Add support for inlining scripts into .debug_gdb_scripts.
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
32d0add0 3 Copyright (C) 1990-2015 Free Software Foundation, Inc.
8926118c 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
086df311 24#include "bfdlink.h"
c906108c
SS
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "target.h"
30#include "value.h"
31#include "symfile.h"
32#include "objfiles.h"
0378c332 33#include "source.h"
c906108c
SS
34#include "gdbcmd.h"
35#include "breakpoint.h"
36#include "language.h"
37#include "complaints.h"
38#include "demangle.h"
fb14de7b
UW
39#include "inferior.h"
40#include "regcache.h"
5b5d99cf 41#include "filenames.h" /* for DOSish file names */
c906108c 42#include "gdb-stabs.h"
04ea0df1 43#include "gdb_obstack.h"
d75b5104 44#include "completer.h"
af5f3db6 45#include "bcache.h"
2de7ced7 46#include "hashtab.h"
dbda9972 47#include "readline/readline.h"
fe898f56 48#include "block.h"
ea53e89f 49#include "observer.h"
c1bd25fd 50#include "exec.h"
9bdcbae7 51#include "parser-defs.h"
8756216b 52#include "varobj.h"
77069918 53#include "elf-bfd.h"
e85a822c 54#include "solib.h"
f1838a98 55#include "remote.h"
1bfeeb0f 56#include "stack.h"
cbb099e8 57#include "gdb_bfd.h"
529480d0 58#include "cli/cli-utils.h"
c906108c 59
c906108c
SS
60#include <sys/types.h>
61#include <fcntl.h>
53ce3c39 62#include <sys/stat.h>
c906108c
SS
63#include <ctype.h>
64#include <time.h>
2b71414d 65#include <sys/time.h>
c906108c 66
ccefe4c4 67#include "psymtab.h"
c906108c 68
3e43a32a
MS
69int (*deprecated_ui_load_progress_hook) (const char *section,
70 unsigned long num);
9a4105ab 71void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
72 unsigned long section_sent,
73 unsigned long section_size,
74 unsigned long total_sent,
c2d11a7d 75 unsigned long total_size);
769d7dc4
AC
76void (*deprecated_pre_add_symbol_hook) (const char *);
77void (*deprecated_post_add_symbol_hook) (void);
c906108c 78
74b7792f
AC
79static void clear_symtab_users_cleanup (void *ignore);
80
c378eb4e
MS
81/* Global variables owned by this file. */
82int readnow_symbol_files; /* Read full symbols immediately. */
c906108c 83
c378eb4e 84/* Functions this file defines. */
c906108c 85
a14ed312 86static void load_command (char *, int);
c906108c 87
69150c3d 88static void symbol_file_add_main_1 (const char *args, int from_tty, int flags);
d7db6da9 89
a14ed312 90static void add_symbol_file_command (char *, int);
c906108c 91
00b5771c 92static const struct sym_fns *find_sym_fns (bfd *);
c906108c 93
a14ed312 94static void decrement_reading_symtab (void *);
c906108c 95
a14ed312 96static void overlay_invalidate_all (void);
c906108c 97
a14ed312 98static void overlay_auto_command (char *, int);
c906108c 99
a14ed312 100static void overlay_manual_command (char *, int);
c906108c 101
a14ed312 102static void overlay_off_command (char *, int);
c906108c 103
a14ed312 104static void overlay_load_command (char *, int);
c906108c 105
a14ed312 106static void overlay_command (char *, int);
c906108c 107
a14ed312 108static void simple_free_overlay_table (void);
c906108c 109
e17a4113
UW
110static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
111 enum bfd_endian);
c906108c 112
a14ed312 113static int simple_read_overlay_table (void);
c906108c 114
a14ed312 115static int simple_overlay_update_1 (struct obj_section *);
c906108c 116
a14ed312 117static void add_filename_language (char *ext, enum language lang);
392a587b 118
a14ed312 119static void info_ext_lang_command (char *args, int from_tty);
392a587b 120
a14ed312 121static void init_filename_language_table (void);
392a587b 122
31d99776
DJ
123static void symfile_find_segment_sections (struct objfile *objfile);
124
a14ed312 125void _initialize_symfile (void);
c906108c
SS
126
127/* List of all available sym_fns. On gdb startup, each object file reader
128 calls add_symtab_fns() to register information on each format it is
c378eb4e 129 prepared to read. */
c906108c 130
c256e171
DE
131typedef struct
132{
133 /* BFD flavour that we handle. */
134 enum bfd_flavour sym_flavour;
135
136 /* The "vtable" of symbol functions. */
137 const struct sym_fns *sym_fns;
138} registered_sym_fns;
00b5771c 139
c256e171
DE
140DEF_VEC_O (registered_sym_fns);
141
142static VEC (registered_sym_fns) *symtab_fns = NULL;
c906108c 143
770e7fc7
DE
144/* Values for "set print symbol-loading". */
145
146const char print_symbol_loading_off[] = "off";
147const char print_symbol_loading_brief[] = "brief";
148const char print_symbol_loading_full[] = "full";
149static const char *print_symbol_loading_enums[] =
150{
151 print_symbol_loading_off,
152 print_symbol_loading_brief,
153 print_symbol_loading_full,
154 NULL
155};
156static const char *print_symbol_loading = print_symbol_loading_full;
157
b7209cb4
FF
158/* If non-zero, shared library symbols will be added automatically
159 when the inferior is created, new libraries are loaded, or when
160 attaching to the inferior. This is almost always what users will
161 want to have happen; but for very large programs, the startup time
162 will be excessive, and so if this is a problem, the user can clear
163 this flag and then add the shared library symbols as needed. Note
164 that there is a potential for confusion, since if the shared
c906108c 165 library symbols are not loaded, commands like "info fun" will *not*
0d14a781 166 report all the functions that are actually present. */
c906108c
SS
167
168int auto_solib_add = 1;
c906108c 169\f
c5aa993b 170
770e7fc7
DE
171/* Return non-zero if symbol-loading messages should be printed.
172 FROM_TTY is the standard from_tty argument to gdb commands.
173 If EXEC is non-zero the messages are for the executable.
174 Otherwise, messages are for shared libraries.
175 If FULL is non-zero then the caller is printing a detailed message.
176 E.g., the message includes the shared library name.
177 Otherwise, the caller is printing a brief "summary" message. */
178
179int
180print_symbol_loading_p (int from_tty, int exec, int full)
181{
182 if (!from_tty && !info_verbose)
183 return 0;
184
185 if (exec)
186 {
187 /* We don't check FULL for executables, there are few such
188 messages, therefore brief == full. */
189 return print_symbol_loading != print_symbol_loading_off;
190 }
191 if (full)
192 return print_symbol_loading == print_symbol_loading_full;
193 return print_symbol_loading == print_symbol_loading_brief;
194}
195
0d14a781 196/* True if we are reading a symbol table. */
c906108c
SS
197
198int currently_reading_symtab = 0;
199
200static void
fba45db2 201decrement_reading_symtab (void *dummy)
c906108c
SS
202{
203 currently_reading_symtab--;
2cb9c859 204 gdb_assert (currently_reading_symtab >= 0);
c906108c
SS
205}
206
ccefe4c4
TT
207/* Increment currently_reading_symtab and return a cleanup that can be
208 used to decrement it. */
3b7bacac 209
ccefe4c4
TT
210struct cleanup *
211increment_reading_symtab (void)
c906108c 212{
ccefe4c4 213 ++currently_reading_symtab;
2cb9c859 214 gdb_assert (currently_reading_symtab > 0);
ccefe4c4 215 return make_cleanup (decrement_reading_symtab, NULL);
c906108c
SS
216}
217
5417f6dc
RM
218/* Remember the lowest-addressed loadable section we've seen.
219 This function is called via bfd_map_over_sections.
c906108c
SS
220
221 In case of equal vmas, the section with the largest size becomes the
222 lowest-addressed loadable section.
223
224 If the vmas and sizes are equal, the last section is considered the
225 lowest-addressed loadable section. */
226
227void
4efb68b1 228find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 229{
c5aa993b 230 asection **lowest = (asection **) obj;
c906108c 231
eb73e134 232 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
233 return;
234 if (!*lowest)
235 *lowest = sect; /* First loadable section */
236 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
237 *lowest = sect; /* A lower loadable section */
238 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
239 && (bfd_section_size (abfd, (*lowest))
240 <= bfd_section_size (abfd, sect)))
241 *lowest = sect;
242}
243
d76488d8
TT
244/* Create a new section_addr_info, with room for NUM_SECTIONS. The
245 new object's 'num_sections' field is set to 0; it must be updated
246 by the caller. */
a39a16c4
MM
247
248struct section_addr_info *
249alloc_section_addr_info (size_t num_sections)
250{
251 struct section_addr_info *sap;
252 size_t size;
253
254 size = (sizeof (struct section_addr_info)
255 + sizeof (struct other_sections) * (num_sections - 1));
256 sap = (struct section_addr_info *) xmalloc (size);
257 memset (sap, 0, size);
a39a16c4
MM
258
259 return sap;
260}
62557bbc
KB
261
262/* Build (allocate and populate) a section_addr_info struct from
c378eb4e 263 an existing section table. */
62557bbc
KB
264
265extern struct section_addr_info *
0542c86d
PA
266build_section_addr_info_from_section_table (const struct target_section *start,
267 const struct target_section *end)
62557bbc
KB
268{
269 struct section_addr_info *sap;
0542c86d 270 const struct target_section *stp;
62557bbc
KB
271 int oidx;
272
a39a16c4 273 sap = alloc_section_addr_info (end - start);
62557bbc
KB
274
275 for (stp = start, oidx = 0; stp != end; stp++)
276 {
2b2848e2
DE
277 struct bfd_section *asect = stp->the_bfd_section;
278 bfd *abfd = asect->owner;
279
280 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 281 && oidx < end - start)
62557bbc
KB
282 {
283 sap->other[oidx].addr = stp->addr;
2b2848e2
DE
284 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
285 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
62557bbc
KB
286 oidx++;
287 }
288 }
289
d76488d8
TT
290 sap->num_sections = oidx;
291
62557bbc
KB
292 return sap;
293}
294
82ccf5a5 295/* Create a section_addr_info from section offsets in ABFD. */
089b4803 296
82ccf5a5
JK
297static struct section_addr_info *
298build_section_addr_info_from_bfd (bfd *abfd)
089b4803
TG
299{
300 struct section_addr_info *sap;
301 int i;
302 struct bfd_section *sec;
303
82ccf5a5
JK
304 sap = alloc_section_addr_info (bfd_count_sections (abfd));
305 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
306 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
012836ea 307 {
82ccf5a5
JK
308 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
309 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
65cf3563 310 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
012836ea
JK
311 i++;
312 }
d76488d8
TT
313
314 sap->num_sections = i;
315
089b4803
TG
316 return sap;
317}
318
82ccf5a5
JK
319/* Create a section_addr_info from section offsets in OBJFILE. */
320
321struct section_addr_info *
322build_section_addr_info_from_objfile (const struct objfile *objfile)
323{
324 struct section_addr_info *sap;
325 int i;
326
327 /* Before reread_symbols gets rewritten it is not safe to call:
328 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
329 */
330 sap = build_section_addr_info_from_bfd (objfile->obfd);
d76488d8 331 for (i = 0; i < sap->num_sections; i++)
82ccf5a5
JK
332 {
333 int sectindex = sap->other[i].sectindex;
334
335 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
336 }
337 return sap;
338}
62557bbc 339
c378eb4e 340/* Free all memory allocated by build_section_addr_info_from_section_table. */
62557bbc
KB
341
342extern void
343free_section_addr_info (struct section_addr_info *sap)
344{
345 int idx;
346
a39a16c4 347 for (idx = 0; idx < sap->num_sections; idx++)
d76488d8 348 xfree (sap->other[idx].name);
b8c9b27d 349 xfree (sap);
62557bbc
KB
350}
351
e8289572 352/* Initialize OBJFILE's sect_index_* members. */
3b7bacac 353
e8289572
JB
354static void
355init_objfile_sect_indices (struct objfile *objfile)
c906108c 356{
e8289572 357 asection *sect;
c906108c 358 int i;
5417f6dc 359
b8fbeb18 360 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 361 if (sect)
b8fbeb18
EZ
362 objfile->sect_index_text = sect->index;
363
364 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 365 if (sect)
b8fbeb18
EZ
366 objfile->sect_index_data = sect->index;
367
368 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 369 if (sect)
b8fbeb18
EZ
370 objfile->sect_index_bss = sect->index;
371
372 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 373 if (sect)
b8fbeb18
EZ
374 objfile->sect_index_rodata = sect->index;
375
bbcd32ad
FF
376 /* This is where things get really weird... We MUST have valid
377 indices for the various sect_index_* members or gdb will abort.
378 So if for example, there is no ".text" section, we have to
31d99776
DJ
379 accomodate that. First, check for a file with the standard
380 one or two segments. */
381
382 symfile_find_segment_sections (objfile);
383
384 /* Except when explicitly adding symbol files at some address,
385 section_offsets contains nothing but zeros, so it doesn't matter
386 which slot in section_offsets the individual sect_index_* members
387 index into. So if they are all zero, it is safe to just point
388 all the currently uninitialized indices to the first slot. But
389 beware: if this is the main executable, it may be relocated
390 later, e.g. by the remote qOffsets packet, and then this will
391 be wrong! That's why we try segments first. */
bbcd32ad
FF
392
393 for (i = 0; i < objfile->num_sections; i++)
394 {
395 if (ANOFFSET (objfile->section_offsets, i) != 0)
396 {
397 break;
398 }
399 }
400 if (i == objfile->num_sections)
401 {
402 if (objfile->sect_index_text == -1)
403 objfile->sect_index_text = 0;
404 if (objfile->sect_index_data == -1)
405 objfile->sect_index_data = 0;
406 if (objfile->sect_index_bss == -1)
407 objfile->sect_index_bss = 0;
408 if (objfile->sect_index_rodata == -1)
409 objfile->sect_index_rodata = 0;
410 }
b8fbeb18 411}
c906108c 412
c1bd25fd
DJ
413/* The arguments to place_section. */
414
415struct place_section_arg
416{
417 struct section_offsets *offsets;
418 CORE_ADDR lowest;
419};
420
421/* Find a unique offset to use for loadable section SECT if
422 the user did not provide an offset. */
423
2c0b251b 424static void
c1bd25fd
DJ
425place_section (bfd *abfd, asection *sect, void *obj)
426{
427 struct place_section_arg *arg = obj;
428 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
429 int done;
3bd72c6f 430 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 431
2711e456
DJ
432 /* We are only interested in allocated sections. */
433 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
434 return;
435
436 /* If the user specified an offset, honor it. */
65cf3563 437 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
c1bd25fd
DJ
438 return;
439
440 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
441 start_addr = (arg->lowest + align - 1) & -align;
442
c1bd25fd
DJ
443 do {
444 asection *cur_sec;
c1bd25fd 445
c1bd25fd
DJ
446 done = 1;
447
448 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
449 {
450 int indx = cur_sec->index;
c1bd25fd
DJ
451
452 /* We don't need to compare against ourself. */
453 if (cur_sec == sect)
454 continue;
455
2711e456
DJ
456 /* We can only conflict with allocated sections. */
457 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
458 continue;
459
460 /* If the section offset is 0, either the section has not been placed
461 yet, or it was the lowest section placed (in which case LOWEST
462 will be past its end). */
463 if (offsets[indx] == 0)
464 continue;
465
466 /* If this section would overlap us, then we must move up. */
467 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
468 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
469 {
470 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
471 start_addr = (start_addr + align - 1) & -align;
472 done = 0;
3bd72c6f 473 break;
c1bd25fd
DJ
474 }
475
476 /* Otherwise, we appear to be OK. So far. */
477 }
478 }
479 while (!done);
480
65cf3563 481 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
c1bd25fd 482 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 483}
e8289572 484
75242ef4
JK
485/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
486 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
487 entries. */
e8289572
JB
488
489void
75242ef4
JK
490relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
491 int num_sections,
3189cb12 492 const struct section_addr_info *addrs)
e8289572
JB
493{
494 int i;
495
75242ef4 496 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 497
c378eb4e 498 /* Now calculate offsets for section that were specified by the caller. */
d76488d8 499 for (i = 0; i < addrs->num_sections; i++)
e8289572 500 {
3189cb12 501 const struct other_sections *osp;
e8289572 502
75242ef4 503 osp = &addrs->other[i];
5488dafb 504 if (osp->sectindex == -1)
e8289572
JB
505 continue;
506
c378eb4e 507 /* Record all sections in offsets. */
e8289572 508 /* The section_offsets in the objfile are here filled in using
c378eb4e 509 the BFD index. */
75242ef4
JK
510 section_offsets->offsets[osp->sectindex] = osp->addr;
511 }
512}
513
1276c759
JK
514/* Transform section name S for a name comparison. prelink can split section
515 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
516 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
517 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
518 (`.sbss') section has invalid (increased) virtual address. */
519
520static const char *
521addr_section_name (const char *s)
522{
523 if (strcmp (s, ".dynbss") == 0)
524 return ".bss";
525 if (strcmp (s, ".sdynbss") == 0)
526 return ".sbss";
527
528 return s;
529}
530
82ccf5a5
JK
531/* qsort comparator for addrs_section_sort. Sort entries in ascending order by
532 their (name, sectindex) pair. sectindex makes the sort by name stable. */
533
534static int
535addrs_section_compar (const void *ap, const void *bp)
536{
537 const struct other_sections *a = *((struct other_sections **) ap);
538 const struct other_sections *b = *((struct other_sections **) bp);
22e048c9 539 int retval;
82ccf5a5 540
1276c759 541 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
82ccf5a5
JK
542 if (retval)
543 return retval;
544
5488dafb 545 return a->sectindex - b->sectindex;
82ccf5a5
JK
546}
547
548/* Provide sorted array of pointers to sections of ADDRS. The array is
549 terminated by NULL. Caller is responsible to call xfree for it. */
550
551static struct other_sections **
552addrs_section_sort (struct section_addr_info *addrs)
553{
554 struct other_sections **array;
555 int i;
556
557 /* `+ 1' for the NULL terminator. */
558 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
d76488d8 559 for (i = 0; i < addrs->num_sections; i++)
82ccf5a5
JK
560 array[i] = &addrs->other[i];
561 array[i] = NULL;
562
563 qsort (array, i, sizeof (*array), addrs_section_compar);
564
565 return array;
566}
567
75242ef4 568/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
569 also SECTINDEXes specific to ABFD there. This function can be used to
570 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
571
572void
573addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
574{
575 asection *lower_sect;
75242ef4
JK
576 CORE_ADDR lower_offset;
577 int i;
82ccf5a5
JK
578 struct cleanup *my_cleanup;
579 struct section_addr_info *abfd_addrs;
580 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
581 struct other_sections **addrs_to_abfd_addrs;
75242ef4
JK
582
583 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
584 continguous sections. */
585 lower_sect = NULL;
586 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
587 if (lower_sect == NULL)
588 {
589 warning (_("no loadable sections found in added symbol-file %s"),
590 bfd_get_filename (abfd));
591 lower_offset = 0;
e8289572 592 }
75242ef4
JK
593 else
594 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
595
82ccf5a5
JK
596 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
597 in ABFD. Section names are not unique - there can be multiple sections of
598 the same name. Also the sections of the same name do not have to be
599 adjacent to each other. Some sections may be present only in one of the
600 files. Even sections present in both files do not have to be in the same
601 order.
602
603 Use stable sort by name for the sections in both files. Then linearly
604 scan both lists matching as most of the entries as possible. */
605
606 addrs_sorted = addrs_section_sort (addrs);
607 my_cleanup = make_cleanup (xfree, addrs_sorted);
608
609 abfd_addrs = build_section_addr_info_from_bfd (abfd);
610 make_cleanup_free_section_addr_info (abfd_addrs);
611 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
612 make_cleanup (xfree, abfd_addrs_sorted);
613
c378eb4e
MS
614 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
615 ABFD_ADDRS_SORTED. */
82ccf5a5
JK
616
617 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
618 * addrs->num_sections);
619 make_cleanup (xfree, addrs_to_abfd_addrs);
620
621 while (*addrs_sorted)
622 {
1276c759 623 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
82ccf5a5
JK
624
625 while (*abfd_addrs_sorted
1276c759
JK
626 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
627 sect_name) < 0)
82ccf5a5
JK
628 abfd_addrs_sorted++;
629
630 if (*abfd_addrs_sorted
1276c759
JK
631 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
632 sect_name) == 0)
82ccf5a5
JK
633 {
634 int index_in_addrs;
635
636 /* Make the found item directly addressable from ADDRS. */
637 index_in_addrs = *addrs_sorted - addrs->other;
638 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
639 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
640
641 /* Never use the same ABFD entry twice. */
642 abfd_addrs_sorted++;
643 }
644
645 addrs_sorted++;
646 }
647
75242ef4
JK
648 /* Calculate offsets for the loadable sections.
649 FIXME! Sections must be in order of increasing loadable section
650 so that contiguous sections can use the lower-offset!!!
651
652 Adjust offsets if the segments are not contiguous.
653 If the section is contiguous, its offset should be set to
654 the offset of the highest loadable section lower than it
655 (the loadable section directly below it in memory).
656 this_offset = lower_offset = lower_addr - lower_orig_addr */
657
d76488d8 658 for (i = 0; i < addrs->num_sections; i++)
75242ef4 659 {
82ccf5a5 660 struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
661
662 if (sect)
75242ef4 663 {
c378eb4e 664 /* This is the index used by BFD. */
82ccf5a5 665 addrs->other[i].sectindex = sect->sectindex;
672d9c23
JK
666
667 if (addrs->other[i].addr != 0)
75242ef4 668 {
82ccf5a5 669 addrs->other[i].addr -= sect->addr;
75242ef4 670 lower_offset = addrs->other[i].addr;
75242ef4
JK
671 }
672 else
672d9c23 673 addrs->other[i].addr = lower_offset;
75242ef4
JK
674 }
675 else
672d9c23 676 {
1276c759
JK
677 /* addr_section_name transformation is not used for SECT_NAME. */
678 const char *sect_name = addrs->other[i].name;
679
b0fcb67f
JK
680 /* This section does not exist in ABFD, which is normally
681 unexpected and we want to issue a warning.
682
4d9743af
JK
683 However, the ELF prelinker does create a few sections which are
684 marked in the main executable as loadable (they are loaded in
685 memory from the DYNAMIC segment) and yet are not present in
686 separate debug info files. This is fine, and should not cause
687 a warning. Shared libraries contain just the section
688 ".gnu.liblist" but it is not marked as loadable there. There is
689 no other way to identify them than by their name as the sections
1276c759
JK
690 created by prelink have no special flags.
691
692 For the sections `.bss' and `.sbss' see addr_section_name. */
b0fcb67f
JK
693
694 if (!(strcmp (sect_name, ".gnu.liblist") == 0
4d9743af 695 || strcmp (sect_name, ".gnu.conflict") == 0
1276c759
JK
696 || (strcmp (sect_name, ".bss") == 0
697 && i > 0
698 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
699 && addrs_to_abfd_addrs[i - 1] != NULL)
700 || (strcmp (sect_name, ".sbss") == 0
701 && i > 0
702 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
703 && addrs_to_abfd_addrs[i - 1] != NULL)))
b0fcb67f
JK
704 warning (_("section %s not found in %s"), sect_name,
705 bfd_get_filename (abfd));
706
672d9c23 707 addrs->other[i].addr = 0;
5488dafb 708 addrs->other[i].sectindex = -1;
672d9c23 709 }
75242ef4 710 }
82ccf5a5
JK
711
712 do_cleanups (my_cleanup);
75242ef4
JK
713}
714
715/* Parse the user's idea of an offset for dynamic linking, into our idea
716 of how to represent it for fast symbol reading. This is the default
717 version of the sym_fns.sym_offsets function for symbol readers that
718 don't need to do anything special. It allocates a section_offsets table
719 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
720
721void
722default_symfile_offsets (struct objfile *objfile,
3189cb12 723 const struct section_addr_info *addrs)
75242ef4 724{
d445b2f6 725 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
75242ef4
JK
726 objfile->section_offsets = (struct section_offsets *)
727 obstack_alloc (&objfile->objfile_obstack,
728 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
729 relative_addr_info_to_section_offsets (objfile->section_offsets,
730 objfile->num_sections, addrs);
e8289572 731
c1bd25fd
DJ
732 /* For relocatable files, all loadable sections will start at zero.
733 The zero is meaningless, so try to pick arbitrary addresses such
734 that no loadable sections overlap. This algorithm is quadratic,
735 but the number of sections in a single object file is generally
736 small. */
737 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
738 {
739 struct place_section_arg arg;
2711e456
DJ
740 bfd *abfd = objfile->obfd;
741 asection *cur_sec;
2711e456
DJ
742
743 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
744 /* We do not expect this to happen; just skip this step if the
745 relocatable file has a section with an assigned VMA. */
746 if (bfd_section_vma (abfd, cur_sec) != 0)
747 break;
748
749 if (cur_sec == NULL)
750 {
751 CORE_ADDR *offsets = objfile->section_offsets->offsets;
752
753 /* Pick non-overlapping offsets for sections the user did not
754 place explicitly. */
755 arg.offsets = objfile->section_offsets;
756 arg.lowest = 0;
757 bfd_map_over_sections (objfile->obfd, place_section, &arg);
758
759 /* Correctly filling in the section offsets is not quite
760 enough. Relocatable files have two properties that
761 (most) shared objects do not:
762
763 - Their debug information will contain relocations. Some
764 shared libraries do also, but many do not, so this can not
765 be assumed.
766
767 - If there are multiple code sections they will be loaded
768 at different relative addresses in memory than they are
769 in the objfile, since all sections in the file will start
770 at address zero.
771
772 Because GDB has very limited ability to map from an
773 address in debug info to the correct code section,
774 it relies on adding SECT_OFF_TEXT to things which might be
775 code. If we clear all the section offsets, and set the
776 section VMAs instead, then symfile_relocate_debug_section
777 will return meaningful debug information pointing at the
778 correct sections.
779
780 GDB has too many different data structures for section
781 addresses - a bfd, objfile, and so_list all have section
782 tables, as does exec_ops. Some of these could probably
783 be eliminated. */
784
785 for (cur_sec = abfd->sections; cur_sec != NULL;
786 cur_sec = cur_sec->next)
787 {
788 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
789 continue;
790
791 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
3e43a32a
MS
792 exec_set_section_address (bfd_get_filename (abfd),
793 cur_sec->index,
30510692 794 offsets[cur_sec->index]);
2711e456
DJ
795 offsets[cur_sec->index] = 0;
796 }
797 }
c1bd25fd
DJ
798 }
799
e8289572 800 /* Remember the bfd indexes for the .text, .data, .bss and
c378eb4e 801 .rodata sections. */
e8289572
JB
802 init_objfile_sect_indices (objfile);
803}
804
31d99776
DJ
805/* Divide the file into segments, which are individual relocatable units.
806 This is the default version of the sym_fns.sym_segments function for
807 symbol readers that do not have an explicit representation of segments.
808 It assumes that object files do not have segments, and fully linked
809 files have a single segment. */
810
811struct symfile_segment_data *
812default_symfile_segments (bfd *abfd)
813{
814 int num_sections, i;
815 asection *sect;
816 struct symfile_segment_data *data;
817 CORE_ADDR low, high;
818
819 /* Relocatable files contain enough information to position each
820 loadable section independently; they should not be relocated
821 in segments. */
822 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
823 return NULL;
824
825 /* Make sure there is at least one loadable section in the file. */
826 for (sect = abfd->sections; sect != NULL; sect = sect->next)
827 {
828 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
829 continue;
830
831 break;
832 }
833 if (sect == NULL)
834 return NULL;
835
836 low = bfd_get_section_vma (abfd, sect);
837 high = low + bfd_get_section_size (sect);
838
41bf6aca 839 data = XCNEW (struct symfile_segment_data);
31d99776 840 data->num_segments = 1;
fc270c35
TT
841 data->segment_bases = XCNEW (CORE_ADDR);
842 data->segment_sizes = XCNEW (CORE_ADDR);
31d99776
DJ
843
844 num_sections = bfd_count_sections (abfd);
fc270c35 845 data->segment_info = XCNEWVEC (int, num_sections);
31d99776
DJ
846
847 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
848 {
849 CORE_ADDR vma;
850
851 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
852 continue;
853
854 vma = bfd_get_section_vma (abfd, sect);
855 if (vma < low)
856 low = vma;
857 if (vma + bfd_get_section_size (sect) > high)
858 high = vma + bfd_get_section_size (sect);
859
860 data->segment_info[i] = 1;
861 }
862
863 data->segment_bases[0] = low;
864 data->segment_sizes[0] = high - low;
865
866 return data;
867}
868
608e2dbb
TT
869/* This is a convenience function to call sym_read for OBJFILE and
870 possibly force the partial symbols to be read. */
871
872static void
873read_symbols (struct objfile *objfile, int add_flags)
874{
875 (*objfile->sf->sym_read) (objfile, add_flags);
34643a32 876 objfile->per_bfd->minsyms_read = 1;
8a92335b
JK
877
878 /* find_separate_debug_file_in_section should be called only if there is
879 single binary with no existing separate debug info file. */
880 if (!objfile_has_partial_symbols (objfile)
881 && objfile->separate_debug_objfile == NULL
882 && objfile->separate_debug_objfile_backlink == NULL)
608e2dbb
TT
883 {
884 bfd *abfd = find_separate_debug_file_in_section (objfile);
885 struct cleanup *cleanup = make_cleanup_bfd_unref (abfd);
886
887 if (abfd != NULL)
24ba069a
JK
888 {
889 /* find_separate_debug_file_in_section uses the same filename for the
890 virtual section-as-bfd like the bfd filename containing the
891 section. Therefore use also non-canonical name form for the same
892 file containing the section. */
893 symbol_file_add_separate (abfd, objfile->original_name, add_flags,
894 objfile);
895 }
608e2dbb
TT
896
897 do_cleanups (cleanup);
898 }
899 if ((add_flags & SYMFILE_NO_READ) == 0)
900 require_partial_symbols (objfile, 0);
901}
902
3d6e24f0
JB
903/* Initialize entry point information for this objfile. */
904
905static void
906init_entry_point_info (struct objfile *objfile)
907{
6ef55de7
TT
908 struct entry_info *ei = &objfile->per_bfd->ei;
909
910 if (ei->initialized)
911 return;
912 ei->initialized = 1;
913
3d6e24f0
JB
914 /* Save startup file's range of PC addresses to help blockframe.c
915 decide where the bottom of the stack is. */
916
917 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
918 {
919 /* Executable file -- record its entry point so we'll recognize
920 the startup file because it contains the entry point. */
6ef55de7
TT
921 ei->entry_point = bfd_get_start_address (objfile->obfd);
922 ei->entry_point_p = 1;
3d6e24f0
JB
923 }
924 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
925 && bfd_get_start_address (objfile->obfd) != 0)
926 {
927 /* Some shared libraries may have entry points set and be
928 runnable. There's no clear way to indicate this, so just check
929 for values other than zero. */
6ef55de7
TT
930 ei->entry_point = bfd_get_start_address (objfile->obfd);
931 ei->entry_point_p = 1;
3d6e24f0
JB
932 }
933 else
934 {
935 /* Examination of non-executable.o files. Short-circuit this stuff. */
6ef55de7 936 ei->entry_point_p = 0;
3d6e24f0
JB
937 }
938
6ef55de7 939 if (ei->entry_point_p)
3d6e24f0 940 {
53eddfa6 941 struct obj_section *osect;
6ef55de7 942 CORE_ADDR entry_point = ei->entry_point;
53eddfa6 943 int found;
3d6e24f0
JB
944
945 /* Make certain that the address points at real code, and not a
946 function descriptor. */
947 entry_point
df6d5441 948 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
3d6e24f0
JB
949 entry_point,
950 &current_target);
951
952 /* Remove any ISA markers, so that this matches entries in the
953 symbol table. */
6ef55de7 954 ei->entry_point
df6d5441 955 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
53eddfa6
TT
956
957 found = 0;
958 ALL_OBJFILE_OSECTIONS (objfile, osect)
959 {
960 struct bfd_section *sect = osect->the_bfd_section;
961
962 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
963 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
964 + bfd_get_section_size (sect)))
965 {
6ef55de7 966 ei->the_bfd_section_index
53eddfa6
TT
967 = gdb_bfd_section_index (objfile->obfd, sect);
968 found = 1;
969 break;
970 }
971 }
972
973 if (!found)
6ef55de7 974 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
3d6e24f0
JB
975 }
976}
977
c906108c
SS
978/* Process a symbol file, as either the main file or as a dynamically
979 loaded file.
980
36e4d068
JB
981 This function does not set the OBJFILE's entry-point info.
982
96baa820
JM
983 OBJFILE is where the symbols are to be read from.
984
7e8580c1
JB
985 ADDRS is the list of section load addresses. If the user has given
986 an 'add-symbol-file' command, then this is the list of offsets and
987 addresses he or she provided as arguments to the command; or, if
988 we're handling a shared library, these are the actual addresses the
989 sections are loaded at, according to the inferior's dynamic linker
990 (as gleaned by GDB's shared library code). We convert each address
991 into an offset from the section VMA's as it appears in the object
992 file, and then call the file's sym_offsets function to convert this
993 into a format-specific offset table --- a `struct section_offsets'.
96baa820 994
7eedccfa
PP
995 ADD_FLAGS encodes verbosity level, whether this is main symbol or
996 an extra symbol file such as dynamically loaded code, and wether
997 breakpoint reset should be deferred. */
c906108c 998
36e4d068
JB
999static void
1000syms_from_objfile_1 (struct objfile *objfile,
1001 struct section_addr_info *addrs,
36e4d068 1002 int add_flags)
c906108c 1003{
a39a16c4 1004 struct section_addr_info *local_addr = NULL;
c906108c 1005 struct cleanup *old_chain;
7eedccfa 1006 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 1007
8fb8eb5c 1008 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
c906108c 1009
75245b24 1010 if (objfile->sf == NULL)
36e4d068
JB
1011 {
1012 /* No symbols to load, but we still need to make sure
1013 that the section_offsets table is allocated. */
d445b2f6 1014 int num_sections = gdb_bfd_count_sections (objfile->obfd);
a7bfba49 1015 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
36e4d068
JB
1016
1017 objfile->num_sections = num_sections;
1018 objfile->section_offsets
1019 = obstack_alloc (&objfile->objfile_obstack, size);
1020 memset (objfile->section_offsets, 0, size);
1021 return;
1022 }
75245b24 1023
c906108c
SS
1024 /* Make sure that partially constructed symbol tables will be cleaned up
1025 if an error occurs during symbol reading. */
74b7792f 1026 old_chain = make_cleanup_free_objfile (objfile);
c906108c 1027
6bf667bb
DE
1028 /* If ADDRS is NULL, put together a dummy address list.
1029 We now establish the convention that an addr of zero means
c378eb4e 1030 no load address was specified. */
6bf667bb 1031 if (! addrs)
a39a16c4 1032 {
d445b2f6 1033 local_addr = alloc_section_addr_info (1);
a39a16c4
MM
1034 make_cleanup (xfree, local_addr);
1035 addrs = local_addr;
1036 }
1037
c5aa993b 1038 if (mainline)
c906108c
SS
1039 {
1040 /* We will modify the main symbol table, make sure that all its users
c5aa993b 1041 will be cleaned up if an error occurs during symbol reading. */
74b7792f 1042 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
1043
1044 /* Since no error yet, throw away the old symbol table. */
1045
1046 if (symfile_objfile != NULL)
1047 {
1048 free_objfile (symfile_objfile);
adb7f338 1049 gdb_assert (symfile_objfile == NULL);
c906108c
SS
1050 }
1051
1052 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
1053 If the user wants to get rid of them, they should do "symbol-file"
1054 without arguments first. Not sure this is the best behavior
1055 (PR 2207). */
c906108c 1056
c5aa993b 1057 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
1058 }
1059
1060 /* Convert addr into an offset rather than an absolute address.
1061 We find the lowest address of a loaded segment in the objfile,
53a5351d 1062 and assume that <addr> is where that got loaded.
c906108c 1063
53a5351d
JM
1064 We no longer warn if the lowest section is not a text segment (as
1065 happens for the PA64 port. */
6bf667bb 1066 if (addrs->num_sections > 0)
75242ef4 1067 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
1068
1069 /* Initialize symbol reading routines for this objfile, allow complaints to
1070 appear for this new file, and record how verbose to be, then do the
c378eb4e 1071 initial symbol reading for this file. */
c906108c 1072
c5aa993b 1073 (*objfile->sf->sym_init) (objfile);
7eedccfa 1074 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 1075
6bf667bb 1076 (*objfile->sf->sym_offsets) (objfile, addrs);
c906108c 1077
608e2dbb 1078 read_symbols (objfile, add_flags);
b11896a5 1079
c906108c
SS
1080 /* Discard cleanups as symbol reading was successful. */
1081
1082 discard_cleanups (old_chain);
f7545552 1083 xfree (local_addr);
c906108c
SS
1084}
1085
36e4d068
JB
1086/* Same as syms_from_objfile_1, but also initializes the objfile
1087 entry-point info. */
1088
6bf667bb 1089static void
36e4d068
JB
1090syms_from_objfile (struct objfile *objfile,
1091 struct section_addr_info *addrs,
36e4d068
JB
1092 int add_flags)
1093{
6bf667bb 1094 syms_from_objfile_1 (objfile, addrs, add_flags);
36e4d068
JB
1095 init_entry_point_info (objfile);
1096}
1097
c906108c
SS
1098/* Perform required actions after either reading in the initial
1099 symbols for a new objfile, or mapping in the symbols from a reusable
c1e56572 1100 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c5aa993b 1101
c906108c 1102void
7eedccfa 1103new_symfile_objfile (struct objfile *objfile, int add_flags)
c906108c 1104{
c906108c 1105 /* If this is the main symbol file we have to clean up all users of the
c378eb4e 1106 old main symbol file. Otherwise it is sufficient to fixup all the
c906108c 1107 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1108 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1109 {
1110 /* OK, make it the "real" symbol file. */
1111 symfile_objfile = objfile;
1112
c1e56572 1113 clear_symtab_users (add_flags);
c906108c 1114 }
7eedccfa 1115 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1116 {
69de3c6a 1117 breakpoint_re_set ();
c906108c
SS
1118 }
1119
1120 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 1121 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
1122}
1123
1124/* Process a symbol file, as either the main file or as a dynamically
1125 loaded file.
1126
5417f6dc 1127 ABFD is a BFD already open on the file, as from symfile_bfd_open.
8ac244b4 1128 A new reference is acquired by this function.
7904e09f 1129
24ba069a
JK
1130 For NAME description see allocate_objfile's definition.
1131
7eedccfa
PP
1132 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1133 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f 1134
6bf667bb 1135 ADDRS is as described for syms_from_objfile_1, above.
7eedccfa 1136 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1137
63524580
JK
1138 PARENT is the original objfile if ABFD is a separate debug info file.
1139 Otherwise PARENT is NULL.
1140
c906108c 1141 Upon success, returns a pointer to the objfile that was added.
c378eb4e 1142 Upon failure, jumps back to command level (never returns). */
7eedccfa 1143
7904e09f 1144static struct objfile *
24ba069a 1145symbol_file_add_with_addrs (bfd *abfd, const char *name, int add_flags,
6bf667bb
DE
1146 struct section_addr_info *addrs,
1147 int flags, struct objfile *parent)
c906108c
SS
1148{
1149 struct objfile *objfile;
7eedccfa 1150 const int from_tty = add_flags & SYMFILE_VERBOSE;
0838fb57 1151 const int mainline = add_flags & SYMFILE_MAINLINE;
770e7fc7 1152 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
b11896a5
TT
1153 && (readnow_symbol_files
1154 || (add_flags & SYMFILE_NO_READ) == 0));
c906108c 1155
9291a0cd 1156 if (readnow_symbol_files)
b11896a5
TT
1157 {
1158 flags |= OBJF_READNOW;
1159 add_flags &= ~SYMFILE_NO_READ;
1160 }
9291a0cd 1161
5417f6dc
RM
1162 /* Give user a chance to burp if we'd be
1163 interactively wiping out any existing symbols. */
c906108c
SS
1164
1165 if ((have_full_symbols () || have_partial_symbols ())
0838fb57 1166 && mainline
c906108c 1167 && from_tty
9e2f0ad4 1168 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1169 error (_("Not confirmed."));
c906108c 1170
24ba069a
JK
1171 objfile = allocate_objfile (abfd, name,
1172 flags | (mainline ? OBJF_MAINLINE : 0));
c906108c 1173
63524580
JK
1174 if (parent)
1175 add_separate_debug_objfile (objfile, parent);
1176
78a4a9b9
AC
1177 /* We either created a new mapped symbol table, mapped an existing
1178 symbol table file which has not had initial symbol reading
c378eb4e 1179 performed, or need to read an unmapped symbol table. */
b11896a5 1180 if (should_print)
c906108c 1181 {
769d7dc4
AC
1182 if (deprecated_pre_add_symbol_hook)
1183 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1184 else
c906108c 1185 {
55333a84
DE
1186 printf_unfiltered (_("Reading symbols from %s..."), name);
1187 wrap_here ("");
1188 gdb_flush (gdb_stdout);
c906108c 1189 }
c906108c 1190 }
6bf667bb 1191 syms_from_objfile (objfile, addrs, add_flags);
c906108c
SS
1192
1193 /* We now have at least a partial symbol table. Check to see if the
1194 user requested that all symbols be read on initial access via either
1195 the gdb startup command line or on a per symbol file basis. Expand
c378eb4e 1196 all partial symbol tables for this objfile if so. */
c906108c 1197
9291a0cd 1198 if ((flags & OBJF_READNOW))
c906108c 1199 {
b11896a5 1200 if (should_print)
c906108c 1201 {
a3f17187 1202 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1203 wrap_here ("");
1204 gdb_flush (gdb_stdout);
1205 }
1206
ccefe4c4
TT
1207 if (objfile->sf)
1208 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1209 }
1210
b11896a5 1211 if (should_print && !objfile_has_symbols (objfile))
cb3c37b2
JB
1212 {
1213 wrap_here ("");
55333a84 1214 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1215 wrap_here ("");
1216 }
1217
b11896a5 1218 if (should_print)
c906108c 1219 {
769d7dc4
AC
1220 if (deprecated_post_add_symbol_hook)
1221 deprecated_post_add_symbol_hook ();
c906108c 1222 else
55333a84 1223 printf_unfiltered (_("done.\n"));
c906108c
SS
1224 }
1225
481d0f41
JB
1226 /* We print some messages regardless of whether 'from_tty ||
1227 info_verbose' is true, so make sure they go out at the right
1228 time. */
1229 gdb_flush (gdb_stdout);
1230
109f874e 1231 if (objfile->sf == NULL)
8caee43b
PP
1232 {
1233 observer_notify_new_objfile (objfile);
c378eb4e 1234 return objfile; /* No symbols. */
8caee43b 1235 }
109f874e 1236
7eedccfa 1237 new_symfile_objfile (objfile, add_flags);
c906108c 1238
06d3b283 1239 observer_notify_new_objfile (objfile);
c906108c 1240
ce7d4522 1241 bfd_cache_close_all ();
c906108c
SS
1242 return (objfile);
1243}
1244
24ba069a
JK
1245/* Add BFD as a separate debug file for OBJFILE. For NAME description
1246 see allocate_objfile's definition. */
9cce227f
TG
1247
1248void
24ba069a
JK
1249symbol_file_add_separate (bfd *bfd, const char *name, int symfile_flags,
1250 struct objfile *objfile)
9cce227f 1251{
15d123c9 1252 struct objfile *new_objfile;
089b4803
TG
1253 struct section_addr_info *sap;
1254 struct cleanup *my_cleanup;
1255
1256 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1257 because sections of BFD may not match sections of OBJFILE and because
1258 vma may have been modified by tools such as prelink. */
1259 sap = build_section_addr_info_from_objfile (objfile);
1260 my_cleanup = make_cleanup_free_section_addr_info (sap);
9cce227f 1261
6bf667bb 1262 new_objfile = symbol_file_add_with_addrs
24ba069a 1263 (bfd, name, symfile_flags, sap,
9cce227f 1264 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
63524580
JK
1265 | OBJF_USERLOADED),
1266 objfile);
089b4803
TG
1267
1268 do_cleanups (my_cleanup);
9cce227f 1269}
7904e09f 1270
eb4556d7
JB
1271/* Process the symbol file ABFD, as either the main file or as a
1272 dynamically loaded file.
6bf667bb 1273 See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1274
eb4556d7 1275struct objfile *
24ba069a 1276symbol_file_add_from_bfd (bfd *abfd, const char *name, int add_flags,
eb4556d7 1277 struct section_addr_info *addrs,
63524580 1278 int flags, struct objfile *parent)
eb4556d7 1279{
24ba069a
JK
1280 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1281 parent);
eb4556d7
JB
1282}
1283
7904e09f 1284/* Process a symbol file, as either the main file or as a dynamically
6bf667bb 1285 loaded file. See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1286
7904e09f 1287struct objfile *
69150c3d
JK
1288symbol_file_add (const char *name, int add_flags,
1289 struct section_addr_info *addrs, int flags)
7904e09f 1290{
8ac244b4
TT
1291 bfd *bfd = symfile_bfd_open (name);
1292 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1293 struct objfile *objf;
1294
24ba069a 1295 objf = symbol_file_add_from_bfd (bfd, name, add_flags, addrs, flags, NULL);
8ac244b4
TT
1296 do_cleanups (cleanup);
1297 return objf;
7904e09f
JB
1298}
1299
d7db6da9
FN
1300/* Call symbol_file_add() with default values and update whatever is
1301 affected by the loading of a new main().
1302 Used when the file is supplied in the gdb command line
1303 and by some targets with special loading requirements.
1304 The auxiliary function, symbol_file_add_main_1(), has the flags
1305 argument for the switches that can only be specified in the symbol_file
1306 command itself. */
5417f6dc 1307
1adeb98a 1308void
69150c3d 1309symbol_file_add_main (const char *args, int from_tty)
1adeb98a 1310{
d7db6da9
FN
1311 symbol_file_add_main_1 (args, from_tty, 0);
1312}
1313
1314static void
69150c3d 1315symbol_file_add_main_1 (const char *args, int from_tty, int flags)
d7db6da9 1316{
7dcd53a0
TT
1317 const int add_flags = (current_inferior ()->symfile_flags
1318 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1319
7eedccfa 1320 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1321
d7db6da9
FN
1322 /* Getting new symbols may change our opinion about
1323 what is frameless. */
1324 reinit_frame_cache ();
1325
7dcd53a0
TT
1326 if ((flags & SYMFILE_NO_READ) == 0)
1327 set_initial_language ();
1adeb98a
FN
1328}
1329
1330void
1331symbol_file_clear (int from_tty)
1332{
1333 if ((have_full_symbols () || have_partial_symbols ())
1334 && from_tty
0430b0d6
AS
1335 && (symfile_objfile
1336 ? !query (_("Discard symbol table from `%s'? "),
4262abfb 1337 objfile_name (symfile_objfile))
0430b0d6 1338 : !query (_("Discard symbol table? "))))
8a3fe4f8 1339 error (_("Not confirmed."));
1adeb98a 1340
0133421a
JK
1341 /* solib descriptors may have handles to objfiles. Wipe them before their
1342 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1343 no_shared_libraries (NULL, from_tty);
1344
0133421a
JK
1345 free_all_objfiles ();
1346
adb7f338 1347 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1348 if (from_tty)
1349 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1350}
1351
5b5d99cf 1352static int
287ccc17 1353separate_debug_file_exists (const char *name, unsigned long crc,
32a0e547 1354 struct objfile *parent_objfile)
5b5d99cf 1355{
904578ed
JK
1356 unsigned long file_crc;
1357 int file_crc_p;
f1838a98 1358 bfd *abfd;
32a0e547 1359 struct stat parent_stat, abfd_stat;
904578ed 1360 int verified_as_different;
32a0e547
JK
1361
1362 /* Find a separate debug info file as if symbols would be present in
1363 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1364 section can contain just the basename of PARENT_OBJFILE without any
1365 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
c378eb4e 1366 the separate debug infos with the same basename can exist. */
32a0e547 1367
4262abfb 1368 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
32a0e547 1369 return 0;
5b5d99cf 1370
08d2cd74 1371 abfd = gdb_bfd_open_maybe_remote (name);
f1838a98
UW
1372
1373 if (!abfd)
5b5d99cf
JB
1374 return 0;
1375
0ba1096a 1376 /* Verify symlinks were not the cause of filename_cmp name difference above.
32a0e547
JK
1377
1378 Some operating systems, e.g. Windows, do not provide a meaningful
1379 st_ino; they always set it to zero. (Windows does provide a
1380 meaningful st_dev.) Do not indicate a duplicate library in that
1381 case. While there is no guarantee that a system that provides
1382 meaningful inode numbers will never set st_ino to zero, this is
1383 merely an optimization, so we do not need to worry about false
1384 negatives. */
1385
1386 if (bfd_stat (abfd, &abfd_stat) == 0
904578ed
JK
1387 && abfd_stat.st_ino != 0
1388 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
32a0e547 1389 {
904578ed
JK
1390 if (abfd_stat.st_dev == parent_stat.st_dev
1391 && abfd_stat.st_ino == parent_stat.st_ino)
1392 {
cbb099e8 1393 gdb_bfd_unref (abfd);
904578ed
JK
1394 return 0;
1395 }
1396 verified_as_different = 1;
32a0e547 1397 }
904578ed
JK
1398 else
1399 verified_as_different = 0;
32a0e547 1400
dccee2de 1401 file_crc_p = gdb_bfd_crc (abfd, &file_crc);
5b5d99cf 1402
cbb099e8 1403 gdb_bfd_unref (abfd);
5b5d99cf 1404
904578ed
JK
1405 if (!file_crc_p)
1406 return 0;
1407
287ccc17
JK
1408 if (crc != file_crc)
1409 {
dccee2de
TT
1410 unsigned long parent_crc;
1411
904578ed
JK
1412 /* If one (or both) the files are accessed for example the via "remote:"
1413 gdbserver way it does not support the bfd_stat operation. Verify
1414 whether those two files are not the same manually. */
1415
dccee2de 1416 if (!verified_as_different)
904578ed 1417 {
dccee2de 1418 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
904578ed
JK
1419 return 0;
1420 }
1421
dccee2de 1422 if (verified_as_different || parent_crc != file_crc)
904578ed
JK
1423 warning (_("the debug information found in \"%s\""
1424 " does not match \"%s\" (CRC mismatch).\n"),
4262abfb 1425 name, objfile_name (parent_objfile));
904578ed 1426
287ccc17
JK
1427 return 0;
1428 }
1429
1430 return 1;
5b5d99cf
JB
1431}
1432
aa28a74e 1433char *debug_file_directory = NULL;
920d2a44
AC
1434static void
1435show_debug_file_directory (struct ui_file *file, int from_tty,
1436 struct cmd_list_element *c, const char *value)
1437{
3e43a32a
MS
1438 fprintf_filtered (file,
1439 _("The directory where separate debug "
1440 "symbols are searched for is \"%s\".\n"),
920d2a44
AC
1441 value);
1442}
5b5d99cf
JB
1443
1444#if ! defined (DEBUG_SUBDIRECTORY)
1445#define DEBUG_SUBDIRECTORY ".debug"
1446#endif
1447
1db33378
PP
1448/* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1449 where the original file resides (may not be the same as
1450 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
7edbb660
DE
1451 looking for. CANON_DIR is the "realpath" form of DIR.
1452 DIR must contain a trailing '/'.
1453 Returns the path of the file with separate debug info, of NULL. */
1db33378
PP
1454
1455static char *
1456find_separate_debug_file (const char *dir,
1457 const char *canon_dir,
1458 const char *debuglink,
1459 unsigned long crc32, struct objfile *objfile)
9cce227f 1460{
1db33378
PP
1461 char *debugdir;
1462 char *debugfile;
9cce227f 1463 int i;
e4ab2fad
JK
1464 VEC (char_ptr) *debugdir_vec;
1465 struct cleanup *back_to;
1466 int ix;
5b5d99cf 1467
1db33378 1468 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1ffa32ee 1469 i = strlen (dir);
1db33378
PP
1470 if (canon_dir != NULL && strlen (canon_dir) > i)
1471 i = strlen (canon_dir);
1ffa32ee 1472
25522fae
JK
1473 debugfile = xmalloc (strlen (debug_file_directory) + 1
1474 + i
1475 + strlen (DEBUG_SUBDIRECTORY)
1476 + strlen ("/")
1db33378 1477 + strlen (debuglink)
25522fae 1478 + 1);
5b5d99cf
JB
1479
1480 /* First try in the same directory as the original file. */
1481 strcpy (debugfile, dir);
1db33378 1482 strcat (debugfile, debuglink);
5b5d99cf 1483
32a0e547 1484 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1485 return debugfile;
5417f6dc 1486
5b5d99cf
JB
1487 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1488 strcpy (debugfile, dir);
1489 strcat (debugfile, DEBUG_SUBDIRECTORY);
1490 strcat (debugfile, "/");
1db33378 1491 strcat (debugfile, debuglink);
5b5d99cf 1492
32a0e547 1493 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1494 return debugfile;
5417f6dc 1495
24ddea62 1496 /* Then try in the global debugfile directories.
f888f159 1497
24ddea62
JK
1498 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1499 cause "/..." lookups. */
5417f6dc 1500
e4ab2fad
JK
1501 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1502 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
24ddea62 1503
e4ab2fad
JK
1504 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1505 {
1506 strcpy (debugfile, debugdir);
aa28a74e 1507 strcat (debugfile, "/");
24ddea62 1508 strcat (debugfile, dir);
1db33378 1509 strcat (debugfile, debuglink);
aa28a74e 1510
32a0e547 1511 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1512 {
1513 do_cleanups (back_to);
1514 return debugfile;
1515 }
24ddea62
JK
1516
1517 /* If the file is in the sysroot, try using its base path in the
1518 global debugfile directory. */
1db33378
PP
1519 if (canon_dir != NULL
1520 && filename_ncmp (canon_dir, gdb_sysroot,
0ba1096a 1521 strlen (gdb_sysroot)) == 0
1db33378 1522 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
24ddea62 1523 {
e4ab2fad 1524 strcpy (debugfile, debugdir);
1db33378 1525 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
24ddea62 1526 strcat (debugfile, "/");
1db33378 1527 strcat (debugfile, debuglink);
24ddea62 1528
32a0e547 1529 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1530 {
1531 do_cleanups (back_to);
1532 return debugfile;
1533 }
24ddea62 1534 }
aa28a74e 1535 }
f888f159 1536
e4ab2fad 1537 do_cleanups (back_to);
25522fae 1538 xfree (debugfile);
1db33378
PP
1539 return NULL;
1540}
1541
7edbb660 1542/* Modify PATH to contain only "[/]directory/" part of PATH.
1db33378
PP
1543 If there were no directory separators in PATH, PATH will be empty
1544 string on return. */
1545
1546static void
1547terminate_after_last_dir_separator (char *path)
1548{
1549 int i;
1550
1551 /* Strip off the final filename part, leaving the directory name,
1552 followed by a slash. The directory can be relative or absolute. */
1553 for (i = strlen(path) - 1; i >= 0; i--)
1554 if (IS_DIR_SEPARATOR (path[i]))
1555 break;
1556
1557 /* If I is -1 then no directory is present there and DIR will be "". */
1558 path[i + 1] = '\0';
1559}
1560
1561/* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1562 Returns pathname, or NULL. */
1563
1564char *
1565find_separate_debug_file_by_debuglink (struct objfile *objfile)
1566{
1567 char *debuglink;
1568 char *dir, *canon_dir;
1569 char *debugfile;
1570 unsigned long crc32;
1571 struct cleanup *cleanups;
1572
cc0ea93c 1573 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1db33378
PP
1574
1575 if (debuglink == NULL)
1576 {
1577 /* There's no separate debug info, hence there's no way we could
1578 load it => no warning. */
1579 return NULL;
1580 }
1581
71bdabee 1582 cleanups = make_cleanup (xfree, debuglink);
4262abfb 1583 dir = xstrdup (objfile_name (objfile));
71bdabee 1584 make_cleanup (xfree, dir);
1db33378
PP
1585 terminate_after_last_dir_separator (dir);
1586 canon_dir = lrealpath (dir);
1587
1588 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1589 crc32, objfile);
1590 xfree (canon_dir);
1591
1592 if (debugfile == NULL)
1593 {
1db33378
PP
1594 /* For PR gdb/9538, try again with realpath (if different from the
1595 original). */
1596
1597 struct stat st_buf;
1598
4262abfb
JK
1599 if (lstat (objfile_name (objfile), &st_buf) == 0
1600 && S_ISLNK (st_buf.st_mode))
1db33378
PP
1601 {
1602 char *symlink_dir;
1603
4262abfb 1604 symlink_dir = lrealpath (objfile_name (objfile));
1db33378
PP
1605 if (symlink_dir != NULL)
1606 {
1607 make_cleanup (xfree, symlink_dir);
1608 terminate_after_last_dir_separator (symlink_dir);
1609 if (strcmp (dir, symlink_dir) != 0)
1610 {
1611 /* Different directory, so try using it. */
1612 debugfile = find_separate_debug_file (symlink_dir,
1613 symlink_dir,
1614 debuglink,
1615 crc32,
1616 objfile);
1617 }
1618 }
1619 }
1db33378 1620 }
aa28a74e 1621
1db33378 1622 do_cleanups (cleanups);
25522fae 1623 return debugfile;
5b5d99cf
JB
1624}
1625
c906108c
SS
1626/* This is the symbol-file command. Read the file, analyze its
1627 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1628 the command is rather bizarre:
1629
1630 1. The function buildargv implements various quoting conventions
1631 which are undocumented and have little or nothing in common with
1632 the way things are quoted (or not quoted) elsewhere in GDB.
1633
1634 2. Options are used, which are not generally used in GDB (perhaps
1635 "set mapped on", "set readnow on" would be better)
1636
1637 3. The order of options matters, which is contrary to GNU
c906108c
SS
1638 conventions (because it is confusing and inconvenient). */
1639
1640void
fba45db2 1641symbol_file_command (char *args, int from_tty)
c906108c 1642{
c906108c
SS
1643 dont_repeat ();
1644
1645 if (args == NULL)
1646 {
1adeb98a 1647 symbol_file_clear (from_tty);
c906108c
SS
1648 }
1649 else
1650 {
d1a41061 1651 char **argv = gdb_buildargv (args);
cb2f3a29
MK
1652 int flags = OBJF_USERLOADED;
1653 struct cleanup *cleanups;
1654 char *name = NULL;
1655
7a292a7a 1656 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1657 while (*argv != NULL)
1658 {
78a4a9b9
AC
1659 if (strcmp (*argv, "-readnow") == 0)
1660 flags |= OBJF_READNOW;
1661 else if (**argv == '-')
8a3fe4f8 1662 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1663 else
1664 {
cb2f3a29 1665 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1666 name = *argv;
78a4a9b9 1667 }
cb2f3a29 1668
c906108c
SS
1669 argv++;
1670 }
1671
1672 if (name == NULL)
cb2f3a29
MK
1673 error (_("no symbol file name was specified"));
1674
c906108c
SS
1675 do_cleanups (cleanups);
1676 }
1677}
1678
1679/* Set the initial language.
1680
cb2f3a29
MK
1681 FIXME: A better solution would be to record the language in the
1682 psymtab when reading partial symbols, and then use it (if known) to
1683 set the language. This would be a win for formats that encode the
1684 language in an easily discoverable place, such as DWARF. For
1685 stabs, we can jump through hoops looking for specially named
1686 symbols or try to intuit the language from the specific type of
1687 stabs we find, but we can't do that until later when we read in
1688 full symbols. */
c906108c 1689
8b60591b 1690void
fba45db2 1691set_initial_language (void)
c906108c 1692{
9e6c82ad 1693 enum language lang = main_language ();
c906108c 1694
9e6c82ad 1695 if (lang == language_unknown)
01f8c46d 1696 {
bf6d8a91
TT
1697 char *name = main_name ();
1698 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL);
f888f159 1699
bf6d8a91
TT
1700 if (sym != NULL)
1701 lang = SYMBOL_LANGUAGE (sym);
01f8c46d 1702 }
cb2f3a29 1703
ccefe4c4
TT
1704 if (lang == language_unknown)
1705 {
1706 /* Make C the default language */
1707 lang = language_c;
c906108c 1708 }
ccefe4c4
TT
1709
1710 set_language (lang);
1711 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1712}
1713
874f5765 1714/* If NAME is a remote name open the file using remote protocol, otherwise
cbb099e8
TT
1715 open it normally. Returns a new reference to the BFD. On error,
1716 returns NULL with the BFD error set. */
874f5765
TG
1717
1718bfd *
08d2cd74 1719gdb_bfd_open_maybe_remote (const char *name)
874f5765 1720{
520b0001
TT
1721 bfd *result;
1722
874f5765 1723 if (remote_filename_p (name))
520b0001 1724 result = remote_bfd_open (name, gnutarget);
874f5765 1725 else
1c00ec6b 1726 result = gdb_bfd_open (name, gnutarget, -1);
520b0001 1727
520b0001 1728 return result;
874f5765
TG
1729}
1730
cb2f3a29
MK
1731/* Open the file specified by NAME and hand it off to BFD for
1732 preliminary analysis. Return a newly initialized bfd *, which
1733 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1734 absolute). In case of trouble, error() is called. */
c906108c
SS
1735
1736bfd *
69150c3d 1737symfile_bfd_open (const char *cname)
c906108c
SS
1738{
1739 bfd *sym_bfd;
1740 int desc;
69150c3d 1741 char *name, *absolute_name;
faab9922 1742 struct cleanup *back_to;
c906108c 1743
69150c3d 1744 if (remote_filename_p (cname))
f1838a98 1745 {
69150c3d 1746 sym_bfd = remote_bfd_open (cname, gnutarget);
f1838a98 1747 if (!sym_bfd)
69150c3d 1748 error (_("`%s': can't open to read symbols: %s."), cname,
a4453b7e 1749 bfd_errmsg (bfd_get_error ()));
f1838a98
UW
1750
1751 if (!bfd_check_format (sym_bfd, bfd_object))
1752 {
f9a062ff 1753 make_cleanup_bfd_unref (sym_bfd);
69150c3d 1754 error (_("`%s': can't read symbols: %s."), cname,
f1838a98
UW
1755 bfd_errmsg (bfd_get_error ()));
1756 }
1757
1758 return sym_bfd;
1759 }
1760
69150c3d 1761 name = tilde_expand (cname); /* Returns 1st new malloc'd copy. */
c906108c
SS
1762
1763 /* Look down path for it, allocate 2nd new malloc'd copy. */
492c0ab7 1764 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH, name,
fbdebf46 1765 O_RDONLY | O_BINARY, &absolute_name);
608506ed 1766#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1767 if (desc < 0)
1768 {
1769 char *exename = alloca (strlen (name) + 5);
433759f7 1770
c906108c 1771 strcat (strcpy (exename, name), ".exe");
492c0ab7
JK
1772 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1773 exename, O_RDONLY | O_BINARY, &absolute_name);
c906108c
SS
1774 }
1775#endif
1776 if (desc < 0)
1777 {
b8c9b27d 1778 make_cleanup (xfree, name);
c906108c
SS
1779 perror_with_name (name);
1780 }
cb2f3a29 1781
cb2f3a29
MK
1782 xfree (name);
1783 name = absolute_name;
faab9922 1784 back_to = make_cleanup (xfree, name);
c906108c 1785
1c00ec6b 1786 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
c906108c 1787 if (!sym_bfd)
faab9922
JK
1788 error (_("`%s': can't open to read symbols: %s."), name,
1789 bfd_errmsg (bfd_get_error ()));
549c1eea 1790 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1791
1792 if (!bfd_check_format (sym_bfd, bfd_object))
1793 {
f9a062ff 1794 make_cleanup_bfd_unref (sym_bfd);
f1838a98 1795 error (_("`%s': can't read symbols: %s."), name,
c906108c
SS
1796 bfd_errmsg (bfd_get_error ()));
1797 }
cb2f3a29 1798
faab9922
JK
1799 do_cleanups (back_to);
1800
cb2f3a29 1801 return sym_bfd;
c906108c
SS
1802}
1803
cb2f3a29
MK
1804/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1805 the section was not found. */
1806
0e931cf0
JB
1807int
1808get_section_index (struct objfile *objfile, char *section_name)
1809{
1810 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1811
0e931cf0
JB
1812 if (sect)
1813 return sect->index;
1814 else
1815 return -1;
1816}
1817
c256e171
DE
1818/* Link SF into the global symtab_fns list.
1819 FLAVOUR is the file format that SF handles.
1820 Called on startup by the _initialize routine in each object file format
1821 reader, to register information about each format the reader is prepared
1822 to handle. */
c906108c
SS
1823
1824void
c256e171 1825add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
c906108c 1826{
c256e171
DE
1827 registered_sym_fns fns = { flavour, sf };
1828
1829 VEC_safe_push (registered_sym_fns, symtab_fns, &fns);
c906108c
SS
1830}
1831
cb2f3a29
MK
1832/* Initialize OBJFILE to read symbols from its associated BFD. It
1833 either returns or calls error(). The result is an initialized
1834 struct sym_fns in the objfile structure, that contains cached
1835 information about the symbol file. */
c906108c 1836
00b5771c 1837static const struct sym_fns *
31d99776 1838find_sym_fns (bfd *abfd)
c906108c 1839{
c256e171 1840 registered_sym_fns *rsf;
31d99776 1841 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
00b5771c 1842 int i;
c906108c 1843
75245b24
MS
1844 if (our_flavour == bfd_target_srec_flavour
1845 || our_flavour == bfd_target_ihex_flavour
1846 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1847 return NULL; /* No symbols. */
75245b24 1848
c256e171
DE
1849 for (i = 0; VEC_iterate (registered_sym_fns, symtab_fns, i, rsf); ++i)
1850 if (our_flavour == rsf->sym_flavour)
1851 return rsf->sym_fns;
cb2f3a29 1852
8a3fe4f8 1853 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1854 bfd_get_target (abfd));
c906108c
SS
1855}
1856\f
cb2f3a29 1857
c906108c
SS
1858/* This function runs the load command of our current target. */
1859
1860static void
fba45db2 1861load_command (char *arg, int from_tty)
c906108c 1862{
5b3fca71
TT
1863 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1864
e5cc9f32
JB
1865 dont_repeat ();
1866
4487aabf
PA
1867 /* The user might be reloading because the binary has changed. Take
1868 this opportunity to check. */
1869 reopen_exec_file ();
1870 reread_symbols ();
1871
c906108c 1872 if (arg == NULL)
1986bccd
AS
1873 {
1874 char *parg;
1875 int count = 0;
1876
1877 parg = arg = get_exec_file (1);
1878
1879 /* Count how many \ " ' tab space there are in the name. */
1880 while ((parg = strpbrk (parg, "\\\"'\t ")))
1881 {
1882 parg++;
1883 count++;
1884 }
1885
1886 if (count)
1887 {
1888 /* We need to quote this string so buildargv can pull it apart. */
1889 char *temp = xmalloc (strlen (arg) + count + 1 );
1890 char *ptemp = temp;
1891 char *prev;
1892
1893 make_cleanup (xfree, temp);
1894
1895 prev = parg = arg;
1896 while ((parg = strpbrk (parg, "\\\"'\t ")))
1897 {
1898 strncpy (ptemp, prev, parg - prev);
1899 ptemp += parg - prev;
1900 prev = parg++;
1901 *ptemp++ = '\\';
1902 }
1903 strcpy (ptemp, prev);
1904
1905 arg = temp;
1906 }
1907 }
1908
c906108c 1909 target_load (arg, from_tty);
2889e661
JB
1910
1911 /* After re-loading the executable, we don't really know which
1912 overlays are mapped any more. */
1913 overlay_cache_invalid = 1;
5b3fca71
TT
1914
1915 do_cleanups (cleanup);
c906108c
SS
1916}
1917
1918/* This version of "load" should be usable for any target. Currently
1919 it is just used for remote targets, not inftarg.c or core files,
1920 on the theory that only in that case is it useful.
1921
1922 Avoiding xmodem and the like seems like a win (a) because we don't have
1923 to worry about finding it, and (b) On VMS, fork() is very slow and so
1924 we don't want to run a subprocess. On the other hand, I'm not sure how
1925 performance compares. */
917317f4 1926
917317f4
JM
1927static int validate_download = 0;
1928
e4f9b4d5
MS
1929/* Callback service function for generic_load (bfd_map_over_sections). */
1930
1931static void
1932add_section_size_callback (bfd *abfd, asection *asec, void *data)
1933{
1934 bfd_size_type *sum = data;
1935
2c500098 1936 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1937}
1938
1939/* Opaque data for load_section_callback. */
1940struct load_section_data {
f698ca8e 1941 CORE_ADDR load_offset;
a76d924d
DJ
1942 struct load_progress_data *progress_data;
1943 VEC(memory_write_request_s) *requests;
1944};
1945
1946/* Opaque data for load_progress. */
1947struct load_progress_data {
1948 /* Cumulative data. */
e4f9b4d5
MS
1949 unsigned long write_count;
1950 unsigned long data_count;
1951 bfd_size_type total_size;
a76d924d
DJ
1952};
1953
1954/* Opaque data for load_progress for a single section. */
1955struct load_progress_section_data {
1956 struct load_progress_data *cumulative;
cf7a04e8 1957
a76d924d 1958 /* Per-section data. */
cf7a04e8
DJ
1959 const char *section_name;
1960 ULONGEST section_sent;
1961 ULONGEST section_size;
1962 CORE_ADDR lma;
1963 gdb_byte *buffer;
e4f9b4d5
MS
1964};
1965
a76d924d 1966/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1967
1968static void
1969load_progress (ULONGEST bytes, void *untyped_arg)
1970{
a76d924d
DJ
1971 struct load_progress_section_data *args = untyped_arg;
1972 struct load_progress_data *totals;
1973
1974 if (args == NULL)
1975 /* Writing padding data. No easy way to get at the cumulative
1976 stats, so just ignore this. */
1977 return;
1978
1979 totals = args->cumulative;
1980
1981 if (bytes == 0 && args->section_sent == 0)
1982 {
1983 /* The write is just starting. Let the user know we've started
1984 this section. */
79a45e25 1985 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
5af949e3 1986 args->section_name, hex_string (args->section_size),
f5656ead 1987 paddress (target_gdbarch (), args->lma));
a76d924d
DJ
1988 return;
1989 }
cf7a04e8
DJ
1990
1991 if (validate_download)
1992 {
1993 /* Broken memories and broken monitors manifest themselves here
1994 when bring new computers to life. This doubles already slow
1995 downloads. */
1996 /* NOTE: cagney/1999-10-18: A more efficient implementation
1997 might add a verify_memory() method to the target vector and
1998 then use that. remote.c could implement that method using
1999 the ``qCRC'' packet. */
2000 gdb_byte *check = xmalloc (bytes);
2001 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
2002
2003 if (target_read_memory (args->lma, check, bytes) != 0)
5af949e3 2004 error (_("Download verify read failed at %s"),
f5656ead 2005 paddress (target_gdbarch (), args->lma));
cf7a04e8 2006 if (memcmp (args->buffer, check, bytes) != 0)
5af949e3 2007 error (_("Download verify compare failed at %s"),
f5656ead 2008 paddress (target_gdbarch (), args->lma));
cf7a04e8
DJ
2009 do_cleanups (verify_cleanups);
2010 }
a76d924d 2011 totals->data_count += bytes;
cf7a04e8
DJ
2012 args->lma += bytes;
2013 args->buffer += bytes;
a76d924d 2014 totals->write_count += 1;
cf7a04e8 2015 args->section_sent += bytes;
522002f9 2016 if (check_quit_flag ()
cf7a04e8
DJ
2017 || (deprecated_ui_load_progress_hook != NULL
2018 && deprecated_ui_load_progress_hook (args->section_name,
2019 args->section_sent)))
2020 error (_("Canceled the download"));
2021
2022 if (deprecated_show_load_progress != NULL)
2023 deprecated_show_load_progress (args->section_name,
2024 args->section_sent,
2025 args->section_size,
a76d924d
DJ
2026 totals->data_count,
2027 totals->total_size);
cf7a04e8
DJ
2028}
2029
e4f9b4d5
MS
2030/* Callback service function for generic_load (bfd_map_over_sections). */
2031
2032static void
2033load_section_callback (bfd *abfd, asection *asec, void *data)
2034{
a76d924d 2035 struct memory_write_request *new_request;
e4f9b4d5 2036 struct load_section_data *args = data;
a76d924d 2037 struct load_progress_section_data *section_data;
cf7a04e8
DJ
2038 bfd_size_type size = bfd_get_section_size (asec);
2039 gdb_byte *buffer;
cf7a04e8 2040 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 2041
cf7a04e8
DJ
2042 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2043 return;
e4f9b4d5 2044
cf7a04e8
DJ
2045 if (size == 0)
2046 return;
e4f9b4d5 2047
a76d924d
DJ
2048 new_request = VEC_safe_push (memory_write_request_s,
2049 args->requests, NULL);
2050 memset (new_request, 0, sizeof (struct memory_write_request));
2051 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
2052 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
3e43a32a
MS
2053 new_request->end = new_request->begin + size; /* FIXME Should size
2054 be in instead? */
a76d924d
DJ
2055 new_request->data = xmalloc (size);
2056 new_request->baton = section_data;
cf7a04e8 2057
a76d924d 2058 buffer = new_request->data;
cf7a04e8 2059
a76d924d
DJ
2060 section_data->cumulative = args->progress_data;
2061 section_data->section_name = sect_name;
2062 section_data->section_size = size;
2063 section_data->lma = new_request->begin;
2064 section_data->buffer = buffer;
cf7a04e8
DJ
2065
2066 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
2067}
2068
2069/* Clean up an entire memory request vector, including load
2070 data and progress records. */
cf7a04e8 2071
a76d924d
DJ
2072static void
2073clear_memory_write_data (void *arg)
2074{
2075 VEC(memory_write_request_s) **vec_p = arg;
2076 VEC(memory_write_request_s) *vec = *vec_p;
2077 int i;
2078 struct memory_write_request *mr;
cf7a04e8 2079
a76d924d
DJ
2080 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2081 {
2082 xfree (mr->data);
2083 xfree (mr->baton);
2084 }
2085 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
2086}
2087
c906108c 2088void
9cbe5fff 2089generic_load (const char *args, int from_tty)
c906108c 2090{
c906108c 2091 bfd *loadfile_bfd;
2b71414d 2092 struct timeval start_time, end_time;
917317f4 2093 char *filename;
1986bccd 2094 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 2095 struct load_section_data cbdata;
a76d924d 2096 struct load_progress_data total_progress;
79a45e25 2097 struct ui_out *uiout = current_uiout;
a76d924d 2098
e4f9b4d5 2099 CORE_ADDR entry;
1986bccd 2100 char **argv;
e4f9b4d5 2101
a76d924d
DJ
2102 memset (&cbdata, 0, sizeof (cbdata));
2103 memset (&total_progress, 0, sizeof (total_progress));
2104 cbdata.progress_data = &total_progress;
2105
2106 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 2107
d1a41061
PP
2108 if (args == NULL)
2109 error_no_arg (_("file to load"));
1986bccd 2110
d1a41061 2111 argv = gdb_buildargv (args);
1986bccd
AS
2112 make_cleanup_freeargv (argv);
2113
2114 filename = tilde_expand (argv[0]);
2115 make_cleanup (xfree, filename);
2116
2117 if (argv[1] != NULL)
917317f4 2118 {
f698ca8e 2119 const char *endptr;
ba5f2f8a 2120
f698ca8e 2121 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
1986bccd
AS
2122
2123 /* If the last word was not a valid number then
2124 treat it as a file name with spaces in. */
2125 if (argv[1] == endptr)
2126 error (_("Invalid download offset:%s."), argv[1]);
2127
2128 if (argv[2] != NULL)
2129 error (_("Too many parameters."));
917317f4 2130 }
c906108c 2131
c378eb4e 2132 /* Open the file for loading. */
1c00ec6b 2133 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
c906108c
SS
2134 if (loadfile_bfd == NULL)
2135 {
2136 perror_with_name (filename);
2137 return;
2138 }
917317f4 2139
f9a062ff 2140 make_cleanup_bfd_unref (loadfile_bfd);
c906108c 2141
c5aa993b 2142 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 2143 {
8a3fe4f8 2144 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
2145 bfd_errmsg (bfd_get_error ()));
2146 }
c5aa993b 2147
5417f6dc 2148 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
2149 (void *) &total_progress.total_size);
2150
2151 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 2152
2b71414d 2153 gettimeofday (&start_time, NULL);
c906108c 2154
a76d924d
DJ
2155 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2156 load_progress) != 0)
2157 error (_("Load failed"));
c906108c 2158
2b71414d 2159 gettimeofday (&end_time, NULL);
ba5f2f8a 2160
e4f9b4d5 2161 entry = bfd_get_start_address (loadfile_bfd);
8c2b9656 2162 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
e4f9b4d5 2163 ui_out_text (uiout, "Start address ");
f5656ead 2164 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch (), entry));
e4f9b4d5 2165 ui_out_text (uiout, ", load size ");
a76d924d 2166 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 2167 ui_out_text (uiout, "\n");
e4f9b4d5
MS
2168 /* We were doing this in remote-mips.c, I suspect it is right
2169 for other targets too. */
fb14de7b 2170 regcache_write_pc (get_current_regcache (), entry);
c906108c 2171
38963c97
DJ
2172 /* Reset breakpoints, now that we have changed the load image. For
2173 instance, breakpoints may have been set (or reset, by
2174 post_create_inferior) while connected to the target but before we
2175 loaded the program. In that case, the prologue analyzer could
2176 have read instructions from the target to find the right
2177 breakpoint locations. Loading has changed the contents of that
2178 memory. */
2179
2180 breakpoint_re_set ();
2181
7ca9f392
AC
2182 /* FIXME: are we supposed to call symbol_file_add or not? According
2183 to a comment from remote-mips.c (where a call to symbol_file_add
2184 was commented out), making the call confuses GDB if more than one
2185 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 2186 others don't (or didn't - perhaps they have all been deleted). */
c906108c 2187
a76d924d
DJ
2188 print_transfer_performance (gdb_stdout, total_progress.data_count,
2189 total_progress.write_count,
2190 &start_time, &end_time);
c906108c
SS
2191
2192 do_cleanups (old_cleanups);
2193}
2194
c378eb4e 2195/* Report how fast the transfer went. */
c906108c 2196
917317f4 2197void
d9fcf2fb 2198print_transfer_performance (struct ui_file *stream,
917317f4
JM
2199 unsigned long data_count,
2200 unsigned long write_count,
2b71414d
DJ
2201 const struct timeval *start_time,
2202 const struct timeval *end_time)
917317f4 2203{
9f43d28c 2204 ULONGEST time_count;
79a45e25 2205 struct ui_out *uiout = current_uiout;
2b71414d
DJ
2206
2207 /* Compute the elapsed time in milliseconds, as a tradeoff between
2208 accuracy and overflow. */
2209 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2210 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2211
8b93c638
JM
2212 ui_out_text (uiout, "Transfer rate: ");
2213 if (time_count > 0)
2214 {
9f43d28c
DJ
2215 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2216
2217 if (ui_out_is_mi_like_p (uiout))
2218 {
2219 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2220 ui_out_text (uiout, " bits/sec");
2221 }
2222 else if (rate < 1024)
2223 {
2224 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2225 ui_out_text (uiout, " bytes/sec");
2226 }
2227 else
2228 {
2229 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2230 ui_out_text (uiout, " KB/sec");
2231 }
8b93c638
JM
2232 }
2233 else
2234 {
ba5f2f8a 2235 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 2236 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
2237 }
2238 if (write_count > 0)
2239 {
2240 ui_out_text (uiout, ", ");
ba5f2f8a 2241 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
2242 ui_out_text (uiout, " bytes/write");
2243 }
2244 ui_out_text (uiout, ".\n");
c906108c
SS
2245}
2246
2247/* This function allows the addition of incrementally linked object files.
2248 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2249/* Note: ezannoni 2000-04-13 This function/command used to have a
2250 special case syntax for the rombug target (Rombug is the boot
2251 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2252 rombug case, the user doesn't need to supply a text address,
2253 instead a call to target_link() (in target.c) would supply the
c378eb4e 2254 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2255
c906108c 2256static void
fba45db2 2257add_symbol_file_command (char *args, int from_tty)
c906108c 2258{
5af949e3 2259 struct gdbarch *gdbarch = get_current_arch ();
db162d44 2260 char *filename = NULL;
d03de421 2261 int flags = OBJF_USERLOADED | OBJF_SHARED;
c906108c 2262 char *arg;
db162d44 2263 int section_index = 0;
2acceee2
JM
2264 int argcnt = 0;
2265 int sec_num = 0;
2266 int i;
db162d44
EZ
2267 int expecting_sec_name = 0;
2268 int expecting_sec_addr = 0;
5b96932b 2269 char **argv;
76ad5e1e 2270 struct objfile *objf;
db162d44 2271
a39a16c4 2272 struct sect_opt
2acceee2 2273 {
2acceee2
JM
2274 char *name;
2275 char *value;
a39a16c4 2276 };
db162d44 2277
a39a16c4
MM
2278 struct section_addr_info *section_addrs;
2279 struct sect_opt *sect_opts = NULL;
2280 size_t num_sect_opts = 0;
3017564a 2281 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2282
a39a16c4 2283 num_sect_opts = 16;
5417f6dc 2284 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
2285 * sizeof (struct sect_opt));
2286
c906108c
SS
2287 dont_repeat ();
2288
2289 if (args == NULL)
8a3fe4f8 2290 error (_("add-symbol-file takes a file name and an address"));
c906108c 2291
d1a41061 2292 argv = gdb_buildargv (args);
5b96932b 2293 make_cleanup_freeargv (argv);
db162d44 2294
5b96932b
AS
2295 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2296 {
c378eb4e 2297 /* Process the argument. */
db162d44 2298 if (argcnt == 0)
c906108c 2299 {
c378eb4e 2300 /* The first argument is the file name. */
db162d44 2301 filename = tilde_expand (arg);
3017564a 2302 make_cleanup (xfree, filename);
c906108c 2303 }
41dc8db8
MB
2304 else if (argcnt == 1)
2305 {
2306 /* The second argument is always the text address at which
2307 to load the program. */
2308 sect_opts[section_index].name = ".text";
2309 sect_opts[section_index].value = arg;
2310 if (++section_index >= num_sect_opts)
2311 {
2312 num_sect_opts *= 2;
2313 sect_opts = ((struct sect_opt *)
2314 xrealloc (sect_opts,
2315 num_sect_opts
2316 * sizeof (struct sect_opt)));
2317 }
2318 }
db162d44 2319 else
41dc8db8
MB
2320 {
2321 /* It's an option (starting with '-') or it's an argument
2322 to an option. */
41dc8db8
MB
2323 if (expecting_sec_name)
2324 {
2325 sect_opts[section_index].name = arg;
2326 expecting_sec_name = 0;
2327 }
2328 else if (expecting_sec_addr)
2329 {
2330 sect_opts[section_index].value = arg;
2331 expecting_sec_addr = 0;
2332 if (++section_index >= num_sect_opts)
2333 {
2334 num_sect_opts *= 2;
2335 sect_opts = ((struct sect_opt *)
2336 xrealloc (sect_opts,
2337 num_sect_opts
2338 * sizeof (struct sect_opt)));
2339 }
2340 }
2341 else if (strcmp (arg, "-readnow") == 0)
2342 flags |= OBJF_READNOW;
2343 else if (strcmp (arg, "-s") == 0)
2344 {
2345 expecting_sec_name = 1;
2346 expecting_sec_addr = 1;
2347 }
2348 else
2349 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2350 " [-readnow] [-s <secname> <addr>]*"));
2351 }
c906108c 2352 }
c906108c 2353
927890d0
JB
2354 /* This command takes at least two arguments. The first one is a
2355 filename, and the second is the address where this file has been
2356 loaded. Abort now if this address hasn't been provided by the
2357 user. */
2358 if (section_index < 1)
2359 error (_("The address where %s has been loaded is missing"), filename);
2360
c378eb4e 2361 /* Print the prompt for the query below. And save the arguments into
db162d44
EZ
2362 a sect_addr_info structure to be passed around to other
2363 functions. We have to split this up into separate print
bb599908 2364 statements because hex_string returns a local static
c378eb4e 2365 string. */
5417f6dc 2366
a3f17187 2367 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2368 section_addrs = alloc_section_addr_info (section_index);
2369 make_cleanup (xfree, section_addrs);
db162d44 2370 for (i = 0; i < section_index; i++)
c906108c 2371 {
db162d44
EZ
2372 CORE_ADDR addr;
2373 char *val = sect_opts[i].value;
2374 char *sec = sect_opts[i].name;
5417f6dc 2375
ae822768 2376 addr = parse_and_eval_address (val);
db162d44 2377
db162d44 2378 /* Here we store the section offsets in the order they were
c378eb4e 2379 entered on the command line. */
a39a16c4
MM
2380 section_addrs->other[sec_num].name = sec;
2381 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2382 printf_unfiltered ("\t%s_addr = %s\n", sec,
2383 paddress (gdbarch, addr));
db162d44
EZ
2384 sec_num++;
2385
5417f6dc 2386 /* The object's sections are initialized when a
db162d44 2387 call is made to build_objfile_section_table (objfile).
5417f6dc 2388 This happens in reread_symbols.
db162d44
EZ
2389 At this point, we don't know what file type this is,
2390 so we can't determine what section names are valid. */
2acceee2 2391 }
d76488d8 2392 section_addrs->num_sections = sec_num;
db162d44 2393
2acceee2 2394 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2395 error (_("Not confirmed."));
c906108c 2396
76ad5e1e
NB
2397 objf = symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2398 section_addrs, flags);
2399
2400 add_target_sections_of_objfile (objf);
c906108c
SS
2401
2402 /* Getting new symbols may change our opinion about what is
2403 frameless. */
2404 reinit_frame_cache ();
db162d44 2405 do_cleanups (my_cleanups);
c906108c
SS
2406}
2407\f
70992597 2408
63644780
NB
2409/* This function removes a symbol file that was added via add-symbol-file. */
2410
2411static void
2412remove_symbol_file_command (char *args, int from_tty)
2413{
2414 char **argv;
2415 struct objfile *objf = NULL;
2416 struct cleanup *my_cleanups;
2417 struct program_space *pspace = current_program_space;
2418 struct gdbarch *gdbarch = get_current_arch ();
2419
2420 dont_repeat ();
2421
2422 if (args == NULL)
2423 error (_("remove-symbol-file: no symbol file provided"));
2424
2425 my_cleanups = make_cleanup (null_cleanup, NULL);
2426
2427 argv = gdb_buildargv (args);
2428
2429 if (strcmp (argv[0], "-a") == 0)
2430 {
2431 /* Interpret the next argument as an address. */
2432 CORE_ADDR addr;
2433
2434 if (argv[1] == NULL)
2435 error (_("Missing address argument"));
2436
2437 if (argv[2] != NULL)
2438 error (_("Junk after %s"), argv[1]);
2439
2440 addr = parse_and_eval_address (argv[1]);
2441
2442 ALL_OBJFILES (objf)
2443 {
d03de421
PA
2444 if ((objf->flags & OBJF_USERLOADED) != 0
2445 && (objf->flags & OBJF_SHARED) != 0
63644780
NB
2446 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2447 break;
2448 }
2449 }
2450 else if (argv[0] != NULL)
2451 {
2452 /* Interpret the current argument as a file name. */
2453 char *filename;
2454
2455 if (argv[1] != NULL)
2456 error (_("Junk after %s"), argv[0]);
2457
2458 filename = tilde_expand (argv[0]);
2459 make_cleanup (xfree, filename);
2460
2461 ALL_OBJFILES (objf)
2462 {
d03de421
PA
2463 if ((objf->flags & OBJF_USERLOADED) != 0
2464 && (objf->flags & OBJF_SHARED) != 0
63644780
NB
2465 && objf->pspace == pspace
2466 && filename_cmp (filename, objfile_name (objf)) == 0)
2467 break;
2468 }
2469 }
2470
2471 if (objf == NULL)
2472 error (_("No symbol file found"));
2473
2474 if (from_tty
2475 && !query (_("Remove symbol table from file \"%s\"? "),
2476 objfile_name (objf)))
2477 error (_("Not confirmed."));
2478
2479 free_objfile (objf);
2480 clear_symtab_users (0);
2481
2482 do_cleanups (my_cleanups);
2483}
2484
4ac39b97
JK
2485typedef struct objfile *objfilep;
2486
2487DEF_VEC_P (objfilep);
2488
c906108c 2489/* Re-read symbols if a symbol-file has changed. */
3b7bacac 2490
c906108c 2491void
fba45db2 2492reread_symbols (void)
c906108c
SS
2493{
2494 struct objfile *objfile;
2495 long new_modtime;
c906108c
SS
2496 struct stat new_statbuf;
2497 int res;
4ac39b97
JK
2498 VEC (objfilep) *new_objfiles = NULL;
2499 struct cleanup *all_cleanups;
2500
2501 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
c906108c
SS
2502
2503 /* With the addition of shared libraries, this should be modified,
2504 the load time should be saved in the partial symbol tables, since
2505 different tables may come from different source files. FIXME.
2506 This routine should then walk down each partial symbol table
c378eb4e 2507 and see if the symbol table that it originates from has been changed. */
c906108c 2508
c5aa993b
JM
2509 for (objfile = object_files; objfile; objfile = objfile->next)
2510 {
9cce227f
TG
2511 if (objfile->obfd == NULL)
2512 continue;
2513
2514 /* Separate debug objfiles are handled in the main objfile. */
2515 if (objfile->separate_debug_objfile_backlink)
2516 continue;
2517
02aeec7b
JB
2518 /* If this object is from an archive (what you usually create with
2519 `ar', often called a `static library' on most systems, though
2520 a `shared library' on AIX is also an archive), then you should
2521 stat on the archive name, not member name. */
9cce227f
TG
2522 if (objfile->obfd->my_archive)
2523 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2524 else
4262abfb 2525 res = stat (objfile_name (objfile), &new_statbuf);
9cce227f
TG
2526 if (res != 0)
2527 {
c378eb4e 2528 /* FIXME, should use print_sys_errmsg but it's not filtered. */
9cce227f 2529 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
4262abfb 2530 objfile_name (objfile));
9cce227f
TG
2531 continue;
2532 }
2533 new_modtime = new_statbuf.st_mtime;
2534 if (new_modtime != objfile->mtime)
2535 {
2536 struct cleanup *old_cleanups;
2537 struct section_offsets *offsets;
2538 int num_offsets;
24ba069a 2539 char *original_name;
9cce227f
TG
2540
2541 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
4262abfb 2542 objfile_name (objfile));
9cce227f
TG
2543
2544 /* There are various functions like symbol_file_add,
2545 symfile_bfd_open, syms_from_objfile, etc., which might
2546 appear to do what we want. But they have various other
2547 effects which we *don't* want. So we just do stuff
2548 ourselves. We don't worry about mapped files (for one thing,
2549 any mapped file will be out of date). */
2550
2551 /* If we get an error, blow away this objfile (not sure if
2552 that is the correct response for things like shared
2553 libraries). */
2554 old_cleanups = make_cleanup_free_objfile (objfile);
2555 /* We need to do this whenever any symbols go away. */
2556 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2557
0ba1096a
KT
2558 if (exec_bfd != NULL
2559 && filename_cmp (bfd_get_filename (objfile->obfd),
2560 bfd_get_filename (exec_bfd)) == 0)
9cce227f
TG
2561 {
2562 /* Reload EXEC_BFD without asking anything. */
2563
2564 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2565 }
2566
f6eeced0
JK
2567 /* Keep the calls order approx. the same as in free_objfile. */
2568
2569 /* Free the separate debug objfiles. It will be
2570 automatically recreated by sym_read. */
2571 free_objfile_separate_debug (objfile);
2572
2573 /* Remove any references to this objfile in the global
2574 value lists. */
2575 preserve_values (objfile);
2576
2577 /* Nuke all the state that we will re-read. Much of the following
2578 code which sets things to NULL really is necessary to tell
2579 other parts of GDB that there is nothing currently there.
2580
2581 Try to keep the freeing order compatible with free_objfile. */
2582
2583 if (objfile->sf != NULL)
2584 {
2585 (*objfile->sf->sym_finish) (objfile);
2586 }
2587
2588 clear_objfile_data (objfile);
2589
e1507e95 2590 /* Clean up any state BFD has sitting around. */
a4453b7e
TT
2591 {
2592 struct bfd *obfd = objfile->obfd;
d3846e71 2593 char *obfd_filename;
a4453b7e
TT
2594
2595 obfd_filename = bfd_get_filename (objfile->obfd);
2596 /* Open the new BFD before freeing the old one, so that
2597 the filename remains live. */
08d2cd74 2598 objfile->obfd = gdb_bfd_open_maybe_remote (obfd_filename);
e1507e95
TT
2599 if (objfile->obfd == NULL)
2600 {
2601 /* We have to make a cleanup and error here, rather
2602 than erroring later, because once we unref OBFD,
2603 OBFD_FILENAME will be freed. */
2604 make_cleanup_bfd_unref (obfd);
2605 error (_("Can't open %s to read symbols."), obfd_filename);
2606 }
a4453b7e
TT
2607 gdb_bfd_unref (obfd);
2608 }
2609
24ba069a
JK
2610 original_name = xstrdup (objfile->original_name);
2611 make_cleanup (xfree, original_name);
2612
9cce227f
TG
2613 /* bfd_openr sets cacheable to true, which is what we want. */
2614 if (!bfd_check_format (objfile->obfd, bfd_object))
4262abfb 2615 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
9cce227f
TG
2616 bfd_errmsg (bfd_get_error ()));
2617
2618 /* Save the offsets, we will nuke them with the rest of the
2619 objfile_obstack. */
2620 num_offsets = objfile->num_sections;
2621 offsets = ((struct section_offsets *)
2622 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2623 memcpy (offsets, objfile->section_offsets,
2624 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2625
9cce227f
TG
2626 /* FIXME: Do we have to free a whole linked list, or is this
2627 enough? */
2628 if (objfile->global_psymbols.list)
2629 xfree (objfile->global_psymbols.list);
2630 memset (&objfile->global_psymbols, 0,
2631 sizeof (objfile->global_psymbols));
2632 if (objfile->static_psymbols.list)
2633 xfree (objfile->static_psymbols.list);
2634 memset (&objfile->static_psymbols, 0,
2635 sizeof (objfile->static_psymbols));
2636
c378eb4e 2637 /* Free the obstacks for non-reusable objfiles. */
710e1a31
SW
2638 psymbol_bcache_free (objfile->psymbol_cache);
2639 objfile->psymbol_cache = psymbol_bcache_init ();
9cce227f
TG
2640 obstack_free (&objfile->objfile_obstack, 0);
2641 objfile->sections = NULL;
43f3e411 2642 objfile->compunit_symtabs = NULL;
9cce227f
TG
2643 objfile->psymtabs = NULL;
2644 objfile->psymtabs_addrmap = NULL;
2645 objfile->free_psymtabs = NULL;
34eaf542 2646 objfile->template_symbols = NULL;
9cce227f 2647
9cce227f
TG
2648 /* obstack_init also initializes the obstack so it is
2649 empty. We could use obstack_specify_allocation but
d82ea6a8 2650 gdb_obstack.h specifies the alloc/dealloc functions. */
9cce227f 2651 obstack_init (&objfile->objfile_obstack);
779bd270 2652
846060df
JB
2653 /* set_objfile_per_bfd potentially allocates the per-bfd
2654 data on the objfile's obstack (if sharing data across
2655 multiple users is not possible), so it's important to
2656 do it *after* the obstack has been initialized. */
2657 set_objfile_per_bfd (objfile);
2658
24ba069a
JK
2659 objfile->original_name = obstack_copy0 (&objfile->objfile_obstack,
2660 original_name,
2661 strlen (original_name));
2662
779bd270
DE
2663 /* Reset the sym_fns pointer. The ELF reader can change it
2664 based on whether .gdb_index is present, and we need it to
2665 start over. PR symtab/15885 */
8fb8eb5c 2666 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
779bd270 2667
d82ea6a8 2668 build_objfile_section_table (objfile);
9cce227f
TG
2669 terminate_minimal_symbol_table (objfile);
2670
2671 /* We use the same section offsets as from last time. I'm not
2672 sure whether that is always correct for shared libraries. */
2673 objfile->section_offsets = (struct section_offsets *)
2674 obstack_alloc (&objfile->objfile_obstack,
2675 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2676 memcpy (objfile->section_offsets, offsets,
2677 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2678 objfile->num_sections = num_offsets;
2679
2680 /* What the hell is sym_new_init for, anyway? The concept of
2681 distinguishing between the main file and additional files
2682 in this way seems rather dubious. */
2683 if (objfile == symfile_objfile)
c906108c 2684 {
9cce227f 2685 (*objfile->sf->sym_new_init) (objfile);
c906108c 2686 }
9cce227f
TG
2687
2688 (*objfile->sf->sym_init) (objfile);
2689 clear_complaints (&symfile_complaints, 1, 1);
608e2dbb
TT
2690
2691 objfile->flags &= ~OBJF_PSYMTABS_READ;
2692 read_symbols (objfile, 0);
b11896a5 2693
9cce227f 2694 if (!objfile_has_symbols (objfile))
c906108c 2695 {
9cce227f
TG
2696 wrap_here ("");
2697 printf_unfiltered (_("(no debugging symbols found)\n"));
2698 wrap_here ("");
c5aa993b 2699 }
9cce227f
TG
2700
2701 /* We're done reading the symbol file; finish off complaints. */
2702 clear_complaints (&symfile_complaints, 0, 1);
2703
2704 /* Getting new symbols may change our opinion about what is
2705 frameless. */
2706
2707 reinit_frame_cache ();
2708
2709 /* Discard cleanups as symbol reading was successful. */
2710 discard_cleanups (old_cleanups);
2711
2712 /* If the mtime has changed between the time we set new_modtime
2713 and now, we *want* this to be out of date, so don't call stat
2714 again now. */
2715 objfile->mtime = new_modtime;
9cce227f 2716 init_entry_point_info (objfile);
4ac39b97
JK
2717
2718 VEC_safe_push (objfilep, new_objfiles, objfile);
c906108c
SS
2719 }
2720 }
c906108c 2721
4ac39b97 2722 if (new_objfiles)
ea53e89f 2723 {
4ac39b97
JK
2724 int ix;
2725
ff3536bc
UW
2726 /* Notify objfiles that we've modified objfile sections. */
2727 objfiles_changed ();
2728
c1e56572 2729 clear_symtab_users (0);
4ac39b97
JK
2730
2731 /* clear_objfile_data for each objfile was called before freeing it and
2732 observer_notify_new_objfile (NULL) has been called by
2733 clear_symtab_users above. Notify the new files now. */
2734 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2735 observer_notify_new_objfile (objfile);
2736
ea53e89f
JB
2737 /* At least one objfile has changed, so we can consider that
2738 the executable we're debugging has changed too. */
781b42b0 2739 observer_notify_executable_changed ();
ea53e89f 2740 }
4ac39b97
JK
2741
2742 do_cleanups (all_cleanups);
c906108c 2743}
c906108c
SS
2744\f
2745
c5aa993b
JM
2746typedef struct
2747{
2748 char *ext;
c906108c 2749 enum language lang;
c5aa993b
JM
2750}
2751filename_language;
c906108c 2752
c5aa993b 2753static filename_language *filename_language_table;
c906108c
SS
2754static int fl_table_size, fl_table_next;
2755
2756static void
fba45db2 2757add_filename_language (char *ext, enum language lang)
c906108c
SS
2758{
2759 if (fl_table_next >= fl_table_size)
2760 {
2761 fl_table_size += 10;
5417f6dc 2762 filename_language_table =
25bf3106
PM
2763 xrealloc (filename_language_table,
2764 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2765 }
2766
4fcf66da 2767 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2768 filename_language_table[fl_table_next].lang = lang;
2769 fl_table_next++;
2770}
2771
2772static char *ext_args;
920d2a44
AC
2773static void
2774show_ext_args (struct ui_file *file, int from_tty,
2775 struct cmd_list_element *c, const char *value)
2776{
3e43a32a
MS
2777 fprintf_filtered (file,
2778 _("Mapping between filename extension "
2779 "and source language is \"%s\".\n"),
920d2a44
AC
2780 value);
2781}
c906108c
SS
2782
2783static void
26c41df3 2784set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2785{
2786 int i;
2787 char *cp = ext_args;
2788 enum language lang;
2789
c378eb4e 2790 /* First arg is filename extension, starting with '.' */
c906108c 2791 if (*cp != '.')
8a3fe4f8 2792 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2793
2794 /* Find end of first arg. */
c5aa993b 2795 while (*cp && !isspace (*cp))
c906108c
SS
2796 cp++;
2797
2798 if (*cp == '\0')
3e43a32a
MS
2799 error (_("'%s': two arguments required -- "
2800 "filename extension and language"),
c906108c
SS
2801 ext_args);
2802
c378eb4e 2803 /* Null-terminate first arg. */
c5aa993b 2804 *cp++ = '\0';
c906108c
SS
2805
2806 /* Find beginning of second arg, which should be a source language. */
529480d0 2807 cp = skip_spaces (cp);
c906108c
SS
2808
2809 if (*cp == '\0')
3e43a32a
MS
2810 error (_("'%s': two arguments required -- "
2811 "filename extension and language"),
c906108c
SS
2812 ext_args);
2813
2814 /* Lookup the language from among those we know. */
2815 lang = language_enum (cp);
2816
2817 /* Now lookup the filename extension: do we already know it? */
2818 for (i = 0; i < fl_table_next; i++)
2819 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2820 break;
2821
2822 if (i >= fl_table_next)
2823 {
c378eb4e 2824 /* New file extension. */
c906108c
SS
2825 add_filename_language (ext_args, lang);
2826 }
2827 else
2828 {
c378eb4e 2829 /* Redefining a previously known filename extension. */
c906108c
SS
2830
2831 /* if (from_tty) */
2832 /* query ("Really make files of type %s '%s'?", */
2833 /* ext_args, language_str (lang)); */
2834
b8c9b27d 2835 xfree (filename_language_table[i].ext);
4fcf66da 2836 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2837 filename_language_table[i].lang = lang;
2838 }
2839}
2840
2841static void
fba45db2 2842info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2843{
2844 int i;
2845
a3f17187 2846 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2847 printf_filtered ("\n\n");
2848 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2849 printf_filtered ("\t%s\t- %s\n",
2850 filename_language_table[i].ext,
c906108c
SS
2851 language_str (filename_language_table[i].lang));
2852}
2853
2854static void
fba45db2 2855init_filename_language_table (void)
c906108c 2856{
c378eb4e 2857 if (fl_table_size == 0) /* Protect against repetition. */
c906108c
SS
2858 {
2859 fl_table_size = 20;
2860 fl_table_next = 0;
c5aa993b 2861 filename_language_table =
c906108c 2862 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b 2863 add_filename_language (".c", language_c);
6aecb9c2 2864 add_filename_language (".d", language_d);
c5aa993b
JM
2865 add_filename_language (".C", language_cplus);
2866 add_filename_language (".cc", language_cplus);
2867 add_filename_language (".cp", language_cplus);
2868 add_filename_language (".cpp", language_cplus);
2869 add_filename_language (".cxx", language_cplus);
2870 add_filename_language (".c++", language_cplus);
2871 add_filename_language (".java", language_java);
c906108c 2872 add_filename_language (".class", language_java);
da2cf7e0 2873 add_filename_language (".m", language_objc);
c5aa993b
JM
2874 add_filename_language (".f", language_fortran);
2875 add_filename_language (".F", language_fortran);
fd5700c7
JK
2876 add_filename_language (".for", language_fortran);
2877 add_filename_language (".FOR", language_fortran);
2878 add_filename_language (".ftn", language_fortran);
2879 add_filename_language (".FTN", language_fortran);
2880 add_filename_language (".fpp", language_fortran);
2881 add_filename_language (".FPP", language_fortran);
2882 add_filename_language (".f90", language_fortran);
2883 add_filename_language (".F90", language_fortran);
2884 add_filename_language (".f95", language_fortran);
2885 add_filename_language (".F95", language_fortran);
2886 add_filename_language (".f03", language_fortran);
2887 add_filename_language (".F03", language_fortran);
2888 add_filename_language (".f08", language_fortran);
2889 add_filename_language (".F08", language_fortran);
c5aa993b 2890 add_filename_language (".s", language_asm);
aa707ed0 2891 add_filename_language (".sx", language_asm);
c5aa993b 2892 add_filename_language (".S", language_asm);
c6fd39cd
PM
2893 add_filename_language (".pas", language_pascal);
2894 add_filename_language (".p", language_pascal);
2895 add_filename_language (".pp", language_pascal);
963a6417
PH
2896 add_filename_language (".adb", language_ada);
2897 add_filename_language (".ads", language_ada);
2898 add_filename_language (".a", language_ada);
2899 add_filename_language (".ada", language_ada);
dde59185 2900 add_filename_language (".dg", language_ada);
c906108c
SS
2901 }
2902}
2903
2904enum language
dd786858 2905deduce_language_from_filename (const char *filename)
c906108c
SS
2906{
2907 int i;
2908 char *cp;
2909
2910 if (filename != NULL)
2911 if ((cp = strrchr (filename, '.')) != NULL)
2912 for (i = 0; i < fl_table_next; i++)
2913 if (strcmp (cp, filename_language_table[i].ext) == 0)
2914 return filename_language_table[i].lang;
2915
2916 return language_unknown;
2917}
2918\f
43f3e411
DE
2919/* Allocate and initialize a new symbol table.
2920 CUST is from the result of allocate_compunit_symtab. */
c906108c
SS
2921
2922struct symtab *
43f3e411 2923allocate_symtab (struct compunit_symtab *cust, const char *filename)
c906108c 2924{
43f3e411
DE
2925 struct objfile *objfile = cust->objfile;
2926 struct symtab *symtab
2927 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
c906108c 2928
21ea9eec
TT
2929 symtab->filename = bcache (filename, strlen (filename) + 1,
2930 objfile->per_bfd->filename_cache);
c5aa993b
JM
2931 symtab->fullname = NULL;
2932 symtab->language = deduce_language_from_filename (filename);
c906108c 2933
db0fec5c
DE
2934 /* This can be very verbose with lots of headers.
2935 Only print at higher debug levels. */
2936 if (symtab_create_debug >= 2)
45cfd468
DE
2937 {
2938 /* Be a bit clever with debugging messages, and don't print objfile
2939 every time, only when it changes. */
2940 static char *last_objfile_name = NULL;
2941
2942 if (last_objfile_name == NULL
4262abfb 2943 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
45cfd468
DE
2944 {
2945 xfree (last_objfile_name);
4262abfb 2946 last_objfile_name = xstrdup (objfile_name (objfile));
45cfd468
DE
2947 fprintf_unfiltered (gdb_stdlog,
2948 "Creating one or more symtabs for objfile %s ...\n",
2949 last_objfile_name);
2950 }
2951 fprintf_unfiltered (gdb_stdlog,
b3dbbd6f
PM
2952 "Created symtab %s for module %s.\n",
2953 host_address_to_string (symtab), filename);
45cfd468
DE
2954 }
2955
43f3e411
DE
2956 /* Add it to CUST's list of symtabs. */
2957 if (cust->filetabs == NULL)
2958 {
2959 cust->filetabs = symtab;
2960 cust->last_filetab = symtab;
2961 }
2962 else
2963 {
2964 cust->last_filetab->next = symtab;
2965 cust->last_filetab = symtab;
2966 }
2967
2968 /* Backlink to the containing compunit symtab. */
2969 symtab->compunit_symtab = cust;
2970
2971 return symtab;
2972}
2973
2974/* Allocate and initialize a new compunit.
2975 NAME is the name of the main source file, if there is one, or some
2976 descriptive text if there are no source files. */
2977
2978struct compunit_symtab *
2979allocate_compunit_symtab (struct objfile *objfile, const char *name)
2980{
2981 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2982 struct compunit_symtab);
2983 const char *saved_name;
2984
2985 cu->objfile = objfile;
2986
2987 /* The name we record here is only for display/debugging purposes.
2988 Just save the basename to avoid path issues (too long for display,
2989 relative vs absolute, etc.). */
2990 saved_name = lbasename (name);
2991 cu->name = obstack_copy0 (&objfile->objfile_obstack, saved_name,
2992 strlen (saved_name));
2993
2994 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2995
2996 if (symtab_create_debug)
2997 {
2998 fprintf_unfiltered (gdb_stdlog,
2999 "Created compunit symtab %s for %s.\n",
3000 host_address_to_string (cu),
3001 cu->name);
3002 }
3003
3004 return cu;
3005}
3006
3007/* Hook CU to the objfile it comes from. */
3008
3009void
3010add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
3011{
3012 cu->next = cu->objfile->compunit_symtabs;
3013 cu->objfile->compunit_symtabs = cu;
c906108c 3014}
c906108c 3015\f
c5aa993b 3016
c906108c 3017/* Reset all data structures in gdb which may contain references to symbol
c1e56572 3018 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c906108c
SS
3019
3020void
c1e56572 3021clear_symtab_users (int add_flags)
c906108c
SS
3022{
3023 /* Someday, we should do better than this, by only blowing away
3024 the things that really need to be blown. */
c0501be5
DJ
3025
3026 /* Clear the "current" symtab first, because it is no longer valid.
3027 breakpoint_re_set may try to access the current symtab. */
3028 clear_current_source_symtab_and_line ();
3029
c906108c 3030 clear_displays ();
c1e56572
JK
3031 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
3032 breakpoint_re_set ();
1bfeeb0f 3033 clear_last_displayed_sal ();
c906108c 3034 clear_pc_function_cache ();
06d3b283 3035 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
3036
3037 /* Clear globals which might have pointed into a removed objfile.
3038 FIXME: It's not clear which of these are supposed to persist
3039 between expressions and which ought to be reset each time. */
3040 expression_context_block = NULL;
3041 innermost_block = NULL;
8756216b
DP
3042
3043 /* Varobj may refer to old symbols, perform a cleanup. */
3044 varobj_invalidate ();
3045
c906108c
SS
3046}
3047
74b7792f
AC
3048static void
3049clear_symtab_users_cleanup (void *ignore)
3050{
c1e56572 3051 clear_symtab_users (0);
74b7792f 3052}
c906108c 3053\f
c906108c
SS
3054/* OVERLAYS:
3055 The following code implements an abstraction for debugging overlay sections.
3056
3057 The target model is as follows:
3058 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 3059 same VMA, each with its own unique LMA (or load address).
c906108c 3060 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 3061 sections, one by one, from the load address into the VMA address.
5417f6dc 3062 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
3063 sections should be considered to be mapped from the VMA to the LMA.
3064 This information is used for symbol lookup, and memory read/write.
5417f6dc 3065 For instance, if a section has been mapped then its contents
c5aa993b 3066 should be read from the VMA, otherwise from the LMA.
c906108c
SS
3067
3068 Two levels of debugger support for overlays are available. One is
3069 "manual", in which the debugger relies on the user to tell it which
3070 overlays are currently mapped. This level of support is
3071 implemented entirely in the core debugger, and the information about
3072 whether a section is mapped is kept in the objfile->obj_section table.
3073
3074 The second level of support is "automatic", and is only available if
3075 the target-specific code provides functionality to read the target's
3076 overlay mapping table, and translate its contents for the debugger
3077 (by updating the mapped state information in the obj_section tables).
3078
3079 The interface is as follows:
c5aa993b
JM
3080 User commands:
3081 overlay map <name> -- tell gdb to consider this section mapped
3082 overlay unmap <name> -- tell gdb to consider this section unmapped
3083 overlay list -- list the sections that GDB thinks are mapped
3084 overlay read-target -- get the target's state of what's mapped
3085 overlay off/manual/auto -- set overlay debugging state
3086 Functional interface:
3087 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3088 section, return that section.
5417f6dc 3089 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 3090 the pc, either in its VMA or its LMA
714835d5 3091 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
3092 section_is_overlay(sect): true if section's VMA != LMA
3093 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3094 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 3095 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
3096 overlay_mapped_address(...): map an address from section's LMA to VMA
3097 overlay_unmapped_address(...): map an address from section's VMA to LMA
3098 symbol_overlayed_address(...): Return a "current" address for symbol:
3099 either in VMA or LMA depending on whether
c378eb4e 3100 the symbol's section is currently mapped. */
c906108c
SS
3101
3102/* Overlay debugging state: */
3103
d874f1e2 3104enum overlay_debugging_state overlay_debugging = ovly_off;
c378eb4e 3105int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
c906108c 3106
c906108c 3107/* Function: section_is_overlay (SECTION)
5417f6dc 3108 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
3109 SECTION is loaded at an address different from where it will "run". */
3110
3111int
714835d5 3112section_is_overlay (struct obj_section *section)
c906108c 3113{
714835d5
UW
3114 if (overlay_debugging && section)
3115 {
3116 bfd *abfd = section->objfile->obfd;
3117 asection *bfd_section = section->the_bfd_section;
f888f159 3118
714835d5
UW
3119 if (bfd_section_lma (abfd, bfd_section) != 0
3120 && bfd_section_lma (abfd, bfd_section)
3121 != bfd_section_vma (abfd, bfd_section))
3122 return 1;
3123 }
c906108c
SS
3124
3125 return 0;
3126}
3127
3128/* Function: overlay_invalidate_all (void)
3129 Invalidate the mapped state of all overlay sections (mark it as stale). */
3130
3131static void
fba45db2 3132overlay_invalidate_all (void)
c906108c 3133{
c5aa993b 3134 struct objfile *objfile;
c906108c
SS
3135 struct obj_section *sect;
3136
3137 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
3138 if (section_is_overlay (sect))
3139 sect->ovly_mapped = -1;
c906108c
SS
3140}
3141
714835d5 3142/* Function: section_is_mapped (SECTION)
5417f6dc 3143 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3144
3145 Access to the ovly_mapped flag is restricted to this function, so
3146 that we can do automatic update. If the global flag
3147 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3148 overlay_invalidate_all. If the mapped state of the particular
3149 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3150
714835d5
UW
3151int
3152section_is_mapped (struct obj_section *osect)
c906108c 3153{
9216df95
UW
3154 struct gdbarch *gdbarch;
3155
714835d5 3156 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
3157 return 0;
3158
c5aa993b 3159 switch (overlay_debugging)
c906108c
SS
3160 {
3161 default:
d874f1e2 3162 case ovly_off:
c5aa993b 3163 return 0; /* overlay debugging off */
d874f1e2 3164 case ovly_auto: /* overlay debugging automatic */
1c772458 3165 /* Unles there is a gdbarch_overlay_update function,
c378eb4e 3166 there's really nothing useful to do here (can't really go auto). */
9216df95
UW
3167 gdbarch = get_objfile_arch (osect->objfile);
3168 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
3169 {
3170 if (overlay_cache_invalid)
3171 {
3172 overlay_invalidate_all ();
3173 overlay_cache_invalid = 0;
3174 }
3175 if (osect->ovly_mapped == -1)
9216df95 3176 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
3177 }
3178 /* fall thru to manual case */
d874f1e2 3179 case ovly_on: /* overlay debugging manual */
c906108c
SS
3180 return osect->ovly_mapped == 1;
3181 }
3182}
3183
c906108c
SS
3184/* Function: pc_in_unmapped_range
3185 If PC falls into the lma range of SECTION, return true, else false. */
3186
3187CORE_ADDR
714835d5 3188pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3189{
714835d5
UW
3190 if (section_is_overlay (section))
3191 {
3192 bfd *abfd = section->objfile->obfd;
3193 asection *bfd_section = section->the_bfd_section;
fbd35540 3194
714835d5
UW
3195 /* We assume the LMA is relocated by the same offset as the VMA. */
3196 bfd_vma size = bfd_get_section_size (bfd_section);
3197 CORE_ADDR offset = obj_section_offset (section);
3198
3199 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3200 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3201 return 1;
3202 }
c906108c 3203
c906108c
SS
3204 return 0;
3205}
3206
3207/* Function: pc_in_mapped_range
3208 If PC falls into the vma range of SECTION, return true, else false. */
3209
3210CORE_ADDR
714835d5 3211pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3212{
714835d5
UW
3213 if (section_is_overlay (section))
3214 {
3215 if (obj_section_addr (section) <= pc
3216 && pc < obj_section_endaddr (section))
3217 return 1;
3218 }
c906108c 3219
c906108c
SS
3220 return 0;
3221}
3222
9ec8e6a0
JB
3223/* Return true if the mapped ranges of sections A and B overlap, false
3224 otherwise. */
3b7bacac 3225
b9362cc7 3226static int
714835d5 3227sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3228{
714835d5
UW
3229 CORE_ADDR a_start = obj_section_addr (a);
3230 CORE_ADDR a_end = obj_section_endaddr (a);
3231 CORE_ADDR b_start = obj_section_addr (b);
3232 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3233
3234 return (a_start < b_end && b_start < a_end);
3235}
3236
c906108c
SS
3237/* Function: overlay_unmapped_address (PC, SECTION)
3238 Returns the address corresponding to PC in the unmapped (load) range.
3239 May be the same as PC. */
3240
3241CORE_ADDR
714835d5 3242overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3243{
714835d5
UW
3244 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3245 {
3246 bfd *abfd = section->objfile->obfd;
3247 asection *bfd_section = section->the_bfd_section;
fbd35540 3248
714835d5
UW
3249 return pc + bfd_section_lma (abfd, bfd_section)
3250 - bfd_section_vma (abfd, bfd_section);
3251 }
c906108c
SS
3252
3253 return pc;
3254}
3255
3256/* Function: overlay_mapped_address (PC, SECTION)
3257 Returns the address corresponding to PC in the mapped (runtime) range.
3258 May be the same as PC. */
3259
3260CORE_ADDR
714835d5 3261overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3262{
714835d5
UW
3263 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3264 {
3265 bfd *abfd = section->objfile->obfd;
3266 asection *bfd_section = section->the_bfd_section;
fbd35540 3267
714835d5
UW
3268 return pc + bfd_section_vma (abfd, bfd_section)
3269 - bfd_section_lma (abfd, bfd_section);
3270 }
c906108c
SS
3271
3272 return pc;
3273}
3274
5417f6dc 3275/* Function: symbol_overlayed_address
c906108c
SS
3276 Return one of two addresses (relative to the VMA or to the LMA),
3277 depending on whether the section is mapped or not. */
3278
c5aa993b 3279CORE_ADDR
714835d5 3280symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3281{
3282 if (overlay_debugging)
3283 {
c378eb4e 3284 /* If the symbol has no section, just return its regular address. */
c906108c
SS
3285 if (section == 0)
3286 return address;
c378eb4e
MS
3287 /* If the symbol's section is not an overlay, just return its
3288 address. */
c906108c
SS
3289 if (!section_is_overlay (section))
3290 return address;
c378eb4e 3291 /* If the symbol's section is mapped, just return its address. */
c906108c
SS
3292 if (section_is_mapped (section))
3293 return address;
3294 /*
3295 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3296 * then return its LOADED address rather than its vma address!!
3297 */
3298 return overlay_unmapped_address (address, section);
3299 }
3300 return address;
3301}
3302
5417f6dc 3303/* Function: find_pc_overlay (PC)
c906108c
SS
3304 Return the best-match overlay section for PC:
3305 If PC matches a mapped overlay section's VMA, return that section.
3306 Else if PC matches an unmapped section's VMA, return that section.
3307 Else if PC matches an unmapped section's LMA, return that section. */
3308
714835d5 3309struct obj_section *
fba45db2 3310find_pc_overlay (CORE_ADDR pc)
c906108c 3311{
c5aa993b 3312 struct objfile *objfile;
c906108c
SS
3313 struct obj_section *osect, *best_match = NULL;
3314
3315 if (overlay_debugging)
3316 ALL_OBJSECTIONS (objfile, osect)
714835d5 3317 if (section_is_overlay (osect))
c5aa993b 3318 {
714835d5 3319 if (pc_in_mapped_range (pc, osect))
c5aa993b 3320 {
714835d5
UW
3321 if (section_is_mapped (osect))
3322 return osect;
c5aa993b
JM
3323 else
3324 best_match = osect;
3325 }
714835d5 3326 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3327 best_match = osect;
3328 }
714835d5 3329 return best_match;
c906108c
SS
3330}
3331
3332/* Function: find_pc_mapped_section (PC)
5417f6dc 3333 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3334 currently marked as MAPPED, return that section. Else return NULL. */
3335
714835d5 3336struct obj_section *
fba45db2 3337find_pc_mapped_section (CORE_ADDR pc)
c906108c 3338{
c5aa993b 3339 struct objfile *objfile;
c906108c
SS
3340 struct obj_section *osect;
3341
3342 if (overlay_debugging)
3343 ALL_OBJSECTIONS (objfile, osect)
714835d5
UW
3344 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3345 return osect;
c906108c
SS
3346
3347 return NULL;
3348}
3349
3350/* Function: list_overlays_command
c378eb4e 3351 Print a list of mapped sections and their PC ranges. */
c906108c 3352
5d3055ad 3353static void
fba45db2 3354list_overlays_command (char *args, int from_tty)
c906108c 3355{
c5aa993b
JM
3356 int nmapped = 0;
3357 struct objfile *objfile;
c906108c
SS
3358 struct obj_section *osect;
3359
3360 if (overlay_debugging)
3361 ALL_OBJSECTIONS (objfile, osect)
714835d5 3362 if (section_is_mapped (osect))
c5aa993b 3363 {
5af949e3 3364 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c5aa993b
JM
3365 const char *name;
3366 bfd_vma lma, vma;
3367 int size;
3368
3369 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3370 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3371 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3372 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3373
3374 printf_filtered ("Section %s, loaded at ", name);
5af949e3 3375 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
c5aa993b 3376 puts_filtered (" - ");
5af949e3 3377 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
c5aa993b 3378 printf_filtered (", mapped at ");
5af949e3 3379 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
c5aa993b 3380 puts_filtered (" - ");
5af949e3 3381 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
c5aa993b
JM
3382 puts_filtered ("\n");
3383
3384 nmapped++;
3385 }
c906108c 3386 if (nmapped == 0)
a3f17187 3387 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3388}
3389
3390/* Function: map_overlay_command
3391 Mark the named section as mapped (ie. residing at its VMA address). */
3392
5d3055ad 3393static void
fba45db2 3394map_overlay_command (char *args, int from_tty)
c906108c 3395{
c5aa993b
JM
3396 struct objfile *objfile, *objfile2;
3397 struct obj_section *sec, *sec2;
c906108c
SS
3398
3399 if (!overlay_debugging)
3e43a32a
MS
3400 error (_("Overlay debugging not enabled. Use "
3401 "either the 'overlay auto' or\n"
3402 "the 'overlay manual' command."));
c906108c
SS
3403
3404 if (args == 0 || *args == 0)
8a3fe4f8 3405 error (_("Argument required: name of an overlay section"));
c906108c 3406
c378eb4e 3407 /* First, find a section matching the user supplied argument. */
c906108c
SS
3408 ALL_OBJSECTIONS (objfile, sec)
3409 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b 3410 {
c378eb4e 3411 /* Now, check to see if the section is an overlay. */
714835d5 3412 if (!section_is_overlay (sec))
c5aa993b
JM
3413 continue; /* not an overlay section */
3414
c378eb4e 3415 /* Mark the overlay as "mapped". */
c5aa993b
JM
3416 sec->ovly_mapped = 1;
3417
3418 /* Next, make a pass and unmap any sections that are
3419 overlapped by this new section: */
3420 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3421 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3422 {
3423 if (info_verbose)
a3f17187 3424 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3425 bfd_section_name (objfile->obfd,
3426 sec2->the_bfd_section));
c378eb4e 3427 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
c5aa993b
JM
3428 }
3429 return;
3430 }
8a3fe4f8 3431 error (_("No overlay section called %s"), args);
c906108c
SS
3432}
3433
3434/* Function: unmap_overlay_command
5417f6dc 3435 Mark the overlay section as unmapped
c906108c
SS
3436 (ie. resident in its LMA address range, rather than the VMA range). */
3437
5d3055ad 3438static void
fba45db2 3439unmap_overlay_command (char *args, int from_tty)
c906108c 3440{
c5aa993b 3441 struct objfile *objfile;
7a270e0c 3442 struct obj_section *sec = NULL;
c906108c
SS
3443
3444 if (!overlay_debugging)
3e43a32a
MS
3445 error (_("Overlay debugging not enabled. "
3446 "Use either the 'overlay auto' or\n"
3447 "the 'overlay manual' command."));
c906108c
SS
3448
3449 if (args == 0 || *args == 0)
8a3fe4f8 3450 error (_("Argument required: name of an overlay section"));
c906108c 3451
c378eb4e 3452 /* First, find a section matching the user supplied argument. */
c906108c
SS
3453 ALL_OBJSECTIONS (objfile, sec)
3454 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3455 {
3456 if (!sec->ovly_mapped)
8a3fe4f8 3457 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3458 sec->ovly_mapped = 0;
3459 return;
3460 }
8a3fe4f8 3461 error (_("No overlay section called %s"), args);
c906108c
SS
3462}
3463
3464/* Function: overlay_auto_command
3465 A utility command to turn on overlay debugging.
c378eb4e 3466 Possibly this should be done via a set/show command. */
c906108c
SS
3467
3468static void
fba45db2 3469overlay_auto_command (char *args, int from_tty)
c906108c 3470{
d874f1e2 3471 overlay_debugging = ovly_auto;
1900040c 3472 enable_overlay_breakpoints ();
c906108c 3473 if (info_verbose)
a3f17187 3474 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3475}
3476
3477/* Function: overlay_manual_command
3478 A utility command to turn on overlay debugging.
c378eb4e 3479 Possibly this should be done via a set/show command. */
c906108c
SS
3480
3481static void
fba45db2 3482overlay_manual_command (char *args, int from_tty)
c906108c 3483{
d874f1e2 3484 overlay_debugging = ovly_on;
1900040c 3485 disable_overlay_breakpoints ();
c906108c 3486 if (info_verbose)
a3f17187 3487 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3488}
3489
3490/* Function: overlay_off_command
3491 A utility command to turn on overlay debugging.
c378eb4e 3492 Possibly this should be done via a set/show command. */
c906108c
SS
3493
3494static void
fba45db2 3495overlay_off_command (char *args, int from_tty)
c906108c 3496{
d874f1e2 3497 overlay_debugging = ovly_off;
1900040c 3498 disable_overlay_breakpoints ();
c906108c 3499 if (info_verbose)
a3f17187 3500 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3501}
3502
3503static void
fba45db2 3504overlay_load_command (char *args, int from_tty)
c906108c 3505{
e17c207e
UW
3506 struct gdbarch *gdbarch = get_current_arch ();
3507
3508 if (gdbarch_overlay_update_p (gdbarch))
3509 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3510 else
8a3fe4f8 3511 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3512}
3513
3514/* Function: overlay_command
c378eb4e 3515 A place-holder for a mis-typed command. */
c906108c 3516
c378eb4e 3517/* Command list chain containing all defined "overlay" subcommands. */
28578e6b 3518static struct cmd_list_element *overlaylist;
c906108c
SS
3519
3520static void
fba45db2 3521overlay_command (char *args, int from_tty)
c906108c 3522{
c5aa993b 3523 printf_unfiltered
c906108c 3524 ("\"overlay\" must be followed by the name of an overlay command.\n");
635c7e8a 3525 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
c906108c
SS
3526}
3527
c906108c
SS
3528/* Target Overlays for the "Simplest" overlay manager:
3529
5417f6dc
RM
3530 This is GDB's default target overlay layer. It works with the
3531 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3532 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3533 so targets that use a different runtime overlay manager can
c906108c
SS
3534 substitute their own overlay_update function and take over the
3535 function pointer.
3536
3537 The overlay_update function pokes around in the target's data structures
3538 to see what overlays are mapped, and updates GDB's overlay mapping with
3539 this information.
3540
3541 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3542 unsigned _novlys; /# number of overlay sections #/
3543 unsigned _ovly_table[_novlys][4] = {
3544 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3545 {..., ..., ..., ...},
3546 }
3547 unsigned _novly_regions; /# number of overlay regions #/
3548 unsigned _ovly_region_table[_novly_regions][3] = {
3549 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3550 {..., ..., ...},
3551 }
c906108c
SS
3552 These functions will attempt to update GDB's mappedness state in the
3553 symbol section table, based on the target's mappedness state.
3554
3555 To do this, we keep a cached copy of the target's _ovly_table, and
3556 attempt to detect when the cached copy is invalidated. The main
3557 entry point is "simple_overlay_update(SECT), which looks up SECT in
3558 the cached table and re-reads only the entry for that section from
c378eb4e 3559 the target (whenever possible). */
c906108c
SS
3560
3561/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3562static unsigned (*cache_ovly_table)[4] = 0;
c5aa993b 3563static unsigned cache_novlys = 0;
c906108c 3564static CORE_ADDR cache_ovly_table_base = 0;
c5aa993b
JM
3565enum ovly_index
3566 {
3567 VMA, SIZE, LMA, MAPPED
3568 };
c906108c 3569
c378eb4e 3570/* Throw away the cached copy of _ovly_table. */
3b7bacac 3571
c906108c 3572static void
fba45db2 3573simple_free_overlay_table (void)
c906108c
SS
3574{
3575 if (cache_ovly_table)
b8c9b27d 3576 xfree (cache_ovly_table);
c5aa993b 3577 cache_novlys = 0;
c906108c
SS
3578 cache_ovly_table = NULL;
3579 cache_ovly_table_base = 0;
3580}
3581
9216df95 3582/* Read an array of ints of size SIZE from the target into a local buffer.
c378eb4e 3583 Convert to host order. int LEN is number of ints. */
3b7bacac 3584
c906108c 3585static void
9216df95 3586read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3587 int len, int size, enum bfd_endian byte_order)
c906108c 3588{
c378eb4e 3589 /* FIXME (alloca): Not safe if array is very large. */
9216df95 3590 gdb_byte *buf = alloca (len * size);
c5aa993b 3591 int i;
c906108c 3592
9216df95 3593 read_memory (memaddr, buf, len * size);
c906108c 3594 for (i = 0; i < len; i++)
e17a4113 3595 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3596}
3597
3598/* Find and grab a copy of the target _ovly_table
c378eb4e 3599 (and _novlys, which is needed for the table's size). */
3b7bacac 3600
c5aa993b 3601static int
fba45db2 3602simple_read_overlay_table (void)
c906108c 3603{
3b7344d5 3604 struct bound_minimal_symbol novlys_msym;
7c7b6655 3605 struct bound_minimal_symbol ovly_table_msym;
9216df95
UW
3606 struct gdbarch *gdbarch;
3607 int word_size;
e17a4113 3608 enum bfd_endian byte_order;
c906108c
SS
3609
3610 simple_free_overlay_table ();
9b27852e 3611 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3b7344d5 3612 if (! novlys_msym.minsym)
c906108c 3613 {
8a3fe4f8 3614 error (_("Error reading inferior's overlay table: "
0d43edd1 3615 "couldn't find `_novlys' variable\n"
8a3fe4f8 3616 "in inferior. Use `overlay manual' mode."));
0d43edd1 3617 return 0;
c906108c 3618 }
0d43edd1 3619
7c7b6655
TT
3620 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3621 if (! ovly_table_msym.minsym)
0d43edd1 3622 {
8a3fe4f8 3623 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3624 "`_ovly_table' array\n"
8a3fe4f8 3625 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3626 return 0;
3627 }
3628
7c7b6655 3629 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
9216df95 3630 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3631 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3632
77e371c0
TT
3633 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3634 4, byte_order);
0d43edd1
JB
3635 cache_ovly_table
3636 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
77e371c0 3637 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
0d43edd1 3638 read_target_long_array (cache_ovly_table_base,
777ea8f1 3639 (unsigned int *) cache_ovly_table,
e17a4113 3640 cache_novlys * 4, word_size, byte_order);
0d43edd1 3641
c5aa993b 3642 return 1; /* SUCCESS */
c906108c
SS
3643}
3644
5417f6dc 3645/* Function: simple_overlay_update_1
c906108c
SS
3646 A helper function for simple_overlay_update. Assuming a cached copy
3647 of _ovly_table exists, look through it to find an entry whose vma,
3648 lma and size match those of OSECT. Re-read the entry and make sure
3649 it still matches OSECT (else the table may no longer be valid).
3650 Set OSECT's mapped state to match the entry. Return: 1 for
3651 success, 0 for failure. */
3652
3653static int
fba45db2 3654simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3655{
3656 int i, size;
fbd35540
MS
3657 bfd *obfd = osect->objfile->obfd;
3658 asection *bsect = osect->the_bfd_section;
9216df95
UW
3659 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3660 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3661 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3662
2c500098 3663 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3664 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3665 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3666 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3667 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c 3668 {
9216df95
UW
3669 read_target_long_array (cache_ovly_table_base + i * word_size,
3670 (unsigned int *) cache_ovly_table[i],
e17a4113 3671 4, word_size, byte_order);
fbd35540
MS
3672 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3673 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3674 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3675 {
3676 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3677 return 1;
3678 }
c378eb4e 3679 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3680 return 0;
3681 }
3682 return 0;
3683}
3684
3685/* Function: simple_overlay_update
5417f6dc
RM
3686 If OSECT is NULL, then update all sections' mapped state
3687 (after re-reading the entire target _ovly_table).
3688 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3689 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3690 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3691 re-read the entire cache, and go ahead and update all sections. */
3692
1c772458 3693void
fba45db2 3694simple_overlay_update (struct obj_section *osect)
c906108c 3695{
c5aa993b 3696 struct objfile *objfile;
c906108c 3697
c378eb4e 3698 /* Were we given an osect to look up? NULL means do all of them. */
c906108c 3699 if (osect)
c378eb4e 3700 /* Have we got a cached copy of the target's overlay table? */
c906108c 3701 if (cache_ovly_table != NULL)
9cc89665
MS
3702 {
3703 /* Does its cached location match what's currently in the
3704 symtab? */
3b7344d5 3705 struct bound_minimal_symbol minsym
9cc89665
MS
3706 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3707
3b7344d5 3708 if (minsym.minsym == NULL)
9cc89665
MS
3709 error (_("Error reading inferior's overlay table: couldn't "
3710 "find `_ovly_table' array\n"
3711 "in inferior. Use `overlay manual' mode."));
3712
77e371c0 3713 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
9cc89665
MS
3714 /* Then go ahead and try to look up this single section in
3715 the cache. */
3716 if (simple_overlay_update_1 (osect))
3717 /* Found it! We're done. */
3718 return;
3719 }
c906108c
SS
3720
3721 /* Cached table no good: need to read the entire table anew.
3722 Or else we want all the sections, in which case it's actually
3723 more efficient to read the whole table in one block anyway. */
3724
0d43edd1
JB
3725 if (! simple_read_overlay_table ())
3726 return;
3727
c378eb4e 3728 /* Now may as well update all sections, even if only one was requested. */
c906108c 3729 ALL_OBJSECTIONS (objfile, osect)
714835d5 3730 if (section_is_overlay (osect))
c5aa993b
JM
3731 {
3732 int i, size;
fbd35540
MS
3733 bfd *obfd = osect->objfile->obfd;
3734 asection *bsect = osect->the_bfd_section;
c5aa993b 3735
2c500098 3736 size = bfd_get_section_size (bsect);
c5aa993b 3737 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3738 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3739 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3740 /* && cache_ovly_table[i][SIZE] == size */ )
c378eb4e 3741 { /* obj_section matches i'th entry in ovly_table. */
c5aa993b 3742 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
c378eb4e 3743 break; /* finished with inner for loop: break out. */
c5aa993b
JM
3744 }
3745 }
c906108c
SS
3746}
3747
086df311
DJ
3748/* Set the output sections and output offsets for section SECTP in
3749 ABFD. The relocation code in BFD will read these offsets, so we
3750 need to be sure they're initialized. We map each section to itself,
3751 with no offset; this means that SECTP->vma will be honored. */
3752
3753static void
3754symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3755{
3756 sectp->output_section = sectp;
3757 sectp->output_offset = 0;
3758}
3759
ac8035ab
TG
3760/* Default implementation for sym_relocate. */
3761
ac8035ab
TG
3762bfd_byte *
3763default_symfile_relocate (struct objfile *objfile, asection *sectp,
3764 bfd_byte *buf)
3765{
3019eac3
DE
3766 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3767 DWO file. */
3768 bfd *abfd = sectp->owner;
ac8035ab
TG
3769
3770 /* We're only interested in sections with relocation
3771 information. */
3772 if ((sectp->flags & SEC_RELOC) == 0)
3773 return NULL;
3774
3775 /* We will handle section offsets properly elsewhere, so relocate as if
3776 all sections begin at 0. */
3777 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3778
3779 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3780}
3781
086df311
DJ
3782/* Relocate the contents of a debug section SECTP in ABFD. The
3783 contents are stored in BUF if it is non-NULL, or returned in a
3784 malloc'd buffer otherwise.
3785
3786 For some platforms and debug info formats, shared libraries contain
3787 relocations against the debug sections (particularly for DWARF-2;
3788 one affected platform is PowerPC GNU/Linux, although it depends on
3789 the version of the linker in use). Also, ELF object files naturally
3790 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3791 the relocations in order to get the locations of symbols correct.
3792 Another example that may require relocation processing, is the
3793 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3794 debug section. */
086df311
DJ
3795
3796bfd_byte *
ac8035ab
TG
3797symfile_relocate_debug_section (struct objfile *objfile,
3798 asection *sectp, bfd_byte *buf)
086df311 3799{
ac8035ab 3800 gdb_assert (objfile->sf->sym_relocate);
086df311 3801
ac8035ab 3802 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3803}
c906108c 3804
31d99776
DJ
3805struct symfile_segment_data *
3806get_symfile_segment_data (bfd *abfd)
3807{
00b5771c 3808 const struct sym_fns *sf = find_sym_fns (abfd);
31d99776
DJ
3809
3810 if (sf == NULL)
3811 return NULL;
3812
3813 return sf->sym_segments (abfd);
3814}
3815
3816void
3817free_symfile_segment_data (struct symfile_segment_data *data)
3818{
3819 xfree (data->segment_bases);
3820 xfree (data->segment_sizes);
3821 xfree (data->segment_info);
3822 xfree (data);
3823}
3824
28c32713
JB
3825/* Given:
3826 - DATA, containing segment addresses from the object file ABFD, and
3827 the mapping from ABFD's sections onto the segments that own them,
3828 and
3829 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3830 segment addresses reported by the target,
3831 store the appropriate offsets for each section in OFFSETS.
3832
3833 If there are fewer entries in SEGMENT_BASES than there are segments
3834 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3835
8d385431
DJ
3836 If there are more entries, then ignore the extra. The target may
3837 not be able to distinguish between an empty data segment and a
3838 missing data segment; a missing text segment is less plausible. */
3b7bacac 3839
31d99776 3840int
3189cb12
DE
3841symfile_map_offsets_to_segments (bfd *abfd,
3842 const struct symfile_segment_data *data,
31d99776
DJ
3843 struct section_offsets *offsets,
3844 int num_segment_bases,
3845 const CORE_ADDR *segment_bases)
3846{
3847 int i;
3848 asection *sect;
3849
28c32713
JB
3850 /* It doesn't make sense to call this function unless you have some
3851 segment base addresses. */
202b96c1 3852 gdb_assert (num_segment_bases > 0);
28c32713 3853
31d99776
DJ
3854 /* If we do not have segment mappings for the object file, we
3855 can not relocate it by segments. */
3856 gdb_assert (data != NULL);
3857 gdb_assert (data->num_segments > 0);
3858
31d99776
DJ
3859 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3860 {
31d99776
DJ
3861 int which = data->segment_info[i];
3862
28c32713
JB
3863 gdb_assert (0 <= which && which <= data->num_segments);
3864
3865 /* Don't bother computing offsets for sections that aren't
3866 loaded as part of any segment. */
3867 if (! which)
3868 continue;
3869
3870 /* Use the last SEGMENT_BASES entry as the address of any extra
3871 segments mentioned in DATA->segment_info. */
31d99776 3872 if (which > num_segment_bases)
28c32713 3873 which = num_segment_bases;
31d99776 3874
28c32713
JB
3875 offsets->offsets[i] = (segment_bases[which - 1]
3876 - data->segment_bases[which - 1]);
31d99776
DJ
3877 }
3878
3879 return 1;
3880}
3881
3882static void
3883symfile_find_segment_sections (struct objfile *objfile)
3884{
3885 bfd *abfd = objfile->obfd;
3886 int i;
3887 asection *sect;
3888 struct symfile_segment_data *data;
3889
3890 data = get_symfile_segment_data (objfile->obfd);
3891 if (data == NULL)
3892 return;
3893
3894 if (data->num_segments != 1 && data->num_segments != 2)
3895 {
3896 free_symfile_segment_data (data);
3897 return;
3898 }
3899
3900 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3901 {
31d99776
DJ
3902 int which = data->segment_info[i];
3903
3904 if (which == 1)
3905 {
3906 if (objfile->sect_index_text == -1)
3907 objfile->sect_index_text = sect->index;
3908
3909 if (objfile->sect_index_rodata == -1)
3910 objfile->sect_index_rodata = sect->index;
3911 }
3912 else if (which == 2)
3913 {
3914 if (objfile->sect_index_data == -1)
3915 objfile->sect_index_data = sect->index;
3916
3917 if (objfile->sect_index_bss == -1)
3918 objfile->sect_index_bss = sect->index;
3919 }
3920 }
3921
3922 free_symfile_segment_data (data);
3923}
3924
76ad5e1e
NB
3925/* Listen for free_objfile events. */
3926
3927static void
3928symfile_free_objfile (struct objfile *objfile)
3929{
c33b2f12
MM
3930 /* Remove the target sections owned by this objfile. */
3931 if (objfile != NULL)
76ad5e1e
NB
3932 remove_target_sections ((void *) objfile);
3933}
3934
540c2971
DE
3935/* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3936 Expand all symtabs that match the specified criteria.
3937 See quick_symbol_functions.expand_symtabs_matching for details. */
3938
3939void
bb4142cf
DE
3940expand_symtabs_matching (expand_symtabs_file_matcher_ftype *file_matcher,
3941 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3942 enum search_domain kind,
3943 void *data)
540c2971
DE
3944{
3945 struct objfile *objfile;
3946
3947 ALL_OBJFILES (objfile)
3948 {
3949 if (objfile->sf)
bb4142cf
DE
3950 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3951 symbol_matcher, kind,
3952 data);
540c2971
DE
3953 }
3954}
3955
3956/* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3957 Map function FUN over every file.
3958 See quick_symbol_functions.map_symbol_filenames for details. */
3959
3960void
bb4142cf
DE
3961map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3962 int need_fullname)
540c2971
DE
3963{
3964 struct objfile *objfile;
3965
3966 ALL_OBJFILES (objfile)
3967 {
3968 if (objfile->sf)
3969 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3970 need_fullname);
3971 }
3972}
3973
c906108c 3974void
fba45db2 3975_initialize_symfile (void)
c906108c
SS
3976{
3977 struct cmd_list_element *c;
c5aa993b 3978
76ad5e1e
NB
3979 observer_attach_free_objfile (symfile_free_objfile);
3980
1a966eab
AC
3981 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3982Load symbol table from executable file FILE.\n\
c906108c 3983The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3984to execute."), &cmdlist);
5ba2abeb 3985 set_cmd_completer (c, filename_completer);
c906108c 3986
1a966eab 3987 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3988Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3e43a32a
MS
3989Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3990 ...]\nADDR is the starting address of the file's text.\n\
db162d44
EZ
3991The optional arguments are section-name section-address pairs and\n\
3992should be specified if the data and bss segments are not contiguous\n\
1a966eab 3993with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3994 &cmdlist);
5ba2abeb 3995 set_cmd_completer (c, filename_completer);
c906108c 3996
63644780
NB
3997 c = add_cmd ("remove-symbol-file", class_files,
3998 remove_symbol_file_command, _("\
3999Remove a symbol file added via the add-symbol-file command.\n\
4000Usage: remove-symbol-file FILENAME\n\
4001 remove-symbol-file -a ADDRESS\n\
4002The file to remove can be identified by its filename or by an address\n\
4003that lies within the boundaries of this symbol file in memory."),
4004 &cmdlist);
4005
1a966eab
AC
4006 c = add_cmd ("load", class_files, load_command, _("\
4007Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
4008for access from GDB.\n\
4009A load OFFSET may also be given."), &cmdlist);
5ba2abeb 4010 set_cmd_completer (c, filename_completer);
c906108c 4011
c5aa993b 4012 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 4013 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
4014 "overlay ", 0, &cmdlist);
4015
4016 add_com_alias ("ovly", "overlay", class_alias, 1);
4017 add_com_alias ("ov", "overlay", class_alias, 1);
4018
c5aa993b 4019 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 4020 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 4021
c5aa993b 4022 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 4023 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 4024
c5aa993b 4025 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 4026 _("List mappings of overlay sections."), &overlaylist);
c906108c 4027
c5aa993b 4028 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 4029 _("Enable overlay debugging."), &overlaylist);
c5aa993b 4030 add_cmd ("off", class_support, overlay_off_command,
1a966eab 4031 _("Disable overlay debugging."), &overlaylist);
c5aa993b 4032 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 4033 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 4034 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 4035 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
4036
4037 /* Filename extension to source language lookup table: */
4038 init_filename_language_table ();
26c41df3
AC
4039 add_setshow_string_noescape_cmd ("extension-language", class_files,
4040 &ext_args, _("\
4041Set mapping between filename extension and source language."), _("\
4042Show mapping between filename extension and source language."), _("\
4043Usage: set extension-language .foo bar"),
4044 set_ext_lang_command,
920d2a44 4045 show_ext_args,
26c41df3 4046 &setlist, &showlist);
c906108c 4047
c5aa993b 4048 add_info ("extensions", info_ext_lang_command,
1bedd215 4049 _("All filename extensions associated with a source language."));
917317f4 4050
525226b5
AC
4051 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4052 &debug_file_directory, _("\
24ddea62
JK
4053Set the directories where separate debug symbols are searched for."), _("\
4054Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
4055Separate debug symbols are first searched for in the same\n\
4056directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4057and lastly at the path of the directory of the binary with\n\
24ddea62 4058each global debug-file-directory component prepended."),
525226b5 4059 NULL,
920d2a44 4060 show_debug_file_directory,
525226b5 4061 &setlist, &showlist);
770e7fc7
DE
4062
4063 add_setshow_enum_cmd ("symbol-loading", no_class,
4064 print_symbol_loading_enums, &print_symbol_loading,
4065 _("\
4066Set printing of symbol loading messages."), _("\
4067Show printing of symbol loading messages."), _("\
4068off == turn all messages off\n\
4069brief == print messages for the executable,\n\
4070 and brief messages for shared libraries\n\
4071full == print messages for the executable,\n\
4072 and messages for each shared library."),
4073 NULL,
4074 NULL,
4075 &setprintlist, &showprintlist);
c906108c 4076}
This page took 1.842141 seconds and 4 git commands to generate.