Introduce and use make_unique_xstrdup
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
42a4f53d 3 Copyright (C) 1990-2019 Free Software Foundation, Inc.
8926118c 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
086df311 24#include "bfdlink.h"
c906108c
SS
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "target.h"
30#include "value.h"
31#include "symfile.h"
32#include "objfiles.h"
0378c332 33#include "source.h"
c906108c
SS
34#include "gdbcmd.h"
35#include "breakpoint.h"
36#include "language.h"
37#include "complaints.h"
38#include "demangle.h"
fb14de7b
UW
39#include "inferior.h"
40#include "regcache.h"
5b5d99cf 41#include "filenames.h" /* for DOSish file names */
c906108c 42#include "gdb-stabs.h"
04ea0df1 43#include "gdb_obstack.h"
d75b5104 44#include "completer.h"
af5f3db6 45#include "bcache.h"
2de7ced7 46#include "hashtab.h"
dbda9972 47#include "readline/readline.h"
fe898f56 48#include "block.h"
76727919 49#include "observable.h"
c1bd25fd 50#include "exec.h"
9bdcbae7 51#include "parser-defs.h"
8756216b 52#include "varobj.h"
77069918 53#include "elf-bfd.h"
e85a822c 54#include "solib.h"
f1838a98 55#include "remote.h"
1bfeeb0f 56#include "stack.h"
cbb099e8 57#include "gdb_bfd.h"
529480d0 58#include "cli/cli-utils.h"
0efef640 59#include "common/byte-vector.h"
cd4b7848 60#include "common/pathstuff.h"
0747795c 61#include "common/selftest.h"
47fd17cd 62#include "cli/cli-style.h"
286526c1 63#include "common/forward-scope-exit.h"
c906108c 64
c906108c
SS
65#include <sys/types.h>
66#include <fcntl.h>
53ce3c39 67#include <sys/stat.h>
c906108c 68#include <ctype.h>
dcb07cfa 69#include <chrono>
37e136b1 70#include <algorithm>
c906108c 71
ccefe4c4 72#include "psymtab.h"
c906108c 73
3e43a32a
MS
74int (*deprecated_ui_load_progress_hook) (const char *section,
75 unsigned long num);
9a4105ab 76void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
77 unsigned long section_sent,
78 unsigned long section_size,
79 unsigned long total_sent,
c2d11a7d 80 unsigned long total_size);
769d7dc4
AC
81void (*deprecated_pre_add_symbol_hook) (const char *);
82void (*deprecated_post_add_symbol_hook) (void);
c906108c 83
286526c1
TT
84using clear_symtab_users_cleanup
85 = FORWARD_SCOPE_EXIT (clear_symtab_users);
74b7792f 86
c378eb4e
MS
87/* Global variables owned by this file. */
88int readnow_symbol_files; /* Read full symbols immediately. */
97cbe998 89int readnever_symbol_files; /* Never read full symbols. */
c906108c 90
c378eb4e 91/* Functions this file defines. */
c906108c 92
ecf45d2c 93static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
d4d429d5 94 objfile_flags flags, CORE_ADDR reloff);
d7db6da9 95
00b5771c 96static const struct sym_fns *find_sym_fns (bfd *);
c906108c 97
a14ed312 98static void overlay_invalidate_all (void);
c906108c 99
a14ed312 100static void simple_free_overlay_table (void);
c906108c 101
e17a4113
UW
102static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
103 enum bfd_endian);
c906108c 104
a14ed312 105static int simple_read_overlay_table (void);
c906108c 106
a14ed312 107static int simple_overlay_update_1 (struct obj_section *);
c906108c 108
31d99776
DJ
109static void symfile_find_segment_sections (struct objfile *objfile);
110
c906108c
SS
111/* List of all available sym_fns. On gdb startup, each object file reader
112 calls add_symtab_fns() to register information on each format it is
c378eb4e 113 prepared to read. */
c906108c 114
905014d7 115struct registered_sym_fns
c256e171 116{
905014d7
SM
117 registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_)
118 : sym_flavour (sym_flavour_), sym_fns (sym_fns_)
119 {}
120
c256e171
DE
121 /* BFD flavour that we handle. */
122 enum bfd_flavour sym_flavour;
123
124 /* The "vtable" of symbol functions. */
125 const struct sym_fns *sym_fns;
905014d7 126};
c256e171 127
905014d7 128static std::vector<registered_sym_fns> symtab_fns;
c906108c 129
770e7fc7
DE
130/* Values for "set print symbol-loading". */
131
132const char print_symbol_loading_off[] = "off";
133const char print_symbol_loading_brief[] = "brief";
134const char print_symbol_loading_full[] = "full";
135static const char *print_symbol_loading_enums[] =
136{
137 print_symbol_loading_off,
138 print_symbol_loading_brief,
139 print_symbol_loading_full,
140 NULL
141};
142static const char *print_symbol_loading = print_symbol_loading_full;
143
b7209cb4
FF
144/* If non-zero, shared library symbols will be added automatically
145 when the inferior is created, new libraries are loaded, or when
146 attaching to the inferior. This is almost always what users will
147 want to have happen; but for very large programs, the startup time
148 will be excessive, and so if this is a problem, the user can clear
149 this flag and then add the shared library symbols as needed. Note
150 that there is a potential for confusion, since if the shared
c906108c 151 library symbols are not loaded, commands like "info fun" will *not*
0d14a781 152 report all the functions that are actually present. */
c906108c
SS
153
154int auto_solib_add = 1;
c906108c 155\f
c5aa993b 156
770e7fc7
DE
157/* Return non-zero if symbol-loading messages should be printed.
158 FROM_TTY is the standard from_tty argument to gdb commands.
159 If EXEC is non-zero the messages are for the executable.
160 Otherwise, messages are for shared libraries.
161 If FULL is non-zero then the caller is printing a detailed message.
162 E.g., the message includes the shared library name.
163 Otherwise, the caller is printing a brief "summary" message. */
164
165int
166print_symbol_loading_p (int from_tty, int exec, int full)
167{
168 if (!from_tty && !info_verbose)
169 return 0;
170
171 if (exec)
172 {
173 /* We don't check FULL for executables, there are few such
174 messages, therefore brief == full. */
175 return print_symbol_loading != print_symbol_loading_off;
176 }
177 if (full)
178 return print_symbol_loading == print_symbol_loading_full;
179 return print_symbol_loading == print_symbol_loading_brief;
180}
181
0d14a781 182/* True if we are reading a symbol table. */
c906108c
SS
183
184int currently_reading_symtab = 0;
185
ccefe4c4
TT
186/* Increment currently_reading_symtab and return a cleanup that can be
187 used to decrement it. */
3b7bacac 188
c83dd867 189scoped_restore_tmpl<int>
ccefe4c4 190increment_reading_symtab (void)
c906108c 191{
c83dd867
TT
192 gdb_assert (currently_reading_symtab >= 0);
193 return make_scoped_restore (&currently_reading_symtab,
194 currently_reading_symtab + 1);
c906108c
SS
195}
196
5417f6dc
RM
197/* Remember the lowest-addressed loadable section we've seen.
198 This function is called via bfd_map_over_sections.
c906108c
SS
199
200 In case of equal vmas, the section with the largest size becomes the
201 lowest-addressed loadable section.
202
203 If the vmas and sizes are equal, the last section is considered the
204 lowest-addressed loadable section. */
205
206void
4efb68b1 207find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 208{
c5aa993b 209 asection **lowest = (asection **) obj;
c906108c 210
eb73e134 211 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
212 return;
213 if (!*lowest)
214 *lowest = sect; /* First loadable section */
215 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
216 *lowest = sect; /* A lower loadable section */
217 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
218 && (bfd_section_size (abfd, (*lowest))
219 <= bfd_section_size (abfd, sect)))
220 *lowest = sect;
221}
222
62557bbc 223/* Build (allocate and populate) a section_addr_info struct from
c378eb4e 224 an existing section table. */
62557bbc 225
37e136b1 226section_addr_info
0542c86d
PA
227build_section_addr_info_from_section_table (const struct target_section *start,
228 const struct target_section *end)
62557bbc 229{
0542c86d 230 const struct target_section *stp;
62557bbc 231
37e136b1 232 section_addr_info sap;
62557bbc 233
37e136b1 234 for (stp = start; stp != end; stp++)
62557bbc 235 {
2b2848e2
DE
236 struct bfd_section *asect = stp->the_bfd_section;
237 bfd *abfd = asect->owner;
238
239 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
37e136b1
TT
240 && sap.size () < end - start)
241 sap.emplace_back (stp->addr,
242 bfd_section_name (abfd, asect),
243 gdb_bfd_section_index (abfd, asect));
62557bbc
KB
244 }
245
246 return sap;
247}
248
82ccf5a5 249/* Create a section_addr_info from section offsets in ABFD. */
089b4803 250
37e136b1 251static section_addr_info
82ccf5a5 252build_section_addr_info_from_bfd (bfd *abfd)
089b4803 253{
089b4803
TG
254 struct bfd_section *sec;
255
37e136b1
TT
256 section_addr_info sap;
257 for (sec = abfd->sections; sec != NULL; sec = sec->next)
82ccf5a5 258 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
37e136b1
TT
259 sap.emplace_back (bfd_get_section_vma (abfd, sec),
260 bfd_get_section_name (abfd, sec),
261 gdb_bfd_section_index (abfd, sec));
d76488d8 262
089b4803
TG
263 return sap;
264}
265
82ccf5a5
JK
266/* Create a section_addr_info from section offsets in OBJFILE. */
267
37e136b1 268section_addr_info
82ccf5a5
JK
269build_section_addr_info_from_objfile (const struct objfile *objfile)
270{
82ccf5a5
JK
271 int i;
272
273 /* Before reread_symbols gets rewritten it is not safe to call:
274 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
275 */
37e136b1
TT
276 section_addr_info sap = build_section_addr_info_from_bfd (objfile->obfd);
277 for (i = 0; i < sap.size (); i++)
82ccf5a5 278 {
37e136b1 279 int sectindex = sap[i].sectindex;
82ccf5a5 280
37e136b1 281 sap[i].addr += objfile->section_offsets->offsets[sectindex];
82ccf5a5
JK
282 }
283 return sap;
284}
62557bbc 285
e8289572 286/* Initialize OBJFILE's sect_index_* members. */
3b7bacac 287
e8289572
JB
288static void
289init_objfile_sect_indices (struct objfile *objfile)
c906108c 290{
e8289572 291 asection *sect;
c906108c 292 int i;
5417f6dc 293
b8fbeb18 294 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 295 if (sect)
b8fbeb18
EZ
296 objfile->sect_index_text = sect->index;
297
298 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 299 if (sect)
b8fbeb18
EZ
300 objfile->sect_index_data = sect->index;
301
302 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 303 if (sect)
b8fbeb18
EZ
304 objfile->sect_index_bss = sect->index;
305
306 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 307 if (sect)
b8fbeb18
EZ
308 objfile->sect_index_rodata = sect->index;
309
bbcd32ad
FF
310 /* This is where things get really weird... We MUST have valid
311 indices for the various sect_index_* members or gdb will abort.
312 So if for example, there is no ".text" section, we have to
31d99776
DJ
313 accomodate that. First, check for a file with the standard
314 one or two segments. */
315
316 symfile_find_segment_sections (objfile);
317
318 /* Except when explicitly adding symbol files at some address,
319 section_offsets contains nothing but zeros, so it doesn't matter
320 which slot in section_offsets the individual sect_index_* members
321 index into. So if they are all zero, it is safe to just point
322 all the currently uninitialized indices to the first slot. But
323 beware: if this is the main executable, it may be relocated
324 later, e.g. by the remote qOffsets packet, and then this will
325 be wrong! That's why we try segments first. */
bbcd32ad
FF
326
327 for (i = 0; i < objfile->num_sections; i++)
328 {
329 if (ANOFFSET (objfile->section_offsets, i) != 0)
330 {
331 break;
332 }
333 }
334 if (i == objfile->num_sections)
335 {
336 if (objfile->sect_index_text == -1)
337 objfile->sect_index_text = 0;
338 if (objfile->sect_index_data == -1)
339 objfile->sect_index_data = 0;
340 if (objfile->sect_index_bss == -1)
341 objfile->sect_index_bss = 0;
342 if (objfile->sect_index_rodata == -1)
343 objfile->sect_index_rodata = 0;
344 }
b8fbeb18 345}
c906108c 346
c1bd25fd
DJ
347/* The arguments to place_section. */
348
349struct place_section_arg
350{
351 struct section_offsets *offsets;
352 CORE_ADDR lowest;
353};
354
355/* Find a unique offset to use for loadable section SECT if
356 the user did not provide an offset. */
357
2c0b251b 358static void
c1bd25fd
DJ
359place_section (bfd *abfd, asection *sect, void *obj)
360{
19ba03f4 361 struct place_section_arg *arg = (struct place_section_arg *) obj;
c1bd25fd
DJ
362 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
363 int done;
3bd72c6f 364 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 365
2711e456
DJ
366 /* We are only interested in allocated sections. */
367 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
368 return;
369
370 /* If the user specified an offset, honor it. */
65cf3563 371 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
c1bd25fd
DJ
372 return;
373
374 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
375 start_addr = (arg->lowest + align - 1) & -align;
376
c1bd25fd
DJ
377 do {
378 asection *cur_sec;
c1bd25fd 379
c1bd25fd
DJ
380 done = 1;
381
382 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
383 {
384 int indx = cur_sec->index;
c1bd25fd
DJ
385
386 /* We don't need to compare against ourself. */
387 if (cur_sec == sect)
388 continue;
389
2711e456
DJ
390 /* We can only conflict with allocated sections. */
391 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
392 continue;
393
394 /* If the section offset is 0, either the section has not been placed
395 yet, or it was the lowest section placed (in which case LOWEST
396 will be past its end). */
397 if (offsets[indx] == 0)
398 continue;
399
400 /* If this section would overlap us, then we must move up. */
401 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
402 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
403 {
404 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
405 start_addr = (start_addr + align - 1) & -align;
406 done = 0;
3bd72c6f 407 break;
c1bd25fd
DJ
408 }
409
410 /* Otherwise, we appear to be OK. So far. */
411 }
412 }
413 while (!done);
414
65cf3563 415 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
c1bd25fd 416 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 417}
e8289572 418
4f7ae6f5 419/* Store section_addr_info as prepared (made relative and with SECTINDEX
75242ef4
JK
420 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
421 entries. */
e8289572
JB
422
423void
75242ef4
JK
424relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
425 int num_sections,
37e136b1 426 const section_addr_info &addrs)
e8289572
JB
427{
428 int i;
429
75242ef4 430 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 431
c378eb4e 432 /* Now calculate offsets for section that were specified by the caller. */
37e136b1 433 for (i = 0; i < addrs.size (); i++)
e8289572 434 {
3189cb12 435 const struct other_sections *osp;
e8289572 436
37e136b1 437 osp = &addrs[i];
5488dafb 438 if (osp->sectindex == -1)
e8289572
JB
439 continue;
440
c378eb4e 441 /* Record all sections in offsets. */
e8289572 442 /* The section_offsets in the objfile are here filled in using
c378eb4e 443 the BFD index. */
75242ef4
JK
444 section_offsets->offsets[osp->sectindex] = osp->addr;
445 }
446}
447
1276c759
JK
448/* Transform section name S for a name comparison. prelink can split section
449 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
450 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
451 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
452 (`.sbss') section has invalid (increased) virtual address. */
453
454static const char *
455addr_section_name (const char *s)
456{
457 if (strcmp (s, ".dynbss") == 0)
458 return ".bss";
459 if (strcmp (s, ".sdynbss") == 0)
460 return ".sbss";
461
462 return s;
463}
464
37e136b1
TT
465/* std::sort comparator for addrs_section_sort. Sort entries in
466 ascending order by their (name, sectindex) pair. sectindex makes
467 the sort by name stable. */
82ccf5a5 468
37e136b1
TT
469static bool
470addrs_section_compar (const struct other_sections *a,
471 const struct other_sections *b)
82ccf5a5 472{
22e048c9 473 int retval;
82ccf5a5 474
37e136b1
TT
475 retval = strcmp (addr_section_name (a->name.c_str ()),
476 addr_section_name (b->name.c_str ()));
477 if (retval != 0)
478 return retval < 0;
82ccf5a5 479
37e136b1 480 return a->sectindex < b->sectindex;
82ccf5a5
JK
481}
482
37e136b1 483/* Provide sorted array of pointers to sections of ADDRS. */
82ccf5a5 484
37e136b1
TT
485static std::vector<const struct other_sections *>
486addrs_section_sort (const section_addr_info &addrs)
82ccf5a5 487{
82ccf5a5
JK
488 int i;
489
37e136b1
TT
490 std::vector<const struct other_sections *> array (addrs.size ());
491 for (i = 0; i < addrs.size (); i++)
492 array[i] = &addrs[i];
82ccf5a5 493
37e136b1 494 std::sort (array.begin (), array.end (), addrs_section_compar);
82ccf5a5
JK
495
496 return array;
497}
498
75242ef4 499/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
500 also SECTINDEXes specific to ABFD there. This function can be used to
501 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
502
503void
37e136b1 504addr_info_make_relative (section_addr_info *addrs, bfd *abfd)
75242ef4
JK
505{
506 asection *lower_sect;
75242ef4
JK
507 CORE_ADDR lower_offset;
508 int i;
509
510 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
511 continguous sections. */
512 lower_sect = NULL;
513 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
514 if (lower_sect == NULL)
515 {
516 warning (_("no loadable sections found in added symbol-file %s"),
517 bfd_get_filename (abfd));
518 lower_offset = 0;
e8289572 519 }
75242ef4
JK
520 else
521 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
522
82ccf5a5
JK
523 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
524 in ABFD. Section names are not unique - there can be multiple sections of
525 the same name. Also the sections of the same name do not have to be
526 adjacent to each other. Some sections may be present only in one of the
527 files. Even sections present in both files do not have to be in the same
528 order.
529
530 Use stable sort by name for the sections in both files. Then linearly
531 scan both lists matching as most of the entries as possible. */
532
37e136b1
TT
533 std::vector<const struct other_sections *> addrs_sorted
534 = addrs_section_sort (*addrs);
82ccf5a5 535
37e136b1
TT
536 section_addr_info abfd_addrs = build_section_addr_info_from_bfd (abfd);
537 std::vector<const struct other_sections *> abfd_addrs_sorted
538 = addrs_section_sort (abfd_addrs);
82ccf5a5 539
c378eb4e
MS
540 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
541 ABFD_ADDRS_SORTED. */
82ccf5a5 542
37e136b1
TT
543 std::vector<const struct other_sections *>
544 addrs_to_abfd_addrs (addrs->size (), nullptr);
82ccf5a5 545
37e136b1
TT
546 std::vector<const struct other_sections *>::iterator abfd_sorted_iter
547 = abfd_addrs_sorted.begin ();
52941706 548 for (const other_sections *sect : addrs_sorted)
82ccf5a5 549 {
37e136b1 550 const char *sect_name = addr_section_name (sect->name.c_str ());
82ccf5a5 551
37e136b1
TT
552 while (abfd_sorted_iter != abfd_addrs_sorted.end ()
553 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
1276c759 554 sect_name) < 0)
37e136b1 555 abfd_sorted_iter++;
82ccf5a5 556
37e136b1
TT
557 if (abfd_sorted_iter != abfd_addrs_sorted.end ()
558 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
1276c759 559 sect_name) == 0)
82ccf5a5
JK
560 {
561 int index_in_addrs;
562
563 /* Make the found item directly addressable from ADDRS. */
37e136b1 564 index_in_addrs = sect - addrs->data ();
82ccf5a5 565 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
37e136b1 566 addrs_to_abfd_addrs[index_in_addrs] = *abfd_sorted_iter;
82ccf5a5
JK
567
568 /* Never use the same ABFD entry twice. */
37e136b1 569 abfd_sorted_iter++;
82ccf5a5 570 }
82ccf5a5
JK
571 }
572
75242ef4
JK
573 /* Calculate offsets for the loadable sections.
574 FIXME! Sections must be in order of increasing loadable section
575 so that contiguous sections can use the lower-offset!!!
576
577 Adjust offsets if the segments are not contiguous.
578 If the section is contiguous, its offset should be set to
579 the offset of the highest loadable section lower than it
580 (the loadable section directly below it in memory).
581 this_offset = lower_offset = lower_addr - lower_orig_addr */
582
37e136b1 583 for (i = 0; i < addrs->size (); i++)
75242ef4 584 {
37e136b1 585 const struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
586
587 if (sect)
75242ef4 588 {
c378eb4e 589 /* This is the index used by BFD. */
37e136b1 590 (*addrs)[i].sectindex = sect->sectindex;
672d9c23 591
37e136b1 592 if ((*addrs)[i].addr != 0)
75242ef4 593 {
37e136b1
TT
594 (*addrs)[i].addr -= sect->addr;
595 lower_offset = (*addrs)[i].addr;
75242ef4
JK
596 }
597 else
37e136b1 598 (*addrs)[i].addr = lower_offset;
75242ef4
JK
599 }
600 else
672d9c23 601 {
1276c759 602 /* addr_section_name transformation is not used for SECT_NAME. */
37e136b1 603 const std::string &sect_name = (*addrs)[i].name;
1276c759 604
b0fcb67f
JK
605 /* This section does not exist in ABFD, which is normally
606 unexpected and we want to issue a warning.
607
4d9743af
JK
608 However, the ELF prelinker does create a few sections which are
609 marked in the main executable as loadable (they are loaded in
610 memory from the DYNAMIC segment) and yet are not present in
611 separate debug info files. This is fine, and should not cause
612 a warning. Shared libraries contain just the section
613 ".gnu.liblist" but it is not marked as loadable there. There is
614 no other way to identify them than by their name as the sections
1276c759
JK
615 created by prelink have no special flags.
616
617 For the sections `.bss' and `.sbss' see addr_section_name. */
b0fcb67f 618
37e136b1
TT
619 if (!(sect_name == ".gnu.liblist"
620 || sect_name == ".gnu.conflict"
621 || (sect_name == ".bss"
1276c759 622 && i > 0
37e136b1 623 && (*addrs)[i - 1].name == ".dynbss"
1276c759 624 && addrs_to_abfd_addrs[i - 1] != NULL)
37e136b1 625 || (sect_name == ".sbss"
1276c759 626 && i > 0
37e136b1 627 && (*addrs)[i - 1].name == ".sdynbss"
1276c759 628 && addrs_to_abfd_addrs[i - 1] != NULL)))
37e136b1 629 warning (_("section %s not found in %s"), sect_name.c_str (),
b0fcb67f
JK
630 bfd_get_filename (abfd));
631
37e136b1
TT
632 (*addrs)[i].addr = 0;
633 (*addrs)[i].sectindex = -1;
672d9c23 634 }
75242ef4
JK
635 }
636}
637
638/* Parse the user's idea of an offset for dynamic linking, into our idea
639 of how to represent it for fast symbol reading. This is the default
640 version of the sym_fns.sym_offsets function for symbol readers that
641 don't need to do anything special. It allocates a section_offsets table
642 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
643
644void
645default_symfile_offsets (struct objfile *objfile,
37e136b1 646 const section_addr_info &addrs)
75242ef4 647{
d445b2f6 648 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
75242ef4
JK
649 objfile->section_offsets = (struct section_offsets *)
650 obstack_alloc (&objfile->objfile_obstack,
651 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
652 relative_addr_info_to_section_offsets (objfile->section_offsets,
653 objfile->num_sections, addrs);
e8289572 654
c1bd25fd
DJ
655 /* For relocatable files, all loadable sections will start at zero.
656 The zero is meaningless, so try to pick arbitrary addresses such
657 that no loadable sections overlap. This algorithm is quadratic,
658 but the number of sections in a single object file is generally
659 small. */
660 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
661 {
662 struct place_section_arg arg;
2711e456
DJ
663 bfd *abfd = objfile->obfd;
664 asection *cur_sec;
2711e456
DJ
665
666 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
667 /* We do not expect this to happen; just skip this step if the
668 relocatable file has a section with an assigned VMA. */
669 if (bfd_section_vma (abfd, cur_sec) != 0)
670 break;
671
672 if (cur_sec == NULL)
673 {
674 CORE_ADDR *offsets = objfile->section_offsets->offsets;
675
676 /* Pick non-overlapping offsets for sections the user did not
677 place explicitly. */
678 arg.offsets = objfile->section_offsets;
679 arg.lowest = 0;
680 bfd_map_over_sections (objfile->obfd, place_section, &arg);
681
682 /* Correctly filling in the section offsets is not quite
683 enough. Relocatable files have two properties that
684 (most) shared objects do not:
685
686 - Their debug information will contain relocations. Some
687 shared libraries do also, but many do not, so this can not
688 be assumed.
689
690 - If there are multiple code sections they will be loaded
691 at different relative addresses in memory than they are
692 in the objfile, since all sections in the file will start
693 at address zero.
694
695 Because GDB has very limited ability to map from an
696 address in debug info to the correct code section,
697 it relies on adding SECT_OFF_TEXT to things which might be
698 code. If we clear all the section offsets, and set the
699 section VMAs instead, then symfile_relocate_debug_section
700 will return meaningful debug information pointing at the
701 correct sections.
702
703 GDB has too many different data structures for section
704 addresses - a bfd, objfile, and so_list all have section
705 tables, as does exec_ops. Some of these could probably
706 be eliminated. */
707
708 for (cur_sec = abfd->sections; cur_sec != NULL;
709 cur_sec = cur_sec->next)
710 {
711 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
712 continue;
713
714 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
3e43a32a
MS
715 exec_set_section_address (bfd_get_filename (abfd),
716 cur_sec->index,
30510692 717 offsets[cur_sec->index]);
2711e456
DJ
718 offsets[cur_sec->index] = 0;
719 }
720 }
c1bd25fd
DJ
721 }
722
e8289572 723 /* Remember the bfd indexes for the .text, .data, .bss and
c378eb4e 724 .rodata sections. */
e8289572
JB
725 init_objfile_sect_indices (objfile);
726}
727
31d99776
DJ
728/* Divide the file into segments, which are individual relocatable units.
729 This is the default version of the sym_fns.sym_segments function for
730 symbol readers that do not have an explicit representation of segments.
731 It assumes that object files do not have segments, and fully linked
732 files have a single segment. */
733
734struct symfile_segment_data *
735default_symfile_segments (bfd *abfd)
736{
737 int num_sections, i;
738 asection *sect;
739 struct symfile_segment_data *data;
740 CORE_ADDR low, high;
741
742 /* Relocatable files contain enough information to position each
743 loadable section independently; they should not be relocated
744 in segments. */
745 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
746 return NULL;
747
748 /* Make sure there is at least one loadable section in the file. */
749 for (sect = abfd->sections; sect != NULL; sect = sect->next)
750 {
751 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
752 continue;
753
754 break;
755 }
756 if (sect == NULL)
757 return NULL;
758
759 low = bfd_get_section_vma (abfd, sect);
760 high = low + bfd_get_section_size (sect);
761
41bf6aca 762 data = XCNEW (struct symfile_segment_data);
31d99776 763 data->num_segments = 1;
fc270c35
TT
764 data->segment_bases = XCNEW (CORE_ADDR);
765 data->segment_sizes = XCNEW (CORE_ADDR);
31d99776
DJ
766
767 num_sections = bfd_count_sections (abfd);
fc270c35 768 data->segment_info = XCNEWVEC (int, num_sections);
31d99776
DJ
769
770 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
771 {
772 CORE_ADDR vma;
773
774 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
775 continue;
776
777 vma = bfd_get_section_vma (abfd, sect);
778 if (vma < low)
779 low = vma;
780 if (vma + bfd_get_section_size (sect) > high)
781 high = vma + bfd_get_section_size (sect);
782
783 data->segment_info[i] = 1;
784 }
785
786 data->segment_bases[0] = low;
787 data->segment_sizes[0] = high - low;
788
789 return data;
790}
791
608e2dbb
TT
792/* This is a convenience function to call sym_read for OBJFILE and
793 possibly force the partial symbols to be read. */
794
795static void
b15cc25c 796read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
608e2dbb
TT
797{
798 (*objfile->sf->sym_read) (objfile, add_flags);
23732b1e 799 objfile->per_bfd->minsyms_read = true;
8a92335b
JK
800
801 /* find_separate_debug_file_in_section should be called only if there is
802 single binary with no existing separate debug info file. */
803 if (!objfile_has_partial_symbols (objfile)
804 && objfile->separate_debug_objfile == NULL
805 && objfile->separate_debug_objfile_backlink == NULL)
608e2dbb 806 {
192b62ce 807 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
608e2dbb
TT
808
809 if (abfd != NULL)
24ba069a
JK
810 {
811 /* find_separate_debug_file_in_section uses the same filename for the
812 virtual section-as-bfd like the bfd filename containing the
813 section. Therefore use also non-canonical name form for the same
814 file containing the section. */
921222e2
TT
815 symbol_file_add_separate (abfd.get (),
816 bfd_get_filename (abfd.get ()),
817 add_flags | SYMFILE_NOT_FILENAME, objfile);
24ba069a 818 }
608e2dbb
TT
819 }
820 if ((add_flags & SYMFILE_NO_READ) == 0)
821 require_partial_symbols (objfile, 0);
822}
823
3d6e24f0
JB
824/* Initialize entry point information for this objfile. */
825
826static void
827init_entry_point_info (struct objfile *objfile)
828{
6ef55de7
TT
829 struct entry_info *ei = &objfile->per_bfd->ei;
830
831 if (ei->initialized)
832 return;
833 ei->initialized = 1;
834
3d6e24f0
JB
835 /* Save startup file's range of PC addresses to help blockframe.c
836 decide where the bottom of the stack is. */
837
838 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
839 {
840 /* Executable file -- record its entry point so we'll recognize
841 the startup file because it contains the entry point. */
6ef55de7
TT
842 ei->entry_point = bfd_get_start_address (objfile->obfd);
843 ei->entry_point_p = 1;
3d6e24f0
JB
844 }
845 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
846 && bfd_get_start_address (objfile->obfd) != 0)
847 {
848 /* Some shared libraries may have entry points set and be
849 runnable. There's no clear way to indicate this, so just check
850 for values other than zero. */
6ef55de7
TT
851 ei->entry_point = bfd_get_start_address (objfile->obfd);
852 ei->entry_point_p = 1;
3d6e24f0
JB
853 }
854 else
855 {
856 /* Examination of non-executable.o files. Short-circuit this stuff. */
6ef55de7 857 ei->entry_point_p = 0;
3d6e24f0
JB
858 }
859
6ef55de7 860 if (ei->entry_point_p)
3d6e24f0 861 {
53eddfa6 862 struct obj_section *osect;
6ef55de7 863 CORE_ADDR entry_point = ei->entry_point;
53eddfa6 864 int found;
3d6e24f0
JB
865
866 /* Make certain that the address points at real code, and not a
867 function descriptor. */
868 entry_point
df6d5441 869 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
3d6e24f0 870 entry_point,
8b88a78e 871 current_top_target ());
3d6e24f0
JB
872
873 /* Remove any ISA markers, so that this matches entries in the
874 symbol table. */
6ef55de7 875 ei->entry_point
df6d5441 876 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
53eddfa6
TT
877
878 found = 0;
879 ALL_OBJFILE_OSECTIONS (objfile, osect)
880 {
881 struct bfd_section *sect = osect->the_bfd_section;
882
883 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
884 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
885 + bfd_get_section_size (sect)))
886 {
6ef55de7 887 ei->the_bfd_section_index
53eddfa6
TT
888 = gdb_bfd_section_index (objfile->obfd, sect);
889 found = 1;
890 break;
891 }
892 }
893
894 if (!found)
6ef55de7 895 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
3d6e24f0
JB
896 }
897}
898
c906108c
SS
899/* Process a symbol file, as either the main file or as a dynamically
900 loaded file.
901
36e4d068
JB
902 This function does not set the OBJFILE's entry-point info.
903
96baa820
JM
904 OBJFILE is where the symbols are to be read from.
905
7e8580c1
JB
906 ADDRS is the list of section load addresses. If the user has given
907 an 'add-symbol-file' command, then this is the list of offsets and
908 addresses he or she provided as arguments to the command; or, if
909 we're handling a shared library, these are the actual addresses the
910 sections are loaded at, according to the inferior's dynamic linker
911 (as gleaned by GDB's shared library code). We convert each address
912 into an offset from the section VMA's as it appears in the object
913 file, and then call the file's sym_offsets function to convert this
914 into a format-specific offset table --- a `struct section_offsets'.
d81a3eaf
PT
915 The sectindex field is used to control the ordering of sections
916 with the same name. Upon return, it is updated to contain the
917 correspondig BFD section index, or -1 if the section was not found.
96baa820 918
7eedccfa
PP
919 ADD_FLAGS encodes verbosity level, whether this is main symbol or
920 an extra symbol file such as dynamically loaded code, and wether
921 breakpoint reset should be deferred. */
c906108c 922
36e4d068
JB
923static void
924syms_from_objfile_1 (struct objfile *objfile,
37e136b1 925 section_addr_info *addrs,
b15cc25c 926 symfile_add_flags add_flags)
c906108c 927{
37e136b1 928 section_addr_info local_addr;
7eedccfa 929 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 930
8fb8eb5c 931 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
c906108c 932
75245b24 933 if (objfile->sf == NULL)
36e4d068
JB
934 {
935 /* No symbols to load, but we still need to make sure
936 that the section_offsets table is allocated. */
d445b2f6 937 int num_sections = gdb_bfd_count_sections (objfile->obfd);
a7bfba49 938 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
36e4d068
JB
939
940 objfile->num_sections = num_sections;
941 objfile->section_offsets
224c3ddb
SM
942 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
943 size);
36e4d068
JB
944 memset (objfile->section_offsets, 0, size);
945 return;
946 }
75245b24 947
c906108c
SS
948 /* Make sure that partially constructed symbol tables will be cleaned up
949 if an error occurs during symbol reading. */
286526c1
TT
950 gdb::optional<clear_symtab_users_cleanup> defer_clear_users;
951
ed2b3126 952 std::unique_ptr<struct objfile> objfile_holder (objfile);
c906108c 953
6bf667bb
DE
954 /* If ADDRS is NULL, put together a dummy address list.
955 We now establish the convention that an addr of zero means
c378eb4e 956 no load address was specified. */
6bf667bb 957 if (! addrs)
37e136b1 958 addrs = &local_addr;
a39a16c4 959
c5aa993b 960 if (mainline)
c906108c
SS
961 {
962 /* We will modify the main symbol table, make sure that all its users
c5aa993b 963 will be cleaned up if an error occurs during symbol reading. */
286526c1 964 defer_clear_users.emplace ((symfile_add_flag) 0);
c906108c
SS
965
966 /* Since no error yet, throw away the old symbol table. */
967
968 if (symfile_objfile != NULL)
969 {
9e86da07 970 delete symfile_objfile;
adb7f338 971 gdb_assert (symfile_objfile == NULL);
c906108c
SS
972 }
973
974 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
975 If the user wants to get rid of them, they should do "symbol-file"
976 without arguments first. Not sure this is the best behavior
977 (PR 2207). */
c906108c 978
c5aa993b 979 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
980 }
981
982 /* Convert addr into an offset rather than an absolute address.
983 We find the lowest address of a loaded segment in the objfile,
53a5351d 984 and assume that <addr> is where that got loaded.
c906108c 985
53a5351d
JM
986 We no longer warn if the lowest section is not a text segment (as
987 happens for the PA64 port. */
37e136b1 988 if (addrs->size () > 0)
75242ef4 989 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
990
991 /* Initialize symbol reading routines for this objfile, allow complaints to
992 appear for this new file, and record how verbose to be, then do the
c378eb4e 993 initial symbol reading for this file. */
c906108c 994
c5aa993b 995 (*objfile->sf->sym_init) (objfile);
5ca8c39f 996 clear_complaints ();
c906108c 997
37e136b1 998 (*objfile->sf->sym_offsets) (objfile, *addrs);
c906108c 999
608e2dbb 1000 read_symbols (objfile, add_flags);
b11896a5 1001
c906108c
SS
1002 /* Discard cleanups as symbol reading was successful. */
1003
ed2b3126 1004 objfile_holder.release ();
286526c1
TT
1005 if (defer_clear_users)
1006 defer_clear_users->release ();
c906108c
SS
1007}
1008
36e4d068
JB
1009/* Same as syms_from_objfile_1, but also initializes the objfile
1010 entry-point info. */
1011
6bf667bb 1012static void
36e4d068 1013syms_from_objfile (struct objfile *objfile,
37e136b1 1014 section_addr_info *addrs,
b15cc25c 1015 symfile_add_flags add_flags)
36e4d068 1016{
6bf667bb 1017 syms_from_objfile_1 (objfile, addrs, add_flags);
36e4d068
JB
1018 init_entry_point_info (objfile);
1019}
1020
c906108c
SS
1021/* Perform required actions after either reading in the initial
1022 symbols for a new objfile, or mapping in the symbols from a reusable
c1e56572 1023 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c5aa993b 1024
e7d52ed3 1025static void
b15cc25c 1026finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
c906108c 1027{
c906108c 1028 /* If this is the main symbol file we have to clean up all users of the
c378eb4e 1029 old main symbol file. Otherwise it is sufficient to fixup all the
c906108c 1030 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1031 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1032 {
1033 /* OK, make it the "real" symbol file. */
1034 symfile_objfile = objfile;
1035
c1e56572 1036 clear_symtab_users (add_flags);
c906108c 1037 }
7eedccfa 1038 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1039 {
69de3c6a 1040 breakpoint_re_set ();
c906108c
SS
1041 }
1042
1043 /* We're done reading the symbol file; finish off complaints. */
5ca8c39f 1044 clear_complaints ();
c906108c
SS
1045}
1046
1047/* Process a symbol file, as either the main file or as a dynamically
1048 loaded file.
1049
5417f6dc 1050 ABFD is a BFD already open on the file, as from symfile_bfd_open.
8ac244b4 1051 A new reference is acquired by this function.
7904e09f 1052
9e86da07 1053 For NAME description see the objfile constructor.
24ba069a 1054
7eedccfa
PP
1055 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1056 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f 1057
6bf667bb 1058 ADDRS is as described for syms_from_objfile_1, above.
7eedccfa 1059 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1060
63524580
JK
1061 PARENT is the original objfile if ABFD is a separate debug info file.
1062 Otherwise PARENT is NULL.
1063
c906108c 1064 Upon success, returns a pointer to the objfile that was added.
c378eb4e 1065 Upon failure, jumps back to command level (never returns). */
7eedccfa 1066
7904e09f 1067static struct objfile *
b15cc25c
PA
1068symbol_file_add_with_addrs (bfd *abfd, const char *name,
1069 symfile_add_flags add_flags,
37e136b1 1070 section_addr_info *addrs,
b15cc25c 1071 objfile_flags flags, struct objfile *parent)
c906108c
SS
1072{
1073 struct objfile *objfile;
7eedccfa 1074 const int from_tty = add_flags & SYMFILE_VERBOSE;
0838fb57 1075 const int mainline = add_flags & SYMFILE_MAINLINE;
770e7fc7 1076 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
b11896a5
TT
1077 && (readnow_symbol_files
1078 || (add_flags & SYMFILE_NO_READ) == 0));
c906108c 1079
9291a0cd 1080 if (readnow_symbol_files)
b11896a5
TT
1081 {
1082 flags |= OBJF_READNOW;
1083 add_flags &= ~SYMFILE_NO_READ;
1084 }
97cbe998
SDJ
1085 else if (readnever_symbol_files
1086 || (parent != NULL && (parent->flags & OBJF_READNEVER)))
1087 {
1088 flags |= OBJF_READNEVER;
1089 add_flags |= SYMFILE_NO_READ;
1090 }
921222e2
TT
1091 if ((add_flags & SYMFILE_NOT_FILENAME) != 0)
1092 flags |= OBJF_NOT_FILENAME;
9291a0cd 1093
5417f6dc
RM
1094 /* Give user a chance to burp if we'd be
1095 interactively wiping out any existing symbols. */
c906108c
SS
1096
1097 if ((have_full_symbols () || have_partial_symbols ())
0838fb57 1098 && mainline
c906108c 1099 && from_tty
9e2f0ad4 1100 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1101 error (_("Not confirmed."));
c906108c 1102
b15cc25c
PA
1103 if (mainline)
1104 flags |= OBJF_MAINLINE;
9e86da07 1105 objfile = new struct objfile (abfd, name, flags);
c906108c 1106
63524580
JK
1107 if (parent)
1108 add_separate_debug_objfile (objfile, parent);
1109
78a4a9b9
AC
1110 /* We either created a new mapped symbol table, mapped an existing
1111 symbol table file which has not had initial symbol reading
c378eb4e 1112 performed, or need to read an unmapped symbol table. */
b11896a5 1113 if (should_print)
c906108c 1114 {
769d7dc4
AC
1115 if (deprecated_pre_add_symbol_hook)
1116 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1117 else
47fd17cd
TT
1118 {
1119 puts_filtered (_("Reading symbols from "));
1120 fputs_styled (name, file_name_style.style (), gdb_stdout);
1121 puts_filtered ("...\n");
1122 }
c906108c 1123 }
6bf667bb 1124 syms_from_objfile (objfile, addrs, add_flags);
c906108c
SS
1125
1126 /* We now have at least a partial symbol table. Check to see if the
1127 user requested that all symbols be read on initial access via either
1128 the gdb startup command line or on a per symbol file basis. Expand
c378eb4e 1129 all partial symbol tables for this objfile if so. */
c906108c 1130
9291a0cd 1131 if ((flags & OBJF_READNOW))
c906108c 1132 {
b11896a5 1133 if (should_print)
3453e7e4 1134 printf_filtered (_("Expanding full symbols from %s...\n"), name);
c906108c 1135
ccefe4c4
TT
1136 if (objfile->sf)
1137 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1138 }
1139
e79497a1
TT
1140 /* Note that we only print a message if we have no symbols and have
1141 no separate debug file. If there is a separate debug file which
1142 does not have symbols, we'll have emitted this message for that
1143 file, and so printing it twice is just redundant. */
1144 if (should_print && !objfile_has_symbols (objfile)
1145 && objfile->separate_debug_objfile == nullptr)
3453e7e4 1146 printf_filtered (_("(No debugging symbols found in %s)\n"), name);
cb3c37b2 1147
b11896a5 1148 if (should_print)
c906108c 1149 {
769d7dc4
AC
1150 if (deprecated_post_add_symbol_hook)
1151 deprecated_post_add_symbol_hook ();
c906108c
SS
1152 }
1153
481d0f41
JB
1154 /* We print some messages regardless of whether 'from_tty ||
1155 info_verbose' is true, so make sure they go out at the right
1156 time. */
1157 gdb_flush (gdb_stdout);
1158
109f874e 1159 if (objfile->sf == NULL)
8caee43b 1160 {
76727919 1161 gdb::observers::new_objfile.notify (objfile);
c378eb4e 1162 return objfile; /* No symbols. */
8caee43b 1163 }
109f874e 1164
e7d52ed3 1165 finish_new_objfile (objfile, add_flags);
c906108c 1166
76727919 1167 gdb::observers::new_objfile.notify (objfile);
c906108c 1168
ce7d4522 1169 bfd_cache_close_all ();
c906108c
SS
1170 return (objfile);
1171}
1172
24ba069a 1173/* Add BFD as a separate debug file for OBJFILE. For NAME description
9e86da07 1174 see the objfile constructor. */
9cce227f
TG
1175
1176void
b15cc25c
PA
1177symbol_file_add_separate (bfd *bfd, const char *name,
1178 symfile_add_flags symfile_flags,
24ba069a 1179 struct objfile *objfile)
9cce227f 1180{
089b4803
TG
1181 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1182 because sections of BFD may not match sections of OBJFILE and because
1183 vma may have been modified by tools such as prelink. */
37e136b1 1184 section_addr_info sap = build_section_addr_info_from_objfile (objfile);
9cce227f 1185
870f88f7 1186 symbol_file_add_with_addrs
37e136b1 1187 (bfd, name, symfile_flags, &sap,
9cce227f 1188 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
63524580
JK
1189 | OBJF_USERLOADED),
1190 objfile);
9cce227f 1191}
7904e09f 1192
eb4556d7
JB
1193/* Process the symbol file ABFD, as either the main file or as a
1194 dynamically loaded file.
6bf667bb 1195 See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1196
eb4556d7 1197struct objfile *
b15cc25c
PA
1198symbol_file_add_from_bfd (bfd *abfd, const char *name,
1199 symfile_add_flags add_flags,
37e136b1 1200 section_addr_info *addrs,
b15cc25c 1201 objfile_flags flags, struct objfile *parent)
eb4556d7 1202{
24ba069a
JK
1203 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1204 parent);
eb4556d7
JB
1205}
1206
7904e09f 1207/* Process a symbol file, as either the main file or as a dynamically
6bf667bb 1208 loaded file. See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1209
7904e09f 1210struct objfile *
b15cc25c 1211symbol_file_add (const char *name, symfile_add_flags add_flags,
37e136b1 1212 section_addr_info *addrs, objfile_flags flags)
7904e09f 1213{
192b62ce 1214 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
8ac244b4 1215
192b62ce
TT
1216 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1217 flags, NULL);
7904e09f
JB
1218}
1219
d7db6da9
FN
1220/* Call symbol_file_add() with default values and update whatever is
1221 affected by the loading of a new main().
1222 Used when the file is supplied in the gdb command line
1223 and by some targets with special loading requirements.
1224 The auxiliary function, symbol_file_add_main_1(), has the flags
1225 argument for the switches that can only be specified in the symbol_file
1226 command itself. */
5417f6dc 1227
1adeb98a 1228void
ecf45d2c 1229symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1adeb98a 1230{
d4d429d5 1231 symbol_file_add_main_1 (args, add_flags, 0, 0);
d7db6da9
FN
1232}
1233
1234static void
ecf45d2c 1235symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
d4d429d5 1236 objfile_flags flags, CORE_ADDR reloff)
d7db6da9 1237{
ecf45d2c 1238 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
7dcd53a0 1239
d4d429d5
PT
1240 struct objfile *objfile = symbol_file_add (args, add_flags, NULL, flags);
1241 if (reloff != 0)
1242 objfile_rebase (objfile, reloff);
d7db6da9 1243
d7db6da9
FN
1244 /* Getting new symbols may change our opinion about
1245 what is frameless. */
1246 reinit_frame_cache ();
1247
b15cc25c 1248 if ((add_flags & SYMFILE_NO_READ) == 0)
7dcd53a0 1249 set_initial_language ();
1adeb98a
FN
1250}
1251
1252void
1253symbol_file_clear (int from_tty)
1254{
1255 if ((have_full_symbols () || have_partial_symbols ())
1256 && from_tty
0430b0d6
AS
1257 && (symfile_objfile
1258 ? !query (_("Discard symbol table from `%s'? "),
4262abfb 1259 objfile_name (symfile_objfile))
0430b0d6 1260 : !query (_("Discard symbol table? "))))
8a3fe4f8 1261 error (_("Not confirmed."));
1adeb98a 1262
0133421a
JK
1263 /* solib descriptors may have handles to objfiles. Wipe them before their
1264 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1265 no_shared_libraries (NULL, from_tty);
1266
0133421a
JK
1267 free_all_objfiles ();
1268
adb7f338 1269 gdb_assert (symfile_objfile == NULL);
d10c338d 1270 if (from_tty)
22068491 1271 printf_filtered (_("No symbol file now.\n"));
1adeb98a
FN
1272}
1273
c4dcb155
SM
1274/* See symfile.h. */
1275
1276int separate_debug_file_debug = 0;
1277
5b5d99cf 1278static int
a8dbfd58 1279separate_debug_file_exists (const std::string &name, unsigned long crc,
32a0e547 1280 struct objfile *parent_objfile)
5b5d99cf 1281{
904578ed
JK
1282 unsigned long file_crc;
1283 int file_crc_p;
32a0e547 1284 struct stat parent_stat, abfd_stat;
904578ed 1285 int verified_as_different;
32a0e547
JK
1286
1287 /* Find a separate debug info file as if symbols would be present in
1288 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1289 section can contain just the basename of PARENT_OBJFILE without any
1290 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
c378eb4e 1291 the separate debug infos with the same basename can exist. */
32a0e547 1292
a8dbfd58 1293 if (filename_cmp (name.c_str (), objfile_name (parent_objfile)) == 0)
32a0e547 1294 return 0;
5b5d99cf 1295
c4dcb155 1296 if (separate_debug_file_debug)
50794b45
SM
1297 {
1298 printf_filtered (_(" Trying %s..."), name.c_str ());
1299 gdb_flush (gdb_stdout);
1300 }
c4dcb155 1301
a8dbfd58 1302 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name.c_str (), gnutarget, -1));
f1838a98 1303
192b62ce 1304 if (abfd == NULL)
50794b45
SM
1305 {
1306 if (separate_debug_file_debug)
1307 printf_filtered (_(" no, unable to open.\n"));
1308
1309 return 0;
1310 }
5b5d99cf 1311
0ba1096a 1312 /* Verify symlinks were not the cause of filename_cmp name difference above.
32a0e547
JK
1313
1314 Some operating systems, e.g. Windows, do not provide a meaningful
1315 st_ino; they always set it to zero. (Windows does provide a
0a93529c
GB
1316 meaningful st_dev.) Files accessed from gdbservers that do not
1317 support the vFile:fstat packet will also have st_ino set to zero.
1318 Do not indicate a duplicate library in either case. While there
1319 is no guarantee that a system that provides meaningful inode
1320 numbers will never set st_ino to zero, this is merely an
1321 optimization, so we do not need to worry about false negatives. */
32a0e547 1322
192b62ce 1323 if (bfd_stat (abfd.get (), &abfd_stat) == 0
904578ed
JK
1324 && abfd_stat.st_ino != 0
1325 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
32a0e547 1326 {
904578ed
JK
1327 if (abfd_stat.st_dev == parent_stat.st_dev
1328 && abfd_stat.st_ino == parent_stat.st_ino)
50794b45
SM
1329 {
1330 if (separate_debug_file_debug)
1331 printf_filtered (_(" no, same file as the objfile.\n"));
1332
1333 return 0;
1334 }
904578ed 1335 verified_as_different = 1;
32a0e547 1336 }
904578ed
JK
1337 else
1338 verified_as_different = 0;
32a0e547 1339
192b62ce 1340 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
5b5d99cf 1341
904578ed 1342 if (!file_crc_p)
50794b45
SM
1343 {
1344 if (separate_debug_file_debug)
1345 printf_filtered (_(" no, error computing CRC.\n"));
1346
1347 return 0;
1348 }
904578ed 1349
287ccc17
JK
1350 if (crc != file_crc)
1351 {
dccee2de
TT
1352 unsigned long parent_crc;
1353
0a93529c
GB
1354 /* If the files could not be verified as different with
1355 bfd_stat then we need to calculate the parent's CRC
1356 to verify whether the files are different or not. */
904578ed 1357
dccee2de 1358 if (!verified_as_different)
904578ed 1359 {
dccee2de 1360 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
50794b45
SM
1361 {
1362 if (separate_debug_file_debug)
1363 printf_filtered (_(" no, error computing CRC.\n"));
1364
1365 return 0;
1366 }
904578ed
JK
1367 }
1368
dccee2de 1369 if (verified_as_different || parent_crc != file_crc)
904578ed
JK
1370 warning (_("the debug information found in \"%s\""
1371 " does not match \"%s\" (CRC mismatch).\n"),
a8dbfd58 1372 name.c_str (), objfile_name (parent_objfile));
904578ed 1373
50794b45
SM
1374 if (separate_debug_file_debug)
1375 printf_filtered (_(" no, CRC doesn't match.\n"));
1376
287ccc17
JK
1377 return 0;
1378 }
1379
50794b45
SM
1380 if (separate_debug_file_debug)
1381 printf_filtered (_(" yes!\n"));
1382
287ccc17 1383 return 1;
5b5d99cf
JB
1384}
1385
aa28a74e 1386char *debug_file_directory = NULL;
920d2a44
AC
1387static void
1388show_debug_file_directory (struct ui_file *file, int from_tty,
1389 struct cmd_list_element *c, const char *value)
1390{
3e43a32a
MS
1391 fprintf_filtered (file,
1392 _("The directory where separate debug "
1393 "symbols are searched for is \"%s\".\n"),
920d2a44
AC
1394 value);
1395}
5b5d99cf
JB
1396
1397#if ! defined (DEBUG_SUBDIRECTORY)
1398#define DEBUG_SUBDIRECTORY ".debug"
1399#endif
1400
1db33378
PP
1401/* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1402 where the original file resides (may not be the same as
1403 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
7edbb660
DE
1404 looking for. CANON_DIR is the "realpath" form of DIR.
1405 DIR must contain a trailing '/'.
a8dbfd58
SM
1406 Returns the path of the file with separate debug info, or an empty
1407 string. */
1db33378 1408
a8dbfd58 1409static std::string
1db33378
PP
1410find_separate_debug_file (const char *dir,
1411 const char *canon_dir,
1412 const char *debuglink,
1413 unsigned long crc32, struct objfile *objfile)
9cce227f 1414{
c4dcb155 1415 if (separate_debug_file_debug)
22068491
TT
1416 printf_filtered (_("\nLooking for separate debug info (debug link) for "
1417 "%s\n"), objfile_name (objfile));
c4dcb155 1418
5b5d99cf 1419 /* First try in the same directory as the original file. */
a8dbfd58
SM
1420 std::string debugfile = dir;
1421 debugfile += debuglink;
5b5d99cf 1422
32a0e547 1423 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1424 return debugfile;
5417f6dc 1425
5b5d99cf 1426 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
a8dbfd58
SM
1427 debugfile = dir;
1428 debugfile += DEBUG_SUBDIRECTORY;
1429 debugfile += "/";
1430 debugfile += debuglink;
5b5d99cf 1431
32a0e547 1432 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1433 return debugfile;
5417f6dc 1434
24ddea62 1435 /* Then try in the global debugfile directories.
f888f159 1436
24ddea62
JK
1437 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1438 cause "/..." lookups. */
5417f6dc 1439
5d36dfb9
AU
1440 bool target_prefix = startswith (dir, "target:");
1441 const char *dir_notarget = target_prefix ? dir + strlen ("target:") : dir;
e80aaf61
SM
1442 std::vector<gdb::unique_xmalloc_ptr<char>> debugdir_vec
1443 = dirnames_to_char_ptr_vec (debug_file_directory);
f62318e9 1444 gdb::unique_xmalloc_ptr<char> canon_sysroot = gdb_realpath (gdb_sysroot);
24ddea62 1445
5f2459c2
EZ
1446 /* MS-Windows/MS-DOS don't allow colons in file names; we must
1447 convert the drive letter into a one-letter directory, so that the
1448 file name resulting from splicing below will be valid.
1449
1450 FIXME: The below only works when GDB runs on MS-Windows/MS-DOS.
1451 There are various remote-debugging scenarios where such a
1452 transformation of the drive letter might be required when GDB runs
1453 on a Posix host, see
1454
1455 https://sourceware.org/ml/gdb-patches/2019-04/msg00605.html
1456
1457 If some of those scenarions need to be supported, we will need to
1458 use a different condition for HAS_DRIVE_SPEC and a different macro
1459 instead of STRIP_DRIVE_SPEC, which work on Posix systems as well. */
1460 std::string drive;
1461 if (HAS_DRIVE_SPEC (dir_notarget))
1462 {
1463 drive = dir_notarget[0];
1464 dir_notarget = STRIP_DRIVE_SPEC (dir_notarget);
1465 }
1466
e80aaf61 1467 for (const gdb::unique_xmalloc_ptr<char> &debugdir : debugdir_vec)
e4ab2fad 1468 {
5d36dfb9
AU
1469 debugfile = target_prefix ? "target:" : "";
1470 debugfile += debugdir.get ();
a8dbfd58 1471 debugfile += "/";
5f2459c2 1472 debugfile += drive;
5d36dfb9 1473 debugfile += dir_notarget;
a8dbfd58 1474 debugfile += debuglink;
aa28a74e 1475
32a0e547 1476 if (separate_debug_file_exists (debugfile, crc32, objfile))
e80aaf61 1477 return debugfile;
24ddea62 1478
f62318e9
JB
1479 const char *base_path = NULL;
1480 if (canon_dir != NULL)
1481 {
1482 if (canon_sysroot.get () != NULL)
1483 base_path = child_path (canon_sysroot.get (), canon_dir);
1484 else
1485 base_path = child_path (gdb_sysroot, canon_dir);
1486 }
1487 if (base_path != NULL)
24ddea62 1488 {
402d2bfe
JB
1489 /* If the file is in the sysroot, try using its base path in
1490 the global debugfile directory. */
5d36dfb9
AU
1491 debugfile = target_prefix ? "target:" : "";
1492 debugfile += debugdir.get ();
cd4b7848
JB
1493 debugfile += "/";
1494 debugfile += base_path;
a8dbfd58
SM
1495 debugfile += "/";
1496 debugfile += debuglink;
24ddea62 1497
402d2bfe
JB
1498 if (separate_debug_file_exists (debugfile, crc32, objfile))
1499 return debugfile;
1500
1501 /* If the file is in the sysroot, try using its base path in
1502 the sysroot's global debugfile directory. */
1503 debugfile = target_prefix ? "target:" : "";
1504 debugfile += gdb_sysroot;
1505 debugfile += debugdir.get ();
cd4b7848
JB
1506 debugfile += "/";
1507 debugfile += base_path;
402d2bfe
JB
1508 debugfile += "/";
1509 debugfile += debuglink;
1510
32a0e547 1511 if (separate_debug_file_exists (debugfile, crc32, objfile))
e80aaf61 1512 return debugfile;
24ddea62 1513 }
402d2bfe 1514
aa28a74e 1515 }
f888f159 1516
a8dbfd58 1517 return std::string ();
1db33378
PP
1518}
1519
7edbb660 1520/* Modify PATH to contain only "[/]directory/" part of PATH.
1db33378
PP
1521 If there were no directory separators in PATH, PATH will be empty
1522 string on return. */
1523
1524static void
1525terminate_after_last_dir_separator (char *path)
1526{
1527 int i;
1528
1529 /* Strip off the final filename part, leaving the directory name,
1530 followed by a slash. The directory can be relative or absolute. */
1531 for (i = strlen(path) - 1; i >= 0; i--)
1532 if (IS_DIR_SEPARATOR (path[i]))
1533 break;
1534
1535 /* If I is -1 then no directory is present there and DIR will be "". */
1536 path[i + 1] = '\0';
1537}
1538
1539/* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
a8dbfd58 1540 Returns pathname, or an empty string. */
1db33378 1541
a8dbfd58 1542std::string
1db33378
PP
1543find_separate_debug_file_by_debuglink (struct objfile *objfile)
1544{
1db33378 1545 unsigned long crc32;
1db33378 1546
5eae7aea
TT
1547 gdb::unique_xmalloc_ptr<char> debuglink
1548 (bfd_get_debug_link_info (objfile->obfd, &crc32));
1db33378
PP
1549
1550 if (debuglink == NULL)
1551 {
1552 /* There's no separate debug info, hence there's no way we could
1553 load it => no warning. */
a8dbfd58 1554 return std::string ();
1db33378
PP
1555 }
1556
5eae7aea
TT
1557 std::string dir = objfile_name (objfile);
1558 terminate_after_last_dir_separator (&dir[0]);
1559 gdb::unique_xmalloc_ptr<char> canon_dir (lrealpath (dir.c_str ()));
1db33378 1560
a8dbfd58
SM
1561 std::string debugfile
1562 = find_separate_debug_file (dir.c_str (), canon_dir.get (),
1563 debuglink.get (), crc32, objfile);
1db33378 1564
a8dbfd58 1565 if (debugfile.empty ())
1db33378 1566 {
1db33378
PP
1567 /* For PR gdb/9538, try again with realpath (if different from the
1568 original). */
1569
1570 struct stat st_buf;
1571
4262abfb
JK
1572 if (lstat (objfile_name (objfile), &st_buf) == 0
1573 && S_ISLNK (st_buf.st_mode))
1db33378 1574 {
5eae7aea
TT
1575 gdb::unique_xmalloc_ptr<char> symlink_dir
1576 (lrealpath (objfile_name (objfile)));
1db33378
PP
1577 if (symlink_dir != NULL)
1578 {
5eae7aea
TT
1579 terminate_after_last_dir_separator (symlink_dir.get ());
1580 if (dir != symlink_dir.get ())
1db33378
PP
1581 {
1582 /* Different directory, so try using it. */
5eae7aea
TT
1583 debugfile = find_separate_debug_file (symlink_dir.get (),
1584 symlink_dir.get (),
1585 debuglink.get (),
1db33378
PP
1586 crc32,
1587 objfile);
1588 }
1589 }
1590 }
1db33378 1591 }
aa28a74e 1592
25522fae 1593 return debugfile;
5b5d99cf
JB
1594}
1595
97cbe998
SDJ
1596/* Make sure that OBJF_{READNOW,READNEVER} are not set
1597 simultaneously. */
1598
1599static void
1600validate_readnow_readnever (objfile_flags flags)
1601{
1602 if ((flags & OBJF_READNOW) && (flags & OBJF_READNEVER))
1603 error (_("-readnow and -readnever cannot be used simultaneously"));
1604}
1605
c906108c
SS
1606/* This is the symbol-file command. Read the file, analyze its
1607 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1608 the command is rather bizarre:
1609
1610 1. The function buildargv implements various quoting conventions
1611 which are undocumented and have little or nothing in common with
1612 the way things are quoted (or not quoted) elsewhere in GDB.
1613
1614 2. Options are used, which are not generally used in GDB (perhaps
1615 "set mapped on", "set readnow on" would be better)
1616
1617 3. The order of options matters, which is contrary to GNU
c906108c
SS
1618 conventions (because it is confusing and inconvenient). */
1619
1620void
1d8b34a7 1621symbol_file_command (const char *args, int from_tty)
c906108c 1622{
c906108c
SS
1623 dont_repeat ();
1624
1625 if (args == NULL)
1626 {
1adeb98a 1627 symbol_file_clear (from_tty);
c906108c
SS
1628 }
1629 else
1630 {
b15cc25c 1631 objfile_flags flags = OBJF_USERLOADED;
ecf45d2c 1632 symfile_add_flags add_flags = 0;
cb2f3a29 1633 char *name = NULL;
40fc416f 1634 bool stop_processing_options = false;
d4d429d5 1635 CORE_ADDR offset = 0;
40fc416f
SDJ
1636 int idx;
1637 char *arg;
cb2f3a29 1638
ecf45d2c
SL
1639 if (from_tty)
1640 add_flags |= SYMFILE_VERBOSE;
1641
773a1edc 1642 gdb_argv built_argv (args);
40fc416f 1643 for (arg = built_argv[0], idx = 0; arg != NULL; arg = built_argv[++idx])
c906108c 1644 {
40fc416f 1645 if (stop_processing_options || *arg != '-')
7f0f8ac8 1646 {
40fc416f
SDJ
1647 if (name == NULL)
1648 name = arg;
1649 else
1650 error (_("Unrecognized argument \"%s\""), arg);
7f0f8ac8 1651 }
40fc416f
SDJ
1652 else if (strcmp (arg, "-readnow") == 0)
1653 flags |= OBJF_READNOW;
97cbe998
SDJ
1654 else if (strcmp (arg, "-readnever") == 0)
1655 flags |= OBJF_READNEVER;
d4d429d5
PT
1656 else if (strcmp (arg, "-o") == 0)
1657 {
1658 arg = built_argv[++idx];
1659 if (arg == NULL)
1660 error (_("Missing argument to -o"));
1661
1662 offset = parse_and_eval_address (arg);
1663 }
40fc416f
SDJ
1664 else if (strcmp (arg, "--") == 0)
1665 stop_processing_options = true;
1666 else
1667 error (_("Unrecognized argument \"%s\""), arg);
c906108c
SS
1668 }
1669
1670 if (name == NULL)
cb2f3a29 1671 error (_("no symbol file name was specified"));
40fc416f 1672
97cbe998
SDJ
1673 validate_readnow_readnever (flags);
1674
d4d429d5 1675 symbol_file_add_main_1 (name, add_flags, flags, offset);
c906108c
SS
1676 }
1677}
1678
1679/* Set the initial language.
1680
cb2f3a29
MK
1681 FIXME: A better solution would be to record the language in the
1682 psymtab when reading partial symbols, and then use it (if known) to
1683 set the language. This would be a win for formats that encode the
1684 language in an easily discoverable place, such as DWARF. For
1685 stabs, we can jump through hoops looking for specially named
1686 symbols or try to intuit the language from the specific type of
1687 stabs we find, but we can't do that until later when we read in
1688 full symbols. */
c906108c 1689
8b60591b 1690void
fba45db2 1691set_initial_language (void)
c906108c 1692{
9e6c82ad 1693 enum language lang = main_language ();
c906108c 1694
9e6c82ad 1695 if (lang == language_unknown)
01f8c46d 1696 {
bf6d8a91 1697 char *name = main_name ();
d12307c1 1698 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
f888f159 1699
bf6d8a91
TT
1700 if (sym != NULL)
1701 lang = SYMBOL_LANGUAGE (sym);
01f8c46d 1702 }
cb2f3a29 1703
ccefe4c4
TT
1704 if (lang == language_unknown)
1705 {
1706 /* Make C the default language */
1707 lang = language_c;
c906108c 1708 }
ccefe4c4
TT
1709
1710 set_language (lang);
1711 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1712}
1713
cb2f3a29
MK
1714/* Open the file specified by NAME and hand it off to BFD for
1715 preliminary analysis. Return a newly initialized bfd *, which
1716 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1717 absolute). In case of trouble, error() is called. */
c906108c 1718
192b62ce 1719gdb_bfd_ref_ptr
97a41605 1720symfile_bfd_open (const char *name)
c906108c 1721{
97a41605 1722 int desc = -1;
c906108c 1723
e0cc99a6 1724 gdb::unique_xmalloc_ptr<char> absolute_name;
97a41605 1725 if (!is_target_filename (name))
f1838a98 1726 {
ee0c3293 1727 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
c906108c 1728
97a41605
GB
1729 /* Look down path for it, allocate 2nd new malloc'd copy. */
1730 desc = openp (getenv ("PATH"),
1731 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
ee0c3293 1732 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
608506ed 1733#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
97a41605
GB
1734 if (desc < 0)
1735 {
ee0c3293 1736 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
433759f7 1737
ee0c3293 1738 strcat (strcpy (exename, expanded_name.get ()), ".exe");
97a41605
GB
1739 desc = openp (getenv ("PATH"),
1740 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1741 exename, O_RDONLY | O_BINARY, &absolute_name);
1742 }
c906108c 1743#endif
97a41605 1744 if (desc < 0)
ee0c3293 1745 perror_with_name (expanded_name.get ());
cb2f3a29 1746
e0cc99a6 1747 name = absolute_name.get ();
97a41605 1748 }
c906108c 1749
192b62ce
TT
1750 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1751 if (sym_bfd == NULL)
faab9922
JK
1752 error (_("`%s': can't open to read symbols: %s."), name,
1753 bfd_errmsg (bfd_get_error ()));
97a41605 1754
192b62ce
TT
1755 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1756 bfd_set_cacheable (sym_bfd.get (), 1);
c906108c 1757
192b62ce
TT
1758 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1759 error (_("`%s': can't read symbols: %s."), name,
1760 bfd_errmsg (bfd_get_error ()));
cb2f3a29
MK
1761
1762 return sym_bfd;
c906108c
SS
1763}
1764
cb2f3a29
MK
1765/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1766 the section was not found. */
1767
0e931cf0 1768int
a121b7c1 1769get_section_index (struct objfile *objfile, const char *section_name)
0e931cf0
JB
1770{
1771 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1772
0e931cf0
JB
1773 if (sect)
1774 return sect->index;
1775 else
1776 return -1;
1777}
1778
c256e171
DE
1779/* Link SF into the global symtab_fns list.
1780 FLAVOUR is the file format that SF handles.
1781 Called on startup by the _initialize routine in each object file format
1782 reader, to register information about each format the reader is prepared
1783 to handle. */
c906108c
SS
1784
1785void
c256e171 1786add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
c906108c 1787{
905014d7 1788 symtab_fns.emplace_back (flavour, sf);
c906108c
SS
1789}
1790
cb2f3a29
MK
1791/* Initialize OBJFILE to read symbols from its associated BFD. It
1792 either returns or calls error(). The result is an initialized
1793 struct sym_fns in the objfile structure, that contains cached
1794 information about the symbol file. */
c906108c 1795
00b5771c 1796static const struct sym_fns *
31d99776 1797find_sym_fns (bfd *abfd)
c906108c 1798{
31d99776 1799 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
c906108c 1800
75245b24
MS
1801 if (our_flavour == bfd_target_srec_flavour
1802 || our_flavour == bfd_target_ihex_flavour
1803 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1804 return NULL; /* No symbols. */
75245b24 1805
905014d7
SM
1806 for (const registered_sym_fns &rsf : symtab_fns)
1807 if (our_flavour == rsf.sym_flavour)
1808 return rsf.sym_fns;
cb2f3a29 1809
8a3fe4f8 1810 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1811 bfd_get_target (abfd));
c906108c
SS
1812}
1813\f
cb2f3a29 1814
c906108c
SS
1815/* This function runs the load command of our current target. */
1816
1817static void
5fed81ff 1818load_command (const char *arg, int from_tty)
c906108c 1819{
e5cc9f32
JB
1820 dont_repeat ();
1821
4487aabf
PA
1822 /* The user might be reloading because the binary has changed. Take
1823 this opportunity to check. */
1824 reopen_exec_file ();
1825 reread_symbols ();
1826
b577b6af 1827 std::string temp;
c906108c 1828 if (arg == NULL)
1986bccd 1829 {
b577b6af 1830 const char *parg, *prev;
1986bccd 1831
b577b6af 1832 arg = get_exec_file (1);
1986bccd 1833
b577b6af
TT
1834 /* We may need to quote this string so buildargv can pull it
1835 apart. */
1836 prev = parg = arg;
1986bccd
AS
1837 while ((parg = strpbrk (parg, "\\\"'\t ")))
1838 {
b577b6af
TT
1839 temp.append (prev, parg - prev);
1840 prev = parg++;
1841 temp.push_back ('\\');
1986bccd 1842 }
b577b6af
TT
1843 /* If we have not copied anything yet, then we didn't see a
1844 character to quote, and we can just leave ARG unchanged. */
1845 if (!temp.empty ())
1986bccd 1846 {
b577b6af
TT
1847 temp.append (prev);
1848 arg = temp.c_str ();
1986bccd
AS
1849 }
1850 }
1851
c906108c 1852 target_load (arg, from_tty);
2889e661
JB
1853
1854 /* After re-loading the executable, we don't really know which
1855 overlays are mapped any more. */
1856 overlay_cache_invalid = 1;
c906108c
SS
1857}
1858
1859/* This version of "load" should be usable for any target. Currently
1860 it is just used for remote targets, not inftarg.c or core files,
1861 on the theory that only in that case is it useful.
1862
1863 Avoiding xmodem and the like seems like a win (a) because we don't have
1864 to worry about finding it, and (b) On VMS, fork() is very slow and so
1865 we don't want to run a subprocess. On the other hand, I'm not sure how
1866 performance compares. */
917317f4 1867
917317f4
JM
1868static int validate_download = 0;
1869
e4f9b4d5
MS
1870/* Callback service function for generic_load (bfd_map_over_sections). */
1871
1872static void
1873add_section_size_callback (bfd *abfd, asection *asec, void *data)
1874{
19ba03f4 1875 bfd_size_type *sum = (bfd_size_type *) data;
e4f9b4d5 1876
2c500098 1877 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1878}
1879
a76d924d 1880/* Opaque data for load_progress. */
55089490
TT
1881struct load_progress_data
1882{
a76d924d 1883 /* Cumulative data. */
55089490
TT
1884 unsigned long write_count = 0;
1885 unsigned long data_count = 0;
1886 bfd_size_type total_size = 0;
a76d924d
DJ
1887};
1888
1889/* Opaque data for load_progress for a single section. */
55089490
TT
1890struct load_progress_section_data
1891{
1892 load_progress_section_data (load_progress_data *cumulative_,
1893 const char *section_name_, ULONGEST section_size_,
1894 CORE_ADDR lma_, gdb_byte *buffer_)
1895 : cumulative (cumulative_), section_name (section_name_),
1896 section_size (section_size_), lma (lma_), buffer (buffer_)
1897 {}
1898
a76d924d 1899 struct load_progress_data *cumulative;
cf7a04e8 1900
a76d924d 1901 /* Per-section data. */
cf7a04e8 1902 const char *section_name;
55089490 1903 ULONGEST section_sent = 0;
cf7a04e8
DJ
1904 ULONGEST section_size;
1905 CORE_ADDR lma;
1906 gdb_byte *buffer;
e4f9b4d5
MS
1907};
1908
55089490
TT
1909/* Opaque data for load_section_callback. */
1910struct load_section_data
1911{
1912 load_section_data (load_progress_data *progress_data_)
1913 : progress_data (progress_data_)
1914 {}
1915
1916 ~load_section_data ()
1917 {
1918 for (auto &&request : requests)
1919 {
1920 xfree (request.data);
1921 delete ((load_progress_section_data *) request.baton);
1922 }
1923 }
1924
1925 CORE_ADDR load_offset = 0;
1926 struct load_progress_data *progress_data;
1927 std::vector<struct memory_write_request> requests;
1928};
1929
a76d924d 1930/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1931
1932static void
1933load_progress (ULONGEST bytes, void *untyped_arg)
1934{
19ba03f4
SM
1935 struct load_progress_section_data *args
1936 = (struct load_progress_section_data *) untyped_arg;
a76d924d
DJ
1937 struct load_progress_data *totals;
1938
1939 if (args == NULL)
1940 /* Writing padding data. No easy way to get at the cumulative
1941 stats, so just ignore this. */
1942 return;
1943
1944 totals = args->cumulative;
1945
1946 if (bytes == 0 && args->section_sent == 0)
1947 {
1948 /* The write is just starting. Let the user know we've started
1949 this section. */
112e8700
SM
1950 current_uiout->message ("Loading section %s, size %s lma %s\n",
1951 args->section_name,
1952 hex_string (args->section_size),
1953 paddress (target_gdbarch (), args->lma));
a76d924d
DJ
1954 return;
1955 }
cf7a04e8
DJ
1956
1957 if (validate_download)
1958 {
1959 /* Broken memories and broken monitors manifest themselves here
1960 when bring new computers to life. This doubles already slow
1961 downloads. */
1962 /* NOTE: cagney/1999-10-18: A more efficient implementation
1963 might add a verify_memory() method to the target vector and
1964 then use that. remote.c could implement that method using
1965 the ``qCRC'' packet. */
0efef640 1966 gdb::byte_vector check (bytes);
cf7a04e8 1967
0efef640 1968 if (target_read_memory (args->lma, check.data (), bytes) != 0)
5af949e3 1969 error (_("Download verify read failed at %s"),
f5656ead 1970 paddress (target_gdbarch (), args->lma));
0efef640 1971 if (memcmp (args->buffer, check.data (), bytes) != 0)
5af949e3 1972 error (_("Download verify compare failed at %s"),
f5656ead 1973 paddress (target_gdbarch (), args->lma));
cf7a04e8 1974 }
a76d924d 1975 totals->data_count += bytes;
cf7a04e8
DJ
1976 args->lma += bytes;
1977 args->buffer += bytes;
a76d924d 1978 totals->write_count += 1;
cf7a04e8 1979 args->section_sent += bytes;
522002f9 1980 if (check_quit_flag ()
cf7a04e8
DJ
1981 || (deprecated_ui_load_progress_hook != NULL
1982 && deprecated_ui_load_progress_hook (args->section_name,
1983 args->section_sent)))
1984 error (_("Canceled the download"));
1985
1986 if (deprecated_show_load_progress != NULL)
1987 deprecated_show_load_progress (args->section_name,
1988 args->section_sent,
1989 args->section_size,
a76d924d
DJ
1990 totals->data_count,
1991 totals->total_size);
cf7a04e8
DJ
1992}
1993
e4f9b4d5
MS
1994/* Callback service function for generic_load (bfd_map_over_sections). */
1995
1996static void
1997load_section_callback (bfd *abfd, asection *asec, void *data)
1998{
19ba03f4 1999 struct load_section_data *args = (struct load_section_data *) data;
cf7a04e8 2000 bfd_size_type size = bfd_get_section_size (asec);
cf7a04e8 2001 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 2002
cf7a04e8
DJ
2003 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2004 return;
e4f9b4d5 2005
cf7a04e8
DJ
2006 if (size == 0)
2007 return;
e4f9b4d5 2008
55089490
TT
2009 ULONGEST begin = bfd_section_lma (abfd, asec) + args->load_offset;
2010 ULONGEST end = begin + size;
2011 gdb_byte *buffer = (gdb_byte *) xmalloc (size);
cf7a04e8 2012 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d 2013
55089490
TT
2014 load_progress_section_data *section_data
2015 = new load_progress_section_data (args->progress_data, sect_name, size,
2016 begin, buffer);
cf7a04e8 2017
55089490 2018 args->requests.emplace_back (begin, end, buffer, section_data);
e4f9b4d5
MS
2019}
2020
dcb07cfa
PA
2021static void print_transfer_performance (struct ui_file *stream,
2022 unsigned long data_count,
2023 unsigned long write_count,
2024 std::chrono::steady_clock::duration d);
2025
c906108c 2026void
9cbe5fff 2027generic_load (const char *args, int from_tty)
c906108c 2028{
a76d924d 2029 struct load_progress_data total_progress;
55089490 2030 struct load_section_data cbdata (&total_progress);
79a45e25 2031 struct ui_out *uiout = current_uiout;
a76d924d 2032
d1a41061
PP
2033 if (args == NULL)
2034 error_no_arg (_("file to load"));
1986bccd 2035
773a1edc 2036 gdb_argv argv (args);
1986bccd 2037
ee0c3293 2038 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
1986bccd
AS
2039
2040 if (argv[1] != NULL)
917317f4 2041 {
f698ca8e 2042 const char *endptr;
ba5f2f8a 2043
f698ca8e 2044 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
1986bccd
AS
2045
2046 /* If the last word was not a valid number then
2047 treat it as a file name with spaces in. */
2048 if (argv[1] == endptr)
2049 error (_("Invalid download offset:%s."), argv[1]);
2050
2051 if (argv[2] != NULL)
2052 error (_("Too many parameters."));
917317f4 2053 }
c906108c 2054
c378eb4e 2055 /* Open the file for loading. */
ee0c3293 2056 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
c906108c 2057 if (loadfile_bfd == NULL)
ee0c3293 2058 perror_with_name (filename.get ());
917317f4 2059
192b62ce 2060 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
c906108c 2061 {
ee0c3293 2062 error (_("\"%s\" is not an object file: %s"), filename.get (),
c906108c
SS
2063 bfd_errmsg (bfd_get_error ()));
2064 }
c5aa993b 2065
192b62ce 2066 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
a76d924d
DJ
2067 (void *) &total_progress.total_size);
2068
192b62ce 2069 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
c2d11a7d 2070
dcb07cfa
PA
2071 using namespace std::chrono;
2072
2073 steady_clock::time_point start_time = steady_clock::now ();
c906108c 2074
a76d924d
DJ
2075 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2076 load_progress) != 0)
2077 error (_("Load failed"));
c906108c 2078
dcb07cfa 2079 steady_clock::time_point end_time = steady_clock::now ();
ba5f2f8a 2080
55089490 2081 CORE_ADDR entry = bfd_get_start_address (loadfile_bfd.get ());
8c2b9656 2082 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
112e8700
SM
2083 uiout->text ("Start address ");
2084 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
2085 uiout->text (", load size ");
2086 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
2087 uiout->text ("\n");
fb14de7b 2088 regcache_write_pc (get_current_regcache (), entry);
c906108c 2089
38963c97
DJ
2090 /* Reset breakpoints, now that we have changed the load image. For
2091 instance, breakpoints may have been set (or reset, by
2092 post_create_inferior) while connected to the target but before we
2093 loaded the program. In that case, the prologue analyzer could
2094 have read instructions from the target to find the right
2095 breakpoint locations. Loading has changed the contents of that
2096 memory. */
2097
2098 breakpoint_re_set ();
2099
a76d924d
DJ
2100 print_transfer_performance (gdb_stdout, total_progress.data_count,
2101 total_progress.write_count,
dcb07cfa 2102 end_time - start_time);
c906108c
SS
2103}
2104
dcb07cfa
PA
2105/* Report on STREAM the performance of a memory transfer operation,
2106 such as 'load'. DATA_COUNT is the number of bytes transferred.
2107 WRITE_COUNT is the number of separate write operations, or 0, if
2108 that information is not available. TIME is how long the operation
2109 lasted. */
c906108c 2110
dcb07cfa 2111static void
d9fcf2fb 2112print_transfer_performance (struct ui_file *stream,
917317f4
JM
2113 unsigned long data_count,
2114 unsigned long write_count,
dcb07cfa 2115 std::chrono::steady_clock::duration time)
917317f4 2116{
dcb07cfa 2117 using namespace std::chrono;
79a45e25 2118 struct ui_out *uiout = current_uiout;
2b71414d 2119
dcb07cfa 2120 milliseconds ms = duration_cast<milliseconds> (time);
2b71414d 2121
112e8700 2122 uiout->text ("Transfer rate: ");
dcb07cfa 2123 if (ms.count () > 0)
8b93c638 2124 {
dcb07cfa 2125 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
9f43d28c 2126
112e8700 2127 if (uiout->is_mi_like_p ())
9f43d28c 2128 {
112e8700
SM
2129 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2130 uiout->text (" bits/sec");
9f43d28c
DJ
2131 }
2132 else if (rate < 1024)
2133 {
112e8700
SM
2134 uiout->field_fmt ("transfer-rate", "%lu", rate);
2135 uiout->text (" bytes/sec");
9f43d28c
DJ
2136 }
2137 else
2138 {
112e8700
SM
2139 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2140 uiout->text (" KB/sec");
9f43d28c 2141 }
8b93c638
JM
2142 }
2143 else
2144 {
112e8700
SM
2145 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2146 uiout->text (" bits in <1 sec");
8b93c638
JM
2147 }
2148 if (write_count > 0)
2149 {
112e8700
SM
2150 uiout->text (", ");
2151 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2152 uiout->text (" bytes/write");
8b93c638 2153 }
112e8700 2154 uiout->text (".\n");
c906108c
SS
2155}
2156
291f9a96
PT
2157/* Add an OFFSET to the start address of each section in OBJF, except
2158 sections that were specified in ADDRS. */
2159
2160static void
2161set_objfile_default_section_offset (struct objfile *objf,
2162 const section_addr_info &addrs,
2163 CORE_ADDR offset)
2164{
2165 /* Add OFFSET to all sections by default. */
2166 std::vector<struct section_offsets> offsets (objf->num_sections,
027a4c30 2167 { { offset } });
291f9a96
PT
2168
2169 /* Create sorted lists of all sections in ADDRS as well as all
2170 sections in OBJF. */
2171
2172 std::vector<const struct other_sections *> addrs_sorted
2173 = addrs_section_sort (addrs);
2174
2175 section_addr_info objf_addrs
2176 = build_section_addr_info_from_objfile (objf);
2177 std::vector<const struct other_sections *> objf_addrs_sorted
2178 = addrs_section_sort (objf_addrs);
2179
2180 /* Walk the BFD section list, and if a matching section is found in
2181 ADDRS_SORTED_LIST, set its offset to zero to keep its address
2182 unchanged.
2183
2184 Note that both lists may contain multiple sections with the same
2185 name, and then the sections from ADDRS are matched in BFD order
2186 (thanks to sectindex). */
2187
2188 std::vector<const struct other_sections *>::iterator addrs_sorted_iter
2189 = addrs_sorted.begin ();
ff27d073 2190 for (const other_sections *objf_sect : objf_addrs_sorted)
291f9a96
PT
2191 {
2192 const char *objf_name = addr_section_name (objf_sect->name.c_str ());
2193 int cmp = -1;
2194
2195 while (cmp < 0 && addrs_sorted_iter != addrs_sorted.end ())
2196 {
2197 const struct other_sections *sect = *addrs_sorted_iter;
2198 const char *sect_name = addr_section_name (sect->name.c_str ());
2199 cmp = strcmp (sect_name, objf_name);
2200 if (cmp <= 0)
2201 ++addrs_sorted_iter;
2202 }
2203
2204 if (cmp == 0)
2205 offsets[objf_sect->sectindex].offsets[0] = 0;
2206 }
2207
2208 /* Apply the new section offsets. */
2209 objfile_relocate (objf, offsets.data ());
2210}
2211
c906108c
SS
2212/* This function allows the addition of incrementally linked object files.
2213 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2214/* Note: ezannoni 2000-04-13 This function/command used to have a
2215 special case syntax for the rombug target (Rombug is the boot
2216 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2217 rombug case, the user doesn't need to supply a text address,
2218 instead a call to target_link() (in target.c) would supply the
c378eb4e 2219 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2220
c906108c 2221static void
2cf311eb 2222add_symbol_file_command (const char *args, int from_tty)
c906108c 2223{
5af949e3 2224 struct gdbarch *gdbarch = get_current_arch ();
ee0c3293 2225 gdb::unique_xmalloc_ptr<char> filename;
c906108c 2226 char *arg;
2acceee2 2227 int argcnt = 0;
76ad5e1e 2228 struct objfile *objf;
b15cc25c
PA
2229 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2230 symfile_add_flags add_flags = 0;
2231
2232 if (from_tty)
2233 add_flags |= SYMFILE_VERBOSE;
db162d44 2234
a39a16c4 2235 struct sect_opt
2acceee2 2236 {
a121b7c1
PA
2237 const char *name;
2238 const char *value;
a39a16c4 2239 };
db162d44 2240
40fc416f
SDJ
2241 std::vector<sect_opt> sect_opts = { { ".text", NULL } };
2242 bool stop_processing_options = false;
291f9a96 2243 CORE_ADDR offset = 0;
c5aa993b 2244
c906108c
SS
2245 dont_repeat ();
2246
2247 if (args == NULL)
8a3fe4f8 2248 error (_("add-symbol-file takes a file name and an address"));
c906108c 2249
40fc416f 2250 bool seen_addr = false;
291f9a96 2251 bool seen_offset = false;
773a1edc 2252 gdb_argv argv (args);
db162d44 2253
5b96932b
AS
2254 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2255 {
40fc416f 2256 if (stop_processing_options || *arg != '-')
41dc8db8 2257 {
40fc416f 2258 if (filename == NULL)
41dc8db8 2259 {
40fc416f
SDJ
2260 /* First non-option argument is always the filename. */
2261 filename.reset (tilde_expand (arg));
41dc8db8 2262 }
40fc416f 2263 else if (!seen_addr)
41dc8db8 2264 {
40fc416f
SDJ
2265 /* The second non-option argument is always the text
2266 address at which to load the program. */
2267 sect_opts[0].value = arg;
2268 seen_addr = true;
41dc8db8
MB
2269 }
2270 else
02ca603a 2271 error (_("Unrecognized argument \"%s\""), arg);
41dc8db8 2272 }
40fc416f
SDJ
2273 else if (strcmp (arg, "-readnow") == 0)
2274 flags |= OBJF_READNOW;
97cbe998
SDJ
2275 else if (strcmp (arg, "-readnever") == 0)
2276 flags |= OBJF_READNEVER;
40fc416f
SDJ
2277 else if (strcmp (arg, "-s") == 0)
2278 {
2279 if (argv[argcnt + 1] == NULL)
2280 error (_("Missing section name after \"-s\""));
2281 else if (argv[argcnt + 2] == NULL)
2282 error (_("Missing section address after \"-s\""));
2283
2284 sect_opt sect = { argv[argcnt + 1], argv[argcnt + 2] };
2285
2286 sect_opts.push_back (sect);
2287 argcnt += 2;
2288 }
291f9a96
PT
2289 else if (strcmp (arg, "-o") == 0)
2290 {
2291 arg = argv[++argcnt];
2292 if (arg == NULL)
2293 error (_("Missing argument to -o"));
2294
2295 offset = parse_and_eval_address (arg);
2296 seen_offset = true;
2297 }
40fc416f
SDJ
2298 else if (strcmp (arg, "--") == 0)
2299 stop_processing_options = true;
2300 else
2301 error (_("Unrecognized argument \"%s\""), arg);
c906108c 2302 }
c906108c 2303
40fc416f
SDJ
2304 if (filename == NULL)
2305 error (_("You must provide a filename to be loaded."));
2306
97cbe998
SDJ
2307 validate_readnow_readnever (flags);
2308
c378eb4e 2309 /* Print the prompt for the query below. And save the arguments into
db162d44
EZ
2310 a sect_addr_info structure to be passed around to other
2311 functions. We have to split this up into separate print
bb599908 2312 statements because hex_string returns a local static
c378eb4e 2313 string. */
5417f6dc 2314
ed6dfe51 2315 printf_unfiltered (_("add symbol table from file \"%s\""),
ee0c3293 2316 filename.get ());
37e136b1 2317 section_addr_info section_addrs;
ed6dfe51
PT
2318 std::vector<sect_opt>::const_iterator it = sect_opts.begin ();
2319 if (!seen_addr)
2320 ++it;
2321 for (; it != sect_opts.end (); ++it)
c906108c 2322 {
db162d44 2323 CORE_ADDR addr;
ed6dfe51
PT
2324 const char *val = it->value;
2325 const char *sec = it->name;
5417f6dc 2326
ed6dfe51
PT
2327 if (section_addrs.empty ())
2328 printf_unfiltered (_(" at\n"));
ae822768 2329 addr = parse_and_eval_address (val);
db162d44 2330
db162d44 2331 /* Here we store the section offsets in the order they were
d81a3eaf
PT
2332 entered on the command line. Every array element is
2333 assigned an ascending section index to preserve the above
2334 order over an unstable sorting algorithm. This dummy
2335 index is not used for any other purpose.
2336 */
2337 section_addrs.emplace_back (addr, sec, section_addrs.size ());
22068491
TT
2338 printf_filtered ("\t%s_addr = %s\n", sec,
2339 paddress (gdbarch, addr));
db162d44 2340
5417f6dc 2341 /* The object's sections are initialized when a
db162d44 2342 call is made to build_objfile_section_table (objfile).
5417f6dc 2343 This happens in reread_symbols.
db162d44
EZ
2344 At this point, we don't know what file type this is,
2345 so we can't determine what section names are valid. */
2acceee2 2346 }
291f9a96
PT
2347 if (seen_offset)
2348 printf_unfiltered (_("%s offset by %s\n"),
2349 (section_addrs.empty ()
2350 ? _(" with all sections")
2351 : _("with other sections")),
2352 paddress (gdbarch, offset));
2353 else if (section_addrs.empty ())
ed6dfe51 2354 printf_unfiltered ("\n");
db162d44 2355
2acceee2 2356 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2357 error (_("Not confirmed."));
c906108c 2358
37e136b1
TT
2359 objf = symbol_file_add (filename.get (), add_flags, &section_addrs,
2360 flags);
76ad5e1e 2361
291f9a96
PT
2362 if (seen_offset)
2363 set_objfile_default_section_offset (objf, section_addrs, offset);
2364
76ad5e1e 2365 add_target_sections_of_objfile (objf);
c906108c
SS
2366
2367 /* Getting new symbols may change our opinion about what is
2368 frameless. */
2369 reinit_frame_cache ();
2370}
2371\f
70992597 2372
63644780
NB
2373/* This function removes a symbol file that was added via add-symbol-file. */
2374
2375static void
2cf311eb 2376remove_symbol_file_command (const char *args, int from_tty)
63644780 2377{
63644780 2378 struct objfile *objf = NULL;
63644780 2379 struct program_space *pspace = current_program_space;
63644780
NB
2380
2381 dont_repeat ();
2382
2383 if (args == NULL)
2384 error (_("remove-symbol-file: no symbol file provided"));
2385
773a1edc 2386 gdb_argv argv (args);
63644780
NB
2387
2388 if (strcmp (argv[0], "-a") == 0)
2389 {
2390 /* Interpret the next argument as an address. */
2391 CORE_ADDR addr;
2392
2393 if (argv[1] == NULL)
2394 error (_("Missing address argument"));
2395
2396 if (argv[2] != NULL)
2397 error (_("Junk after %s"), argv[1]);
2398
2399 addr = parse_and_eval_address (argv[1]);
2400
2030c079 2401 for (objfile *objfile : current_program_space->objfiles ())
63644780 2402 {
aed57c53
TT
2403 if ((objfile->flags & OBJF_USERLOADED) != 0
2404 && (objfile->flags & OBJF_SHARED) != 0
2405 && objfile->pspace == pspace
2406 && is_addr_in_objfile (addr, objfile))
2407 {
2408 objf = objfile;
2409 break;
2410 }
63644780
NB
2411 }
2412 }
2413 else if (argv[0] != NULL)
2414 {
2415 /* Interpret the current argument as a file name. */
63644780
NB
2416
2417 if (argv[1] != NULL)
2418 error (_("Junk after %s"), argv[0]);
2419
ee0c3293 2420 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
63644780 2421
2030c079 2422 for (objfile *objfile : current_program_space->objfiles ())
63644780 2423 {
aed57c53
TT
2424 if ((objfile->flags & OBJF_USERLOADED) != 0
2425 && (objfile->flags & OBJF_SHARED) != 0
2426 && objfile->pspace == pspace
2427 && filename_cmp (filename.get (), objfile_name (objfile)) == 0)
2428 {
2429 objf = objfile;
2430 break;
2431 }
63644780
NB
2432 }
2433 }
2434
2435 if (objf == NULL)
2436 error (_("No symbol file found"));
2437
2438 if (from_tty
2439 && !query (_("Remove symbol table from file \"%s\"? "),
2440 objfile_name (objf)))
2441 error (_("Not confirmed."));
2442
9e86da07 2443 delete objf;
63644780 2444 clear_symtab_users (0);
63644780
NB
2445}
2446
c906108c 2447/* Re-read symbols if a symbol-file has changed. */
3b7bacac 2448
c906108c 2449void
fba45db2 2450reread_symbols (void)
c906108c 2451{
c906108c 2452 long new_modtime;
c906108c
SS
2453 struct stat new_statbuf;
2454 int res;
4c404b8b 2455 std::vector<struct objfile *> new_objfiles;
c906108c 2456
bf227d61 2457 for (objfile *objfile : current_program_space->objfiles ())
c5aa993b 2458 {
9cce227f
TG
2459 if (objfile->obfd == NULL)
2460 continue;
2461
2462 /* Separate debug objfiles are handled in the main objfile. */
2463 if (objfile->separate_debug_objfile_backlink)
2464 continue;
2465
02aeec7b
JB
2466 /* If this object is from an archive (what you usually create with
2467 `ar', often called a `static library' on most systems, though
2468 a `shared library' on AIX is also an archive), then you should
2469 stat on the archive name, not member name. */
9cce227f
TG
2470 if (objfile->obfd->my_archive)
2471 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2472 else
4262abfb 2473 res = stat (objfile_name (objfile), &new_statbuf);
9cce227f
TG
2474 if (res != 0)
2475 {
c378eb4e 2476 /* FIXME, should use print_sys_errmsg but it's not filtered. */
22068491
TT
2477 printf_filtered (_("`%s' has disappeared; keeping its symbols.\n"),
2478 objfile_name (objfile));
9cce227f
TG
2479 continue;
2480 }
2481 new_modtime = new_statbuf.st_mtime;
2482 if (new_modtime != objfile->mtime)
2483 {
9cce227f
TG
2484 struct section_offsets *offsets;
2485 int num_offsets;
9cce227f 2486
22068491
TT
2487 printf_filtered (_("`%s' has changed; re-reading symbols.\n"),
2488 objfile_name (objfile));
9cce227f
TG
2489
2490 /* There are various functions like symbol_file_add,
2491 symfile_bfd_open, syms_from_objfile, etc., which might
2492 appear to do what we want. But they have various other
2493 effects which we *don't* want. So we just do stuff
2494 ourselves. We don't worry about mapped files (for one thing,
2495 any mapped file will be out of date). */
2496
2497 /* If we get an error, blow away this objfile (not sure if
2498 that is the correct response for things like shared
2499 libraries). */
ed2b3126
TT
2500 std::unique_ptr<struct objfile> objfile_holder (objfile);
2501
9cce227f 2502 /* We need to do this whenever any symbols go away. */
286526c1 2503 clear_symtab_users_cleanup defer_clear_users (0);
9cce227f 2504
0ba1096a
KT
2505 if (exec_bfd != NULL
2506 && filename_cmp (bfd_get_filename (objfile->obfd),
2507 bfd_get_filename (exec_bfd)) == 0)
9cce227f
TG
2508 {
2509 /* Reload EXEC_BFD without asking anything. */
2510
2511 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2512 }
2513
f6eeced0
JK
2514 /* Keep the calls order approx. the same as in free_objfile. */
2515
2516 /* Free the separate debug objfiles. It will be
2517 automatically recreated by sym_read. */
2518 free_objfile_separate_debug (objfile);
2519
2520 /* Remove any references to this objfile in the global
2521 value lists. */
2522 preserve_values (objfile);
2523
2524 /* Nuke all the state that we will re-read. Much of the following
2525 code which sets things to NULL really is necessary to tell
2526 other parts of GDB that there is nothing currently there.
2527
2528 Try to keep the freeing order compatible with free_objfile. */
2529
2530 if (objfile->sf != NULL)
2531 {
2532 (*objfile->sf->sym_finish) (objfile);
2533 }
2534
2535 clear_objfile_data (objfile);
2536
e1507e95 2537 /* Clean up any state BFD has sitting around. */
a4453b7e 2538 {
192b62ce 2539 gdb_bfd_ref_ptr obfd (objfile->obfd);
d3846e71 2540 char *obfd_filename;
a4453b7e
TT
2541
2542 obfd_filename = bfd_get_filename (objfile->obfd);
2543 /* Open the new BFD before freeing the old one, so that
2544 the filename remains live. */
192b62ce
TT
2545 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2546 objfile->obfd = temp.release ();
e1507e95 2547 if (objfile->obfd == NULL)
192b62ce 2548 error (_("Can't open %s to read symbols."), obfd_filename);
a4453b7e
TT
2549 }
2550
c0c9f665 2551 std::string original_name = objfile->original_name;
24ba069a 2552
9cce227f
TG
2553 /* bfd_openr sets cacheable to true, which is what we want. */
2554 if (!bfd_check_format (objfile->obfd, bfd_object))
4262abfb 2555 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
9cce227f
TG
2556 bfd_errmsg (bfd_get_error ()));
2557
2558 /* Save the offsets, we will nuke them with the rest of the
2559 objfile_obstack. */
2560 num_offsets = objfile->num_sections;
2561 offsets = ((struct section_offsets *)
2562 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2563 memcpy (offsets, objfile->section_offsets,
2564 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2565
6d6a12bf 2566 objfile->reset_psymtabs ();
41664b45
DG
2567
2568 /* NB: after this call to obstack_free, objfiles_changed
2569 will need to be called (see discussion below). */
9cce227f
TG
2570 obstack_free (&objfile->objfile_obstack, 0);
2571 objfile->sections = NULL;
43f3e411 2572 objfile->compunit_symtabs = NULL;
34eaf542 2573 objfile->template_symbols = NULL;
cf250e36 2574 objfile->static_links.reset (nullptr);
9cce227f 2575
9cce227f
TG
2576 /* obstack_init also initializes the obstack so it is
2577 empty. We could use obstack_specify_allocation but
d82ea6a8 2578 gdb_obstack.h specifies the alloc/dealloc functions. */
9cce227f 2579 obstack_init (&objfile->objfile_obstack);
779bd270 2580
846060df
JB
2581 /* set_objfile_per_bfd potentially allocates the per-bfd
2582 data on the objfile's obstack (if sharing data across
2583 multiple users is not possible), so it's important to
2584 do it *after* the obstack has been initialized. */
2585 set_objfile_per_bfd (objfile);
2586
224c3ddb 2587 objfile->original_name
c0c9f665
TT
2588 = (char *) obstack_copy0 (&objfile->objfile_obstack,
2589 original_name.c_str (),
2590 original_name.size ());
24ba069a 2591
779bd270
DE
2592 /* Reset the sym_fns pointer. The ELF reader can change it
2593 based on whether .gdb_index is present, and we need it to
2594 start over. PR symtab/15885 */
8fb8eb5c 2595 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
779bd270 2596
d82ea6a8 2597 build_objfile_section_table (objfile);
9cce227f
TG
2598
2599 /* We use the same section offsets as from last time. I'm not
2600 sure whether that is always correct for shared libraries. */
2601 objfile->section_offsets = (struct section_offsets *)
2602 obstack_alloc (&objfile->objfile_obstack,
2603 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2604 memcpy (objfile->section_offsets, offsets,
2605 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2606 objfile->num_sections = num_offsets;
2607
2608 /* What the hell is sym_new_init for, anyway? The concept of
2609 distinguishing between the main file and additional files
2610 in this way seems rather dubious. */
2611 if (objfile == symfile_objfile)
c906108c 2612 {
9cce227f 2613 (*objfile->sf->sym_new_init) (objfile);
c906108c 2614 }
9cce227f
TG
2615
2616 (*objfile->sf->sym_init) (objfile);
5ca8c39f 2617 clear_complaints ();
608e2dbb
TT
2618
2619 objfile->flags &= ~OBJF_PSYMTABS_READ;
41664b45
DG
2620
2621 /* We are about to read new symbols and potentially also
2622 DWARF information. Some targets may want to pass addresses
2623 read from DWARF DIE's through an adjustment function before
2624 saving them, like MIPS, which may call into
2625 "find_pc_section". When called, that function will make
2626 use of per-objfile program space data.
2627
2628 Since we discarded our section information above, we have
2629 dangling pointers in the per-objfile program space data
2630 structure. Force GDB to update the section mapping
2631 information by letting it know the objfile has changed,
2632 making the dangling pointers point to correct data
2633 again. */
2634
2635 objfiles_changed ();
2636
608e2dbb 2637 read_symbols (objfile, 0);
b11896a5 2638
9cce227f 2639 if (!objfile_has_symbols (objfile))
c906108c 2640 {
9cce227f 2641 wrap_here ("");
22068491 2642 printf_filtered (_("(no debugging symbols found)\n"));
9cce227f 2643 wrap_here ("");
c5aa993b 2644 }
9cce227f
TG
2645
2646 /* We're done reading the symbol file; finish off complaints. */
5ca8c39f 2647 clear_complaints ();
9cce227f
TG
2648
2649 /* Getting new symbols may change our opinion about what is
2650 frameless. */
2651
2652 reinit_frame_cache ();
2653
2654 /* Discard cleanups as symbol reading was successful. */
ed2b3126 2655 objfile_holder.release ();
286526c1 2656 defer_clear_users.release ();
9cce227f
TG
2657
2658 /* If the mtime has changed between the time we set new_modtime
2659 and now, we *want* this to be out of date, so don't call stat
2660 again now. */
2661 objfile->mtime = new_modtime;
9cce227f 2662 init_entry_point_info (objfile);
4ac39b97 2663
4c404b8b 2664 new_objfiles.push_back (objfile);
c906108c
SS
2665 }
2666 }
c906108c 2667
4c404b8b 2668 if (!new_objfiles.empty ())
ea53e89f 2669 {
c1e56572 2670 clear_symtab_users (0);
4ac39b97
JK
2671
2672 /* clear_objfile_data for each objfile was called before freeing it and
76727919 2673 gdb::observers::new_objfile.notify (NULL) has been called by
4ac39b97 2674 clear_symtab_users above. Notify the new files now. */
4c404b8b 2675 for (auto iter : new_objfiles)
c486b610 2676 gdb::observers::new_objfile.notify (iter);
4ac39b97 2677
ea53e89f
JB
2678 /* At least one objfile has changed, so we can consider that
2679 the executable we're debugging has changed too. */
76727919 2680 gdb::observers::executable_changed.notify ();
ea53e89f 2681 }
c906108c 2682}
c906108c
SS
2683\f
2684
593e3209 2685struct filename_language
c5aa993b 2686{
593e3209
SM
2687 filename_language (const std::string &ext_, enum language lang_)
2688 : ext (ext_), lang (lang_)
2689 {}
3fcf0b0d 2690
593e3209
SM
2691 std::string ext;
2692 enum language lang;
2693};
c906108c 2694
593e3209 2695static std::vector<filename_language> filename_language_table;
c906108c 2696
56618e20
TT
2697/* See symfile.h. */
2698
2699void
2700add_filename_language (const char *ext, enum language lang)
c906108c 2701{
593e3209 2702 filename_language_table.emplace_back (ext, lang);
c906108c
SS
2703}
2704
2705static char *ext_args;
920d2a44
AC
2706static void
2707show_ext_args (struct ui_file *file, int from_tty,
2708 struct cmd_list_element *c, const char *value)
2709{
3e43a32a
MS
2710 fprintf_filtered (file,
2711 _("Mapping between filename extension "
2712 "and source language is \"%s\".\n"),
920d2a44
AC
2713 value);
2714}
c906108c
SS
2715
2716static void
eb4c3f4a
TT
2717set_ext_lang_command (const char *args,
2718 int from_tty, struct cmd_list_element *e)
c906108c 2719{
c906108c
SS
2720 char *cp = ext_args;
2721 enum language lang;
2722
c378eb4e 2723 /* First arg is filename extension, starting with '.' */
c906108c 2724 if (*cp != '.')
8a3fe4f8 2725 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2726
2727 /* Find end of first arg. */
c5aa993b 2728 while (*cp && !isspace (*cp))
c906108c
SS
2729 cp++;
2730
2731 if (*cp == '\0')
3e43a32a
MS
2732 error (_("'%s': two arguments required -- "
2733 "filename extension and language"),
c906108c
SS
2734 ext_args);
2735
c378eb4e 2736 /* Null-terminate first arg. */
c5aa993b 2737 *cp++ = '\0';
c906108c
SS
2738
2739 /* Find beginning of second arg, which should be a source language. */
529480d0 2740 cp = skip_spaces (cp);
c906108c
SS
2741
2742 if (*cp == '\0')
3e43a32a
MS
2743 error (_("'%s': two arguments required -- "
2744 "filename extension and language"),
c906108c
SS
2745 ext_args);
2746
2747 /* Lookup the language from among those we know. */
2748 lang = language_enum (cp);
2749
593e3209 2750 auto it = filename_language_table.begin ();
c906108c 2751 /* Now lookup the filename extension: do we already know it? */
593e3209 2752 for (; it != filename_language_table.end (); it++)
3fcf0b0d 2753 {
593e3209 2754 if (it->ext == ext_args)
3fcf0b0d
TT
2755 break;
2756 }
c906108c 2757
593e3209 2758 if (it == filename_language_table.end ())
c906108c 2759 {
c378eb4e 2760 /* New file extension. */
c906108c
SS
2761 add_filename_language (ext_args, lang);
2762 }
2763 else
2764 {
c378eb4e 2765 /* Redefining a previously known filename extension. */
c906108c
SS
2766
2767 /* if (from_tty) */
2768 /* query ("Really make files of type %s '%s'?", */
2769 /* ext_args, language_str (lang)); */
2770
593e3209 2771 it->lang = lang;
c906108c
SS
2772 }
2773}
2774
2775static void
1d12d88f 2776info_ext_lang_command (const char *args, int from_tty)
c906108c 2777{
a3f17187 2778 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c 2779 printf_filtered ("\n\n");
593e3209
SM
2780 for (const filename_language &entry : filename_language_table)
2781 printf_filtered ("\t%s\t- %s\n", entry.ext.c_str (),
2782 language_str (entry.lang));
c906108c
SS
2783}
2784
c906108c 2785enum language
dd786858 2786deduce_language_from_filename (const char *filename)
c906108c 2787{
e6a959d6 2788 const char *cp;
c906108c
SS
2789
2790 if (filename != NULL)
2791 if ((cp = strrchr (filename, '.')) != NULL)
3fcf0b0d 2792 {
593e3209
SM
2793 for (const filename_language &entry : filename_language_table)
2794 if (entry.ext == cp)
2795 return entry.lang;
3fcf0b0d 2796 }
c906108c
SS
2797
2798 return language_unknown;
2799}
2800\f
43f3e411
DE
2801/* Allocate and initialize a new symbol table.
2802 CUST is from the result of allocate_compunit_symtab. */
c906108c
SS
2803
2804struct symtab *
43f3e411 2805allocate_symtab (struct compunit_symtab *cust, const char *filename)
c906108c 2806{
43f3e411
DE
2807 struct objfile *objfile = cust->objfile;
2808 struct symtab *symtab
2809 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
c906108c 2810
19ba03f4 2811 symtab->filename
25629dfd
TT
2812 = ((const char *) objfile->per_bfd->filename_cache.insert
2813 (filename, strlen (filename) + 1));
c5aa993b
JM
2814 symtab->fullname = NULL;
2815 symtab->language = deduce_language_from_filename (filename);
c906108c 2816
db0fec5c
DE
2817 /* This can be very verbose with lots of headers.
2818 Only print at higher debug levels. */
2819 if (symtab_create_debug >= 2)
45cfd468
DE
2820 {
2821 /* Be a bit clever with debugging messages, and don't print objfile
2822 every time, only when it changes. */
2823 static char *last_objfile_name = NULL;
2824
2825 if (last_objfile_name == NULL
4262abfb 2826 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
45cfd468
DE
2827 {
2828 xfree (last_objfile_name);
4262abfb 2829 last_objfile_name = xstrdup (objfile_name (objfile));
22068491
TT
2830 fprintf_filtered (gdb_stdlog,
2831 "Creating one or more symtabs for objfile %s ...\n",
2832 last_objfile_name);
45cfd468 2833 }
22068491
TT
2834 fprintf_filtered (gdb_stdlog,
2835 "Created symtab %s for module %s.\n",
2836 host_address_to_string (symtab), filename);
45cfd468
DE
2837 }
2838
43f3e411
DE
2839 /* Add it to CUST's list of symtabs. */
2840 if (cust->filetabs == NULL)
2841 {
2842 cust->filetabs = symtab;
2843 cust->last_filetab = symtab;
2844 }
2845 else
2846 {
2847 cust->last_filetab->next = symtab;
2848 cust->last_filetab = symtab;
2849 }
2850
2851 /* Backlink to the containing compunit symtab. */
2852 symtab->compunit_symtab = cust;
2853
2854 return symtab;
2855}
2856
2857/* Allocate and initialize a new compunit.
2858 NAME is the name of the main source file, if there is one, or some
2859 descriptive text if there are no source files. */
2860
2861struct compunit_symtab *
2862allocate_compunit_symtab (struct objfile *objfile, const char *name)
2863{
2864 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2865 struct compunit_symtab);
2866 const char *saved_name;
2867
2868 cu->objfile = objfile;
2869
2870 /* The name we record here is only for display/debugging purposes.
2871 Just save the basename to avoid path issues (too long for display,
2872 relative vs absolute, etc.). */
2873 saved_name = lbasename (name);
224c3ddb
SM
2874 cu->name
2875 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2876 strlen (saved_name));
43f3e411
DE
2877
2878 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2879
2880 if (symtab_create_debug)
2881 {
22068491
TT
2882 fprintf_filtered (gdb_stdlog,
2883 "Created compunit symtab %s for %s.\n",
2884 host_address_to_string (cu),
2885 cu->name);
43f3e411
DE
2886 }
2887
2888 return cu;
2889}
2890
2891/* Hook CU to the objfile it comes from. */
2892
2893void
2894add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2895{
2896 cu->next = cu->objfile->compunit_symtabs;
2897 cu->objfile->compunit_symtabs = cu;
c906108c 2898}
c906108c 2899\f
c5aa993b 2900
b15cc25c
PA
2901/* Reset all data structures in gdb which may contain references to
2902 symbol table data. */
c906108c
SS
2903
2904void
b15cc25c 2905clear_symtab_users (symfile_add_flags add_flags)
c906108c
SS
2906{
2907 /* Someday, we should do better than this, by only blowing away
2908 the things that really need to be blown. */
c0501be5
DJ
2909
2910 /* Clear the "current" symtab first, because it is no longer valid.
2911 breakpoint_re_set may try to access the current symtab. */
2912 clear_current_source_symtab_and_line ();
2913
c906108c 2914 clear_displays ();
1bfeeb0f 2915 clear_last_displayed_sal ();
c906108c 2916 clear_pc_function_cache ();
76727919 2917 gdb::observers::new_objfile.notify (NULL);
9bdcbae7 2918
8756216b
DP
2919 /* Varobj may refer to old symbols, perform a cleanup. */
2920 varobj_invalidate ();
2921
e700d1b2
JB
2922 /* Now that the various caches have been cleared, we can re_set
2923 our breakpoints without risking it using stale data. */
2924 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2925 breakpoint_re_set ();
c906108c 2926}
c906108c 2927\f
c906108c
SS
2928/* OVERLAYS:
2929 The following code implements an abstraction for debugging overlay sections.
2930
2931 The target model is as follows:
2932 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2933 same VMA, each with its own unique LMA (or load address).
c906108c 2934 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2935 sections, one by one, from the load address into the VMA address.
5417f6dc 2936 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2937 sections should be considered to be mapped from the VMA to the LMA.
2938 This information is used for symbol lookup, and memory read/write.
5417f6dc 2939 For instance, if a section has been mapped then its contents
c5aa993b 2940 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2941
2942 Two levels of debugger support for overlays are available. One is
2943 "manual", in which the debugger relies on the user to tell it which
2944 overlays are currently mapped. This level of support is
2945 implemented entirely in the core debugger, and the information about
2946 whether a section is mapped is kept in the objfile->obj_section table.
2947
2948 The second level of support is "automatic", and is only available if
2949 the target-specific code provides functionality to read the target's
2950 overlay mapping table, and translate its contents for the debugger
2951 (by updating the mapped state information in the obj_section tables).
2952
2953 The interface is as follows:
c5aa993b
JM
2954 User commands:
2955 overlay map <name> -- tell gdb to consider this section mapped
2956 overlay unmap <name> -- tell gdb to consider this section unmapped
2957 overlay list -- list the sections that GDB thinks are mapped
2958 overlay read-target -- get the target's state of what's mapped
2959 overlay off/manual/auto -- set overlay debugging state
2960 Functional interface:
2961 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2962 section, return that section.
5417f6dc 2963 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 2964 the pc, either in its VMA or its LMA
714835d5 2965 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
2966 section_is_overlay(sect): true if section's VMA != LMA
2967 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2968 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2969 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2970 overlay_mapped_address(...): map an address from section's LMA to VMA
2971 overlay_unmapped_address(...): map an address from section's VMA to LMA
2972 symbol_overlayed_address(...): Return a "current" address for symbol:
2973 either in VMA or LMA depending on whether
c378eb4e 2974 the symbol's section is currently mapped. */
c906108c
SS
2975
2976/* Overlay debugging state: */
2977
d874f1e2 2978enum overlay_debugging_state overlay_debugging = ovly_off;
c378eb4e 2979int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
c906108c 2980
c906108c 2981/* Function: section_is_overlay (SECTION)
5417f6dc 2982 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
2983 SECTION is loaded at an address different from where it will "run". */
2984
2985int
714835d5 2986section_is_overlay (struct obj_section *section)
c906108c 2987{
714835d5
UW
2988 if (overlay_debugging && section)
2989 {
714835d5 2990 asection *bfd_section = section->the_bfd_section;
f888f159 2991
714835d5
UW
2992 if (bfd_section_lma (abfd, bfd_section) != 0
2993 && bfd_section_lma (abfd, bfd_section)
2994 != bfd_section_vma (abfd, bfd_section))
2995 return 1;
2996 }
c906108c
SS
2997
2998 return 0;
2999}
3000
3001/* Function: overlay_invalidate_all (void)
3002 Invalidate the mapped state of all overlay sections (mark it as stale). */
3003
3004static void
fba45db2 3005overlay_invalidate_all (void)
c906108c 3006{
c906108c
SS
3007 struct obj_section *sect;
3008
2030c079 3009 for (objfile *objfile : current_program_space->objfiles ())
3b9d3ac2
TT
3010 ALL_OBJFILE_OSECTIONS (objfile, sect)
3011 if (section_is_overlay (sect))
3012 sect->ovly_mapped = -1;
c906108c
SS
3013}
3014
714835d5 3015/* Function: section_is_mapped (SECTION)
5417f6dc 3016 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3017
3018 Access to the ovly_mapped flag is restricted to this function, so
3019 that we can do automatic update. If the global flag
3020 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3021 overlay_invalidate_all. If the mapped state of the particular
3022 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3023
714835d5
UW
3024int
3025section_is_mapped (struct obj_section *osect)
c906108c 3026{
9216df95
UW
3027 struct gdbarch *gdbarch;
3028
714835d5 3029 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
3030 return 0;
3031
c5aa993b 3032 switch (overlay_debugging)
c906108c
SS
3033 {
3034 default:
d874f1e2 3035 case ovly_off:
c5aa993b 3036 return 0; /* overlay debugging off */
d874f1e2 3037 case ovly_auto: /* overlay debugging automatic */
1c772458 3038 /* Unles there is a gdbarch_overlay_update function,
c378eb4e 3039 there's really nothing useful to do here (can't really go auto). */
9216df95
UW
3040 gdbarch = get_objfile_arch (osect->objfile);
3041 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
3042 {
3043 if (overlay_cache_invalid)
3044 {
3045 overlay_invalidate_all ();
3046 overlay_cache_invalid = 0;
3047 }
3048 if (osect->ovly_mapped == -1)
9216df95 3049 gdbarch_overlay_update (gdbarch, osect);
c906108c 3050 }
86a73007 3051 /* fall thru */
d874f1e2 3052 case ovly_on: /* overlay debugging manual */
c906108c
SS
3053 return osect->ovly_mapped == 1;
3054 }
3055}
3056
c906108c
SS
3057/* Function: pc_in_unmapped_range
3058 If PC falls into the lma range of SECTION, return true, else false. */
3059
3060CORE_ADDR
714835d5 3061pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3062{
714835d5
UW
3063 if (section_is_overlay (section))
3064 {
3065 bfd *abfd = section->objfile->obfd;
3066 asection *bfd_section = section->the_bfd_section;
fbd35540 3067
714835d5
UW
3068 /* We assume the LMA is relocated by the same offset as the VMA. */
3069 bfd_vma size = bfd_get_section_size (bfd_section);
3070 CORE_ADDR offset = obj_section_offset (section);
3071
3072 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3073 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3074 return 1;
3075 }
c906108c 3076
c906108c
SS
3077 return 0;
3078}
3079
3080/* Function: pc_in_mapped_range
3081 If PC falls into the vma range of SECTION, return true, else false. */
3082
3083CORE_ADDR
714835d5 3084pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3085{
714835d5
UW
3086 if (section_is_overlay (section))
3087 {
3088 if (obj_section_addr (section) <= pc
3089 && pc < obj_section_endaddr (section))
3090 return 1;
3091 }
c906108c 3092
c906108c
SS
3093 return 0;
3094}
3095
9ec8e6a0
JB
3096/* Return true if the mapped ranges of sections A and B overlap, false
3097 otherwise. */
3b7bacac 3098
b9362cc7 3099static int
714835d5 3100sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3101{
714835d5
UW
3102 CORE_ADDR a_start = obj_section_addr (a);
3103 CORE_ADDR a_end = obj_section_endaddr (a);
3104 CORE_ADDR b_start = obj_section_addr (b);
3105 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3106
3107 return (a_start < b_end && b_start < a_end);
3108}
3109
c906108c
SS
3110/* Function: overlay_unmapped_address (PC, SECTION)
3111 Returns the address corresponding to PC in the unmapped (load) range.
3112 May be the same as PC. */
3113
3114CORE_ADDR
714835d5 3115overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3116{
714835d5
UW
3117 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3118 {
714835d5 3119 asection *bfd_section = section->the_bfd_section;
fbd35540 3120
714835d5
UW
3121 return pc + bfd_section_lma (abfd, bfd_section)
3122 - bfd_section_vma (abfd, bfd_section);
3123 }
c906108c
SS
3124
3125 return pc;
3126}
3127
3128/* Function: overlay_mapped_address (PC, SECTION)
3129 Returns the address corresponding to PC in the mapped (runtime) range.
3130 May be the same as PC. */
3131
3132CORE_ADDR
714835d5 3133overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3134{
714835d5
UW
3135 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3136 {
714835d5 3137 asection *bfd_section = section->the_bfd_section;
fbd35540 3138
714835d5
UW
3139 return pc + bfd_section_vma (abfd, bfd_section)
3140 - bfd_section_lma (abfd, bfd_section);
3141 }
c906108c
SS
3142
3143 return pc;
3144}
3145
5417f6dc 3146/* Function: symbol_overlayed_address
c906108c
SS
3147 Return one of two addresses (relative to the VMA or to the LMA),
3148 depending on whether the section is mapped or not. */
3149
c5aa993b 3150CORE_ADDR
714835d5 3151symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3152{
3153 if (overlay_debugging)
3154 {
c378eb4e 3155 /* If the symbol has no section, just return its regular address. */
c906108c
SS
3156 if (section == 0)
3157 return address;
c378eb4e
MS
3158 /* If the symbol's section is not an overlay, just return its
3159 address. */
c906108c
SS
3160 if (!section_is_overlay (section))
3161 return address;
c378eb4e 3162 /* If the symbol's section is mapped, just return its address. */
c906108c
SS
3163 if (section_is_mapped (section))
3164 return address;
3165 /*
3166 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3167 * then return its LOADED address rather than its vma address!!
3168 */
3169 return overlay_unmapped_address (address, section);
3170 }
3171 return address;
3172}
3173
5417f6dc 3174/* Function: find_pc_overlay (PC)
c906108c
SS
3175 Return the best-match overlay section for PC:
3176 If PC matches a mapped overlay section's VMA, return that section.
3177 Else if PC matches an unmapped section's VMA, return that section.
3178 Else if PC matches an unmapped section's LMA, return that section. */
3179
714835d5 3180struct obj_section *
fba45db2 3181find_pc_overlay (CORE_ADDR pc)
c906108c 3182{
c906108c
SS
3183 struct obj_section *osect, *best_match = NULL;
3184
3185 if (overlay_debugging)
b631e59b 3186 {
2030c079 3187 for (objfile *objfile : current_program_space->objfiles ())
3b9d3ac2
TT
3188 ALL_OBJFILE_OSECTIONS (objfile, osect)
3189 if (section_is_overlay (osect))
3190 {
3191 if (pc_in_mapped_range (pc, osect))
3192 {
3193 if (section_is_mapped (osect))
3194 return osect;
3195 else
3196 best_match = osect;
3197 }
3198 else if (pc_in_unmapped_range (pc, osect))
3199 best_match = osect;
3200 }
b631e59b 3201 }
714835d5 3202 return best_match;
c906108c
SS
3203}
3204
3205/* Function: find_pc_mapped_section (PC)
5417f6dc 3206 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3207 currently marked as MAPPED, return that section. Else return NULL. */
3208
714835d5 3209struct obj_section *
fba45db2 3210find_pc_mapped_section (CORE_ADDR pc)
c906108c 3211{
c906108c
SS
3212 struct obj_section *osect;
3213
3214 if (overlay_debugging)
b631e59b 3215 {
2030c079 3216 for (objfile *objfile : current_program_space->objfiles ())
3b9d3ac2
TT
3217 ALL_OBJFILE_OSECTIONS (objfile, osect)
3218 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3219 return osect;
b631e59b 3220 }
c906108c
SS
3221
3222 return NULL;
3223}
3224
3225/* Function: list_overlays_command
c378eb4e 3226 Print a list of mapped sections and their PC ranges. */
c906108c 3227
5d3055ad 3228static void
2cf311eb 3229list_overlays_command (const char *args, int from_tty)
c906108c 3230{
c5aa993b 3231 int nmapped = 0;
c906108c
SS
3232 struct obj_section *osect;
3233
3234 if (overlay_debugging)
b631e59b 3235 {
2030c079 3236 for (objfile *objfile : current_program_space->objfiles ())
3b9d3ac2
TT
3237 ALL_OBJFILE_OSECTIONS (objfile, osect)
3238 if (section_is_mapped (osect))
3239 {
3240 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3241 const char *name;
3242 bfd_vma lma, vma;
3243 int size;
3244
3245 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3246 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3247 size = bfd_get_section_size (osect->the_bfd_section);
3248 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3249
3250 printf_filtered ("Section %s, loaded at ", name);
3251 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3252 puts_filtered (" - ");
3253 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3254 printf_filtered (", mapped at ");
3255 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3256 puts_filtered (" - ");
3257 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3258 puts_filtered ("\n");
3259
3260 nmapped++;
3261 }
b631e59b 3262 }
c906108c 3263 if (nmapped == 0)
a3f17187 3264 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3265}
3266
3267/* Function: map_overlay_command
3268 Mark the named section as mapped (ie. residing at its VMA address). */
3269
5d3055ad 3270static void
2cf311eb 3271map_overlay_command (const char *args, int from_tty)
c906108c 3272{
c5aa993b 3273 struct obj_section *sec, *sec2;
c906108c
SS
3274
3275 if (!overlay_debugging)
3e43a32a
MS
3276 error (_("Overlay debugging not enabled. Use "
3277 "either the 'overlay auto' or\n"
3278 "the 'overlay manual' command."));
c906108c
SS
3279
3280 if (args == 0 || *args == 0)
8a3fe4f8 3281 error (_("Argument required: name of an overlay section"));
c906108c 3282
c378eb4e 3283 /* First, find a section matching the user supplied argument. */
2030c079 3284 for (objfile *obj_file : current_program_space->objfiles ())
3b9d3ac2
TT
3285 ALL_OBJFILE_OSECTIONS (obj_file, sec)
3286 if (!strcmp (bfd_section_name (obj_file->obfd, sec->the_bfd_section),
3287 args))
c5aa993b 3288 {
3b9d3ac2
TT
3289 /* Now, check to see if the section is an overlay. */
3290 if (!section_is_overlay (sec))
3291 continue; /* not an overlay section */
3292
3293 /* Mark the overlay as "mapped". */
3294 sec->ovly_mapped = 1;
3295
3296 /* Next, make a pass and unmap any sections that are
3297 overlapped by this new section: */
2030c079 3298 for (objfile *objfile2 : current_program_space->objfiles ())
3b9d3ac2
TT
3299 ALL_OBJFILE_OSECTIONS (objfile2, sec2)
3300 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec,
3301 sec2))
3302 {
3303 if (info_verbose)
3304 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3305 bfd_section_name (obj_file->obfd,
3306 sec2->the_bfd_section));
3307 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3308 }
3309 return;
c5aa993b 3310 }
8a3fe4f8 3311 error (_("No overlay section called %s"), args);
c906108c
SS
3312}
3313
3314/* Function: unmap_overlay_command
5417f6dc 3315 Mark the overlay section as unmapped
c906108c
SS
3316 (ie. resident in its LMA address range, rather than the VMA range). */
3317
5d3055ad 3318static void
2cf311eb 3319unmap_overlay_command (const char *args, int from_tty)
c906108c 3320{
7a270e0c 3321 struct obj_section *sec = NULL;
c906108c
SS
3322
3323 if (!overlay_debugging)
3e43a32a
MS
3324 error (_("Overlay debugging not enabled. "
3325 "Use either the 'overlay auto' or\n"
3326 "the 'overlay manual' command."));
c906108c
SS
3327
3328 if (args == 0 || *args == 0)
8a3fe4f8 3329 error (_("Argument required: name of an overlay section"));
c906108c 3330
c378eb4e 3331 /* First, find a section matching the user supplied argument. */
2030c079 3332 for (objfile *objfile : current_program_space->objfiles ())
3b9d3ac2
TT
3333 ALL_OBJFILE_OSECTIONS (objfile, sec)
3334 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3335 {
3336 if (!sec->ovly_mapped)
3337 error (_("Section %s is not mapped"), args);
3338 sec->ovly_mapped = 0;
3339 return;
3340 }
8a3fe4f8 3341 error (_("No overlay section called %s"), args);
c906108c
SS
3342}
3343
3344/* Function: overlay_auto_command
3345 A utility command to turn on overlay debugging.
c378eb4e 3346 Possibly this should be done via a set/show command. */
c906108c
SS
3347
3348static void
2cf311eb 3349overlay_auto_command (const char *args, int from_tty)
c906108c 3350{
d874f1e2 3351 overlay_debugging = ovly_auto;
1900040c 3352 enable_overlay_breakpoints ();
c906108c 3353 if (info_verbose)
a3f17187 3354 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3355}
3356
3357/* Function: overlay_manual_command
3358 A utility command to turn on overlay debugging.
c378eb4e 3359 Possibly this should be done via a set/show command. */
c906108c
SS
3360
3361static void
2cf311eb 3362overlay_manual_command (const char *args, int from_tty)
c906108c 3363{
d874f1e2 3364 overlay_debugging = ovly_on;
1900040c 3365 disable_overlay_breakpoints ();
c906108c 3366 if (info_verbose)
a3f17187 3367 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3368}
3369
3370/* Function: overlay_off_command
3371 A utility command to turn on overlay debugging.
c378eb4e 3372 Possibly this should be done via a set/show command. */
c906108c
SS
3373
3374static void
2cf311eb 3375overlay_off_command (const char *args, int from_tty)
c906108c 3376{
d874f1e2 3377 overlay_debugging = ovly_off;
1900040c 3378 disable_overlay_breakpoints ();
c906108c 3379 if (info_verbose)
a3f17187 3380 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3381}
3382
3383static void
2cf311eb 3384overlay_load_command (const char *args, int from_tty)
c906108c 3385{
e17c207e
UW
3386 struct gdbarch *gdbarch = get_current_arch ();
3387
3388 if (gdbarch_overlay_update_p (gdbarch))
3389 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3390 else
8a3fe4f8 3391 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3392}
3393
3394/* Function: overlay_command
c378eb4e 3395 A place-holder for a mis-typed command. */
c906108c 3396
c378eb4e 3397/* Command list chain containing all defined "overlay" subcommands. */
28578e6b 3398static struct cmd_list_element *overlaylist;
c906108c
SS
3399
3400static void
981a3fb3 3401overlay_command (const char *args, int from_tty)
c906108c 3402{
c5aa993b 3403 printf_unfiltered
c906108c 3404 ("\"overlay\" must be followed by the name of an overlay command.\n");
635c7e8a 3405 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
c906108c
SS
3406}
3407
c906108c
SS
3408/* Target Overlays for the "Simplest" overlay manager:
3409
5417f6dc
RM
3410 This is GDB's default target overlay layer. It works with the
3411 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3412 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3413 so targets that use a different runtime overlay manager can
c906108c
SS
3414 substitute their own overlay_update function and take over the
3415 function pointer.
3416
3417 The overlay_update function pokes around in the target's data structures
3418 to see what overlays are mapped, and updates GDB's overlay mapping with
3419 this information.
3420
3421 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3422 unsigned _novlys; /# number of overlay sections #/
3423 unsigned _ovly_table[_novlys][4] = {
438e1e42 3424 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
c5aa993b
JM
3425 {..., ..., ..., ...},
3426 }
3427 unsigned _novly_regions; /# number of overlay regions #/
3428 unsigned _ovly_region_table[_novly_regions][3] = {
438e1e42 3429 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
c5aa993b
JM
3430 {..., ..., ...},
3431 }
c906108c
SS
3432 These functions will attempt to update GDB's mappedness state in the
3433 symbol section table, based on the target's mappedness state.
3434
3435 To do this, we keep a cached copy of the target's _ovly_table, and
3436 attempt to detect when the cached copy is invalidated. The main
3437 entry point is "simple_overlay_update(SECT), which looks up SECT in
3438 the cached table and re-reads only the entry for that section from
c378eb4e 3439 the target (whenever possible). */
c906108c
SS
3440
3441/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3442static unsigned (*cache_ovly_table)[4] = 0;
c5aa993b 3443static unsigned cache_novlys = 0;
c906108c 3444static CORE_ADDR cache_ovly_table_base = 0;
c5aa993b
JM
3445enum ovly_index
3446 {
438e1e42 3447 VMA, OSIZE, LMA, MAPPED
c5aa993b 3448 };
c906108c 3449
c378eb4e 3450/* Throw away the cached copy of _ovly_table. */
3b7bacac 3451
c906108c 3452static void
fba45db2 3453simple_free_overlay_table (void)
c906108c
SS
3454{
3455 if (cache_ovly_table)
b8c9b27d 3456 xfree (cache_ovly_table);
c5aa993b 3457 cache_novlys = 0;
c906108c
SS
3458 cache_ovly_table = NULL;
3459 cache_ovly_table_base = 0;
3460}
3461
9216df95 3462/* Read an array of ints of size SIZE from the target into a local buffer.
c378eb4e 3463 Convert to host order. int LEN is number of ints. */
3b7bacac 3464
c906108c 3465static void
9216df95 3466read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3467 int len, int size, enum bfd_endian byte_order)
c906108c 3468{
c378eb4e 3469 /* FIXME (alloca): Not safe if array is very large. */
224c3ddb 3470 gdb_byte *buf = (gdb_byte *) alloca (len * size);
c5aa993b 3471 int i;
c906108c 3472
9216df95 3473 read_memory (memaddr, buf, len * size);
c906108c 3474 for (i = 0; i < len; i++)
e17a4113 3475 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3476}
3477
3478/* Find and grab a copy of the target _ovly_table
c378eb4e 3479 (and _novlys, which is needed for the table's size). */
3b7bacac 3480
c5aa993b 3481static int
fba45db2 3482simple_read_overlay_table (void)
c906108c 3483{
3b7344d5 3484 struct bound_minimal_symbol novlys_msym;
7c7b6655 3485 struct bound_minimal_symbol ovly_table_msym;
9216df95
UW
3486 struct gdbarch *gdbarch;
3487 int word_size;
e17a4113 3488 enum bfd_endian byte_order;
c906108c
SS
3489
3490 simple_free_overlay_table ();
9b27852e 3491 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3b7344d5 3492 if (! novlys_msym.minsym)
c906108c 3493 {
8a3fe4f8 3494 error (_("Error reading inferior's overlay table: "
0d43edd1 3495 "couldn't find `_novlys' variable\n"
8a3fe4f8 3496 "in inferior. Use `overlay manual' mode."));
0d43edd1 3497 return 0;
c906108c 3498 }
0d43edd1 3499
7c7b6655
TT
3500 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3501 if (! ovly_table_msym.minsym)
0d43edd1 3502 {
8a3fe4f8 3503 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3504 "`_ovly_table' array\n"
8a3fe4f8 3505 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3506 return 0;
3507 }
3508
7c7b6655 3509 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
9216df95 3510 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3511 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3512
77e371c0
TT
3513 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3514 4, byte_order);
0d43edd1 3515 cache_ovly_table
224c3ddb 3516 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
77e371c0 3517 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
0d43edd1 3518 read_target_long_array (cache_ovly_table_base,
777ea8f1 3519 (unsigned int *) cache_ovly_table,
e17a4113 3520 cache_novlys * 4, word_size, byte_order);
0d43edd1 3521
c5aa993b 3522 return 1; /* SUCCESS */
c906108c
SS
3523}
3524
5417f6dc 3525/* Function: simple_overlay_update_1
c906108c
SS
3526 A helper function for simple_overlay_update. Assuming a cached copy
3527 of _ovly_table exists, look through it to find an entry whose vma,
3528 lma and size match those of OSECT. Re-read the entry and make sure
3529 it still matches OSECT (else the table may no longer be valid).
3530 Set OSECT's mapped state to match the entry. Return: 1 for
3531 success, 0 for failure. */
3532
3533static int
fba45db2 3534simple_overlay_update_1 (struct obj_section *osect)
c906108c 3535{
764c99c1 3536 int i;
fbd35540 3537 asection *bsect = osect->the_bfd_section;
9216df95
UW
3538 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3539 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3540 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3541
c906108c 3542 for (i = 0; i < cache_novlys; i++)
fbd35540 3543 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3544 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c906108c 3545 {
9216df95
UW
3546 read_target_long_array (cache_ovly_table_base + i * word_size,
3547 (unsigned int *) cache_ovly_table[i],
e17a4113 3548 4, word_size, byte_order);
fbd35540 3549 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3550 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c906108c
SS
3551 {
3552 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3553 return 1;
3554 }
c378eb4e 3555 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3556 return 0;
3557 }
3558 return 0;
3559}
3560
3561/* Function: simple_overlay_update
5417f6dc
RM
3562 If OSECT is NULL, then update all sections' mapped state
3563 (after re-reading the entire target _ovly_table).
3564 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3565 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3566 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3567 re-read the entire cache, and go ahead and update all sections. */
3568
1c772458 3569void
fba45db2 3570simple_overlay_update (struct obj_section *osect)
c906108c 3571{
c378eb4e 3572 /* Were we given an osect to look up? NULL means do all of them. */
c906108c 3573 if (osect)
c378eb4e 3574 /* Have we got a cached copy of the target's overlay table? */
c906108c 3575 if (cache_ovly_table != NULL)
9cc89665
MS
3576 {
3577 /* Does its cached location match what's currently in the
3578 symtab? */
3b7344d5 3579 struct bound_minimal_symbol minsym
9cc89665
MS
3580 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3581
3b7344d5 3582 if (minsym.minsym == NULL)
9cc89665
MS
3583 error (_("Error reading inferior's overlay table: couldn't "
3584 "find `_ovly_table' array\n"
3585 "in inferior. Use `overlay manual' mode."));
3586
77e371c0 3587 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
9cc89665
MS
3588 /* Then go ahead and try to look up this single section in
3589 the cache. */
3590 if (simple_overlay_update_1 (osect))
3591 /* Found it! We're done. */
3592 return;
3593 }
c906108c
SS
3594
3595 /* Cached table no good: need to read the entire table anew.
3596 Or else we want all the sections, in which case it's actually
3597 more efficient to read the whole table in one block anyway. */
3598
0d43edd1
JB
3599 if (! simple_read_overlay_table ())
3600 return;
3601
c378eb4e 3602 /* Now may as well update all sections, even if only one was requested. */
2030c079 3603 for (objfile *objfile : current_program_space->objfiles ())
3b9d3ac2
TT
3604 ALL_OBJFILE_OSECTIONS (objfile, osect)
3605 if (section_is_overlay (osect))
3606 {
3607 int i;
3608 asection *bsect = osect->the_bfd_section;
3609
3610 for (i = 0; i < cache_novlys; i++)
3611 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3612 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3613 { /* obj_section matches i'th entry in ovly_table. */
3614 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3615 break; /* finished with inner for loop: break out. */
3616 }
3617 }
c906108c
SS
3618}
3619
086df311
DJ
3620/* Set the output sections and output offsets for section SECTP in
3621 ABFD. The relocation code in BFD will read these offsets, so we
3622 need to be sure they're initialized. We map each section to itself,
3623 with no offset; this means that SECTP->vma will be honored. */
3624
3625static void
3626symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3627{
3628 sectp->output_section = sectp;
3629 sectp->output_offset = 0;
3630}
3631
ac8035ab
TG
3632/* Default implementation for sym_relocate. */
3633
ac8035ab
TG
3634bfd_byte *
3635default_symfile_relocate (struct objfile *objfile, asection *sectp,
3636 bfd_byte *buf)
3637{
3019eac3
DE
3638 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3639 DWO file. */
3640 bfd *abfd = sectp->owner;
ac8035ab
TG
3641
3642 /* We're only interested in sections with relocation
3643 information. */
3644 if ((sectp->flags & SEC_RELOC) == 0)
3645 return NULL;
3646
3647 /* We will handle section offsets properly elsewhere, so relocate as if
3648 all sections begin at 0. */
3649 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3650
3651 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3652}
3653
086df311
DJ
3654/* Relocate the contents of a debug section SECTP in ABFD. The
3655 contents are stored in BUF if it is non-NULL, or returned in a
3656 malloc'd buffer otherwise.
3657
3658 For some platforms and debug info formats, shared libraries contain
3659 relocations against the debug sections (particularly for DWARF-2;
3660 one affected platform is PowerPC GNU/Linux, although it depends on
3661 the version of the linker in use). Also, ELF object files naturally
3662 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3663 the relocations in order to get the locations of symbols correct.
3664 Another example that may require relocation processing, is the
3665 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3666 debug section. */
086df311
DJ
3667
3668bfd_byte *
ac8035ab
TG
3669symfile_relocate_debug_section (struct objfile *objfile,
3670 asection *sectp, bfd_byte *buf)
086df311 3671{
ac8035ab 3672 gdb_assert (objfile->sf->sym_relocate);
086df311 3673
ac8035ab 3674 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3675}
c906108c 3676
31d99776
DJ
3677struct symfile_segment_data *
3678get_symfile_segment_data (bfd *abfd)
3679{
00b5771c 3680 const struct sym_fns *sf = find_sym_fns (abfd);
31d99776
DJ
3681
3682 if (sf == NULL)
3683 return NULL;
3684
3685 return sf->sym_segments (abfd);
3686}
3687
3688void
3689free_symfile_segment_data (struct symfile_segment_data *data)
3690{
3691 xfree (data->segment_bases);
3692 xfree (data->segment_sizes);
3693 xfree (data->segment_info);
3694 xfree (data);
3695}
3696
28c32713
JB
3697/* Given:
3698 - DATA, containing segment addresses from the object file ABFD, and
3699 the mapping from ABFD's sections onto the segments that own them,
3700 and
3701 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3702 segment addresses reported by the target,
3703 store the appropriate offsets for each section in OFFSETS.
3704
3705 If there are fewer entries in SEGMENT_BASES than there are segments
3706 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3707
8d385431
DJ
3708 If there are more entries, then ignore the extra. The target may
3709 not be able to distinguish between an empty data segment and a
3710 missing data segment; a missing text segment is less plausible. */
3b7bacac 3711
31d99776 3712int
3189cb12
DE
3713symfile_map_offsets_to_segments (bfd *abfd,
3714 const struct symfile_segment_data *data,
31d99776
DJ
3715 struct section_offsets *offsets,
3716 int num_segment_bases,
3717 const CORE_ADDR *segment_bases)
3718{
3719 int i;
3720 asection *sect;
3721
28c32713
JB
3722 /* It doesn't make sense to call this function unless you have some
3723 segment base addresses. */
202b96c1 3724 gdb_assert (num_segment_bases > 0);
28c32713 3725
31d99776
DJ
3726 /* If we do not have segment mappings for the object file, we
3727 can not relocate it by segments. */
3728 gdb_assert (data != NULL);
3729 gdb_assert (data->num_segments > 0);
3730
31d99776
DJ
3731 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3732 {
31d99776
DJ
3733 int which = data->segment_info[i];
3734
28c32713
JB
3735 gdb_assert (0 <= which && which <= data->num_segments);
3736
3737 /* Don't bother computing offsets for sections that aren't
3738 loaded as part of any segment. */
3739 if (! which)
3740 continue;
3741
3742 /* Use the last SEGMENT_BASES entry as the address of any extra
3743 segments mentioned in DATA->segment_info. */
31d99776 3744 if (which > num_segment_bases)
28c32713 3745 which = num_segment_bases;
31d99776 3746
28c32713
JB
3747 offsets->offsets[i] = (segment_bases[which - 1]
3748 - data->segment_bases[which - 1]);
31d99776
DJ
3749 }
3750
3751 return 1;
3752}
3753
3754static void
3755symfile_find_segment_sections (struct objfile *objfile)
3756{
3757 bfd *abfd = objfile->obfd;
3758 int i;
3759 asection *sect;
3760 struct symfile_segment_data *data;
3761
3762 data = get_symfile_segment_data (objfile->obfd);
3763 if (data == NULL)
3764 return;
3765
3766 if (data->num_segments != 1 && data->num_segments != 2)
3767 {
3768 free_symfile_segment_data (data);
3769 return;
3770 }
3771
3772 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3773 {
31d99776
DJ
3774 int which = data->segment_info[i];
3775
3776 if (which == 1)
3777 {
3778 if (objfile->sect_index_text == -1)
3779 objfile->sect_index_text = sect->index;
3780
3781 if (objfile->sect_index_rodata == -1)
3782 objfile->sect_index_rodata = sect->index;
3783 }
3784 else if (which == 2)
3785 {
3786 if (objfile->sect_index_data == -1)
3787 objfile->sect_index_data = sect->index;
3788
3789 if (objfile->sect_index_bss == -1)
3790 objfile->sect_index_bss = sect->index;
3791 }
3792 }
3793
3794 free_symfile_segment_data (data);
3795}
3796
76ad5e1e
NB
3797/* Listen for free_objfile events. */
3798
3799static void
3800symfile_free_objfile (struct objfile *objfile)
3801{
c33b2f12
MM
3802 /* Remove the target sections owned by this objfile. */
3803 if (objfile != NULL)
76ad5e1e
NB
3804 remove_target_sections ((void *) objfile);
3805}
3806
540c2971
DE
3807/* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3808 Expand all symtabs that match the specified criteria.
3809 See quick_symbol_functions.expand_symtabs_matching for details. */
3810
3811void
14bc53a8
PA
3812expand_symtabs_matching
3813 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
b5ec771e 3814 const lookup_name_info &lookup_name,
14bc53a8
PA
3815 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3816 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3817 enum search_domain kind)
540c2971 3818{
2030c079 3819 for (objfile *objfile : current_program_space->objfiles ())
aed57c53
TT
3820 {
3821 if (objfile->sf)
3822 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3823 lookup_name,
3824 symbol_matcher,
3825 expansion_notify, kind);
3826 }
540c2971
DE
3827}
3828
3829/* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3830 Map function FUN over every file.
3831 See quick_symbol_functions.map_symbol_filenames for details. */
3832
3833void
bb4142cf
DE
3834map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3835 int need_fullname)
540c2971 3836{
2030c079 3837 for (objfile *objfile : current_program_space->objfiles ())
aed57c53
TT
3838 {
3839 if (objfile->sf)
3840 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3841 need_fullname);
3842 }
540c2971
DE
3843}
3844
32fa66eb
SM
3845#if GDB_SELF_TEST
3846
3847namespace selftests {
3848namespace filename_language {
3849
32fa66eb
SM
3850static void test_filename_language ()
3851{
3852 /* This test messes up the filename_language_table global. */
593e3209 3853 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
32fa66eb
SM
3854
3855 /* Test deducing an unknown extension. */
3856 language lang = deduce_language_from_filename ("myfile.blah");
3857 SELF_CHECK (lang == language_unknown);
3858
3859 /* Test deducing a known extension. */
3860 lang = deduce_language_from_filename ("myfile.c");
3861 SELF_CHECK (lang == language_c);
3862
3863 /* Test adding a new extension using the internal API. */
3864 add_filename_language (".blah", language_pascal);
3865 lang = deduce_language_from_filename ("myfile.blah");
3866 SELF_CHECK (lang == language_pascal);
3867}
3868
3869static void
3870test_set_ext_lang_command ()
3871{
3872 /* This test messes up the filename_language_table global. */
593e3209 3873 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
32fa66eb
SM
3874
3875 /* Confirm that the .hello extension is not known. */
3876 language lang = deduce_language_from_filename ("cake.hello");
3877 SELF_CHECK (lang == language_unknown);
3878
3879 /* Test adding a new extension using the CLI command. */
b02f78f9 3880 auto args_holder = make_unique_xstrdup (".hello rust");
32fa66eb
SM
3881 ext_args = args_holder.get ();
3882 set_ext_lang_command (NULL, 1, NULL);
3883
3884 lang = deduce_language_from_filename ("cake.hello");
3885 SELF_CHECK (lang == language_rust);
3886
3887 /* Test overriding an existing extension using the CLI command. */
593e3209 3888 int size_before = filename_language_table.size ();
32fa66eb
SM
3889 args_holder.reset (xstrdup (".hello pascal"));
3890 ext_args = args_holder.get ();
3891 set_ext_lang_command (NULL, 1, NULL);
593e3209 3892 int size_after = filename_language_table.size ();
32fa66eb
SM
3893
3894 lang = deduce_language_from_filename ("cake.hello");
3895 SELF_CHECK (lang == language_pascal);
3896 SELF_CHECK (size_before == size_after);
3897}
3898
3899} /* namespace filename_language */
3900} /* namespace selftests */
3901
3902#endif /* GDB_SELF_TEST */
3903
c906108c 3904void
fba45db2 3905_initialize_symfile (void)
c906108c
SS
3906{
3907 struct cmd_list_element *c;
c5aa993b 3908
76727919 3909 gdb::observers::free_objfile.attach (symfile_free_objfile);
76ad5e1e 3910
97cbe998 3911#define READNOW_READNEVER_HELP \
8ca2f0b9
TT
3912 "The '-readnow' option will cause GDB to read the entire symbol file\n\
3913immediately. This makes the command slower, but may make future operations\n\
97cbe998
SDJ
3914faster.\n\
3915The '-readnever' option will prevent GDB from reading the symbol file's\n\
3916symbolic debug information."
8ca2f0b9 3917
1a966eab
AC
3918 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3919Load symbol table from executable file FILE.\n\
d4d429d5
PT
3920Usage: symbol-file [-readnow | -readnever] [-o OFF] FILE\n\
3921OFF is an optional offset which is added to each section address.\n\
c906108c 3922The `file' command can also load symbol tables, as well as setting the file\n\
97cbe998 3923to execute.\n" READNOW_READNEVER_HELP), &cmdlist);
5ba2abeb 3924 set_cmd_completer (c, filename_completer);
c906108c 3925
1a966eab 3926 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3927Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
291f9a96 3928Usage: add-symbol-file FILE [-readnow | -readnever] [-o OFF] [ADDR] \
ed6dfe51 3929[-s SECT-NAME SECT-ADDR]...\n\
02ca603a
TT
3930ADDR is the starting address of the file's text.\n\
3931Each '-s' argument provides a section name and address, and\n\
db162d44 3932should be specified if the data and bss segments are not contiguous\n\
291f9a96
PT
3933with the text. SECT-NAME is a section name to be loaded at SECT-ADDR.\n\
3934OFF is an optional offset which is added to the default load addresses\n\
3935of all sections for which no other address was specified.\n"
97cbe998 3936READNOW_READNEVER_HELP),
c906108c 3937 &cmdlist);
5ba2abeb 3938 set_cmd_completer (c, filename_completer);
c906108c 3939
63644780
NB
3940 c = add_cmd ("remove-symbol-file", class_files,
3941 remove_symbol_file_command, _("\
3942Remove a symbol file added via the add-symbol-file command.\n\
3943Usage: remove-symbol-file FILENAME\n\
3944 remove-symbol-file -a ADDRESS\n\
3945The file to remove can be identified by its filename or by an address\n\
3946that lies within the boundaries of this symbol file in memory."),
3947 &cmdlist);
3948
1a966eab
AC
3949 c = add_cmd ("load", class_files, load_command, _("\
3950Dynamically load FILE into the running program, and record its symbols\n\
1986bccd 3951for access from GDB.\n\
8ca2f0b9 3952Usage: load [FILE] [OFFSET]\n\
5cf30ebf
LM
3953An optional load OFFSET may also be given as a literal address.\n\
3954When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
8ca2f0b9 3955on its own."), &cmdlist);
5ba2abeb 3956 set_cmd_completer (c, filename_completer);
c906108c 3957
c5aa993b 3958 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3959 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3960 "overlay ", 0, &cmdlist);
3961
3962 add_com_alias ("ovly", "overlay", class_alias, 1);
3963 add_com_alias ("ov", "overlay", class_alias, 1);
3964
c5aa993b 3965 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3966 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3967
c5aa993b 3968 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3969 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3970
c5aa993b 3971 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3972 _("List mappings of overlay sections."), &overlaylist);
c906108c 3973
c5aa993b 3974 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3975 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3976 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3977 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3978 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3979 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3980 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3981 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3982
3983 /* Filename extension to source language lookup table: */
26c41df3
AC
3984 add_setshow_string_noescape_cmd ("extension-language", class_files,
3985 &ext_args, _("\
3986Set mapping between filename extension and source language."), _("\
3987Show mapping between filename extension and source language."), _("\
3988Usage: set extension-language .foo bar"),
3989 set_ext_lang_command,
920d2a44 3990 show_ext_args,
26c41df3 3991 &setlist, &showlist);
c906108c 3992
c5aa993b 3993 add_info ("extensions", info_ext_lang_command,
1bedd215 3994 _("All filename extensions associated with a source language."));
917317f4 3995
525226b5
AC
3996 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3997 &debug_file_directory, _("\
24ddea62
JK
3998Set the directories where separate debug symbols are searched for."), _("\
3999Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
4000Separate debug symbols are first searched for in the same\n\
4001directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4002and lastly at the path of the directory of the binary with\n\
24ddea62 4003each global debug-file-directory component prepended."),
525226b5 4004 NULL,
920d2a44 4005 show_debug_file_directory,
525226b5 4006 &setlist, &showlist);
770e7fc7
DE
4007
4008 add_setshow_enum_cmd ("symbol-loading", no_class,
4009 print_symbol_loading_enums, &print_symbol_loading,
4010 _("\
4011Set printing of symbol loading messages."), _("\
4012Show printing of symbol loading messages."), _("\
4013off == turn all messages off\n\
4014brief == print messages for the executable,\n\
4015 and brief messages for shared libraries\n\
4016full == print messages for the executable,\n\
4017 and messages for each shared library."),
4018 NULL,
4019 NULL,
4020 &setprintlist, &showprintlist);
c4dcb155
SM
4021
4022 add_setshow_boolean_cmd ("separate-debug-file", no_class,
4023 &separate_debug_file_debug, _("\
4024Set printing of separate debug info file search debug."), _("\
4025Show printing of separate debug info file search debug."), _("\
4026When on, GDB prints the searched locations while looking for separate debug \
4027info files."), NULL, NULL, &setdebuglist, &showdebuglist);
32fa66eb
SM
4028
4029#if GDB_SELF_TEST
4030 selftests::register_test
4031 ("filename_language", selftests::filename_language::test_filename_language);
4032 selftests::register_test
4033 ("set_ext_lang_command",
4034 selftests::filename_language::test_set_ext_lang_command);
4035#endif
c906108c 4036}
This page took 2.552041 seconds and 4 git commands to generate.