add the cleanup checker
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
28e7fd62 3 Copyright (C) 1990-2013 Free Software Foundation, Inc.
8926118c 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
086df311 24#include "bfdlink.h"
c906108c
SS
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "target.h"
30#include "value.h"
31#include "symfile.h"
32#include "objfiles.h"
0378c332 33#include "source.h"
c906108c
SS
34#include "gdbcmd.h"
35#include "breakpoint.h"
36#include "language.h"
37#include "complaints.h"
38#include "demangle.h"
fb14de7b
UW
39#include "inferior.h"
40#include "regcache.h"
5b5d99cf 41#include "filenames.h" /* for DOSish file names */
c906108c 42#include "gdb-stabs.h"
04ea0df1 43#include "gdb_obstack.h"
d75b5104 44#include "completer.h"
af5f3db6 45#include "bcache.h"
2de7ced7 46#include "hashtab.h"
dbda9972 47#include "readline/readline.h"
7e8580c1 48#include "gdb_assert.h"
fe898f56 49#include "block.h"
ea53e89f 50#include "observer.h"
c1bd25fd 51#include "exec.h"
9bdcbae7 52#include "parser-defs.h"
8756216b 53#include "varobj.h"
77069918 54#include "elf-bfd.h"
e85a822c 55#include "solib.h"
f1838a98 56#include "remote.h"
1bfeeb0f 57#include "stack.h"
cbb099e8 58#include "gdb_bfd.h"
529480d0 59#include "cli/cli-utils.h"
c906108c 60
c906108c
SS
61#include <sys/types.h>
62#include <fcntl.h>
63#include "gdb_string.h"
64#include "gdb_stat.h"
65#include <ctype.h>
66#include <time.h>
2b71414d 67#include <sys/time.h>
c906108c 68
ccefe4c4 69#include "psymtab.h"
c906108c 70
3e43a32a
MS
71int (*deprecated_ui_load_progress_hook) (const char *section,
72 unsigned long num);
9a4105ab 73void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
74 unsigned long section_sent,
75 unsigned long section_size,
76 unsigned long total_sent,
c2d11a7d 77 unsigned long total_size);
769d7dc4
AC
78void (*deprecated_pre_add_symbol_hook) (const char *);
79void (*deprecated_post_add_symbol_hook) (void);
c906108c 80
74b7792f
AC
81static void clear_symtab_users_cleanup (void *ignore);
82
c378eb4e
MS
83/* Global variables owned by this file. */
84int readnow_symbol_files; /* Read full symbols immediately. */
c906108c 85
c378eb4e 86/* Functions this file defines. */
c906108c 87
a14ed312 88static void load_command (char *, int);
c906108c 89
d7db6da9
FN
90static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
91
a14ed312 92static void add_symbol_file_command (char *, int);
c906108c 93
a14ed312 94bfd *symfile_bfd_open (char *);
c906108c 95
0e931cf0
JB
96int get_section_index (struct objfile *, char *);
97
00b5771c 98static const struct sym_fns *find_sym_fns (bfd *);
c906108c 99
a14ed312 100static void decrement_reading_symtab (void *);
c906108c 101
a14ed312 102static void overlay_invalidate_all (void);
c906108c 103
a14ed312 104static void overlay_auto_command (char *, int);
c906108c 105
a14ed312 106static void overlay_manual_command (char *, int);
c906108c 107
a14ed312 108static void overlay_off_command (char *, int);
c906108c 109
a14ed312 110static void overlay_load_command (char *, int);
c906108c 111
a14ed312 112static void overlay_command (char *, int);
c906108c 113
a14ed312 114static void simple_free_overlay_table (void);
c906108c 115
e17a4113
UW
116static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
117 enum bfd_endian);
c906108c 118
a14ed312 119static int simple_read_overlay_table (void);
c906108c 120
a14ed312 121static int simple_overlay_update_1 (struct obj_section *);
c906108c 122
a14ed312 123static void add_filename_language (char *ext, enum language lang);
392a587b 124
a14ed312 125static void info_ext_lang_command (char *args, int from_tty);
392a587b 126
a14ed312 127static void init_filename_language_table (void);
392a587b 128
31d99776
DJ
129static void symfile_find_segment_sections (struct objfile *objfile);
130
a14ed312 131void _initialize_symfile (void);
c906108c
SS
132
133/* List of all available sym_fns. On gdb startup, each object file reader
134 calls add_symtab_fns() to register information on each format it is
c378eb4e 135 prepared to read. */
c906108c 136
00b5771c
TT
137typedef const struct sym_fns *sym_fns_ptr;
138DEF_VEC_P (sym_fns_ptr);
139
140static VEC (sym_fns_ptr) *symtab_fns = NULL;
c906108c 141
b7209cb4
FF
142/* If non-zero, shared library symbols will be added automatically
143 when the inferior is created, new libraries are loaded, or when
144 attaching to the inferior. This is almost always what users will
145 want to have happen; but for very large programs, the startup time
146 will be excessive, and so if this is a problem, the user can clear
147 this flag and then add the shared library symbols as needed. Note
148 that there is a potential for confusion, since if the shared
c906108c 149 library symbols are not loaded, commands like "info fun" will *not*
0d14a781 150 report all the functions that are actually present. */
c906108c
SS
151
152int auto_solib_add = 1;
c906108c 153\f
c5aa993b 154
0d14a781 155/* True if we are reading a symbol table. */
c906108c
SS
156
157int currently_reading_symtab = 0;
158
159static void
fba45db2 160decrement_reading_symtab (void *dummy)
c906108c
SS
161{
162 currently_reading_symtab--;
2cb9c859 163 gdb_assert (currently_reading_symtab >= 0);
c906108c
SS
164}
165
ccefe4c4
TT
166/* Increment currently_reading_symtab and return a cleanup that can be
167 used to decrement it. */
3b7bacac 168
ccefe4c4
TT
169struct cleanup *
170increment_reading_symtab (void)
c906108c 171{
ccefe4c4 172 ++currently_reading_symtab;
2cb9c859 173 gdb_assert (currently_reading_symtab > 0);
ccefe4c4 174 return make_cleanup (decrement_reading_symtab, NULL);
c906108c
SS
175}
176
5417f6dc
RM
177/* Remember the lowest-addressed loadable section we've seen.
178 This function is called via bfd_map_over_sections.
c906108c
SS
179
180 In case of equal vmas, the section with the largest size becomes the
181 lowest-addressed loadable section.
182
183 If the vmas and sizes are equal, the last section is considered the
184 lowest-addressed loadable section. */
185
186void
4efb68b1 187find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 188{
c5aa993b 189 asection **lowest = (asection **) obj;
c906108c 190
eb73e134 191 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
192 return;
193 if (!*lowest)
194 *lowest = sect; /* First loadable section */
195 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
196 *lowest = sect; /* A lower loadable section */
197 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
198 && (bfd_section_size (abfd, (*lowest))
199 <= bfd_section_size (abfd, sect)))
200 *lowest = sect;
201}
202
d76488d8
TT
203/* Create a new section_addr_info, with room for NUM_SECTIONS. The
204 new object's 'num_sections' field is set to 0; it must be updated
205 by the caller. */
a39a16c4
MM
206
207struct section_addr_info *
208alloc_section_addr_info (size_t num_sections)
209{
210 struct section_addr_info *sap;
211 size_t size;
212
213 size = (sizeof (struct section_addr_info)
214 + sizeof (struct other_sections) * (num_sections - 1));
215 sap = (struct section_addr_info *) xmalloc (size);
216 memset (sap, 0, size);
a39a16c4
MM
217
218 return sap;
219}
62557bbc
KB
220
221/* Build (allocate and populate) a section_addr_info struct from
c378eb4e 222 an existing section table. */
62557bbc
KB
223
224extern struct section_addr_info *
0542c86d
PA
225build_section_addr_info_from_section_table (const struct target_section *start,
226 const struct target_section *end)
62557bbc
KB
227{
228 struct section_addr_info *sap;
0542c86d 229 const struct target_section *stp;
62557bbc
KB
230 int oidx;
231
a39a16c4 232 sap = alloc_section_addr_info (end - start);
62557bbc
KB
233
234 for (stp = start, oidx = 0; stp != end; stp++)
235 {
5417f6dc 236 if (bfd_get_section_flags (stp->bfd,
fbd35540 237 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 238 && oidx < end - start)
62557bbc
KB
239 {
240 sap->other[oidx].addr = stp->addr;
5417f6dc 241 sap->other[oidx].name
fbd35540 242 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
65cf3563
TT
243 sap->other[oidx].sectindex
244 = gdb_bfd_section_index (stp->bfd, stp->the_bfd_section);
62557bbc
KB
245 oidx++;
246 }
247 }
248
d76488d8
TT
249 sap->num_sections = oidx;
250
62557bbc
KB
251 return sap;
252}
253
82ccf5a5 254/* Create a section_addr_info from section offsets in ABFD. */
089b4803 255
82ccf5a5
JK
256static struct section_addr_info *
257build_section_addr_info_from_bfd (bfd *abfd)
089b4803
TG
258{
259 struct section_addr_info *sap;
260 int i;
261 struct bfd_section *sec;
262
82ccf5a5
JK
263 sap = alloc_section_addr_info (bfd_count_sections (abfd));
264 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
265 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
012836ea 266 {
82ccf5a5
JK
267 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
268 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
65cf3563 269 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
012836ea
JK
270 i++;
271 }
d76488d8
TT
272
273 sap->num_sections = i;
274
089b4803
TG
275 return sap;
276}
277
82ccf5a5
JK
278/* Create a section_addr_info from section offsets in OBJFILE. */
279
280struct section_addr_info *
281build_section_addr_info_from_objfile (const struct objfile *objfile)
282{
283 struct section_addr_info *sap;
284 int i;
285
286 /* Before reread_symbols gets rewritten it is not safe to call:
287 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
288 */
289 sap = build_section_addr_info_from_bfd (objfile->obfd);
d76488d8 290 for (i = 0; i < sap->num_sections; i++)
82ccf5a5
JK
291 {
292 int sectindex = sap->other[i].sectindex;
293
294 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
295 }
296 return sap;
297}
62557bbc 298
c378eb4e 299/* Free all memory allocated by build_section_addr_info_from_section_table. */
62557bbc
KB
300
301extern void
302free_section_addr_info (struct section_addr_info *sap)
303{
304 int idx;
305
a39a16c4 306 for (idx = 0; idx < sap->num_sections; idx++)
d76488d8 307 xfree (sap->other[idx].name);
b8c9b27d 308 xfree (sap);
62557bbc
KB
309}
310
e8289572 311/* Initialize OBJFILE's sect_index_* members. */
3b7bacac 312
e8289572
JB
313static void
314init_objfile_sect_indices (struct objfile *objfile)
c906108c 315{
e8289572 316 asection *sect;
c906108c 317 int i;
5417f6dc 318
b8fbeb18 319 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 320 if (sect)
b8fbeb18
EZ
321 objfile->sect_index_text = sect->index;
322
323 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 324 if (sect)
b8fbeb18
EZ
325 objfile->sect_index_data = sect->index;
326
327 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 328 if (sect)
b8fbeb18
EZ
329 objfile->sect_index_bss = sect->index;
330
331 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 332 if (sect)
b8fbeb18
EZ
333 objfile->sect_index_rodata = sect->index;
334
bbcd32ad
FF
335 /* This is where things get really weird... We MUST have valid
336 indices for the various sect_index_* members or gdb will abort.
337 So if for example, there is no ".text" section, we have to
31d99776
DJ
338 accomodate that. First, check for a file with the standard
339 one or two segments. */
340
341 symfile_find_segment_sections (objfile);
342
343 /* Except when explicitly adding symbol files at some address,
344 section_offsets contains nothing but zeros, so it doesn't matter
345 which slot in section_offsets the individual sect_index_* members
346 index into. So if they are all zero, it is safe to just point
347 all the currently uninitialized indices to the first slot. But
348 beware: if this is the main executable, it may be relocated
349 later, e.g. by the remote qOffsets packet, and then this will
350 be wrong! That's why we try segments first. */
bbcd32ad
FF
351
352 for (i = 0; i < objfile->num_sections; i++)
353 {
354 if (ANOFFSET (objfile->section_offsets, i) != 0)
355 {
356 break;
357 }
358 }
359 if (i == objfile->num_sections)
360 {
361 if (objfile->sect_index_text == -1)
362 objfile->sect_index_text = 0;
363 if (objfile->sect_index_data == -1)
364 objfile->sect_index_data = 0;
365 if (objfile->sect_index_bss == -1)
366 objfile->sect_index_bss = 0;
367 if (objfile->sect_index_rodata == -1)
368 objfile->sect_index_rodata = 0;
369 }
b8fbeb18 370}
c906108c 371
c1bd25fd
DJ
372/* The arguments to place_section. */
373
374struct place_section_arg
375{
376 struct section_offsets *offsets;
377 CORE_ADDR lowest;
378};
379
380/* Find a unique offset to use for loadable section SECT if
381 the user did not provide an offset. */
382
2c0b251b 383static void
c1bd25fd
DJ
384place_section (bfd *abfd, asection *sect, void *obj)
385{
386 struct place_section_arg *arg = obj;
387 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
388 int done;
3bd72c6f 389 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 390
2711e456
DJ
391 /* We are only interested in allocated sections. */
392 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
393 return;
394
395 /* If the user specified an offset, honor it. */
65cf3563 396 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
c1bd25fd
DJ
397 return;
398
399 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
400 start_addr = (arg->lowest + align - 1) & -align;
401
c1bd25fd
DJ
402 do {
403 asection *cur_sec;
c1bd25fd 404
c1bd25fd
DJ
405 done = 1;
406
407 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
408 {
409 int indx = cur_sec->index;
c1bd25fd
DJ
410
411 /* We don't need to compare against ourself. */
412 if (cur_sec == sect)
413 continue;
414
2711e456
DJ
415 /* We can only conflict with allocated sections. */
416 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
417 continue;
418
419 /* If the section offset is 0, either the section has not been placed
420 yet, or it was the lowest section placed (in which case LOWEST
421 will be past its end). */
422 if (offsets[indx] == 0)
423 continue;
424
425 /* If this section would overlap us, then we must move up. */
426 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
427 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
428 {
429 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
430 start_addr = (start_addr + align - 1) & -align;
431 done = 0;
3bd72c6f 432 break;
c1bd25fd
DJ
433 }
434
435 /* Otherwise, we appear to be OK. So far. */
436 }
437 }
438 while (!done);
439
65cf3563 440 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
c1bd25fd 441 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 442}
e8289572 443
75242ef4
JK
444/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
445 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
446 entries. */
e8289572
JB
447
448void
75242ef4
JK
449relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
450 int num_sections,
3189cb12 451 const struct section_addr_info *addrs)
e8289572
JB
452{
453 int i;
454
75242ef4 455 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 456
c378eb4e 457 /* Now calculate offsets for section that were specified by the caller. */
d76488d8 458 for (i = 0; i < addrs->num_sections; i++)
e8289572 459 {
3189cb12 460 const struct other_sections *osp;
e8289572 461
75242ef4 462 osp = &addrs->other[i];
5488dafb 463 if (osp->sectindex == -1)
e8289572
JB
464 continue;
465
c378eb4e 466 /* Record all sections in offsets. */
e8289572 467 /* The section_offsets in the objfile are here filled in using
c378eb4e 468 the BFD index. */
75242ef4
JK
469 section_offsets->offsets[osp->sectindex] = osp->addr;
470 }
471}
472
1276c759
JK
473/* Transform section name S for a name comparison. prelink can split section
474 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
475 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
476 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
477 (`.sbss') section has invalid (increased) virtual address. */
478
479static const char *
480addr_section_name (const char *s)
481{
482 if (strcmp (s, ".dynbss") == 0)
483 return ".bss";
484 if (strcmp (s, ".sdynbss") == 0)
485 return ".sbss";
486
487 return s;
488}
489
82ccf5a5
JK
490/* qsort comparator for addrs_section_sort. Sort entries in ascending order by
491 their (name, sectindex) pair. sectindex makes the sort by name stable. */
492
493static int
494addrs_section_compar (const void *ap, const void *bp)
495{
496 const struct other_sections *a = *((struct other_sections **) ap);
497 const struct other_sections *b = *((struct other_sections **) bp);
22e048c9 498 int retval;
82ccf5a5 499
1276c759 500 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
82ccf5a5
JK
501 if (retval)
502 return retval;
503
5488dafb 504 return a->sectindex - b->sectindex;
82ccf5a5
JK
505}
506
507/* Provide sorted array of pointers to sections of ADDRS. The array is
508 terminated by NULL. Caller is responsible to call xfree for it. */
509
510static struct other_sections **
511addrs_section_sort (struct section_addr_info *addrs)
512{
513 struct other_sections **array;
514 int i;
515
516 /* `+ 1' for the NULL terminator. */
517 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
d76488d8 518 for (i = 0; i < addrs->num_sections; i++)
82ccf5a5
JK
519 array[i] = &addrs->other[i];
520 array[i] = NULL;
521
522 qsort (array, i, sizeof (*array), addrs_section_compar);
523
524 return array;
525}
526
75242ef4 527/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
528 also SECTINDEXes specific to ABFD there. This function can be used to
529 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
530
531void
532addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
533{
534 asection *lower_sect;
75242ef4
JK
535 CORE_ADDR lower_offset;
536 int i;
82ccf5a5
JK
537 struct cleanup *my_cleanup;
538 struct section_addr_info *abfd_addrs;
539 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
540 struct other_sections **addrs_to_abfd_addrs;
75242ef4
JK
541
542 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
543 continguous sections. */
544 lower_sect = NULL;
545 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
546 if (lower_sect == NULL)
547 {
548 warning (_("no loadable sections found in added symbol-file %s"),
549 bfd_get_filename (abfd));
550 lower_offset = 0;
e8289572 551 }
75242ef4
JK
552 else
553 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
554
82ccf5a5
JK
555 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
556 in ABFD. Section names are not unique - there can be multiple sections of
557 the same name. Also the sections of the same name do not have to be
558 adjacent to each other. Some sections may be present only in one of the
559 files. Even sections present in both files do not have to be in the same
560 order.
561
562 Use stable sort by name for the sections in both files. Then linearly
563 scan both lists matching as most of the entries as possible. */
564
565 addrs_sorted = addrs_section_sort (addrs);
566 my_cleanup = make_cleanup (xfree, addrs_sorted);
567
568 abfd_addrs = build_section_addr_info_from_bfd (abfd);
569 make_cleanup_free_section_addr_info (abfd_addrs);
570 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
571 make_cleanup (xfree, abfd_addrs_sorted);
572
c378eb4e
MS
573 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
574 ABFD_ADDRS_SORTED. */
82ccf5a5
JK
575
576 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
577 * addrs->num_sections);
578 make_cleanup (xfree, addrs_to_abfd_addrs);
579
580 while (*addrs_sorted)
581 {
1276c759 582 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
82ccf5a5
JK
583
584 while (*abfd_addrs_sorted
1276c759
JK
585 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
586 sect_name) < 0)
82ccf5a5
JK
587 abfd_addrs_sorted++;
588
589 if (*abfd_addrs_sorted
1276c759
JK
590 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
591 sect_name) == 0)
82ccf5a5
JK
592 {
593 int index_in_addrs;
594
595 /* Make the found item directly addressable from ADDRS. */
596 index_in_addrs = *addrs_sorted - addrs->other;
597 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
598 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
599
600 /* Never use the same ABFD entry twice. */
601 abfd_addrs_sorted++;
602 }
603
604 addrs_sorted++;
605 }
606
75242ef4
JK
607 /* Calculate offsets for the loadable sections.
608 FIXME! Sections must be in order of increasing loadable section
609 so that contiguous sections can use the lower-offset!!!
610
611 Adjust offsets if the segments are not contiguous.
612 If the section is contiguous, its offset should be set to
613 the offset of the highest loadable section lower than it
614 (the loadable section directly below it in memory).
615 this_offset = lower_offset = lower_addr - lower_orig_addr */
616
d76488d8 617 for (i = 0; i < addrs->num_sections; i++)
75242ef4 618 {
82ccf5a5 619 struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
620
621 if (sect)
75242ef4 622 {
c378eb4e 623 /* This is the index used by BFD. */
82ccf5a5 624 addrs->other[i].sectindex = sect->sectindex;
672d9c23
JK
625
626 if (addrs->other[i].addr != 0)
75242ef4 627 {
82ccf5a5 628 addrs->other[i].addr -= sect->addr;
75242ef4 629 lower_offset = addrs->other[i].addr;
75242ef4
JK
630 }
631 else
672d9c23 632 addrs->other[i].addr = lower_offset;
75242ef4
JK
633 }
634 else
672d9c23 635 {
1276c759
JK
636 /* addr_section_name transformation is not used for SECT_NAME. */
637 const char *sect_name = addrs->other[i].name;
638
b0fcb67f
JK
639 /* This section does not exist in ABFD, which is normally
640 unexpected and we want to issue a warning.
641
4d9743af
JK
642 However, the ELF prelinker does create a few sections which are
643 marked in the main executable as loadable (they are loaded in
644 memory from the DYNAMIC segment) and yet are not present in
645 separate debug info files. This is fine, and should not cause
646 a warning. Shared libraries contain just the section
647 ".gnu.liblist" but it is not marked as loadable there. There is
648 no other way to identify them than by their name as the sections
1276c759
JK
649 created by prelink have no special flags.
650
651 For the sections `.bss' and `.sbss' see addr_section_name. */
b0fcb67f
JK
652
653 if (!(strcmp (sect_name, ".gnu.liblist") == 0
4d9743af 654 || strcmp (sect_name, ".gnu.conflict") == 0
1276c759
JK
655 || (strcmp (sect_name, ".bss") == 0
656 && i > 0
657 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
658 && addrs_to_abfd_addrs[i - 1] != NULL)
659 || (strcmp (sect_name, ".sbss") == 0
660 && i > 0
661 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
662 && addrs_to_abfd_addrs[i - 1] != NULL)))
b0fcb67f
JK
663 warning (_("section %s not found in %s"), sect_name,
664 bfd_get_filename (abfd));
665
672d9c23 666 addrs->other[i].addr = 0;
5488dafb 667 addrs->other[i].sectindex = -1;
672d9c23 668 }
75242ef4 669 }
82ccf5a5
JK
670
671 do_cleanups (my_cleanup);
75242ef4
JK
672}
673
674/* Parse the user's idea of an offset for dynamic linking, into our idea
675 of how to represent it for fast symbol reading. This is the default
676 version of the sym_fns.sym_offsets function for symbol readers that
677 don't need to do anything special. It allocates a section_offsets table
678 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
679
680void
681default_symfile_offsets (struct objfile *objfile,
3189cb12 682 const struct section_addr_info *addrs)
75242ef4 683{
d445b2f6 684 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
75242ef4
JK
685 objfile->section_offsets = (struct section_offsets *)
686 obstack_alloc (&objfile->objfile_obstack,
687 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
688 relative_addr_info_to_section_offsets (objfile->section_offsets,
689 objfile->num_sections, addrs);
e8289572 690
c1bd25fd
DJ
691 /* For relocatable files, all loadable sections will start at zero.
692 The zero is meaningless, so try to pick arbitrary addresses such
693 that no loadable sections overlap. This algorithm is quadratic,
694 but the number of sections in a single object file is generally
695 small. */
696 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
697 {
698 struct place_section_arg arg;
2711e456
DJ
699 bfd *abfd = objfile->obfd;
700 asection *cur_sec;
2711e456
DJ
701
702 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
703 /* We do not expect this to happen; just skip this step if the
704 relocatable file has a section with an assigned VMA. */
705 if (bfd_section_vma (abfd, cur_sec) != 0)
706 break;
707
708 if (cur_sec == NULL)
709 {
710 CORE_ADDR *offsets = objfile->section_offsets->offsets;
711
712 /* Pick non-overlapping offsets for sections the user did not
713 place explicitly. */
714 arg.offsets = objfile->section_offsets;
715 arg.lowest = 0;
716 bfd_map_over_sections (objfile->obfd, place_section, &arg);
717
718 /* Correctly filling in the section offsets is not quite
719 enough. Relocatable files have two properties that
720 (most) shared objects do not:
721
722 - Their debug information will contain relocations. Some
723 shared libraries do also, but many do not, so this can not
724 be assumed.
725
726 - If there are multiple code sections they will be loaded
727 at different relative addresses in memory than they are
728 in the objfile, since all sections in the file will start
729 at address zero.
730
731 Because GDB has very limited ability to map from an
732 address in debug info to the correct code section,
733 it relies on adding SECT_OFF_TEXT to things which might be
734 code. If we clear all the section offsets, and set the
735 section VMAs instead, then symfile_relocate_debug_section
736 will return meaningful debug information pointing at the
737 correct sections.
738
739 GDB has too many different data structures for section
740 addresses - a bfd, objfile, and so_list all have section
741 tables, as does exec_ops. Some of these could probably
742 be eliminated. */
743
744 for (cur_sec = abfd->sections; cur_sec != NULL;
745 cur_sec = cur_sec->next)
746 {
747 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
748 continue;
749
750 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
3e43a32a
MS
751 exec_set_section_address (bfd_get_filename (abfd),
752 cur_sec->index,
30510692 753 offsets[cur_sec->index]);
2711e456
DJ
754 offsets[cur_sec->index] = 0;
755 }
756 }
c1bd25fd
DJ
757 }
758
e8289572 759 /* Remember the bfd indexes for the .text, .data, .bss and
c378eb4e 760 .rodata sections. */
e8289572
JB
761 init_objfile_sect_indices (objfile);
762}
763
31d99776
DJ
764/* Divide the file into segments, which are individual relocatable units.
765 This is the default version of the sym_fns.sym_segments function for
766 symbol readers that do not have an explicit representation of segments.
767 It assumes that object files do not have segments, and fully linked
768 files have a single segment. */
769
770struct symfile_segment_data *
771default_symfile_segments (bfd *abfd)
772{
773 int num_sections, i;
774 asection *sect;
775 struct symfile_segment_data *data;
776 CORE_ADDR low, high;
777
778 /* Relocatable files contain enough information to position each
779 loadable section independently; they should not be relocated
780 in segments. */
781 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
782 return NULL;
783
784 /* Make sure there is at least one loadable section in the file. */
785 for (sect = abfd->sections; sect != NULL; sect = sect->next)
786 {
787 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
788 continue;
789
790 break;
791 }
792 if (sect == NULL)
793 return NULL;
794
795 low = bfd_get_section_vma (abfd, sect);
796 high = low + bfd_get_section_size (sect);
797
798 data = XZALLOC (struct symfile_segment_data);
799 data->num_segments = 1;
800 data->segment_bases = XCALLOC (1, CORE_ADDR);
801 data->segment_sizes = XCALLOC (1, CORE_ADDR);
802
803 num_sections = bfd_count_sections (abfd);
804 data->segment_info = XCALLOC (num_sections, int);
805
806 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
807 {
808 CORE_ADDR vma;
809
810 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
811 continue;
812
813 vma = bfd_get_section_vma (abfd, sect);
814 if (vma < low)
815 low = vma;
816 if (vma + bfd_get_section_size (sect) > high)
817 high = vma + bfd_get_section_size (sect);
818
819 data->segment_info[i] = 1;
820 }
821
822 data->segment_bases[0] = low;
823 data->segment_sizes[0] = high - low;
824
825 return data;
826}
827
608e2dbb
TT
828/* This is a convenience function to call sym_read for OBJFILE and
829 possibly force the partial symbols to be read. */
830
831static void
832read_symbols (struct objfile *objfile, int add_flags)
833{
834 (*objfile->sf->sym_read) (objfile, add_flags);
8a92335b
JK
835
836 /* find_separate_debug_file_in_section should be called only if there is
837 single binary with no existing separate debug info file. */
838 if (!objfile_has_partial_symbols (objfile)
839 && objfile->separate_debug_objfile == NULL
840 && objfile->separate_debug_objfile_backlink == NULL)
608e2dbb
TT
841 {
842 bfd *abfd = find_separate_debug_file_in_section (objfile);
843 struct cleanup *cleanup = make_cleanup_bfd_unref (abfd);
844
845 if (abfd != NULL)
846 symbol_file_add_separate (abfd, add_flags, objfile);
847
848 do_cleanups (cleanup);
849 }
850 if ((add_flags & SYMFILE_NO_READ) == 0)
851 require_partial_symbols (objfile, 0);
852}
853
3d6e24f0
JB
854/* Initialize entry point information for this objfile. */
855
856static void
857init_entry_point_info (struct objfile *objfile)
858{
859 /* Save startup file's range of PC addresses to help blockframe.c
860 decide where the bottom of the stack is. */
861
862 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
863 {
864 /* Executable file -- record its entry point so we'll recognize
865 the startup file because it contains the entry point. */
866 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
867 objfile->ei.entry_point_p = 1;
868 }
869 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
870 && bfd_get_start_address (objfile->obfd) != 0)
871 {
872 /* Some shared libraries may have entry points set and be
873 runnable. There's no clear way to indicate this, so just check
874 for values other than zero. */
875 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
876 objfile->ei.entry_point_p = 1;
877 }
878 else
879 {
880 /* Examination of non-executable.o files. Short-circuit this stuff. */
881 objfile->ei.entry_point_p = 0;
882 }
883
884 if (objfile->ei.entry_point_p)
885 {
886 CORE_ADDR entry_point = objfile->ei.entry_point;
887
888 /* Make certain that the address points at real code, and not a
889 function descriptor. */
890 entry_point
891 = gdbarch_convert_from_func_ptr_addr (objfile->gdbarch,
892 entry_point,
893 &current_target);
894
895 /* Remove any ISA markers, so that this matches entries in the
896 symbol table. */
897 objfile->ei.entry_point
898 = gdbarch_addr_bits_remove (objfile->gdbarch, entry_point);
899 }
900}
901
c906108c
SS
902/* Process a symbol file, as either the main file or as a dynamically
903 loaded file.
904
36e4d068
JB
905 This function does not set the OBJFILE's entry-point info.
906
96baa820
JM
907 OBJFILE is where the symbols are to be read from.
908
7e8580c1
JB
909 ADDRS is the list of section load addresses. If the user has given
910 an 'add-symbol-file' command, then this is the list of offsets and
911 addresses he or she provided as arguments to the command; or, if
912 we're handling a shared library, these are the actual addresses the
913 sections are loaded at, according to the inferior's dynamic linker
914 (as gleaned by GDB's shared library code). We convert each address
915 into an offset from the section VMA's as it appears in the object
916 file, and then call the file's sym_offsets function to convert this
917 into a format-specific offset table --- a `struct section_offsets'.
96baa820 918
7eedccfa
PP
919 ADD_FLAGS encodes verbosity level, whether this is main symbol or
920 an extra symbol file such as dynamically loaded code, and wether
921 breakpoint reset should be deferred. */
c906108c 922
36e4d068
JB
923static void
924syms_from_objfile_1 (struct objfile *objfile,
925 struct section_addr_info *addrs,
36e4d068 926 int add_flags)
c906108c 927{
a39a16c4 928 struct section_addr_info *local_addr = NULL;
c906108c 929 struct cleanup *old_chain;
7eedccfa 930 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 931
31d99776 932 objfile->sf = find_sym_fns (objfile->obfd);
c906108c 933
75245b24 934 if (objfile->sf == NULL)
36e4d068
JB
935 {
936 /* No symbols to load, but we still need to make sure
937 that the section_offsets table is allocated. */
d445b2f6 938 int num_sections = gdb_bfd_count_sections (objfile->obfd);
a7bfba49 939 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
36e4d068
JB
940
941 objfile->num_sections = num_sections;
942 objfile->section_offsets
943 = obstack_alloc (&objfile->objfile_obstack, size);
944 memset (objfile->section_offsets, 0, size);
945 return;
946 }
75245b24 947
c906108c
SS
948 /* Make sure that partially constructed symbol tables will be cleaned up
949 if an error occurs during symbol reading. */
74b7792f 950 old_chain = make_cleanup_free_objfile (objfile);
c906108c 951
6bf667bb
DE
952 /* If ADDRS is NULL, put together a dummy address list.
953 We now establish the convention that an addr of zero means
c378eb4e 954 no load address was specified. */
6bf667bb 955 if (! addrs)
a39a16c4 956 {
d445b2f6 957 local_addr = alloc_section_addr_info (1);
a39a16c4
MM
958 make_cleanup (xfree, local_addr);
959 addrs = local_addr;
960 }
961
c5aa993b 962 if (mainline)
c906108c
SS
963 {
964 /* We will modify the main symbol table, make sure that all its users
c5aa993b 965 will be cleaned up if an error occurs during symbol reading. */
74b7792f 966 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
967
968 /* Since no error yet, throw away the old symbol table. */
969
970 if (symfile_objfile != NULL)
971 {
972 free_objfile (symfile_objfile);
adb7f338 973 gdb_assert (symfile_objfile == NULL);
c906108c
SS
974 }
975
976 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
977 If the user wants to get rid of them, they should do "symbol-file"
978 without arguments first. Not sure this is the best behavior
979 (PR 2207). */
c906108c 980
c5aa993b 981 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
982 }
983
984 /* Convert addr into an offset rather than an absolute address.
985 We find the lowest address of a loaded segment in the objfile,
53a5351d 986 and assume that <addr> is where that got loaded.
c906108c 987
53a5351d
JM
988 We no longer warn if the lowest section is not a text segment (as
989 happens for the PA64 port. */
6bf667bb 990 if (addrs->num_sections > 0)
75242ef4 991 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
992
993 /* Initialize symbol reading routines for this objfile, allow complaints to
994 appear for this new file, and record how verbose to be, then do the
c378eb4e 995 initial symbol reading for this file. */
c906108c 996
c5aa993b 997 (*objfile->sf->sym_init) (objfile);
7eedccfa 998 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 999
6bf667bb 1000 (*objfile->sf->sym_offsets) (objfile, addrs);
c906108c 1001
608e2dbb 1002 read_symbols (objfile, add_flags);
b11896a5 1003
c906108c
SS
1004 /* Discard cleanups as symbol reading was successful. */
1005
1006 discard_cleanups (old_chain);
f7545552 1007 xfree (local_addr);
c906108c
SS
1008}
1009
36e4d068
JB
1010/* Same as syms_from_objfile_1, but also initializes the objfile
1011 entry-point info. */
1012
6bf667bb 1013static void
36e4d068
JB
1014syms_from_objfile (struct objfile *objfile,
1015 struct section_addr_info *addrs,
36e4d068
JB
1016 int add_flags)
1017{
6bf667bb 1018 syms_from_objfile_1 (objfile, addrs, add_flags);
36e4d068
JB
1019 init_entry_point_info (objfile);
1020}
1021
c906108c
SS
1022/* Perform required actions after either reading in the initial
1023 symbols for a new objfile, or mapping in the symbols from a reusable
c1e56572 1024 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c5aa993b 1025
c906108c 1026void
7eedccfa 1027new_symfile_objfile (struct objfile *objfile, int add_flags)
c906108c 1028{
c906108c 1029 /* If this is the main symbol file we have to clean up all users of the
c378eb4e 1030 old main symbol file. Otherwise it is sufficient to fixup all the
c906108c 1031 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1032 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1033 {
1034 /* OK, make it the "real" symbol file. */
1035 symfile_objfile = objfile;
1036
c1e56572 1037 clear_symtab_users (add_flags);
c906108c 1038 }
7eedccfa 1039 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1040 {
69de3c6a 1041 breakpoint_re_set ();
c906108c
SS
1042 }
1043
1044 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 1045 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
1046}
1047
1048/* Process a symbol file, as either the main file or as a dynamically
1049 loaded file.
1050
5417f6dc 1051 ABFD is a BFD already open on the file, as from symfile_bfd_open.
8ac244b4 1052 A new reference is acquired by this function.
7904e09f 1053
7eedccfa
PP
1054 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1055 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f 1056
6bf667bb 1057 ADDRS is as described for syms_from_objfile_1, above.
7eedccfa 1058 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1059
63524580
JK
1060 PARENT is the original objfile if ABFD is a separate debug info file.
1061 Otherwise PARENT is NULL.
1062
c906108c 1063 Upon success, returns a pointer to the objfile that was added.
c378eb4e 1064 Upon failure, jumps back to command level (never returns). */
7eedccfa 1065
7904e09f 1066static struct objfile *
6bf667bb
DE
1067symbol_file_add_with_addrs (bfd *abfd, int add_flags,
1068 struct section_addr_info *addrs,
1069 int flags, struct objfile *parent)
c906108c
SS
1070{
1071 struct objfile *objfile;
5417f6dc 1072 const char *name = bfd_get_filename (abfd);
7eedccfa 1073 const int from_tty = add_flags & SYMFILE_VERBOSE;
0838fb57 1074 const int mainline = add_flags & SYMFILE_MAINLINE;
b11896a5
TT
1075 const int should_print = ((from_tty || info_verbose)
1076 && (readnow_symbol_files
1077 || (add_flags & SYMFILE_NO_READ) == 0));
c906108c 1078
9291a0cd 1079 if (readnow_symbol_files)
b11896a5
TT
1080 {
1081 flags |= OBJF_READNOW;
1082 add_flags &= ~SYMFILE_NO_READ;
1083 }
9291a0cd 1084
5417f6dc
RM
1085 /* Give user a chance to burp if we'd be
1086 interactively wiping out any existing symbols. */
c906108c
SS
1087
1088 if ((have_full_symbols () || have_partial_symbols ())
0838fb57 1089 && mainline
c906108c 1090 && from_tty
9e2f0ad4 1091 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1092 error (_("Not confirmed."));
c906108c 1093
0838fb57 1094 objfile = allocate_objfile (abfd, flags | (mainline ? OBJF_MAINLINE : 0));
c906108c 1095
63524580
JK
1096 if (parent)
1097 add_separate_debug_objfile (objfile, parent);
1098
78a4a9b9
AC
1099 /* We either created a new mapped symbol table, mapped an existing
1100 symbol table file which has not had initial symbol reading
c378eb4e 1101 performed, or need to read an unmapped symbol table. */
b11896a5 1102 if (should_print)
c906108c 1103 {
769d7dc4
AC
1104 if (deprecated_pre_add_symbol_hook)
1105 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1106 else
c906108c 1107 {
55333a84
DE
1108 printf_unfiltered (_("Reading symbols from %s..."), name);
1109 wrap_here ("");
1110 gdb_flush (gdb_stdout);
c906108c 1111 }
c906108c 1112 }
6bf667bb 1113 syms_from_objfile (objfile, addrs, add_flags);
c906108c
SS
1114
1115 /* We now have at least a partial symbol table. Check to see if the
1116 user requested that all symbols be read on initial access via either
1117 the gdb startup command line or on a per symbol file basis. Expand
c378eb4e 1118 all partial symbol tables for this objfile if so. */
c906108c 1119
9291a0cd 1120 if ((flags & OBJF_READNOW))
c906108c 1121 {
b11896a5 1122 if (should_print)
c906108c 1123 {
a3f17187 1124 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1125 wrap_here ("");
1126 gdb_flush (gdb_stdout);
1127 }
1128
ccefe4c4
TT
1129 if (objfile->sf)
1130 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1131 }
1132
b11896a5 1133 if (should_print && !objfile_has_symbols (objfile))
cb3c37b2
JB
1134 {
1135 wrap_here ("");
55333a84 1136 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1137 wrap_here ("");
1138 }
1139
b11896a5 1140 if (should_print)
c906108c 1141 {
769d7dc4
AC
1142 if (deprecated_post_add_symbol_hook)
1143 deprecated_post_add_symbol_hook ();
c906108c 1144 else
55333a84 1145 printf_unfiltered (_("done.\n"));
c906108c
SS
1146 }
1147
481d0f41
JB
1148 /* We print some messages regardless of whether 'from_tty ||
1149 info_verbose' is true, so make sure they go out at the right
1150 time. */
1151 gdb_flush (gdb_stdout);
1152
109f874e 1153 if (objfile->sf == NULL)
8caee43b
PP
1154 {
1155 observer_notify_new_objfile (objfile);
c378eb4e 1156 return objfile; /* No symbols. */
8caee43b 1157 }
109f874e 1158
7eedccfa 1159 new_symfile_objfile (objfile, add_flags);
c906108c 1160
06d3b283 1161 observer_notify_new_objfile (objfile);
c906108c 1162
ce7d4522 1163 bfd_cache_close_all ();
c906108c
SS
1164 return (objfile);
1165}
1166
9cce227f
TG
1167/* Add BFD as a separate debug file for OBJFILE. */
1168
1169void
1170symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1171{
15d123c9 1172 struct objfile *new_objfile;
089b4803
TG
1173 struct section_addr_info *sap;
1174 struct cleanup *my_cleanup;
1175
1176 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1177 because sections of BFD may not match sections of OBJFILE and because
1178 vma may have been modified by tools such as prelink. */
1179 sap = build_section_addr_info_from_objfile (objfile);
1180 my_cleanup = make_cleanup_free_section_addr_info (sap);
9cce227f 1181
6bf667bb
DE
1182 new_objfile = symbol_file_add_with_addrs
1183 (bfd, symfile_flags, sap,
9cce227f 1184 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
63524580
JK
1185 | OBJF_USERLOADED),
1186 objfile);
089b4803
TG
1187
1188 do_cleanups (my_cleanup);
9cce227f 1189}
7904e09f 1190
eb4556d7
JB
1191/* Process the symbol file ABFD, as either the main file or as a
1192 dynamically loaded file.
6bf667bb 1193 See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1194
eb4556d7 1195struct objfile *
7eedccfa 1196symbol_file_add_from_bfd (bfd *abfd, int add_flags,
eb4556d7 1197 struct section_addr_info *addrs,
63524580 1198 int flags, struct objfile *parent)
eb4556d7 1199{
6bf667bb 1200 return symbol_file_add_with_addrs (abfd, add_flags, addrs, flags, parent);
eb4556d7
JB
1201}
1202
7904e09f 1203/* Process a symbol file, as either the main file or as a dynamically
6bf667bb 1204 loaded file. See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1205
7904e09f 1206struct objfile *
7eedccfa
PP
1207symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1208 int flags)
7904e09f 1209{
8ac244b4
TT
1210 bfd *bfd = symfile_bfd_open (name);
1211 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1212 struct objfile *objf;
1213
882f447f 1214 objf = symbol_file_add_from_bfd (bfd, add_flags, addrs, flags, NULL);
8ac244b4
TT
1215 do_cleanups (cleanup);
1216 return objf;
7904e09f
JB
1217}
1218
d7db6da9
FN
1219/* Call symbol_file_add() with default values and update whatever is
1220 affected by the loading of a new main().
1221 Used when the file is supplied in the gdb command line
1222 and by some targets with special loading requirements.
1223 The auxiliary function, symbol_file_add_main_1(), has the flags
1224 argument for the switches that can only be specified in the symbol_file
1225 command itself. */
5417f6dc 1226
1adeb98a
FN
1227void
1228symbol_file_add_main (char *args, int from_tty)
1229{
d7db6da9
FN
1230 symbol_file_add_main_1 (args, from_tty, 0);
1231}
1232
1233static void
1234symbol_file_add_main_1 (char *args, int from_tty, int flags)
1235{
7dcd53a0
TT
1236 const int add_flags = (current_inferior ()->symfile_flags
1237 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1238
7eedccfa 1239 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1240
d7db6da9
FN
1241 /* Getting new symbols may change our opinion about
1242 what is frameless. */
1243 reinit_frame_cache ();
1244
7dcd53a0
TT
1245 if ((flags & SYMFILE_NO_READ) == 0)
1246 set_initial_language ();
1adeb98a
FN
1247}
1248
1249void
1250symbol_file_clear (int from_tty)
1251{
1252 if ((have_full_symbols () || have_partial_symbols ())
1253 && from_tty
0430b0d6
AS
1254 && (symfile_objfile
1255 ? !query (_("Discard symbol table from `%s'? "),
1256 symfile_objfile->name)
1257 : !query (_("Discard symbol table? "))))
8a3fe4f8 1258 error (_("Not confirmed."));
1adeb98a 1259
0133421a
JK
1260 /* solib descriptors may have handles to objfiles. Wipe them before their
1261 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1262 no_shared_libraries (NULL, from_tty);
1263
0133421a
JK
1264 free_all_objfiles ();
1265
adb7f338 1266 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1267 if (from_tty)
1268 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1269}
1270
5b5d99cf 1271static int
287ccc17 1272separate_debug_file_exists (const char *name, unsigned long crc,
32a0e547 1273 struct objfile *parent_objfile)
5b5d99cf 1274{
904578ed
JK
1275 unsigned long file_crc;
1276 int file_crc_p;
f1838a98 1277 bfd *abfd;
32a0e547 1278 struct stat parent_stat, abfd_stat;
904578ed 1279 int verified_as_different;
32a0e547
JK
1280
1281 /* Find a separate debug info file as if symbols would be present in
1282 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1283 section can contain just the basename of PARENT_OBJFILE without any
1284 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
c378eb4e 1285 the separate debug infos with the same basename can exist. */
32a0e547 1286
0ba1096a 1287 if (filename_cmp (name, parent_objfile->name) == 0)
32a0e547 1288 return 0;
5b5d99cf 1289
08d2cd74 1290 abfd = gdb_bfd_open_maybe_remote (name);
f1838a98
UW
1291
1292 if (!abfd)
5b5d99cf
JB
1293 return 0;
1294
0ba1096a 1295 /* Verify symlinks were not the cause of filename_cmp name difference above.
32a0e547
JK
1296
1297 Some operating systems, e.g. Windows, do not provide a meaningful
1298 st_ino; they always set it to zero. (Windows does provide a
1299 meaningful st_dev.) Do not indicate a duplicate library in that
1300 case. While there is no guarantee that a system that provides
1301 meaningful inode numbers will never set st_ino to zero, this is
1302 merely an optimization, so we do not need to worry about false
1303 negatives. */
1304
1305 if (bfd_stat (abfd, &abfd_stat) == 0
904578ed
JK
1306 && abfd_stat.st_ino != 0
1307 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
32a0e547 1308 {
904578ed
JK
1309 if (abfd_stat.st_dev == parent_stat.st_dev
1310 && abfd_stat.st_ino == parent_stat.st_ino)
1311 {
cbb099e8 1312 gdb_bfd_unref (abfd);
904578ed
JK
1313 return 0;
1314 }
1315 verified_as_different = 1;
32a0e547 1316 }
904578ed
JK
1317 else
1318 verified_as_different = 0;
32a0e547 1319
dccee2de 1320 file_crc_p = gdb_bfd_crc (abfd, &file_crc);
5b5d99cf 1321
cbb099e8 1322 gdb_bfd_unref (abfd);
5b5d99cf 1323
904578ed
JK
1324 if (!file_crc_p)
1325 return 0;
1326
287ccc17
JK
1327 if (crc != file_crc)
1328 {
dccee2de
TT
1329 unsigned long parent_crc;
1330
904578ed
JK
1331 /* If one (or both) the files are accessed for example the via "remote:"
1332 gdbserver way it does not support the bfd_stat operation. Verify
1333 whether those two files are not the same manually. */
1334
dccee2de 1335 if (!verified_as_different)
904578ed 1336 {
dccee2de 1337 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
904578ed
JK
1338 return 0;
1339 }
1340
dccee2de 1341 if (verified_as_different || parent_crc != file_crc)
904578ed
JK
1342 warning (_("the debug information found in \"%s\""
1343 " does not match \"%s\" (CRC mismatch).\n"),
1344 name, parent_objfile->name);
1345
287ccc17
JK
1346 return 0;
1347 }
1348
1349 return 1;
5b5d99cf
JB
1350}
1351
aa28a74e 1352char *debug_file_directory = NULL;
920d2a44
AC
1353static void
1354show_debug_file_directory (struct ui_file *file, int from_tty,
1355 struct cmd_list_element *c, const char *value)
1356{
3e43a32a
MS
1357 fprintf_filtered (file,
1358 _("The directory where separate debug "
1359 "symbols are searched for is \"%s\".\n"),
920d2a44
AC
1360 value);
1361}
5b5d99cf
JB
1362
1363#if ! defined (DEBUG_SUBDIRECTORY)
1364#define DEBUG_SUBDIRECTORY ".debug"
1365#endif
1366
1db33378
PP
1367/* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1368 where the original file resides (may not be the same as
1369 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
7edbb660
DE
1370 looking for. CANON_DIR is the "realpath" form of DIR.
1371 DIR must contain a trailing '/'.
1372 Returns the path of the file with separate debug info, of NULL. */
1db33378
PP
1373
1374static char *
1375find_separate_debug_file (const char *dir,
1376 const char *canon_dir,
1377 const char *debuglink,
1378 unsigned long crc32, struct objfile *objfile)
9cce227f 1379{
1db33378
PP
1380 char *debugdir;
1381 char *debugfile;
9cce227f 1382 int i;
e4ab2fad
JK
1383 VEC (char_ptr) *debugdir_vec;
1384 struct cleanup *back_to;
1385 int ix;
5b5d99cf 1386
1db33378 1387 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1ffa32ee 1388 i = strlen (dir);
1db33378
PP
1389 if (canon_dir != NULL && strlen (canon_dir) > i)
1390 i = strlen (canon_dir);
1ffa32ee 1391
25522fae
JK
1392 debugfile = xmalloc (strlen (debug_file_directory) + 1
1393 + i
1394 + strlen (DEBUG_SUBDIRECTORY)
1395 + strlen ("/")
1db33378 1396 + strlen (debuglink)
25522fae 1397 + 1);
5b5d99cf
JB
1398
1399 /* First try in the same directory as the original file. */
1400 strcpy (debugfile, dir);
1db33378 1401 strcat (debugfile, debuglink);
5b5d99cf 1402
32a0e547 1403 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1404 return debugfile;
5417f6dc 1405
5b5d99cf
JB
1406 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1407 strcpy (debugfile, dir);
1408 strcat (debugfile, DEBUG_SUBDIRECTORY);
1409 strcat (debugfile, "/");
1db33378 1410 strcat (debugfile, debuglink);
5b5d99cf 1411
32a0e547 1412 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1413 return debugfile;
5417f6dc 1414
24ddea62 1415 /* Then try in the global debugfile directories.
f888f159 1416
24ddea62
JK
1417 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1418 cause "/..." lookups. */
5417f6dc 1419
e4ab2fad
JK
1420 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1421 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
24ddea62 1422
e4ab2fad
JK
1423 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1424 {
1425 strcpy (debugfile, debugdir);
aa28a74e 1426 strcat (debugfile, "/");
24ddea62 1427 strcat (debugfile, dir);
1db33378 1428 strcat (debugfile, debuglink);
aa28a74e 1429
32a0e547 1430 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1431 return debugfile;
24ddea62
JK
1432
1433 /* If the file is in the sysroot, try using its base path in the
1434 global debugfile directory. */
1db33378
PP
1435 if (canon_dir != NULL
1436 && filename_ncmp (canon_dir, gdb_sysroot,
0ba1096a 1437 strlen (gdb_sysroot)) == 0
1db33378 1438 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
24ddea62 1439 {
e4ab2fad 1440 strcpy (debugfile, debugdir);
1db33378 1441 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
24ddea62 1442 strcat (debugfile, "/");
1db33378 1443 strcat (debugfile, debuglink);
24ddea62 1444
32a0e547 1445 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1446 return debugfile;
24ddea62 1447 }
aa28a74e 1448 }
f888f159 1449
e4ab2fad 1450 do_cleanups (back_to);
25522fae 1451 xfree (debugfile);
1db33378
PP
1452 return NULL;
1453}
1454
7edbb660 1455/* Modify PATH to contain only "[/]directory/" part of PATH.
1db33378
PP
1456 If there were no directory separators in PATH, PATH will be empty
1457 string on return. */
1458
1459static void
1460terminate_after_last_dir_separator (char *path)
1461{
1462 int i;
1463
1464 /* Strip off the final filename part, leaving the directory name,
1465 followed by a slash. The directory can be relative or absolute. */
1466 for (i = strlen(path) - 1; i >= 0; i--)
1467 if (IS_DIR_SEPARATOR (path[i]))
1468 break;
1469
1470 /* If I is -1 then no directory is present there and DIR will be "". */
1471 path[i + 1] = '\0';
1472}
1473
1474/* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1475 Returns pathname, or NULL. */
1476
1477char *
1478find_separate_debug_file_by_debuglink (struct objfile *objfile)
1479{
1480 char *debuglink;
1481 char *dir, *canon_dir;
1482 char *debugfile;
1483 unsigned long crc32;
1484 struct cleanup *cleanups;
1485
cc0ea93c 1486 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1db33378
PP
1487
1488 if (debuglink == NULL)
1489 {
1490 /* There's no separate debug info, hence there's no way we could
1491 load it => no warning. */
1492 return NULL;
1493 }
1494
71bdabee 1495 cleanups = make_cleanup (xfree, debuglink);
1db33378 1496 dir = xstrdup (objfile->name);
71bdabee 1497 make_cleanup (xfree, dir);
1db33378
PP
1498 terminate_after_last_dir_separator (dir);
1499 canon_dir = lrealpath (dir);
1500
1501 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1502 crc32, objfile);
1503 xfree (canon_dir);
1504
1505 if (debugfile == NULL)
1506 {
1507#ifdef HAVE_LSTAT
1508 /* For PR gdb/9538, try again with realpath (if different from the
1509 original). */
1510
1511 struct stat st_buf;
1512
1513 if (lstat (objfile->name, &st_buf) == 0 && S_ISLNK(st_buf.st_mode))
1514 {
1515 char *symlink_dir;
1516
1517 symlink_dir = lrealpath (objfile->name);
1518 if (symlink_dir != NULL)
1519 {
1520 make_cleanup (xfree, symlink_dir);
1521 terminate_after_last_dir_separator (symlink_dir);
1522 if (strcmp (dir, symlink_dir) != 0)
1523 {
1524 /* Different directory, so try using it. */
1525 debugfile = find_separate_debug_file (symlink_dir,
1526 symlink_dir,
1527 debuglink,
1528 crc32,
1529 objfile);
1530 }
1531 }
1532 }
1533#endif /* HAVE_LSTAT */
1534 }
aa28a74e 1535
1db33378 1536 do_cleanups (cleanups);
25522fae 1537 return debugfile;
5b5d99cf
JB
1538}
1539
c906108c
SS
1540/* This is the symbol-file command. Read the file, analyze its
1541 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1542 the command is rather bizarre:
1543
1544 1. The function buildargv implements various quoting conventions
1545 which are undocumented and have little or nothing in common with
1546 the way things are quoted (or not quoted) elsewhere in GDB.
1547
1548 2. Options are used, which are not generally used in GDB (perhaps
1549 "set mapped on", "set readnow on" would be better)
1550
1551 3. The order of options matters, which is contrary to GNU
c906108c
SS
1552 conventions (because it is confusing and inconvenient). */
1553
1554void
fba45db2 1555symbol_file_command (char *args, int from_tty)
c906108c 1556{
c906108c
SS
1557 dont_repeat ();
1558
1559 if (args == NULL)
1560 {
1adeb98a 1561 symbol_file_clear (from_tty);
c906108c
SS
1562 }
1563 else
1564 {
d1a41061 1565 char **argv = gdb_buildargv (args);
cb2f3a29
MK
1566 int flags = OBJF_USERLOADED;
1567 struct cleanup *cleanups;
1568 char *name = NULL;
1569
7a292a7a 1570 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1571 while (*argv != NULL)
1572 {
78a4a9b9
AC
1573 if (strcmp (*argv, "-readnow") == 0)
1574 flags |= OBJF_READNOW;
1575 else if (**argv == '-')
8a3fe4f8 1576 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1577 else
1578 {
cb2f3a29 1579 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1580 name = *argv;
78a4a9b9 1581 }
cb2f3a29 1582
c906108c
SS
1583 argv++;
1584 }
1585
1586 if (name == NULL)
cb2f3a29
MK
1587 error (_("no symbol file name was specified"));
1588
c906108c
SS
1589 do_cleanups (cleanups);
1590 }
1591}
1592
1593/* Set the initial language.
1594
cb2f3a29
MK
1595 FIXME: A better solution would be to record the language in the
1596 psymtab when reading partial symbols, and then use it (if known) to
1597 set the language. This would be a win for formats that encode the
1598 language in an easily discoverable place, such as DWARF. For
1599 stabs, we can jump through hoops looking for specially named
1600 symbols or try to intuit the language from the specific type of
1601 stabs we find, but we can't do that until later when we read in
1602 full symbols. */
c906108c 1603
8b60591b 1604void
fba45db2 1605set_initial_language (void)
c906108c 1606{
c5aa993b 1607 enum language lang = language_unknown;
c906108c 1608
01f8c46d
JK
1609 if (language_of_main != language_unknown)
1610 lang = language_of_main;
1611 else
1612 {
1613 const char *filename;
f888f159 1614
01f8c46d
JK
1615 filename = find_main_filename ();
1616 if (filename != NULL)
1617 lang = deduce_language_from_filename (filename);
1618 }
cb2f3a29 1619
ccefe4c4
TT
1620 if (lang == language_unknown)
1621 {
1622 /* Make C the default language */
1623 lang = language_c;
c906108c 1624 }
ccefe4c4
TT
1625
1626 set_language (lang);
1627 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1628}
1629
874f5765 1630/* If NAME is a remote name open the file using remote protocol, otherwise
cbb099e8
TT
1631 open it normally. Returns a new reference to the BFD. On error,
1632 returns NULL with the BFD error set. */
874f5765
TG
1633
1634bfd *
08d2cd74 1635gdb_bfd_open_maybe_remote (const char *name)
874f5765 1636{
520b0001
TT
1637 bfd *result;
1638
874f5765 1639 if (remote_filename_p (name))
520b0001 1640 result = remote_bfd_open (name, gnutarget);
874f5765 1641 else
1c00ec6b 1642 result = gdb_bfd_open (name, gnutarget, -1);
520b0001 1643
520b0001 1644 return result;
874f5765
TG
1645}
1646
cb2f3a29
MK
1647/* Open the file specified by NAME and hand it off to BFD for
1648 preliminary analysis. Return a newly initialized bfd *, which
1649 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1650 absolute). In case of trouble, error() is called. */
c906108c
SS
1651
1652bfd *
fba45db2 1653symfile_bfd_open (char *name)
c906108c
SS
1654{
1655 bfd *sym_bfd;
1656 int desc;
1657 char *absolute_name;
faab9922 1658 struct cleanup *back_to;
c906108c 1659
f1838a98
UW
1660 if (remote_filename_p (name))
1661 {
520b0001 1662 sym_bfd = remote_bfd_open (name, gnutarget);
f1838a98 1663 if (!sym_bfd)
a4453b7e
TT
1664 error (_("`%s': can't open to read symbols: %s."), name,
1665 bfd_errmsg (bfd_get_error ()));
f1838a98
UW
1666
1667 if (!bfd_check_format (sym_bfd, bfd_object))
1668 {
f9a062ff 1669 make_cleanup_bfd_unref (sym_bfd);
f1838a98
UW
1670 error (_("`%s': can't read symbols: %s."), name,
1671 bfd_errmsg (bfd_get_error ()));
1672 }
1673
1674 return sym_bfd;
1675 }
1676
cb2f3a29 1677 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c
SS
1678
1679 /* Look down path for it, allocate 2nd new malloc'd copy. */
cb2f3a29 1680 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
fbdebf46 1681 O_RDONLY | O_BINARY, &absolute_name);
608506ed 1682#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1683 if (desc < 0)
1684 {
1685 char *exename = alloca (strlen (name) + 5);
433759f7 1686
c906108c 1687 strcat (strcpy (exename, name), ".exe");
014d698b 1688 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
fbdebf46 1689 O_RDONLY | O_BINARY, &absolute_name);
c906108c
SS
1690 }
1691#endif
1692 if (desc < 0)
1693 {
b8c9b27d 1694 make_cleanup (xfree, name);
c906108c
SS
1695 perror_with_name (name);
1696 }
cb2f3a29 1697
cb2f3a29
MK
1698 xfree (name);
1699 name = absolute_name;
faab9922 1700 back_to = make_cleanup (xfree, name);
c906108c 1701
1c00ec6b 1702 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
c906108c 1703 if (!sym_bfd)
faab9922
JK
1704 error (_("`%s': can't open to read symbols: %s."), name,
1705 bfd_errmsg (bfd_get_error ()));
549c1eea 1706 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1707
1708 if (!bfd_check_format (sym_bfd, bfd_object))
1709 {
f9a062ff 1710 make_cleanup_bfd_unref (sym_bfd);
f1838a98 1711 error (_("`%s': can't read symbols: %s."), name,
c906108c
SS
1712 bfd_errmsg (bfd_get_error ()));
1713 }
cb2f3a29 1714
faab9922
JK
1715 do_cleanups (back_to);
1716
cb2f3a29 1717 return sym_bfd;
c906108c
SS
1718}
1719
cb2f3a29
MK
1720/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1721 the section was not found. */
1722
0e931cf0
JB
1723int
1724get_section_index (struct objfile *objfile, char *section_name)
1725{
1726 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1727
0e931cf0
JB
1728 if (sect)
1729 return sect->index;
1730 else
1731 return -1;
1732}
1733
cb2f3a29
MK
1734/* Link SF into the global symtab_fns list. Called on startup by the
1735 _initialize routine in each object file format reader, to register
b021a221 1736 information about each format the reader is prepared to handle. */
c906108c
SS
1737
1738void
00b5771c 1739add_symtab_fns (const struct sym_fns *sf)
c906108c 1740{
00b5771c 1741 VEC_safe_push (sym_fns_ptr, symtab_fns, sf);
c906108c
SS
1742}
1743
cb2f3a29
MK
1744/* Initialize OBJFILE to read symbols from its associated BFD. It
1745 either returns or calls error(). The result is an initialized
1746 struct sym_fns in the objfile structure, that contains cached
1747 information about the symbol file. */
c906108c 1748
00b5771c 1749static const struct sym_fns *
31d99776 1750find_sym_fns (bfd *abfd)
c906108c 1751{
00b5771c 1752 const struct sym_fns *sf;
31d99776 1753 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
00b5771c 1754 int i;
c906108c 1755
75245b24
MS
1756 if (our_flavour == bfd_target_srec_flavour
1757 || our_flavour == bfd_target_ihex_flavour
1758 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1759 return NULL; /* No symbols. */
75245b24 1760
00b5771c 1761 for (i = 0; VEC_iterate (sym_fns_ptr, symtab_fns, i, sf); ++i)
31d99776
DJ
1762 if (our_flavour == sf->sym_flavour)
1763 return sf;
cb2f3a29 1764
8a3fe4f8 1765 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1766 bfd_get_target (abfd));
c906108c
SS
1767}
1768\f
cb2f3a29 1769
c906108c
SS
1770/* This function runs the load command of our current target. */
1771
1772static void
fba45db2 1773load_command (char *arg, int from_tty)
c906108c 1774{
e5cc9f32
JB
1775 dont_repeat ();
1776
4487aabf
PA
1777 /* The user might be reloading because the binary has changed. Take
1778 this opportunity to check. */
1779 reopen_exec_file ();
1780 reread_symbols ();
1781
c906108c 1782 if (arg == NULL)
1986bccd
AS
1783 {
1784 char *parg;
1785 int count = 0;
1786
1787 parg = arg = get_exec_file (1);
1788
1789 /* Count how many \ " ' tab space there are in the name. */
1790 while ((parg = strpbrk (parg, "\\\"'\t ")))
1791 {
1792 parg++;
1793 count++;
1794 }
1795
1796 if (count)
1797 {
1798 /* We need to quote this string so buildargv can pull it apart. */
1799 char *temp = xmalloc (strlen (arg) + count + 1 );
1800 char *ptemp = temp;
1801 char *prev;
1802
1803 make_cleanup (xfree, temp);
1804
1805 prev = parg = arg;
1806 while ((parg = strpbrk (parg, "\\\"'\t ")))
1807 {
1808 strncpy (ptemp, prev, parg - prev);
1809 ptemp += parg - prev;
1810 prev = parg++;
1811 *ptemp++ = '\\';
1812 }
1813 strcpy (ptemp, prev);
1814
1815 arg = temp;
1816 }
1817 }
1818
c906108c 1819 target_load (arg, from_tty);
2889e661
JB
1820
1821 /* After re-loading the executable, we don't really know which
1822 overlays are mapped any more. */
1823 overlay_cache_invalid = 1;
c906108c
SS
1824}
1825
1826/* This version of "load" should be usable for any target. Currently
1827 it is just used for remote targets, not inftarg.c or core files,
1828 on the theory that only in that case is it useful.
1829
1830 Avoiding xmodem and the like seems like a win (a) because we don't have
1831 to worry about finding it, and (b) On VMS, fork() is very slow and so
1832 we don't want to run a subprocess. On the other hand, I'm not sure how
1833 performance compares. */
917317f4 1834
917317f4
JM
1835static int validate_download = 0;
1836
e4f9b4d5
MS
1837/* Callback service function for generic_load (bfd_map_over_sections). */
1838
1839static void
1840add_section_size_callback (bfd *abfd, asection *asec, void *data)
1841{
1842 bfd_size_type *sum = data;
1843
2c500098 1844 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1845}
1846
1847/* Opaque data for load_section_callback. */
1848struct load_section_data {
f698ca8e 1849 CORE_ADDR load_offset;
a76d924d
DJ
1850 struct load_progress_data *progress_data;
1851 VEC(memory_write_request_s) *requests;
1852};
1853
1854/* Opaque data for load_progress. */
1855struct load_progress_data {
1856 /* Cumulative data. */
e4f9b4d5
MS
1857 unsigned long write_count;
1858 unsigned long data_count;
1859 bfd_size_type total_size;
a76d924d
DJ
1860};
1861
1862/* Opaque data for load_progress for a single section. */
1863struct load_progress_section_data {
1864 struct load_progress_data *cumulative;
cf7a04e8 1865
a76d924d 1866 /* Per-section data. */
cf7a04e8
DJ
1867 const char *section_name;
1868 ULONGEST section_sent;
1869 ULONGEST section_size;
1870 CORE_ADDR lma;
1871 gdb_byte *buffer;
e4f9b4d5
MS
1872};
1873
a76d924d 1874/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1875
1876static void
1877load_progress (ULONGEST bytes, void *untyped_arg)
1878{
a76d924d
DJ
1879 struct load_progress_section_data *args = untyped_arg;
1880 struct load_progress_data *totals;
1881
1882 if (args == NULL)
1883 /* Writing padding data. No easy way to get at the cumulative
1884 stats, so just ignore this. */
1885 return;
1886
1887 totals = args->cumulative;
1888
1889 if (bytes == 0 && args->section_sent == 0)
1890 {
1891 /* The write is just starting. Let the user know we've started
1892 this section. */
79a45e25 1893 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
5af949e3 1894 args->section_name, hex_string (args->section_size),
f5656ead 1895 paddress (target_gdbarch (), args->lma));
a76d924d
DJ
1896 return;
1897 }
cf7a04e8
DJ
1898
1899 if (validate_download)
1900 {
1901 /* Broken memories and broken monitors manifest themselves here
1902 when bring new computers to life. This doubles already slow
1903 downloads. */
1904 /* NOTE: cagney/1999-10-18: A more efficient implementation
1905 might add a verify_memory() method to the target vector and
1906 then use that. remote.c could implement that method using
1907 the ``qCRC'' packet. */
1908 gdb_byte *check = xmalloc (bytes);
1909 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1910
1911 if (target_read_memory (args->lma, check, bytes) != 0)
5af949e3 1912 error (_("Download verify read failed at %s"),
f5656ead 1913 paddress (target_gdbarch (), args->lma));
cf7a04e8 1914 if (memcmp (args->buffer, check, bytes) != 0)
5af949e3 1915 error (_("Download verify compare failed at %s"),
f5656ead 1916 paddress (target_gdbarch (), args->lma));
cf7a04e8
DJ
1917 do_cleanups (verify_cleanups);
1918 }
a76d924d 1919 totals->data_count += bytes;
cf7a04e8
DJ
1920 args->lma += bytes;
1921 args->buffer += bytes;
a76d924d 1922 totals->write_count += 1;
cf7a04e8 1923 args->section_sent += bytes;
522002f9 1924 if (check_quit_flag ()
cf7a04e8
DJ
1925 || (deprecated_ui_load_progress_hook != NULL
1926 && deprecated_ui_load_progress_hook (args->section_name,
1927 args->section_sent)))
1928 error (_("Canceled the download"));
1929
1930 if (deprecated_show_load_progress != NULL)
1931 deprecated_show_load_progress (args->section_name,
1932 args->section_sent,
1933 args->section_size,
a76d924d
DJ
1934 totals->data_count,
1935 totals->total_size);
cf7a04e8
DJ
1936}
1937
e4f9b4d5
MS
1938/* Callback service function for generic_load (bfd_map_over_sections). */
1939
1940static void
1941load_section_callback (bfd *abfd, asection *asec, void *data)
1942{
a76d924d 1943 struct memory_write_request *new_request;
e4f9b4d5 1944 struct load_section_data *args = data;
a76d924d 1945 struct load_progress_section_data *section_data;
cf7a04e8
DJ
1946 bfd_size_type size = bfd_get_section_size (asec);
1947 gdb_byte *buffer;
cf7a04e8 1948 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 1949
cf7a04e8
DJ
1950 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1951 return;
e4f9b4d5 1952
cf7a04e8
DJ
1953 if (size == 0)
1954 return;
e4f9b4d5 1955
a76d924d
DJ
1956 new_request = VEC_safe_push (memory_write_request_s,
1957 args->requests, NULL);
1958 memset (new_request, 0, sizeof (struct memory_write_request));
1959 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1960 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
3e43a32a
MS
1961 new_request->end = new_request->begin + size; /* FIXME Should size
1962 be in instead? */
a76d924d
DJ
1963 new_request->data = xmalloc (size);
1964 new_request->baton = section_data;
cf7a04e8 1965
a76d924d 1966 buffer = new_request->data;
cf7a04e8 1967
a76d924d
DJ
1968 section_data->cumulative = args->progress_data;
1969 section_data->section_name = sect_name;
1970 section_data->section_size = size;
1971 section_data->lma = new_request->begin;
1972 section_data->buffer = buffer;
cf7a04e8
DJ
1973
1974 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
1975}
1976
1977/* Clean up an entire memory request vector, including load
1978 data and progress records. */
cf7a04e8 1979
a76d924d
DJ
1980static void
1981clear_memory_write_data (void *arg)
1982{
1983 VEC(memory_write_request_s) **vec_p = arg;
1984 VEC(memory_write_request_s) *vec = *vec_p;
1985 int i;
1986 struct memory_write_request *mr;
cf7a04e8 1987
a76d924d
DJ
1988 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1989 {
1990 xfree (mr->data);
1991 xfree (mr->baton);
1992 }
1993 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
1994}
1995
c906108c 1996void
917317f4 1997generic_load (char *args, int from_tty)
c906108c 1998{
c906108c 1999 bfd *loadfile_bfd;
2b71414d 2000 struct timeval start_time, end_time;
917317f4 2001 char *filename;
1986bccd 2002 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 2003 struct load_section_data cbdata;
a76d924d 2004 struct load_progress_data total_progress;
79a45e25 2005 struct ui_out *uiout = current_uiout;
a76d924d 2006
e4f9b4d5 2007 CORE_ADDR entry;
1986bccd 2008 char **argv;
e4f9b4d5 2009
a76d924d
DJ
2010 memset (&cbdata, 0, sizeof (cbdata));
2011 memset (&total_progress, 0, sizeof (total_progress));
2012 cbdata.progress_data = &total_progress;
2013
2014 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 2015
d1a41061
PP
2016 if (args == NULL)
2017 error_no_arg (_("file to load"));
1986bccd 2018
d1a41061 2019 argv = gdb_buildargv (args);
1986bccd
AS
2020 make_cleanup_freeargv (argv);
2021
2022 filename = tilde_expand (argv[0]);
2023 make_cleanup (xfree, filename);
2024
2025 if (argv[1] != NULL)
917317f4 2026 {
f698ca8e 2027 const char *endptr;
ba5f2f8a 2028
f698ca8e 2029 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
1986bccd
AS
2030
2031 /* If the last word was not a valid number then
2032 treat it as a file name with spaces in. */
2033 if (argv[1] == endptr)
2034 error (_("Invalid download offset:%s."), argv[1]);
2035
2036 if (argv[2] != NULL)
2037 error (_("Too many parameters."));
917317f4 2038 }
c906108c 2039
c378eb4e 2040 /* Open the file for loading. */
1c00ec6b 2041 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
c906108c
SS
2042 if (loadfile_bfd == NULL)
2043 {
2044 perror_with_name (filename);
2045 return;
2046 }
917317f4 2047
f9a062ff 2048 make_cleanup_bfd_unref (loadfile_bfd);
c906108c 2049
c5aa993b 2050 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 2051 {
8a3fe4f8 2052 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
2053 bfd_errmsg (bfd_get_error ()));
2054 }
c5aa993b 2055
5417f6dc 2056 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
2057 (void *) &total_progress.total_size);
2058
2059 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 2060
2b71414d 2061 gettimeofday (&start_time, NULL);
c906108c 2062
a76d924d
DJ
2063 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2064 load_progress) != 0)
2065 error (_("Load failed"));
c906108c 2066
2b71414d 2067 gettimeofday (&end_time, NULL);
ba5f2f8a 2068
e4f9b4d5 2069 entry = bfd_get_start_address (loadfile_bfd);
8c2b9656 2070 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
e4f9b4d5 2071 ui_out_text (uiout, "Start address ");
f5656ead 2072 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch (), entry));
e4f9b4d5 2073 ui_out_text (uiout, ", load size ");
a76d924d 2074 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 2075 ui_out_text (uiout, "\n");
e4f9b4d5
MS
2076 /* We were doing this in remote-mips.c, I suspect it is right
2077 for other targets too. */
fb14de7b 2078 regcache_write_pc (get_current_regcache (), entry);
c906108c 2079
38963c97
DJ
2080 /* Reset breakpoints, now that we have changed the load image. For
2081 instance, breakpoints may have been set (or reset, by
2082 post_create_inferior) while connected to the target but before we
2083 loaded the program. In that case, the prologue analyzer could
2084 have read instructions from the target to find the right
2085 breakpoint locations. Loading has changed the contents of that
2086 memory. */
2087
2088 breakpoint_re_set ();
2089
7ca9f392
AC
2090 /* FIXME: are we supposed to call symbol_file_add or not? According
2091 to a comment from remote-mips.c (where a call to symbol_file_add
2092 was commented out), making the call confuses GDB if more than one
2093 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 2094 others don't (or didn't - perhaps they have all been deleted). */
c906108c 2095
a76d924d
DJ
2096 print_transfer_performance (gdb_stdout, total_progress.data_count,
2097 total_progress.write_count,
2098 &start_time, &end_time);
c906108c
SS
2099
2100 do_cleanups (old_cleanups);
2101}
2102
c378eb4e 2103/* Report how fast the transfer went. */
c906108c 2104
917317f4 2105void
d9fcf2fb 2106print_transfer_performance (struct ui_file *stream,
917317f4
JM
2107 unsigned long data_count,
2108 unsigned long write_count,
2b71414d
DJ
2109 const struct timeval *start_time,
2110 const struct timeval *end_time)
917317f4 2111{
9f43d28c 2112 ULONGEST time_count;
79a45e25 2113 struct ui_out *uiout = current_uiout;
2b71414d
DJ
2114
2115 /* Compute the elapsed time in milliseconds, as a tradeoff between
2116 accuracy and overflow. */
2117 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2118 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2119
8b93c638
JM
2120 ui_out_text (uiout, "Transfer rate: ");
2121 if (time_count > 0)
2122 {
9f43d28c
DJ
2123 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2124
2125 if (ui_out_is_mi_like_p (uiout))
2126 {
2127 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2128 ui_out_text (uiout, " bits/sec");
2129 }
2130 else if (rate < 1024)
2131 {
2132 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2133 ui_out_text (uiout, " bytes/sec");
2134 }
2135 else
2136 {
2137 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2138 ui_out_text (uiout, " KB/sec");
2139 }
8b93c638
JM
2140 }
2141 else
2142 {
ba5f2f8a 2143 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 2144 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
2145 }
2146 if (write_count > 0)
2147 {
2148 ui_out_text (uiout, ", ");
ba5f2f8a 2149 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
2150 ui_out_text (uiout, " bytes/write");
2151 }
2152 ui_out_text (uiout, ".\n");
c906108c
SS
2153}
2154
2155/* This function allows the addition of incrementally linked object files.
2156 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2157/* Note: ezannoni 2000-04-13 This function/command used to have a
2158 special case syntax for the rombug target (Rombug is the boot
2159 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2160 rombug case, the user doesn't need to supply a text address,
2161 instead a call to target_link() (in target.c) would supply the
c378eb4e 2162 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2163
c906108c 2164static void
fba45db2 2165add_symbol_file_command (char *args, int from_tty)
c906108c 2166{
5af949e3 2167 struct gdbarch *gdbarch = get_current_arch ();
db162d44 2168 char *filename = NULL;
2df3850c 2169 int flags = OBJF_USERLOADED;
c906108c 2170 char *arg;
db162d44 2171 int section_index = 0;
2acceee2
JM
2172 int argcnt = 0;
2173 int sec_num = 0;
2174 int i;
db162d44
EZ
2175 int expecting_sec_name = 0;
2176 int expecting_sec_addr = 0;
5b96932b 2177 char **argv;
db162d44 2178
a39a16c4 2179 struct sect_opt
2acceee2 2180 {
2acceee2
JM
2181 char *name;
2182 char *value;
a39a16c4 2183 };
db162d44 2184
a39a16c4
MM
2185 struct section_addr_info *section_addrs;
2186 struct sect_opt *sect_opts = NULL;
2187 size_t num_sect_opts = 0;
3017564a 2188 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2189
a39a16c4 2190 num_sect_opts = 16;
5417f6dc 2191 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
2192 * sizeof (struct sect_opt));
2193
c906108c
SS
2194 dont_repeat ();
2195
2196 if (args == NULL)
8a3fe4f8 2197 error (_("add-symbol-file takes a file name and an address"));
c906108c 2198
d1a41061 2199 argv = gdb_buildargv (args);
5b96932b 2200 make_cleanup_freeargv (argv);
db162d44 2201
5b96932b
AS
2202 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2203 {
c378eb4e 2204 /* Process the argument. */
db162d44 2205 if (argcnt == 0)
c906108c 2206 {
c378eb4e 2207 /* The first argument is the file name. */
db162d44 2208 filename = tilde_expand (arg);
3017564a 2209 make_cleanup (xfree, filename);
c906108c 2210 }
db162d44 2211 else
7a78ae4e
ND
2212 if (argcnt == 1)
2213 {
2214 /* The second argument is always the text address at which
c378eb4e 2215 to load the program. */
7a78ae4e
ND
2216 sect_opts[section_index].name = ".text";
2217 sect_opts[section_index].value = arg;
f414f22f 2218 if (++section_index >= num_sect_opts)
a39a16c4
MM
2219 {
2220 num_sect_opts *= 2;
5417f6dc 2221 sect_opts = ((struct sect_opt *)
a39a16c4 2222 xrealloc (sect_opts,
5417f6dc 2223 num_sect_opts
a39a16c4
MM
2224 * sizeof (struct sect_opt)));
2225 }
7a78ae4e
ND
2226 }
2227 else
2228 {
2229 /* It's an option (starting with '-') or it's an argument
c378eb4e 2230 to an option. */
7a78ae4e
ND
2231
2232 if (*arg == '-')
2233 {
78a4a9b9
AC
2234 if (strcmp (arg, "-readnow") == 0)
2235 flags |= OBJF_READNOW;
2236 else if (strcmp (arg, "-s") == 0)
2237 {
2238 expecting_sec_name = 1;
2239 expecting_sec_addr = 1;
2240 }
7a78ae4e
ND
2241 }
2242 else
2243 {
2244 if (expecting_sec_name)
db162d44 2245 {
7a78ae4e
ND
2246 sect_opts[section_index].name = arg;
2247 expecting_sec_name = 0;
db162d44
EZ
2248 }
2249 else
7a78ae4e
ND
2250 if (expecting_sec_addr)
2251 {
2252 sect_opts[section_index].value = arg;
2253 expecting_sec_addr = 0;
f414f22f 2254 if (++section_index >= num_sect_opts)
a39a16c4
MM
2255 {
2256 num_sect_opts *= 2;
5417f6dc 2257 sect_opts = ((struct sect_opt *)
a39a16c4 2258 xrealloc (sect_opts,
5417f6dc 2259 num_sect_opts
a39a16c4
MM
2260 * sizeof (struct sect_opt)));
2261 }
7a78ae4e
ND
2262 }
2263 else
3e43a32a 2264 error (_("USAGE: add-symbol-file <filename> <textaddress>"
412946b6 2265 " [-readnow] [-s <secname> <addr>]*"));
7a78ae4e
ND
2266 }
2267 }
c906108c 2268 }
c906108c 2269
927890d0
JB
2270 /* This command takes at least two arguments. The first one is a
2271 filename, and the second is the address where this file has been
2272 loaded. Abort now if this address hasn't been provided by the
2273 user. */
2274 if (section_index < 1)
2275 error (_("The address where %s has been loaded is missing"), filename);
2276
c378eb4e 2277 /* Print the prompt for the query below. And save the arguments into
db162d44
EZ
2278 a sect_addr_info structure to be passed around to other
2279 functions. We have to split this up into separate print
bb599908 2280 statements because hex_string returns a local static
c378eb4e 2281 string. */
5417f6dc 2282
a3f17187 2283 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2284 section_addrs = alloc_section_addr_info (section_index);
2285 make_cleanup (xfree, section_addrs);
db162d44 2286 for (i = 0; i < section_index; i++)
c906108c 2287 {
db162d44
EZ
2288 CORE_ADDR addr;
2289 char *val = sect_opts[i].value;
2290 char *sec = sect_opts[i].name;
5417f6dc 2291
ae822768 2292 addr = parse_and_eval_address (val);
db162d44 2293
db162d44 2294 /* Here we store the section offsets in the order they were
c378eb4e 2295 entered on the command line. */
a39a16c4
MM
2296 section_addrs->other[sec_num].name = sec;
2297 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2298 printf_unfiltered ("\t%s_addr = %s\n", sec,
2299 paddress (gdbarch, addr));
db162d44
EZ
2300 sec_num++;
2301
5417f6dc 2302 /* The object's sections are initialized when a
db162d44 2303 call is made to build_objfile_section_table (objfile).
5417f6dc 2304 This happens in reread_symbols.
db162d44
EZ
2305 At this point, we don't know what file type this is,
2306 so we can't determine what section names are valid. */
2acceee2 2307 }
d76488d8 2308 section_addrs->num_sections = sec_num;
db162d44 2309
2acceee2 2310 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2311 error (_("Not confirmed."));
c906108c 2312
7eedccfa
PP
2313 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2314 section_addrs, flags);
c906108c
SS
2315
2316 /* Getting new symbols may change our opinion about what is
2317 frameless. */
2318 reinit_frame_cache ();
db162d44 2319 do_cleanups (my_cleanups);
c906108c
SS
2320}
2321\f
70992597 2322
4ac39b97
JK
2323typedef struct objfile *objfilep;
2324
2325DEF_VEC_P (objfilep);
2326
c906108c 2327/* Re-read symbols if a symbol-file has changed. */
3b7bacac 2328
c906108c 2329void
fba45db2 2330reread_symbols (void)
c906108c
SS
2331{
2332 struct objfile *objfile;
2333 long new_modtime;
c906108c
SS
2334 struct stat new_statbuf;
2335 int res;
4ac39b97
JK
2336 VEC (objfilep) *new_objfiles = NULL;
2337 struct cleanup *all_cleanups;
2338
2339 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
c906108c
SS
2340
2341 /* With the addition of shared libraries, this should be modified,
2342 the load time should be saved in the partial symbol tables, since
2343 different tables may come from different source files. FIXME.
2344 This routine should then walk down each partial symbol table
c378eb4e 2345 and see if the symbol table that it originates from has been changed. */
c906108c 2346
c5aa993b
JM
2347 for (objfile = object_files; objfile; objfile = objfile->next)
2348 {
9cce227f
TG
2349 /* solib-sunos.c creates one objfile with obfd. */
2350 if (objfile->obfd == NULL)
2351 continue;
2352
2353 /* Separate debug objfiles are handled in the main objfile. */
2354 if (objfile->separate_debug_objfile_backlink)
2355 continue;
2356
02aeec7b
JB
2357 /* If this object is from an archive (what you usually create with
2358 `ar', often called a `static library' on most systems, though
2359 a `shared library' on AIX is also an archive), then you should
2360 stat on the archive name, not member name. */
9cce227f
TG
2361 if (objfile->obfd->my_archive)
2362 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2363 else
9cce227f
TG
2364 res = stat (objfile->name, &new_statbuf);
2365 if (res != 0)
2366 {
c378eb4e 2367 /* FIXME, should use print_sys_errmsg but it's not filtered. */
9cce227f
TG
2368 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2369 objfile->name);
2370 continue;
2371 }
2372 new_modtime = new_statbuf.st_mtime;
2373 if (new_modtime != objfile->mtime)
2374 {
2375 struct cleanup *old_cleanups;
2376 struct section_offsets *offsets;
2377 int num_offsets;
2378 char *obfd_filename;
2379
2380 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2381 objfile->name);
2382
2383 /* There are various functions like symbol_file_add,
2384 symfile_bfd_open, syms_from_objfile, etc., which might
2385 appear to do what we want. But they have various other
2386 effects which we *don't* want. So we just do stuff
2387 ourselves. We don't worry about mapped files (for one thing,
2388 any mapped file will be out of date). */
2389
2390 /* If we get an error, blow away this objfile (not sure if
2391 that is the correct response for things like shared
2392 libraries). */
2393 old_cleanups = make_cleanup_free_objfile (objfile);
2394 /* We need to do this whenever any symbols go away. */
2395 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2396
0ba1096a
KT
2397 if (exec_bfd != NULL
2398 && filename_cmp (bfd_get_filename (objfile->obfd),
2399 bfd_get_filename (exec_bfd)) == 0)
9cce227f
TG
2400 {
2401 /* Reload EXEC_BFD without asking anything. */
2402
2403 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2404 }
2405
f6eeced0
JK
2406 /* Keep the calls order approx. the same as in free_objfile. */
2407
2408 /* Free the separate debug objfiles. It will be
2409 automatically recreated by sym_read. */
2410 free_objfile_separate_debug (objfile);
2411
2412 /* Remove any references to this objfile in the global
2413 value lists. */
2414 preserve_values (objfile);
2415
2416 /* Nuke all the state that we will re-read. Much of the following
2417 code which sets things to NULL really is necessary to tell
2418 other parts of GDB that there is nothing currently there.
2419
2420 Try to keep the freeing order compatible with free_objfile. */
2421
2422 if (objfile->sf != NULL)
2423 {
2424 (*objfile->sf->sym_finish) (objfile);
2425 }
2426
2427 clear_objfile_data (objfile);
2428
e1507e95 2429 /* Clean up any state BFD has sitting around. */
a4453b7e
TT
2430 {
2431 struct bfd *obfd = objfile->obfd;
2432
2433 obfd_filename = bfd_get_filename (objfile->obfd);
2434 /* Open the new BFD before freeing the old one, so that
2435 the filename remains live. */
08d2cd74 2436 objfile->obfd = gdb_bfd_open_maybe_remote (obfd_filename);
e1507e95
TT
2437 if (objfile->obfd == NULL)
2438 {
2439 /* We have to make a cleanup and error here, rather
2440 than erroring later, because once we unref OBFD,
2441 OBFD_FILENAME will be freed. */
2442 make_cleanup_bfd_unref (obfd);
2443 error (_("Can't open %s to read symbols."), obfd_filename);
2444 }
a4453b7e
TT
2445 gdb_bfd_unref (obfd);
2446 }
2447
e1507e95 2448 objfile->name = bfd_get_filename (objfile->obfd);
9cce227f
TG
2449 /* bfd_openr sets cacheable to true, which is what we want. */
2450 if (!bfd_check_format (objfile->obfd, bfd_object))
2451 error (_("Can't read symbols from %s: %s."), objfile->name,
2452 bfd_errmsg (bfd_get_error ()));
2453
2454 /* Save the offsets, we will nuke them with the rest of the
2455 objfile_obstack. */
2456 num_offsets = objfile->num_sections;
2457 offsets = ((struct section_offsets *)
2458 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2459 memcpy (offsets, objfile->section_offsets,
2460 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2461
9cce227f
TG
2462 /* FIXME: Do we have to free a whole linked list, or is this
2463 enough? */
2464 if (objfile->global_psymbols.list)
2465 xfree (objfile->global_psymbols.list);
2466 memset (&objfile->global_psymbols, 0,
2467 sizeof (objfile->global_psymbols));
2468 if (objfile->static_psymbols.list)
2469 xfree (objfile->static_psymbols.list);
2470 memset (&objfile->static_psymbols, 0,
2471 sizeof (objfile->static_psymbols));
2472
c378eb4e 2473 /* Free the obstacks for non-reusable objfiles. */
710e1a31
SW
2474 psymbol_bcache_free (objfile->psymbol_cache);
2475 objfile->psymbol_cache = psymbol_bcache_init ();
9cce227f
TG
2476 if (objfile->demangled_names_hash != NULL)
2477 {
2478 htab_delete (objfile->demangled_names_hash);
2479 objfile->demangled_names_hash = NULL;
2480 }
2481 obstack_free (&objfile->objfile_obstack, 0);
2482 objfile->sections = NULL;
2483 objfile->symtabs = NULL;
2484 objfile->psymtabs = NULL;
2485 objfile->psymtabs_addrmap = NULL;
2486 objfile->free_psymtabs = NULL;
34eaf542 2487 objfile->template_symbols = NULL;
9cce227f 2488 objfile->msymbols = NULL;
9cce227f
TG
2489 objfile->minimal_symbol_count = 0;
2490 memset (&objfile->msymbol_hash, 0,
2491 sizeof (objfile->msymbol_hash));
2492 memset (&objfile->msymbol_demangled_hash, 0,
2493 sizeof (objfile->msymbol_demangled_hash));
2494
706e3705
TT
2495 set_objfile_per_bfd (objfile);
2496
9cce227f
TG
2497 /* obstack_init also initializes the obstack so it is
2498 empty. We could use obstack_specify_allocation but
d82ea6a8 2499 gdb_obstack.h specifies the alloc/dealloc functions. */
9cce227f 2500 obstack_init (&objfile->objfile_obstack);
d82ea6a8 2501 build_objfile_section_table (objfile);
9cce227f
TG
2502 terminate_minimal_symbol_table (objfile);
2503
2504 /* We use the same section offsets as from last time. I'm not
2505 sure whether that is always correct for shared libraries. */
2506 objfile->section_offsets = (struct section_offsets *)
2507 obstack_alloc (&objfile->objfile_obstack,
2508 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2509 memcpy (objfile->section_offsets, offsets,
2510 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2511 objfile->num_sections = num_offsets;
2512
2513 /* What the hell is sym_new_init for, anyway? The concept of
2514 distinguishing between the main file and additional files
2515 in this way seems rather dubious. */
2516 if (objfile == symfile_objfile)
c906108c 2517 {
9cce227f 2518 (*objfile->sf->sym_new_init) (objfile);
c906108c 2519 }
9cce227f
TG
2520
2521 (*objfile->sf->sym_init) (objfile);
2522 clear_complaints (&symfile_complaints, 1, 1);
608e2dbb
TT
2523
2524 objfile->flags &= ~OBJF_PSYMTABS_READ;
2525 read_symbols (objfile, 0);
b11896a5 2526
9cce227f 2527 if (!objfile_has_symbols (objfile))
c906108c 2528 {
9cce227f
TG
2529 wrap_here ("");
2530 printf_unfiltered (_("(no debugging symbols found)\n"));
2531 wrap_here ("");
c5aa993b 2532 }
9cce227f
TG
2533
2534 /* We're done reading the symbol file; finish off complaints. */
2535 clear_complaints (&symfile_complaints, 0, 1);
2536
2537 /* Getting new symbols may change our opinion about what is
2538 frameless. */
2539
2540 reinit_frame_cache ();
2541
2542 /* Discard cleanups as symbol reading was successful. */
2543 discard_cleanups (old_cleanups);
2544
2545 /* If the mtime has changed between the time we set new_modtime
2546 and now, we *want* this to be out of date, so don't call stat
2547 again now. */
2548 objfile->mtime = new_modtime;
9cce227f 2549 init_entry_point_info (objfile);
4ac39b97
JK
2550
2551 VEC_safe_push (objfilep, new_objfiles, objfile);
c906108c
SS
2552 }
2553 }
c906108c 2554
4ac39b97 2555 if (new_objfiles)
ea53e89f 2556 {
4ac39b97
JK
2557 int ix;
2558
ff3536bc
UW
2559 /* Notify objfiles that we've modified objfile sections. */
2560 objfiles_changed ();
2561
c1e56572 2562 clear_symtab_users (0);
4ac39b97
JK
2563
2564 /* clear_objfile_data for each objfile was called before freeing it and
2565 observer_notify_new_objfile (NULL) has been called by
2566 clear_symtab_users above. Notify the new files now. */
2567 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2568 observer_notify_new_objfile (objfile);
2569
ea53e89f
JB
2570 /* At least one objfile has changed, so we can consider that
2571 the executable we're debugging has changed too. */
781b42b0 2572 observer_notify_executable_changed ();
ea53e89f 2573 }
4ac39b97
JK
2574
2575 do_cleanups (all_cleanups);
c906108c 2576}
c906108c
SS
2577\f
2578
c5aa993b
JM
2579typedef struct
2580{
2581 char *ext;
c906108c 2582 enum language lang;
c5aa993b
JM
2583}
2584filename_language;
c906108c 2585
c5aa993b 2586static filename_language *filename_language_table;
c906108c
SS
2587static int fl_table_size, fl_table_next;
2588
2589static void
fba45db2 2590add_filename_language (char *ext, enum language lang)
c906108c
SS
2591{
2592 if (fl_table_next >= fl_table_size)
2593 {
2594 fl_table_size += 10;
5417f6dc 2595 filename_language_table =
25bf3106
PM
2596 xrealloc (filename_language_table,
2597 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2598 }
2599
4fcf66da 2600 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2601 filename_language_table[fl_table_next].lang = lang;
2602 fl_table_next++;
2603}
2604
2605static char *ext_args;
920d2a44
AC
2606static void
2607show_ext_args (struct ui_file *file, int from_tty,
2608 struct cmd_list_element *c, const char *value)
2609{
3e43a32a
MS
2610 fprintf_filtered (file,
2611 _("Mapping between filename extension "
2612 "and source language is \"%s\".\n"),
920d2a44
AC
2613 value);
2614}
c906108c
SS
2615
2616static void
26c41df3 2617set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2618{
2619 int i;
2620 char *cp = ext_args;
2621 enum language lang;
2622
c378eb4e 2623 /* First arg is filename extension, starting with '.' */
c906108c 2624 if (*cp != '.')
8a3fe4f8 2625 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2626
2627 /* Find end of first arg. */
c5aa993b 2628 while (*cp && !isspace (*cp))
c906108c
SS
2629 cp++;
2630
2631 if (*cp == '\0')
3e43a32a
MS
2632 error (_("'%s': two arguments required -- "
2633 "filename extension and language"),
c906108c
SS
2634 ext_args);
2635
c378eb4e 2636 /* Null-terminate first arg. */
c5aa993b 2637 *cp++ = '\0';
c906108c
SS
2638
2639 /* Find beginning of second arg, which should be a source language. */
529480d0 2640 cp = skip_spaces (cp);
c906108c
SS
2641
2642 if (*cp == '\0')
3e43a32a
MS
2643 error (_("'%s': two arguments required -- "
2644 "filename extension and language"),
c906108c
SS
2645 ext_args);
2646
2647 /* Lookup the language from among those we know. */
2648 lang = language_enum (cp);
2649
2650 /* Now lookup the filename extension: do we already know it? */
2651 for (i = 0; i < fl_table_next; i++)
2652 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2653 break;
2654
2655 if (i >= fl_table_next)
2656 {
c378eb4e 2657 /* New file extension. */
c906108c
SS
2658 add_filename_language (ext_args, lang);
2659 }
2660 else
2661 {
c378eb4e 2662 /* Redefining a previously known filename extension. */
c906108c
SS
2663
2664 /* if (from_tty) */
2665 /* query ("Really make files of type %s '%s'?", */
2666 /* ext_args, language_str (lang)); */
2667
b8c9b27d 2668 xfree (filename_language_table[i].ext);
4fcf66da 2669 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2670 filename_language_table[i].lang = lang;
2671 }
2672}
2673
2674static void
fba45db2 2675info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2676{
2677 int i;
2678
a3f17187 2679 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2680 printf_filtered ("\n\n");
2681 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2682 printf_filtered ("\t%s\t- %s\n",
2683 filename_language_table[i].ext,
c906108c
SS
2684 language_str (filename_language_table[i].lang));
2685}
2686
2687static void
fba45db2 2688init_filename_language_table (void)
c906108c 2689{
c378eb4e 2690 if (fl_table_size == 0) /* Protect against repetition. */
c906108c
SS
2691 {
2692 fl_table_size = 20;
2693 fl_table_next = 0;
c5aa993b 2694 filename_language_table =
c906108c 2695 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b 2696 add_filename_language (".c", language_c);
6aecb9c2 2697 add_filename_language (".d", language_d);
c5aa993b
JM
2698 add_filename_language (".C", language_cplus);
2699 add_filename_language (".cc", language_cplus);
2700 add_filename_language (".cp", language_cplus);
2701 add_filename_language (".cpp", language_cplus);
2702 add_filename_language (".cxx", language_cplus);
2703 add_filename_language (".c++", language_cplus);
2704 add_filename_language (".java", language_java);
c906108c 2705 add_filename_language (".class", language_java);
da2cf7e0 2706 add_filename_language (".m", language_objc);
c5aa993b
JM
2707 add_filename_language (".f", language_fortran);
2708 add_filename_language (".F", language_fortran);
fd5700c7
JK
2709 add_filename_language (".for", language_fortran);
2710 add_filename_language (".FOR", language_fortran);
2711 add_filename_language (".ftn", language_fortran);
2712 add_filename_language (".FTN", language_fortran);
2713 add_filename_language (".fpp", language_fortran);
2714 add_filename_language (".FPP", language_fortran);
2715 add_filename_language (".f90", language_fortran);
2716 add_filename_language (".F90", language_fortran);
2717 add_filename_language (".f95", language_fortran);
2718 add_filename_language (".F95", language_fortran);
2719 add_filename_language (".f03", language_fortran);
2720 add_filename_language (".F03", language_fortran);
2721 add_filename_language (".f08", language_fortran);
2722 add_filename_language (".F08", language_fortran);
c5aa993b 2723 add_filename_language (".s", language_asm);
aa707ed0 2724 add_filename_language (".sx", language_asm);
c5aa993b 2725 add_filename_language (".S", language_asm);
c6fd39cd
PM
2726 add_filename_language (".pas", language_pascal);
2727 add_filename_language (".p", language_pascal);
2728 add_filename_language (".pp", language_pascal);
963a6417
PH
2729 add_filename_language (".adb", language_ada);
2730 add_filename_language (".ads", language_ada);
2731 add_filename_language (".a", language_ada);
2732 add_filename_language (".ada", language_ada);
dde59185 2733 add_filename_language (".dg", language_ada);
c906108c
SS
2734 }
2735}
2736
2737enum language
dd786858 2738deduce_language_from_filename (const char *filename)
c906108c
SS
2739{
2740 int i;
2741 char *cp;
2742
2743 if (filename != NULL)
2744 if ((cp = strrchr (filename, '.')) != NULL)
2745 for (i = 0; i < fl_table_next; i++)
2746 if (strcmp (cp, filename_language_table[i].ext) == 0)
2747 return filename_language_table[i].lang;
2748
2749 return language_unknown;
2750}
2751\f
2752/* allocate_symtab:
2753
2754 Allocate and partly initialize a new symbol table. Return a pointer
2755 to it. error() if no space.
2756
2757 Caller must set these fields:
c5aa993b
JM
2758 LINETABLE(symtab)
2759 symtab->blockvector
2760 symtab->dirname
2761 symtab->free_code
2762 symtab->free_ptr
c906108c
SS
2763 */
2764
2765struct symtab *
72b9f47f 2766allocate_symtab (const char *filename, struct objfile *objfile)
c906108c 2767{
52f0bd74 2768 struct symtab *symtab;
c906108c
SS
2769
2770 symtab = (struct symtab *)
4a146b47 2771 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2772 memset (symtab, 0, sizeof (*symtab));
10abe6bf 2773 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
706e3705 2774 objfile->per_bfd->filename_cache);
c5aa993b
JM
2775 symtab->fullname = NULL;
2776 symtab->language = deduce_language_from_filename (filename);
1c9e8358 2777 symtab->debugformat = "unknown";
c906108c 2778
c378eb4e 2779 /* Hook it to the objfile it comes from. */
c906108c 2780
c5aa993b
JM
2781 symtab->objfile = objfile;
2782 symtab->next = objfile->symtabs;
2783 objfile->symtabs = symtab;
c906108c 2784
45cfd468
DE
2785 if (symtab_create_debug)
2786 {
2787 /* Be a bit clever with debugging messages, and don't print objfile
2788 every time, only when it changes. */
2789 static char *last_objfile_name = NULL;
2790
2791 if (last_objfile_name == NULL
2792 || strcmp (last_objfile_name, objfile->name) != 0)
2793 {
2794 xfree (last_objfile_name);
2795 last_objfile_name = xstrdup (objfile->name);
2796 fprintf_unfiltered (gdb_stdlog,
2797 "Creating one or more symtabs for objfile %s ...\n",
2798 last_objfile_name);
2799 }
2800 fprintf_unfiltered (gdb_stdlog,
b3dbbd6f
PM
2801 "Created symtab %s for module %s.\n",
2802 host_address_to_string (symtab), filename);
45cfd468
DE
2803 }
2804
c906108c
SS
2805 return (symtab);
2806}
c906108c 2807\f
c5aa993b 2808
c906108c 2809/* Reset all data structures in gdb which may contain references to symbol
c1e56572 2810 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c906108c
SS
2811
2812void
c1e56572 2813clear_symtab_users (int add_flags)
c906108c
SS
2814{
2815 /* Someday, we should do better than this, by only blowing away
2816 the things that really need to be blown. */
c0501be5
DJ
2817
2818 /* Clear the "current" symtab first, because it is no longer valid.
2819 breakpoint_re_set may try to access the current symtab. */
2820 clear_current_source_symtab_and_line ();
2821
c906108c 2822 clear_displays ();
c1e56572
JK
2823 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2824 breakpoint_re_set ();
1bfeeb0f 2825 clear_last_displayed_sal ();
c906108c 2826 clear_pc_function_cache ();
06d3b283 2827 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2828
2829 /* Clear globals which might have pointed into a removed objfile.
2830 FIXME: It's not clear which of these are supposed to persist
2831 between expressions and which ought to be reset each time. */
2832 expression_context_block = NULL;
2833 innermost_block = NULL;
8756216b
DP
2834
2835 /* Varobj may refer to old symbols, perform a cleanup. */
2836 varobj_invalidate ();
2837
c906108c
SS
2838}
2839
74b7792f
AC
2840static void
2841clear_symtab_users_cleanup (void *ignore)
2842{
c1e56572 2843 clear_symtab_users (0);
74b7792f 2844}
c906108c 2845\f
c906108c
SS
2846/* OVERLAYS:
2847 The following code implements an abstraction for debugging overlay sections.
2848
2849 The target model is as follows:
2850 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2851 same VMA, each with its own unique LMA (or load address).
c906108c 2852 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2853 sections, one by one, from the load address into the VMA address.
5417f6dc 2854 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2855 sections should be considered to be mapped from the VMA to the LMA.
2856 This information is used for symbol lookup, and memory read/write.
5417f6dc 2857 For instance, if a section has been mapped then its contents
c5aa993b 2858 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2859
2860 Two levels of debugger support for overlays are available. One is
2861 "manual", in which the debugger relies on the user to tell it which
2862 overlays are currently mapped. This level of support is
2863 implemented entirely in the core debugger, and the information about
2864 whether a section is mapped is kept in the objfile->obj_section table.
2865
2866 The second level of support is "automatic", and is only available if
2867 the target-specific code provides functionality to read the target's
2868 overlay mapping table, and translate its contents for the debugger
2869 (by updating the mapped state information in the obj_section tables).
2870
2871 The interface is as follows:
c5aa993b
JM
2872 User commands:
2873 overlay map <name> -- tell gdb to consider this section mapped
2874 overlay unmap <name> -- tell gdb to consider this section unmapped
2875 overlay list -- list the sections that GDB thinks are mapped
2876 overlay read-target -- get the target's state of what's mapped
2877 overlay off/manual/auto -- set overlay debugging state
2878 Functional interface:
2879 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2880 section, return that section.
5417f6dc 2881 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 2882 the pc, either in its VMA or its LMA
714835d5 2883 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
2884 section_is_overlay(sect): true if section's VMA != LMA
2885 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2886 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2887 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2888 overlay_mapped_address(...): map an address from section's LMA to VMA
2889 overlay_unmapped_address(...): map an address from section's VMA to LMA
2890 symbol_overlayed_address(...): Return a "current" address for symbol:
2891 either in VMA or LMA depending on whether
c378eb4e 2892 the symbol's section is currently mapped. */
c906108c
SS
2893
2894/* Overlay debugging state: */
2895
d874f1e2 2896enum overlay_debugging_state overlay_debugging = ovly_off;
c378eb4e 2897int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
c906108c 2898
c906108c 2899/* Function: section_is_overlay (SECTION)
5417f6dc 2900 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
2901 SECTION is loaded at an address different from where it will "run". */
2902
2903int
714835d5 2904section_is_overlay (struct obj_section *section)
c906108c 2905{
714835d5
UW
2906 if (overlay_debugging && section)
2907 {
2908 bfd *abfd = section->objfile->obfd;
2909 asection *bfd_section = section->the_bfd_section;
f888f159 2910
714835d5
UW
2911 if (bfd_section_lma (abfd, bfd_section) != 0
2912 && bfd_section_lma (abfd, bfd_section)
2913 != bfd_section_vma (abfd, bfd_section))
2914 return 1;
2915 }
c906108c
SS
2916
2917 return 0;
2918}
2919
2920/* Function: overlay_invalidate_all (void)
2921 Invalidate the mapped state of all overlay sections (mark it as stale). */
2922
2923static void
fba45db2 2924overlay_invalidate_all (void)
c906108c 2925{
c5aa993b 2926 struct objfile *objfile;
c906108c
SS
2927 struct obj_section *sect;
2928
2929 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
2930 if (section_is_overlay (sect))
2931 sect->ovly_mapped = -1;
c906108c
SS
2932}
2933
714835d5 2934/* Function: section_is_mapped (SECTION)
5417f6dc 2935 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
2936
2937 Access to the ovly_mapped flag is restricted to this function, so
2938 that we can do automatic update. If the global flag
2939 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2940 overlay_invalidate_all. If the mapped state of the particular
2941 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2942
714835d5
UW
2943int
2944section_is_mapped (struct obj_section *osect)
c906108c 2945{
9216df95
UW
2946 struct gdbarch *gdbarch;
2947
714835d5 2948 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
2949 return 0;
2950
c5aa993b 2951 switch (overlay_debugging)
c906108c
SS
2952 {
2953 default:
d874f1e2 2954 case ovly_off:
c5aa993b 2955 return 0; /* overlay debugging off */
d874f1e2 2956 case ovly_auto: /* overlay debugging automatic */
1c772458 2957 /* Unles there is a gdbarch_overlay_update function,
c378eb4e 2958 there's really nothing useful to do here (can't really go auto). */
9216df95
UW
2959 gdbarch = get_objfile_arch (osect->objfile);
2960 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
2961 {
2962 if (overlay_cache_invalid)
2963 {
2964 overlay_invalidate_all ();
2965 overlay_cache_invalid = 0;
2966 }
2967 if (osect->ovly_mapped == -1)
9216df95 2968 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
2969 }
2970 /* fall thru to manual case */
d874f1e2 2971 case ovly_on: /* overlay debugging manual */
c906108c
SS
2972 return osect->ovly_mapped == 1;
2973 }
2974}
2975
c906108c
SS
2976/* Function: pc_in_unmapped_range
2977 If PC falls into the lma range of SECTION, return true, else false. */
2978
2979CORE_ADDR
714835d5 2980pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 2981{
714835d5
UW
2982 if (section_is_overlay (section))
2983 {
2984 bfd *abfd = section->objfile->obfd;
2985 asection *bfd_section = section->the_bfd_section;
fbd35540 2986
714835d5
UW
2987 /* We assume the LMA is relocated by the same offset as the VMA. */
2988 bfd_vma size = bfd_get_section_size (bfd_section);
2989 CORE_ADDR offset = obj_section_offset (section);
2990
2991 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
2992 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
2993 return 1;
2994 }
c906108c 2995
c906108c
SS
2996 return 0;
2997}
2998
2999/* Function: pc_in_mapped_range
3000 If PC falls into the vma range of SECTION, return true, else false. */
3001
3002CORE_ADDR
714835d5 3003pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3004{
714835d5
UW
3005 if (section_is_overlay (section))
3006 {
3007 if (obj_section_addr (section) <= pc
3008 && pc < obj_section_endaddr (section))
3009 return 1;
3010 }
c906108c 3011
c906108c
SS
3012 return 0;
3013}
3014
9ec8e6a0
JB
3015/* Return true if the mapped ranges of sections A and B overlap, false
3016 otherwise. */
3b7bacac 3017
b9362cc7 3018static int
714835d5 3019sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3020{
714835d5
UW
3021 CORE_ADDR a_start = obj_section_addr (a);
3022 CORE_ADDR a_end = obj_section_endaddr (a);
3023 CORE_ADDR b_start = obj_section_addr (b);
3024 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3025
3026 return (a_start < b_end && b_start < a_end);
3027}
3028
c906108c
SS
3029/* Function: overlay_unmapped_address (PC, SECTION)
3030 Returns the address corresponding to PC in the unmapped (load) range.
3031 May be the same as PC. */
3032
3033CORE_ADDR
714835d5 3034overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3035{
714835d5
UW
3036 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3037 {
3038 bfd *abfd = section->objfile->obfd;
3039 asection *bfd_section = section->the_bfd_section;
fbd35540 3040
714835d5
UW
3041 return pc + bfd_section_lma (abfd, bfd_section)
3042 - bfd_section_vma (abfd, bfd_section);
3043 }
c906108c
SS
3044
3045 return pc;
3046}
3047
3048/* Function: overlay_mapped_address (PC, SECTION)
3049 Returns the address corresponding to PC in the mapped (runtime) range.
3050 May be the same as PC. */
3051
3052CORE_ADDR
714835d5 3053overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3054{
714835d5
UW
3055 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3056 {
3057 bfd *abfd = section->objfile->obfd;
3058 asection *bfd_section = section->the_bfd_section;
fbd35540 3059
714835d5
UW
3060 return pc + bfd_section_vma (abfd, bfd_section)
3061 - bfd_section_lma (abfd, bfd_section);
3062 }
c906108c
SS
3063
3064 return pc;
3065}
3066
5417f6dc 3067/* Function: symbol_overlayed_address
c906108c
SS
3068 Return one of two addresses (relative to the VMA or to the LMA),
3069 depending on whether the section is mapped or not. */
3070
c5aa993b 3071CORE_ADDR
714835d5 3072symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3073{
3074 if (overlay_debugging)
3075 {
c378eb4e 3076 /* If the symbol has no section, just return its regular address. */
c906108c
SS
3077 if (section == 0)
3078 return address;
c378eb4e
MS
3079 /* If the symbol's section is not an overlay, just return its
3080 address. */
c906108c
SS
3081 if (!section_is_overlay (section))
3082 return address;
c378eb4e 3083 /* If the symbol's section is mapped, just return its address. */
c906108c
SS
3084 if (section_is_mapped (section))
3085 return address;
3086 /*
3087 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3088 * then return its LOADED address rather than its vma address!!
3089 */
3090 return overlay_unmapped_address (address, section);
3091 }
3092 return address;
3093}
3094
5417f6dc 3095/* Function: find_pc_overlay (PC)
c906108c
SS
3096 Return the best-match overlay section for PC:
3097 If PC matches a mapped overlay section's VMA, return that section.
3098 Else if PC matches an unmapped section's VMA, return that section.
3099 Else if PC matches an unmapped section's LMA, return that section. */
3100
714835d5 3101struct obj_section *
fba45db2 3102find_pc_overlay (CORE_ADDR pc)
c906108c 3103{
c5aa993b 3104 struct objfile *objfile;
c906108c
SS
3105 struct obj_section *osect, *best_match = NULL;
3106
3107 if (overlay_debugging)
3108 ALL_OBJSECTIONS (objfile, osect)
714835d5 3109 if (section_is_overlay (osect))
c5aa993b 3110 {
714835d5 3111 if (pc_in_mapped_range (pc, osect))
c5aa993b 3112 {
714835d5
UW
3113 if (section_is_mapped (osect))
3114 return osect;
c5aa993b
JM
3115 else
3116 best_match = osect;
3117 }
714835d5 3118 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3119 best_match = osect;
3120 }
714835d5 3121 return best_match;
c906108c
SS
3122}
3123
3124/* Function: find_pc_mapped_section (PC)
5417f6dc 3125 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3126 currently marked as MAPPED, return that section. Else return NULL. */
3127
714835d5 3128struct obj_section *
fba45db2 3129find_pc_mapped_section (CORE_ADDR pc)
c906108c 3130{
c5aa993b 3131 struct objfile *objfile;
c906108c
SS
3132 struct obj_section *osect;
3133
3134 if (overlay_debugging)
3135 ALL_OBJSECTIONS (objfile, osect)
714835d5
UW
3136 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3137 return osect;
c906108c
SS
3138
3139 return NULL;
3140}
3141
3142/* Function: list_overlays_command
c378eb4e 3143 Print a list of mapped sections and their PC ranges. */
c906108c 3144
5d3055ad 3145static void
fba45db2 3146list_overlays_command (char *args, int from_tty)
c906108c 3147{
c5aa993b
JM
3148 int nmapped = 0;
3149 struct objfile *objfile;
c906108c
SS
3150 struct obj_section *osect;
3151
3152 if (overlay_debugging)
3153 ALL_OBJSECTIONS (objfile, osect)
714835d5 3154 if (section_is_mapped (osect))
c5aa993b 3155 {
5af949e3 3156 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c5aa993b
JM
3157 const char *name;
3158 bfd_vma lma, vma;
3159 int size;
3160
3161 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3162 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3163 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3164 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3165
3166 printf_filtered ("Section %s, loaded at ", name);
5af949e3 3167 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
c5aa993b 3168 puts_filtered (" - ");
5af949e3 3169 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
c5aa993b 3170 printf_filtered (", mapped at ");
5af949e3 3171 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
c5aa993b 3172 puts_filtered (" - ");
5af949e3 3173 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
c5aa993b
JM
3174 puts_filtered ("\n");
3175
3176 nmapped++;
3177 }
c906108c 3178 if (nmapped == 0)
a3f17187 3179 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3180}
3181
3182/* Function: map_overlay_command
3183 Mark the named section as mapped (ie. residing at its VMA address). */
3184
5d3055ad 3185static void
fba45db2 3186map_overlay_command (char *args, int from_tty)
c906108c 3187{
c5aa993b
JM
3188 struct objfile *objfile, *objfile2;
3189 struct obj_section *sec, *sec2;
c906108c
SS
3190
3191 if (!overlay_debugging)
3e43a32a
MS
3192 error (_("Overlay debugging not enabled. Use "
3193 "either the 'overlay auto' or\n"
3194 "the 'overlay manual' command."));
c906108c
SS
3195
3196 if (args == 0 || *args == 0)
8a3fe4f8 3197 error (_("Argument required: name of an overlay section"));
c906108c 3198
c378eb4e 3199 /* First, find a section matching the user supplied argument. */
c906108c
SS
3200 ALL_OBJSECTIONS (objfile, sec)
3201 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b 3202 {
c378eb4e 3203 /* Now, check to see if the section is an overlay. */
714835d5 3204 if (!section_is_overlay (sec))
c5aa993b
JM
3205 continue; /* not an overlay section */
3206
c378eb4e 3207 /* Mark the overlay as "mapped". */
c5aa993b
JM
3208 sec->ovly_mapped = 1;
3209
3210 /* Next, make a pass and unmap any sections that are
3211 overlapped by this new section: */
3212 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3213 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3214 {
3215 if (info_verbose)
a3f17187 3216 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3217 bfd_section_name (objfile->obfd,
3218 sec2->the_bfd_section));
c378eb4e 3219 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
c5aa993b
JM
3220 }
3221 return;
3222 }
8a3fe4f8 3223 error (_("No overlay section called %s"), args);
c906108c
SS
3224}
3225
3226/* Function: unmap_overlay_command
5417f6dc 3227 Mark the overlay section as unmapped
c906108c
SS
3228 (ie. resident in its LMA address range, rather than the VMA range). */
3229
5d3055ad 3230static void
fba45db2 3231unmap_overlay_command (char *args, int from_tty)
c906108c 3232{
c5aa993b 3233 struct objfile *objfile;
c906108c
SS
3234 struct obj_section *sec;
3235
3236 if (!overlay_debugging)
3e43a32a
MS
3237 error (_("Overlay debugging not enabled. "
3238 "Use either the 'overlay auto' or\n"
3239 "the 'overlay manual' command."));
c906108c
SS
3240
3241 if (args == 0 || *args == 0)
8a3fe4f8 3242 error (_("Argument required: name of an overlay section"));
c906108c 3243
c378eb4e 3244 /* First, find a section matching the user supplied argument. */
c906108c
SS
3245 ALL_OBJSECTIONS (objfile, sec)
3246 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3247 {
3248 if (!sec->ovly_mapped)
8a3fe4f8 3249 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3250 sec->ovly_mapped = 0;
3251 return;
3252 }
8a3fe4f8 3253 error (_("No overlay section called %s"), args);
c906108c
SS
3254}
3255
3256/* Function: overlay_auto_command
3257 A utility command to turn on overlay debugging.
c378eb4e 3258 Possibly this should be done via a set/show command. */
c906108c
SS
3259
3260static void
fba45db2 3261overlay_auto_command (char *args, int from_tty)
c906108c 3262{
d874f1e2 3263 overlay_debugging = ovly_auto;
1900040c 3264 enable_overlay_breakpoints ();
c906108c 3265 if (info_verbose)
a3f17187 3266 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3267}
3268
3269/* Function: overlay_manual_command
3270 A utility command to turn on overlay debugging.
c378eb4e 3271 Possibly this should be done via a set/show command. */
c906108c
SS
3272
3273static void
fba45db2 3274overlay_manual_command (char *args, int from_tty)
c906108c 3275{
d874f1e2 3276 overlay_debugging = ovly_on;
1900040c 3277 disable_overlay_breakpoints ();
c906108c 3278 if (info_verbose)
a3f17187 3279 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3280}
3281
3282/* Function: overlay_off_command
3283 A utility command to turn on overlay debugging.
c378eb4e 3284 Possibly this should be done via a set/show command. */
c906108c
SS
3285
3286static void
fba45db2 3287overlay_off_command (char *args, int from_tty)
c906108c 3288{
d874f1e2 3289 overlay_debugging = ovly_off;
1900040c 3290 disable_overlay_breakpoints ();
c906108c 3291 if (info_verbose)
a3f17187 3292 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3293}
3294
3295static void
fba45db2 3296overlay_load_command (char *args, int from_tty)
c906108c 3297{
e17c207e
UW
3298 struct gdbarch *gdbarch = get_current_arch ();
3299
3300 if (gdbarch_overlay_update_p (gdbarch))
3301 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3302 else
8a3fe4f8 3303 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3304}
3305
3306/* Function: overlay_command
c378eb4e 3307 A place-holder for a mis-typed command. */
c906108c 3308
c378eb4e 3309/* Command list chain containing all defined "overlay" subcommands. */
28578e6b 3310static struct cmd_list_element *overlaylist;
c906108c
SS
3311
3312static void
fba45db2 3313overlay_command (char *args, int from_tty)
c906108c 3314{
c5aa993b 3315 printf_unfiltered
c906108c
SS
3316 ("\"overlay\" must be followed by the name of an overlay command.\n");
3317 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3318}
3319
c906108c
SS
3320/* Target Overlays for the "Simplest" overlay manager:
3321
5417f6dc
RM
3322 This is GDB's default target overlay layer. It works with the
3323 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3324 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3325 so targets that use a different runtime overlay manager can
c906108c
SS
3326 substitute their own overlay_update function and take over the
3327 function pointer.
3328
3329 The overlay_update function pokes around in the target's data structures
3330 to see what overlays are mapped, and updates GDB's overlay mapping with
3331 this information.
3332
3333 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3334 unsigned _novlys; /# number of overlay sections #/
3335 unsigned _ovly_table[_novlys][4] = {
3336 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3337 {..., ..., ..., ...},
3338 }
3339 unsigned _novly_regions; /# number of overlay regions #/
3340 unsigned _ovly_region_table[_novly_regions][3] = {
3341 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3342 {..., ..., ...},
3343 }
c906108c
SS
3344 These functions will attempt to update GDB's mappedness state in the
3345 symbol section table, based on the target's mappedness state.
3346
3347 To do this, we keep a cached copy of the target's _ovly_table, and
3348 attempt to detect when the cached copy is invalidated. The main
3349 entry point is "simple_overlay_update(SECT), which looks up SECT in
3350 the cached table and re-reads only the entry for that section from
c378eb4e 3351 the target (whenever possible). */
c906108c
SS
3352
3353/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3354static unsigned (*cache_ovly_table)[4] = 0;
c5aa993b 3355static unsigned cache_novlys = 0;
c906108c 3356static CORE_ADDR cache_ovly_table_base = 0;
c5aa993b
JM
3357enum ovly_index
3358 {
3359 VMA, SIZE, LMA, MAPPED
3360 };
c906108c 3361
c378eb4e 3362/* Throw away the cached copy of _ovly_table. */
3b7bacac 3363
c906108c 3364static void
fba45db2 3365simple_free_overlay_table (void)
c906108c
SS
3366{
3367 if (cache_ovly_table)
b8c9b27d 3368 xfree (cache_ovly_table);
c5aa993b 3369 cache_novlys = 0;
c906108c
SS
3370 cache_ovly_table = NULL;
3371 cache_ovly_table_base = 0;
3372}
3373
9216df95 3374/* Read an array of ints of size SIZE from the target into a local buffer.
c378eb4e 3375 Convert to host order. int LEN is number of ints. */
3b7bacac 3376
c906108c 3377static void
9216df95 3378read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3379 int len, int size, enum bfd_endian byte_order)
c906108c 3380{
c378eb4e 3381 /* FIXME (alloca): Not safe if array is very large. */
9216df95 3382 gdb_byte *buf = alloca (len * size);
c5aa993b 3383 int i;
c906108c 3384
9216df95 3385 read_memory (memaddr, buf, len * size);
c906108c 3386 for (i = 0; i < len; i++)
e17a4113 3387 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3388}
3389
3390/* Find and grab a copy of the target _ovly_table
c378eb4e 3391 (and _novlys, which is needed for the table's size). */
3b7bacac 3392
c5aa993b 3393static int
fba45db2 3394simple_read_overlay_table (void)
c906108c 3395{
0d43edd1 3396 struct minimal_symbol *novlys_msym, *ovly_table_msym;
9216df95
UW
3397 struct gdbarch *gdbarch;
3398 int word_size;
e17a4113 3399 enum bfd_endian byte_order;
c906108c
SS
3400
3401 simple_free_overlay_table ();
9b27852e 3402 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3403 if (! novlys_msym)
c906108c 3404 {
8a3fe4f8 3405 error (_("Error reading inferior's overlay table: "
0d43edd1 3406 "couldn't find `_novlys' variable\n"
8a3fe4f8 3407 "in inferior. Use `overlay manual' mode."));
0d43edd1 3408 return 0;
c906108c 3409 }
0d43edd1 3410
9b27852e 3411 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3412 if (! ovly_table_msym)
3413 {
8a3fe4f8 3414 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3415 "`_ovly_table' array\n"
8a3fe4f8 3416 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3417 return 0;
3418 }
3419
9216df95
UW
3420 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3421 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3422 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3423
e17a4113
UW
3424 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3425 4, byte_order);
0d43edd1
JB
3426 cache_ovly_table
3427 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3428 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3429 read_target_long_array (cache_ovly_table_base,
777ea8f1 3430 (unsigned int *) cache_ovly_table,
e17a4113 3431 cache_novlys * 4, word_size, byte_order);
0d43edd1 3432
c5aa993b 3433 return 1; /* SUCCESS */
c906108c
SS
3434}
3435
5417f6dc 3436/* Function: simple_overlay_update_1
c906108c
SS
3437 A helper function for simple_overlay_update. Assuming a cached copy
3438 of _ovly_table exists, look through it to find an entry whose vma,
3439 lma and size match those of OSECT. Re-read the entry and make sure
3440 it still matches OSECT (else the table may no longer be valid).
3441 Set OSECT's mapped state to match the entry. Return: 1 for
3442 success, 0 for failure. */
3443
3444static int
fba45db2 3445simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3446{
3447 int i, size;
fbd35540
MS
3448 bfd *obfd = osect->objfile->obfd;
3449 asection *bsect = osect->the_bfd_section;
9216df95
UW
3450 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3451 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3452 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3453
2c500098 3454 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3455 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3456 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3457 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3458 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c 3459 {
9216df95
UW
3460 read_target_long_array (cache_ovly_table_base + i * word_size,
3461 (unsigned int *) cache_ovly_table[i],
e17a4113 3462 4, word_size, byte_order);
fbd35540
MS
3463 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3464 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3465 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3466 {
3467 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3468 return 1;
3469 }
c378eb4e 3470 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3471 return 0;
3472 }
3473 return 0;
3474}
3475
3476/* Function: simple_overlay_update
5417f6dc
RM
3477 If OSECT is NULL, then update all sections' mapped state
3478 (after re-reading the entire target _ovly_table).
3479 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3480 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3481 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3482 re-read the entire cache, and go ahead and update all sections. */
3483
1c772458 3484void
fba45db2 3485simple_overlay_update (struct obj_section *osect)
c906108c 3486{
c5aa993b 3487 struct objfile *objfile;
c906108c 3488
c378eb4e 3489 /* Were we given an osect to look up? NULL means do all of them. */
c906108c 3490 if (osect)
c378eb4e 3491 /* Have we got a cached copy of the target's overlay table? */
c906108c 3492 if (cache_ovly_table != NULL)
9cc89665
MS
3493 {
3494 /* Does its cached location match what's currently in the
3495 symtab? */
3496 struct minimal_symbol *minsym
3497 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3498
3499 if (minsym == NULL)
3500 error (_("Error reading inferior's overlay table: couldn't "
3501 "find `_ovly_table' array\n"
3502 "in inferior. Use `overlay manual' mode."));
3503
3504 if (cache_ovly_table_base == SYMBOL_VALUE_ADDRESS (minsym))
3505 /* Then go ahead and try to look up this single section in
3506 the cache. */
3507 if (simple_overlay_update_1 (osect))
3508 /* Found it! We're done. */
3509 return;
3510 }
c906108c
SS
3511
3512 /* Cached table no good: need to read the entire table anew.
3513 Or else we want all the sections, in which case it's actually
3514 more efficient to read the whole table in one block anyway. */
3515
0d43edd1
JB
3516 if (! simple_read_overlay_table ())
3517 return;
3518
c378eb4e 3519 /* Now may as well update all sections, even if only one was requested. */
c906108c 3520 ALL_OBJSECTIONS (objfile, osect)
714835d5 3521 if (section_is_overlay (osect))
c5aa993b
JM
3522 {
3523 int i, size;
fbd35540
MS
3524 bfd *obfd = osect->objfile->obfd;
3525 asection *bsect = osect->the_bfd_section;
c5aa993b 3526
2c500098 3527 size = bfd_get_section_size (bsect);
c5aa993b 3528 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3529 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3530 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3531 /* && cache_ovly_table[i][SIZE] == size */ )
c378eb4e 3532 { /* obj_section matches i'th entry in ovly_table. */
c5aa993b 3533 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
c378eb4e 3534 break; /* finished with inner for loop: break out. */
c5aa993b
JM
3535 }
3536 }
c906108c
SS
3537}
3538
086df311
DJ
3539/* Set the output sections and output offsets for section SECTP in
3540 ABFD. The relocation code in BFD will read these offsets, so we
3541 need to be sure they're initialized. We map each section to itself,
3542 with no offset; this means that SECTP->vma will be honored. */
3543
3544static void
3545symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3546{
3547 sectp->output_section = sectp;
3548 sectp->output_offset = 0;
3549}
3550
ac8035ab
TG
3551/* Default implementation for sym_relocate. */
3552
ac8035ab
TG
3553bfd_byte *
3554default_symfile_relocate (struct objfile *objfile, asection *sectp,
3555 bfd_byte *buf)
3556{
3019eac3
DE
3557 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3558 DWO file. */
3559 bfd *abfd = sectp->owner;
ac8035ab
TG
3560
3561 /* We're only interested in sections with relocation
3562 information. */
3563 if ((sectp->flags & SEC_RELOC) == 0)
3564 return NULL;
3565
3566 /* We will handle section offsets properly elsewhere, so relocate as if
3567 all sections begin at 0. */
3568 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3569
3570 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3571}
3572
086df311
DJ
3573/* Relocate the contents of a debug section SECTP in ABFD. The
3574 contents are stored in BUF if it is non-NULL, or returned in a
3575 malloc'd buffer otherwise.
3576
3577 For some platforms and debug info formats, shared libraries contain
3578 relocations against the debug sections (particularly for DWARF-2;
3579 one affected platform is PowerPC GNU/Linux, although it depends on
3580 the version of the linker in use). Also, ELF object files naturally
3581 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3582 the relocations in order to get the locations of symbols correct.
3583 Another example that may require relocation processing, is the
3584 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3585 debug section. */
086df311
DJ
3586
3587bfd_byte *
ac8035ab
TG
3588symfile_relocate_debug_section (struct objfile *objfile,
3589 asection *sectp, bfd_byte *buf)
086df311 3590{
ac8035ab 3591 gdb_assert (objfile->sf->sym_relocate);
086df311 3592
ac8035ab 3593 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3594}
c906108c 3595
31d99776
DJ
3596struct symfile_segment_data *
3597get_symfile_segment_data (bfd *abfd)
3598{
00b5771c 3599 const struct sym_fns *sf = find_sym_fns (abfd);
31d99776
DJ
3600
3601 if (sf == NULL)
3602 return NULL;
3603
3604 return sf->sym_segments (abfd);
3605}
3606
3607void
3608free_symfile_segment_data (struct symfile_segment_data *data)
3609{
3610 xfree (data->segment_bases);
3611 xfree (data->segment_sizes);
3612 xfree (data->segment_info);
3613 xfree (data);
3614}
3615
28c32713
JB
3616/* Given:
3617 - DATA, containing segment addresses from the object file ABFD, and
3618 the mapping from ABFD's sections onto the segments that own them,
3619 and
3620 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3621 segment addresses reported by the target,
3622 store the appropriate offsets for each section in OFFSETS.
3623
3624 If there are fewer entries in SEGMENT_BASES than there are segments
3625 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3626
8d385431
DJ
3627 If there are more entries, then ignore the extra. The target may
3628 not be able to distinguish between an empty data segment and a
3629 missing data segment; a missing text segment is less plausible. */
3b7bacac 3630
31d99776 3631int
3189cb12
DE
3632symfile_map_offsets_to_segments (bfd *abfd,
3633 const struct symfile_segment_data *data,
31d99776
DJ
3634 struct section_offsets *offsets,
3635 int num_segment_bases,
3636 const CORE_ADDR *segment_bases)
3637{
3638 int i;
3639 asection *sect;
3640
28c32713
JB
3641 /* It doesn't make sense to call this function unless you have some
3642 segment base addresses. */
202b96c1 3643 gdb_assert (num_segment_bases > 0);
28c32713 3644
31d99776
DJ
3645 /* If we do not have segment mappings for the object file, we
3646 can not relocate it by segments. */
3647 gdb_assert (data != NULL);
3648 gdb_assert (data->num_segments > 0);
3649
31d99776
DJ
3650 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3651 {
31d99776
DJ
3652 int which = data->segment_info[i];
3653
28c32713
JB
3654 gdb_assert (0 <= which && which <= data->num_segments);
3655
3656 /* Don't bother computing offsets for sections that aren't
3657 loaded as part of any segment. */
3658 if (! which)
3659 continue;
3660
3661 /* Use the last SEGMENT_BASES entry as the address of any extra
3662 segments mentioned in DATA->segment_info. */
31d99776 3663 if (which > num_segment_bases)
28c32713 3664 which = num_segment_bases;
31d99776 3665
28c32713
JB
3666 offsets->offsets[i] = (segment_bases[which - 1]
3667 - data->segment_bases[which - 1]);
31d99776
DJ
3668 }
3669
3670 return 1;
3671}
3672
3673static void
3674symfile_find_segment_sections (struct objfile *objfile)
3675{
3676 bfd *abfd = objfile->obfd;
3677 int i;
3678 asection *sect;
3679 struct symfile_segment_data *data;
3680
3681 data = get_symfile_segment_data (objfile->obfd);
3682 if (data == NULL)
3683 return;
3684
3685 if (data->num_segments != 1 && data->num_segments != 2)
3686 {
3687 free_symfile_segment_data (data);
3688 return;
3689 }
3690
3691 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3692 {
31d99776
DJ
3693 int which = data->segment_info[i];
3694
3695 if (which == 1)
3696 {
3697 if (objfile->sect_index_text == -1)
3698 objfile->sect_index_text = sect->index;
3699
3700 if (objfile->sect_index_rodata == -1)
3701 objfile->sect_index_rodata = sect->index;
3702 }
3703 else if (which == 2)
3704 {
3705 if (objfile->sect_index_data == -1)
3706 objfile->sect_index_data = sect->index;
3707
3708 if (objfile->sect_index_bss == -1)
3709 objfile->sect_index_bss = sect->index;
3710 }
3711 }
3712
3713 free_symfile_segment_data (data);
3714}
3715
c906108c 3716void
fba45db2 3717_initialize_symfile (void)
c906108c
SS
3718{
3719 struct cmd_list_element *c;
c5aa993b 3720
1a966eab
AC
3721 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3722Load symbol table from executable file FILE.\n\
c906108c 3723The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3724to execute."), &cmdlist);
5ba2abeb 3725 set_cmd_completer (c, filename_completer);
c906108c 3726
1a966eab 3727 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3728Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3e43a32a
MS
3729Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3730 ...]\nADDR is the starting address of the file's text.\n\
db162d44
EZ
3731The optional arguments are section-name section-address pairs and\n\
3732should be specified if the data and bss segments are not contiguous\n\
1a966eab 3733with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3734 &cmdlist);
5ba2abeb 3735 set_cmd_completer (c, filename_completer);
c906108c 3736
1a966eab
AC
3737 c = add_cmd ("load", class_files, load_command, _("\
3738Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
3739for access from GDB.\n\
3740A load OFFSET may also be given."), &cmdlist);
5ba2abeb 3741 set_cmd_completer (c, filename_completer);
c906108c 3742
c5aa993b 3743 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3744 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3745 "overlay ", 0, &cmdlist);
3746
3747 add_com_alias ("ovly", "overlay", class_alias, 1);
3748 add_com_alias ("ov", "overlay", class_alias, 1);
3749
c5aa993b 3750 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3751 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3752
c5aa993b 3753 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3754 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3755
c5aa993b 3756 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3757 _("List mappings of overlay sections."), &overlaylist);
c906108c 3758
c5aa993b 3759 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3760 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3761 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3762 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3763 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3764 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3765 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3766 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3767
3768 /* Filename extension to source language lookup table: */
3769 init_filename_language_table ();
26c41df3
AC
3770 add_setshow_string_noescape_cmd ("extension-language", class_files,
3771 &ext_args, _("\
3772Set mapping between filename extension and source language."), _("\
3773Show mapping between filename extension and source language."), _("\
3774Usage: set extension-language .foo bar"),
3775 set_ext_lang_command,
920d2a44 3776 show_ext_args,
26c41df3 3777 &setlist, &showlist);
c906108c 3778
c5aa993b 3779 add_info ("extensions", info_ext_lang_command,
1bedd215 3780 _("All filename extensions associated with a source language."));
917317f4 3781
525226b5
AC
3782 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3783 &debug_file_directory, _("\
24ddea62
JK
3784Set the directories where separate debug symbols are searched for."), _("\
3785Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
3786Separate debug symbols are first searched for in the same\n\
3787directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3788and lastly at the path of the directory of the binary with\n\
24ddea62 3789each global debug-file-directory component prepended."),
525226b5 3790 NULL,
920d2a44 3791 show_debug_file_directory,
525226b5 3792 &setlist, &showlist);
c906108c 3793}
This page took 1.971499 seconds and 4 git commands to generate.