Remove warnings building z8k port.
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
b6ba6518
KB
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001 Free Software Foundation, Inc.
c906108c
SS
4 Contributed by Cygnus Support, using pieces from other GDB modules.
5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#include "defs.h"
24#include "symtab.h"
25#include "gdbtypes.h"
26#include "gdbcore.h"
27#include "frame.h"
28#include "target.h"
29#include "value.h"
30#include "symfile.h"
31#include "objfiles.h"
32#include "gdbcmd.h"
33#include "breakpoint.h"
34#include "language.h"
35#include "complaints.h"
36#include "demangle.h"
c5aa993b 37#include "inferior.h" /* for write_pc */
c906108c
SS
38#include "gdb-stabs.h"
39#include "obstack.h"
40
c906108c
SS
41#include <sys/types.h>
42#include <fcntl.h>
43#include "gdb_string.h"
44#include "gdb_stat.h"
45#include <ctype.h>
46#include <time.h>
c906108c
SS
47
48#ifndef O_BINARY
49#define O_BINARY 0
50#endif
51
52#ifdef HPUXHPPA
53
54/* Some HP-UX related globals to clear when a new "main"
55 symbol file is loaded. HP-specific. */
56
57extern int hp_som_som_object_present;
58extern int hp_cxx_exception_support_initialized;
59#define RESET_HP_UX_GLOBALS() do {\
60 hp_som_som_object_present = 0; /* indicates HP-compiled code */ \
61 hp_cxx_exception_support_initialized = 0; /* must reinitialize exception stuff */ \
62 } while (0)
63#endif
64
917317f4 65int (*ui_load_progress_hook) (const char *section, unsigned long num);
c2d11a7d
JM
66void (*show_load_progress) (const char *section,
67 unsigned long section_sent,
68 unsigned long section_size,
69 unsigned long total_sent,
70 unsigned long total_size);
507f3c78
KB
71void (*pre_add_symbol_hook) (char *);
72void (*post_add_symbol_hook) (void);
73void (*target_new_objfile_hook) (struct objfile *);
c906108c 74
74b7792f
AC
75static void clear_symtab_users_cleanup (void *ignore);
76
c906108c 77/* Global variables owned by this file */
c5aa993b 78int readnow_symbol_files; /* Read full symbols immediately */
c906108c 79
c5aa993b
JM
80struct complaint oldsyms_complaint =
81{
c906108c
SS
82 "Replacing old symbols for `%s'", 0, 0
83};
84
c5aa993b
JM
85struct complaint empty_symtab_complaint =
86{
c906108c
SS
87 "Empty symbol table found for `%s'", 0, 0
88};
89
2acceee2
JM
90struct complaint unknown_option_complaint =
91{
92 "Unknown option `%s' ignored", 0, 0
93};
94
c906108c
SS
95/* External variables and functions referenced. */
96
97extern int info_verbose;
98
a14ed312 99extern void report_transfer_performance (unsigned long, time_t, time_t);
c906108c
SS
100
101/* Functions this file defines */
102
103#if 0
a14ed312
KB
104static int simple_read_overlay_region_table (void);
105static void simple_free_overlay_region_table (void);
c906108c
SS
106#endif
107
a14ed312 108static void set_initial_language (void);
c906108c 109
a14ed312 110static void load_command (char *, int);
c906108c 111
d7db6da9
FN
112static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
113
a14ed312 114static void add_symbol_file_command (char *, int);
c906108c 115
a14ed312 116static void add_shared_symbol_files_command (char *, int);
c906108c 117
a14ed312 118static void cashier_psymtab (struct partial_symtab *);
c906108c 119
ad53e288 120static int compare_psymbols (const PTR, const PTR);
c906108c 121
ad53e288 122static int compare_symbols (const PTR, const PTR);
c906108c 123
a14ed312 124bfd *symfile_bfd_open (char *);
c906108c 125
a14ed312 126static void find_sym_fns (struct objfile *);
c906108c 127
a14ed312 128static void decrement_reading_symtab (void *);
c906108c 129
a14ed312 130static void overlay_invalidate_all (void);
c906108c 131
a14ed312 132static int overlay_is_mapped (struct obj_section *);
c906108c 133
a14ed312 134void list_overlays_command (char *, int);
c906108c 135
a14ed312 136void map_overlay_command (char *, int);
c906108c 137
a14ed312 138void unmap_overlay_command (char *, int);
c906108c 139
a14ed312 140static void overlay_auto_command (char *, int);
c906108c 141
a14ed312 142static void overlay_manual_command (char *, int);
c906108c 143
a14ed312 144static void overlay_off_command (char *, int);
c906108c 145
a14ed312 146static void overlay_load_command (char *, int);
c906108c 147
a14ed312 148static void overlay_command (char *, int);
c906108c 149
a14ed312 150static void simple_free_overlay_table (void);
c906108c 151
a14ed312 152static void read_target_long_array (CORE_ADDR, unsigned int *, int);
c906108c 153
a14ed312 154static int simple_read_overlay_table (void);
c906108c 155
a14ed312 156static int simple_overlay_update_1 (struct obj_section *);
c906108c 157
a14ed312 158static void add_filename_language (char *ext, enum language lang);
392a587b 159
a14ed312 160static void set_ext_lang_command (char *args, int from_tty);
392a587b 161
a14ed312 162static void info_ext_lang_command (char *args, int from_tty);
392a587b 163
a14ed312 164static void init_filename_language_table (void);
392a587b 165
a14ed312 166void _initialize_symfile (void);
c906108c
SS
167
168/* List of all available sym_fns. On gdb startup, each object file reader
169 calls add_symtab_fns() to register information on each format it is
170 prepared to read. */
171
172static struct sym_fns *symtab_fns = NULL;
173
174/* Flag for whether user will be reloading symbols multiple times.
175 Defaults to ON for VxWorks, otherwise OFF. */
176
177#ifdef SYMBOL_RELOADING_DEFAULT
178int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
179#else
180int symbol_reloading = 0;
181#endif
182
183/* If non-zero, then on HP-UX (i.e., platforms that use somsolib.c),
184 this variable is interpreted as a threshhold. If adding a new
185 library's symbol table to those already known to the debugger would
186 exceed this threshhold, then the shlib's symbols are not added.
187
188 If non-zero on other platforms, shared library symbols will be added
189 automatically when the inferior is created, new libraries are loaded,
190 or when attaching to the inferior. This is almost always what users
191 will want to have happen; but for very large programs, the startup
192 time will be excessive, and so if this is a problem, the user can
193 clear this flag and then add the shared library symbols as needed.
194 Note that there is a potential for confusion, since if the shared
195 library symbols are not loaded, commands like "info fun" will *not*
196 report all the functions that are actually present.
197
198 Note that HP-UX interprets this variable to mean, "threshhold size
199 in megabytes, where zero means never add". Other platforms interpret
200 this variable to mean, "always add if non-zero, never add if zero."
c5aa993b 201 */
c906108c
SS
202
203int auto_solib_add = 1;
c906108c 204\f
c5aa993b 205
c906108c
SS
206/* Since this function is called from within qsort, in an ANSI environment
207 it must conform to the prototype for qsort, which specifies that the
208 comparison function takes two "void *" pointers. */
209
210static int
fba45db2 211compare_symbols (const PTR s1p, const PTR s2p)
c906108c
SS
212{
213 register struct symbol **s1, **s2;
214
215 s1 = (struct symbol **) s1p;
216 s2 = (struct symbol **) s2p;
494b7ec9 217 return (strcmp (SYMBOL_SOURCE_NAME (*s1), SYMBOL_SOURCE_NAME (*s2)));
c906108c
SS
218}
219
220/*
221
c5aa993b 222 LOCAL FUNCTION
c906108c 223
c5aa993b 224 compare_psymbols -- compare two partial symbols by name
c906108c 225
c5aa993b 226 DESCRIPTION
c906108c 227
c5aa993b
JM
228 Given pointers to pointers to two partial symbol table entries,
229 compare them by name and return -N, 0, or +N (ala strcmp).
230 Typically used by sorting routines like qsort().
c906108c 231
c5aa993b 232 NOTES
c906108c 233
c5aa993b
JM
234 Does direct compare of first two characters before punting
235 and passing to strcmp for longer compares. Note that the
236 original version had a bug whereby two null strings or two
237 identically named one character strings would return the
238 comparison of memory following the null byte.
c906108c
SS
239
240 */
241
242static int
fba45db2 243compare_psymbols (const PTR s1p, const PTR s2p)
c906108c 244{
fba7f19c
EZ
245 register struct partial_symbol **s1, **s2;
246 register char *st1, *st2;
247
248 s1 = (struct partial_symbol **) s1p;
249 s2 = (struct partial_symbol **) s2p;
250 st1 = SYMBOL_SOURCE_NAME (*s1);
251 st2 = SYMBOL_SOURCE_NAME (*s2);
252
c906108c
SS
253
254 if ((st1[0] - st2[0]) || !st1[0])
255 {
256 return (st1[0] - st2[0]);
257 }
258 else if ((st1[1] - st2[1]) || !st1[1])
259 {
260 return (st1[1] - st2[1]);
261 }
262 else
263 {
c5aa993b 264 return (strcmp (st1, st2));
c906108c
SS
265 }
266}
267
268void
fba45db2 269sort_pst_symbols (struct partial_symtab *pst)
c906108c
SS
270{
271 /* Sort the global list; don't sort the static list */
272
c5aa993b
JM
273 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
274 pst->n_global_syms, sizeof (struct partial_symbol *),
c906108c
SS
275 compare_psymbols);
276}
277
278/* Call sort_block_syms to sort alphabetically the symbols of one block. */
279
280void
fba45db2 281sort_block_syms (register struct block *b)
c906108c
SS
282{
283 qsort (&BLOCK_SYM (b, 0), BLOCK_NSYMS (b),
284 sizeof (struct symbol *), compare_symbols);
285}
286
287/* Call sort_symtab_syms to sort alphabetically
288 the symbols of each block of one symtab. */
289
290void
fba45db2 291sort_symtab_syms (register struct symtab *s)
c906108c
SS
292{
293 register struct blockvector *bv;
294 int nbl;
295 int i;
296 register struct block *b;
297
298 if (s == 0)
299 return;
300 bv = BLOCKVECTOR (s);
301 nbl = BLOCKVECTOR_NBLOCKS (bv);
302 for (i = 0; i < nbl; i++)
303 {
304 b = BLOCKVECTOR_BLOCK (bv, i);
305 if (BLOCK_SHOULD_SORT (b))
306 sort_block_syms (b);
307 }
308}
309
310/* Make a null terminated copy of the string at PTR with SIZE characters in
311 the obstack pointed to by OBSTACKP . Returns the address of the copy.
312 Note that the string at PTR does not have to be null terminated, I.E. it
313 may be part of a larger string and we are only saving a substring. */
314
315char *
fba45db2 316obsavestring (char *ptr, int size, struct obstack *obstackp)
c906108c
SS
317{
318 register char *p = (char *) obstack_alloc (obstackp, size + 1);
319 /* Open-coded memcpy--saves function call time. These strings are usually
320 short. FIXME: Is this really still true with a compiler that can
321 inline memcpy? */
322 {
323 register char *p1 = ptr;
324 register char *p2 = p;
325 char *end = ptr + size;
326 while (p1 != end)
327 *p2++ = *p1++;
328 }
329 p[size] = 0;
330 return p;
331}
332
333/* Concatenate strings S1, S2 and S3; return the new string. Space is found
334 in the obstack pointed to by OBSTACKP. */
335
336char *
fba45db2
KB
337obconcat (struct obstack *obstackp, const char *s1, const char *s2,
338 const char *s3)
c906108c
SS
339{
340 register int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
341 register char *val = (char *) obstack_alloc (obstackp, len);
342 strcpy (val, s1);
343 strcat (val, s2);
344 strcat (val, s3);
345 return val;
346}
347
348/* True if we are nested inside psymtab_to_symtab. */
349
350int currently_reading_symtab = 0;
351
352static void
fba45db2 353decrement_reading_symtab (void *dummy)
c906108c
SS
354{
355 currently_reading_symtab--;
356}
357
358/* Get the symbol table that corresponds to a partial_symtab.
359 This is fast after the first time you do it. In fact, there
360 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
361 case inline. */
362
363struct symtab *
fba45db2 364psymtab_to_symtab (register struct partial_symtab *pst)
c906108c
SS
365{
366 /* If it's been looked up before, return it. */
367 if (pst->symtab)
368 return pst->symtab;
369
370 /* If it has not yet been read in, read it. */
371 if (!pst->readin)
c5aa993b 372 {
c906108c
SS
373 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
374 currently_reading_symtab++;
375 (*pst->read_symtab) (pst);
376 do_cleanups (back_to);
377 }
378
379 return pst->symtab;
380}
381
382/* Initialize entry point information for this objfile. */
383
384void
fba45db2 385init_entry_point_info (struct objfile *objfile)
c906108c
SS
386{
387 /* Save startup file's range of PC addresses to help blockframe.c
388 decide where the bottom of the stack is. */
389
c5aa993b 390 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
c906108c
SS
391 {
392 /* Executable file -- record its entry point so we'll recognize
c5aa993b
JM
393 the startup file because it contains the entry point. */
394 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
c906108c
SS
395 }
396 else
397 {
398 /* Examination of non-executable.o files. Short-circuit this stuff. */
c5aa993b 399 objfile->ei.entry_point = INVALID_ENTRY_POINT;
c906108c 400 }
c5aa993b
JM
401 objfile->ei.entry_file_lowpc = INVALID_ENTRY_LOWPC;
402 objfile->ei.entry_file_highpc = INVALID_ENTRY_HIGHPC;
403 objfile->ei.entry_func_lowpc = INVALID_ENTRY_LOWPC;
404 objfile->ei.entry_func_highpc = INVALID_ENTRY_HIGHPC;
405 objfile->ei.main_func_lowpc = INVALID_ENTRY_LOWPC;
406 objfile->ei.main_func_highpc = INVALID_ENTRY_HIGHPC;
c906108c
SS
407}
408
409/* Get current entry point address. */
410
411CORE_ADDR
fba45db2 412entry_point_address (void)
c906108c
SS
413{
414 return symfile_objfile ? symfile_objfile->ei.entry_point : 0;
415}
416
417/* Remember the lowest-addressed loadable section we've seen.
418 This function is called via bfd_map_over_sections.
419
420 In case of equal vmas, the section with the largest size becomes the
421 lowest-addressed loadable section.
422
423 If the vmas and sizes are equal, the last section is considered the
424 lowest-addressed loadable section. */
425
426void
fba45db2 427find_lowest_section (bfd *abfd, asection *sect, PTR obj)
c906108c 428{
c5aa993b 429 asection **lowest = (asection **) obj;
c906108c
SS
430
431 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
432 return;
433 if (!*lowest)
434 *lowest = sect; /* First loadable section */
435 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
436 *lowest = sect; /* A lower loadable section */
437 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
438 && (bfd_section_size (abfd, (*lowest))
439 <= bfd_section_size (abfd, sect)))
440 *lowest = sect;
441}
442
62557bbc
KB
443
444/* Build (allocate and populate) a section_addr_info struct from
445 an existing section table. */
446
447extern struct section_addr_info *
448build_section_addr_info_from_section_table (const struct section_table *start,
449 const struct section_table *end)
450{
451 struct section_addr_info *sap;
452 const struct section_table *stp;
453 int oidx;
454
455 sap = xmalloc (sizeof (struct section_addr_info));
456 memset (sap, 0, sizeof (struct section_addr_info));
457
458 for (stp = start, oidx = 0; stp != end; stp++)
459 {
62557bbc
KB
460 if (stp->the_bfd_section->flags & (SEC_ALLOC | SEC_LOAD)
461 && oidx < MAX_SECTIONS)
462 {
463 sap->other[oidx].addr = stp->addr;
464 sap->other[oidx].name = xstrdup (stp->the_bfd_section->name);
465 sap->other[oidx].sectindex = stp->the_bfd_section->index;
466 oidx++;
467 }
468 }
469
470 return sap;
471}
472
473
474/* Free all memory allocated by build_section_addr_info_from_section_table. */
475
476extern void
477free_section_addr_info (struct section_addr_info *sap)
478{
479 int idx;
480
481 for (idx = 0; idx < MAX_SECTIONS; idx++)
482 if (sap->other[idx].name)
b8c9b27d
KB
483 xfree (sap->other[idx].name);
484 xfree (sap);
62557bbc
KB
485}
486
487
c906108c
SS
488/* Parse the user's idea of an offset for dynamic linking, into our idea
489 of how to represent it for fast symbol reading. This is the default
490 version of the sym_fns.sym_offsets function for symbol readers that
491 don't need to do anything special. It allocates a section_offsets table
492 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
493
d4f3574e 494void
fba45db2
KB
495default_symfile_offsets (struct objfile *objfile,
496 struct section_addr_info *addrs)
c906108c 497{
c906108c 498 int i;
b8fbeb18 499 asection *sect = NULL;
c906108c
SS
500
501 objfile->num_sections = SECT_OFF_MAX;
d4f3574e 502 objfile->section_offsets = (struct section_offsets *)
c5aa993b 503 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
d4f3574e 504 memset (objfile->section_offsets, 0, SIZEOF_SECTION_OFFSETS);
c906108c 505
b8fbeb18
EZ
506 /* Now calculate offsets for section that were specified by the
507 caller. */
2acceee2
JM
508 for (i = 0; i < MAX_SECTIONS && addrs->other[i].name; i++)
509 {
510 struct other_sections *osp ;
511
512 osp = &addrs->other[i] ;
b8fbeb18 513 if (osp->addr == 0)
2acceee2 514 continue;
b8fbeb18 515
2acceee2 516 /* Record all sections in offsets */
b8fbeb18
EZ
517 /* The section_offsets in the objfile are here filled in using
518 the BFD index. */
a4c8257b 519 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
2acceee2 520 }
c906108c 521
b8fbeb18
EZ
522 /* Remember the bfd indexes for the .text, .data, .bss and
523 .rodata sections. */
524
525 sect = bfd_get_section_by_name (objfile->obfd, ".text");
526 if (sect)
527 objfile->sect_index_text = sect->index;
528
529 sect = bfd_get_section_by_name (objfile->obfd, ".data");
530 if (sect)
531 objfile->sect_index_data = sect->index;
532
533 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
534 if (sect)
535 objfile->sect_index_bss = sect->index;
536
537 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
538 if (sect)
539 objfile->sect_index_rodata = sect->index;
540
541}
c906108c
SS
542
543/* Process a symbol file, as either the main file or as a dynamically
544 loaded file.
545
96baa820
JM
546 OBJFILE is where the symbols are to be read from.
547
548 ADDR is the address where the text segment was loaded, unless the
549 objfile is the main symbol file, in which case it is zero.
550
551 MAINLINE is nonzero if this is the main symbol file, or zero if
552 it's an extra symbol file such as dynamically loaded code.
553
554 VERBO is nonzero if the caller has printed a verbose message about
555 the symbol reading (and complaints can be more terse about it). */
c906108c
SS
556
557void
fba45db2
KB
558syms_from_objfile (struct objfile *objfile, struct section_addr_info *addrs,
559 int mainline, int verbo)
c906108c 560{
2acceee2
JM
561 asection *lower_sect;
562 asection *sect;
563 CORE_ADDR lower_offset;
564 struct section_addr_info local_addr;
c906108c 565 struct cleanup *old_chain;
2acceee2
JM
566 int i;
567
568 /* If ADDRS is NULL, initialize the local section_addr_info struct and
569 point ADDRS to it. We now establish the convention that an addr of
570 zero means no load address was specified. */
571
572 if (addrs == NULL)
573 {
574 memset (&local_addr, 0, sizeof (local_addr));
575 addrs = &local_addr;
576 }
c906108c
SS
577
578 init_entry_point_info (objfile);
579 find_sym_fns (objfile);
580
581 /* Make sure that partially constructed symbol tables will be cleaned up
582 if an error occurs during symbol reading. */
74b7792f 583 old_chain = make_cleanup_free_objfile (objfile);
c906108c 584
c5aa993b 585 if (mainline)
c906108c
SS
586 {
587 /* We will modify the main symbol table, make sure that all its users
c5aa993b 588 will be cleaned up if an error occurs during symbol reading. */
74b7792f 589 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
590
591 /* Since no error yet, throw away the old symbol table. */
592
593 if (symfile_objfile != NULL)
594 {
595 free_objfile (symfile_objfile);
596 symfile_objfile = NULL;
597 }
598
599 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
600 If the user wants to get rid of them, they should do "symbol-file"
601 without arguments first. Not sure this is the best behavior
602 (PR 2207). */
c906108c 603
c5aa993b 604 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
605 }
606
607 /* Convert addr into an offset rather than an absolute address.
608 We find the lowest address of a loaded segment in the objfile,
53a5351d 609 and assume that <addr> is where that got loaded.
c906108c 610
53a5351d
JM
611 We no longer warn if the lowest section is not a text segment (as
612 happens for the PA64 port. */
e7cf9df1 613 if (!mainline)
c906108c 614 {
2acceee2
JM
615 /* Find lowest loadable section to be used as starting point for
616 continguous sections. FIXME!! won't work without call to find
617 .text first, but this assumes text is lowest section. */
618 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
619 if (lower_sect == NULL)
c906108c 620 bfd_map_over_sections (objfile->obfd, find_lowest_section,
2acceee2
JM
621 (PTR) &lower_sect);
622 if (lower_sect == NULL)
c906108c
SS
623 warning ("no loadable sections found in added symbol-file %s",
624 objfile->name);
b8fbeb18
EZ
625 else
626 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
627 warning ("Lowest section in %s is %s at %s",
628 objfile->name,
629 bfd_section_name (objfile->obfd, lower_sect),
630 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
2acceee2
JM
631 if (lower_sect != NULL)
632 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
633 else
634 lower_offset = 0;
635
636 /* Calculate offsets for the loadable sections.
637 FIXME! Sections must be in order of increasing loadable section
638 so that contiguous sections can use the lower-offset!!!
639
640 Adjust offsets if the segments are not contiguous.
641 If the section is contiguous, its offset should be set to
642 the offset of the highest loadable section lower than it
643 (the loadable section directly below it in memory).
644 this_offset = lower_offset = lower_addr - lower_orig_addr */
645
e7cf9df1 646 /* Calculate offsets for sections. */
2acceee2
JM
647 for (i=0 ; i < MAX_SECTIONS && addrs->other[i].name; i++)
648 {
e7cf9df1 649 if (addrs->other[i].addr != 0)
2acceee2 650 {
e7cf9df1 651 sect = bfd_get_section_by_name (objfile->obfd, addrs->other[i].name);
2acceee2
JM
652 if (sect)
653 {
654 addrs->other[i].addr -= bfd_section_vma (objfile->obfd, sect);
655 lower_offset = addrs->other[i].addr;
e7cf9df1 656 /* This is the index used by BFD. */
2acceee2
JM
657 addrs->other[i].sectindex = sect->index ;
658 }
659 else
660 {
661 warning ("section %s not found in %s", addrs->other[i].name,
662 objfile->name);
663 addrs->other[i].addr = 0;
664 }
665 }
666 else
667 addrs->other[i].addr = lower_offset;
668 }
c906108c
SS
669 }
670
671 /* Initialize symbol reading routines for this objfile, allow complaints to
672 appear for this new file, and record how verbose to be, then do the
673 initial symbol reading for this file. */
674
c5aa993b 675 (*objfile->sf->sym_init) (objfile);
c906108c
SS
676 clear_complaints (1, verbo);
677
2acceee2 678 (*objfile->sf->sym_offsets) (objfile, addrs);
c906108c
SS
679
680#ifndef IBM6000_TARGET
681 /* This is a SVR4/SunOS specific hack, I think. In any event, it
682 screws RS/6000. sym_offsets should be doing this sort of thing,
683 because it knows the mapping between bfd sections and
684 section_offsets. */
685 /* This is a hack. As far as I can tell, section offsets are not
686 target dependent. They are all set to addr with a couple of
687 exceptions. The exceptions are sysvr4 shared libraries, whose
688 offsets are kept in solib structures anyway and rs6000 xcoff
689 which handles shared libraries in a completely unique way.
690
691 Section offsets are built similarly, except that they are built
692 by adding addr in all cases because there is no clear mapping
693 from section_offsets into actual sections. Note that solib.c
96baa820 694 has a different algorithm for finding section offsets.
c906108c
SS
695
696 These should probably all be collapsed into some target
697 independent form of shared library support. FIXME. */
698
2acceee2 699 if (addrs)
c906108c
SS
700 {
701 struct obj_section *s;
702
2acceee2
JM
703 /* Map section offsets in "addr" back to the object's
704 sections by comparing the section names with bfd's
705 section names. Then adjust the section address by
706 the offset. */ /* for gdb/13815 */
707
96baa820 708 ALL_OBJFILE_OSECTIONS (objfile, s)
c906108c 709 {
2acceee2
JM
710 CORE_ADDR s_addr = 0;
711 int i;
712
62557bbc
KB
713 for (i = 0;
714 !s_addr && i < MAX_SECTIONS && addrs->other[i].name;
715 i++)
2acceee2
JM
716 if (strcmp (s->the_bfd_section->name, addrs->other[i].name) == 0)
717 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
718
c906108c 719 s->addr -= s->offset;
2acceee2 720 s->addr += s_addr;
c906108c 721 s->endaddr -= s->offset;
2acceee2
JM
722 s->endaddr += s_addr;
723 s->offset += s_addr;
c906108c
SS
724 }
725 }
726#endif /* not IBM6000_TARGET */
727
96baa820 728 (*objfile->sf->sym_read) (objfile, mainline);
c906108c
SS
729
730 if (!have_partial_symbols () && !have_full_symbols ())
731 {
732 wrap_here ("");
733 printf_filtered ("(no debugging symbols found)...");
734 wrap_here ("");
735 }
736
737 /* Don't allow char * to have a typename (else would get caddr_t).
738 Ditto void *. FIXME: Check whether this is now done by all the
739 symbol readers themselves (many of them now do), and if so remove
740 it from here. */
741
742 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
743 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
744
745 /* Mark the objfile has having had initial symbol read attempted. Note
746 that this does not mean we found any symbols... */
747
c5aa993b 748 objfile->flags |= OBJF_SYMS;
c906108c
SS
749
750 /* Discard cleanups as symbol reading was successful. */
751
752 discard_cleanups (old_chain);
753
96baa820 754 /* Call this after reading in a new symbol table to give target
38c2ef12 755 dependent code a crack at the new symbols. For instance, this
96baa820
JM
756 could be used to update the values of target-specific symbols GDB
757 needs to keep track of (such as _sigtramp, or whatever). */
c906108c
SS
758
759 TARGET_SYMFILE_POSTREAD (objfile);
760}
761
762/* Perform required actions after either reading in the initial
763 symbols for a new objfile, or mapping in the symbols from a reusable
764 objfile. */
c5aa993b 765
c906108c 766void
fba45db2 767new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
c906108c
SS
768{
769
770 /* If this is the main symbol file we have to clean up all users of the
771 old main symbol file. Otherwise it is sufficient to fixup all the
772 breakpoints that may have been redefined by this symbol file. */
773 if (mainline)
774 {
775 /* OK, make it the "real" symbol file. */
776 symfile_objfile = objfile;
777
778 clear_symtab_users ();
779 }
780 else
781 {
782 breakpoint_re_set ();
783 }
784
785 /* We're done reading the symbol file; finish off complaints. */
786 clear_complaints (0, verbo);
787}
788
789/* Process a symbol file, as either the main file or as a dynamically
790 loaded file.
791
792 NAME is the file name (which will be tilde-expanded and made
793 absolute herein) (but we don't free or modify NAME itself).
794 FROM_TTY says how verbose to be. MAINLINE specifies whether this
795 is the main symbol file, or whether it's an extra symbol file such
796 as dynamically loaded code. If !mainline, ADDR is the address
797 where the text segment was loaded.
798
c906108c
SS
799 Upon success, returns a pointer to the objfile that was added.
800 Upon failure, jumps back to command level (never returns). */
801
802struct objfile *
fba45db2
KB
803symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
804 int mainline, int flags)
c906108c
SS
805{
806 struct objfile *objfile;
807 struct partial_symtab *psymtab;
808 bfd *abfd;
809
810 /* Open a bfd for the file, and give user a chance to burp if we'd be
811 interactively wiping out any existing symbols. */
812
813 abfd = symfile_bfd_open (name);
814
815 if ((have_full_symbols () || have_partial_symbols ())
816 && mainline
817 && from_tty
818 && !query ("Load new symbol table from \"%s\"? ", name))
c5aa993b 819 error ("Not confirmed.");
c906108c 820
2df3850c 821 objfile = allocate_objfile (abfd, flags);
c906108c
SS
822
823 /* If the objfile uses a mapped symbol file, and we have a psymtab for
824 it, then skip reading any symbols at this time. */
825
c5aa993b 826 if ((objfile->flags & OBJF_MAPPED) && (objfile->flags & OBJF_SYMS))
c906108c
SS
827 {
828 /* We mapped in an existing symbol table file that already has had
c5aa993b
JM
829 initial symbol reading performed, so we can skip that part. Notify
830 the user that instead of reading the symbols, they have been mapped.
831 */
c906108c
SS
832 if (from_tty || info_verbose)
833 {
834 printf_filtered ("Mapped symbols for %s...", name);
835 wrap_here ("");
836 gdb_flush (gdb_stdout);
837 }
838 init_entry_point_info (objfile);
839 find_sym_fns (objfile);
840 }
841 else
842 {
843 /* We either created a new mapped symbol table, mapped an existing
c5aa993b
JM
844 symbol table file which has not had initial symbol reading
845 performed, or need to read an unmapped symbol table. */
c906108c
SS
846 if (from_tty || info_verbose)
847 {
848 if (pre_add_symbol_hook)
849 pre_add_symbol_hook (name);
850 else
851 {
852 printf_filtered ("Reading symbols from %s...", name);
853 wrap_here ("");
854 gdb_flush (gdb_stdout);
855 }
856 }
2acceee2 857 syms_from_objfile (objfile, addrs, mainline, from_tty);
c906108c
SS
858 }
859
860 /* We now have at least a partial symbol table. Check to see if the
861 user requested that all symbols be read on initial access via either
862 the gdb startup command line or on a per symbol file basis. Expand
863 all partial symbol tables for this objfile if so. */
864
2acceee2 865 if ((flags & OBJF_READNOW) || readnow_symbol_files)
c906108c
SS
866 {
867 if (from_tty || info_verbose)
868 {
869 printf_filtered ("expanding to full symbols...");
870 wrap_here ("");
871 gdb_flush (gdb_stdout);
872 }
873
c5aa993b 874 for (psymtab = objfile->psymtabs;
c906108c 875 psymtab != NULL;
c5aa993b 876 psymtab = psymtab->next)
c906108c
SS
877 {
878 psymtab_to_symtab (psymtab);
879 }
880 }
881
882 if (from_tty || info_verbose)
883 {
884 if (post_add_symbol_hook)
c5aa993b 885 post_add_symbol_hook ();
c906108c 886 else
c5aa993b
JM
887 {
888 printf_filtered ("done.\n");
889 gdb_flush (gdb_stdout);
890 }
c906108c
SS
891 }
892
893 new_symfile_objfile (objfile, mainline, from_tty);
894
11cf8741
JM
895 if (target_new_objfile_hook)
896 target_new_objfile_hook (objfile);
c906108c
SS
897
898 return (objfile);
899}
900
d7db6da9
FN
901/* Call symbol_file_add() with default values and update whatever is
902 affected by the loading of a new main().
903 Used when the file is supplied in the gdb command line
904 and by some targets with special loading requirements.
905 The auxiliary function, symbol_file_add_main_1(), has the flags
906 argument for the switches that can only be specified in the symbol_file
907 command itself. */
1adeb98a
FN
908
909void
910symbol_file_add_main (char *args, int from_tty)
911{
d7db6da9
FN
912 symbol_file_add_main_1 (args, from_tty, 0);
913}
914
915static void
916symbol_file_add_main_1 (char *args, int from_tty, int flags)
917{
918 symbol_file_add (args, from_tty, NULL, 1, flags);
919
920#ifdef HPUXHPPA
921 RESET_HP_UX_GLOBALS ();
922#endif
923
924 /* Getting new symbols may change our opinion about
925 what is frameless. */
926 reinit_frame_cache ();
927
928 set_initial_language ();
1adeb98a
FN
929}
930
931void
932symbol_file_clear (int from_tty)
933{
934 if ((have_full_symbols () || have_partial_symbols ())
935 && from_tty
936 && !query ("Discard symbol table from `%s'? ",
937 symfile_objfile->name))
938 error ("Not confirmed.");
939 free_all_objfiles ();
940
941 /* solib descriptors may have handles to objfiles. Since their
942 storage has just been released, we'd better wipe the solib
943 descriptors as well.
944 */
945#if defined(SOLIB_RESTART)
946 SOLIB_RESTART ();
947#endif
948
949 symfile_objfile = NULL;
950 if (from_tty)
951 printf_unfiltered ("No symbol file now.\n");
952#ifdef HPUXHPPA
953 RESET_HP_UX_GLOBALS ();
954#endif
955}
956
c906108c
SS
957/* This is the symbol-file command. Read the file, analyze its
958 symbols, and add a struct symtab to a symtab list. The syntax of
959 the command is rather bizarre--(1) buildargv implements various
960 quoting conventions which are undocumented and have little or
961 nothing in common with the way things are quoted (or not quoted)
962 elsewhere in GDB, (2) options are used, which are not generally
963 used in GDB (perhaps "set mapped on", "set readnow on" would be
964 better), (3) the order of options matters, which is contrary to GNU
965 conventions (because it is confusing and inconvenient). */
4da95fc4
EZ
966/* Note: ezannoni 2000-04-17. This function used to have support for
967 rombug (see remote-os9k.c). It consisted of a call to target_link()
968 (target.c) to get the address of the text segment from the target,
969 and pass that to symbol_file_add(). This is no longer supported. */
c906108c
SS
970
971void
fba45db2 972symbol_file_command (char *args, int from_tty)
c906108c
SS
973{
974 char **argv;
975 char *name = NULL;
c906108c 976 struct cleanup *cleanups;
2df3850c 977 int flags = OBJF_USERLOADED;
c906108c
SS
978
979 dont_repeat ();
980
981 if (args == NULL)
982 {
1adeb98a 983 symbol_file_clear (from_tty);
c906108c
SS
984 }
985 else
986 {
987 if ((argv = buildargv (args)) == NULL)
988 {
989 nomem (0);
990 }
7a292a7a 991 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
992 while (*argv != NULL)
993 {
994 if (STREQ (*argv, "-mapped"))
4da95fc4
EZ
995 flags |= OBJF_MAPPED;
996 else
997 if (STREQ (*argv, "-readnow"))
2acceee2 998 flags |= OBJF_READNOW;
4da95fc4
EZ
999 else
1000 if (**argv == '-')
1001 error ("unknown option `%s'", *argv);
c5aa993b 1002 else
c5aa993b 1003 {
4da95fc4 1004 name = *argv;
c906108c 1005
d7db6da9 1006 symbol_file_add_main_1 (name, from_tty, flags);
4da95fc4 1007 }
c906108c
SS
1008 argv++;
1009 }
1010
1011 if (name == NULL)
1012 {
1013 error ("no symbol file name was specified");
1014 }
c5aa993b 1015 TUIDO (((TuiOpaqueFuncPtr) tuiDisplayMainFunction));
c906108c
SS
1016 do_cleanups (cleanups);
1017 }
1018}
1019
1020/* Set the initial language.
1021
1022 A better solution would be to record the language in the psymtab when reading
1023 partial symbols, and then use it (if known) to set the language. This would
1024 be a win for formats that encode the language in an easily discoverable place,
1025 such as DWARF. For stabs, we can jump through hoops looking for specially
1026 named symbols or try to intuit the language from the specific type of stabs
1027 we find, but we can't do that until later when we read in full symbols.
1028 FIXME. */
1029
1030static void
fba45db2 1031set_initial_language (void)
c906108c
SS
1032{
1033 struct partial_symtab *pst;
c5aa993b 1034 enum language lang = language_unknown;
c906108c
SS
1035
1036 pst = find_main_psymtab ();
1037 if (pst != NULL)
1038 {
c5aa993b 1039 if (pst->filename != NULL)
c906108c 1040 {
c5aa993b
JM
1041 lang = deduce_language_from_filename (pst->filename);
1042 }
c906108c
SS
1043 if (lang == language_unknown)
1044 {
c5aa993b
JM
1045 /* Make C the default language */
1046 lang = language_c;
c906108c
SS
1047 }
1048 set_language (lang);
1049 expected_language = current_language; /* Don't warn the user */
1050 }
1051}
1052
1053/* Open file specified by NAME and hand it off to BFD for preliminary
1054 analysis. Result is a newly initialized bfd *, which includes a newly
1055 malloc'd` copy of NAME (tilde-expanded and made absolute).
1056 In case of trouble, error() is called. */
1057
1058bfd *
fba45db2 1059symfile_bfd_open (char *name)
c906108c
SS
1060{
1061 bfd *sym_bfd;
1062 int desc;
1063 char *absolute_name;
1064
1065
1066
1067 name = tilde_expand (name); /* Returns 1st new malloc'd copy */
1068
1069 /* Look down path for it, allocate 2nd new malloc'd copy. */
1070 desc = openp (getenv ("PATH"), 1, name, O_RDONLY | O_BINARY, 0, &absolute_name);
608506ed 1071#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1072 if (desc < 0)
1073 {
1074 char *exename = alloca (strlen (name) + 5);
1075 strcat (strcpy (exename, name), ".exe");
1076 desc = openp (getenv ("PATH"), 1, exename, O_RDONLY | O_BINARY,
c5aa993b 1077 0, &absolute_name);
c906108c
SS
1078 }
1079#endif
1080 if (desc < 0)
1081 {
b8c9b27d 1082 make_cleanup (xfree, name);
c906108c
SS
1083 perror_with_name (name);
1084 }
b8c9b27d 1085 xfree (name); /* Free 1st new malloc'd copy */
c906108c 1086 name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
c5aa993b 1087 /* It'll be freed in free_objfile(). */
c906108c
SS
1088
1089 sym_bfd = bfd_fdopenr (name, gnutarget, desc);
1090 if (!sym_bfd)
1091 {
1092 close (desc);
b8c9b27d 1093 make_cleanup (xfree, name);
c906108c
SS
1094 error ("\"%s\": can't open to read symbols: %s.", name,
1095 bfd_errmsg (bfd_get_error ()));
1096 }
1097 sym_bfd->cacheable = true;
1098
1099 if (!bfd_check_format (sym_bfd, bfd_object))
1100 {
1101 /* FIXME: should be checking for errors from bfd_close (for one thing,
c5aa993b
JM
1102 on error it does not free all the storage associated with the
1103 bfd). */
c906108c 1104 bfd_close (sym_bfd); /* This also closes desc */
b8c9b27d 1105 make_cleanup (xfree, name);
c906108c
SS
1106 error ("\"%s\": can't read symbols: %s.", name,
1107 bfd_errmsg (bfd_get_error ()));
1108 }
1109 return (sym_bfd);
1110}
1111
1112/* Link a new symtab_fns into the global symtab_fns list. Called on gdb
1113 startup by the _initialize routine in each object file format reader,
1114 to register information about each format the the reader is prepared
1115 to handle. */
1116
1117void
fba45db2 1118add_symtab_fns (struct sym_fns *sf)
c906108c
SS
1119{
1120 sf->next = symtab_fns;
1121 symtab_fns = sf;
1122}
1123
1124
1125/* Initialize to read symbols from the symbol file sym_bfd. It either
1126 returns or calls error(). The result is an initialized struct sym_fns
1127 in the objfile structure, that contains cached information about the
1128 symbol file. */
1129
1130static void
fba45db2 1131find_sym_fns (struct objfile *objfile)
c906108c
SS
1132{
1133 struct sym_fns *sf;
c5aa993b
JM
1134 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1135 char *our_target = bfd_get_target (objfile->obfd);
c906108c 1136
c906108c
SS
1137 /* Special kludge for apollo. See dstread.c. */
1138 if (STREQN (our_target, "apollo", 6))
c5aa993b 1139 our_flavour = (enum bfd_flavour) -2;
c906108c 1140
c5aa993b 1141 for (sf = symtab_fns; sf != NULL; sf = sf->next)
c906108c 1142 {
c5aa993b 1143 if (our_flavour == sf->sym_flavour)
c906108c 1144 {
c5aa993b 1145 objfile->sf = sf;
c906108c
SS
1146 return;
1147 }
1148 }
1149 error ("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown.",
c5aa993b 1150 bfd_get_target (objfile->obfd));
c906108c
SS
1151}
1152\f
1153/* This function runs the load command of our current target. */
1154
1155static void
fba45db2 1156load_command (char *arg, int from_tty)
c906108c
SS
1157{
1158 if (arg == NULL)
1159 arg = get_exec_file (1);
1160 target_load (arg, from_tty);
1161}
1162
1163/* This version of "load" should be usable for any target. Currently
1164 it is just used for remote targets, not inftarg.c or core files,
1165 on the theory that only in that case is it useful.
1166
1167 Avoiding xmodem and the like seems like a win (a) because we don't have
1168 to worry about finding it, and (b) On VMS, fork() is very slow and so
1169 we don't want to run a subprocess. On the other hand, I'm not sure how
1170 performance compares. */
917317f4
JM
1171
1172static int download_write_size = 512;
1173static int validate_download = 0;
1174
c906108c 1175void
917317f4 1176generic_load (char *args, int from_tty)
c906108c 1177{
c906108c
SS
1178 asection *s;
1179 bfd *loadfile_bfd;
1180 time_t start_time, end_time; /* Start and end times of download */
1181 unsigned long data_count = 0; /* Number of bytes transferred to memory */
917317f4
JM
1182 unsigned long write_count = 0; /* Number of writes needed. */
1183 unsigned long load_offset; /* offset to add to vma for each section */
1184 char *filename;
1185 struct cleanup *old_cleanups;
1186 char *offptr;
c2d11a7d
JM
1187 CORE_ADDR total_size = 0;
1188 CORE_ADDR total_sent = 0;
917317f4
JM
1189
1190 /* Parse the input argument - the user can specify a load offset as
1191 a second argument. */
1192 filename = xmalloc (strlen (args) + 1);
b8c9b27d 1193 old_cleanups = make_cleanup (xfree, filename);
917317f4
JM
1194 strcpy (filename, args);
1195 offptr = strchr (filename, ' ');
1196 if (offptr != NULL)
1197 {
1198 char *endptr;
1199 load_offset = strtoul (offptr, &endptr, 0);
1200 if (offptr == endptr)
1201 error ("Invalid download offset:%s\n", offptr);
1202 *offptr = '\0';
1203 }
c906108c
SS
1204 else
1205 load_offset = 0;
1206
917317f4 1207 /* Open the file for loading. */
c906108c
SS
1208 loadfile_bfd = bfd_openr (filename, gnutarget);
1209 if (loadfile_bfd == NULL)
1210 {
1211 perror_with_name (filename);
1212 return;
1213 }
917317f4 1214
c906108c
SS
1215 /* FIXME: should be checking for errors from bfd_close (for one thing,
1216 on error it does not free all the storage associated with the
1217 bfd). */
5c65bbb6 1218 make_cleanup_bfd_close (loadfile_bfd);
c906108c 1219
c5aa993b 1220 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c
SS
1221 {
1222 error ("\"%s\" is not an object file: %s", filename,
1223 bfd_errmsg (bfd_get_error ()));
1224 }
c5aa993b 1225
c2d11a7d
JM
1226 for (s = loadfile_bfd->sections; s; s = s->next)
1227 if (s->flags & SEC_LOAD)
1228 total_size += bfd_get_section_size_before_reloc (s);
1229
c906108c
SS
1230 start_time = time (NULL);
1231
c5aa993b
JM
1232 for (s = loadfile_bfd->sections; s; s = s->next)
1233 {
1234 if (s->flags & SEC_LOAD)
1235 {
917317f4 1236 CORE_ADDR size = bfd_get_section_size_before_reloc (s);
c5aa993b
JM
1237 if (size > 0)
1238 {
1239 char *buffer;
1240 struct cleanup *old_chain;
917317f4
JM
1241 CORE_ADDR lma = s->lma + load_offset;
1242 CORE_ADDR block_size;
c5aa993b 1243 int err;
917317f4
JM
1244 const char *sect_name = bfd_get_section_name (loadfile_bfd, s);
1245 CORE_ADDR sent;
c5aa993b 1246
917317f4
JM
1247 if (download_write_size > 0 && size > download_write_size)
1248 block_size = download_write_size;
1249 else
1250 block_size = size;
c5aa993b
JM
1251
1252 buffer = xmalloc (size);
b8c9b27d 1253 old_chain = make_cleanup (xfree, buffer);
c5aa993b 1254
c5aa993b
JM
1255 /* Is this really necessary? I guess it gives the user something
1256 to look at during a long download. */
8b93c638
JM
1257#ifdef UI_OUT
1258 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1259 sect_name, paddr_nz (size), paddr_nz (lma));
1260#else
917317f4
JM
1261 fprintf_unfiltered (gdb_stdout,
1262 "Loading section %s, size 0x%s lma 0x%s\n",
1263 sect_name, paddr_nz (size), paddr_nz (lma));
8b93c638 1264#endif
c5aa993b
JM
1265
1266 bfd_get_section_contents (loadfile_bfd, s, buffer, 0, size);
1267
c5aa993b
JM
1268 sent = 0;
1269 do
1270 {
917317f4
JM
1271 CORE_ADDR len;
1272 CORE_ADDR this_transfer = size - sent;
1273 if (this_transfer >= block_size)
1274 this_transfer = block_size;
1275 len = target_write_memory_partial (lma, buffer,
1276 this_transfer, &err);
c5aa993b
JM
1277 if (err)
1278 break;
917317f4
JM
1279 if (validate_download)
1280 {
1281 /* Broken memories and broken monitors manifest
1282 themselves here when bring new computers to
1283 life. This doubles already slow downloads. */
1284 /* NOTE: cagney/1999-10-18: A more efficient
1285 implementation might add a verify_memory()
1286 method to the target vector and then use
1287 that. remote.c could implement that method
1288 using the ``qCRC'' packet. */
1289 char *check = xmalloc (len);
b8c9b27d 1290 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
917317f4
JM
1291 if (target_read_memory (lma, check, len) != 0)
1292 error ("Download verify read failed at 0x%s",
1293 paddr (lma));
1294 if (memcmp (buffer, check, len) != 0)
1295 error ("Download verify compare failed at 0x%s",
1296 paddr (lma));
1297 do_cleanups (verify_cleanups);
1298 }
c5aa993b
JM
1299 data_count += len;
1300 lma += len;
1301 buffer += len;
917317f4
JM
1302 write_count += 1;
1303 sent += len;
c2d11a7d 1304 total_sent += len;
917317f4
JM
1305 if (quit_flag
1306 || (ui_load_progress_hook != NULL
1307 && ui_load_progress_hook (sect_name, sent)))
1308 error ("Canceled the download");
c2d11a7d
JM
1309
1310 if (show_load_progress != NULL)
1311 show_load_progress (sect_name, sent, size, total_sent, total_size);
917317f4
JM
1312 }
1313 while (sent < size);
c5aa993b
JM
1314
1315 if (err != 0)
917317f4 1316 error ("Memory access error while loading section %s.", sect_name);
c906108c 1317
c5aa993b
JM
1318 do_cleanups (old_chain);
1319 }
1320 }
c906108c
SS
1321 }
1322
1323 end_time = time (NULL);
1324 {
917317f4 1325 CORE_ADDR entry;
c5aa993b 1326 entry = bfd_get_start_address (loadfile_bfd);
8b93c638
JM
1327#ifdef UI_OUT
1328 ui_out_text (uiout, "Start address ");
1329 ui_out_field_fmt (uiout, "address", "0x%s" , paddr_nz (entry));
1330 ui_out_text (uiout, ", load size ");
1331 ui_out_field_fmt (uiout, "load-size", "%ld" , data_count);
1332 ui_out_text (uiout, "\n");
1333
1334#else
917317f4
JM
1335 fprintf_unfiltered (gdb_stdout,
1336 "Start address 0x%s , load size %ld\n",
1337 paddr_nz (entry), data_count);
8b93c638 1338#endif
c906108c
SS
1339 /* We were doing this in remote-mips.c, I suspect it is right
1340 for other targets too. */
1341 write_pc (entry);
1342 }
1343
1344 /* FIXME: are we supposed to call symbol_file_add or not? According to
1345 a comment from remote-mips.c (where a call to symbol_file_add was
1346 commented out), making the call confuses GDB if more than one file is
1347 loaded in. remote-nindy.c had no call to symbol_file_add, but remote-vx.c
1348 does. */
1349
917317f4
JM
1350 print_transfer_performance (gdb_stdout, data_count, write_count,
1351 end_time - start_time);
c906108c
SS
1352
1353 do_cleanups (old_cleanups);
1354}
1355
1356/* Report how fast the transfer went. */
1357
917317f4
JM
1358/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1359 replaced by print_transfer_performance (with a very different
1360 function signature). */
1361
c906108c 1362void
fba45db2
KB
1363report_transfer_performance (unsigned long data_count, time_t start_time,
1364 time_t end_time)
c906108c 1365{
917317f4
JM
1366 print_transfer_performance (gdb_stdout, data_count, end_time - start_time, 0);
1367}
1368
1369void
d9fcf2fb 1370print_transfer_performance (struct ui_file *stream,
917317f4
JM
1371 unsigned long data_count,
1372 unsigned long write_count,
1373 unsigned long time_count)
1374{
8b93c638
JM
1375#ifdef UI_OUT
1376 ui_out_text (uiout, "Transfer rate: ");
1377 if (time_count > 0)
1378 {
1379 ui_out_field_fmt (uiout, "transfer-rate", "%ld",
1380 (data_count * 8) / time_count);
1381 ui_out_text (uiout, " bits/sec");
1382 }
1383 else
1384 {
1385 ui_out_field_fmt (uiout, "transferred-bits", "%ld", (data_count * 8));
1386 ui_out_text (uiout, " bits in <1 sec");
1387 }
1388 if (write_count > 0)
1389 {
1390 ui_out_text (uiout, ", ");
1391 ui_out_field_fmt (uiout, "write-rate", "%ld", data_count / write_count);
1392 ui_out_text (uiout, " bytes/write");
1393 }
1394 ui_out_text (uiout, ".\n");
1395#else
917317f4
JM
1396 fprintf_unfiltered (stream, "Transfer rate: ");
1397 if (time_count > 0)
1398 fprintf_unfiltered (stream, "%ld bits/sec", (data_count * 8) / time_count);
c906108c 1399 else
917317f4
JM
1400 fprintf_unfiltered (stream, "%ld bits in <1 sec", (data_count * 8));
1401 if (write_count > 0)
1402 fprintf_unfiltered (stream, ", %ld bytes/write", data_count / write_count);
1403 fprintf_unfiltered (stream, ".\n");
8b93c638 1404#endif
c906108c
SS
1405}
1406
1407/* This function allows the addition of incrementally linked object files.
1408 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
1409/* Note: ezannoni 2000-04-13 This function/command used to have a
1410 special case syntax for the rombug target (Rombug is the boot
1411 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1412 rombug case, the user doesn't need to supply a text address,
1413 instead a call to target_link() (in target.c) would supply the
1414 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c
SS
1415
1416/* ARGSUSED */
1417static void
fba45db2 1418add_symbol_file_command (char *args, int from_tty)
c906108c 1419{
db162d44 1420 char *filename = NULL;
2df3850c 1421 int flags = OBJF_USERLOADED;
c906108c 1422 char *arg;
2acceee2 1423 int expecting_option = 0;
db162d44 1424 int section_index = 0;
2acceee2
JM
1425 int argcnt = 0;
1426 int sec_num = 0;
1427 int i;
db162d44
EZ
1428 int expecting_sec_name = 0;
1429 int expecting_sec_addr = 0;
1430
2acceee2
JM
1431 struct
1432 {
2acceee2
JM
1433 char *name;
1434 char *value;
db162d44
EZ
1435 } sect_opts[SECT_OFF_MAX];
1436
2acceee2 1437 struct section_addr_info section_addrs;
3017564a 1438 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 1439
c906108c
SS
1440 dont_repeat ();
1441
1442 if (args == NULL)
db162d44 1443 error ("add-symbol-file takes a file name and an address");
c906108c
SS
1444
1445 /* Make a copy of the string that we can safely write into. */
c2d11a7d 1446 args = xstrdup (args);
c906108c 1447
2acceee2
JM
1448 /* Ensure section_addrs is initialized */
1449 memset (&section_addrs, 0, sizeof (section_addrs));
1450
2acceee2 1451 while (*args != '\000')
c906108c 1452 {
db162d44 1453 /* Any leading spaces? */
c5aa993b 1454 while (isspace (*args))
db162d44
EZ
1455 args++;
1456
1457 /* Point arg to the beginning of the argument. */
c906108c 1458 arg = args;
db162d44
EZ
1459
1460 /* Move args pointer over the argument. */
c5aa993b 1461 while ((*args != '\000') && !isspace (*args))
db162d44
EZ
1462 args++;
1463
1464 /* If there are more arguments, terminate arg and
1465 proceed past it. */
c906108c 1466 if (*args != '\000')
db162d44
EZ
1467 *args++ = '\000';
1468
1469 /* Now process the argument. */
1470 if (argcnt == 0)
c906108c 1471 {
db162d44
EZ
1472 /* The first argument is the file name. */
1473 filename = tilde_expand (arg);
3017564a 1474 make_cleanup (xfree, filename);
c906108c 1475 }
db162d44 1476 else
7a78ae4e
ND
1477 if (argcnt == 1)
1478 {
1479 /* The second argument is always the text address at which
1480 to load the program. */
1481 sect_opts[section_index].name = ".text";
1482 sect_opts[section_index].value = arg;
1483 section_index++;
1484 }
1485 else
1486 {
1487 /* It's an option (starting with '-') or it's an argument
1488 to an option */
1489
1490 if (*arg == '-')
1491 {
1492 if (strcmp (arg, "-mapped") == 0)
1493 flags |= OBJF_MAPPED;
1494 else
1495 if (strcmp (arg, "-readnow") == 0)
1496 flags |= OBJF_READNOW;
1497 else
1498 if (strcmp (arg, "-s") == 0)
1499 {
1500 if (section_index >= SECT_OFF_MAX)
1501 error ("Too many sections specified.");
1502 expecting_sec_name = 1;
1503 expecting_sec_addr = 1;
1504 }
1505 }
1506 else
1507 {
1508 if (expecting_sec_name)
db162d44 1509 {
7a78ae4e
ND
1510 sect_opts[section_index].name = arg;
1511 expecting_sec_name = 0;
db162d44
EZ
1512 }
1513 else
7a78ae4e
ND
1514 if (expecting_sec_addr)
1515 {
1516 sect_opts[section_index].value = arg;
1517 expecting_sec_addr = 0;
1518 section_index++;
1519 }
1520 else
1521 error ("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*");
1522 }
1523 }
db162d44 1524 argcnt++;
c906108c 1525 }
c906108c 1526
db162d44
EZ
1527 /* Print the prompt for the query below. And save the arguments into
1528 a sect_addr_info structure to be passed around to other
1529 functions. We have to split this up into separate print
1530 statements because local_hex_string returns a local static
1531 string. */
2acceee2 1532
db162d44
EZ
1533 printf_filtered ("add symbol table from file \"%s\" at\n", filename);
1534 for (i = 0; i < section_index; i++)
c906108c 1535 {
db162d44
EZ
1536 CORE_ADDR addr;
1537 char *val = sect_opts[i].value;
1538 char *sec = sect_opts[i].name;
1539
1540 val = sect_opts[i].value;
1541 if (val[0] == '0' && val[1] == 'x')
1542 addr = strtoul (val+2, NULL, 16);
1543 else
1544 addr = strtoul (val, NULL, 10);
1545
db162d44
EZ
1546 /* Here we store the section offsets in the order they were
1547 entered on the command line. */
1548 section_addrs.other[sec_num].name = sec;
1549 section_addrs.other[sec_num].addr = addr;
1550 printf_filtered ("\t%s_addr = %s\n",
1551 sec,
1552 local_hex_string ((unsigned long)addr));
1553 sec_num++;
1554
1555 /* The object's sections are initialized when a
1556 call is made to build_objfile_section_table (objfile).
1557 This happens in reread_symbols.
1558 At this point, we don't know what file type this is,
1559 so we can't determine what section names are valid. */
2acceee2 1560 }
db162d44 1561
2acceee2 1562 if (from_tty && (!query ("%s", "")))
c906108c
SS
1563 error ("Not confirmed.");
1564
db162d44 1565 symbol_file_add (filename, from_tty, &section_addrs, 0, flags);
c906108c
SS
1566
1567 /* Getting new symbols may change our opinion about what is
1568 frameless. */
1569 reinit_frame_cache ();
db162d44 1570 do_cleanups (my_cleanups);
c906108c
SS
1571}
1572\f
1573static void
fba45db2 1574add_shared_symbol_files_command (char *args, int from_tty)
c906108c
SS
1575{
1576#ifdef ADD_SHARED_SYMBOL_FILES
1577 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1578#else
1579 error ("This command is not available in this configuration of GDB.");
c5aa993b 1580#endif
c906108c
SS
1581}
1582\f
1583/* Re-read symbols if a symbol-file has changed. */
1584void
fba45db2 1585reread_symbols (void)
c906108c
SS
1586{
1587 struct objfile *objfile;
1588 long new_modtime;
1589 int reread_one = 0;
1590 struct stat new_statbuf;
1591 int res;
1592
1593 /* With the addition of shared libraries, this should be modified,
1594 the load time should be saved in the partial symbol tables, since
1595 different tables may come from different source files. FIXME.
1596 This routine should then walk down each partial symbol table
1597 and see if the symbol table that it originates from has been changed */
1598
c5aa993b
JM
1599 for (objfile = object_files; objfile; objfile = objfile->next)
1600 {
1601 if (objfile->obfd)
1602 {
c906108c 1603#ifdef IBM6000_TARGET
c5aa993b
JM
1604 /* If this object is from a shared library, then you should
1605 stat on the library name, not member name. */
c906108c 1606
c5aa993b
JM
1607 if (objfile->obfd->my_archive)
1608 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1609 else
c906108c 1610#endif
c5aa993b
JM
1611 res = stat (objfile->name, &new_statbuf);
1612 if (res != 0)
c906108c 1613 {
c5aa993b
JM
1614 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1615 printf_filtered ("`%s' has disappeared; keeping its symbols.\n",
1616 objfile->name);
1617 continue;
c906108c 1618 }
c5aa993b
JM
1619 new_modtime = new_statbuf.st_mtime;
1620 if (new_modtime != objfile->mtime)
c906108c 1621 {
c5aa993b
JM
1622 struct cleanup *old_cleanups;
1623 struct section_offsets *offsets;
1624 int num_offsets;
c5aa993b
JM
1625 char *obfd_filename;
1626
1627 printf_filtered ("`%s' has changed; re-reading symbols.\n",
1628 objfile->name);
1629
1630 /* There are various functions like symbol_file_add,
1631 symfile_bfd_open, syms_from_objfile, etc., which might
1632 appear to do what we want. But they have various other
1633 effects which we *don't* want. So we just do stuff
1634 ourselves. We don't worry about mapped files (for one thing,
1635 any mapped file will be out of date). */
1636
1637 /* If we get an error, blow away this objfile (not sure if
1638 that is the correct response for things like shared
1639 libraries). */
74b7792f 1640 old_cleanups = make_cleanup_free_objfile (objfile);
c5aa993b 1641 /* We need to do this whenever any symbols go away. */
74b7792f 1642 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c5aa993b
JM
1643
1644 /* Clean up any state BFD has sitting around. We don't need
1645 to close the descriptor but BFD lacks a way of closing the
1646 BFD without closing the descriptor. */
1647 obfd_filename = bfd_get_filename (objfile->obfd);
1648 if (!bfd_close (objfile->obfd))
1649 error ("Can't close BFD for %s: %s", objfile->name,
1650 bfd_errmsg (bfd_get_error ()));
1651 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
1652 if (objfile->obfd == NULL)
1653 error ("Can't open %s to read symbols.", objfile->name);
1654 /* bfd_openr sets cacheable to true, which is what we want. */
1655 if (!bfd_check_format (objfile->obfd, bfd_object))
1656 error ("Can't read symbols from %s: %s.", objfile->name,
1657 bfd_errmsg (bfd_get_error ()));
1658
1659 /* Save the offsets, we will nuke them with the rest of the
1660 psymbol_obstack. */
1661 num_offsets = objfile->num_sections;
d4f3574e
SS
1662 offsets = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
1663 memcpy (offsets, objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
c5aa993b
JM
1664
1665 /* Nuke all the state that we will re-read. Much of the following
1666 code which sets things to NULL really is necessary to tell
1667 other parts of GDB that there is nothing currently there. */
1668
1669 /* FIXME: Do we have to free a whole linked list, or is this
1670 enough? */
1671 if (objfile->global_psymbols.list)
1672 mfree (objfile->md, objfile->global_psymbols.list);
1673 memset (&objfile->global_psymbols, 0,
1674 sizeof (objfile->global_psymbols));
1675 if (objfile->static_psymbols.list)
1676 mfree (objfile->md, objfile->static_psymbols.list);
1677 memset (&objfile->static_psymbols, 0,
1678 sizeof (objfile->static_psymbols));
1679
1680 /* Free the obstacks for non-reusable objfiles */
c2d11a7d 1681 free_bcache (&objfile->psymbol_cache);
c5aa993b
JM
1682 obstack_free (&objfile->psymbol_obstack, 0);
1683 obstack_free (&objfile->symbol_obstack, 0);
1684 obstack_free (&objfile->type_obstack, 0);
1685 objfile->sections = NULL;
1686 objfile->symtabs = NULL;
1687 objfile->psymtabs = NULL;
1688 objfile->free_psymtabs = NULL;
1689 objfile->msymbols = NULL;
1690 objfile->minimal_symbol_count = 0;
0a83117a
MS
1691 memset (&objfile->msymbol_hash, 0,
1692 sizeof (objfile->msymbol_hash));
1693 memset (&objfile->msymbol_demangled_hash, 0,
1694 sizeof (objfile->msymbol_demangled_hash));
c5aa993b
JM
1695 objfile->fundamental_types = NULL;
1696 if (objfile->sf != NULL)
1697 {
1698 (*objfile->sf->sym_finish) (objfile);
1699 }
1700
1701 /* We never make this a mapped file. */
1702 objfile->md = NULL;
1703 /* obstack_specify_allocation also initializes the obstack so
1704 it is empty. */
1705 obstack_specify_allocation (&objfile->psymbol_cache.cache, 0, 0,
b8c9b27d 1706 xmalloc, xfree);
c5aa993b 1707 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0,
b8c9b27d 1708 xmalloc, xfree);
c5aa993b 1709 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0,
b8c9b27d 1710 xmalloc, xfree);
c5aa993b 1711 obstack_specify_allocation (&objfile->type_obstack, 0, 0,
b8c9b27d 1712 xmalloc, xfree);
c5aa993b
JM
1713 if (build_objfile_section_table (objfile))
1714 {
1715 error ("Can't find the file sections in `%s': %s",
1716 objfile->name, bfd_errmsg (bfd_get_error ()));
1717 }
1718
1719 /* We use the same section offsets as from last time. I'm not
1720 sure whether that is always correct for shared libraries. */
1721 objfile->section_offsets = (struct section_offsets *)
d4f3574e
SS
1722 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
1723 memcpy (objfile->section_offsets, offsets, SIZEOF_SECTION_OFFSETS);
c5aa993b
JM
1724 objfile->num_sections = num_offsets;
1725
1726 /* What the hell is sym_new_init for, anyway? The concept of
1727 distinguishing between the main file and additional files
1728 in this way seems rather dubious. */
1729 if (objfile == symfile_objfile)
1730 {
1731 (*objfile->sf->sym_new_init) (objfile);
c906108c 1732#ifdef HPUXHPPA
c5aa993b 1733 RESET_HP_UX_GLOBALS ();
c906108c 1734#endif
c5aa993b
JM
1735 }
1736
1737 (*objfile->sf->sym_init) (objfile);
1738 clear_complaints (1, 1);
1739 /* The "mainline" parameter is a hideous hack; I think leaving it
1740 zero is OK since dbxread.c also does what it needs to do if
1741 objfile->global_psymbols.size is 0. */
96baa820 1742 (*objfile->sf->sym_read) (objfile, 0);
c5aa993b
JM
1743 if (!have_partial_symbols () && !have_full_symbols ())
1744 {
1745 wrap_here ("");
1746 printf_filtered ("(no debugging symbols found)\n");
1747 wrap_here ("");
1748 }
1749 objfile->flags |= OBJF_SYMS;
1750
1751 /* We're done reading the symbol file; finish off complaints. */
1752 clear_complaints (0, 1);
c906108c 1753
c5aa993b
JM
1754 /* Getting new symbols may change our opinion about what is
1755 frameless. */
c906108c 1756
c5aa993b 1757 reinit_frame_cache ();
c906108c 1758
c5aa993b
JM
1759 /* Discard cleanups as symbol reading was successful. */
1760 discard_cleanups (old_cleanups);
c906108c 1761
c5aa993b
JM
1762 /* If the mtime has changed between the time we set new_modtime
1763 and now, we *want* this to be out of date, so don't call stat
1764 again now. */
1765 objfile->mtime = new_modtime;
1766 reread_one = 1;
c906108c 1767
c5aa993b 1768 /* Call this after reading in a new symbol table to give target
38c2ef12 1769 dependent code a crack at the new symbols. For instance, this
c5aa993b
JM
1770 could be used to update the values of target-specific symbols GDB
1771 needs to keep track of (such as _sigtramp, or whatever). */
c906108c 1772
c5aa993b
JM
1773 TARGET_SYMFILE_POSTREAD (objfile);
1774 }
c906108c
SS
1775 }
1776 }
c906108c
SS
1777
1778 if (reread_one)
1779 clear_symtab_users ();
1780}
c906108c
SS
1781\f
1782
c5aa993b
JM
1783
1784typedef struct
1785{
1786 char *ext;
c906108c 1787 enum language lang;
c5aa993b
JM
1788}
1789filename_language;
c906108c 1790
c5aa993b 1791static filename_language *filename_language_table;
c906108c
SS
1792static int fl_table_size, fl_table_next;
1793
1794static void
fba45db2 1795add_filename_language (char *ext, enum language lang)
c906108c
SS
1796{
1797 if (fl_table_next >= fl_table_size)
1798 {
1799 fl_table_size += 10;
0e52036f
AC
1800 filename_language_table = xrealloc (filename_language_table,
1801 fl_table_size);
c906108c
SS
1802 }
1803
4fcf66da 1804 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
1805 filename_language_table[fl_table_next].lang = lang;
1806 fl_table_next++;
1807}
1808
1809static char *ext_args;
1810
1811static void
fba45db2 1812set_ext_lang_command (char *args, int from_tty)
c906108c
SS
1813{
1814 int i;
1815 char *cp = ext_args;
1816 enum language lang;
1817
1818 /* First arg is filename extension, starting with '.' */
1819 if (*cp != '.')
1820 error ("'%s': Filename extension must begin with '.'", ext_args);
1821
1822 /* Find end of first arg. */
c5aa993b 1823 while (*cp && !isspace (*cp))
c906108c
SS
1824 cp++;
1825
1826 if (*cp == '\0')
1827 error ("'%s': two arguments required -- filename extension and language",
1828 ext_args);
1829
1830 /* Null-terminate first arg */
c5aa993b 1831 *cp++ = '\0';
c906108c
SS
1832
1833 /* Find beginning of second arg, which should be a source language. */
1834 while (*cp && isspace (*cp))
1835 cp++;
1836
1837 if (*cp == '\0')
1838 error ("'%s': two arguments required -- filename extension and language",
1839 ext_args);
1840
1841 /* Lookup the language from among those we know. */
1842 lang = language_enum (cp);
1843
1844 /* Now lookup the filename extension: do we already know it? */
1845 for (i = 0; i < fl_table_next; i++)
1846 if (0 == strcmp (ext_args, filename_language_table[i].ext))
1847 break;
1848
1849 if (i >= fl_table_next)
1850 {
1851 /* new file extension */
1852 add_filename_language (ext_args, lang);
1853 }
1854 else
1855 {
1856 /* redefining a previously known filename extension */
1857
1858 /* if (from_tty) */
1859 /* query ("Really make files of type %s '%s'?", */
1860 /* ext_args, language_str (lang)); */
1861
b8c9b27d 1862 xfree (filename_language_table[i].ext);
4fcf66da 1863 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
1864 filename_language_table[i].lang = lang;
1865 }
1866}
1867
1868static void
fba45db2 1869info_ext_lang_command (char *args, int from_tty)
c906108c
SS
1870{
1871 int i;
1872
1873 printf_filtered ("Filename extensions and the languages they represent:");
1874 printf_filtered ("\n\n");
1875 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
1876 printf_filtered ("\t%s\t- %s\n",
1877 filename_language_table[i].ext,
c906108c
SS
1878 language_str (filename_language_table[i].lang));
1879}
1880
1881static void
fba45db2 1882init_filename_language_table (void)
c906108c
SS
1883{
1884 if (fl_table_size == 0) /* protect against repetition */
1885 {
1886 fl_table_size = 20;
1887 fl_table_next = 0;
c5aa993b 1888 filename_language_table =
c906108c 1889 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b
JM
1890 add_filename_language (".c", language_c);
1891 add_filename_language (".C", language_cplus);
1892 add_filename_language (".cc", language_cplus);
1893 add_filename_language (".cp", language_cplus);
1894 add_filename_language (".cpp", language_cplus);
1895 add_filename_language (".cxx", language_cplus);
1896 add_filename_language (".c++", language_cplus);
1897 add_filename_language (".java", language_java);
c906108c 1898 add_filename_language (".class", language_java);
c5aa993b
JM
1899 add_filename_language (".ch", language_chill);
1900 add_filename_language (".c186", language_chill);
1901 add_filename_language (".c286", language_chill);
1902 add_filename_language (".f", language_fortran);
1903 add_filename_language (".F", language_fortran);
1904 add_filename_language (".s", language_asm);
1905 add_filename_language (".S", language_asm);
c6fd39cd
PM
1906 add_filename_language (".pas", language_pascal);
1907 add_filename_language (".p", language_pascal);
1908 add_filename_language (".pp", language_pascal);
c906108c
SS
1909 }
1910}
1911
1912enum language
fba45db2 1913deduce_language_from_filename (char *filename)
c906108c
SS
1914{
1915 int i;
1916 char *cp;
1917
1918 if (filename != NULL)
1919 if ((cp = strrchr (filename, '.')) != NULL)
1920 for (i = 0; i < fl_table_next; i++)
1921 if (strcmp (cp, filename_language_table[i].ext) == 0)
1922 return filename_language_table[i].lang;
1923
1924 return language_unknown;
1925}
1926\f
1927/* allocate_symtab:
1928
1929 Allocate and partly initialize a new symbol table. Return a pointer
1930 to it. error() if no space.
1931
1932 Caller must set these fields:
c5aa993b
JM
1933 LINETABLE(symtab)
1934 symtab->blockvector
1935 symtab->dirname
1936 symtab->free_code
1937 symtab->free_ptr
1938 possibly free_named_symtabs (symtab->filename);
c906108c
SS
1939 */
1940
1941struct symtab *
fba45db2 1942allocate_symtab (char *filename, struct objfile *objfile)
c906108c
SS
1943{
1944 register struct symtab *symtab;
1945
1946 symtab = (struct symtab *)
c5aa993b 1947 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symtab));
c906108c 1948 memset (symtab, 0, sizeof (*symtab));
c5aa993b
JM
1949 symtab->filename = obsavestring (filename, strlen (filename),
1950 &objfile->symbol_obstack);
1951 symtab->fullname = NULL;
1952 symtab->language = deduce_language_from_filename (filename);
1953 symtab->debugformat = obsavestring ("unknown", 7,
1954 &objfile->symbol_obstack);
c906108c
SS
1955
1956 /* Hook it to the objfile it comes from */
1957
c5aa993b
JM
1958 symtab->objfile = objfile;
1959 symtab->next = objfile->symtabs;
1960 objfile->symtabs = symtab;
c906108c
SS
1961
1962 /* FIXME: This should go away. It is only defined for the Z8000,
1963 and the Z8000 definition of this macro doesn't have anything to
1964 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
1965 here for convenience. */
1966#ifdef INIT_EXTRA_SYMTAB_INFO
1967 INIT_EXTRA_SYMTAB_INFO (symtab);
1968#endif
1969
1970 return (symtab);
1971}
1972
1973struct partial_symtab *
fba45db2 1974allocate_psymtab (char *filename, struct objfile *objfile)
c906108c
SS
1975{
1976 struct partial_symtab *psymtab;
1977
c5aa993b 1978 if (objfile->free_psymtabs)
c906108c 1979 {
c5aa993b
JM
1980 psymtab = objfile->free_psymtabs;
1981 objfile->free_psymtabs = psymtab->next;
c906108c
SS
1982 }
1983 else
1984 psymtab = (struct partial_symtab *)
c5aa993b 1985 obstack_alloc (&objfile->psymbol_obstack,
c906108c
SS
1986 sizeof (struct partial_symtab));
1987
1988 memset (psymtab, 0, sizeof (struct partial_symtab));
c5aa993b
JM
1989 psymtab->filename = obsavestring (filename, strlen (filename),
1990 &objfile->psymbol_obstack);
1991 psymtab->symtab = NULL;
c906108c
SS
1992
1993 /* Prepend it to the psymtab list for the objfile it belongs to.
1994 Psymtabs are searched in most recent inserted -> least recent
1995 inserted order. */
1996
c5aa993b
JM
1997 psymtab->objfile = objfile;
1998 psymtab->next = objfile->psymtabs;
1999 objfile->psymtabs = psymtab;
c906108c
SS
2000#if 0
2001 {
2002 struct partial_symtab **prev_pst;
c5aa993b
JM
2003 psymtab->objfile = objfile;
2004 psymtab->next = NULL;
2005 prev_pst = &(objfile->psymtabs);
c906108c 2006 while ((*prev_pst) != NULL)
c5aa993b 2007 prev_pst = &((*prev_pst)->next);
c906108c 2008 (*prev_pst) = psymtab;
c5aa993b 2009 }
c906108c 2010#endif
c5aa993b 2011
c906108c
SS
2012 return (psymtab);
2013}
2014
2015void
fba45db2 2016discard_psymtab (struct partial_symtab *pst)
c906108c
SS
2017{
2018 struct partial_symtab **prev_pst;
2019
2020 /* From dbxread.c:
2021 Empty psymtabs happen as a result of header files which don't
2022 have any symbols in them. There can be a lot of them. But this
2023 check is wrong, in that a psymtab with N_SLINE entries but
2024 nothing else is not empty, but we don't realize that. Fixing
2025 that without slowing things down might be tricky. */
2026
2027 /* First, snip it out of the psymtab chain */
2028
2029 prev_pst = &(pst->objfile->psymtabs);
2030 while ((*prev_pst) != pst)
2031 prev_pst = &((*prev_pst)->next);
2032 (*prev_pst) = pst->next;
2033
2034 /* Next, put it on a free list for recycling */
2035
2036 pst->next = pst->objfile->free_psymtabs;
2037 pst->objfile->free_psymtabs = pst;
2038}
c906108c 2039\f
c5aa993b 2040
c906108c
SS
2041/* Reset all data structures in gdb which may contain references to symbol
2042 table data. */
2043
2044void
fba45db2 2045clear_symtab_users (void)
c906108c
SS
2046{
2047 /* Someday, we should do better than this, by only blowing away
2048 the things that really need to be blown. */
2049 clear_value_history ();
2050 clear_displays ();
2051 clear_internalvars ();
2052 breakpoint_re_set ();
2053 set_default_breakpoint (0, 0, 0, 0);
2054 current_source_symtab = 0;
2055 current_source_line = 0;
2056 clear_pc_function_cache ();
11cf8741
JM
2057 if (target_new_objfile_hook)
2058 target_new_objfile_hook (NULL);
c906108c
SS
2059}
2060
74b7792f
AC
2061static void
2062clear_symtab_users_cleanup (void *ignore)
2063{
2064 clear_symtab_users ();
2065}
2066
c906108c
SS
2067/* clear_symtab_users_once:
2068
2069 This function is run after symbol reading, or from a cleanup.
2070 If an old symbol table was obsoleted, the old symbol table
2071 has been blown away, but the other GDB data structures that may
2072 reference it have not yet been cleared or re-directed. (The old
2073 symtab was zapped, and the cleanup queued, in free_named_symtab()
2074 below.)
2075
2076 This function can be queued N times as a cleanup, or called
2077 directly; it will do all the work the first time, and then will be a
2078 no-op until the next time it is queued. This works by bumping a
2079 counter at queueing time. Much later when the cleanup is run, or at
2080 the end of symbol processing (in case the cleanup is discarded), if
2081 the queued count is greater than the "done-count", we do the work
2082 and set the done-count to the queued count. If the queued count is
2083 less than or equal to the done-count, we just ignore the call. This
2084 is needed because reading a single .o file will often replace many
2085 symtabs (one per .h file, for example), and we don't want to reset
2086 the breakpoints N times in the user's face.
2087
2088 The reason we both queue a cleanup, and call it directly after symbol
2089 reading, is because the cleanup protects us in case of errors, but is
2090 discarded if symbol reading is successful. */
2091
2092#if 0
2093/* FIXME: As free_named_symtabs is currently a big noop this function
2094 is no longer needed. */
a14ed312 2095static void clear_symtab_users_once (void);
c906108c
SS
2096
2097static int clear_symtab_users_queued;
2098static int clear_symtab_users_done;
2099
2100static void
fba45db2 2101clear_symtab_users_once (void)
c906108c
SS
2102{
2103 /* Enforce once-per-`do_cleanups'-semantics */
2104 if (clear_symtab_users_queued <= clear_symtab_users_done)
2105 return;
2106 clear_symtab_users_done = clear_symtab_users_queued;
2107
2108 clear_symtab_users ();
2109}
2110#endif
2111
2112/* Delete the specified psymtab, and any others that reference it. */
2113
2114static void
fba45db2 2115cashier_psymtab (struct partial_symtab *pst)
c906108c
SS
2116{
2117 struct partial_symtab *ps, *pprev = NULL;
2118 int i;
2119
2120 /* Find its previous psymtab in the chain */
c5aa993b
JM
2121 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2122 {
2123 if (ps == pst)
2124 break;
2125 pprev = ps;
2126 }
c906108c 2127
c5aa993b
JM
2128 if (ps)
2129 {
2130 /* Unhook it from the chain. */
2131 if (ps == pst->objfile->psymtabs)
2132 pst->objfile->psymtabs = ps->next;
2133 else
2134 pprev->next = ps->next;
2135
2136 /* FIXME, we can't conveniently deallocate the entries in the
2137 partial_symbol lists (global_psymbols/static_psymbols) that
2138 this psymtab points to. These just take up space until all
2139 the psymtabs are reclaimed. Ditto the dependencies list and
2140 filename, which are all in the psymbol_obstack. */
2141
2142 /* We need to cashier any psymtab that has this one as a dependency... */
2143 again:
2144 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2145 {
2146 for (i = 0; i < ps->number_of_dependencies; i++)
2147 {
2148 if (ps->dependencies[i] == pst)
2149 {
2150 cashier_psymtab (ps);
2151 goto again; /* Must restart, chain has been munged. */
2152 }
2153 }
c906108c 2154 }
c906108c 2155 }
c906108c
SS
2156}
2157
2158/* If a symtab or psymtab for filename NAME is found, free it along
2159 with any dependent breakpoints, displays, etc.
2160 Used when loading new versions of object modules with the "add-file"
2161 command. This is only called on the top-level symtab or psymtab's name;
2162 it is not called for subsidiary files such as .h files.
2163
2164 Return value is 1 if we blew away the environment, 0 if not.
7e73cedf 2165 FIXME. The return value appears to never be used.
c906108c
SS
2166
2167 FIXME. I think this is not the best way to do this. We should
2168 work on being gentler to the environment while still cleaning up
2169 all stray pointers into the freed symtab. */
2170
2171int
fba45db2 2172free_named_symtabs (char *name)
c906108c
SS
2173{
2174#if 0
2175 /* FIXME: With the new method of each objfile having it's own
2176 psymtab list, this function needs serious rethinking. In particular,
2177 why was it ever necessary to toss psymtabs with specific compilation
2178 unit filenames, as opposed to all psymtabs from a particular symbol
2179 file? -- fnf
2180 Well, the answer is that some systems permit reloading of particular
2181 compilation units. We want to blow away any old info about these
2182 compilation units, regardless of which objfiles they arrived in. --gnu. */
2183
2184 register struct symtab *s;
2185 register struct symtab *prev;
2186 register struct partial_symtab *ps;
2187 struct blockvector *bv;
2188 int blewit = 0;
2189
2190 /* We only wack things if the symbol-reload switch is set. */
2191 if (!symbol_reloading)
2192 return 0;
2193
2194 /* Some symbol formats have trouble providing file names... */
2195 if (name == 0 || *name == '\0')
2196 return 0;
2197
2198 /* Look for a psymtab with the specified name. */
2199
2200again2:
c5aa993b
JM
2201 for (ps = partial_symtab_list; ps; ps = ps->next)
2202 {
2203 if (STREQ (name, ps->filename))
2204 {
2205 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2206 goto again2; /* Must restart, chain has been munged */
2207 }
c906108c 2208 }
c906108c
SS
2209
2210 /* Look for a symtab with the specified name. */
2211
2212 for (s = symtab_list; s; s = s->next)
2213 {
2214 if (STREQ (name, s->filename))
2215 break;
2216 prev = s;
2217 }
2218
2219 if (s)
2220 {
2221 if (s == symtab_list)
2222 symtab_list = s->next;
2223 else
2224 prev->next = s->next;
2225
2226 /* For now, queue a delete for all breakpoints, displays, etc., whether
c5aa993b
JM
2227 or not they depend on the symtab being freed. This should be
2228 changed so that only those data structures affected are deleted. */
c906108c
SS
2229
2230 /* But don't delete anything if the symtab is empty.
c5aa993b
JM
2231 This test is necessary due to a bug in "dbxread.c" that
2232 causes empty symtabs to be created for N_SO symbols that
2233 contain the pathname of the object file. (This problem
2234 has been fixed in GDB 3.9x). */
c906108c
SS
2235
2236 bv = BLOCKVECTOR (s);
2237 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2238 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2239 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2240 {
2241 complain (&oldsyms_complaint, name);
2242
2243 clear_symtab_users_queued++;
2244 make_cleanup (clear_symtab_users_once, 0);
2245 blewit = 1;
c5aa993b
JM
2246 }
2247 else
2248 {
c906108c
SS
2249 complain (&empty_symtab_complaint, name);
2250 }
2251
2252 free_symtab (s);
2253 }
2254 else
2255 {
2256 /* It is still possible that some breakpoints will be affected
c5aa993b
JM
2257 even though no symtab was found, since the file might have
2258 been compiled without debugging, and hence not be associated
2259 with a symtab. In order to handle this correctly, we would need
2260 to keep a list of text address ranges for undebuggable files.
2261 For now, we do nothing, since this is a fairly obscure case. */
c906108c
SS
2262 ;
2263 }
2264
2265 /* FIXME, what about the minimal symbol table? */
2266 return blewit;
2267#else
2268 return (0);
2269#endif
2270}
2271\f
2272/* Allocate and partially fill a partial symtab. It will be
2273 completely filled at the end of the symbol list.
2274
d4f3574e 2275 FILENAME is the name of the symbol-file we are reading from. */
c906108c
SS
2276
2277struct partial_symtab *
fba45db2
KB
2278start_psymtab_common (struct objfile *objfile,
2279 struct section_offsets *section_offsets, char *filename,
2280 CORE_ADDR textlow, struct partial_symbol **global_syms,
2281 struct partial_symbol **static_syms)
c906108c
SS
2282{
2283 struct partial_symtab *psymtab;
2284
2285 psymtab = allocate_psymtab (filename, objfile);
c5aa993b
JM
2286 psymtab->section_offsets = section_offsets;
2287 psymtab->textlow = textlow;
2288 psymtab->texthigh = psymtab->textlow; /* default */
2289 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2290 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
c906108c
SS
2291 return (psymtab);
2292}
2293\f
2294/* Add a symbol with a long value to a psymtab.
2295 Since one arg is a struct, we pass in a ptr and deref it (sigh). */
2296
2297void
fba45db2
KB
2298add_psymbol_to_list (char *name, int namelength, namespace_enum namespace,
2299 enum address_class class,
2300 struct psymbol_allocation_list *list, long val, /* Value as a long */
2301 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2302 enum language language, struct objfile *objfile)
c906108c
SS
2303{
2304 register struct partial_symbol *psym;
2305 char *buf = alloca (namelength + 1);
2306 /* psymbol is static so that there will be no uninitialized gaps in the
2307 structure which might contain random data, causing cache misses in
2308 bcache. */
2309 static struct partial_symbol psymbol;
2310
2311 /* Create local copy of the partial symbol */
2312 memcpy (buf, name, namelength);
2313 buf[namelength] = '\0';
2314 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, &objfile->psymbol_cache);
2315 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2316 if (val != 0)
2317 {
2318 SYMBOL_VALUE (&psymbol) = val;
2319 }
2320 else
2321 {
2322 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2323 }
2324 SYMBOL_SECTION (&psymbol) = 0;
2325 SYMBOL_LANGUAGE (&psymbol) = language;
2326 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2327 PSYMBOL_CLASS (&psymbol) = class;
2328 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2329
2330 /* Stash the partial symbol away in the cache */
2331 psym = bcache (&psymbol, sizeof (struct partial_symbol), &objfile->psymbol_cache);
2332
2333 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2334 if (list->next >= list->list + list->size)
2335 {
2336 extend_psymbol_list (list, objfile);
2337 }
2338 *list->next++ = psym;
2339 OBJSTAT (objfile, n_psyms++);
2340}
2341
2342/* Add a symbol with a long value to a psymtab. This differs from
2343 * add_psymbol_to_list above in taking both a mangled and a demangled
2344 * name. */
2345
2346void
fba45db2
KB
2347add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
2348 int dem_namelength, namespace_enum namespace,
2349 enum address_class class,
2350 struct psymbol_allocation_list *list, long val, /* Value as a long */
2351 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2352 enum language language,
2353 struct objfile *objfile)
c906108c
SS
2354{
2355 register struct partial_symbol *psym;
2356 char *buf = alloca (namelength + 1);
2357 /* psymbol is static so that there will be no uninitialized gaps in the
2358 structure which might contain random data, causing cache misses in
2359 bcache. */
2360 static struct partial_symbol psymbol;
2361
2362 /* Create local copy of the partial symbol */
2363
2364 memcpy (buf, name, namelength);
2365 buf[namelength] = '\0';
2366 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, &objfile->psymbol_cache);
2367
2368 buf = alloca (dem_namelength + 1);
2369 memcpy (buf, dem_name, dem_namelength);
2370 buf[dem_namelength] = '\0';
c5aa993b 2371
c906108c
SS
2372 switch (language)
2373 {
c5aa993b
JM
2374 case language_c:
2375 case language_cplus:
2376 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2377 bcache (buf, dem_namelength + 1, &objfile->psymbol_cache);
2378 break;
2379 case language_chill:
2380 SYMBOL_CHILL_DEMANGLED_NAME (&psymbol) =
2381 bcache (buf, dem_namelength + 1, &objfile->psymbol_cache);
2382
c906108c
SS
2383 /* FIXME What should be done for the default case? Ignoring for now. */
2384 }
2385
2386 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2387 if (val != 0)
2388 {
2389 SYMBOL_VALUE (&psymbol) = val;
2390 }
2391 else
2392 {
2393 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2394 }
2395 SYMBOL_SECTION (&psymbol) = 0;
2396 SYMBOL_LANGUAGE (&psymbol) = language;
2397 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2398 PSYMBOL_CLASS (&psymbol) = class;
2399 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2400
2401 /* Stash the partial symbol away in the cache */
2402 psym = bcache (&psymbol, sizeof (struct partial_symbol), &objfile->psymbol_cache);
2403
2404 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2405 if (list->next >= list->list + list->size)
2406 {
2407 extend_psymbol_list (list, objfile);
2408 }
2409 *list->next++ = psym;
2410 OBJSTAT (objfile, n_psyms++);
2411}
2412
2413/* Initialize storage for partial symbols. */
2414
2415void
fba45db2 2416init_psymbol_list (struct objfile *objfile, int total_symbols)
c906108c
SS
2417{
2418 /* Free any previously allocated psymbol lists. */
c5aa993b
JM
2419
2420 if (objfile->global_psymbols.list)
c906108c 2421 {
c5aa993b 2422 mfree (objfile->md, (PTR) objfile->global_psymbols.list);
c906108c 2423 }
c5aa993b 2424 if (objfile->static_psymbols.list)
c906108c 2425 {
c5aa993b 2426 mfree (objfile->md, (PTR) objfile->static_psymbols.list);
c906108c 2427 }
c5aa993b 2428
c906108c
SS
2429 /* Current best guess is that approximately a twentieth
2430 of the total symbols (in a debugging file) are global or static
2431 oriented symbols */
c906108c 2432
c5aa993b
JM
2433 objfile->global_psymbols.size = total_symbols / 10;
2434 objfile->static_psymbols.size = total_symbols / 10;
2435
2436 if (objfile->global_psymbols.size > 0)
c906108c 2437 {
c5aa993b
JM
2438 objfile->global_psymbols.next =
2439 objfile->global_psymbols.list = (struct partial_symbol **)
2440 xmmalloc (objfile->md, (objfile->global_psymbols.size
2441 * sizeof (struct partial_symbol *)));
c906108c 2442 }
c5aa993b 2443 if (objfile->static_psymbols.size > 0)
c906108c 2444 {
c5aa993b
JM
2445 objfile->static_psymbols.next =
2446 objfile->static_psymbols.list = (struct partial_symbol **)
2447 xmmalloc (objfile->md, (objfile->static_psymbols.size
2448 * sizeof (struct partial_symbol *)));
c906108c
SS
2449 }
2450}
2451
2452/* OVERLAYS:
2453 The following code implements an abstraction for debugging overlay sections.
2454
2455 The target model is as follows:
2456 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2457 same VMA, each with its own unique LMA (or load address).
c906108c 2458 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2459 sections, one by one, from the load address into the VMA address.
c906108c 2460 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2461 sections should be considered to be mapped from the VMA to the LMA.
2462 This information is used for symbol lookup, and memory read/write.
2463 For instance, if a section has been mapped then its contents
2464 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2465
2466 Two levels of debugger support for overlays are available. One is
2467 "manual", in which the debugger relies on the user to tell it which
2468 overlays are currently mapped. This level of support is
2469 implemented entirely in the core debugger, and the information about
2470 whether a section is mapped is kept in the objfile->obj_section table.
2471
2472 The second level of support is "automatic", and is only available if
2473 the target-specific code provides functionality to read the target's
2474 overlay mapping table, and translate its contents for the debugger
2475 (by updating the mapped state information in the obj_section tables).
2476
2477 The interface is as follows:
c5aa993b
JM
2478 User commands:
2479 overlay map <name> -- tell gdb to consider this section mapped
2480 overlay unmap <name> -- tell gdb to consider this section unmapped
2481 overlay list -- list the sections that GDB thinks are mapped
2482 overlay read-target -- get the target's state of what's mapped
2483 overlay off/manual/auto -- set overlay debugging state
2484 Functional interface:
2485 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2486 section, return that section.
2487 find_pc_overlay(pc): find any overlay section that contains
2488 the pc, either in its VMA or its LMA
2489 overlay_is_mapped(sect): true if overlay is marked as mapped
2490 section_is_overlay(sect): true if section's VMA != LMA
2491 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2492 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2493 overlay_mapped_address(...): map an address from section's LMA to VMA
2494 overlay_unmapped_address(...): map an address from section's VMA to LMA
2495 symbol_overlayed_address(...): Return a "current" address for symbol:
2496 either in VMA or LMA depending on whether
2497 the symbol's section is currently mapped
c906108c
SS
2498 */
2499
2500/* Overlay debugging state: */
2501
2502int overlay_debugging = 0; /* 0 == off, 1 == manual, -1 == auto */
2503int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2504
2505/* Target vector for refreshing overlay mapped state */
a14ed312 2506static void simple_overlay_update (struct obj_section *);
507f3c78 2507void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
c906108c
SS
2508
2509/* Function: section_is_overlay (SECTION)
2510 Returns true if SECTION has VMA not equal to LMA, ie.
2511 SECTION is loaded at an address different from where it will "run". */
2512
2513int
fba45db2 2514section_is_overlay (asection *section)
c906108c
SS
2515{
2516 if (overlay_debugging)
2517 if (section && section->lma != 0 &&
2518 section->vma != section->lma)
2519 return 1;
2520
2521 return 0;
2522}
2523
2524/* Function: overlay_invalidate_all (void)
2525 Invalidate the mapped state of all overlay sections (mark it as stale). */
2526
2527static void
fba45db2 2528overlay_invalidate_all (void)
c906108c 2529{
c5aa993b 2530 struct objfile *objfile;
c906108c
SS
2531 struct obj_section *sect;
2532
2533 ALL_OBJSECTIONS (objfile, sect)
2534 if (section_is_overlay (sect->the_bfd_section))
c5aa993b 2535 sect->ovly_mapped = -1;
c906108c
SS
2536}
2537
2538/* Function: overlay_is_mapped (SECTION)
2539 Returns true if section is an overlay, and is currently mapped.
2540 Private: public access is thru function section_is_mapped.
2541
2542 Access to the ovly_mapped flag is restricted to this function, so
2543 that we can do automatic update. If the global flag
2544 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2545 overlay_invalidate_all. If the mapped state of the particular
2546 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2547
c5aa993b 2548static int
fba45db2 2549overlay_is_mapped (struct obj_section *osect)
c906108c
SS
2550{
2551 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
2552 return 0;
2553
c5aa993b 2554 switch (overlay_debugging)
c906108c
SS
2555 {
2556 default:
c5aa993b
JM
2557 case 0:
2558 return 0; /* overlay debugging off */
c906108c
SS
2559 case -1: /* overlay debugging automatic */
2560 /* Unles there is a target_overlay_update function,
c5aa993b 2561 there's really nothing useful to do here (can't really go auto) */
c906108c
SS
2562 if (target_overlay_update)
2563 {
2564 if (overlay_cache_invalid)
2565 {
2566 overlay_invalidate_all ();
2567 overlay_cache_invalid = 0;
2568 }
2569 if (osect->ovly_mapped == -1)
2570 (*target_overlay_update) (osect);
2571 }
2572 /* fall thru to manual case */
2573 case 1: /* overlay debugging manual */
2574 return osect->ovly_mapped == 1;
2575 }
2576}
2577
2578/* Function: section_is_mapped
2579 Returns true if section is an overlay, and is currently mapped. */
2580
2581int
fba45db2 2582section_is_mapped (asection *section)
c906108c 2583{
c5aa993b 2584 struct objfile *objfile;
c906108c
SS
2585 struct obj_section *osect;
2586
2587 if (overlay_debugging)
2588 if (section && section_is_overlay (section))
2589 ALL_OBJSECTIONS (objfile, osect)
2590 if (osect->the_bfd_section == section)
c5aa993b 2591 return overlay_is_mapped (osect);
c906108c
SS
2592
2593 return 0;
2594}
2595
2596/* Function: pc_in_unmapped_range
2597 If PC falls into the lma range of SECTION, return true, else false. */
2598
2599CORE_ADDR
fba45db2 2600pc_in_unmapped_range (CORE_ADDR pc, asection *section)
c906108c
SS
2601{
2602 int size;
2603
2604 if (overlay_debugging)
2605 if (section && section_is_overlay (section))
2606 {
2607 size = bfd_get_section_size_before_reloc (section);
2608 if (section->lma <= pc && pc < section->lma + size)
2609 return 1;
2610 }
2611 return 0;
2612}
2613
2614/* Function: pc_in_mapped_range
2615 If PC falls into the vma range of SECTION, return true, else false. */
2616
2617CORE_ADDR
fba45db2 2618pc_in_mapped_range (CORE_ADDR pc, asection *section)
c906108c
SS
2619{
2620 int size;
2621
2622 if (overlay_debugging)
2623 if (section && section_is_overlay (section))
2624 {
2625 size = bfd_get_section_size_before_reloc (section);
2626 if (section->vma <= pc && pc < section->vma + size)
2627 return 1;
2628 }
2629 return 0;
2630}
2631
2632/* Function: overlay_unmapped_address (PC, SECTION)
2633 Returns the address corresponding to PC in the unmapped (load) range.
2634 May be the same as PC. */
2635
2636CORE_ADDR
fba45db2 2637overlay_unmapped_address (CORE_ADDR pc, asection *section)
c906108c
SS
2638{
2639 if (overlay_debugging)
2640 if (section && section_is_overlay (section) &&
2641 pc_in_mapped_range (pc, section))
2642 return pc + section->lma - section->vma;
2643
2644 return pc;
2645}
2646
2647/* Function: overlay_mapped_address (PC, SECTION)
2648 Returns the address corresponding to PC in the mapped (runtime) range.
2649 May be the same as PC. */
2650
2651CORE_ADDR
fba45db2 2652overlay_mapped_address (CORE_ADDR pc, asection *section)
c906108c
SS
2653{
2654 if (overlay_debugging)
2655 if (section && section_is_overlay (section) &&
2656 pc_in_unmapped_range (pc, section))
2657 return pc + section->vma - section->lma;
2658
2659 return pc;
2660}
2661
2662
2663/* Function: symbol_overlayed_address
2664 Return one of two addresses (relative to the VMA or to the LMA),
2665 depending on whether the section is mapped or not. */
2666
c5aa993b 2667CORE_ADDR
fba45db2 2668symbol_overlayed_address (CORE_ADDR address, asection *section)
c906108c
SS
2669{
2670 if (overlay_debugging)
2671 {
2672 /* If the symbol has no section, just return its regular address. */
2673 if (section == 0)
2674 return address;
2675 /* If the symbol's section is not an overlay, just return its address */
2676 if (!section_is_overlay (section))
2677 return address;
2678 /* If the symbol's section is mapped, just return its address */
2679 if (section_is_mapped (section))
2680 return address;
2681 /*
2682 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
2683 * then return its LOADED address rather than its vma address!!
2684 */
2685 return overlay_unmapped_address (address, section);
2686 }
2687 return address;
2688}
2689
2690/* Function: find_pc_overlay (PC)
2691 Return the best-match overlay section for PC:
2692 If PC matches a mapped overlay section's VMA, return that section.
2693 Else if PC matches an unmapped section's VMA, return that section.
2694 Else if PC matches an unmapped section's LMA, return that section. */
2695
2696asection *
fba45db2 2697find_pc_overlay (CORE_ADDR pc)
c906108c 2698{
c5aa993b 2699 struct objfile *objfile;
c906108c
SS
2700 struct obj_section *osect, *best_match = NULL;
2701
2702 if (overlay_debugging)
2703 ALL_OBJSECTIONS (objfile, osect)
2704 if (section_is_overlay (osect->the_bfd_section))
c5aa993b
JM
2705 {
2706 if (pc_in_mapped_range (pc, osect->the_bfd_section))
2707 {
2708 if (overlay_is_mapped (osect))
2709 return osect->the_bfd_section;
2710 else
2711 best_match = osect;
2712 }
2713 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
2714 best_match = osect;
2715 }
c906108c
SS
2716 return best_match ? best_match->the_bfd_section : NULL;
2717}
2718
2719/* Function: find_pc_mapped_section (PC)
2720 If PC falls into the VMA address range of an overlay section that is
2721 currently marked as MAPPED, return that section. Else return NULL. */
2722
2723asection *
fba45db2 2724find_pc_mapped_section (CORE_ADDR pc)
c906108c 2725{
c5aa993b 2726 struct objfile *objfile;
c906108c
SS
2727 struct obj_section *osect;
2728
2729 if (overlay_debugging)
2730 ALL_OBJSECTIONS (objfile, osect)
2731 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
2732 overlay_is_mapped (osect))
c5aa993b 2733 return osect->the_bfd_section;
c906108c
SS
2734
2735 return NULL;
2736}
2737
2738/* Function: list_overlays_command
2739 Print a list of mapped sections and their PC ranges */
2740
2741void
fba45db2 2742list_overlays_command (char *args, int from_tty)
c906108c 2743{
c5aa993b
JM
2744 int nmapped = 0;
2745 struct objfile *objfile;
c906108c
SS
2746 struct obj_section *osect;
2747
2748 if (overlay_debugging)
2749 ALL_OBJSECTIONS (objfile, osect)
2750 if (overlay_is_mapped (osect))
c5aa993b
JM
2751 {
2752 const char *name;
2753 bfd_vma lma, vma;
2754 int size;
2755
2756 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
2757 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2758 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
2759 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
2760
2761 printf_filtered ("Section %s, loaded at ", name);
2762 print_address_numeric (lma, 1, gdb_stdout);
2763 puts_filtered (" - ");
2764 print_address_numeric (lma + size, 1, gdb_stdout);
2765 printf_filtered (", mapped at ");
2766 print_address_numeric (vma, 1, gdb_stdout);
2767 puts_filtered (" - ");
2768 print_address_numeric (vma + size, 1, gdb_stdout);
2769 puts_filtered ("\n");
2770
2771 nmapped++;
2772 }
c906108c
SS
2773 if (nmapped == 0)
2774 printf_filtered ("No sections are mapped.\n");
2775}
2776
2777/* Function: map_overlay_command
2778 Mark the named section as mapped (ie. residing at its VMA address). */
2779
2780void
fba45db2 2781map_overlay_command (char *args, int from_tty)
c906108c 2782{
c5aa993b
JM
2783 struct objfile *objfile, *objfile2;
2784 struct obj_section *sec, *sec2;
2785 asection *bfdsec;
c906108c
SS
2786
2787 if (!overlay_debugging)
515ad16c
EZ
2788 error ("\
2789Overlay debugging not enabled. Use either the 'overlay auto' or\n\
2790the 'overlay manual' command.");
c906108c
SS
2791
2792 if (args == 0 || *args == 0)
2793 error ("Argument required: name of an overlay section");
2794
2795 /* First, find a section matching the user supplied argument */
2796 ALL_OBJSECTIONS (objfile, sec)
2797 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
2798 {
2799 /* Now, check to see if the section is an overlay. */
2800 bfdsec = sec->the_bfd_section;
2801 if (!section_is_overlay (bfdsec))
2802 continue; /* not an overlay section */
2803
2804 /* Mark the overlay as "mapped" */
2805 sec->ovly_mapped = 1;
2806
2807 /* Next, make a pass and unmap any sections that are
2808 overlapped by this new section: */
2809 ALL_OBJSECTIONS (objfile2, sec2)
2810 if (sec2->ovly_mapped &&
2811 sec != sec2 &&
2812 sec->the_bfd_section != sec2->the_bfd_section &&
2813 (pc_in_mapped_range (sec2->addr, sec->the_bfd_section) ||
2814 pc_in_mapped_range (sec2->endaddr, sec->the_bfd_section)))
2815 {
2816 if (info_verbose)
2817 printf_filtered ("Note: section %s unmapped by overlap\n",
2818 bfd_section_name (objfile->obfd,
2819 sec2->the_bfd_section));
2820 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
2821 }
2822 return;
2823 }
c906108c
SS
2824 error ("No overlay section called %s", args);
2825}
2826
2827/* Function: unmap_overlay_command
2828 Mark the overlay section as unmapped
2829 (ie. resident in its LMA address range, rather than the VMA range). */
2830
2831void
fba45db2 2832unmap_overlay_command (char *args, int from_tty)
c906108c 2833{
c5aa993b 2834 struct objfile *objfile;
c906108c
SS
2835 struct obj_section *sec;
2836
2837 if (!overlay_debugging)
515ad16c
EZ
2838 error ("\
2839Overlay debugging not enabled. Use either the 'overlay auto' or\n\
2840the 'overlay manual' command.");
c906108c
SS
2841
2842 if (args == 0 || *args == 0)
2843 error ("Argument required: name of an overlay section");
2844
2845 /* First, find a section matching the user supplied argument */
2846 ALL_OBJSECTIONS (objfile, sec)
2847 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
2848 {
2849 if (!sec->ovly_mapped)
2850 error ("Section %s is not mapped", args);
2851 sec->ovly_mapped = 0;
2852 return;
2853 }
c906108c
SS
2854 error ("No overlay section called %s", args);
2855}
2856
2857/* Function: overlay_auto_command
2858 A utility command to turn on overlay debugging.
2859 Possibly this should be done via a set/show command. */
2860
2861static void
fba45db2 2862overlay_auto_command (char *args, int from_tty)
c906108c
SS
2863{
2864 overlay_debugging = -1;
2865 if (info_verbose)
2866 printf_filtered ("Automatic overlay debugging enabled.");
2867}
2868
2869/* Function: overlay_manual_command
2870 A utility command to turn on overlay debugging.
2871 Possibly this should be done via a set/show command. */
2872
2873static void
fba45db2 2874overlay_manual_command (char *args, int from_tty)
c906108c
SS
2875{
2876 overlay_debugging = 1;
2877 if (info_verbose)
2878 printf_filtered ("Overlay debugging enabled.");
2879}
2880
2881/* Function: overlay_off_command
2882 A utility command to turn on overlay debugging.
2883 Possibly this should be done via a set/show command. */
2884
2885static void
fba45db2 2886overlay_off_command (char *args, int from_tty)
c906108c 2887{
c5aa993b 2888 overlay_debugging = 0;
c906108c
SS
2889 if (info_verbose)
2890 printf_filtered ("Overlay debugging disabled.");
2891}
2892
2893static void
fba45db2 2894overlay_load_command (char *args, int from_tty)
c906108c
SS
2895{
2896 if (target_overlay_update)
2897 (*target_overlay_update) (NULL);
2898 else
2899 error ("This target does not know how to read its overlay state.");
2900}
2901
2902/* Function: overlay_command
2903 A place-holder for a mis-typed command */
2904
2905/* Command list chain containing all defined "overlay" subcommands. */
2906struct cmd_list_element *overlaylist;
2907
2908static void
fba45db2 2909overlay_command (char *args, int from_tty)
c906108c 2910{
c5aa993b 2911 printf_unfiltered
c906108c
SS
2912 ("\"overlay\" must be followed by the name of an overlay command.\n");
2913 help_list (overlaylist, "overlay ", -1, gdb_stdout);
2914}
2915
2916
2917/* Target Overlays for the "Simplest" overlay manager:
2918
2919 This is GDB's default target overlay layer. It works with the
2920 minimal overlay manager supplied as an example by Cygnus. The
2921 entry point is via a function pointer "target_overlay_update",
2922 so targets that use a different runtime overlay manager can
2923 substitute their own overlay_update function and take over the
2924 function pointer.
2925
2926 The overlay_update function pokes around in the target's data structures
2927 to see what overlays are mapped, and updates GDB's overlay mapping with
2928 this information.
2929
2930 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
2931 unsigned _novlys; /# number of overlay sections #/
2932 unsigned _ovly_table[_novlys][4] = {
2933 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
2934 {..., ..., ..., ...},
2935 }
2936 unsigned _novly_regions; /# number of overlay regions #/
2937 unsigned _ovly_region_table[_novly_regions][3] = {
2938 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
2939 {..., ..., ...},
2940 }
c906108c
SS
2941 These functions will attempt to update GDB's mappedness state in the
2942 symbol section table, based on the target's mappedness state.
2943
2944 To do this, we keep a cached copy of the target's _ovly_table, and
2945 attempt to detect when the cached copy is invalidated. The main
2946 entry point is "simple_overlay_update(SECT), which looks up SECT in
2947 the cached table and re-reads only the entry for that section from
2948 the target (whenever possible).
2949 */
2950
2951/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 2952static unsigned (*cache_ovly_table)[4] = 0;
c906108c 2953#if 0
c5aa993b 2954static unsigned (*cache_ovly_region_table)[3] = 0;
c906108c 2955#endif
c5aa993b 2956static unsigned cache_novlys = 0;
c906108c 2957#if 0
c5aa993b 2958static unsigned cache_novly_regions = 0;
c906108c
SS
2959#endif
2960static CORE_ADDR cache_ovly_table_base = 0;
2961#if 0
2962static CORE_ADDR cache_ovly_region_table_base = 0;
2963#endif
c5aa993b
JM
2964enum ovly_index
2965 {
2966 VMA, SIZE, LMA, MAPPED
2967 };
c906108c
SS
2968#define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
2969
2970/* Throw away the cached copy of _ovly_table */
2971static void
fba45db2 2972simple_free_overlay_table (void)
c906108c
SS
2973{
2974 if (cache_ovly_table)
b8c9b27d 2975 xfree (cache_ovly_table);
c5aa993b 2976 cache_novlys = 0;
c906108c
SS
2977 cache_ovly_table = NULL;
2978 cache_ovly_table_base = 0;
2979}
2980
2981#if 0
2982/* Throw away the cached copy of _ovly_region_table */
2983static void
fba45db2 2984simple_free_overlay_region_table (void)
c906108c
SS
2985{
2986 if (cache_ovly_region_table)
b8c9b27d 2987 xfree (cache_ovly_region_table);
c5aa993b 2988 cache_novly_regions = 0;
c906108c
SS
2989 cache_ovly_region_table = NULL;
2990 cache_ovly_region_table_base = 0;
2991}
2992#endif
2993
2994/* Read an array of ints from the target into a local buffer.
2995 Convert to host order. int LEN is number of ints */
2996static void
fba45db2 2997read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
c906108c
SS
2998{
2999 char *buf = alloca (len * TARGET_LONG_BYTES);
c5aa993b 3000 int i;
c906108c
SS
3001
3002 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3003 for (i = 0; i < len; i++)
c5aa993b 3004 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
c906108c
SS
3005 TARGET_LONG_BYTES);
3006}
3007
3008/* Find and grab a copy of the target _ovly_table
3009 (and _novlys, which is needed for the table's size) */
c5aa993b 3010static int
fba45db2 3011simple_read_overlay_table (void)
c906108c
SS
3012{
3013 struct minimal_symbol *msym;
3014
3015 simple_free_overlay_table ();
3016 msym = lookup_minimal_symbol ("_novlys", 0, 0);
3017 if (msym != NULL)
3018 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
c5aa993b
JM
3019 else
3020 return 0; /* failure */
3021 cache_ovly_table = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
c906108c
SS
3022 if (cache_ovly_table != NULL)
3023 {
3024 msym = lookup_minimal_symbol ("_ovly_table", 0, 0);
3025 if (msym != NULL)
3026 {
3027 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (msym);
c5aa993b
JM
3028 read_target_long_array (cache_ovly_table_base,
3029 (int *) cache_ovly_table,
c906108c
SS
3030 cache_novlys * 4);
3031 }
c5aa993b
JM
3032 else
3033 return 0; /* failure */
c906108c 3034 }
c5aa993b
JM
3035 else
3036 return 0; /* failure */
3037 return 1; /* SUCCESS */
c906108c
SS
3038}
3039
3040#if 0
3041/* Find and grab a copy of the target _ovly_region_table
3042 (and _novly_regions, which is needed for the table's size) */
c5aa993b 3043static int
fba45db2 3044simple_read_overlay_region_table (void)
c906108c
SS
3045{
3046 struct minimal_symbol *msym;
3047
3048 simple_free_overlay_region_table ();
3049 msym = lookup_minimal_symbol ("_novly_regions", 0, 0);
3050 if (msym != NULL)
3051 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
c5aa993b
JM
3052 else
3053 return 0; /* failure */
c906108c
SS
3054 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3055 if (cache_ovly_region_table != NULL)
3056 {
3057 msym = lookup_minimal_symbol ("_ovly_region_table", 0, 0);
3058 if (msym != NULL)
3059 {
3060 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
c5aa993b
JM
3061 read_target_long_array (cache_ovly_region_table_base,
3062 (int *) cache_ovly_region_table,
c906108c
SS
3063 cache_novly_regions * 3);
3064 }
c5aa993b
JM
3065 else
3066 return 0; /* failure */
c906108c 3067 }
c5aa993b
JM
3068 else
3069 return 0; /* failure */
3070 return 1; /* SUCCESS */
c906108c
SS
3071}
3072#endif
3073
3074/* Function: simple_overlay_update_1
3075 A helper function for simple_overlay_update. Assuming a cached copy
3076 of _ovly_table exists, look through it to find an entry whose vma,
3077 lma and size match those of OSECT. Re-read the entry and make sure
3078 it still matches OSECT (else the table may no longer be valid).
3079 Set OSECT's mapped state to match the entry. Return: 1 for
3080 success, 0 for failure. */
3081
3082static int
fba45db2 3083simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3084{
3085 int i, size;
3086
3087 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3088 for (i = 0; i < cache_novlys; i++)
c5aa993b
JM
3089 if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
3090 cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
3091 cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3092 {
3093 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3094 (int *) cache_ovly_table[i], 4);
c5aa993b
JM
3095 if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
3096 cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
3097 cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3098 {
3099 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3100 return 1;
3101 }
c5aa993b 3102 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3103 return 0;
3104 }
3105 return 0;
3106}
3107
3108/* Function: simple_overlay_update
3109 If OSECT is NULL, then update all sections' mapped state
3110 (after re-reading the entire target _ovly_table).
3111 If OSECT is non-NULL, then try to find a matching entry in the
3112 cached ovly_table and update only OSECT's mapped state.
3113 If a cached entry can't be found or the cache isn't valid, then
3114 re-read the entire cache, and go ahead and update all sections. */
3115
3116static void
fba45db2 3117simple_overlay_update (struct obj_section *osect)
c906108c 3118{
c5aa993b 3119 struct objfile *objfile;
c906108c
SS
3120
3121 /* Were we given an osect to look up? NULL means do all of them. */
3122 if (osect)
3123 /* Have we got a cached copy of the target's overlay table? */
3124 if (cache_ovly_table != NULL)
3125 /* Does its cached location match what's currently in the symtab? */
c5aa993b 3126 if (cache_ovly_table_base ==
c906108c
SS
3127 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", 0, 0)))
3128 /* Then go ahead and try to look up this single section in the cache */
3129 if (simple_overlay_update_1 (osect))
3130 /* Found it! We're done. */
3131 return;
3132
3133 /* Cached table no good: need to read the entire table anew.
3134 Or else we want all the sections, in which case it's actually
3135 more efficient to read the whole table in one block anyway. */
3136
3137 if (simple_read_overlay_table () == 0) /* read failed? No table? */
3138 {
3139 warning ("Failed to read the target overlay mapping table.");
3140 return;
3141 }
3142 /* Now may as well update all sections, even if only one was requested. */
3143 ALL_OBJSECTIONS (objfile, osect)
3144 if (section_is_overlay (osect->the_bfd_section))
c5aa993b
JM
3145 {
3146 int i, size;
3147
3148 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3149 for (i = 0; i < cache_novlys; i++)
3150 if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
3151 cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
3152 cache_ovly_table[i][SIZE] == size */ )
3153 { /* obj_section matches i'th entry in ovly_table */
3154 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3155 break; /* finished with inner for loop: break out */
3156 }
3157 }
c906108c
SS
3158}
3159
3160
3161void
fba45db2 3162_initialize_symfile (void)
c906108c
SS
3163{
3164 struct cmd_list_element *c;
c5aa993b 3165
c906108c 3166 c = add_cmd ("symbol-file", class_files, symbol_file_command,
c5aa993b 3167 "Load symbol table from executable file FILE.\n\
c906108c
SS
3168The `file' command can also load symbol tables, as well as setting the file\n\
3169to execute.", &cmdlist);
3170 c->completer = filename_completer;
3171
3172 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command,
db162d44 3173 "Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
c906108c 3174Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
2acceee2 3175ADDR is the starting address of the file's text.\n\
db162d44
EZ
3176The optional arguments are section-name section-address pairs and\n\
3177should be specified if the data and bss segments are not contiguous\n\
3178with the text. SECT is a section name to be loaded at SECT_ADDR.",
c906108c
SS
3179 &cmdlist);
3180 c->completer = filename_completer;
3181
3182 c = add_cmd ("add-shared-symbol-files", class_files,
3183 add_shared_symbol_files_command,
3184 "Load the symbols from shared objects in the dynamic linker's link map.",
c5aa993b 3185 &cmdlist);
c906108c
SS
3186 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3187 &cmdlist);
3188
3189 c = add_cmd ("load", class_files, load_command,
c5aa993b 3190 "Dynamically load FILE into the running program, and record its symbols\n\
c906108c
SS
3191for access from GDB.", &cmdlist);
3192 c->completer = filename_completer;
3193
3194 add_show_from_set
3195 (add_set_cmd ("symbol-reloading", class_support, var_boolean,
c5aa993b
JM
3196 (char *) &symbol_reloading,
3197 "Set dynamic symbol table reloading multiple times in one run.",
c906108c
SS
3198 &setlist),
3199 &showlist);
3200
c5aa993b
JM
3201 add_prefix_cmd ("overlay", class_support, overlay_command,
3202 "Commands for debugging overlays.", &overlaylist,
c906108c
SS
3203 "overlay ", 0, &cmdlist);
3204
3205 add_com_alias ("ovly", "overlay", class_alias, 1);
3206 add_com_alias ("ov", "overlay", class_alias, 1);
3207
c5aa993b 3208 add_cmd ("map-overlay", class_support, map_overlay_command,
c906108c
SS
3209 "Assert that an overlay section is mapped.", &overlaylist);
3210
c5aa993b 3211 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
c906108c
SS
3212 "Assert that an overlay section is unmapped.", &overlaylist);
3213
c5aa993b 3214 add_cmd ("list-overlays", class_support, list_overlays_command,
c906108c
SS
3215 "List mappings of overlay sections.", &overlaylist);
3216
c5aa993b 3217 add_cmd ("manual", class_support, overlay_manual_command,
c906108c 3218 "Enable overlay debugging.", &overlaylist);
c5aa993b 3219 add_cmd ("off", class_support, overlay_off_command,
c906108c 3220 "Disable overlay debugging.", &overlaylist);
c5aa993b 3221 add_cmd ("auto", class_support, overlay_auto_command,
c906108c 3222 "Enable automatic overlay debugging.", &overlaylist);
c5aa993b 3223 add_cmd ("load-target", class_support, overlay_load_command,
c906108c
SS
3224 "Read the overlay mapping state from the target.", &overlaylist);
3225
3226 /* Filename extension to source language lookup table: */
3227 init_filename_language_table ();
3228 c = add_set_cmd ("extension-language", class_files, var_string_noescape,
c5aa993b 3229 (char *) &ext_args,
c906108c
SS
3230 "Set mapping between filename extension and source language.\n\
3231Usage: set extension-language .foo bar",
c5aa993b 3232 &setlist);
c906108c
SS
3233 c->function.cfunc = set_ext_lang_command;
3234
c5aa993b 3235 add_info ("extensions", info_ext_lang_command,
c906108c 3236 "All filename extensions associated with a source language.");
917317f4
JM
3237
3238 add_show_from_set
3239 (add_set_cmd ("download-write-size", class_obscure,
3240 var_integer, (char *) &download_write_size,
3241 "Set the write size used when downloading a program.\n"
3242 "Only used when downloading a program onto a remote\n"
3243 "target. Specify zero, or a negative value, to disable\n"
3244 "blocked writes. The actual size of each transfer is also\n"
3245 "limited by the size of the target packet and the memory\n"
3246 "cache.\n",
3247 &setlist),
3248 &showlist);
c906108c 3249}
This page took 0.389465 seconds and 4 git commands to generate.