
1559
cb2f3a29
MK
1560/* Open the file specified by NAME and hand it off to BFD for
1561 preliminary analysis. Return a newly initialized bfd *, which
1562 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1563 absolute). In case of trouble, error() is called. */
c906108c
SS
1564
1565bfd *
fba45db2 1566symfile_bfd_open (char *name)
c906108c
SS
1567{
1568 bfd *sym_bfd;
1569 int desc;
1570 char *absolute_name;
1571
f1838a98
UW
1572 if (remote_filename_p (name))
1573 {
1574 name = xstrdup (name);
1575 sym_bfd = remote_bfd_open (name, gnutarget);
1576 if (!sym_bfd)
1577 {
1578 make_cleanup (xfree, name);
1579 error (_("`%s': can't open to read symbols: %s."), name,
1580 bfd_errmsg (bfd_get_error ()));
1581 }
1582
1583 if (!bfd_check_format (sym_bfd, bfd_object))
1584 {
1585 bfd_close (sym_bfd);
1586 make_cleanup (xfree, name);
1587 error (_("`%s': can't read symbols: %s."), name,
1588 bfd_errmsg (bfd_get_error ()));
1589 }
1590
1591 return sym_bfd;
1592 }
1593
cb2f3a29 1594 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c
SS
1595
1596 /* Look down path for it, allocate 2nd new malloc'd copy. */
cb2f3a29 1597 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
fbdebf46 1598 O_RDONLY | O_BINARY, &absolute_name);
608506ed 1599#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1600 if (desc < 0)
1601 {
1602 char *exename = alloca (strlen (name) + 5);
1603 strcat (strcpy (exename, name), ".exe");
014d698b 1604 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
fbdebf46 1605 O_RDONLY | O_BINARY, &absolute_name);
c906108c
SS
1606 }
1607#endif
1608 if (desc < 0)
1609 {
b8c9b27d 1610 make_cleanup (xfree, name);
c906108c
SS
1611 perror_with_name (name);
1612 }
cb2f3a29
MK
1613
1614 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1615 bfd. It'll be freed in free_objfile(). */
1616 xfree (name);
1617 name = absolute_name;
c906108c 1618
9f76c2cd 1619 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
c906108c
SS
1620 if (!sym_bfd)
1621 {
1622 close (desc);
b8c9b27d 1623 make_cleanup (xfree, name);
f1838a98 1624 error (_("`%s': can't open to read symbols: %s."), name,
c906108c
SS
1625 bfd_errmsg (bfd_get_error ()));
1626 }
549c1eea 1627 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1628
1629 if (!bfd_check_format (sym_bfd, bfd_object))
1630 {
cb2f3a29
MK
1631 /* FIXME: should be checking for errors from bfd_close (for one
1632 thing, on error it does not free all the storage associated
1633 with the bfd). */
1634 bfd_close (sym_bfd); /* This also closes desc. */
b8c9b27d 1635 make_cleanup (xfree, name);
f1838a98 1636 error (_("`%s': can't read symbols: %s."), name,
c906108c
SS
1637 bfd_errmsg (bfd_get_error ()));
1638 }
cb2f3a29 1639
4f6f9936
JK
1640 /* bfd_usrdata exists for applications and libbfd must not touch it. */
1641 gdb_assert (bfd_usrdata (sym_bfd) == NULL);
1642
cb2f3a29 1643 return sym_bfd;
c906108c
SS
1644}
1645
cb2f3a29
MK
1646/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1647 the section was not found. */
1648
0e931cf0
JB
1649int
1650get_section_index (struct objfile *objfile, char *section_name)
1651{
1652 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1653
0e931cf0
JB
1654 if (sect)
1655 return sect->index;
1656 else
1657 return -1;
1658}
1659
cb2f3a29
MK
1660/* Link SF into the global symtab_fns list. Called on startup by the
1661 _initialize routine in each object file format reader, to register
1662 information about each format the the reader is prepared to
1663 handle. */
c906108c
SS
1664
1665void
fba45db2 1666add_symtab_fns (struct sym_fns *sf)
c906108c
SS
1667{
1668 sf->next = symtab_fns;
1669 symtab_fns = sf;
1670}
1671
cb2f3a29
MK
1672/* Initialize OBJFILE to read symbols from its associated BFD. It
1673 either returns or calls error(). The result is an initialized
1674 struct sym_fns in the objfile structure, that contains cached
1675 information about the symbol file. */
c906108c 1676
31d99776
DJ
1677static struct sym_fns *
1678find_sym_fns (bfd *abfd)
c906108c
SS
1679{
1680 struct sym_fns *sf;
31d99776 1681 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
c906108c 1682
75245b24
MS
1683 if (our_flavour == bfd_target_srec_flavour
1684 || our_flavour == bfd_target_ihex_flavour
1685 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1686 return NULL; /* No symbols. */
75245b24 1687
c5aa993b 1688 for (sf = symtab_fns; sf != NULL; sf = sf->next)
31d99776
DJ
1689 if (our_flavour == sf->sym_flavour)
1690 return sf;
cb2f3a29 1691
8a3fe4f8 1692 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1693 bfd_get_target (abfd));
c906108c
SS
1694}
1695\f
cb2f3a29 1696
c906108c
SS
1697/* This function runs the load command of our current target. */
1698
1699static void
fba45db2 1700load_command (char *arg, int from_tty)
c906108c 1701{
4487aabf
PA
1702 /* The user might be reloading because the binary has changed. Take
1703 this opportunity to check. */
1704 reopen_exec_file ();
1705 reread_symbols ();
1706
c906108c 1707 if (arg == NULL)
1986bccd
AS
1708 {
1709 char *parg;
1710 int count = 0;
1711
1712 parg = arg = get_exec_file (1);
1713
1714 /* Count how many \ " ' tab space there are in the name. */
1715 while ((parg = strpbrk (parg, "\\\"'\t ")))
1716 {
1717 parg++;
1718 count++;
1719 }
1720
1721 if (count)
1722 {
1723 /* We need to quote this string so buildargv can pull it apart. */
1724 char *temp = xmalloc (strlen (arg) + count + 1 );
1725 char *ptemp = temp;
1726 char *prev;
1727
1728 make_cleanup (xfree, temp);
1729
1730 prev = parg = arg;
1731 while ((parg = strpbrk (parg, "\\\"'\t ")))
1732 {
1733 strncpy (ptemp, prev, parg - prev);
1734 ptemp += parg - prev;
1735 prev = parg++;
1736 *ptemp++ = '\\';
1737 }
1738 strcpy (ptemp, prev);
1739
1740 arg = temp;
1741 }
1742 }
1743
c906108c 1744 target_load (arg, from_tty);
2889e661
JB
1745
1746 /* After re-loading the executable, we don't really know which
1747 overlays are mapped any more. */
1748 overlay_cache_invalid = 1;
c906108c
SS
1749}
1750
1751/* This version of "load" should be usable for any target. Currently
1752 it is just used for remote targets, not inftarg.c or core files,
1753 on the theory that only in that case is it useful.
1754
1755 Avoiding xmodem and the like seems like a win (a) because we don't have
1756 to worry about finding it, and (b) On VMS, fork() is very slow and so
1757 we don't want to run a subprocess. On the other hand, I'm not sure how
1758 performance compares. */
917317f4 1759
917317f4
JM
1760static int validate_download = 0;
1761
e4f9b4d5
MS
1762/* Callback service function for generic_load (bfd_map_over_sections). */
1763
1764static void
1765add_section_size_callback (bfd *abfd, asection *asec, void *data)
1766{
1767 bfd_size_type *sum = data;
1768
2c500098 1769 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1770}
1771
1772/* Opaque data for load_section_callback. */
1773struct load_section_data {
1774 unsigned long load_offset;
a76d924d
DJ
1775 struct load_progress_data *progress_data;
1776 VEC(memory_write_request_s) *requests;
1777};
1778
1779/* Opaque data for load_progress. */
1780struct load_progress_data {
1781 /* Cumulative data. */
e4f9b4d5
MS
1782 unsigned long write_count;
1783 unsigned long data_count;
1784 bfd_size_type total_size;
a76d924d
DJ
1785};
1786
1787/* Opaque data for load_progress for a single section. */
1788struct load_progress_section_data {
1789 struct load_progress_data *cumulative;
cf7a04e8 1790
a76d924d 1791 /* Per-section data. */
cf7a04e8
DJ
1792 const char *section_name;
1793 ULONGEST section_sent;
1794 ULONGEST section_size;
1795 CORE_ADDR lma;
1796 gdb_byte *buffer;
e4f9b4d5
MS
1797};
1798
a76d924d 1799/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1800
1801static void
1802load_progress (ULONGEST bytes, void *untyped_arg)
1803{
a76d924d
DJ
1804 struct load_progress_section_data *args = untyped_arg;
1805 struct load_progress_data *totals;
1806
1807 if (args == NULL)
1808 /* Writing padding data. No easy way to get at the cumulative
1809 stats, so just ignore this. */
1810 return;
1811
1812 totals = args->cumulative;
1813
1814 if (bytes == 0 && args->section_sent == 0)
1815 {
1816 /* The write is just starting. Let the user know we've started
1817 this section. */
5af949e3
UW
1818 ui_out_message (uiout, 0, "Loading section %s, size %s lma %s\n",
1819 args->section_name, hex_string (args->section_size),
1820 paddress (target_gdbarch, args->lma));
a76d924d
DJ
1821 return;
1822 }
cf7a04e8
DJ
1823
1824 if (validate_download)
1825 {
1826 /* Broken memories and broken monitors manifest themselves here
1827 when bring new computers to life. This doubles already slow
1828 downloads. */
1829 /* NOTE: cagney/1999-10-18: A more efficient implementation
1830 might add a verify_memory() method to the target vector and
1831 then use that. remote.c could implement that method using
1832 the ``qCRC'' packet. */
1833 gdb_byte *check = xmalloc (bytes);
1834 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1835
1836 if (target_read_memory (args->lma, check, bytes) != 0)
5af949e3
UW
1837 error (_("Download verify read failed at %s"),
1838 paddress (target_gdbarch, args->lma));
cf7a04e8 1839 if (memcmp (args->buffer, check, bytes) != 0)
5af949e3
UW
1840 error (_("Download verify compare failed at %s"),
1841 paddress (target_gdbarch, args->lma));
cf7a04e8
DJ
1842 do_cleanups (verify_cleanups);
1843 }
a76d924d 1844 totals->data_count += bytes;
cf7a04e8
DJ
1845 args->lma += bytes;
1846 args->buffer += bytes;
a76d924d 1847 totals->write_count += 1;
cf7a04e8
DJ
1848 args->section_sent += bytes;
1849 if (quit_flag
1850 || (deprecated_ui_load_progress_hook != NULL
1851 && deprecated_ui_load_progress_hook (args->section_name,
1852 args->section_sent)))
1853 error (_("Canceled the download"));
1854
1855 if (deprecated_show_load_progress != NULL)
1856 deprecated_show_load_progress (args->section_name,
1857 args->section_sent,
1858 args->section_size,
a76d924d
DJ
1859 totals->data_count,
1860 totals->total_size);
cf7a04e8
DJ
1861}
1862
e4f9b4d5
MS
1863/* Callback service function for generic_load (bfd_map_over_sections). */
1864
1865static void
1866load_section_callback (bfd *abfd, asection *asec, void *data)
1867{
a76d924d 1868 struct memory_write_request *new_request;
e4f9b4d5 1869 struct load_section_data *args = data;
a76d924d 1870 struct load_progress_section_data *section_data;
cf7a04e8
DJ
1871 bfd_size_type size = bfd_get_section_size (asec);
1872 gdb_byte *buffer;
cf7a04e8 1873 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 1874
cf7a04e8
DJ
1875 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1876 return;
e4f9b4d5 1877
cf7a04e8
DJ
1878 if (size == 0)
1879 return;
e4f9b4d5 1880
a76d924d
DJ
1881 new_request = VEC_safe_push (memory_write_request_s,
1882 args->requests, NULL);
1883 memset (new_request, 0, sizeof (struct memory_write_request));
1884 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1885 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1886 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1887 new_request->data = xmalloc (size);
1888 new_request->baton = section_data;
cf7a04e8 1889
a76d924d 1890 buffer = new_request->data;
cf7a04e8 1891
a76d924d
DJ
1892 section_data->cumulative = args->progress_data;
1893 section_data->section_name = sect_name;
1894 section_data->section_size = size;
1895 section_data->lma = new_request->begin;
1896 section_data->buffer = buffer;
cf7a04e8
DJ
1897
1898 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
1899}
1900
1901/* Clean up an entire memory request vector, including load
1902 data and progress records. */
cf7a04e8 1903
a76d924d
DJ
1904static void
1905clear_memory_write_data (void *arg)
1906{
1907 VEC(memory_write_request_s) **vec_p = arg;
1908 VEC(memory_write_request_s) *vec = *vec_p;
1909 int i;
1910 struct memory_write_request *mr;
cf7a04e8 1911
a76d924d
DJ
1912 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1913 {
1914 xfree (mr->data);
1915 xfree (mr->baton);
1916 }
1917 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
1918}
1919
c906108c 1920void
917317f4 1921generic_load (char *args, int from_tty)
c906108c 1922{
c906108c 1923 bfd *loadfile_bfd;
2b71414d 1924 struct timeval start_time, end_time;
917317f4 1925 char *filename;
1986bccd 1926 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 1927 struct load_section_data cbdata;
a76d924d
DJ
1928 struct load_progress_data total_progress;
1929
e4f9b4d5 1930 CORE_ADDR entry;
1986bccd 1931 char **argv;
e4f9b4d5 1932
a76d924d
DJ
1933 memset (&cbdata, 0, sizeof (cbdata));
1934 memset (&total_progress, 0, sizeof (total_progress));
1935 cbdata.progress_data = &total_progress;
1936
1937 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 1938
d1a41061
PP
1939 if (args == NULL)
1940 error_no_arg (_("file to load"));
1986bccd 1941
d1a41061 1942 argv = gdb_buildargv (args);
1986bccd
AS
1943 make_cleanup_freeargv (argv);
1944
1945 filename = tilde_expand (argv[0]);
1946 make_cleanup (xfree, filename);
1947
1948 if (argv[1] != NULL)
917317f4
JM
1949 {
1950 char *endptr;
ba5f2f8a 1951
1986bccd
AS
1952 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1953
1954 /* If the last word was not a valid number then
1955 treat it as a file name with spaces in. */
1956 if (argv[1] == endptr)
1957 error (_("Invalid download offset:%s."), argv[1]);
1958
1959 if (argv[2] != NULL)
1960 error (_("Too many parameters."));
917317f4 1961 }
c906108c 1962
917317f4 1963 /* Open the file for loading. */
c906108c
SS
1964 loadfile_bfd = bfd_openr (filename, gnutarget);
1965 if (loadfile_bfd == NULL)
1966 {
1967 perror_with_name (filename);
1968 return;
1969 }
917317f4 1970
c906108c
SS
1971 /* FIXME: should be checking for errors from bfd_close (for one thing,
1972 on error it does not free all the storage associated with the
1973 bfd). */
5c65bbb6 1974 make_cleanup_bfd_close (loadfile_bfd);
c906108c 1975
c5aa993b 1976 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 1977 {
8a3fe4f8 1978 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
1979 bfd_errmsg (bfd_get_error ()));
1980 }
c5aa993b 1981
5417f6dc 1982 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
1983 (void *) &total_progress.total_size);
1984
1985 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 1986
2b71414d 1987 gettimeofday (&start_time, NULL);
c906108c 1988
a76d924d
DJ
1989 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1990 load_progress) != 0)
1991 error (_("Load failed"));
c906108c 1992
2b71414d 1993 gettimeofday (&end_time, NULL);
ba5f2f8a 1994
e4f9b4d5 1995 entry = bfd_get_start_address (loadfile_bfd);
e4f9b4d5 1996 ui_out_text (uiout, "Start address ");
5af949e3 1997 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
e4f9b4d5 1998 ui_out_text (uiout, ", load size ");
a76d924d 1999 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 2000 ui_out_text (uiout, "\n");
e4f9b4d5
MS
2001 /* We were doing this in remote-mips.c, I suspect it is right
2002 for other targets too. */
fb14de7b 2003 regcache_write_pc (get_current_regcache (), entry);
c906108c 2004
7ca9f392
AC
2005 /* FIXME: are we supposed to call symbol_file_add or not? According
2006 to a comment from remote-mips.c (where a call to symbol_file_add
2007 was commented out), making the call confuses GDB if more than one
2008 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 2009 others don't (or didn't - perhaps they have all been deleted). */
c906108c 2010
a76d924d
DJ
2011 print_transfer_performance (gdb_stdout, total_progress.data_count,
2012 total_progress.write_count,
2013 &start_time, &end_time);
c906108c
SS
2014
2015 do_cleanups (old_cleanups);
2016}
2017
2018/* Report how fast the transfer went. */
2019
917317f4
JM
2020/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2021 replaced by print_transfer_performance (with a very different
2022 function signature). */
2023
c906108c 2024void
fba45db2
KB
2025report_transfer_performance (unsigned long data_count, time_t start_time,
2026 time_t end_time)
c906108c 2027{
2b71414d
DJ
2028 struct timeval start, end;
2029
2030 start.tv_sec = start_time;
2031 start.tv_usec = 0;
2032 end.tv_sec = end_time;
2033 end.tv_usec = 0;
2034
2035 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
917317f4
JM
2036}
2037
2038void
d9fcf2fb 2039print_transfer_performance (struct ui_file *stream,
917317f4
JM
2040 unsigned long data_count,
2041 unsigned long write_count,
2b71414d
DJ
2042 const struct timeval *start_time,
2043 const struct timeval *end_time)
917317f4 2044{
9f43d28c 2045 ULONGEST time_count;
2b71414d
DJ
2046
2047 /* Compute the elapsed time in milliseconds, as a tradeoff between
2048 accuracy and overflow. */
2049 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2050 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2051
8b93c638
JM
2052 ui_out_text (uiout, "Transfer rate: ");
2053 if (time_count > 0)
2054 {
9f43d28c
DJ
2055 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2056
2057 if (ui_out_is_mi_like_p (uiout))
2058 {
2059 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2060 ui_out_text (uiout, " bits/sec");
2061 }
2062 else if (rate < 1024)
2063 {
2064 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2065 ui_out_text (uiout, " bytes/sec");
2066 }
2067 else
2068 {
2069 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2070 ui_out_text (uiout, " KB/sec");
2071 }
8b93c638
JM
2072 }
2073 else
2074 {
ba5f2f8a 2075 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 2076 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
2077 }
2078 if (write_count > 0)
2079 {
2080 ui_out_text (uiout, ", ");
ba5f2f8a 2081 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
2082 ui_out_text (uiout, " bytes/write");
2083 }
2084 ui_out_text (uiout, ".\n");
c906108c
SS
2085}
2086
2087/* This function allows the addition of incrementally linked object files.
2088 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2089/* Note: ezannoni 2000-04-13 This function/command used to have a
2090 special case syntax for the rombug target (Rombug is the boot
2091 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2092 rombug case, the user doesn't need to supply a text address,
2093 instead a call to target_link() (in target.c) would supply the
2094 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2095
c906108c 2096static void
fba45db2 2097add_symbol_file_command (char *args, int from_tty)
c906108c 2098{
5af949e3 2099 struct gdbarch *gdbarch = get_current_arch ();
db162d44 2100 char *filename = NULL;
2df3850c 2101 int flags = OBJF_USERLOADED;
c906108c 2102 char *arg;
2acceee2 2103 int expecting_option = 0;
db162d44 2104 int section_index = 0;
2acceee2
JM
2105 int argcnt = 0;
2106 int sec_num = 0;
2107 int i;
db162d44
EZ
2108 int expecting_sec_name = 0;
2109 int expecting_sec_addr = 0;
5b96932b 2110 char **argv;
db162d44 2111
a39a16c4 2112 struct sect_opt
2acceee2 2113 {
2acceee2
JM
2114 char *name;
2115 char *value;
a39a16c4 2116 };
db162d44 2117
a39a16c4
MM
2118 struct section_addr_info *section_addrs;
2119 struct sect_opt *sect_opts = NULL;
2120 size_t num_sect_opts = 0;
3017564a 2121 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2122
a39a16c4 2123 num_sect_opts = 16;
5417f6dc 2124 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
2125 * sizeof (struct sect_opt));
2126
c906108c
SS
2127 dont_repeat ();
2128
2129 if (args == NULL)
8a3fe4f8 2130 error (_("add-symbol-file takes a file name and an address"));
c906108c 2131
d1a41061 2132 argv = gdb_buildargv (args);
5b96932b 2133 make_cleanup_freeargv (argv);
db162d44 2134
5b96932b
AS
2135 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2136 {
2137 /* Process the argument. */
db162d44 2138 if (argcnt == 0)
c906108c 2139 {
db162d44
EZ
2140 /* The first argument is the file name. */
2141 filename = tilde_expand (arg);
3017564a 2142 make_cleanup (xfree, filename);
c906108c 2143 }
db162d44 2144 else
7a78ae4e
ND
2145 if (argcnt == 1)
2146 {
2147 /* The second argument is always the text address at which
2148 to load the program. */
2149 sect_opts[section_index].name = ".text";
2150 sect_opts[section_index].value = arg;
f414f22f 2151 if (++section_index >= num_sect_opts)
a39a16c4
MM
2152 {
2153 num_sect_opts *= 2;
5417f6dc 2154 sect_opts = ((struct sect_opt *)
a39a16c4 2155 xrealloc (sect_opts,
5417f6dc 2156 num_sect_opts
a39a16c4
MM
2157 * sizeof (struct sect_opt)));
2158 }
7a78ae4e
ND
2159 }
2160 else
2161 {
2162 /* It's an option (starting with '-') or it's an argument
2163 to an option */
2164
2165 if (*arg == '-')
2166 {
78a4a9b9
AC
2167 if (strcmp (arg, "-readnow") == 0)
2168 flags |= OBJF_READNOW;
2169 else if (strcmp (arg, "-s") == 0)
2170 {
2171 expecting_sec_name = 1;
2172 expecting_sec_addr = 1;
2173 }
7a78ae4e
ND
2174 }
2175 else
2176 {
2177 if (expecting_sec_name)
db162d44 2178 {
7a78ae4e
ND
2179 sect_opts[section_index].name = arg;
2180 expecting_sec_name = 0;
db162d44
EZ
2181 }
2182 else
7a78ae4e
ND
2183 if (expecting_sec_addr)
2184 {
2185 sect_opts[section_index].value = arg;
2186 expecting_sec_addr = 0;
f414f22f 2187 if (++section_index >= num_sect_opts)
a39a16c4
MM
2188 {
2189 num_sect_opts *= 2;
5417f6dc 2190 sect_opts = ((struct sect_opt *)
a39a16c4 2191 xrealloc (sect_opts,
5417f6dc 2192 num_sect_opts
a39a16c4
MM
2193 * sizeof (struct sect_opt)));
2194 }
7a78ae4e
ND
2195 }
2196 else
8a3fe4f8 2197 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
7a78ae4e
ND
2198 }
2199 }
c906108c 2200 }
c906108c 2201
927890d0
JB
2202 /* This command takes at least two arguments. The first one is a
2203 filename, and the second is the address where this file has been
2204 loaded. Abort now if this address hasn't been provided by the
2205 user. */
2206 if (section_index < 1)
2207 error (_("The address where %s has been loaded is missing"), filename);
2208
db162d44
EZ
2209 /* Print the prompt for the query below. And save the arguments into
2210 a sect_addr_info structure to be passed around to other
2211 functions. We have to split this up into separate print
bb599908 2212 statements because hex_string returns a local static
db162d44 2213 string. */
5417f6dc 2214
a3f17187 2215 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2216 section_addrs = alloc_section_addr_info (section_index);
2217 make_cleanup (xfree, section_addrs);
db162d44 2218 for (i = 0; i < section_index; i++)
c906108c 2219 {
db162d44
EZ
2220 CORE_ADDR addr;
2221 char *val = sect_opts[i].value;
2222 char *sec = sect_opts[i].name;
5417f6dc 2223
ae822768 2224 addr = parse_and_eval_address (val);
db162d44 2225
db162d44
EZ
2226 /* Here we store the section offsets in the order they were
2227 entered on the command line. */
a39a16c4
MM
2228 section_addrs->other[sec_num].name = sec;
2229 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2230 printf_unfiltered ("\t%s_addr = %s\n", sec,
2231 paddress (gdbarch, addr));
db162d44
EZ
2232 sec_num++;
2233
5417f6dc 2234 /* The object's sections are initialized when a
db162d44 2235 call is made to build_objfile_section_table (objfile).
5417f6dc 2236 This happens in reread_symbols.
db162d44
EZ
2237 At this point, we don't know what file type this is,
2238 so we can't determine what section names are valid. */
2acceee2 2239 }
db162d44 2240
2acceee2 2241 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2242 error (_("Not confirmed."));
c906108c 2243
7eedccfa
PP
2244 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2245 section_addrs, flags);
c906108c
SS
2246
2247 /* Getting new symbols may change our opinion about what is
2248 frameless. */
2249 reinit_frame_cache ();
db162d44 2250 do_cleanups (my_cleanups);
c906108c
SS
2251}
2252\f
70992597 2253
c906108c
SS
2254/* Re-read symbols if a symbol-file has changed. */
2255void
fba45db2 2256reread_symbols (void)
c906108c
SS
2257{
2258 struct objfile *objfile;
2259 long new_modtime;
2260 int reread_one = 0;
2261 struct stat new_statbuf;
2262 int res;
2263
2264 /* With the addition of shared libraries, this should be modified,
2265 the load time should be saved in the partial symbol tables, since
2266 different tables may come from different source files. FIXME.
2267 This routine should then walk down each partial symbol table
2268 and see if the symbol table that it originates from has been changed */
2269
c5aa993b
JM
2270 for (objfile = object_files; objfile; objfile = objfile->next)
2271 {
2272 if (objfile->obfd)
2273 {
52d16ba8 2274#ifdef DEPRECATED_IBM6000_TARGET
c5aa993b
JM
2275 /* If this object is from a shared library, then you should
2276 stat on the library name, not member name. */
c906108c 2277
c5aa993b
JM
2278 if (objfile->obfd->my_archive)
2279 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2280 else
c906108c 2281#endif
c5aa993b
JM
2282 res = stat (objfile->name, &new_statbuf);
2283 if (res != 0)
c906108c 2284 {
c5aa993b 2285 /* FIXME, should use print_sys_errmsg but it's not filtered. */
a3f17187 2286 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
c5aa993b
JM
2287 objfile->name);
2288 continue;
c906108c 2289 }
c5aa993b
JM
2290 new_modtime = new_statbuf.st_mtime;
2291 if (new_modtime != objfile->mtime)
c906108c 2292 {
c5aa993b
JM
2293 struct cleanup *old_cleanups;
2294 struct section_offsets *offsets;
2295 int num_offsets;
c5aa993b
JM
2296 char *obfd_filename;
2297
a3f17187 2298 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
c5aa993b
JM
2299 objfile->name);
2300
2301 /* There are various functions like symbol_file_add,
2302 symfile_bfd_open, syms_from_objfile, etc., which might
2303 appear to do what we want. But they have various other
2304 effects which we *don't* want. So we just do stuff
2305 ourselves. We don't worry about mapped files (for one thing,
2306 any mapped file will be out of date). */
2307
2308 /* If we get an error, blow away this objfile (not sure if
2309 that is the correct response for things like shared
2310 libraries). */
74b7792f 2311 old_cleanups = make_cleanup_free_objfile (objfile);
c5aa993b 2312 /* We need to do this whenever any symbols go away. */
74b7792f 2313 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c5aa993b 2314
b2de52bb
JK
2315 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2316 bfd_get_filename (exec_bfd)) == 0)
2317 {
2318 /* Reload EXEC_BFD without asking anything. */
2319
2320 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2321 }
2322
c5aa993b
JM
2323 /* Clean up any state BFD has sitting around. We don't need
2324 to close the descriptor but BFD lacks a way of closing the
2325 BFD without closing the descriptor. */
2326 obfd_filename = bfd_get_filename (objfile->obfd);
2327 if (!bfd_close (objfile->obfd))
8a3fe4f8 2328 error (_("Can't close BFD for %s: %s"), objfile->name,
c5aa993b 2329 bfd_errmsg (bfd_get_error ()));
f1838a98
UW
2330 if (remote_filename_p (obfd_filename))
2331 objfile->obfd = remote_bfd_open (obfd_filename, gnutarget);
2332 else
2333 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
c5aa993b 2334 if (objfile->obfd == NULL)
8a3fe4f8 2335 error (_("Can't open %s to read symbols."), objfile->name);
c5aa993b
JM
2336 /* bfd_openr sets cacheable to true, which is what we want. */
2337 if (!bfd_check_format (objfile->obfd, bfd_object))
8a3fe4f8 2338 error (_("Can't read symbols from %s: %s."), objfile->name,
c5aa993b
JM
2339 bfd_errmsg (bfd_get_error ()));
2340
2341 /* Save the offsets, we will nuke them with the rest of the
8b92e4d5 2342 objfile_obstack. */
c5aa993b 2343 num_offsets = objfile->num_sections;
5417f6dc 2344 offsets = ((struct section_offsets *)
a39a16c4 2345 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
5417f6dc 2346 memcpy (offsets, objfile->section_offsets,
a39a16c4 2347 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b 2348
ae5a43e0
DJ
2349 /* Remove any references to this objfile in the global
2350 value lists. */
2351 preserve_values (objfile);
2352
c5aa993b
JM
2353 /* Nuke all the state that we will re-read. Much of the following
2354 code which sets things to NULL really is necessary to tell
5b2ab461
JK
2355 other parts of GDB that there is nothing currently there.
2356
2357 Try to keep the freeing order compatible with free_objfile. */
2358
2359 if (objfile->sf != NULL)
2360 {
2361 (*objfile->sf->sym_finish) (objfile);
2362 }
2363
2364 clear_objfile_data (objfile);
c5aa993b
JM
2365
2366 /* FIXME: Do we have to free a whole linked list, or is this
2367 enough? */
2368 if (objfile->global_psymbols.list)
2dc74dc1 2369 xfree (objfile->global_psymbols.list);
c5aa993b
JM
2370 memset (&objfile->global_psymbols, 0,
2371 sizeof (objfile->global_psymbols));
2372 if (objfile->static_psymbols.list)
2dc74dc1 2373 xfree (objfile->static_psymbols.list);
c5aa993b
JM
2374 memset (&objfile->static_psymbols, 0,
2375 sizeof (objfile->static_psymbols));
2376
2377 /* Free the obstacks for non-reusable objfiles */
af5f3db6
AC
2378 bcache_xfree (objfile->psymbol_cache);
2379 objfile->psymbol_cache = bcache_xmalloc ();
2380 bcache_xfree (objfile->macro_cache);
2381 objfile->macro_cache = bcache_xmalloc ();
2de7ced7
DJ
2382 if (objfile->demangled_names_hash != NULL)
2383 {
2384 htab_delete (objfile->demangled_names_hash);
2385 objfile->demangled_names_hash = NULL;
2386 }
b99607ea 2387 obstack_free (&objfile->objfile_obstack, 0);
c5aa993b
JM
2388 objfile->sections = NULL;
2389 objfile->symtabs = NULL;
2390 objfile->psymtabs = NULL;
930123b7 2391 objfile->psymtabs_addrmap = NULL;
c5aa993b 2392 objfile->free_psymtabs = NULL;
a1b8c067 2393 objfile->cp_namespace_symtab = NULL;
c5aa993b 2394 objfile->msymbols = NULL;
0a6ddd08 2395 objfile->deprecated_sym_private = NULL;
c5aa993b 2396 objfile->minimal_symbol_count = 0;
0a83117a
MS
2397 memset (&objfile->msymbol_hash, 0,
2398 sizeof (objfile->msymbol_hash));
2399 memset (&objfile->msymbol_demangled_hash, 0,
2400 sizeof (objfile->msymbol_demangled_hash));
c5aa993b 2401
af5f3db6
AC
2402 objfile->psymbol_cache = bcache_xmalloc ();
2403 objfile->macro_cache = bcache_xmalloc ();
1ab21617
EZ
2404 /* obstack_init also initializes the obstack so it is
2405 empty. We could use obstack_specify_allocation but
2406 gdb_obstack.h specifies the alloc/dealloc
2407 functions. */
2408 obstack_init (&objfile->objfile_obstack);
c5aa993b
JM
2409 if (build_objfile_section_table (objfile))
2410 {
8a3fe4f8 2411 error (_("Can't find the file sections in `%s': %s"),
c5aa993b
JM
2412 objfile->name, bfd_errmsg (bfd_get_error ()));
2413 }
15831452 2414 terminate_minimal_symbol_table (objfile);
c5aa993b
JM
2415
2416 /* We use the same section offsets as from last time. I'm not
2417 sure whether that is always correct for shared libraries. */
2418 objfile->section_offsets = (struct section_offsets *)
5417f6dc 2419 obstack_alloc (&objfile->objfile_obstack,
a39a16c4 2420 SIZEOF_N_SECTION_OFFSETS (num_offsets));
5417f6dc 2421 memcpy (objfile->section_offsets, offsets,
a39a16c4 2422 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b
JM
2423 objfile->num_sections = num_offsets;
2424
2425 /* What the hell is sym_new_init for, anyway? The concept of
2426 distinguishing between the main file and additional files
2427 in this way seems rather dubious. */
2428 if (objfile == symfile_objfile)
2429 {
2430 (*objfile->sf->sym_new_init) (objfile);
c5aa993b
JM
2431 }
2432
2433 (*objfile->sf->sym_init) (objfile);
b9caf505 2434 clear_complaints (&symfile_complaints, 1, 1);
c5aa993b
JM
2435 /* The "mainline" parameter is a hideous hack; I think leaving it
2436 zero is OK since dbxread.c also does what it needs to do if
2437 objfile->global_psymbols.size is 0. */
96baa820 2438 (*objfile->sf->sym_read) (objfile, 0);
c5aa993b
JM
2439 if (!have_partial_symbols () && !have_full_symbols ())
2440 {
2441 wrap_here ("");
a3f17187 2442 printf_unfiltered (_("(no debugging symbols found)\n"));
c5aa993b
JM
2443 wrap_here ("");
2444 }
c5aa993b
JM
2445
2446 /* We're done reading the symbol file; finish off complaints. */
b9caf505 2447 clear_complaints (&symfile_complaints, 0, 1);
c906108c 2448
c5aa993b
JM
2449 /* Getting new symbols may change our opinion about what is
2450 frameless. */
c906108c 2451
c5aa993b 2452 reinit_frame_cache ();
c906108c 2453
c5aa993b
JM
2454 /* Discard cleanups as symbol reading was successful. */
2455 discard_cleanups (old_cleanups);
c906108c 2456
c5aa993b
JM
2457 /* If the mtime has changed between the time we set new_modtime
2458 and now, we *want* this to be out of date, so don't call stat
2459 again now. */
2460 objfile->mtime = new_modtime;
2461 reread_one = 1;
5b5d99cf 2462 reread_separate_symbols (objfile);
6528a9ea 2463 init_entry_point_info (objfile);
c5aa993b 2464 }
c906108c
SS
2465 }
2466 }
c906108c
SS
2467
2468 if (reread_one)
ea53e89f
JB
2469 {
2470 clear_symtab_users ();
2471 /* At least one objfile has changed, so we can consider that
2472 the executable we're debugging has changed too. */
781b42b0 2473 observer_notify_executable_changed ();
bb272892
PP
2474
2475 /* Notify objfiles that we've modified objfile sections. */
2476 objfiles_changed ();
ea53e89f 2477 }
c906108c 2478}
5b5d99cf
JB
2479
2480
2481/* Handle separate debug info for OBJFILE, which has just been
2482 re-read:
2483 - If we had separate debug info before, but now we don't, get rid
2484 of the separated objfile.
2485 - If we didn't have separated debug info before, but now we do,
2486 read in the new separated debug info file.
2487 - If the debug link points to a different file, toss the old one
2488 and read the new one.
2489 This function does *not* handle the case where objfile is still
2490 using the same separate debug info file, but that file's timestamp
2491 has changed. That case should be handled by the loop in
2492 reread_symbols already. */
2493static void
2494reread_separate_symbols (struct objfile *objfile)
2495{
2496 char *debug_file;
2497 unsigned long crc32;
2498
2499 /* Does the updated objfile's debug info live in a
2500 separate file? */
2501 debug_file = find_separate_debug_file (objfile);
2502
2503 if (objfile->separate_debug_objfile)
2504 {
2505 /* There are two cases where we need to get rid of
2506 the old separated debug info objfile:
2507 - if the new primary objfile doesn't have
2508 separated debug info, or
2509 - if the new primary objfile has separate debug
2510 info, but it's under a different filename.
5417f6dc 2511
5b5d99cf
JB
2512 If the old and new objfiles both have separate
2513 debug info, under the same filename, then we're
2514 okay --- if the separated file's contents have
2515 changed, we will have caught that when we
2516 visited it in this function's outermost
2517 loop. */
2518 if (! debug_file
2519 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2520 free_objfile (objfile->separate_debug_objfile);
2521 }
2522
2523 /* If the new objfile has separate debug info, and we
2524 haven't loaded it already, do so now. */
2525 if (debug_file
2526 && ! objfile->separate_debug_objfile)
2527 {
2528 /* Use the same section offset table as objfile itself.
2529 Preserve the flags from objfile that make sense. */
2530 objfile->separate_debug_objfile
2531 = (symbol_file_add_with_addrs_or_offsets
5417f6dc 2532 (symfile_bfd_open (debug_file),
7eedccfa 2533 info_verbose ? SYMFILE_VERBOSE : 0,
5b5d99cf
JB
2534 0, /* No addr table. */
2535 objfile->section_offsets, objfile->num_sections,
78a4a9b9 2536 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
5b5d99cf
JB
2537 | OBJF_USERLOADED)));
2538 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2539 = objfile;
2540 }
73780b3c
MS
2541 if (debug_file)
2542 xfree (debug_file);
5b5d99cf
JB
2543}
2544
2545
c906108c
SS
2546\f
2547
c5aa993b
JM
2548
2549typedef struct
2550{
2551 char *ext;
c906108c 2552 enum language lang;
c5aa993b
JM
2553}
2554filename_language;
c906108c 2555
c5aa993b 2556static filename_language *filename_language_table;
c906108c
SS
2557static int fl_table_size, fl_table_next;
2558
2559static void
fba45db2 2560add_filename_language (char *ext, enum language lang)
c906108c
SS
2561{
2562 if (fl_table_next >= fl_table_size)
2563 {
2564 fl_table_size += 10;
5417f6dc 2565 filename_language_table =
25bf3106
PM
2566 xrealloc (filename_language_table,
2567 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2568 }
2569
4fcf66da 2570 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2571 filename_language_table[fl_table_next].lang = lang;
2572 fl_table_next++;
2573}
2574
2575static char *ext_args;
920d2a44
AC
2576static void
2577show_ext_args (struct ui_file *file, int from_tty,
2578 struct cmd_list_element *c, const char *value)
2579{
2580 fprintf_filtered (file, _("\
2581Mapping between filename extension and source language is \"%s\".\n"),
2582 value);
2583}
c906108c
SS
2584
2585static void
26c41df3 2586set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2587{
2588 int i;
2589 char *cp = ext_args;
2590 enum language lang;
2591
2592 /* First arg is filename extension, starting with '.' */
2593 if (*cp != '.')
8a3fe4f8 2594 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2595
2596 /* Find end of first arg. */
c5aa993b 2597 while (*cp && !isspace (*cp))
c906108c
SS
2598 cp++;
2599
2600 if (*cp == '\0')
8a3fe4f8 2601 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2602 ext_args);
2603
2604 /* Null-terminate first arg */
c5aa993b 2605 *cp++ = '\0';
c906108c
SS
2606
2607 /* Find beginning of second arg, which should be a source language. */
2608 while (*cp && isspace (*cp))
2609 cp++;
2610
2611 if (*cp == '\0')
8a3fe4f8 2612 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2613 ext_args);
2614
2615 /* Lookup the language from among those we know. */
2616 lang = language_enum (cp);
2617
2618 /* Now lookup the filename extension: do we already know it? */
2619 for (i = 0; i < fl_table_next; i++)
2620 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2621 break;
2622
2623 if (i >= fl_table_next)
2624 {
2625 /* new file extension */
2626 add_filename_language (ext_args, lang);
2627 }
2628 else
2629 {
2630 /* redefining a previously known filename extension */
2631
2632 /* if (from_tty) */
2633 /* query ("Really make files of type %s '%s'?", */
2634 /* ext_args, language_str (lang)); */
2635
b8c9b27d 2636 xfree (filename_language_table[i].ext);
4fcf66da 2637 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2638 filename_language_table[i].lang = lang;
2639 }
2640}
2641
2642static void
fba45db2 2643info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2644{
2645 int i;
2646
a3f17187 2647 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2648 printf_filtered ("\n\n");
2649 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2650 printf_filtered ("\t%s\t- %s\n",
2651 filename_language_table[i].ext,
c906108c
SS
2652 language_str (filename_language_table[i].lang));
2653}
2654
2655static void
fba45db2 2656init_filename_language_table (void)
c906108c
SS
2657{
2658 if (fl_table_size == 0) /* protect against repetition */
2659 {
2660 fl_table_size = 20;
2661 fl_table_next = 0;
c5aa993b 2662 filename_language_table =
c906108c 2663 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b
JM
2664 add_filename_language (".c", language_c);
2665 add_filename_language (".C", language_cplus);
2666 add_filename_language (".cc", language_cplus);
2667 add_filename_language (".cp", language_cplus);
2668 add_filename_language (".cpp", language_cplus);
2669 add_filename_language (".cxx", language_cplus);
2670 add_filename_language (".c++", language_cplus);
2671 add_filename_language (".java", language_java);
c906108c 2672 add_filename_language (".class", language_java);
da2cf7e0 2673 add_filename_language (".m", language_objc);
c5aa993b
JM
2674 add_filename_language (".f", language_fortran);
2675 add_filename_language (".F", language_fortran);
2676 add_filename_language (".s", language_asm);
aa707ed0 2677 add_filename_language (".sx", language_asm);
c5aa993b 2678 add_filename_language (".S", language_asm);
c6fd39cd
PM
2679 add_filename_language (".pas", language_pascal);
2680 add_filename_language (".p", language_pascal);
2681 add_filename_language (".pp", language_pascal);
963a6417
PH
2682 add_filename_language (".adb", language_ada);
2683 add_filename_language (".ads", language_ada);
2684 add_filename_language (".a", language_ada);
2685 add_filename_language (".ada", language_ada);
c906108c
SS
2686 }
2687}
2688
2689enum language
fba45db2 2690deduce_language_from_filename (char *filename)
c906108c
SS
2691{
2692 int i;
2693 char *cp;
2694
2695 if (filename != NULL)
2696 if ((cp = strrchr (filename, '.')) != NULL)
2697 for (i = 0; i < fl_table_next; i++)
2698 if (strcmp (cp, filename_language_table[i].ext) == 0)
2699 return filename_language_table[i].lang;
2700
2701 return language_unknown;
2702}
2703\f
2704/* allocate_symtab:
2705
2706 Allocate and partly initialize a new symbol table. Return a pointer
2707 to it. error() if no space.
2708
2709 Caller must set these fields:
c5aa993b
JM
2710 LINETABLE(symtab)
2711 symtab->blockvector
2712 symtab->dirname
2713 symtab->free_code
2714 symtab->free_ptr
2715 possibly free_named_symtabs (symtab->filename);
c906108c
SS
2716 */
2717
2718struct symtab *
fba45db2 2719allocate_symtab (char *filename, struct objfile *objfile)
c906108c 2720{
52f0bd74 2721 struct symtab *symtab;
c906108c
SS
2722
2723 symtab = (struct symtab *)
4a146b47 2724 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2725 memset (symtab, 0, sizeof (*symtab));
c5aa993b 2726 symtab->filename = obsavestring (filename, strlen (filename),
4a146b47 2727 &objfile->objfile_obstack);
c5aa993b
JM
2728 symtab->fullname = NULL;
2729 symtab->language = deduce_language_from_filename (filename);
2730 symtab->debugformat = obsavestring ("unknown", 7,
4a146b47 2731 &objfile->objfile_obstack);
c906108c
SS
2732
2733 /* Hook it to the objfile it comes from */
2734
c5aa993b
JM
2735 symtab->objfile = objfile;
2736 symtab->next = objfile->symtabs;
2737 objfile->symtabs = symtab;
c906108c 2738
c906108c
SS
2739 return (symtab);
2740}
2741
2742struct partial_symtab *
fba45db2 2743allocate_psymtab (char *filename, struct objfile *objfile)
c906108c
SS
2744{
2745 struct partial_symtab *psymtab;
2746
c5aa993b 2747 if (objfile->free_psymtabs)
c906108c 2748 {
c5aa993b
JM
2749 psymtab = objfile->free_psymtabs;
2750 objfile->free_psymtabs = psymtab->next;
c906108c
SS
2751 }
2752 else
2753 psymtab = (struct partial_symtab *)
8b92e4d5 2754 obstack_alloc (&objfile->objfile_obstack,
c906108c
SS
2755 sizeof (struct partial_symtab));
2756
2757 memset (psymtab, 0, sizeof (struct partial_symtab));
c5aa993b 2758 psymtab->filename = obsavestring (filename, strlen (filename),
8b92e4d5 2759 &objfile->objfile_obstack);
c5aa993b 2760 psymtab->symtab = NULL;
c906108c
SS
2761
2762 /* Prepend it to the psymtab list for the objfile it belongs to.
2763 Psymtabs are searched in most recent inserted -> least recent
2764 inserted order. */
2765
c5aa993b
JM
2766 psymtab->objfile = objfile;
2767 psymtab->next = objfile->psymtabs;
2768 objfile->psymtabs = psymtab;
c906108c
SS
2769#if 0
2770 {
2771 struct partial_symtab **prev_pst;
c5aa993b
JM
2772 psymtab->objfile = objfile;
2773 psymtab->next = NULL;
2774 prev_pst = &(objfile->psymtabs);
c906108c 2775 while ((*prev_pst) != NULL)
c5aa993b 2776 prev_pst = &((*prev_pst)->next);
c906108c 2777 (*prev_pst) = psymtab;
c5aa993b 2778 }
c906108c 2779#endif
c5aa993b 2780
c906108c
SS
2781 return (psymtab);
2782}
2783
2784void
fba45db2 2785discard_psymtab (struct partial_symtab *pst)
c906108c
SS
2786{
2787 struct partial_symtab **prev_pst;
2788
2789 /* From dbxread.c:
2790 Empty psymtabs happen as a result of header files which don't
2791 have any symbols in them. There can be a lot of them. But this
2792 check is wrong, in that a psymtab with N_SLINE entries but
2793 nothing else is not empty, but we don't realize that. Fixing
2794 that without slowing things down might be tricky. */
2795
2796 /* First, snip it out of the psymtab chain */
2797
2798 prev_pst = &(pst->objfile->psymtabs);
2799 while ((*prev_pst) != pst)
2800 prev_pst = &((*prev_pst)->next);
2801 (*prev_pst) = pst->next;
2802
2803 /* Next, put it on a free list for recycling */
2804
2805 pst->next = pst->objfile->free_psymtabs;
2806 pst->objfile->free_psymtabs = pst;
2807}
c906108c 2808\f
c5aa993b 2809
c906108c
SS
2810/* Reset all data structures in gdb which may contain references to symbol
2811 table data. */
2812
2813void
fba45db2 2814clear_symtab_users (void)
c906108c
SS
2815{
2816 /* Someday, we should do better than this, by only blowing away
2817 the things that really need to be blown. */
c0501be5
DJ
2818
2819 /* Clear the "current" symtab first, because it is no longer valid.
2820 breakpoint_re_set may try to access the current symtab. */
2821 clear_current_source_symtab_and_line ();
2822
c906108c 2823 clear_displays ();
c906108c
SS
2824 breakpoint_re_set ();
2825 set_default_breakpoint (0, 0, 0, 0);
c906108c 2826 clear_pc_function_cache ();
06d3b283 2827 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2828
2829 /* Clear globals which might have pointed into a removed objfile.
2830 FIXME: It's not clear which of these are supposed to persist
2831 between expressions and which ought to be reset each time. */
2832 expression_context_block = NULL;
2833 innermost_block = NULL;
8756216b
DP
2834
2835 /* Varobj may refer to old symbols, perform a cleanup. */
2836 varobj_invalidate ();
2837
c906108c
SS
2838}
2839
74b7792f
AC
2840static void
2841clear_symtab_users_cleanup (void *ignore)
2842{
2843 clear_symtab_users ();
2844}
2845
c906108c
SS
2846/* clear_symtab_users_once:
2847
2848 This function is run after symbol reading, or from a cleanup.
2849 If an old symbol table was obsoleted, the old symbol table
5417f6dc 2850 has been blown away, but the other GDB data structures that may
c906108c
SS
2851 reference it have not yet been cleared or re-directed. (The old
2852 symtab was zapped, and the cleanup queued, in free_named_symtab()
2853 below.)
2854
2855 This function can be queued N times as a cleanup, or called
2856 directly; it will do all the work the first time, and then will be a
2857 no-op until the next time it is queued. This works by bumping a
2858 counter at queueing time. Much later when the cleanup is run, or at
2859 the end of symbol processing (in case the cleanup is discarded), if
2860 the queued count is greater than the "done-count", we do the work
2861 and set the done-count to the queued count. If the queued count is
2862 less than or equal to the done-count, we just ignore the call. This
2863 is needed because reading a single .o file will often replace many
2864 symtabs (one per .h file, for example), and we don't want to reset
2865 the breakpoints N times in the user's face.
2866
2867 The reason we both queue a cleanup, and call it directly after symbol
2868 reading, is because the cleanup protects us in case of errors, but is
2869 discarded if symbol reading is successful. */
2870
2871#if 0
2872/* FIXME: As free_named_symtabs is currently a big noop this function
2873 is no longer needed. */
a14ed312 2874static void clear_symtab_users_once (void);
c906108c
SS
2875
2876static int clear_symtab_users_queued;
2877static int clear_symtab_users_done;
2878
2879static void
fba45db2 2880clear_symtab_users_once (void)
c906108c
SS
2881{
2882 /* Enforce once-per-`do_cleanups'-semantics */
2883 if (clear_symtab_users_queued <= clear_symtab_users_done)
2884 return;
2885 clear_symtab_users_done = clear_symtab_users_queued;
2886
2887 clear_symtab_users ();
2888}
2889#endif
2890
2891/* Delete the specified psymtab, and any others that reference it. */
2892
2893static void
fba45db2 2894cashier_psymtab (struct partial_symtab *pst)
c906108c
SS
2895{
2896 struct partial_symtab *ps, *pprev = NULL;
2897 int i;
2898
2899 /* Find its previous psymtab in the chain */
c5aa993b
JM
2900 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2901 {
2902 if (ps == pst)
2903 break;
2904 pprev = ps;
2905 }
c906108c 2906
c5aa993b
JM
2907 if (ps)
2908 {
2909 /* Unhook it from the chain. */
2910 if (ps == pst->objfile->psymtabs)
2911 pst->objfile->psymtabs = ps->next;
2912 else
2913 pprev->next = ps->next;
2914
2915 /* FIXME, we can't conveniently deallocate the entries in the
2916 partial_symbol lists (global_psymbols/static_psymbols) that
2917 this psymtab points to. These just take up space until all
2918 the psymtabs are reclaimed. Ditto the dependencies list and
8b92e4d5 2919 filename, which are all in the objfile_obstack. */
c5aa993b
JM
2920
2921 /* We need to cashier any psymtab that has this one as a dependency... */
2922 again:
2923 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2924 {
2925 for (i = 0; i < ps->number_of_dependencies; i++)
2926 {
2927 if (ps->dependencies[i] == pst)
2928 {
2929 cashier_psymtab (ps);
2930 goto again; /* Must restart, chain has been munged. */
2931 }
2932 }
c906108c 2933 }
c906108c 2934 }
c906108c
SS
2935}
2936
2937/* If a symtab or psymtab for filename NAME is found, free it along
2938 with any dependent breakpoints, displays, etc.
2939 Used when loading new versions of object modules with the "add-file"
2940 command. This is only called on the top-level symtab or psymtab's name;
2941 it is not called for subsidiary files such as .h files.
2942
2943 Return value is 1 if we blew away the environment, 0 if not.
7e73cedf 2944 FIXME. The return value appears to never be used.
c906108c
SS
2945
2946 FIXME. I think this is not the best way to do this. We should
2947 work on being gentler to the environment while still cleaning up
2948 all stray pointers into the freed symtab. */
2949
2950int
fba45db2 2951free_named_symtabs (char *name)
c906108c
SS
2952{
2953#if 0
2954 /* FIXME: With the new method of each objfile having it's own
2955 psymtab list, this function needs serious rethinking. In particular,
2956 why was it ever necessary to toss psymtabs with specific compilation
2957 unit filenames, as opposed to all psymtabs from a particular symbol
2958 file? -- fnf
2959 Well, the answer is that some systems permit reloading of particular
2960 compilation units. We want to blow away any old info about these
2961 compilation units, regardless of which objfiles they arrived in. --gnu. */
2962
52f0bd74
AC
2963 struct symtab *s;
2964 struct symtab *prev;
2965 struct partial_symtab *ps;
c906108c
SS
2966 struct blockvector *bv;
2967 int blewit = 0;
2968
2969 /* We only wack things if the symbol-reload switch is set. */
2970 if (!symbol_reloading)
2971 return 0;
2972
2973 /* Some symbol formats have trouble providing file names... */
2974 if (name == 0 || *name == '\0')
2975 return 0;
2976
2977 /* Look for a psymtab with the specified name. */
2978
2979again2:
c5aa993b
JM
2980 for (ps = partial_symtab_list; ps; ps = ps->next)
2981 {
6314a349 2982 if (strcmp (name, ps->filename) == 0)
c5aa993b
JM
2983 {
2984 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2985 goto again2; /* Must restart, chain has been munged */
2986 }
c906108c 2987 }
c906108c
SS
2988
2989 /* Look for a symtab with the specified name. */
2990
2991 for (s = symtab_list; s; s = s->next)
2992 {
6314a349 2993 if (strcmp (name, s->filename) == 0)
c906108c
SS
2994 break;
2995 prev = s;
2996 }
2997
2998 if (s)
2999 {
3000 if (s == symtab_list)
3001 symtab_list = s->next;
3002 else
3003 prev->next = s->next;
3004
3005 /* For now, queue a delete for all breakpoints, displays, etc., whether
c5aa993b
JM
3006 or not they depend on the symtab being freed. This should be
3007 changed so that only those data structures affected are deleted. */
c906108c
SS
3008
3009 /* But don't delete anything if the symtab is empty.
c5aa993b
JM
3010 This test is necessary due to a bug in "dbxread.c" that
3011 causes empty symtabs to be created for N_SO symbols that
3012 contain the pathname of the object file. (This problem
3013 has been fixed in GDB 3.9x). */
c906108c
SS
3014
3015 bv = BLOCKVECTOR (s);
3016 if (BLOCKVECTOR_NBLOCKS (bv) > 2
3017 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
3018 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
3019 {
e2e0b3e5 3020 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
b9caf505 3021 name);
c906108c
SS
3022 clear_symtab_users_queued++;
3023 make_cleanup (clear_symtab_users_once, 0);
3024 blewit = 1;
c5aa993b
JM
3025 }
3026 else
e2e0b3e5
AC
3027 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
3028 name);
c906108c
SS
3029
3030 free_symtab (s);
3031 }
3032 else
3033 {
3034 /* It is still possible that some breakpoints will be affected
c5aa993b
JM
3035 even though no symtab was found, since the file might have
3036 been compiled without debugging, and hence not be associated
3037 with a symtab. In order to handle this correctly, we would need
3038 to keep a list of text address ranges for undebuggable files.
3039 For now, we do nothing, since this is a fairly obscure case. */
c906108c
SS
3040 ;
3041 }
3042
3043 /* FIXME, what about the minimal symbol table? */
3044 return blewit;
3045#else
3046 return (0);
3047#endif
3048}
3049\f
3050/* Allocate and partially fill a partial symtab. It will be
3051 completely filled at the end of the symbol list.
3052
d4f3574e 3053 FILENAME is the name of the symbol-file we are reading from. */
c906108c
SS
3054
3055struct partial_symtab *
fba45db2
KB
3056start_psymtab_common (struct objfile *objfile,
3057 struct section_offsets *section_offsets, char *filename,
3058 CORE_ADDR textlow, struct partial_symbol **global_syms,
3059 struct partial_symbol **static_syms)
c906108c
SS
3060{
3061 struct partial_symtab *psymtab;
3062
3063 psymtab = allocate_psymtab (filename, objfile);
c5aa993b
JM
3064 psymtab->section_offsets = section_offsets;
3065 psymtab->textlow = textlow;
3066 psymtab->texthigh = psymtab->textlow; /* default */
3067 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
3068 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
c906108c
SS
3069 return (psymtab);
3070}
3071\f
2e618c13
AR
3072/* Helper function, initialises partial symbol structure and stashes
3073 it into objfile's bcache. Note that our caching mechanism will
3074 use all fields of struct partial_symbol to determine hash value of the
3075 structure. In other words, having two symbols with the same name but
3076 different domain (or address) is possible and correct. */
3077
11d31d94 3078static const struct partial_symbol *
2e618c13
AR
3079add_psymbol_to_bcache (char *name, int namelength, domain_enum domain,
3080 enum address_class class,
3081 long val, /* Value as a long */
3082 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3083 enum language language, struct objfile *objfile,
3084 int *added)
3085{
3086 char *buf = name;
3087 /* psymbol is static so that there will be no uninitialized gaps in the
3088 structure which might contain random data, causing cache misses in
3089 bcache. */
3090 static struct partial_symbol psymbol;
3091
3092 if (name[namelength] != '\0')
3093 {
3094 buf = alloca (namelength + 1);
3095 /* Create local copy of the partial symbol */
3096 memcpy (buf, name, namelength);
3097 buf[namelength] = '\0';
3098 }
3099 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
3100 if (val != 0)
3101 {
3102 SYMBOL_VALUE (&psymbol) = val;
3103 }
3104 else
3105 {
3106 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
3107 }
3108 SYMBOL_SECTION (&psymbol) = 0;
3109 SYMBOL_LANGUAGE (&psymbol) = language;
3110 PSYMBOL_DOMAIN (&psymbol) = domain;
3111 PSYMBOL_CLASS (&psymbol) = class;
3112
3113 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
3114
3115 /* Stash the partial symbol away in the cache */
11d31d94
TT
3116 return bcache_full (&psymbol, sizeof (struct partial_symbol),
3117 objfile->psymbol_cache, added);
2e618c13
AR
3118}
3119
3120/* Helper function, adds partial symbol to the given partial symbol
3121 list. */
3122
3123static void
3124append_psymbol_to_list (struct psymbol_allocation_list *list,
11d31d94 3125 const struct partial_symbol *psym,
2e618c13
AR
3126 struct objfile *objfile)
3127{
3128 if (list->next >= list->list + list->size)
3129 extend_psymbol_list (list, objfile);
11d31d94 3130 *list->next++ = (struct partial_symbol *) psym;
2e618c13
AR
3131 OBJSTAT (objfile, n_psyms++);
3132}
3133
c906108c 3134/* Add a symbol with a long value to a psymtab.
5417f6dc 3135 Since one arg is a struct, we pass in a ptr and deref it (sigh).
5c4e30ca
DC
3136 Return the partial symbol that has been added. */
3137
3138/* NOTE: carlton/2003-09-11: The reason why we return the partial
3139 symbol is so that callers can get access to the symbol's demangled
3140 name, which they don't have any cheap way to determine otherwise.
3141 (Currenly, dwarf2read.c is the only file who uses that information,
3142 though it's possible that other readers might in the future.)
3143 Elena wasn't thrilled about that, and I don't blame her, but we
3144 couldn't come up with a better way to get that information. If
3145 it's needed in other situations, we could consider breaking up
3146 SYMBOL_SET_NAMES to provide access to the demangled name lookup
3147 cache. */
3148
3149const struct partial_symbol *
176620f1 3150add_psymbol_to_list (char *name, int namelength, domain_enum domain,
fba45db2 3151 enum address_class class,
2e618c13
AR
3152 struct psymbol_allocation_list *list,
3153 long val, /* Value as a long */
fba45db2
KB
3154 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3155 enum language language, struct objfile *objfile)
c906108c 3156{
11d31d94 3157 const struct partial_symbol *psym;
2de7ced7 3158
2e618c13 3159 int added;
c906108c
SS
3160
3161 /* Stash the partial symbol away in the cache */
2e618c13
AR
3162 psym = add_psymbol_to_bcache (name, namelength, domain, class,
3163 val, coreaddr, language, objfile, &added);
c906108c 3164
2e618c13
AR
3165 /* Do not duplicate global partial symbols. */
3166 if (list == &objfile->global_psymbols
3167 && !added)
3168 return psym;
5c4e30ca 3169
2e618c13
AR
3170 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
3171 append_psymbol_to_list (list, psym, objfile);
5c4e30ca 3172 return psym;
c906108c
SS
3173}
3174
c906108c
SS
3175/* Initialize storage for partial symbols. */
3176
3177void
fba45db2 3178init_psymbol_list (struct objfile *objfile, int total_symbols)
c906108c
SS
3179{
3180 /* Free any previously allocated psymbol lists. */
c5aa993b
JM
3181
3182 if (objfile->global_psymbols.list)
c906108c 3183 {
2dc74dc1 3184 xfree (objfile->global_psymbols.list);
c906108c 3185 }
c5aa993b 3186 if (objfile->static_psymbols.list)
c906108c 3187 {
2dc74dc1 3188 xfree (objfile->static_psymbols.list);
c906108c 3189 }
c5aa993b 3190
c906108c
SS
3191 /* Current best guess is that approximately a twentieth
3192 of the total symbols (in a debugging file) are global or static
3193 oriented symbols */
c906108c 3194
c5aa993b
JM
3195 objfile->global_psymbols.size = total_symbols / 10;
3196 objfile->static_psymbols.size = total_symbols / 10;
3197
3198 if (objfile->global_psymbols.size > 0)
c906108c 3199 {
c5aa993b
JM
3200 objfile->global_psymbols.next =
3201 objfile->global_psymbols.list = (struct partial_symbol **)
7936743b
AC
3202 xmalloc ((objfile->global_psymbols.size
3203 * sizeof (struct partial_symbol *)));
c906108c 3204 }
c5aa993b 3205 if (objfile->static_psymbols.size > 0)
c906108c 3206 {
c5aa993b
JM
3207 objfile->static_psymbols.next =
3208 objfile->static_psymbols.list = (struct partial_symbol **)
7936743b
AC
3209 xmalloc ((objfile->static_psymbols.size
3210 * sizeof (struct partial_symbol *)));
c906108c
SS
3211 }
3212}
3213
3214/* OVERLAYS:
3215 The following code implements an abstraction for debugging overlay sections.
3216
3217 The target model is as follows:
3218 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 3219 same VMA, each with its own unique LMA (or load address).
c906108c 3220 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 3221 sections, one by one, from the load address into the VMA address.
5417f6dc 3222 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
3223 sections should be considered to be mapped from the VMA to the LMA.
3224 This information is used for symbol lookup, and memory read/write.
5417f6dc 3225 For instance, if a section has been mapped then its contents
c5aa993b 3226 should be read from the VMA, otherwise from the LMA.
c906108c
SS
3227
3228 Two levels of debugger support for overlays are available. One is
3229 "manual", in which the debugger relies on the user to tell it which
3230 overlays are currently mapped. This level of support is
3231 implemented entirely in the core debugger, and the information about
3232 whether a section is mapped is kept in the objfile->obj_section table.
3233
3234 The second level of support is "automatic", and is only available if
3235 the target-specific code provides functionality to read the target's
3236 overlay mapping table, and translate its contents for the debugger
3237 (by updating the mapped state information in the obj_section tables).
3238
3239 The interface is as follows:
c5aa993b
JM
3240 User commands:
3241 overlay map <name> -- tell gdb to consider this section mapped
3242 overlay unmap <name> -- tell gdb to consider this section unmapped
3243 overlay list -- list the sections that GDB thinks are mapped
3244 overlay read-target -- get the target's state of what's mapped
3245 overlay off/manual/auto -- set overlay debugging state
3246 Functional interface:
3247 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3248 section, return that section.
5417f6dc 3249 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 3250 the pc, either in its VMA or its LMA
714835d5 3251 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
3252 section_is_overlay(sect): true if section's VMA != LMA
3253 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3254 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 3255 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
3256 overlay_mapped_address(...): map an address from section's LMA to VMA
3257 overlay_unmapped_address(...): map an address from section's VMA to LMA
3258 symbol_overlayed_address(...): Return a "current" address for symbol:
3259 either in VMA or LMA depending on whether
3260 the symbol's section is currently mapped
c906108c
SS
3261 */
3262
3263/* Overlay debugging state: */
3264
d874f1e2 3265enum overlay_debugging_state overlay_debugging = ovly_off;
c906108c
SS
3266int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
3267
c906108c 3268/* Function: section_is_overlay (SECTION)
5417f6dc 3269 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
3270 SECTION is loaded at an address different from where it will "run". */
3271
3272int
714835d5 3273section_is_overlay (struct obj_section *section)
c906108c 3274{
714835d5
UW
3275 if (overlay_debugging && section)
3276 {
3277 bfd *abfd = section->objfile->obfd;
3278 asection *bfd_section = section->the_bfd_section;
3279
3280 if (bfd_section_lma (abfd, bfd_section) != 0
3281 && bfd_section_lma (abfd, bfd_section)
3282 != bfd_section_vma (abfd, bfd_section))
3283 return 1;
3284 }
c906108c
SS
3285
3286 return 0;
3287}
3288
3289/* Function: overlay_invalidate_all (void)
3290 Invalidate the mapped state of all overlay sections (mark it as stale). */
3291
3292static void
fba45db2 3293overlay_invalidate_all (void)
c906108c 3294{
c5aa993b 3295 struct objfile *objfile;
c906108c
SS
3296 struct obj_section *sect;
3297
3298 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
3299 if (section_is_overlay (sect))
3300 sect->ovly_mapped = -1;
c906108c
SS
3301}
3302
714835d5 3303/* Function: section_is_mapped (SECTION)
5417f6dc 3304 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3305
3306 Access to the ovly_mapped flag is restricted to this function, so
3307 that we can do automatic update. If the global flag
3308 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3309 overlay_invalidate_all. If the mapped state of the particular
3310 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3311
714835d5
UW
3312int
3313section_is_mapped (struct obj_section *osect)
c906108c 3314{
9216df95
UW
3315 struct gdbarch *gdbarch;
3316
714835d5 3317 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
3318 return 0;
3319
c5aa993b 3320 switch (overlay_debugging)
c906108c
SS
3321 {
3322 default:
d874f1e2 3323 case ovly_off:
c5aa993b 3324 return 0; /* overlay debugging off */
d874f1e2 3325 case ovly_auto: /* overlay debugging automatic */
1c772458 3326 /* Unles there is a gdbarch_overlay_update function,
c5aa993b 3327 there's really nothing useful to do here (can't really go auto) */
9216df95
UW
3328 gdbarch = get_objfile_arch (osect->objfile);
3329 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
3330 {
3331 if (overlay_cache_invalid)
3332 {
3333 overlay_invalidate_all ();
3334 overlay_cache_invalid = 0;
3335 }
3336 if (osect->ovly_mapped == -1)
9216df95 3337 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
3338 }
3339 /* fall thru to manual case */
d874f1e2 3340 case ovly_on: /* overlay debugging manual */
c906108c
SS
3341 return osect->ovly_mapped == 1;
3342 }
3343}
3344
c906108c
SS
3345/* Function: pc_in_unmapped_range
3346 If PC falls into the lma range of SECTION, return true, else false. */
3347
3348CORE_ADDR
714835d5 3349pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3350{
714835d5
UW
3351 if (section_is_overlay (section))
3352 {
3353 bfd *abfd = section->objfile->obfd;
3354 asection *bfd_section = section->the_bfd_section;
fbd35540 3355
714835d5
UW
3356 /* We assume the LMA is relocated by the same offset as the VMA. */
3357 bfd_vma size = bfd_get_section_size (bfd_section);
3358 CORE_ADDR offset = obj_section_offset (section);
3359
3360 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3361 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3362 return 1;
3363 }
c906108c 3364
c906108c
SS
3365 return 0;
3366}
3367
3368/* Function: pc_in_mapped_range
3369 If PC falls into the vma range of SECTION, return true, else false. */
3370
3371CORE_ADDR
714835d5 3372pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3373{
714835d5
UW
3374 if (section_is_overlay (section))
3375 {
3376 if (obj_section_addr (section) <= pc
3377 && pc < obj_section_endaddr (section))
3378 return 1;
3379 }
c906108c 3380
c906108c
SS
3381 return 0;
3382}
3383
9ec8e6a0
JB
3384
3385/* Return true if the mapped ranges of sections A and B overlap, false
3386 otherwise. */
b9362cc7 3387static int
714835d5 3388sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3389{
714835d5
UW
3390 CORE_ADDR a_start = obj_section_addr (a);
3391 CORE_ADDR a_end = obj_section_endaddr (a);
3392 CORE_ADDR b_start = obj_section_addr (b);
3393 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3394
3395 return (a_start < b_end && b_start < a_end);
3396}
3397
c906108c
SS
3398/* Function: overlay_unmapped_address (PC, SECTION)
3399 Returns the address corresponding to PC in the unmapped (load) range.
3400 May be the same as PC. */
3401
3402CORE_ADDR
714835d5 3403overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3404{
714835d5
UW
3405 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3406 {
3407 bfd *abfd = section->objfile->obfd;
3408 asection *bfd_section = section->the_bfd_section;
fbd35540 3409
714835d5
UW
3410 return pc + bfd_section_lma (abfd, bfd_section)
3411 - bfd_section_vma (abfd, bfd_section);
3412 }
c906108c
SS
3413
3414 return pc;
3415}
3416
3417/* Function: overlay_mapped_address (PC, SECTION)
3418 Returns the address corresponding to PC in the mapped (runtime) range.
3419 May be the same as PC. */
3420
3421CORE_ADDR
714835d5 3422overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3423{
714835d5
UW
3424 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3425 {
3426 bfd *abfd = section->objfile->obfd;
3427 asection *bfd_section = section->the_bfd_section;
fbd35540 3428
714835d5
UW
3429 return pc + bfd_section_vma (abfd, bfd_section)
3430 - bfd_section_lma (abfd, bfd_section);
3431 }
c906108c
SS
3432
3433 return pc;
3434}
3435
3436
5417f6dc 3437/* Function: symbol_overlayed_address
c906108c
SS
3438 Return one of two addresses (relative to the VMA or to the LMA),
3439 depending on whether the section is mapped or not. */
3440
c5aa993b 3441CORE_ADDR
714835d5 3442symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3443{
3444 if (overlay_debugging)
3445 {
3446 /* If the symbol has no section, just return its regular address. */
3447 if (section == 0)
3448 return address;
3449 /* If the symbol's section is not an overlay, just return its address */
3450 if (!section_is_overlay (section))
3451 return address;
3452 /* If the symbol's section is mapped, just return its address */
3453 if (section_is_mapped (section))
3454 return address;
3455 /*
3456 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3457 * then return its LOADED address rather than its vma address!!
3458 */
3459 return overlay_unmapped_address (address, section);
3460 }
3461 return address;
3462}
3463
5417f6dc 3464/* Function: find_pc_overlay (PC)
c906108c
SS
3465 Return the best-match overlay section for PC:
3466 If PC matches a mapped overlay section's VMA, return that section.
3467 Else if PC matches an unmapped section's VMA, return that section.
3468 Else if PC matches an unmapped section's LMA, return that section. */
3469
714835d5 3470struct obj_section *
fba45db2 3471find_pc_overlay (CORE_ADDR pc)
c906108c 3472{
c5aa993b 3473 struct objfile *objfile;
c906108c
SS
3474 struct obj_section *osect, *best_match = NULL;
3475
3476 if (overlay_debugging)
3477 ALL_OBJSECTIONS (objfile, osect)
714835d5 3478 if (section_is_overlay (osect))
c5aa993b 3479 {
714835d5 3480 if (pc_in_mapped_range (pc, osect))
c5aa993b 3481 {
714835d5
UW
3482 if (section_is_mapped (osect))
3483 return osect;
c5aa993b
JM
3484 else
3485 best_match = osect;
3486 }
714835d5 3487 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3488 best_match = osect;
3489 }
714835d5 3490 return best_match;
c906108c
SS
3491}
3492
3493/* Function: find_pc_mapped_section (PC)
5417f6dc 3494 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3495 currently marked as MAPPED, return that section. Else return NULL. */
3496
714835d5 3497struct obj_section *
fba45db2 3498find_pc_mapped_section (CORE_ADDR pc)
c906108c 3499{
c5aa993b 3500 struct objfile *objfile;
c906108c
SS
3501 struct obj_section *osect;
3502
3503 if (overlay_debugging)
3504 ALL_OBJSECTIONS (objfile, osect)
714835d5
UW
3505 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3506 return osect;
c906108c
SS
3507
3508 return NULL;
3509}
3510
3511/* Function: list_overlays_command
3512 Print a list of mapped sections and their PC ranges */
3513
3514void
fba45db2 3515list_overlays_command (char *args, int from_tty)
c906108c 3516{
c5aa993b
JM
3517 int nmapped = 0;
3518 struct objfile *objfile;
c906108c
SS
3519 struct obj_section *osect;
3520
3521 if (overlay_debugging)
3522 ALL_OBJSECTIONS (objfile, osect)
714835d5 3523 if (section_is_mapped (osect))
c5aa993b 3524 {
5af949e3 3525 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c5aa993b
JM
3526 const char *name;
3527 bfd_vma lma, vma;
3528 int size;
3529
3530 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3531 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3532 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3533 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3534
3535 printf_filtered ("Section %s, loaded at ", name);
5af949e3 3536 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
c5aa993b 3537 puts_filtered (" - ");
5af949e3 3538 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
c5aa993b 3539 printf_filtered (", mapped at ");
5af949e3 3540 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
c5aa993b 3541 puts_filtered (" - ");
5af949e3 3542 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
c5aa993b
JM
3543 puts_filtered ("\n");
3544
3545 nmapped++;
3546 }
c906108c 3547 if (nmapped == 0)
a3f17187 3548 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3549}
3550
3551/* Function: map_overlay_command
3552 Mark the named section as mapped (ie. residing at its VMA address). */
3553
3554void
fba45db2 3555map_overlay_command (char *args, int from_tty)
c906108c 3556{
c5aa993b
JM
3557 struct objfile *objfile, *objfile2;
3558 struct obj_section *sec, *sec2;
c906108c
SS
3559
3560 if (!overlay_debugging)
8a3fe4f8 3561 error (_("\
515ad16c 3562Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3563the 'overlay manual' command."));
c906108c
SS
3564
3565 if (args == 0 || *args == 0)
8a3fe4f8 3566 error (_("Argument required: name of an overlay section"));
c906108c
SS
3567
3568 /* First, find a section matching the user supplied argument */
3569 ALL_OBJSECTIONS (objfile, sec)
3570 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3571 {
3572 /* Now, check to see if the section is an overlay. */
714835d5 3573 if (!section_is_overlay (sec))
c5aa993b
JM
3574 continue; /* not an overlay section */
3575
3576 /* Mark the overlay as "mapped" */
3577 sec->ovly_mapped = 1;
3578
3579 /* Next, make a pass and unmap any sections that are
3580 overlapped by this new section: */
3581 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3582 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3583 {
3584 if (info_verbose)
a3f17187 3585 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3586 bfd_section_name (objfile->obfd,
3587 sec2->the_bfd_section));
3588 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3589 }
3590 return;
3591 }
8a3fe4f8 3592 error (_("No overlay section called %s"), args);
c906108c
SS
3593}
3594
3595/* Function: unmap_overlay_command
5417f6dc 3596 Mark the overlay section as unmapped
c906108c
SS
3597 (ie. resident in its LMA address range, rather than the VMA range). */
3598
3599void
fba45db2 3600unmap_overlay_command (char *args, int from_tty)
c906108c 3601{
c5aa993b 3602 struct objfile *objfile;
c906108c
SS
3603 struct obj_section *sec;
3604
3605 if (!overlay_debugging)
8a3fe4f8 3606 error (_("\
515ad16c 3607Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3608the 'overlay manual' command."));
c906108c
SS
3609
3610 if (args == 0 || *args == 0)
8a3fe4f8 3611 error (_("Argument required: name of an overlay section"));
c906108c
SS
3612
3613 /* First, find a section matching the user supplied argument */
3614 ALL_OBJSECTIONS (objfile, sec)
3615 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3616 {
3617 if (!sec->ovly_mapped)
8a3fe4f8 3618 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3619 sec->ovly_mapped = 0;
3620 return;
3621 }
8a3fe4f8 3622 error (_("No overlay section called %s"), args);
c906108c
SS
3623}
3624
3625/* Function: overlay_auto_command
3626 A utility command to turn on overlay debugging.
3627 Possibly this should be done via a set/show command. */
3628
3629static void
fba45db2 3630overlay_auto_command (char *args, int from_tty)
c906108c 3631{
d874f1e2 3632 overlay_debugging = ovly_auto;
1900040c 3633 enable_overlay_breakpoints ();
c906108c 3634 if (info_verbose)
a3f17187 3635 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3636}
3637
3638/* Function: overlay_manual_command
3639 A utility command to turn on overlay debugging.
3640 Possibly this should be done via a set/show command. */
3641
3642static void
fba45db2 3643overlay_manual_command (char *args, int from_tty)
c906108c 3644{
d874f1e2 3645 overlay_debugging = ovly_on;
1900040c 3646 disable_overlay_breakpoints ();
c906108c 3647 if (info_verbose)
a3f17187 3648 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3649}
3650
3651/* Function: overlay_off_command
3652 A utility command to turn on overlay debugging.
3653 Possibly this should be done via a set/show command. */
3654
3655static void
fba45db2 3656overlay_off_command (char *args, int from_tty)
c906108c 3657{
d874f1e2 3658 overlay_debugging = ovly_off;
1900040c 3659 disable_overlay_breakpoints ();
c906108c 3660 if (info_verbose)
a3f17187 3661 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3662}
3663
3664static void
fba45db2 3665overlay_load_command (char *args, int from_tty)
c906108c 3666{
e17c207e
UW
3667 struct gdbarch *gdbarch = get_current_arch ();
3668
3669 if (gdbarch_overlay_update_p (gdbarch))
3670 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3671 else
8a3fe4f8 3672 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3673}
3674
3675/* Function: overlay_command
3676 A place-holder for a mis-typed command */
3677
3678/* Command list chain containing all defined "overlay" subcommands. */
3679struct cmd_list_element *overlaylist;
3680
3681static void
fba45db2 3682overlay_command (char *args, int from_tty)
c906108c 3683{
c5aa993b 3684 printf_unfiltered
c906108c
SS
3685 ("\"overlay\" must be followed by the name of an overlay command.\n");
3686 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3687}
3688
3689
3690/* Target Overlays for the "Simplest" overlay manager:
3691
5417f6dc
RM
3692 This is GDB's default target overlay layer. It works with the
3693 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3694 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3695 so targets that use a different runtime overlay manager can
c906108c
SS
3696 substitute their own overlay_update function and take over the
3697 function pointer.
3698
3699 The overlay_update function pokes around in the target's data structures
3700 to see what overlays are mapped, and updates GDB's overlay mapping with
3701 this information.
3702
3703 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3704 unsigned _novlys; /# number of overlay sections #/
3705 unsigned _ovly_table[_novlys][4] = {
3706 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3707 {..., ..., ..., ...},
3708 }
3709 unsigned _novly_regions; /# number of overlay regions #/
3710 unsigned _ovly_region_table[_novly_regions][3] = {
3711 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3712 {..., ..., ...},
3713 }
c906108c
SS
3714 These functions will attempt to update GDB's mappedness state in the
3715 symbol section table, based on the target's mappedness state.
3716
3717 To do this, we keep a cached copy of the target's _ovly_table, and
3718 attempt to detect when the cached copy is invalidated. The main
3719 entry point is "simple_overlay_update(SECT), which looks up SECT in
3720 the cached table and re-reads only the entry for that section from
3721 the target (whenever possible).
3722 */
3723
3724/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3725static unsigned (*cache_ovly_table)[4] = 0;
c906108c 3726#if 0
c5aa993b 3727static unsigned (*cache_ovly_region_table)[3] = 0;
c906108c 3728#endif
c5aa993b 3729static unsigned cache_novlys = 0;
c906108c 3730#if 0
c5aa993b 3731static unsigned cache_novly_regions = 0;
c906108c
SS
3732#endif
3733static CORE_ADDR cache_ovly_table_base = 0;
3734#if 0
3735static CORE_ADDR cache_ovly_region_table_base = 0;
3736#endif
c5aa993b
JM
3737enum ovly_index
3738 {
3739 VMA, SIZE, LMA, MAPPED
3740 };
c906108c
SS
3741
3742/* Throw away the cached copy of _ovly_table */
3743static void
fba45db2 3744simple_free_overlay_table (void)
c906108c
SS
3745{
3746 if (cache_ovly_table)
b8c9b27d 3747 xfree (cache_ovly_table);
c5aa993b 3748 cache_novlys = 0;
c906108c
SS
3749 cache_ovly_table = NULL;
3750 cache_ovly_table_base = 0;
3751}
3752
3753#if 0
3754/* Throw away the cached copy of _ovly_region_table */
3755static void
fba45db2 3756simple_free_overlay_region_table (void)
c906108c
SS
3757{
3758 if (cache_ovly_region_table)
b8c9b27d 3759 xfree (cache_ovly_region_table);
c5aa993b 3760 cache_novly_regions = 0;
c906108c
SS
3761 cache_ovly_region_table = NULL;
3762 cache_ovly_region_table_base = 0;
3763}
3764#endif
3765
9216df95 3766/* Read an array of ints of size SIZE from the target into a local buffer.
c906108c
SS
3767 Convert to host order. int LEN is number of ints */
3768static void
9216df95 3769read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3770 int len, int size, enum bfd_endian byte_order)
c906108c 3771{
34c0bd93 3772 /* FIXME (alloca): Not safe if array is very large. */
9216df95 3773 gdb_byte *buf = alloca (len * size);
c5aa993b 3774 int i;
c906108c 3775
9216df95 3776 read_memory (memaddr, buf, len * size);
c906108c 3777 for (i = 0; i < len; i++)
e17a4113 3778 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3779}
3780
3781/* Find and grab a copy of the target _ovly_table
3782 (and _novlys, which is needed for the table's size) */
c5aa993b 3783static int
fba45db2 3784simple_read_overlay_table (void)
c906108c 3785{
0d43edd1 3786 struct minimal_symbol *novlys_msym, *ovly_table_msym;
9216df95
UW
3787 struct gdbarch *gdbarch;
3788 int word_size;
e17a4113 3789 enum bfd_endian byte_order;
c906108c
SS
3790
3791 simple_free_overlay_table ();
9b27852e 3792 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3793 if (! novlys_msym)
c906108c 3794 {
8a3fe4f8 3795 error (_("Error reading inferior's overlay table: "
0d43edd1 3796 "couldn't find `_novlys' variable\n"
8a3fe4f8 3797 "in inferior. Use `overlay manual' mode."));
0d43edd1 3798 return 0;
c906108c 3799 }
0d43edd1 3800
9b27852e 3801 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3802 if (! ovly_table_msym)
3803 {
8a3fe4f8 3804 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3805 "`_ovly_table' array\n"
8a3fe4f8 3806 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3807 return 0;
3808 }
3809
9216df95
UW
3810 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3811 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3812 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3813
e17a4113
UW
3814 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3815 4, byte_order);
0d43edd1
JB
3816 cache_ovly_table
3817 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3818 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3819 read_target_long_array (cache_ovly_table_base,
777ea8f1 3820 (unsigned int *) cache_ovly_table,
e17a4113 3821 cache_novlys * 4, word_size, byte_order);
0d43edd1 3822
c5aa993b 3823 return 1; /* SUCCESS */
c906108c
SS
3824}
3825
3826#if 0
3827/* Find and grab a copy of the target _ovly_region_table
3828 (and _novly_regions, which is needed for the table's size) */
c5aa993b 3829static int
fba45db2 3830simple_read_overlay_region_table (void)
c906108c
SS
3831{
3832 struct minimal_symbol *msym;
e17a4113
UW
3833 struct gdbarch *gdbarch;
3834 int word_size;
3835 enum bfd_endian byte_order;
c906108c
SS
3836
3837 simple_free_overlay_region_table ();
9b27852e 3838 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
e17a4113 3839 if (msym == NULL)
c5aa993b 3840 return 0; /* failure */
e17a4113
UW
3841
3842 gdbarch = get_objfile_arch (msymbol_objfile (msym));
3843 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3844 byte_order = gdbarch_byte_order (gdbarch);
3845
3846 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym),
3847 4, byte_order);
3848
c906108c
SS
3849 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3850 if (cache_ovly_region_table != NULL)
3851 {
9b27852e 3852 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
c906108c
SS
3853 if (msym != NULL)
3854 {
3855 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
c5aa993b 3856 read_target_long_array (cache_ovly_region_table_base,
777ea8f1 3857 (unsigned int *) cache_ovly_region_table,
e17a4113
UW
3858 cache_novly_regions * 3,
3859 word_size, byte_order);
c906108c 3860 }
c5aa993b
JM
3861 else
3862 return 0; /* failure */
c906108c 3863 }
c5aa993b
JM
3864 else
3865 return 0; /* failure */
3866 return 1; /* SUCCESS */
c906108c
SS
3867}
3868#endif
3869
5417f6dc 3870/* Function: simple_overlay_update_1
c906108c
SS
3871 A helper function for simple_overlay_update. Assuming a cached copy
3872 of _ovly_table exists, look through it to find an entry whose vma,
3873 lma and size match those of OSECT. Re-read the entry and make sure
3874 it still matches OSECT (else the table may no longer be valid).
3875 Set OSECT's mapped state to match the entry. Return: 1 for
3876 success, 0 for failure. */
3877
3878static int
fba45db2 3879simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3880{
3881 int i, size;
fbd35540
MS
3882 bfd *obfd = osect->objfile->obfd;
3883 asection *bsect = osect->the_bfd_section;
9216df95
UW
3884 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3885 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3886 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3887
2c500098 3888 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3889 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3890 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3891 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3892 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c 3893 {
9216df95
UW
3894 read_target_long_array (cache_ovly_table_base + i * word_size,
3895 (unsigned int *) cache_ovly_table[i],
e17a4113 3896 4, word_size, byte_order);
fbd35540
MS
3897 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3898 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3899 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3900 {
3901 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3902 return 1;
3903 }
fbd35540 3904 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3905 return 0;
3906 }
3907 return 0;
3908}
3909
3910/* Function: simple_overlay_update
5417f6dc
RM
3911 If OSECT is NULL, then update all sections' mapped state
3912 (after re-reading the entire target _ovly_table).
3913 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3914 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3915 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3916 re-read the entire cache, and go ahead and update all sections. */
3917
1c772458 3918void
fba45db2 3919simple_overlay_update (struct obj_section *osect)
c906108c 3920{
c5aa993b 3921 struct objfile *objfile;
c906108c
SS
3922
3923 /* Were we given an osect to look up? NULL means do all of them. */
3924 if (osect)
3925 /* Have we got a cached copy of the target's overlay table? */
3926 if (cache_ovly_table != NULL)
3927 /* Does its cached location match what's currently in the symtab? */
c5aa993b 3928 if (cache_ovly_table_base ==
9b27852e 3929 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
c906108c
SS
3930 /* Then go ahead and try to look up this single section in the cache */
3931 if (simple_overlay_update_1 (osect))
3932 /* Found it! We're done. */
3933 return;
3934
3935 /* Cached table no good: need to read the entire table anew.
3936 Or else we want all the sections, in which case it's actually
3937 more efficient to read the whole table in one block anyway. */
3938
0d43edd1
JB
3939 if (! simple_read_overlay_table ())
3940 return;
3941
c906108c
SS
3942 /* Now may as well update all sections, even if only one was requested. */
3943 ALL_OBJSECTIONS (objfile, osect)
714835d5 3944 if (section_is_overlay (osect))
c5aa993b
JM
3945 {
3946 int i, size;
fbd35540
MS
3947 bfd *obfd = osect->objfile->obfd;
3948 asection *bsect = osect->the_bfd_section;
c5aa993b 3949
2c500098 3950 size = bfd_get_section_size (bsect);
c5aa993b 3951 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3952 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3953 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3954 /* && cache_ovly_table[i][SIZE] == size */ )
3955 { /* obj_section matches i'th entry in ovly_table */
c5aa993b
JM
3956 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3957 break; /* finished with inner for loop: break out */
3958 }
3959 }
c906108c
SS
3960}
3961
086df311
DJ
3962/* Set the output sections and output offsets for section SECTP in
3963 ABFD. The relocation code in BFD will read these offsets, so we
3964 need to be sure they're initialized. We map each section to itself,
3965 with no offset; this means that SECTP->vma will be honored. */
3966
3967static void
3968symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3969{
3970 sectp->output_section = sectp;
3971 sectp->output_offset = 0;
3972}
3973
3974/* Relocate the contents of a debug section SECTP in ABFD. The
3975 contents are stored in BUF if it is non-NULL, or returned in a
3976 malloc'd buffer otherwise.
3977
3978 For some platforms and debug info formats, shared libraries contain
3979 relocations against the debug sections (particularly for DWARF-2;
3980 one affected platform is PowerPC GNU/Linux, although it depends on
3981 the version of the linker in use). Also, ELF object files naturally
3982 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3983 the relocations in order to get the locations of symbols correct.
3984 Another example that may require relocation processing, is the
3985 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3986 debug section. */
086df311
DJ
3987
3988bfd_byte *
3989symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3990{
065a2c74 3991 /* We're only interested in sections with relocation
086df311
DJ
3992 information. */
3993 if ((sectp->flags & SEC_RELOC) == 0)
3994 return NULL;
086df311
DJ
3995
3996 /* We will handle section offsets properly elsewhere, so relocate as if
3997 all sections begin at 0. */
3998 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3999
97606a13 4000 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
086df311 4001}
c906108c 4002
31d99776
DJ
4003struct symfile_segment_data *
4004get_symfile_segment_data (bfd *abfd)
4005{
4006 struct sym_fns *sf = find_sym_fns (abfd);
4007
4008 if (sf == NULL)
4009 return NULL;
4010
4011 return sf->sym_segments (abfd);
4012}
4013
4014void
4015free_symfile_segment_data (struct symfile_segment_data *data)
4016{
4017 xfree (data->segment_bases);
4018 xfree (data->segment_sizes);
4019 xfree (data->segment_info);
4020 xfree (data);
4021}
4022
28c32713
JB
4023
4024/* Given:
4025 - DATA, containing segment addresses from the object file ABFD, and
4026 the mapping from ABFD's sections onto the segments that own them,
4027 and
4028 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
4029 segment addresses reported by the target,
4030 store the appropriate offsets for each section in OFFSETS.
4031
4032 If there are fewer entries in SEGMENT_BASES than there are segments
4033 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
4034
8d385431
DJ
4035 If there are more entries, then ignore the extra. The target may
4036 not be able to distinguish between an empty data segment and a
4037 missing data segment; a missing text segment is less plausible. */
31d99776
DJ
4038int
4039symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
4040 struct section_offsets *offsets,
4041 int num_segment_bases,
4042 const CORE_ADDR *segment_bases)
4043{
4044 int i;
4045 asection *sect;
4046
28c32713
JB
4047 /* It doesn't make sense to call this function unless you have some
4048 segment base addresses. */
4049 gdb_assert (segment_bases > 0);
4050
31d99776
DJ
4051 /* If we do not have segment mappings for the object file, we
4052 can not relocate it by segments. */
4053 gdb_assert (data != NULL);
4054 gdb_assert (data->num_segments > 0);
4055
31d99776
DJ
4056 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4057 {
31d99776
DJ
4058 int which = data->segment_info[i];
4059
28c32713
JB
4060 gdb_assert (0 <= which && which <= data->num_segments);
4061
4062 /* Don't bother computing offsets for sections that aren't
4063 loaded as part of any segment. */
4064 if (! which)
4065 continue;
4066
4067 /* Use the last SEGMENT_BASES entry as the address of any extra
4068 segments mentioned in DATA->segment_info. */
31d99776 4069 if (which > num_segment_bases)
28c32713 4070 which = num_segment_bases;
31d99776 4071
28c32713
JB
4072 offsets->offsets[i] = (segment_bases[which - 1]
4073 - data->segment_bases[which - 1]);
31d99776
DJ
4074 }
4075
4076 return 1;
4077}
4078
4079static void
4080symfile_find_segment_sections (struct objfile *objfile)
4081{
4082 bfd *abfd = objfile->obfd;
4083 int i;
4084 asection *sect;
4085 struct symfile_segment_data *data;
4086
4087 data = get_symfile_segment_data (objfile->obfd);
4088 if (data == NULL)
4089 return;
4090
4091 if (data->num_segments != 1 && data->num_segments != 2)
4092 {
4093 free_symfile_segment_data (data);
4094 return;
4095 }
4096
4097 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4098 {
4099 CORE_ADDR vma;
4100 int which = data->segment_info[i];
4101
4102 if (which == 1)
4103 {
4104 if (objfile->sect_index_text == -1)
4105 objfile->sect_index_text = sect->index;
4106
4107 if (objfile->sect_index_rodata == -1)
4108 objfile->sect_index_rodata = sect->index;
4109 }
4110 else if (which == 2)
4111 {
4112 if (objfile->sect_index_data == -1)
4113 objfile->sect_index_data = sect->index;
4114
4115 if (objfile->sect_index_bss == -1)
4116 objfile->sect_index_bss = sect->index;
4117 }
4118 }
4119
4120 free_symfile_segment_data (data);
4121}
4122
c906108c 4123void
fba45db2 4124_initialize_symfile (void)
c906108c
SS
4125{
4126 struct cmd_list_element *c;
c5aa993b 4127
1a966eab
AC
4128 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
4129Load symbol table from executable file FILE.\n\
c906108c 4130The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 4131to execute."), &cmdlist);
5ba2abeb 4132 set_cmd_completer (c, filename_completer);
c906108c 4133
1a966eab 4134 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 4135Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
1a966eab 4136Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
2acceee2 4137ADDR is the starting address of the file's text.\n\
db162d44
EZ
4138The optional arguments are section-name section-address pairs and\n\
4139should be specified if the data and bss segments are not contiguous\n\
1a966eab 4140with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 4141 &cmdlist);
5ba2abeb 4142 set_cmd_completer (c, filename_completer);
c906108c 4143
1a966eab
AC
4144 c = add_cmd ("load", class_files, load_command, _("\
4145Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
4146for access from GDB.\n\
4147A load OFFSET may also be given."), &cmdlist);
5ba2abeb 4148 set_cmd_completer (c, filename_completer);
c906108c 4149
5bf193a2
AC
4150 add_setshow_boolean_cmd ("symbol-reloading", class_support,
4151 &symbol_reloading, _("\
4152Set dynamic symbol table reloading multiple times in one run."), _("\
4153Show dynamic symbol table reloading multiple times in one run."), NULL,
4154 NULL,
920d2a44 4155 show_symbol_reloading,
5bf193a2 4156 &setlist, &showlist);
c906108c 4157
c5aa993b 4158 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 4159 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
4160 "overlay ", 0, &cmdlist);
4161
4162 add_com_alias ("ovly", "overlay", class_alias, 1);
4163 add_com_alias ("ov", "overlay", class_alias, 1);
4164
c5aa993b 4165 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 4166 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 4167
c5aa993b 4168 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 4169 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 4170
c5aa993b 4171 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 4172 _("List mappings of overlay sections."), &overlaylist);
c906108c 4173
c5aa993b 4174 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 4175 _("Enable overlay debugging."), &overlaylist);
c5aa993b 4176 add_cmd ("off", class_support, overlay_off_command,
1a966eab 4177 _("Disable overlay debugging."), &overlaylist);
c5aa993b 4178 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 4179 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 4180 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 4181 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
4182
4183 /* Filename extension to source language lookup table: */
4184 init_filename_language_table ();
26c41df3
AC
4185 add_setshow_string_noescape_cmd ("extension-language", class_files,
4186 &ext_args, _("\
4187Set mapping between filename extension and source language."), _("\
4188Show mapping between filename extension and source language."), _("\
4189Usage: set extension-language .foo bar"),
4190 set_ext_lang_command,
920d2a44 4191 show_ext_args,
26c41df3 4192 &setlist, &showlist);
c906108c 4193
c5aa993b 4194 add_info ("extensions", info_ext_lang_command,
1bedd215 4195 _("All filename extensions associated with a source language."));
917317f4 4196
525226b5
AC
4197 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4198 &debug_file_directory, _("\
4199Set the directory where separate debug symbols are searched for."), _("\
4200Show the directory where separate debug symbols are searched for."), _("\
4201Separate debug symbols are first searched for in the same\n\
4202directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4203and lastly at the path of the directory of the binary with\n\
4204the global debug-file directory prepended."),
4205 NULL,
920d2a44 4206 show_debug_file_directory,
525226b5 4207 &setlist, &showlist);
bf250677
DE
4208
4209 add_setshow_boolean_cmd ("symbol-loading", no_class,
4210 &print_symbol_loading, _("\
4211Set printing of symbol loading messages."), _("\
4212Show printing of symbol loading messages."), NULL,
4213 NULL,
4214 NULL,
4215 &setprintlist, &showprintlist);
c906108c 4216}
This page took 1.25436 seconds and 4 git commands to generate.