Add a test that relocs are correctly generated for missing build notes.
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
e2882c85 3 Copyright (C) 1990-2018 Free Software Foundation, Inc.
8926118c 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
086df311 24#include "bfdlink.h"
c906108c
SS
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "target.h"
30#include "value.h"
31#include "symfile.h"
32#include "objfiles.h"
0378c332 33#include "source.h"
c906108c
SS
34#include "gdbcmd.h"
35#include "breakpoint.h"
36#include "language.h"
37#include "complaints.h"
38#include "demangle.h"
fb14de7b
UW
39#include "inferior.h"
40#include "regcache.h"
5b5d99cf 41#include "filenames.h" /* for DOSish file names */
c906108c 42#include "gdb-stabs.h"
04ea0df1 43#include "gdb_obstack.h"
d75b5104 44#include "completer.h"
af5f3db6 45#include "bcache.h"
2de7ced7 46#include "hashtab.h"
dbda9972 47#include "readline/readline.h"
fe898f56 48#include "block.h"
76727919 49#include "observable.h"
c1bd25fd 50#include "exec.h"
9bdcbae7 51#include "parser-defs.h"
8756216b 52#include "varobj.h"
77069918 53#include "elf-bfd.h"
e85a822c 54#include "solib.h"
f1838a98 55#include "remote.h"
1bfeeb0f 56#include "stack.h"
cbb099e8 57#include "gdb_bfd.h"
529480d0 58#include "cli/cli-utils.h"
0efef640 59#include "common/byte-vector.h"
32fa66eb 60#include "selftest.h"
c906108c 61
c906108c
SS
62#include <sys/types.h>
63#include <fcntl.h>
53ce3c39 64#include <sys/stat.h>
c906108c 65#include <ctype.h>
dcb07cfa 66#include <chrono>
37e136b1 67#include <algorithm>
c906108c 68
ccefe4c4 69#include "psymtab.h"
c906108c 70
3e43a32a
MS
71int (*deprecated_ui_load_progress_hook) (const char *section,
72 unsigned long num);
9a4105ab 73void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
74 unsigned long section_sent,
75 unsigned long section_size,
76 unsigned long total_sent,
c2d11a7d 77 unsigned long total_size);
769d7dc4
AC
78void (*deprecated_pre_add_symbol_hook) (const char *);
79void (*deprecated_post_add_symbol_hook) (void);
c906108c 80
74b7792f
AC
81static void clear_symtab_users_cleanup (void *ignore);
82
c378eb4e
MS
83/* Global variables owned by this file. */
84int readnow_symbol_files; /* Read full symbols immediately. */
97cbe998 85int readnever_symbol_files; /* Never read full symbols. */
c906108c 86
c378eb4e 87/* Functions this file defines. */
c906108c 88
ecf45d2c 89static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
d4d429d5 90 objfile_flags flags, CORE_ADDR reloff);
d7db6da9 91
00b5771c 92static const struct sym_fns *find_sym_fns (bfd *);
c906108c 93
a14ed312 94static void overlay_invalidate_all (void);
c906108c 95
a14ed312 96static void simple_free_overlay_table (void);
c906108c 97
e17a4113
UW
98static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
99 enum bfd_endian);
c906108c 100
a14ed312 101static int simple_read_overlay_table (void);
c906108c 102
a14ed312 103static int simple_overlay_update_1 (struct obj_section *);
c906108c 104
31d99776
DJ
105static void symfile_find_segment_sections (struct objfile *objfile);
106
c906108c
SS
107/* List of all available sym_fns. On gdb startup, each object file reader
108 calls add_symtab_fns() to register information on each format it is
c378eb4e 109 prepared to read. */
c906108c 110
905014d7 111struct registered_sym_fns
c256e171 112{
905014d7
SM
113 registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_)
114 : sym_flavour (sym_flavour_), sym_fns (sym_fns_)
115 {}
116
c256e171
DE
117 /* BFD flavour that we handle. */
118 enum bfd_flavour sym_flavour;
119
120 /* The "vtable" of symbol functions. */
121 const struct sym_fns *sym_fns;
905014d7 122};
c256e171 123
905014d7 124static std::vector<registered_sym_fns> symtab_fns;
c906108c 125
770e7fc7
DE
126/* Values for "set print symbol-loading". */
127
128const char print_symbol_loading_off[] = "off";
129const char print_symbol_loading_brief[] = "brief";
130const char print_symbol_loading_full[] = "full";
131static const char *print_symbol_loading_enums[] =
132{
133 print_symbol_loading_off,
134 print_symbol_loading_brief,
135 print_symbol_loading_full,
136 NULL
137};
138static const char *print_symbol_loading = print_symbol_loading_full;
139
b7209cb4
FF
140/* If non-zero, shared library symbols will be added automatically
141 when the inferior is created, new libraries are loaded, or when
142 attaching to the inferior. This is almost always what users will
143 want to have happen; but for very large programs, the startup time
144 will be excessive, and so if this is a problem, the user can clear
145 this flag and then add the shared library symbols as needed. Note
146 that there is a potential for confusion, since if the shared
c906108c 147 library symbols are not loaded, commands like "info fun" will *not*
0d14a781 148 report all the functions that are actually present. */
c906108c
SS
149
150int auto_solib_add = 1;
c906108c 151\f
c5aa993b 152
770e7fc7
DE
153/* Return non-zero if symbol-loading messages should be printed.
154 FROM_TTY is the standard from_tty argument to gdb commands.
155 If EXEC is non-zero the messages are for the executable.
156 Otherwise, messages are for shared libraries.
157 If FULL is non-zero then the caller is printing a detailed message.
158 E.g., the message includes the shared library name.
159 Otherwise, the caller is printing a brief "summary" message. */
160
161int
162print_symbol_loading_p (int from_tty, int exec, int full)
163{
164 if (!from_tty && !info_verbose)
165 return 0;
166
167 if (exec)
168 {
169 /* We don't check FULL for executables, there are few such
170 messages, therefore brief == full. */
171 return print_symbol_loading != print_symbol_loading_off;
172 }
173 if (full)
174 return print_symbol_loading == print_symbol_loading_full;
175 return print_symbol_loading == print_symbol_loading_brief;
176}
177
0d14a781 178/* True if we are reading a symbol table. */
c906108c
SS
179
180int currently_reading_symtab = 0;
181
ccefe4c4
TT
182/* Increment currently_reading_symtab and return a cleanup that can be
183 used to decrement it. */
3b7bacac 184
c83dd867 185scoped_restore_tmpl<int>
ccefe4c4 186increment_reading_symtab (void)
c906108c 187{
c83dd867
TT
188 gdb_assert (currently_reading_symtab >= 0);
189 return make_scoped_restore (&currently_reading_symtab,
190 currently_reading_symtab + 1);
c906108c
SS
191}
192
5417f6dc
RM
193/* Remember the lowest-addressed loadable section we've seen.
194 This function is called via bfd_map_over_sections.
c906108c
SS
195
196 In case of equal vmas, the section with the largest size becomes the
197 lowest-addressed loadable section.
198
199 If the vmas and sizes are equal, the last section is considered the
200 lowest-addressed loadable section. */
201
202void
4efb68b1 203find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 204{
c5aa993b 205 asection **lowest = (asection **) obj;
c906108c 206
eb73e134 207 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
208 return;
209 if (!*lowest)
210 *lowest = sect; /* First loadable section */
211 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
212 *lowest = sect; /* A lower loadable section */
213 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
214 && (bfd_section_size (abfd, (*lowest))
215 <= bfd_section_size (abfd, sect)))
216 *lowest = sect;
217}
218
62557bbc 219/* Build (allocate and populate) a section_addr_info struct from
c378eb4e 220 an existing section table. */
62557bbc 221
37e136b1 222section_addr_info
0542c86d
PA
223build_section_addr_info_from_section_table (const struct target_section *start,
224 const struct target_section *end)
62557bbc 225{
0542c86d 226 const struct target_section *stp;
62557bbc 227
37e136b1 228 section_addr_info sap;
62557bbc 229
37e136b1 230 for (stp = start; stp != end; stp++)
62557bbc 231 {
2b2848e2
DE
232 struct bfd_section *asect = stp->the_bfd_section;
233 bfd *abfd = asect->owner;
234
235 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
37e136b1
TT
236 && sap.size () < end - start)
237 sap.emplace_back (stp->addr,
238 bfd_section_name (abfd, asect),
239 gdb_bfd_section_index (abfd, asect));
62557bbc
KB
240 }
241
242 return sap;
243}
244
82ccf5a5 245/* Create a section_addr_info from section offsets in ABFD. */
089b4803 246
37e136b1 247static section_addr_info
82ccf5a5 248build_section_addr_info_from_bfd (bfd *abfd)
089b4803 249{
089b4803
TG
250 struct bfd_section *sec;
251
37e136b1
TT
252 section_addr_info sap;
253 for (sec = abfd->sections; sec != NULL; sec = sec->next)
82ccf5a5 254 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
37e136b1
TT
255 sap.emplace_back (bfd_get_section_vma (abfd, sec),
256 bfd_get_section_name (abfd, sec),
257 gdb_bfd_section_index (abfd, sec));
d76488d8 258
089b4803
TG
259 return sap;
260}
261
82ccf5a5
JK
262/* Create a section_addr_info from section offsets in OBJFILE. */
263
37e136b1 264section_addr_info
82ccf5a5
JK
265build_section_addr_info_from_objfile (const struct objfile *objfile)
266{
82ccf5a5
JK
267 int i;
268
269 /* Before reread_symbols gets rewritten it is not safe to call:
270 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
271 */
37e136b1
TT
272 section_addr_info sap = build_section_addr_info_from_bfd (objfile->obfd);
273 for (i = 0; i < sap.size (); i++)
82ccf5a5 274 {
37e136b1 275 int sectindex = sap[i].sectindex;
82ccf5a5 276
37e136b1 277 sap[i].addr += objfile->section_offsets->offsets[sectindex];
82ccf5a5
JK
278 }
279 return sap;
280}
62557bbc 281
e8289572 282/* Initialize OBJFILE's sect_index_* members. */
3b7bacac 283
e8289572
JB
284static void
285init_objfile_sect_indices (struct objfile *objfile)
c906108c 286{
e8289572 287 asection *sect;
c906108c 288 int i;
5417f6dc 289
b8fbeb18 290 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 291 if (sect)
b8fbeb18
EZ
292 objfile->sect_index_text = sect->index;
293
294 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 295 if (sect)
b8fbeb18
EZ
296 objfile->sect_index_data = sect->index;
297
298 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 299 if (sect)
b8fbeb18
EZ
300 objfile->sect_index_bss = sect->index;
301
302 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 303 if (sect)
b8fbeb18
EZ
304 objfile->sect_index_rodata = sect->index;
305
bbcd32ad
FF
306 /* This is where things get really weird... We MUST have valid
307 indices for the various sect_index_* members or gdb will abort.
308 So if for example, there is no ".text" section, we have to
31d99776
DJ
309 accomodate that. First, check for a file with the standard
310 one or two segments. */
311
312 symfile_find_segment_sections (objfile);
313
314 /* Except when explicitly adding symbol files at some address,
315 section_offsets contains nothing but zeros, so it doesn't matter
316 which slot in section_offsets the individual sect_index_* members
317 index into. So if they are all zero, it is safe to just point
318 all the currently uninitialized indices to the first slot. But
319 beware: if this is the main executable, it may be relocated
320 later, e.g. by the remote qOffsets packet, and then this will
321 be wrong! That's why we try segments first. */
bbcd32ad
FF
322
323 for (i = 0; i < objfile->num_sections; i++)
324 {
325 if (ANOFFSET (objfile->section_offsets, i) != 0)
326 {
327 break;
328 }
329 }
330 if (i == objfile->num_sections)
331 {
332 if (objfile->sect_index_text == -1)
333 objfile->sect_index_text = 0;
334 if (objfile->sect_index_data == -1)
335 objfile->sect_index_data = 0;
336 if (objfile->sect_index_bss == -1)
337 objfile->sect_index_bss = 0;
338 if (objfile->sect_index_rodata == -1)
339 objfile->sect_index_rodata = 0;
340 }
b8fbeb18 341}
c906108c 342
c1bd25fd
DJ
343/* The arguments to place_section. */
344
345struct place_section_arg
346{
347 struct section_offsets *offsets;
348 CORE_ADDR lowest;
349};
350
351/* Find a unique offset to use for loadable section SECT if
352 the user did not provide an offset. */
353
2c0b251b 354static void
c1bd25fd
DJ
355place_section (bfd *abfd, asection *sect, void *obj)
356{
19ba03f4 357 struct place_section_arg *arg = (struct place_section_arg *) obj;
c1bd25fd
DJ
358 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
359 int done;
3bd72c6f 360 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 361
2711e456
DJ
362 /* We are only interested in allocated sections. */
363 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
364 return;
365
366 /* If the user specified an offset, honor it. */
65cf3563 367 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
c1bd25fd
DJ
368 return;
369
370 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
371 start_addr = (arg->lowest + align - 1) & -align;
372
c1bd25fd
DJ
373 do {
374 asection *cur_sec;
c1bd25fd 375
c1bd25fd
DJ
376 done = 1;
377
378 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
379 {
380 int indx = cur_sec->index;
c1bd25fd
DJ
381
382 /* We don't need to compare against ourself. */
383 if (cur_sec == sect)
384 continue;
385
2711e456
DJ
386 /* We can only conflict with allocated sections. */
387 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
388 continue;
389
390 /* If the section offset is 0, either the section has not been placed
391 yet, or it was the lowest section placed (in which case LOWEST
392 will be past its end). */
393 if (offsets[indx] == 0)
394 continue;
395
396 /* If this section would overlap us, then we must move up. */
397 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
398 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
399 {
400 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
401 start_addr = (start_addr + align - 1) & -align;
402 done = 0;
3bd72c6f 403 break;
c1bd25fd
DJ
404 }
405
406 /* Otherwise, we appear to be OK. So far. */
407 }
408 }
409 while (!done);
410
65cf3563 411 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
c1bd25fd 412 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 413}
e8289572 414
4f7ae6f5 415/* Store section_addr_info as prepared (made relative and with SECTINDEX
75242ef4
JK
416 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
417 entries. */
e8289572
JB
418
419void
75242ef4
JK
420relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
421 int num_sections,
37e136b1 422 const section_addr_info &addrs)
e8289572
JB
423{
424 int i;
425
75242ef4 426 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 427
c378eb4e 428 /* Now calculate offsets for section that were specified by the caller. */
37e136b1 429 for (i = 0; i < addrs.size (); i++)
e8289572 430 {
3189cb12 431 const struct other_sections *osp;
e8289572 432
37e136b1 433 osp = &addrs[i];
5488dafb 434 if (osp->sectindex == -1)
e8289572
JB
435 continue;
436
c378eb4e 437 /* Record all sections in offsets. */
e8289572 438 /* The section_offsets in the objfile are here filled in using
c378eb4e 439 the BFD index. */
75242ef4
JK
440 section_offsets->offsets[osp->sectindex] = osp->addr;
441 }
442}
443
1276c759
JK
444/* Transform section name S for a name comparison. prelink can split section
445 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
446 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
447 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
448 (`.sbss') section has invalid (increased) virtual address. */
449
450static const char *
451addr_section_name (const char *s)
452{
453 if (strcmp (s, ".dynbss") == 0)
454 return ".bss";
455 if (strcmp (s, ".sdynbss") == 0)
456 return ".sbss";
457
458 return s;
459}
460
37e136b1
TT
461/* std::sort comparator for addrs_section_sort. Sort entries in
462 ascending order by their (name, sectindex) pair. sectindex makes
463 the sort by name stable. */
82ccf5a5 464
37e136b1
TT
465static bool
466addrs_section_compar (const struct other_sections *a,
467 const struct other_sections *b)
82ccf5a5 468{
22e048c9 469 int retval;
82ccf5a5 470
37e136b1
TT
471 retval = strcmp (addr_section_name (a->name.c_str ()),
472 addr_section_name (b->name.c_str ()));
473 if (retval != 0)
474 return retval < 0;
82ccf5a5 475
37e136b1 476 return a->sectindex < b->sectindex;
82ccf5a5
JK
477}
478
37e136b1 479/* Provide sorted array of pointers to sections of ADDRS. */
82ccf5a5 480
37e136b1
TT
481static std::vector<const struct other_sections *>
482addrs_section_sort (const section_addr_info &addrs)
82ccf5a5 483{
82ccf5a5
JK
484 int i;
485
37e136b1
TT
486 std::vector<const struct other_sections *> array (addrs.size ());
487 for (i = 0; i < addrs.size (); i++)
488 array[i] = &addrs[i];
82ccf5a5 489
37e136b1 490 std::sort (array.begin (), array.end (), addrs_section_compar);
82ccf5a5
JK
491
492 return array;
493}
494
75242ef4 495/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
496 also SECTINDEXes specific to ABFD there. This function can be used to
497 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
498
499void
37e136b1 500addr_info_make_relative (section_addr_info *addrs, bfd *abfd)
75242ef4
JK
501{
502 asection *lower_sect;
75242ef4
JK
503 CORE_ADDR lower_offset;
504 int i;
505
506 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
507 continguous sections. */
508 lower_sect = NULL;
509 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
510 if (lower_sect == NULL)
511 {
512 warning (_("no loadable sections found in added symbol-file %s"),
513 bfd_get_filename (abfd));
514 lower_offset = 0;
e8289572 515 }
75242ef4
JK
516 else
517 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
518
82ccf5a5
JK
519 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
520 in ABFD. Section names are not unique - there can be multiple sections of
521 the same name. Also the sections of the same name do not have to be
522 adjacent to each other. Some sections may be present only in one of the
523 files. Even sections present in both files do not have to be in the same
524 order.
525
526 Use stable sort by name for the sections in both files. Then linearly
527 scan both lists matching as most of the entries as possible. */
528
37e136b1
TT
529 std::vector<const struct other_sections *> addrs_sorted
530 = addrs_section_sort (*addrs);
82ccf5a5 531
37e136b1
TT
532 section_addr_info abfd_addrs = build_section_addr_info_from_bfd (abfd);
533 std::vector<const struct other_sections *> abfd_addrs_sorted
534 = addrs_section_sort (abfd_addrs);
82ccf5a5 535
c378eb4e
MS
536 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
537 ABFD_ADDRS_SORTED. */
82ccf5a5 538
37e136b1
TT
539 std::vector<const struct other_sections *>
540 addrs_to_abfd_addrs (addrs->size (), nullptr);
82ccf5a5 541
37e136b1
TT
542 std::vector<const struct other_sections *>::iterator abfd_sorted_iter
543 = abfd_addrs_sorted.begin ();
52941706 544 for (const other_sections *sect : addrs_sorted)
82ccf5a5 545 {
37e136b1 546 const char *sect_name = addr_section_name (sect->name.c_str ());
82ccf5a5 547
37e136b1
TT
548 while (abfd_sorted_iter != abfd_addrs_sorted.end ()
549 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
1276c759 550 sect_name) < 0)
37e136b1 551 abfd_sorted_iter++;
82ccf5a5 552
37e136b1
TT
553 if (abfd_sorted_iter != abfd_addrs_sorted.end ()
554 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
1276c759 555 sect_name) == 0)
82ccf5a5
JK
556 {
557 int index_in_addrs;
558
559 /* Make the found item directly addressable from ADDRS. */
37e136b1 560 index_in_addrs = sect - addrs->data ();
82ccf5a5 561 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
37e136b1 562 addrs_to_abfd_addrs[index_in_addrs] = *abfd_sorted_iter;
82ccf5a5
JK
563
564 /* Never use the same ABFD entry twice. */
37e136b1 565 abfd_sorted_iter++;
82ccf5a5 566 }
82ccf5a5
JK
567 }
568
75242ef4
JK
569 /* Calculate offsets for the loadable sections.
570 FIXME! Sections must be in order of increasing loadable section
571 so that contiguous sections can use the lower-offset!!!
572
573 Adjust offsets if the segments are not contiguous.
574 If the section is contiguous, its offset should be set to
575 the offset of the highest loadable section lower than it
576 (the loadable section directly below it in memory).
577 this_offset = lower_offset = lower_addr - lower_orig_addr */
578
37e136b1 579 for (i = 0; i < addrs->size (); i++)
75242ef4 580 {
37e136b1 581 const struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
582
583 if (sect)
75242ef4 584 {
c378eb4e 585 /* This is the index used by BFD. */
37e136b1 586 (*addrs)[i].sectindex = sect->sectindex;
672d9c23 587
37e136b1 588 if ((*addrs)[i].addr != 0)
75242ef4 589 {
37e136b1
TT
590 (*addrs)[i].addr -= sect->addr;
591 lower_offset = (*addrs)[i].addr;
75242ef4
JK
592 }
593 else
37e136b1 594 (*addrs)[i].addr = lower_offset;
75242ef4
JK
595 }
596 else
672d9c23 597 {
1276c759 598 /* addr_section_name transformation is not used for SECT_NAME. */
37e136b1 599 const std::string &sect_name = (*addrs)[i].name;
1276c759 600
b0fcb67f
JK
601 /* This section does not exist in ABFD, which is normally
602 unexpected and we want to issue a warning.
603
4d9743af
JK
604 However, the ELF prelinker does create a few sections which are
605 marked in the main executable as loadable (they are loaded in
606 memory from the DYNAMIC segment) and yet are not present in
607 separate debug info files. This is fine, and should not cause
608 a warning. Shared libraries contain just the section
609 ".gnu.liblist" but it is not marked as loadable there. There is
610 no other way to identify them than by their name as the sections
1276c759
JK
611 created by prelink have no special flags.
612
613 For the sections `.bss' and `.sbss' see addr_section_name. */
b0fcb67f 614
37e136b1
TT
615 if (!(sect_name == ".gnu.liblist"
616 || sect_name == ".gnu.conflict"
617 || (sect_name == ".bss"
1276c759 618 && i > 0
37e136b1 619 && (*addrs)[i - 1].name == ".dynbss"
1276c759 620 && addrs_to_abfd_addrs[i - 1] != NULL)
37e136b1 621 || (sect_name == ".sbss"
1276c759 622 && i > 0
37e136b1 623 && (*addrs)[i - 1].name == ".sdynbss"
1276c759 624 && addrs_to_abfd_addrs[i - 1] != NULL)))
37e136b1 625 warning (_("section %s not found in %s"), sect_name.c_str (),
b0fcb67f
JK
626 bfd_get_filename (abfd));
627
37e136b1
TT
628 (*addrs)[i].addr = 0;
629 (*addrs)[i].sectindex = -1;
672d9c23 630 }
75242ef4
JK
631 }
632}
633
634/* Parse the user's idea of an offset for dynamic linking, into our idea
635 of how to represent it for fast symbol reading. This is the default
636 version of the sym_fns.sym_offsets function for symbol readers that
637 don't need to do anything special. It allocates a section_offsets table
638 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
639
640void
641default_symfile_offsets (struct objfile *objfile,
37e136b1 642 const section_addr_info &addrs)
75242ef4 643{
d445b2f6 644 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
75242ef4
JK
645 objfile->section_offsets = (struct section_offsets *)
646 obstack_alloc (&objfile->objfile_obstack,
647 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
648 relative_addr_info_to_section_offsets (objfile->section_offsets,
649 objfile->num_sections, addrs);
e8289572 650
c1bd25fd
DJ
651 /* For relocatable files, all loadable sections will start at zero.
652 The zero is meaningless, so try to pick arbitrary addresses such
653 that no loadable sections overlap. This algorithm is quadratic,
654 but the number of sections in a single object file is generally
655 small. */
656 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
657 {
658 struct place_section_arg arg;
2711e456
DJ
659 bfd *abfd = objfile->obfd;
660 asection *cur_sec;
2711e456
DJ
661
662 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
663 /* We do not expect this to happen; just skip this step if the
664 relocatable file has a section with an assigned VMA. */
665 if (bfd_section_vma (abfd, cur_sec) != 0)
666 break;
667
668 if (cur_sec == NULL)
669 {
670 CORE_ADDR *offsets = objfile->section_offsets->offsets;
671
672 /* Pick non-overlapping offsets for sections the user did not
673 place explicitly. */
674 arg.offsets = objfile->section_offsets;
675 arg.lowest = 0;
676 bfd_map_over_sections (objfile->obfd, place_section, &arg);
677
678 /* Correctly filling in the section offsets is not quite
679 enough. Relocatable files have two properties that
680 (most) shared objects do not:
681
682 - Their debug information will contain relocations. Some
683 shared libraries do also, but many do not, so this can not
684 be assumed.
685
686 - If there are multiple code sections they will be loaded
687 at different relative addresses in memory than they are
688 in the objfile, since all sections in the file will start
689 at address zero.
690
691 Because GDB has very limited ability to map from an
692 address in debug info to the correct code section,
693 it relies on adding SECT_OFF_TEXT to things which might be
694 code. If we clear all the section offsets, and set the
695 section VMAs instead, then symfile_relocate_debug_section
696 will return meaningful debug information pointing at the
697 correct sections.
698
699 GDB has too many different data structures for section
700 addresses - a bfd, objfile, and so_list all have section
701 tables, as does exec_ops. Some of these could probably
702 be eliminated. */
703
704 for (cur_sec = abfd->sections; cur_sec != NULL;
705 cur_sec = cur_sec->next)
706 {
707 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
708 continue;
709
710 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
3e43a32a
MS
711 exec_set_section_address (bfd_get_filename (abfd),
712 cur_sec->index,
30510692 713 offsets[cur_sec->index]);
2711e456
DJ
714 offsets[cur_sec->index] = 0;
715 }
716 }
c1bd25fd
DJ
717 }
718
e8289572 719 /* Remember the bfd indexes for the .text, .data, .bss and
c378eb4e 720 .rodata sections. */
e8289572
JB
721 init_objfile_sect_indices (objfile);
722}
723
31d99776
DJ
724/* Divide the file into segments, which are individual relocatable units.
725 This is the default version of the sym_fns.sym_segments function for
726 symbol readers that do not have an explicit representation of segments.
727 It assumes that object files do not have segments, and fully linked
728 files have a single segment. */
729
730struct symfile_segment_data *
731default_symfile_segments (bfd *abfd)
732{
733 int num_sections, i;
734 asection *sect;
735 struct symfile_segment_data *data;
736 CORE_ADDR low, high;
737
738 /* Relocatable files contain enough information to position each
739 loadable section independently; they should not be relocated
740 in segments. */
741 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
742 return NULL;
743
744 /* Make sure there is at least one loadable section in the file. */
745 for (sect = abfd->sections; sect != NULL; sect = sect->next)
746 {
747 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
748 continue;
749
750 break;
751 }
752 if (sect == NULL)
753 return NULL;
754
755 low = bfd_get_section_vma (abfd, sect);
756 high = low + bfd_get_section_size (sect);
757
41bf6aca 758 data = XCNEW (struct symfile_segment_data);
31d99776 759 data->num_segments = 1;
fc270c35
TT
760 data->segment_bases = XCNEW (CORE_ADDR);
761 data->segment_sizes = XCNEW (CORE_ADDR);
31d99776
DJ
762
763 num_sections = bfd_count_sections (abfd);
fc270c35 764 data->segment_info = XCNEWVEC (int, num_sections);
31d99776
DJ
765
766 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
767 {
768 CORE_ADDR vma;
769
770 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
771 continue;
772
773 vma = bfd_get_section_vma (abfd, sect);
774 if (vma < low)
775 low = vma;
776 if (vma + bfd_get_section_size (sect) > high)
777 high = vma + bfd_get_section_size (sect);
778
779 data->segment_info[i] = 1;
780 }
781
782 data->segment_bases[0] = low;
783 data->segment_sizes[0] = high - low;
784
785 return data;
786}
787
608e2dbb
TT
788/* This is a convenience function to call sym_read for OBJFILE and
789 possibly force the partial symbols to be read. */
790
791static void
b15cc25c 792read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
608e2dbb
TT
793{
794 (*objfile->sf->sym_read) (objfile, add_flags);
23732b1e 795 objfile->per_bfd->minsyms_read = true;
8a92335b
JK
796
797 /* find_separate_debug_file_in_section should be called only if there is
798 single binary with no existing separate debug info file. */
799 if (!objfile_has_partial_symbols (objfile)
800 && objfile->separate_debug_objfile == NULL
801 && objfile->separate_debug_objfile_backlink == NULL)
608e2dbb 802 {
192b62ce 803 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
608e2dbb
TT
804
805 if (abfd != NULL)
24ba069a
JK
806 {
807 /* find_separate_debug_file_in_section uses the same filename for the
808 virtual section-as-bfd like the bfd filename containing the
809 section. Therefore use also non-canonical name form for the same
810 file containing the section. */
921222e2
TT
811 symbol_file_add_separate (abfd.get (),
812 bfd_get_filename (abfd.get ()),
813 add_flags | SYMFILE_NOT_FILENAME, objfile);
24ba069a 814 }
608e2dbb
TT
815 }
816 if ((add_flags & SYMFILE_NO_READ) == 0)
817 require_partial_symbols (objfile, 0);
818}
819
3d6e24f0
JB
820/* Initialize entry point information for this objfile. */
821
822static void
823init_entry_point_info (struct objfile *objfile)
824{
6ef55de7
TT
825 struct entry_info *ei = &objfile->per_bfd->ei;
826
827 if (ei->initialized)
828 return;
829 ei->initialized = 1;
830
3d6e24f0
JB
831 /* Save startup file's range of PC addresses to help blockframe.c
832 decide where the bottom of the stack is. */
833
834 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
835 {
836 /* Executable file -- record its entry point so we'll recognize
837 the startup file because it contains the entry point. */
6ef55de7
TT
838 ei->entry_point = bfd_get_start_address (objfile->obfd);
839 ei->entry_point_p = 1;
3d6e24f0
JB
840 }
841 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
842 && bfd_get_start_address (objfile->obfd) != 0)
843 {
844 /* Some shared libraries may have entry points set and be
845 runnable. There's no clear way to indicate this, so just check
846 for values other than zero. */
6ef55de7
TT
847 ei->entry_point = bfd_get_start_address (objfile->obfd);
848 ei->entry_point_p = 1;
3d6e24f0
JB
849 }
850 else
851 {
852 /* Examination of non-executable.o files. Short-circuit this stuff. */
6ef55de7 853 ei->entry_point_p = 0;
3d6e24f0
JB
854 }
855
6ef55de7 856 if (ei->entry_point_p)
3d6e24f0 857 {
53eddfa6 858 struct obj_section *osect;
6ef55de7 859 CORE_ADDR entry_point = ei->entry_point;
53eddfa6 860 int found;
3d6e24f0
JB
861
862 /* Make certain that the address points at real code, and not a
863 function descriptor. */
864 entry_point
df6d5441 865 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
3d6e24f0 866 entry_point,
8b88a78e 867 current_top_target ());
3d6e24f0
JB
868
869 /* Remove any ISA markers, so that this matches entries in the
870 symbol table. */
6ef55de7 871 ei->entry_point
df6d5441 872 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
53eddfa6
TT
873
874 found = 0;
875 ALL_OBJFILE_OSECTIONS (objfile, osect)
876 {
877 struct bfd_section *sect = osect->the_bfd_section;
878
879 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
880 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
881 + bfd_get_section_size (sect)))
882 {
6ef55de7 883 ei->the_bfd_section_index
53eddfa6
TT
884 = gdb_bfd_section_index (objfile->obfd, sect);
885 found = 1;
886 break;
887 }
888 }
889
890 if (!found)
6ef55de7 891 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
3d6e24f0
JB
892 }
893}
894
c906108c
SS
895/* Process a symbol file, as either the main file or as a dynamically
896 loaded file.
897
36e4d068
JB
898 This function does not set the OBJFILE's entry-point info.
899
96baa820
JM
900 OBJFILE is where the symbols are to be read from.
901
7e8580c1
JB
902 ADDRS is the list of section load addresses. If the user has given
903 an 'add-symbol-file' command, then this is the list of offsets and
904 addresses he or she provided as arguments to the command; or, if
905 we're handling a shared library, these are the actual addresses the
906 sections are loaded at, according to the inferior's dynamic linker
907 (as gleaned by GDB's shared library code). We convert each address
908 into an offset from the section VMA's as it appears in the object
909 file, and then call the file's sym_offsets function to convert this
910 into a format-specific offset table --- a `struct section_offsets'.
d81a3eaf
PT
911 The sectindex field is used to control the ordering of sections
912 with the same name. Upon return, it is updated to contain the
913 correspondig BFD section index, or -1 if the section was not found.
96baa820 914
7eedccfa
PP
915 ADD_FLAGS encodes verbosity level, whether this is main symbol or
916 an extra symbol file such as dynamically loaded code, and wether
917 breakpoint reset should be deferred. */
c906108c 918
36e4d068
JB
919static void
920syms_from_objfile_1 (struct objfile *objfile,
37e136b1 921 section_addr_info *addrs,
b15cc25c 922 symfile_add_flags add_flags)
c906108c 923{
37e136b1 924 section_addr_info local_addr;
c906108c 925 struct cleanup *old_chain;
7eedccfa 926 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 927
8fb8eb5c 928 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
c906108c 929
75245b24 930 if (objfile->sf == NULL)
36e4d068
JB
931 {
932 /* No symbols to load, but we still need to make sure
933 that the section_offsets table is allocated. */
d445b2f6 934 int num_sections = gdb_bfd_count_sections (objfile->obfd);
a7bfba49 935 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
36e4d068
JB
936
937 objfile->num_sections = num_sections;
938 objfile->section_offsets
224c3ddb
SM
939 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
940 size);
36e4d068
JB
941 memset (objfile->section_offsets, 0, size);
942 return;
943 }
75245b24 944
c906108c
SS
945 /* Make sure that partially constructed symbol tables will be cleaned up
946 if an error occurs during symbol reading. */
ed2b3126
TT
947 old_chain = make_cleanup (null_cleanup, NULL);
948 std::unique_ptr<struct objfile> objfile_holder (objfile);
c906108c 949
6bf667bb
DE
950 /* If ADDRS is NULL, put together a dummy address list.
951 We now establish the convention that an addr of zero means
c378eb4e 952 no load address was specified. */
6bf667bb 953 if (! addrs)
37e136b1 954 addrs = &local_addr;
a39a16c4 955
c5aa993b 956 if (mainline)
c906108c
SS
957 {
958 /* We will modify the main symbol table, make sure that all its users
c5aa993b 959 will be cleaned up if an error occurs during symbol reading. */
74b7792f 960 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
961
962 /* Since no error yet, throw away the old symbol table. */
963
964 if (symfile_objfile != NULL)
965 {
9e86da07 966 delete symfile_objfile;
adb7f338 967 gdb_assert (symfile_objfile == NULL);
c906108c
SS
968 }
969
970 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
971 If the user wants to get rid of them, they should do "symbol-file"
972 without arguments first. Not sure this is the best behavior
973 (PR 2207). */
c906108c 974
c5aa993b 975 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
976 }
977
978 /* Convert addr into an offset rather than an absolute address.
979 We find the lowest address of a loaded segment in the objfile,
53a5351d 980 and assume that <addr> is where that got loaded.
c906108c 981
53a5351d
JM
982 We no longer warn if the lowest section is not a text segment (as
983 happens for the PA64 port. */
37e136b1 984 if (addrs->size () > 0)
75242ef4 985 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
986
987 /* Initialize symbol reading routines for this objfile, allow complaints to
988 appear for this new file, and record how verbose to be, then do the
c378eb4e 989 initial symbol reading for this file. */
c906108c 990
c5aa993b 991 (*objfile->sf->sym_init) (objfile);
b98664d3 992 clear_complaints (1);
c906108c 993
37e136b1 994 (*objfile->sf->sym_offsets) (objfile, *addrs);
c906108c 995
608e2dbb 996 read_symbols (objfile, add_flags);
b11896a5 997
c906108c
SS
998 /* Discard cleanups as symbol reading was successful. */
999
ed2b3126 1000 objfile_holder.release ();
c906108c 1001 discard_cleanups (old_chain);
c906108c
SS
1002}
1003
36e4d068
JB
1004/* Same as syms_from_objfile_1, but also initializes the objfile
1005 entry-point info. */
1006
6bf667bb 1007static void
36e4d068 1008syms_from_objfile (struct objfile *objfile,
37e136b1 1009 section_addr_info *addrs,
b15cc25c 1010 symfile_add_flags add_flags)
36e4d068 1011{
6bf667bb 1012 syms_from_objfile_1 (objfile, addrs, add_flags);
36e4d068
JB
1013 init_entry_point_info (objfile);
1014}
1015
c906108c
SS
1016/* Perform required actions after either reading in the initial
1017 symbols for a new objfile, or mapping in the symbols from a reusable
c1e56572 1018 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c5aa993b 1019
e7d52ed3 1020static void
b15cc25c 1021finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
c906108c 1022{
c906108c 1023 /* If this is the main symbol file we have to clean up all users of the
c378eb4e 1024 old main symbol file. Otherwise it is sufficient to fixup all the
c906108c 1025 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1026 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1027 {
1028 /* OK, make it the "real" symbol file. */
1029 symfile_objfile = objfile;
1030
c1e56572 1031 clear_symtab_users (add_flags);
c906108c 1032 }
7eedccfa 1033 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1034 {
69de3c6a 1035 breakpoint_re_set ();
c906108c
SS
1036 }
1037
1038 /* We're done reading the symbol file; finish off complaints. */
b98664d3 1039 clear_complaints (0);
c906108c
SS
1040}
1041
1042/* Process a symbol file, as either the main file or as a dynamically
1043 loaded file.
1044
5417f6dc 1045 ABFD is a BFD already open on the file, as from symfile_bfd_open.
8ac244b4 1046 A new reference is acquired by this function.
7904e09f 1047
9e86da07 1048 For NAME description see the objfile constructor.
24ba069a 1049
7eedccfa
PP
1050 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1051 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f 1052
6bf667bb 1053 ADDRS is as described for syms_from_objfile_1, above.
7eedccfa 1054 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1055
63524580
JK
1056 PARENT is the original objfile if ABFD is a separate debug info file.
1057 Otherwise PARENT is NULL.
1058
c906108c 1059 Upon success, returns a pointer to the objfile that was added.
c378eb4e 1060 Upon failure, jumps back to command level (never returns). */
7eedccfa 1061
7904e09f 1062static struct objfile *
b15cc25c
PA
1063symbol_file_add_with_addrs (bfd *abfd, const char *name,
1064 symfile_add_flags add_flags,
37e136b1 1065 section_addr_info *addrs,
b15cc25c 1066 objfile_flags flags, struct objfile *parent)
c906108c
SS
1067{
1068 struct objfile *objfile;
7eedccfa 1069 const int from_tty = add_flags & SYMFILE_VERBOSE;
0838fb57 1070 const int mainline = add_flags & SYMFILE_MAINLINE;
770e7fc7 1071 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
b11896a5
TT
1072 && (readnow_symbol_files
1073 || (add_flags & SYMFILE_NO_READ) == 0));
c906108c 1074
9291a0cd 1075 if (readnow_symbol_files)
b11896a5
TT
1076 {
1077 flags |= OBJF_READNOW;
1078 add_flags &= ~SYMFILE_NO_READ;
1079 }
97cbe998
SDJ
1080 else if (readnever_symbol_files
1081 || (parent != NULL && (parent->flags & OBJF_READNEVER)))
1082 {
1083 flags |= OBJF_READNEVER;
1084 add_flags |= SYMFILE_NO_READ;
1085 }
921222e2
TT
1086 if ((add_flags & SYMFILE_NOT_FILENAME) != 0)
1087 flags |= OBJF_NOT_FILENAME;
9291a0cd 1088
5417f6dc
RM
1089 /* Give user a chance to burp if we'd be
1090 interactively wiping out any existing symbols. */
c906108c
SS
1091
1092 if ((have_full_symbols () || have_partial_symbols ())
0838fb57 1093 && mainline
c906108c 1094 && from_tty
9e2f0ad4 1095 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1096 error (_("Not confirmed."));
c906108c 1097
b15cc25c
PA
1098 if (mainline)
1099 flags |= OBJF_MAINLINE;
9e86da07 1100 objfile = new struct objfile (abfd, name, flags);
c906108c 1101
63524580
JK
1102 if (parent)
1103 add_separate_debug_objfile (objfile, parent);
1104
78a4a9b9
AC
1105 /* We either created a new mapped symbol table, mapped an existing
1106 symbol table file which has not had initial symbol reading
c378eb4e 1107 performed, or need to read an unmapped symbol table. */
b11896a5 1108 if (should_print)
c906108c 1109 {
769d7dc4
AC
1110 if (deprecated_pre_add_symbol_hook)
1111 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1112 else
c906108c 1113 {
55333a84
DE
1114 printf_unfiltered (_("Reading symbols from %s..."), name);
1115 wrap_here ("");
1116 gdb_flush (gdb_stdout);
c906108c 1117 }
c906108c 1118 }
6bf667bb 1119 syms_from_objfile (objfile, addrs, add_flags);
c906108c
SS
1120
1121 /* We now have at least a partial symbol table. Check to see if the
1122 user requested that all symbols be read on initial access via either
1123 the gdb startup command line or on a per symbol file basis. Expand
c378eb4e 1124 all partial symbol tables for this objfile if so. */
c906108c 1125
9291a0cd 1126 if ((flags & OBJF_READNOW))
c906108c 1127 {
b11896a5 1128 if (should_print)
c906108c 1129 {
a3f17187 1130 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1131 wrap_here ("");
1132 gdb_flush (gdb_stdout);
1133 }
1134
ccefe4c4
TT
1135 if (objfile->sf)
1136 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1137 }
1138
b11896a5 1139 if (should_print && !objfile_has_symbols (objfile))
cb3c37b2
JB
1140 {
1141 wrap_here ("");
55333a84 1142 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1143 wrap_here ("");
1144 }
1145
b11896a5 1146 if (should_print)
c906108c 1147 {
769d7dc4
AC
1148 if (deprecated_post_add_symbol_hook)
1149 deprecated_post_add_symbol_hook ();
c906108c 1150 else
55333a84 1151 printf_unfiltered (_("done.\n"));
c906108c
SS
1152 }
1153
481d0f41
JB
1154 /* We print some messages regardless of whether 'from_tty ||
1155 info_verbose' is true, so make sure they go out at the right
1156 time. */
1157 gdb_flush (gdb_stdout);
1158
109f874e 1159 if (objfile->sf == NULL)
8caee43b 1160 {
76727919 1161 gdb::observers::new_objfile.notify (objfile);
c378eb4e 1162 return objfile; /* No symbols. */
8caee43b 1163 }
109f874e 1164
e7d52ed3 1165 finish_new_objfile (objfile, add_flags);
c906108c 1166
76727919 1167 gdb::observers::new_objfile.notify (objfile);
c906108c 1168
ce7d4522 1169 bfd_cache_close_all ();
c906108c
SS
1170 return (objfile);
1171}
1172
24ba069a 1173/* Add BFD as a separate debug file for OBJFILE. For NAME description
9e86da07 1174 see the objfile constructor. */
9cce227f
TG
1175
1176void
b15cc25c
PA
1177symbol_file_add_separate (bfd *bfd, const char *name,
1178 symfile_add_flags symfile_flags,
24ba069a 1179 struct objfile *objfile)
9cce227f 1180{
089b4803
TG
1181 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1182 because sections of BFD may not match sections of OBJFILE and because
1183 vma may have been modified by tools such as prelink. */
37e136b1 1184 section_addr_info sap = build_section_addr_info_from_objfile (objfile);
9cce227f 1185
870f88f7 1186 symbol_file_add_with_addrs
37e136b1 1187 (bfd, name, symfile_flags, &sap,
9cce227f 1188 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
63524580
JK
1189 | OBJF_USERLOADED),
1190 objfile);
9cce227f 1191}
7904e09f 1192
eb4556d7
JB
1193/* Process the symbol file ABFD, as either the main file or as a
1194 dynamically loaded file.
6bf667bb 1195 See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1196
eb4556d7 1197struct objfile *
b15cc25c
PA
1198symbol_file_add_from_bfd (bfd *abfd, const char *name,
1199 symfile_add_flags add_flags,
37e136b1 1200 section_addr_info *addrs,
b15cc25c 1201 objfile_flags flags, struct objfile *parent)
eb4556d7 1202{
24ba069a
JK
1203 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1204 parent);
eb4556d7
JB
1205}
1206
7904e09f 1207/* Process a symbol file, as either the main file or as a dynamically
6bf667bb 1208 loaded file. See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1209
7904e09f 1210struct objfile *
b15cc25c 1211symbol_file_add (const char *name, symfile_add_flags add_flags,
37e136b1 1212 section_addr_info *addrs, objfile_flags flags)
7904e09f 1213{
192b62ce 1214 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
8ac244b4 1215
192b62ce
TT
1216 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1217 flags, NULL);
7904e09f
JB
1218}
1219
d7db6da9
FN
1220/* Call symbol_file_add() with default values and update whatever is
1221 affected by the loading of a new main().
1222 Used when the file is supplied in the gdb command line
1223 and by some targets with special loading requirements.
1224 The auxiliary function, symbol_file_add_main_1(), has the flags
1225 argument for the switches that can only be specified in the symbol_file
1226 command itself. */
5417f6dc 1227
1adeb98a 1228void
ecf45d2c 1229symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1adeb98a 1230{
d4d429d5 1231 symbol_file_add_main_1 (args, add_flags, 0, 0);
d7db6da9
FN
1232}
1233
1234static void
ecf45d2c 1235symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
d4d429d5 1236 objfile_flags flags, CORE_ADDR reloff)
d7db6da9 1237{
ecf45d2c 1238 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
7dcd53a0 1239
d4d429d5
PT
1240 struct objfile *objfile = symbol_file_add (args, add_flags, NULL, flags);
1241 if (reloff != 0)
1242 objfile_rebase (objfile, reloff);
d7db6da9 1243
d7db6da9
FN
1244 /* Getting new symbols may change our opinion about
1245 what is frameless. */
1246 reinit_frame_cache ();
1247
b15cc25c 1248 if ((add_flags & SYMFILE_NO_READ) == 0)
7dcd53a0 1249 set_initial_language ();
1adeb98a
FN
1250}
1251
1252void
1253symbol_file_clear (int from_tty)
1254{
1255 if ((have_full_symbols () || have_partial_symbols ())
1256 && from_tty
0430b0d6
AS
1257 && (symfile_objfile
1258 ? !query (_("Discard symbol table from `%s'? "),
4262abfb 1259 objfile_name (symfile_objfile))
0430b0d6 1260 : !query (_("Discard symbol table? "))))
8a3fe4f8 1261 error (_("Not confirmed."));
1adeb98a 1262
0133421a
JK
1263 /* solib descriptors may have handles to objfiles. Wipe them before their
1264 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1265 no_shared_libraries (NULL, from_tty);
1266
0133421a
JK
1267 free_all_objfiles ();
1268
adb7f338 1269 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1270 if (from_tty)
1271 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1272}
1273
c4dcb155
SM
1274/* See symfile.h. */
1275
1276int separate_debug_file_debug = 0;
1277
5b5d99cf 1278static int
a8dbfd58 1279separate_debug_file_exists (const std::string &name, unsigned long crc,
32a0e547 1280 struct objfile *parent_objfile)
5b5d99cf 1281{
904578ed
JK
1282 unsigned long file_crc;
1283 int file_crc_p;
32a0e547 1284 struct stat parent_stat, abfd_stat;
904578ed 1285 int verified_as_different;
32a0e547
JK
1286
1287 /* Find a separate debug info file as if symbols would be present in
1288 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1289 section can contain just the basename of PARENT_OBJFILE without any
1290 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
c378eb4e 1291 the separate debug infos with the same basename can exist. */
32a0e547 1292
a8dbfd58 1293 if (filename_cmp (name.c_str (), objfile_name (parent_objfile)) == 0)
32a0e547 1294 return 0;
5b5d99cf 1295
c4dcb155 1296 if (separate_debug_file_debug)
a8dbfd58 1297 printf_unfiltered (_(" Trying %s\n"), name.c_str ());
c4dcb155 1298
a8dbfd58 1299 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name.c_str (), gnutarget, -1));
f1838a98 1300
192b62ce 1301 if (abfd == NULL)
5b5d99cf
JB
1302 return 0;
1303
0ba1096a 1304 /* Verify symlinks were not the cause of filename_cmp name difference above.
32a0e547
JK
1305
1306 Some operating systems, e.g. Windows, do not provide a meaningful
1307 st_ino; they always set it to zero. (Windows does provide a
0a93529c
GB
1308 meaningful st_dev.) Files accessed from gdbservers that do not
1309 support the vFile:fstat packet will also have st_ino set to zero.
1310 Do not indicate a duplicate library in either case. While there
1311 is no guarantee that a system that provides meaningful inode
1312 numbers will never set st_ino to zero, this is merely an
1313 optimization, so we do not need to worry about false negatives. */
32a0e547 1314
192b62ce 1315 if (bfd_stat (abfd.get (), &abfd_stat) == 0
904578ed
JK
1316 && abfd_stat.st_ino != 0
1317 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
32a0e547 1318 {
904578ed
JK
1319 if (abfd_stat.st_dev == parent_stat.st_dev
1320 && abfd_stat.st_ino == parent_stat.st_ino)
192b62ce 1321 return 0;
904578ed 1322 verified_as_different = 1;
32a0e547 1323 }
904578ed
JK
1324 else
1325 verified_as_different = 0;
32a0e547 1326
192b62ce 1327 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
5b5d99cf 1328
904578ed
JK
1329 if (!file_crc_p)
1330 return 0;
1331
287ccc17
JK
1332 if (crc != file_crc)
1333 {
dccee2de
TT
1334 unsigned long parent_crc;
1335
0a93529c
GB
1336 /* If the files could not be verified as different with
1337 bfd_stat then we need to calculate the parent's CRC
1338 to verify whether the files are different or not. */
904578ed 1339
dccee2de 1340 if (!verified_as_different)
904578ed 1341 {
dccee2de 1342 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
904578ed
JK
1343 return 0;
1344 }
1345
dccee2de 1346 if (verified_as_different || parent_crc != file_crc)
904578ed
JK
1347 warning (_("the debug information found in \"%s\""
1348 " does not match \"%s\" (CRC mismatch).\n"),
a8dbfd58 1349 name.c_str (), objfile_name (parent_objfile));
904578ed 1350
287ccc17
JK
1351 return 0;
1352 }
1353
1354 return 1;
5b5d99cf
JB
1355}
1356
aa28a74e 1357char *debug_file_directory = NULL;
920d2a44
AC
1358static void
1359show_debug_file_directory (struct ui_file *file, int from_tty,
1360 struct cmd_list_element *c, const char *value)
1361{
3e43a32a
MS
1362 fprintf_filtered (file,
1363 _("The directory where separate debug "
1364 "symbols are searched for is \"%s\".\n"),
920d2a44
AC
1365 value);
1366}
5b5d99cf
JB
1367
1368#if ! defined (DEBUG_SUBDIRECTORY)
1369#define DEBUG_SUBDIRECTORY ".debug"
1370#endif
1371
1db33378
PP
1372/* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1373 where the original file resides (may not be the same as
1374 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
7edbb660
DE
1375 looking for. CANON_DIR is the "realpath" form of DIR.
1376 DIR must contain a trailing '/'.
a8dbfd58
SM
1377 Returns the path of the file with separate debug info, or an empty
1378 string. */
1db33378 1379
a8dbfd58 1380static std::string
1db33378
PP
1381find_separate_debug_file (const char *dir,
1382 const char *canon_dir,
1383 const char *debuglink,
1384 unsigned long crc32, struct objfile *objfile)
9cce227f 1385{
c4dcb155
SM
1386 if (separate_debug_file_debug)
1387 printf_unfiltered (_("\nLooking for separate debug info (debug link) for "
1388 "%s\n"), objfile_name (objfile));
1389
5b5d99cf 1390 /* First try in the same directory as the original file. */
a8dbfd58
SM
1391 std::string debugfile = dir;
1392 debugfile += debuglink;
5b5d99cf 1393
32a0e547 1394 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1395 return debugfile;
5417f6dc 1396
5b5d99cf 1397 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
a8dbfd58
SM
1398 debugfile = dir;
1399 debugfile += DEBUG_SUBDIRECTORY;
1400 debugfile += "/";
1401 debugfile += debuglink;
5b5d99cf 1402
32a0e547 1403 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1404 return debugfile;
5417f6dc 1405
24ddea62 1406 /* Then try in the global debugfile directories.
f888f159 1407
24ddea62
JK
1408 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1409 cause "/..." lookups. */
5417f6dc 1410
e80aaf61
SM
1411 std::vector<gdb::unique_xmalloc_ptr<char>> debugdir_vec
1412 = dirnames_to_char_ptr_vec (debug_file_directory);
24ddea62 1413
e80aaf61 1414 for (const gdb::unique_xmalloc_ptr<char> &debugdir : debugdir_vec)
e4ab2fad 1415 {
a8dbfd58
SM
1416 debugfile = debugdir.get ();
1417 debugfile += "/";
1418 debugfile += dir;
1419 debugfile += debuglink;
aa28a74e 1420
32a0e547 1421 if (separate_debug_file_exists (debugfile, crc32, objfile))
e80aaf61 1422 return debugfile;
24ddea62
JK
1423
1424 /* If the file is in the sysroot, try using its base path in the
1425 global debugfile directory. */
1db33378
PP
1426 if (canon_dir != NULL
1427 && filename_ncmp (canon_dir, gdb_sysroot,
0ba1096a 1428 strlen (gdb_sysroot)) == 0
1db33378 1429 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
24ddea62 1430 {
a8dbfd58
SM
1431 debugfile = debugdir.get ();
1432 debugfile += (canon_dir + strlen (gdb_sysroot));
1433 debugfile += "/";
1434 debugfile += debuglink;
24ddea62 1435
32a0e547 1436 if (separate_debug_file_exists (debugfile, crc32, objfile))
e80aaf61 1437 return debugfile;
24ddea62 1438 }
aa28a74e 1439 }
f888f159 1440
a8dbfd58 1441 return std::string ();
1db33378
PP
1442}
1443
7edbb660 1444/* Modify PATH to contain only "[/]directory/" part of PATH.
1db33378
PP
1445 If there were no directory separators in PATH, PATH will be empty
1446 string on return. */
1447
1448static void
1449terminate_after_last_dir_separator (char *path)
1450{
1451 int i;
1452
1453 /* Strip off the final filename part, leaving the directory name,
1454 followed by a slash. The directory can be relative or absolute. */
1455 for (i = strlen(path) - 1; i >= 0; i--)
1456 if (IS_DIR_SEPARATOR (path[i]))
1457 break;
1458
1459 /* If I is -1 then no directory is present there and DIR will be "". */
1460 path[i + 1] = '\0';
1461}
1462
1463/* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
a8dbfd58 1464 Returns pathname, or an empty string. */
1db33378 1465
a8dbfd58 1466std::string
1db33378
PP
1467find_separate_debug_file_by_debuglink (struct objfile *objfile)
1468{
1db33378 1469 unsigned long crc32;
1db33378 1470
5eae7aea
TT
1471 gdb::unique_xmalloc_ptr<char> debuglink
1472 (bfd_get_debug_link_info (objfile->obfd, &crc32));
1db33378
PP
1473
1474 if (debuglink == NULL)
1475 {
1476 /* There's no separate debug info, hence there's no way we could
1477 load it => no warning. */
a8dbfd58 1478 return std::string ();
1db33378
PP
1479 }
1480
5eae7aea
TT
1481 std::string dir = objfile_name (objfile);
1482 terminate_after_last_dir_separator (&dir[0]);
1483 gdb::unique_xmalloc_ptr<char> canon_dir (lrealpath (dir.c_str ()));
1db33378 1484
a8dbfd58
SM
1485 std::string debugfile
1486 = find_separate_debug_file (dir.c_str (), canon_dir.get (),
1487 debuglink.get (), crc32, objfile);
1db33378 1488
a8dbfd58 1489 if (debugfile.empty ())
1db33378 1490 {
1db33378
PP
1491 /* For PR gdb/9538, try again with realpath (if different from the
1492 original). */
1493
1494 struct stat st_buf;
1495
4262abfb
JK
1496 if (lstat (objfile_name (objfile), &st_buf) == 0
1497 && S_ISLNK (st_buf.st_mode))
1db33378 1498 {
5eae7aea
TT
1499 gdb::unique_xmalloc_ptr<char> symlink_dir
1500 (lrealpath (objfile_name (objfile)));
1db33378
PP
1501 if (symlink_dir != NULL)
1502 {
5eae7aea
TT
1503 terminate_after_last_dir_separator (symlink_dir.get ());
1504 if (dir != symlink_dir.get ())
1db33378
PP
1505 {
1506 /* Different directory, so try using it. */
5eae7aea
TT
1507 debugfile = find_separate_debug_file (symlink_dir.get (),
1508 symlink_dir.get (),
1509 debuglink.get (),
1db33378
PP
1510 crc32,
1511 objfile);
1512 }
1513 }
1514 }
1db33378 1515 }
aa28a74e 1516
25522fae 1517 return debugfile;
5b5d99cf
JB
1518}
1519
97cbe998
SDJ
1520/* Make sure that OBJF_{READNOW,READNEVER} are not set
1521 simultaneously. */
1522
1523static void
1524validate_readnow_readnever (objfile_flags flags)
1525{
1526 if ((flags & OBJF_READNOW) && (flags & OBJF_READNEVER))
1527 error (_("-readnow and -readnever cannot be used simultaneously"));
1528}
1529
c906108c
SS
1530/* This is the symbol-file command. Read the file, analyze its
1531 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1532 the command is rather bizarre:
1533
1534 1. The function buildargv implements various quoting conventions
1535 which are undocumented and have little or nothing in common with
1536 the way things are quoted (or not quoted) elsewhere in GDB.
1537
1538 2. Options are used, which are not generally used in GDB (perhaps
1539 "set mapped on", "set readnow on" would be better)
1540
1541 3. The order of options matters, which is contrary to GNU
c906108c
SS
1542 conventions (because it is confusing and inconvenient). */
1543
1544void
1d8b34a7 1545symbol_file_command (const char *args, int from_tty)
c906108c 1546{
c906108c
SS
1547 dont_repeat ();
1548
1549 if (args == NULL)
1550 {
1adeb98a 1551 symbol_file_clear (from_tty);
c906108c
SS
1552 }
1553 else
1554 {
b15cc25c 1555 objfile_flags flags = OBJF_USERLOADED;
ecf45d2c 1556 symfile_add_flags add_flags = 0;
cb2f3a29 1557 char *name = NULL;
40fc416f 1558 bool stop_processing_options = false;
d4d429d5 1559 CORE_ADDR offset = 0;
40fc416f
SDJ
1560 int idx;
1561 char *arg;
cb2f3a29 1562
ecf45d2c
SL
1563 if (from_tty)
1564 add_flags |= SYMFILE_VERBOSE;
1565
773a1edc 1566 gdb_argv built_argv (args);
40fc416f 1567 for (arg = built_argv[0], idx = 0; arg != NULL; arg = built_argv[++idx])
c906108c 1568 {
40fc416f 1569 if (stop_processing_options || *arg != '-')
7f0f8ac8 1570 {
40fc416f
SDJ
1571 if (name == NULL)
1572 name = arg;
1573 else
1574 error (_("Unrecognized argument \"%s\""), arg);
7f0f8ac8 1575 }
40fc416f
SDJ
1576 else if (strcmp (arg, "-readnow") == 0)
1577 flags |= OBJF_READNOW;
97cbe998
SDJ
1578 else if (strcmp (arg, "-readnever") == 0)
1579 flags |= OBJF_READNEVER;
d4d429d5
PT
1580 else if (strcmp (arg, "-o") == 0)
1581 {
1582 arg = built_argv[++idx];
1583 if (arg == NULL)
1584 error (_("Missing argument to -o"));
1585
1586 offset = parse_and_eval_address (arg);
1587 }
40fc416f
SDJ
1588 else if (strcmp (arg, "--") == 0)
1589 stop_processing_options = true;
1590 else
1591 error (_("Unrecognized argument \"%s\""), arg);
c906108c
SS
1592 }
1593
1594 if (name == NULL)
cb2f3a29 1595 error (_("no symbol file name was specified"));
40fc416f 1596
97cbe998
SDJ
1597 validate_readnow_readnever (flags);
1598
d4d429d5 1599 symbol_file_add_main_1 (name, add_flags, flags, offset);
c906108c
SS
1600 }
1601}
1602
1603/* Set the initial language.
1604
cb2f3a29
MK
1605 FIXME: A better solution would be to record the language in the
1606 psymtab when reading partial symbols, and then use it (if known) to
1607 set the language. This would be a win for formats that encode the
1608 language in an easily discoverable place, such as DWARF. For
1609 stabs, we can jump through hoops looking for specially named
1610 symbols or try to intuit the language from the specific type of
1611 stabs we find, but we can't do that until later when we read in
1612 full symbols. */
c906108c 1613
8b60591b 1614void
fba45db2 1615set_initial_language (void)
c906108c 1616{
9e6c82ad 1617 enum language lang = main_language ();
c906108c 1618
9e6c82ad 1619 if (lang == language_unknown)
01f8c46d 1620 {
bf6d8a91 1621 char *name = main_name ();
d12307c1 1622 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
f888f159 1623
bf6d8a91
TT
1624 if (sym != NULL)
1625 lang = SYMBOL_LANGUAGE (sym);
01f8c46d 1626 }
cb2f3a29 1627
ccefe4c4
TT
1628 if (lang == language_unknown)
1629 {
1630 /* Make C the default language */
1631 lang = language_c;
c906108c 1632 }
ccefe4c4
TT
1633
1634 set_language (lang);
1635 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1636}
1637
cb2f3a29
MK
1638/* Open the file specified by NAME and hand it off to BFD for
1639 preliminary analysis. Return a newly initialized bfd *, which
1640 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1641 absolute). In case of trouble, error() is called. */
c906108c 1642
192b62ce 1643gdb_bfd_ref_ptr
97a41605 1644symfile_bfd_open (const char *name)
c906108c 1645{
97a41605 1646 int desc = -1;
c906108c 1647
e0cc99a6 1648 gdb::unique_xmalloc_ptr<char> absolute_name;
97a41605 1649 if (!is_target_filename (name))
f1838a98 1650 {
ee0c3293 1651 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
c906108c 1652
97a41605
GB
1653 /* Look down path for it, allocate 2nd new malloc'd copy. */
1654 desc = openp (getenv ("PATH"),
1655 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
ee0c3293 1656 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
608506ed 1657#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
97a41605
GB
1658 if (desc < 0)
1659 {
ee0c3293 1660 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
433759f7 1661
ee0c3293 1662 strcat (strcpy (exename, expanded_name.get ()), ".exe");
97a41605
GB
1663 desc = openp (getenv ("PATH"),
1664 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1665 exename, O_RDONLY | O_BINARY, &absolute_name);
1666 }
c906108c 1667#endif
97a41605 1668 if (desc < 0)
ee0c3293 1669 perror_with_name (expanded_name.get ());
cb2f3a29 1670
e0cc99a6 1671 name = absolute_name.get ();
97a41605 1672 }
c906108c 1673
192b62ce
TT
1674 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1675 if (sym_bfd == NULL)
faab9922
JK
1676 error (_("`%s': can't open to read symbols: %s."), name,
1677 bfd_errmsg (bfd_get_error ()));
97a41605 1678
192b62ce
TT
1679 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1680 bfd_set_cacheable (sym_bfd.get (), 1);
c906108c 1681
192b62ce
TT
1682 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1683 error (_("`%s': can't read symbols: %s."), name,
1684 bfd_errmsg (bfd_get_error ()));
cb2f3a29
MK
1685
1686 return sym_bfd;
c906108c
SS
1687}
1688
cb2f3a29
MK
1689/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1690 the section was not found. */
1691
0e931cf0 1692int
a121b7c1 1693get_section_index (struct objfile *objfile, const char *section_name)
0e931cf0
JB
1694{
1695 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1696
0e931cf0
JB
1697 if (sect)
1698 return sect->index;
1699 else
1700 return -1;
1701}
1702
c256e171
DE
1703/* Link SF into the global symtab_fns list.
1704 FLAVOUR is the file format that SF handles.
1705 Called on startup by the _initialize routine in each object file format
1706 reader, to register information about each format the reader is prepared
1707 to handle. */
c906108c
SS
1708
1709void
c256e171 1710add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
c906108c 1711{
905014d7 1712 symtab_fns.emplace_back (flavour, sf);
c906108c
SS
1713}
1714
cb2f3a29
MK
1715/* Initialize OBJFILE to read symbols from its associated BFD. It
1716 either returns or calls error(). The result is an initialized
1717 struct sym_fns in the objfile structure, that contains cached
1718 information about the symbol file. */
c906108c 1719
00b5771c 1720static const struct sym_fns *
31d99776 1721find_sym_fns (bfd *abfd)
c906108c 1722{
31d99776 1723 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
c906108c 1724
75245b24
MS
1725 if (our_flavour == bfd_target_srec_flavour
1726 || our_flavour == bfd_target_ihex_flavour
1727 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1728 return NULL; /* No symbols. */
75245b24 1729
905014d7
SM
1730 for (const registered_sym_fns &rsf : symtab_fns)
1731 if (our_flavour == rsf.sym_flavour)
1732 return rsf.sym_fns;
cb2f3a29 1733
8a3fe4f8 1734 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1735 bfd_get_target (abfd));
c906108c
SS
1736}
1737\f
cb2f3a29 1738
c906108c
SS
1739/* This function runs the load command of our current target. */
1740
1741static void
5fed81ff 1742load_command (const char *arg, int from_tty)
c906108c 1743{
e5cc9f32
JB
1744 dont_repeat ();
1745
4487aabf
PA
1746 /* The user might be reloading because the binary has changed. Take
1747 this opportunity to check. */
1748 reopen_exec_file ();
1749 reread_symbols ();
1750
b577b6af 1751 std::string temp;
c906108c 1752 if (arg == NULL)
1986bccd 1753 {
b577b6af 1754 const char *parg, *prev;
1986bccd 1755
b577b6af 1756 arg = get_exec_file (1);
1986bccd 1757
b577b6af
TT
1758 /* We may need to quote this string so buildargv can pull it
1759 apart. */
1760 prev = parg = arg;
1986bccd
AS
1761 while ((parg = strpbrk (parg, "\\\"'\t ")))
1762 {
b577b6af
TT
1763 temp.append (prev, parg - prev);
1764 prev = parg++;
1765 temp.push_back ('\\');
1986bccd 1766 }
b577b6af
TT
1767 /* If we have not copied anything yet, then we didn't see a
1768 character to quote, and we can just leave ARG unchanged. */
1769 if (!temp.empty ())
1986bccd 1770 {
b577b6af
TT
1771 temp.append (prev);
1772 arg = temp.c_str ();
1986bccd
AS
1773 }
1774 }
1775
c906108c 1776 target_load (arg, from_tty);
2889e661
JB
1777
1778 /* After re-loading the executable, we don't really know which
1779 overlays are mapped any more. */
1780 overlay_cache_invalid = 1;
c906108c
SS
1781}
1782
1783/* This version of "load" should be usable for any target. Currently
1784 it is just used for remote targets, not inftarg.c or core files,
1785 on the theory that only in that case is it useful.
1786
1787 Avoiding xmodem and the like seems like a win (a) because we don't have
1788 to worry about finding it, and (b) On VMS, fork() is very slow and so
1789 we don't want to run a subprocess. On the other hand, I'm not sure how
1790 performance compares. */
917317f4 1791
917317f4
JM
1792static int validate_download = 0;
1793
e4f9b4d5
MS
1794/* Callback service function for generic_load (bfd_map_over_sections). */
1795
1796static void
1797add_section_size_callback (bfd *abfd, asection *asec, void *data)
1798{
19ba03f4 1799 bfd_size_type *sum = (bfd_size_type *) data;
e4f9b4d5 1800
2c500098 1801 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1802}
1803
a76d924d 1804/* Opaque data for load_progress. */
55089490
TT
1805struct load_progress_data
1806{
a76d924d 1807 /* Cumulative data. */
55089490
TT
1808 unsigned long write_count = 0;
1809 unsigned long data_count = 0;
1810 bfd_size_type total_size = 0;
a76d924d
DJ
1811};
1812
1813/* Opaque data for load_progress for a single section. */
55089490
TT
1814struct load_progress_section_data
1815{
1816 load_progress_section_data (load_progress_data *cumulative_,
1817 const char *section_name_, ULONGEST section_size_,
1818 CORE_ADDR lma_, gdb_byte *buffer_)
1819 : cumulative (cumulative_), section_name (section_name_),
1820 section_size (section_size_), lma (lma_), buffer (buffer_)
1821 {}
1822
a76d924d 1823 struct load_progress_data *cumulative;
cf7a04e8 1824
a76d924d 1825 /* Per-section data. */
cf7a04e8 1826 const char *section_name;
55089490 1827 ULONGEST section_sent = 0;
cf7a04e8
DJ
1828 ULONGEST section_size;
1829 CORE_ADDR lma;
1830 gdb_byte *buffer;
e4f9b4d5
MS
1831};
1832
55089490
TT
1833/* Opaque data for load_section_callback. */
1834struct load_section_data
1835{
1836 load_section_data (load_progress_data *progress_data_)
1837 : progress_data (progress_data_)
1838 {}
1839
1840 ~load_section_data ()
1841 {
1842 for (auto &&request : requests)
1843 {
1844 xfree (request.data);
1845 delete ((load_progress_section_data *) request.baton);
1846 }
1847 }
1848
1849 CORE_ADDR load_offset = 0;
1850 struct load_progress_data *progress_data;
1851 std::vector<struct memory_write_request> requests;
1852};
1853
a76d924d 1854/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1855
1856static void
1857load_progress (ULONGEST bytes, void *untyped_arg)
1858{
19ba03f4
SM
1859 struct load_progress_section_data *args
1860 = (struct load_progress_section_data *) untyped_arg;
a76d924d
DJ
1861 struct load_progress_data *totals;
1862
1863 if (args == NULL)
1864 /* Writing padding data. No easy way to get at the cumulative
1865 stats, so just ignore this. */
1866 return;
1867
1868 totals = args->cumulative;
1869
1870 if (bytes == 0 && args->section_sent == 0)
1871 {
1872 /* The write is just starting. Let the user know we've started
1873 this section. */
112e8700
SM
1874 current_uiout->message ("Loading section %s, size %s lma %s\n",
1875 args->section_name,
1876 hex_string (args->section_size),
1877 paddress (target_gdbarch (), args->lma));
a76d924d
DJ
1878 return;
1879 }
cf7a04e8
DJ
1880
1881 if (validate_download)
1882 {
1883 /* Broken memories and broken monitors manifest themselves here
1884 when bring new computers to life. This doubles already slow
1885 downloads. */
1886 /* NOTE: cagney/1999-10-18: A more efficient implementation
1887 might add a verify_memory() method to the target vector and
1888 then use that. remote.c could implement that method using
1889 the ``qCRC'' packet. */
0efef640 1890 gdb::byte_vector check (bytes);
cf7a04e8 1891
0efef640 1892 if (target_read_memory (args->lma, check.data (), bytes) != 0)
5af949e3 1893 error (_("Download verify read failed at %s"),
f5656ead 1894 paddress (target_gdbarch (), args->lma));
0efef640 1895 if (memcmp (args->buffer, check.data (), bytes) != 0)
5af949e3 1896 error (_("Download verify compare failed at %s"),
f5656ead 1897 paddress (target_gdbarch (), args->lma));
cf7a04e8 1898 }
a76d924d 1899 totals->data_count += bytes;
cf7a04e8
DJ
1900 args->lma += bytes;
1901 args->buffer += bytes;
a76d924d 1902 totals->write_count += 1;
cf7a04e8 1903 args->section_sent += bytes;
522002f9 1904 if (check_quit_flag ()
cf7a04e8
DJ
1905 || (deprecated_ui_load_progress_hook != NULL
1906 && deprecated_ui_load_progress_hook (args->section_name,
1907 args->section_sent)))
1908 error (_("Canceled the download"));
1909
1910 if (deprecated_show_load_progress != NULL)
1911 deprecated_show_load_progress (args->section_name,
1912 args->section_sent,
1913 args->section_size,
a76d924d
DJ
1914 totals->data_count,
1915 totals->total_size);
cf7a04e8
DJ
1916}
1917
e4f9b4d5
MS
1918/* Callback service function for generic_load (bfd_map_over_sections). */
1919
1920static void
1921load_section_callback (bfd *abfd, asection *asec, void *data)
1922{
19ba03f4 1923 struct load_section_data *args = (struct load_section_data *) data;
cf7a04e8 1924 bfd_size_type size = bfd_get_section_size (asec);
cf7a04e8 1925 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 1926
cf7a04e8
DJ
1927 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1928 return;
e4f9b4d5 1929
cf7a04e8
DJ
1930 if (size == 0)
1931 return;
e4f9b4d5 1932
55089490
TT
1933 ULONGEST begin = bfd_section_lma (abfd, asec) + args->load_offset;
1934 ULONGEST end = begin + size;
1935 gdb_byte *buffer = (gdb_byte *) xmalloc (size);
cf7a04e8 1936 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d 1937
55089490
TT
1938 load_progress_section_data *section_data
1939 = new load_progress_section_data (args->progress_data, sect_name, size,
1940 begin, buffer);
cf7a04e8 1941
55089490 1942 args->requests.emplace_back (begin, end, buffer, section_data);
e4f9b4d5
MS
1943}
1944
dcb07cfa
PA
1945static void print_transfer_performance (struct ui_file *stream,
1946 unsigned long data_count,
1947 unsigned long write_count,
1948 std::chrono::steady_clock::duration d);
1949
c906108c 1950void
9cbe5fff 1951generic_load (const char *args, int from_tty)
c906108c 1952{
a76d924d 1953 struct load_progress_data total_progress;
55089490 1954 struct load_section_data cbdata (&total_progress);
79a45e25 1955 struct ui_out *uiout = current_uiout;
a76d924d 1956
d1a41061
PP
1957 if (args == NULL)
1958 error_no_arg (_("file to load"));
1986bccd 1959
773a1edc 1960 gdb_argv argv (args);
1986bccd 1961
ee0c3293 1962 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
1986bccd
AS
1963
1964 if (argv[1] != NULL)
917317f4 1965 {
f698ca8e 1966 const char *endptr;
ba5f2f8a 1967
f698ca8e 1968 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
1986bccd
AS
1969
1970 /* If the last word was not a valid number then
1971 treat it as a file name with spaces in. */
1972 if (argv[1] == endptr)
1973 error (_("Invalid download offset:%s."), argv[1]);
1974
1975 if (argv[2] != NULL)
1976 error (_("Too many parameters."));
917317f4 1977 }
c906108c 1978
c378eb4e 1979 /* Open the file for loading. */
ee0c3293 1980 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
c906108c 1981 if (loadfile_bfd == NULL)
ee0c3293 1982 perror_with_name (filename.get ());
917317f4 1983
192b62ce 1984 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
c906108c 1985 {
ee0c3293 1986 error (_("\"%s\" is not an object file: %s"), filename.get (),
c906108c
SS
1987 bfd_errmsg (bfd_get_error ()));
1988 }
c5aa993b 1989
192b62ce 1990 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
a76d924d
DJ
1991 (void *) &total_progress.total_size);
1992
192b62ce 1993 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
c2d11a7d 1994
dcb07cfa
PA
1995 using namespace std::chrono;
1996
1997 steady_clock::time_point start_time = steady_clock::now ();
c906108c 1998
a76d924d
DJ
1999 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2000 load_progress) != 0)
2001 error (_("Load failed"));
c906108c 2002
dcb07cfa 2003 steady_clock::time_point end_time = steady_clock::now ();
ba5f2f8a 2004
55089490 2005 CORE_ADDR entry = bfd_get_start_address (loadfile_bfd.get ());
8c2b9656 2006 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
112e8700
SM
2007 uiout->text ("Start address ");
2008 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
2009 uiout->text (", load size ");
2010 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
2011 uiout->text ("\n");
fb14de7b 2012 regcache_write_pc (get_current_regcache (), entry);
c906108c 2013
38963c97
DJ
2014 /* Reset breakpoints, now that we have changed the load image. For
2015 instance, breakpoints may have been set (or reset, by
2016 post_create_inferior) while connected to the target but before we
2017 loaded the program. In that case, the prologue analyzer could
2018 have read instructions from the target to find the right
2019 breakpoint locations. Loading has changed the contents of that
2020 memory. */
2021
2022 breakpoint_re_set ();
2023
a76d924d
DJ
2024 print_transfer_performance (gdb_stdout, total_progress.data_count,
2025 total_progress.write_count,
dcb07cfa 2026 end_time - start_time);
c906108c
SS
2027}
2028
dcb07cfa
PA
2029/* Report on STREAM the performance of a memory transfer operation,
2030 such as 'load'. DATA_COUNT is the number of bytes transferred.
2031 WRITE_COUNT is the number of separate write operations, or 0, if
2032 that information is not available. TIME is how long the operation
2033 lasted. */
c906108c 2034
dcb07cfa 2035static void
d9fcf2fb 2036print_transfer_performance (struct ui_file *stream,
917317f4
JM
2037 unsigned long data_count,
2038 unsigned long write_count,
dcb07cfa 2039 std::chrono::steady_clock::duration time)
917317f4 2040{
dcb07cfa 2041 using namespace std::chrono;
79a45e25 2042 struct ui_out *uiout = current_uiout;
2b71414d 2043
dcb07cfa 2044 milliseconds ms = duration_cast<milliseconds> (time);
2b71414d 2045
112e8700 2046 uiout->text ("Transfer rate: ");
dcb07cfa 2047 if (ms.count () > 0)
8b93c638 2048 {
dcb07cfa 2049 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
9f43d28c 2050
112e8700 2051 if (uiout->is_mi_like_p ())
9f43d28c 2052 {
112e8700
SM
2053 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2054 uiout->text (" bits/sec");
9f43d28c
DJ
2055 }
2056 else if (rate < 1024)
2057 {
112e8700
SM
2058 uiout->field_fmt ("transfer-rate", "%lu", rate);
2059 uiout->text (" bytes/sec");
9f43d28c
DJ
2060 }
2061 else
2062 {
112e8700
SM
2063 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2064 uiout->text (" KB/sec");
9f43d28c 2065 }
8b93c638
JM
2066 }
2067 else
2068 {
112e8700
SM
2069 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2070 uiout->text (" bits in <1 sec");
8b93c638
JM
2071 }
2072 if (write_count > 0)
2073 {
112e8700
SM
2074 uiout->text (", ");
2075 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2076 uiout->text (" bytes/write");
8b93c638 2077 }
112e8700 2078 uiout->text (".\n");
c906108c
SS
2079}
2080
291f9a96
PT
2081/* Add an OFFSET to the start address of each section in OBJF, except
2082 sections that were specified in ADDRS. */
2083
2084static void
2085set_objfile_default_section_offset (struct objfile *objf,
2086 const section_addr_info &addrs,
2087 CORE_ADDR offset)
2088{
2089 /* Add OFFSET to all sections by default. */
2090 std::vector<struct section_offsets> offsets (objf->num_sections,
2091 { offset });
2092
2093 /* Create sorted lists of all sections in ADDRS as well as all
2094 sections in OBJF. */
2095
2096 std::vector<const struct other_sections *> addrs_sorted
2097 = addrs_section_sort (addrs);
2098
2099 section_addr_info objf_addrs
2100 = build_section_addr_info_from_objfile (objf);
2101 std::vector<const struct other_sections *> objf_addrs_sorted
2102 = addrs_section_sort (objf_addrs);
2103
2104 /* Walk the BFD section list, and if a matching section is found in
2105 ADDRS_SORTED_LIST, set its offset to zero to keep its address
2106 unchanged.
2107
2108 Note that both lists may contain multiple sections with the same
2109 name, and then the sections from ADDRS are matched in BFD order
2110 (thanks to sectindex). */
2111
2112 std::vector<const struct other_sections *>::iterator addrs_sorted_iter
2113 = addrs_sorted.begin ();
2114 for (const struct other_sections *objf_sect : objf_addrs_sorted)
2115 {
2116 const char *objf_name = addr_section_name (objf_sect->name.c_str ());
2117 int cmp = -1;
2118
2119 while (cmp < 0 && addrs_sorted_iter != addrs_sorted.end ())
2120 {
2121 const struct other_sections *sect = *addrs_sorted_iter;
2122 const char *sect_name = addr_section_name (sect->name.c_str ());
2123 cmp = strcmp (sect_name, objf_name);
2124 if (cmp <= 0)
2125 ++addrs_sorted_iter;
2126 }
2127
2128 if (cmp == 0)
2129 offsets[objf_sect->sectindex].offsets[0] = 0;
2130 }
2131
2132 /* Apply the new section offsets. */
2133 objfile_relocate (objf, offsets.data ());
2134}
2135
c906108c
SS
2136/* This function allows the addition of incrementally linked object files.
2137 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2138/* Note: ezannoni 2000-04-13 This function/command used to have a
2139 special case syntax for the rombug target (Rombug is the boot
2140 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2141 rombug case, the user doesn't need to supply a text address,
2142 instead a call to target_link() (in target.c) would supply the
c378eb4e 2143 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2144
c906108c 2145static void
2cf311eb 2146add_symbol_file_command (const char *args, int from_tty)
c906108c 2147{
5af949e3 2148 struct gdbarch *gdbarch = get_current_arch ();
ee0c3293 2149 gdb::unique_xmalloc_ptr<char> filename;
c906108c 2150 char *arg;
2acceee2 2151 int argcnt = 0;
76ad5e1e 2152 struct objfile *objf;
b15cc25c
PA
2153 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2154 symfile_add_flags add_flags = 0;
2155
2156 if (from_tty)
2157 add_flags |= SYMFILE_VERBOSE;
db162d44 2158
a39a16c4 2159 struct sect_opt
2acceee2 2160 {
a121b7c1
PA
2161 const char *name;
2162 const char *value;
a39a16c4 2163 };
db162d44 2164
40fc416f
SDJ
2165 std::vector<sect_opt> sect_opts = { { ".text", NULL } };
2166 bool stop_processing_options = false;
291f9a96 2167 CORE_ADDR offset = 0;
c5aa993b 2168
c906108c
SS
2169 dont_repeat ();
2170
2171 if (args == NULL)
8a3fe4f8 2172 error (_("add-symbol-file takes a file name and an address"));
c906108c 2173
40fc416f 2174 bool seen_addr = false;
291f9a96 2175 bool seen_offset = false;
773a1edc 2176 gdb_argv argv (args);
db162d44 2177
5b96932b
AS
2178 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2179 {
40fc416f 2180 if (stop_processing_options || *arg != '-')
41dc8db8 2181 {
40fc416f 2182 if (filename == NULL)
41dc8db8 2183 {
40fc416f
SDJ
2184 /* First non-option argument is always the filename. */
2185 filename.reset (tilde_expand (arg));
41dc8db8 2186 }
40fc416f 2187 else if (!seen_addr)
41dc8db8 2188 {
40fc416f
SDJ
2189 /* The second non-option argument is always the text
2190 address at which to load the program. */
2191 sect_opts[0].value = arg;
2192 seen_addr = true;
41dc8db8
MB
2193 }
2194 else
02ca603a 2195 error (_("Unrecognized argument \"%s\""), arg);
41dc8db8 2196 }
40fc416f
SDJ
2197 else if (strcmp (arg, "-readnow") == 0)
2198 flags |= OBJF_READNOW;
97cbe998
SDJ
2199 else if (strcmp (arg, "-readnever") == 0)
2200 flags |= OBJF_READNEVER;
40fc416f
SDJ
2201 else if (strcmp (arg, "-s") == 0)
2202 {
2203 if (argv[argcnt + 1] == NULL)
2204 error (_("Missing section name after \"-s\""));
2205 else if (argv[argcnt + 2] == NULL)
2206 error (_("Missing section address after \"-s\""));
2207
2208 sect_opt sect = { argv[argcnt + 1], argv[argcnt + 2] };
2209
2210 sect_opts.push_back (sect);
2211 argcnt += 2;
2212 }
291f9a96
PT
2213 else if (strcmp (arg, "-o") == 0)
2214 {
2215 arg = argv[++argcnt];
2216 if (arg == NULL)
2217 error (_("Missing argument to -o"));
2218
2219 offset = parse_and_eval_address (arg);
2220 seen_offset = true;
2221 }
40fc416f
SDJ
2222 else if (strcmp (arg, "--") == 0)
2223 stop_processing_options = true;
2224 else
2225 error (_("Unrecognized argument \"%s\""), arg);
c906108c 2226 }
c906108c 2227
40fc416f
SDJ
2228 if (filename == NULL)
2229 error (_("You must provide a filename to be loaded."));
2230
97cbe998
SDJ
2231 validate_readnow_readnever (flags);
2232
c378eb4e 2233 /* Print the prompt for the query below. And save the arguments into
db162d44
EZ
2234 a sect_addr_info structure to be passed around to other
2235 functions. We have to split this up into separate print
bb599908 2236 statements because hex_string returns a local static
c378eb4e 2237 string. */
5417f6dc 2238
ed6dfe51 2239 printf_unfiltered (_("add symbol table from file \"%s\""),
ee0c3293 2240 filename.get ());
37e136b1 2241 section_addr_info section_addrs;
ed6dfe51
PT
2242 std::vector<sect_opt>::const_iterator it = sect_opts.begin ();
2243 if (!seen_addr)
2244 ++it;
2245 for (; it != sect_opts.end (); ++it)
c906108c 2246 {
db162d44 2247 CORE_ADDR addr;
ed6dfe51
PT
2248 const char *val = it->value;
2249 const char *sec = it->name;
5417f6dc 2250
ed6dfe51
PT
2251 if (section_addrs.empty ())
2252 printf_unfiltered (_(" at\n"));
ae822768 2253 addr = parse_and_eval_address (val);
db162d44 2254
db162d44 2255 /* Here we store the section offsets in the order they were
d81a3eaf
PT
2256 entered on the command line. Every array element is
2257 assigned an ascending section index to preserve the above
2258 order over an unstable sorting algorithm. This dummy
2259 index is not used for any other purpose.
2260 */
2261 section_addrs.emplace_back (addr, sec, section_addrs.size ());
5af949e3
UW
2262 printf_unfiltered ("\t%s_addr = %s\n", sec,
2263 paddress (gdbarch, addr));
db162d44 2264
5417f6dc 2265 /* The object's sections are initialized when a
db162d44 2266 call is made to build_objfile_section_table (objfile).
5417f6dc 2267 This happens in reread_symbols.
db162d44
EZ
2268 At this point, we don't know what file type this is,
2269 so we can't determine what section names are valid. */
2acceee2 2270 }
291f9a96
PT
2271 if (seen_offset)
2272 printf_unfiltered (_("%s offset by %s\n"),
2273 (section_addrs.empty ()
2274 ? _(" with all sections")
2275 : _("with other sections")),
2276 paddress (gdbarch, offset));
2277 else if (section_addrs.empty ())
ed6dfe51 2278 printf_unfiltered ("\n");
db162d44 2279
2acceee2 2280 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2281 error (_("Not confirmed."));
c906108c 2282
37e136b1
TT
2283 objf = symbol_file_add (filename.get (), add_flags, &section_addrs,
2284 flags);
76ad5e1e 2285
291f9a96
PT
2286 if (seen_offset)
2287 set_objfile_default_section_offset (objf, section_addrs, offset);
2288
76ad5e1e 2289 add_target_sections_of_objfile (objf);
c906108c
SS
2290
2291 /* Getting new symbols may change our opinion about what is
2292 frameless. */
2293 reinit_frame_cache ();
2294}
2295\f
70992597 2296
63644780
NB
2297/* This function removes a symbol file that was added via add-symbol-file. */
2298
2299static void
2cf311eb 2300remove_symbol_file_command (const char *args, int from_tty)
63644780 2301{
63644780 2302 struct objfile *objf = NULL;
63644780 2303 struct program_space *pspace = current_program_space;
63644780
NB
2304
2305 dont_repeat ();
2306
2307 if (args == NULL)
2308 error (_("remove-symbol-file: no symbol file provided"));
2309
773a1edc 2310 gdb_argv argv (args);
63644780
NB
2311
2312 if (strcmp (argv[0], "-a") == 0)
2313 {
2314 /* Interpret the next argument as an address. */
2315 CORE_ADDR addr;
2316
2317 if (argv[1] == NULL)
2318 error (_("Missing address argument"));
2319
2320 if (argv[2] != NULL)
2321 error (_("Junk after %s"), argv[1]);
2322
2323 addr = parse_and_eval_address (argv[1]);
2324
2325 ALL_OBJFILES (objf)
2326 {
d03de421
PA
2327 if ((objf->flags & OBJF_USERLOADED) != 0
2328 && (objf->flags & OBJF_SHARED) != 0
63644780
NB
2329 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2330 break;
2331 }
2332 }
2333 else if (argv[0] != NULL)
2334 {
2335 /* Interpret the current argument as a file name. */
63644780
NB
2336
2337 if (argv[1] != NULL)
2338 error (_("Junk after %s"), argv[0]);
2339
ee0c3293 2340 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
63644780
NB
2341
2342 ALL_OBJFILES (objf)
2343 {
d03de421
PA
2344 if ((objf->flags & OBJF_USERLOADED) != 0
2345 && (objf->flags & OBJF_SHARED) != 0
63644780 2346 && objf->pspace == pspace
ee0c3293 2347 && filename_cmp (filename.get (), objfile_name (objf)) == 0)
63644780
NB
2348 break;
2349 }
2350 }
2351
2352 if (objf == NULL)
2353 error (_("No symbol file found"));
2354
2355 if (from_tty
2356 && !query (_("Remove symbol table from file \"%s\"? "),
2357 objfile_name (objf)))
2358 error (_("Not confirmed."));
2359
9e86da07 2360 delete objf;
63644780 2361 clear_symtab_users (0);
63644780
NB
2362}
2363
c906108c 2364/* Re-read symbols if a symbol-file has changed. */
3b7bacac 2365
c906108c 2366void
fba45db2 2367reread_symbols (void)
c906108c
SS
2368{
2369 struct objfile *objfile;
2370 long new_modtime;
c906108c
SS
2371 struct stat new_statbuf;
2372 int res;
4c404b8b 2373 std::vector<struct objfile *> new_objfiles;
c906108c
SS
2374
2375 /* With the addition of shared libraries, this should be modified,
2376 the load time should be saved in the partial symbol tables, since
2377 different tables may come from different source files. FIXME.
2378 This routine should then walk down each partial symbol table
c378eb4e 2379 and see if the symbol table that it originates from has been changed. */
c906108c 2380
c5aa993b
JM
2381 for (objfile = object_files; objfile; objfile = objfile->next)
2382 {
9cce227f
TG
2383 if (objfile->obfd == NULL)
2384 continue;
2385
2386 /* Separate debug objfiles are handled in the main objfile. */
2387 if (objfile->separate_debug_objfile_backlink)
2388 continue;
2389
02aeec7b
JB
2390 /* If this object is from an archive (what you usually create with
2391 `ar', often called a `static library' on most systems, though
2392 a `shared library' on AIX is also an archive), then you should
2393 stat on the archive name, not member name. */
9cce227f
TG
2394 if (objfile->obfd->my_archive)
2395 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2396 else
4262abfb 2397 res = stat (objfile_name (objfile), &new_statbuf);
9cce227f
TG
2398 if (res != 0)
2399 {
c378eb4e 2400 /* FIXME, should use print_sys_errmsg but it's not filtered. */
9cce227f 2401 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
4262abfb 2402 objfile_name (objfile));
9cce227f
TG
2403 continue;
2404 }
2405 new_modtime = new_statbuf.st_mtime;
2406 if (new_modtime != objfile->mtime)
2407 {
2408 struct cleanup *old_cleanups;
2409 struct section_offsets *offsets;
2410 int num_offsets;
9cce227f
TG
2411
2412 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
4262abfb 2413 objfile_name (objfile));
9cce227f
TG
2414
2415 /* There are various functions like symbol_file_add,
2416 symfile_bfd_open, syms_from_objfile, etc., which might
2417 appear to do what we want. But they have various other
2418 effects which we *don't* want. So we just do stuff
2419 ourselves. We don't worry about mapped files (for one thing,
2420 any mapped file will be out of date). */
2421
2422 /* If we get an error, blow away this objfile (not sure if
2423 that is the correct response for things like shared
2424 libraries). */
ed2b3126
TT
2425 std::unique_ptr<struct objfile> objfile_holder (objfile);
2426
9cce227f 2427 /* We need to do this whenever any symbols go away. */
ed2b3126 2428 old_cleanups = make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
9cce227f 2429
0ba1096a
KT
2430 if (exec_bfd != NULL
2431 && filename_cmp (bfd_get_filename (objfile->obfd),
2432 bfd_get_filename (exec_bfd)) == 0)
9cce227f
TG
2433 {
2434 /* Reload EXEC_BFD without asking anything. */
2435
2436 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2437 }
2438
f6eeced0
JK
2439 /* Keep the calls order approx. the same as in free_objfile. */
2440
2441 /* Free the separate debug objfiles. It will be
2442 automatically recreated by sym_read. */
2443 free_objfile_separate_debug (objfile);
2444
2445 /* Remove any references to this objfile in the global
2446 value lists. */
2447 preserve_values (objfile);
2448
2449 /* Nuke all the state that we will re-read. Much of the following
2450 code which sets things to NULL really is necessary to tell
2451 other parts of GDB that there is nothing currently there.
2452
2453 Try to keep the freeing order compatible with free_objfile. */
2454
2455 if (objfile->sf != NULL)
2456 {
2457 (*objfile->sf->sym_finish) (objfile);
2458 }
2459
2460 clear_objfile_data (objfile);
2461
e1507e95 2462 /* Clean up any state BFD has sitting around. */
a4453b7e 2463 {
192b62ce 2464 gdb_bfd_ref_ptr obfd (objfile->obfd);
d3846e71 2465 char *obfd_filename;
a4453b7e
TT
2466
2467 obfd_filename = bfd_get_filename (objfile->obfd);
2468 /* Open the new BFD before freeing the old one, so that
2469 the filename remains live. */
192b62ce
TT
2470 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2471 objfile->obfd = temp.release ();
e1507e95 2472 if (objfile->obfd == NULL)
192b62ce 2473 error (_("Can't open %s to read symbols."), obfd_filename);
a4453b7e
TT
2474 }
2475
c0c9f665 2476 std::string original_name = objfile->original_name;
24ba069a 2477
9cce227f
TG
2478 /* bfd_openr sets cacheable to true, which is what we want. */
2479 if (!bfd_check_format (objfile->obfd, bfd_object))
4262abfb 2480 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
9cce227f
TG
2481 bfd_errmsg (bfd_get_error ()));
2482
2483 /* Save the offsets, we will nuke them with the rest of the
2484 objfile_obstack. */
2485 num_offsets = objfile->num_sections;
2486 offsets = ((struct section_offsets *)
2487 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2488 memcpy (offsets, objfile->section_offsets,
2489 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2490
9cce227f
TG
2491 /* FIXME: Do we have to free a whole linked list, or is this
2492 enough? */
af5bf4ad
SM
2493 objfile->global_psymbols.clear ();
2494 objfile->static_psymbols.clear ();
9cce227f 2495
c378eb4e 2496 /* Free the obstacks for non-reusable objfiles. */
710e1a31
SW
2497 psymbol_bcache_free (objfile->psymbol_cache);
2498 objfile->psymbol_cache = psymbol_bcache_init ();
41664b45
DG
2499
2500 /* NB: after this call to obstack_free, objfiles_changed
2501 will need to be called (see discussion below). */
9cce227f
TG
2502 obstack_free (&objfile->objfile_obstack, 0);
2503 objfile->sections = NULL;
43f3e411 2504 objfile->compunit_symtabs = NULL;
9cce227f
TG
2505 objfile->psymtabs = NULL;
2506 objfile->psymtabs_addrmap = NULL;
2507 objfile->free_psymtabs = NULL;
34eaf542 2508 objfile->template_symbols = NULL;
9cce227f 2509
9cce227f
TG
2510 /* obstack_init also initializes the obstack so it is
2511 empty. We could use obstack_specify_allocation but
d82ea6a8 2512 gdb_obstack.h specifies the alloc/dealloc functions. */
9cce227f 2513 obstack_init (&objfile->objfile_obstack);
779bd270 2514
846060df
JB
2515 /* set_objfile_per_bfd potentially allocates the per-bfd
2516 data on the objfile's obstack (if sharing data across
2517 multiple users is not possible), so it's important to
2518 do it *after* the obstack has been initialized. */
2519 set_objfile_per_bfd (objfile);
2520
224c3ddb 2521 objfile->original_name
c0c9f665
TT
2522 = (char *) obstack_copy0 (&objfile->objfile_obstack,
2523 original_name.c_str (),
2524 original_name.size ());
24ba069a 2525
779bd270
DE
2526 /* Reset the sym_fns pointer. The ELF reader can change it
2527 based on whether .gdb_index is present, and we need it to
2528 start over. PR symtab/15885 */
8fb8eb5c 2529 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
779bd270 2530
d82ea6a8 2531 build_objfile_section_table (objfile);
9cce227f
TG
2532 terminate_minimal_symbol_table (objfile);
2533
2534 /* We use the same section offsets as from last time. I'm not
2535 sure whether that is always correct for shared libraries. */
2536 objfile->section_offsets = (struct section_offsets *)
2537 obstack_alloc (&objfile->objfile_obstack,
2538 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2539 memcpy (objfile->section_offsets, offsets,
2540 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2541 objfile->num_sections = num_offsets;
2542
2543 /* What the hell is sym_new_init for, anyway? The concept of
2544 distinguishing between the main file and additional files
2545 in this way seems rather dubious. */
2546 if (objfile == symfile_objfile)
c906108c 2547 {
9cce227f 2548 (*objfile->sf->sym_new_init) (objfile);
c906108c 2549 }
9cce227f
TG
2550
2551 (*objfile->sf->sym_init) (objfile);
b98664d3 2552 clear_complaints (1);
608e2dbb
TT
2553
2554 objfile->flags &= ~OBJF_PSYMTABS_READ;
41664b45
DG
2555
2556 /* We are about to read new symbols and potentially also
2557 DWARF information. Some targets may want to pass addresses
2558 read from DWARF DIE's through an adjustment function before
2559 saving them, like MIPS, which may call into
2560 "find_pc_section". When called, that function will make
2561 use of per-objfile program space data.
2562
2563 Since we discarded our section information above, we have
2564 dangling pointers in the per-objfile program space data
2565 structure. Force GDB to update the section mapping
2566 information by letting it know the objfile has changed,
2567 making the dangling pointers point to correct data
2568 again. */
2569
2570 objfiles_changed ();
2571
608e2dbb 2572 read_symbols (objfile, 0);
b11896a5 2573
9cce227f 2574 if (!objfile_has_symbols (objfile))
c906108c 2575 {
9cce227f
TG
2576 wrap_here ("");
2577 printf_unfiltered (_("(no debugging symbols found)\n"));
2578 wrap_here ("");
c5aa993b 2579 }
9cce227f
TG
2580
2581 /* We're done reading the symbol file; finish off complaints. */
b98664d3 2582 clear_complaints (0);
9cce227f
TG
2583
2584 /* Getting new symbols may change our opinion about what is
2585 frameless. */
2586
2587 reinit_frame_cache ();
2588
2589 /* Discard cleanups as symbol reading was successful. */
ed2b3126 2590 objfile_holder.release ();
9cce227f
TG
2591 discard_cleanups (old_cleanups);
2592
2593 /* If the mtime has changed between the time we set new_modtime
2594 and now, we *want* this to be out of date, so don't call stat
2595 again now. */
2596 objfile->mtime = new_modtime;
9cce227f 2597 init_entry_point_info (objfile);
4ac39b97 2598
4c404b8b 2599 new_objfiles.push_back (objfile);
c906108c
SS
2600 }
2601 }
c906108c 2602
4c404b8b 2603 if (!new_objfiles.empty ())
ea53e89f 2604 {
c1e56572 2605 clear_symtab_users (0);
4ac39b97
JK
2606
2607 /* clear_objfile_data for each objfile was called before freeing it and
76727919 2608 gdb::observers::new_objfile.notify (NULL) has been called by
4ac39b97 2609 clear_symtab_users above. Notify the new files now. */
4c404b8b 2610 for (auto iter : new_objfiles)
76727919 2611 gdb::observers::new_objfile.notify (objfile);
4ac39b97 2612
ea53e89f
JB
2613 /* At least one objfile has changed, so we can consider that
2614 the executable we're debugging has changed too. */
76727919 2615 gdb::observers::executable_changed.notify ();
ea53e89f 2616 }
c906108c 2617}
c906108c
SS
2618\f
2619
593e3209 2620struct filename_language
c5aa993b 2621{
593e3209
SM
2622 filename_language (const std::string &ext_, enum language lang_)
2623 : ext (ext_), lang (lang_)
2624 {}
3fcf0b0d 2625
593e3209
SM
2626 std::string ext;
2627 enum language lang;
2628};
c906108c 2629
593e3209 2630static std::vector<filename_language> filename_language_table;
c906108c 2631
56618e20
TT
2632/* See symfile.h. */
2633
2634void
2635add_filename_language (const char *ext, enum language lang)
c906108c 2636{
593e3209 2637 filename_language_table.emplace_back (ext, lang);
c906108c
SS
2638}
2639
2640static char *ext_args;
920d2a44
AC
2641static void
2642show_ext_args (struct ui_file *file, int from_tty,
2643 struct cmd_list_element *c, const char *value)
2644{
3e43a32a
MS
2645 fprintf_filtered (file,
2646 _("Mapping between filename extension "
2647 "and source language is \"%s\".\n"),
920d2a44
AC
2648 value);
2649}
c906108c
SS
2650
2651static void
eb4c3f4a
TT
2652set_ext_lang_command (const char *args,
2653 int from_tty, struct cmd_list_element *e)
c906108c 2654{
c906108c
SS
2655 char *cp = ext_args;
2656 enum language lang;
2657
c378eb4e 2658 /* First arg is filename extension, starting with '.' */
c906108c 2659 if (*cp != '.')
8a3fe4f8 2660 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2661
2662 /* Find end of first arg. */
c5aa993b 2663 while (*cp && !isspace (*cp))
c906108c
SS
2664 cp++;
2665
2666 if (*cp == '\0')
3e43a32a
MS
2667 error (_("'%s': two arguments required -- "
2668 "filename extension and language"),
c906108c
SS
2669 ext_args);
2670
c378eb4e 2671 /* Null-terminate first arg. */
c5aa993b 2672 *cp++ = '\0';
c906108c
SS
2673
2674 /* Find beginning of second arg, which should be a source language. */
529480d0 2675 cp = skip_spaces (cp);
c906108c
SS
2676
2677 if (*cp == '\0')
3e43a32a
MS
2678 error (_("'%s': two arguments required -- "
2679 "filename extension and language"),
c906108c
SS
2680 ext_args);
2681
2682 /* Lookup the language from among those we know. */
2683 lang = language_enum (cp);
2684
593e3209 2685 auto it = filename_language_table.begin ();
c906108c 2686 /* Now lookup the filename extension: do we already know it? */
593e3209 2687 for (; it != filename_language_table.end (); it++)
3fcf0b0d 2688 {
593e3209 2689 if (it->ext == ext_args)
3fcf0b0d
TT
2690 break;
2691 }
c906108c 2692
593e3209 2693 if (it == filename_language_table.end ())
c906108c 2694 {
c378eb4e 2695 /* New file extension. */
c906108c
SS
2696 add_filename_language (ext_args, lang);
2697 }
2698 else
2699 {
c378eb4e 2700 /* Redefining a previously known filename extension. */
c906108c
SS
2701
2702 /* if (from_tty) */
2703 /* query ("Really make files of type %s '%s'?", */
2704 /* ext_args, language_str (lang)); */
2705
593e3209 2706 it->lang = lang;
c906108c
SS
2707 }
2708}
2709
2710static void
1d12d88f 2711info_ext_lang_command (const char *args, int from_tty)
c906108c 2712{
a3f17187 2713 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c 2714 printf_filtered ("\n\n");
593e3209
SM
2715 for (const filename_language &entry : filename_language_table)
2716 printf_filtered ("\t%s\t- %s\n", entry.ext.c_str (),
2717 language_str (entry.lang));
c906108c
SS
2718}
2719
c906108c 2720enum language
dd786858 2721deduce_language_from_filename (const char *filename)
c906108c 2722{
e6a959d6 2723 const char *cp;
c906108c
SS
2724
2725 if (filename != NULL)
2726 if ((cp = strrchr (filename, '.')) != NULL)
3fcf0b0d 2727 {
593e3209
SM
2728 for (const filename_language &entry : filename_language_table)
2729 if (entry.ext == cp)
2730 return entry.lang;
3fcf0b0d 2731 }
c906108c
SS
2732
2733 return language_unknown;
2734}
2735\f
43f3e411
DE
2736/* Allocate and initialize a new symbol table.
2737 CUST is from the result of allocate_compunit_symtab. */
c906108c
SS
2738
2739struct symtab *
43f3e411 2740allocate_symtab (struct compunit_symtab *cust, const char *filename)
c906108c 2741{
43f3e411
DE
2742 struct objfile *objfile = cust->objfile;
2743 struct symtab *symtab
2744 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
c906108c 2745
19ba03f4
SM
2746 symtab->filename
2747 = (const char *) bcache (filename, strlen (filename) + 1,
21ea9eec 2748 objfile->per_bfd->filename_cache);
c5aa993b
JM
2749 symtab->fullname = NULL;
2750 symtab->language = deduce_language_from_filename (filename);
c906108c 2751
db0fec5c
DE
2752 /* This can be very verbose with lots of headers.
2753 Only print at higher debug levels. */
2754 if (symtab_create_debug >= 2)
45cfd468
DE
2755 {
2756 /* Be a bit clever with debugging messages, and don't print objfile
2757 every time, only when it changes. */
2758 static char *last_objfile_name = NULL;
2759
2760 if (last_objfile_name == NULL
4262abfb 2761 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
45cfd468
DE
2762 {
2763 xfree (last_objfile_name);
4262abfb 2764 last_objfile_name = xstrdup (objfile_name (objfile));
45cfd468
DE
2765 fprintf_unfiltered (gdb_stdlog,
2766 "Creating one or more symtabs for objfile %s ...\n",
2767 last_objfile_name);
2768 }
2769 fprintf_unfiltered (gdb_stdlog,
b3dbbd6f
PM
2770 "Created symtab %s for module %s.\n",
2771 host_address_to_string (symtab), filename);
45cfd468
DE
2772 }
2773
43f3e411
DE
2774 /* Add it to CUST's list of symtabs. */
2775 if (cust->filetabs == NULL)
2776 {
2777 cust->filetabs = symtab;
2778 cust->last_filetab = symtab;
2779 }
2780 else
2781 {
2782 cust->last_filetab->next = symtab;
2783 cust->last_filetab = symtab;
2784 }
2785
2786 /* Backlink to the containing compunit symtab. */
2787 symtab->compunit_symtab = cust;
2788
2789 return symtab;
2790}
2791
2792/* Allocate and initialize a new compunit.
2793 NAME is the name of the main source file, if there is one, or some
2794 descriptive text if there are no source files. */
2795
2796struct compunit_symtab *
2797allocate_compunit_symtab (struct objfile *objfile, const char *name)
2798{
2799 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2800 struct compunit_symtab);
2801 const char *saved_name;
2802
2803 cu->objfile = objfile;
2804
2805 /* The name we record here is only for display/debugging purposes.
2806 Just save the basename to avoid path issues (too long for display,
2807 relative vs absolute, etc.). */
2808 saved_name = lbasename (name);
224c3ddb
SM
2809 cu->name
2810 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2811 strlen (saved_name));
43f3e411
DE
2812
2813 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2814
2815 if (symtab_create_debug)
2816 {
2817 fprintf_unfiltered (gdb_stdlog,
2818 "Created compunit symtab %s for %s.\n",
2819 host_address_to_string (cu),
2820 cu->name);
2821 }
2822
2823 return cu;
2824}
2825
2826/* Hook CU to the objfile it comes from. */
2827
2828void
2829add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2830{
2831 cu->next = cu->objfile->compunit_symtabs;
2832 cu->objfile->compunit_symtabs = cu;
c906108c 2833}
c906108c 2834\f
c5aa993b 2835
b15cc25c
PA
2836/* Reset all data structures in gdb which may contain references to
2837 symbol table data. */
c906108c
SS
2838
2839void
b15cc25c 2840clear_symtab_users (symfile_add_flags add_flags)
c906108c
SS
2841{
2842 /* Someday, we should do better than this, by only blowing away
2843 the things that really need to be blown. */
c0501be5
DJ
2844
2845 /* Clear the "current" symtab first, because it is no longer valid.
2846 breakpoint_re_set may try to access the current symtab. */
2847 clear_current_source_symtab_and_line ();
2848
c906108c 2849 clear_displays ();
1bfeeb0f 2850 clear_last_displayed_sal ();
c906108c 2851 clear_pc_function_cache ();
76727919 2852 gdb::observers::new_objfile.notify (NULL);
9bdcbae7
DJ
2853
2854 /* Clear globals which might have pointed into a removed objfile.
2855 FIXME: It's not clear which of these are supposed to persist
2856 between expressions and which ought to be reset each time. */
2857 expression_context_block = NULL;
aee1fcdf 2858 innermost_block.reset ();
8756216b
DP
2859
2860 /* Varobj may refer to old symbols, perform a cleanup. */
2861 varobj_invalidate ();
2862
e700d1b2
JB
2863 /* Now that the various caches have been cleared, we can re_set
2864 our breakpoints without risking it using stale data. */
2865 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2866 breakpoint_re_set ();
c906108c
SS
2867}
2868
74b7792f
AC
2869static void
2870clear_symtab_users_cleanup (void *ignore)
2871{
c1e56572 2872 clear_symtab_users (0);
74b7792f 2873}
c906108c 2874\f
c906108c
SS
2875/* OVERLAYS:
2876 The following code implements an abstraction for debugging overlay sections.
2877
2878 The target model is as follows:
2879 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2880 same VMA, each with its own unique LMA (or load address).
c906108c 2881 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2882 sections, one by one, from the load address into the VMA address.
5417f6dc 2883 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2884 sections should be considered to be mapped from the VMA to the LMA.
2885 This information is used for symbol lookup, and memory read/write.
5417f6dc 2886 For instance, if a section has been mapped then its contents
c5aa993b 2887 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2888
2889 Two levels of debugger support for overlays are available. One is
2890 "manual", in which the debugger relies on the user to tell it which
2891 overlays are currently mapped. This level of support is
2892 implemented entirely in the core debugger, and the information about
2893 whether a section is mapped is kept in the objfile->obj_section table.
2894
2895 The second level of support is "automatic", and is only available if
2896 the target-specific code provides functionality to read the target's
2897 overlay mapping table, and translate its contents for the debugger
2898 (by updating the mapped state information in the obj_section tables).
2899
2900 The interface is as follows:
c5aa993b
JM
2901 User commands:
2902 overlay map <name> -- tell gdb to consider this section mapped
2903 overlay unmap <name> -- tell gdb to consider this section unmapped
2904 overlay list -- list the sections that GDB thinks are mapped
2905 overlay read-target -- get the target's state of what's mapped
2906 overlay off/manual/auto -- set overlay debugging state
2907 Functional interface:
2908 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2909 section, return that section.
5417f6dc 2910 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 2911 the pc, either in its VMA or its LMA
714835d5 2912 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
2913 section_is_overlay(sect): true if section's VMA != LMA
2914 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2915 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2916 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2917 overlay_mapped_address(...): map an address from section's LMA to VMA
2918 overlay_unmapped_address(...): map an address from section's VMA to LMA
2919 symbol_overlayed_address(...): Return a "current" address for symbol:
2920 either in VMA or LMA depending on whether
c378eb4e 2921 the symbol's section is currently mapped. */
c906108c
SS
2922
2923/* Overlay debugging state: */
2924
d874f1e2 2925enum overlay_debugging_state overlay_debugging = ovly_off;
c378eb4e 2926int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
c906108c 2927
c906108c 2928/* Function: section_is_overlay (SECTION)
5417f6dc 2929 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
2930 SECTION is loaded at an address different from where it will "run". */
2931
2932int
714835d5 2933section_is_overlay (struct obj_section *section)
c906108c 2934{
714835d5
UW
2935 if (overlay_debugging && section)
2936 {
714835d5 2937 asection *bfd_section = section->the_bfd_section;
f888f159 2938
714835d5
UW
2939 if (bfd_section_lma (abfd, bfd_section) != 0
2940 && bfd_section_lma (abfd, bfd_section)
2941 != bfd_section_vma (abfd, bfd_section))
2942 return 1;
2943 }
c906108c
SS
2944
2945 return 0;
2946}
2947
2948/* Function: overlay_invalidate_all (void)
2949 Invalidate the mapped state of all overlay sections (mark it as stale). */
2950
2951static void
fba45db2 2952overlay_invalidate_all (void)
c906108c 2953{
c5aa993b 2954 struct objfile *objfile;
c906108c
SS
2955 struct obj_section *sect;
2956
2957 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
2958 if (section_is_overlay (sect))
2959 sect->ovly_mapped = -1;
c906108c
SS
2960}
2961
714835d5 2962/* Function: section_is_mapped (SECTION)
5417f6dc 2963 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
2964
2965 Access to the ovly_mapped flag is restricted to this function, so
2966 that we can do automatic update. If the global flag
2967 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2968 overlay_invalidate_all. If the mapped state of the particular
2969 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2970
714835d5
UW
2971int
2972section_is_mapped (struct obj_section *osect)
c906108c 2973{
9216df95
UW
2974 struct gdbarch *gdbarch;
2975
714835d5 2976 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
2977 return 0;
2978
c5aa993b 2979 switch (overlay_debugging)
c906108c
SS
2980 {
2981 default:
d874f1e2 2982 case ovly_off:
c5aa993b 2983 return 0; /* overlay debugging off */
d874f1e2 2984 case ovly_auto: /* overlay debugging automatic */
1c772458 2985 /* Unles there is a gdbarch_overlay_update function,
c378eb4e 2986 there's really nothing useful to do here (can't really go auto). */
9216df95
UW
2987 gdbarch = get_objfile_arch (osect->objfile);
2988 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
2989 {
2990 if (overlay_cache_invalid)
2991 {
2992 overlay_invalidate_all ();
2993 overlay_cache_invalid = 0;
2994 }
2995 if (osect->ovly_mapped == -1)
9216df95 2996 gdbarch_overlay_update (gdbarch, osect);
c906108c 2997 }
86a73007 2998 /* fall thru */
d874f1e2 2999 case ovly_on: /* overlay debugging manual */
c906108c
SS
3000 return osect->ovly_mapped == 1;
3001 }
3002}
3003
c906108c
SS
3004/* Function: pc_in_unmapped_range
3005 If PC falls into the lma range of SECTION, return true, else false. */
3006
3007CORE_ADDR
714835d5 3008pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3009{
714835d5
UW
3010 if (section_is_overlay (section))
3011 {
3012 bfd *abfd = section->objfile->obfd;
3013 asection *bfd_section = section->the_bfd_section;
fbd35540 3014
714835d5
UW
3015 /* We assume the LMA is relocated by the same offset as the VMA. */
3016 bfd_vma size = bfd_get_section_size (bfd_section);
3017 CORE_ADDR offset = obj_section_offset (section);
3018
3019 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3020 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3021 return 1;
3022 }
c906108c 3023
c906108c
SS
3024 return 0;
3025}
3026
3027/* Function: pc_in_mapped_range
3028 If PC falls into the vma range of SECTION, return true, else false. */
3029
3030CORE_ADDR
714835d5 3031pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3032{
714835d5
UW
3033 if (section_is_overlay (section))
3034 {
3035 if (obj_section_addr (section) <= pc
3036 && pc < obj_section_endaddr (section))
3037 return 1;
3038 }
c906108c 3039
c906108c
SS
3040 return 0;
3041}
3042
9ec8e6a0
JB
3043/* Return true if the mapped ranges of sections A and B overlap, false
3044 otherwise. */
3b7bacac 3045
b9362cc7 3046static int
714835d5 3047sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3048{
714835d5
UW
3049 CORE_ADDR a_start = obj_section_addr (a);
3050 CORE_ADDR a_end = obj_section_endaddr (a);
3051 CORE_ADDR b_start = obj_section_addr (b);
3052 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3053
3054 return (a_start < b_end && b_start < a_end);
3055}
3056
c906108c
SS
3057/* Function: overlay_unmapped_address (PC, SECTION)
3058 Returns the address corresponding to PC in the unmapped (load) range.
3059 May be the same as PC. */
3060
3061CORE_ADDR
714835d5 3062overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3063{
714835d5
UW
3064 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3065 {
714835d5 3066 asection *bfd_section = section->the_bfd_section;
fbd35540 3067
714835d5
UW
3068 return pc + bfd_section_lma (abfd, bfd_section)
3069 - bfd_section_vma (abfd, bfd_section);
3070 }
c906108c
SS
3071
3072 return pc;
3073}
3074
3075/* Function: overlay_mapped_address (PC, SECTION)
3076 Returns the address corresponding to PC in the mapped (runtime) range.
3077 May be the same as PC. */
3078
3079CORE_ADDR
714835d5 3080overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3081{
714835d5
UW
3082 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3083 {
714835d5 3084 asection *bfd_section = section->the_bfd_section;
fbd35540 3085
714835d5
UW
3086 return pc + bfd_section_vma (abfd, bfd_section)
3087 - bfd_section_lma (abfd, bfd_section);
3088 }
c906108c
SS
3089
3090 return pc;
3091}
3092
5417f6dc 3093/* Function: symbol_overlayed_address
c906108c
SS
3094 Return one of two addresses (relative to the VMA or to the LMA),
3095 depending on whether the section is mapped or not. */
3096
c5aa993b 3097CORE_ADDR
714835d5 3098symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3099{
3100 if (overlay_debugging)
3101 {
c378eb4e 3102 /* If the symbol has no section, just return its regular address. */
c906108c
SS
3103 if (section == 0)
3104 return address;
c378eb4e
MS
3105 /* If the symbol's section is not an overlay, just return its
3106 address. */
c906108c
SS
3107 if (!section_is_overlay (section))
3108 return address;
c378eb4e 3109 /* If the symbol's section is mapped, just return its address. */
c906108c
SS
3110 if (section_is_mapped (section))
3111 return address;
3112 /*
3113 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3114 * then return its LOADED address rather than its vma address!!
3115 */
3116 return overlay_unmapped_address (address, section);
3117 }
3118 return address;
3119}
3120
5417f6dc 3121/* Function: find_pc_overlay (PC)
c906108c
SS
3122 Return the best-match overlay section for PC:
3123 If PC matches a mapped overlay section's VMA, return that section.
3124 Else if PC matches an unmapped section's VMA, return that section.
3125 Else if PC matches an unmapped section's LMA, return that section. */
3126
714835d5 3127struct obj_section *
fba45db2 3128find_pc_overlay (CORE_ADDR pc)
c906108c 3129{
c5aa993b 3130 struct objfile *objfile;
c906108c
SS
3131 struct obj_section *osect, *best_match = NULL;
3132
3133 if (overlay_debugging)
b631e59b
KT
3134 {
3135 ALL_OBJSECTIONS (objfile, osect)
3136 if (section_is_overlay (osect))
c5aa993b 3137 {
b631e59b
KT
3138 if (pc_in_mapped_range (pc, osect))
3139 {
3140 if (section_is_mapped (osect))
3141 return osect;
3142 else
3143 best_match = osect;
3144 }
3145 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3146 best_match = osect;
3147 }
b631e59b 3148 }
714835d5 3149 return best_match;
c906108c
SS
3150}
3151
3152/* Function: find_pc_mapped_section (PC)
5417f6dc 3153 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3154 currently marked as MAPPED, return that section. Else return NULL. */
3155
714835d5 3156struct obj_section *
fba45db2 3157find_pc_mapped_section (CORE_ADDR pc)
c906108c 3158{
c5aa993b 3159 struct objfile *objfile;
c906108c
SS
3160 struct obj_section *osect;
3161
3162 if (overlay_debugging)
b631e59b
KT
3163 {
3164 ALL_OBJSECTIONS (objfile, osect)
3165 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3166 return osect;
3167 }
c906108c
SS
3168
3169 return NULL;
3170}
3171
3172/* Function: list_overlays_command
c378eb4e 3173 Print a list of mapped sections and their PC ranges. */
c906108c 3174
5d3055ad 3175static void
2cf311eb 3176list_overlays_command (const char *args, int from_tty)
c906108c 3177{
c5aa993b
JM
3178 int nmapped = 0;
3179 struct objfile *objfile;
c906108c
SS
3180 struct obj_section *osect;
3181
3182 if (overlay_debugging)
b631e59b
KT
3183 {
3184 ALL_OBJSECTIONS (objfile, osect)
714835d5 3185 if (section_is_mapped (osect))
b631e59b
KT
3186 {
3187 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3188 const char *name;
3189 bfd_vma lma, vma;
3190 int size;
3191
3192 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3193 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3194 size = bfd_get_section_size (osect->the_bfd_section);
3195 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3196
3197 printf_filtered ("Section %s, loaded at ", name);
3198 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3199 puts_filtered (" - ");
3200 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3201 printf_filtered (", mapped at ");
3202 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3203 puts_filtered (" - ");
3204 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3205 puts_filtered ("\n");
3206
3207 nmapped++;
3208 }
3209 }
c906108c 3210 if (nmapped == 0)
a3f17187 3211 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3212}
3213
3214/* Function: map_overlay_command
3215 Mark the named section as mapped (ie. residing at its VMA address). */
3216
5d3055ad 3217static void
2cf311eb 3218map_overlay_command (const char *args, int from_tty)
c906108c 3219{
c5aa993b
JM
3220 struct objfile *objfile, *objfile2;
3221 struct obj_section *sec, *sec2;
c906108c
SS
3222
3223 if (!overlay_debugging)
3e43a32a
MS
3224 error (_("Overlay debugging not enabled. Use "
3225 "either the 'overlay auto' or\n"
3226 "the 'overlay manual' command."));
c906108c
SS
3227
3228 if (args == 0 || *args == 0)
8a3fe4f8 3229 error (_("Argument required: name of an overlay section"));
c906108c 3230
c378eb4e 3231 /* First, find a section matching the user supplied argument. */
c906108c
SS
3232 ALL_OBJSECTIONS (objfile, sec)
3233 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b 3234 {
c378eb4e 3235 /* Now, check to see if the section is an overlay. */
714835d5 3236 if (!section_is_overlay (sec))
c5aa993b
JM
3237 continue; /* not an overlay section */
3238
c378eb4e 3239 /* Mark the overlay as "mapped". */
c5aa993b
JM
3240 sec->ovly_mapped = 1;
3241
3242 /* Next, make a pass and unmap any sections that are
3243 overlapped by this new section: */
3244 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3245 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3246 {
3247 if (info_verbose)
a3f17187 3248 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3249 bfd_section_name (objfile->obfd,
3250 sec2->the_bfd_section));
c378eb4e 3251 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
c5aa993b
JM
3252 }
3253 return;
3254 }
8a3fe4f8 3255 error (_("No overlay section called %s"), args);
c906108c
SS
3256}
3257
3258/* Function: unmap_overlay_command
5417f6dc 3259 Mark the overlay section as unmapped
c906108c
SS
3260 (ie. resident in its LMA address range, rather than the VMA range). */
3261
5d3055ad 3262static void
2cf311eb 3263unmap_overlay_command (const char *args, int from_tty)
c906108c 3264{
c5aa993b 3265 struct objfile *objfile;
7a270e0c 3266 struct obj_section *sec = NULL;
c906108c
SS
3267
3268 if (!overlay_debugging)
3e43a32a
MS
3269 error (_("Overlay debugging not enabled. "
3270 "Use either the 'overlay auto' or\n"
3271 "the 'overlay manual' command."));
c906108c
SS
3272
3273 if (args == 0 || *args == 0)
8a3fe4f8 3274 error (_("Argument required: name of an overlay section"));
c906108c 3275
c378eb4e 3276 /* First, find a section matching the user supplied argument. */
c906108c
SS
3277 ALL_OBJSECTIONS (objfile, sec)
3278 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3279 {
3280 if (!sec->ovly_mapped)
8a3fe4f8 3281 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3282 sec->ovly_mapped = 0;
3283 return;
3284 }
8a3fe4f8 3285 error (_("No overlay section called %s"), args);
c906108c
SS
3286}
3287
3288/* Function: overlay_auto_command
3289 A utility command to turn on overlay debugging.
c378eb4e 3290 Possibly this should be done via a set/show command. */
c906108c
SS
3291
3292static void
2cf311eb 3293overlay_auto_command (const char *args, int from_tty)
c906108c 3294{
d874f1e2 3295 overlay_debugging = ovly_auto;
1900040c 3296 enable_overlay_breakpoints ();
c906108c 3297 if (info_verbose)
a3f17187 3298 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3299}
3300
3301/* Function: overlay_manual_command
3302 A utility command to turn on overlay debugging.
c378eb4e 3303 Possibly this should be done via a set/show command. */
c906108c
SS
3304
3305static void
2cf311eb 3306overlay_manual_command (const char *args, int from_tty)
c906108c 3307{
d874f1e2 3308 overlay_debugging = ovly_on;
1900040c 3309 disable_overlay_breakpoints ();
c906108c 3310 if (info_verbose)
a3f17187 3311 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3312}
3313
3314/* Function: overlay_off_command
3315 A utility command to turn on overlay debugging.
c378eb4e 3316 Possibly this should be done via a set/show command. */
c906108c
SS
3317
3318static void
2cf311eb 3319overlay_off_command (const char *args, int from_tty)
c906108c 3320{
d874f1e2 3321 overlay_debugging = ovly_off;
1900040c 3322 disable_overlay_breakpoints ();
c906108c 3323 if (info_verbose)
a3f17187 3324 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3325}
3326
3327static void
2cf311eb 3328overlay_load_command (const char *args, int from_tty)
c906108c 3329{
e17c207e
UW
3330 struct gdbarch *gdbarch = get_current_arch ();
3331
3332 if (gdbarch_overlay_update_p (gdbarch))
3333 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3334 else
8a3fe4f8 3335 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3336}
3337
3338/* Function: overlay_command
c378eb4e 3339 A place-holder for a mis-typed command. */
c906108c 3340
c378eb4e 3341/* Command list chain containing all defined "overlay" subcommands. */
28578e6b 3342static struct cmd_list_element *overlaylist;
c906108c
SS
3343
3344static void
981a3fb3 3345overlay_command (const char *args, int from_tty)
c906108c 3346{
c5aa993b 3347 printf_unfiltered
c906108c 3348 ("\"overlay\" must be followed by the name of an overlay command.\n");
635c7e8a 3349 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
c906108c
SS
3350}
3351
c906108c
SS
3352/* Target Overlays for the "Simplest" overlay manager:
3353
5417f6dc
RM
3354 This is GDB's default target overlay layer. It works with the
3355 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3356 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3357 so targets that use a different runtime overlay manager can
c906108c
SS
3358 substitute their own overlay_update function and take over the
3359 function pointer.
3360
3361 The overlay_update function pokes around in the target's data structures
3362 to see what overlays are mapped, and updates GDB's overlay mapping with
3363 this information.
3364
3365 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3366 unsigned _novlys; /# number of overlay sections #/
3367 unsigned _ovly_table[_novlys][4] = {
438e1e42 3368 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
c5aa993b
JM
3369 {..., ..., ..., ...},
3370 }
3371 unsigned _novly_regions; /# number of overlay regions #/
3372 unsigned _ovly_region_table[_novly_regions][3] = {
438e1e42 3373 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
c5aa993b
JM
3374 {..., ..., ...},
3375 }
c906108c
SS
3376 These functions will attempt to update GDB's mappedness state in the
3377 symbol section table, based on the target's mappedness state.
3378
3379 To do this, we keep a cached copy of the target's _ovly_table, and
3380 attempt to detect when the cached copy is invalidated. The main
3381 entry point is "simple_overlay_update(SECT), which looks up SECT in
3382 the cached table and re-reads only the entry for that section from
c378eb4e 3383 the target (whenever possible). */
c906108c
SS
3384
3385/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3386static unsigned (*cache_ovly_table)[4] = 0;
c5aa993b 3387static unsigned cache_novlys = 0;
c906108c 3388static CORE_ADDR cache_ovly_table_base = 0;
c5aa993b
JM
3389enum ovly_index
3390 {
438e1e42 3391 VMA, OSIZE, LMA, MAPPED
c5aa993b 3392 };
c906108c 3393
c378eb4e 3394/* Throw away the cached copy of _ovly_table. */
3b7bacac 3395
c906108c 3396static void
fba45db2 3397simple_free_overlay_table (void)
c906108c
SS
3398{
3399 if (cache_ovly_table)
b8c9b27d 3400 xfree (cache_ovly_table);
c5aa993b 3401 cache_novlys = 0;
c906108c
SS
3402 cache_ovly_table = NULL;
3403 cache_ovly_table_base = 0;
3404}
3405
9216df95 3406/* Read an array of ints of size SIZE from the target into a local buffer.
c378eb4e 3407 Convert to host order. int LEN is number of ints. */
3b7bacac 3408
c906108c 3409static void
9216df95 3410read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3411 int len, int size, enum bfd_endian byte_order)
c906108c 3412{
c378eb4e 3413 /* FIXME (alloca): Not safe if array is very large. */
224c3ddb 3414 gdb_byte *buf = (gdb_byte *) alloca (len * size);
c5aa993b 3415 int i;
c906108c 3416
9216df95 3417 read_memory (memaddr, buf, len * size);
c906108c 3418 for (i = 0; i < len; i++)
e17a4113 3419 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3420}
3421
3422/* Find and grab a copy of the target _ovly_table
c378eb4e 3423 (and _novlys, which is needed for the table's size). */
3b7bacac 3424
c5aa993b 3425static int
fba45db2 3426simple_read_overlay_table (void)
c906108c 3427{
3b7344d5 3428 struct bound_minimal_symbol novlys_msym;
7c7b6655 3429 struct bound_minimal_symbol ovly_table_msym;
9216df95
UW
3430 struct gdbarch *gdbarch;
3431 int word_size;
e17a4113 3432 enum bfd_endian byte_order;
c906108c
SS
3433
3434 simple_free_overlay_table ();
9b27852e 3435 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3b7344d5 3436 if (! novlys_msym.minsym)
c906108c 3437 {
8a3fe4f8 3438 error (_("Error reading inferior's overlay table: "
0d43edd1 3439 "couldn't find `_novlys' variable\n"
8a3fe4f8 3440 "in inferior. Use `overlay manual' mode."));
0d43edd1 3441 return 0;
c906108c 3442 }
0d43edd1 3443
7c7b6655
TT
3444 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3445 if (! ovly_table_msym.minsym)
0d43edd1 3446 {
8a3fe4f8 3447 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3448 "`_ovly_table' array\n"
8a3fe4f8 3449 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3450 return 0;
3451 }
3452
7c7b6655 3453 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
9216df95 3454 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3455 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3456
77e371c0
TT
3457 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3458 4, byte_order);
0d43edd1 3459 cache_ovly_table
224c3ddb 3460 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
77e371c0 3461 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
0d43edd1 3462 read_target_long_array (cache_ovly_table_base,
777ea8f1 3463 (unsigned int *) cache_ovly_table,
e17a4113 3464 cache_novlys * 4, word_size, byte_order);
0d43edd1 3465
c5aa993b 3466 return 1; /* SUCCESS */
c906108c
SS
3467}
3468
5417f6dc 3469/* Function: simple_overlay_update_1
c906108c
SS
3470 A helper function for simple_overlay_update. Assuming a cached copy
3471 of _ovly_table exists, look through it to find an entry whose vma,
3472 lma and size match those of OSECT. Re-read the entry and make sure
3473 it still matches OSECT (else the table may no longer be valid).
3474 Set OSECT's mapped state to match the entry. Return: 1 for
3475 success, 0 for failure. */
3476
3477static int
fba45db2 3478simple_overlay_update_1 (struct obj_section *osect)
c906108c 3479{
764c99c1 3480 int i;
fbd35540 3481 asection *bsect = osect->the_bfd_section;
9216df95
UW
3482 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3483 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3484 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3485
c906108c 3486 for (i = 0; i < cache_novlys; i++)
fbd35540 3487 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3488 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c906108c 3489 {
9216df95
UW
3490 read_target_long_array (cache_ovly_table_base + i * word_size,
3491 (unsigned int *) cache_ovly_table[i],
e17a4113 3492 4, word_size, byte_order);
fbd35540 3493 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3494 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c906108c
SS
3495 {
3496 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3497 return 1;
3498 }
c378eb4e 3499 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3500 return 0;
3501 }
3502 return 0;
3503}
3504
3505/* Function: simple_overlay_update
5417f6dc
RM
3506 If OSECT is NULL, then update all sections' mapped state
3507 (after re-reading the entire target _ovly_table).
3508 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3509 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3510 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3511 re-read the entire cache, and go ahead and update all sections. */
3512
1c772458 3513void
fba45db2 3514simple_overlay_update (struct obj_section *osect)
c906108c 3515{
c5aa993b 3516 struct objfile *objfile;
c906108c 3517
c378eb4e 3518 /* Were we given an osect to look up? NULL means do all of them. */
c906108c 3519 if (osect)
c378eb4e 3520 /* Have we got a cached copy of the target's overlay table? */
c906108c 3521 if (cache_ovly_table != NULL)
9cc89665
MS
3522 {
3523 /* Does its cached location match what's currently in the
3524 symtab? */
3b7344d5 3525 struct bound_minimal_symbol minsym
9cc89665
MS
3526 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3527
3b7344d5 3528 if (minsym.minsym == NULL)
9cc89665
MS
3529 error (_("Error reading inferior's overlay table: couldn't "
3530 "find `_ovly_table' array\n"
3531 "in inferior. Use `overlay manual' mode."));
3532
77e371c0 3533 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
9cc89665
MS
3534 /* Then go ahead and try to look up this single section in
3535 the cache. */
3536 if (simple_overlay_update_1 (osect))
3537 /* Found it! We're done. */
3538 return;
3539 }
c906108c
SS
3540
3541 /* Cached table no good: need to read the entire table anew.
3542 Or else we want all the sections, in which case it's actually
3543 more efficient to read the whole table in one block anyway. */
3544
0d43edd1
JB
3545 if (! simple_read_overlay_table ())
3546 return;
3547
c378eb4e 3548 /* Now may as well update all sections, even if only one was requested. */
c906108c 3549 ALL_OBJSECTIONS (objfile, osect)
714835d5 3550 if (section_is_overlay (osect))
c5aa993b 3551 {
764c99c1 3552 int i;
fbd35540 3553 asection *bsect = osect->the_bfd_section;
c5aa993b 3554
c5aa993b 3555 for (i = 0; i < cache_novlys; i++)
fbd35540 3556 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3557 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c378eb4e 3558 { /* obj_section matches i'th entry in ovly_table. */
c5aa993b 3559 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
c378eb4e 3560 break; /* finished with inner for loop: break out. */
c5aa993b
JM
3561 }
3562 }
c906108c
SS
3563}
3564
086df311
DJ
3565/* Set the output sections and output offsets for section SECTP in
3566 ABFD. The relocation code in BFD will read these offsets, so we
3567 need to be sure they're initialized. We map each section to itself,
3568 with no offset; this means that SECTP->vma will be honored. */
3569
3570static void
3571symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3572{
3573 sectp->output_section = sectp;
3574 sectp->output_offset = 0;
3575}
3576
ac8035ab
TG
3577/* Default implementation for sym_relocate. */
3578
ac8035ab
TG
3579bfd_byte *
3580default_symfile_relocate (struct objfile *objfile, asection *sectp,
3581 bfd_byte *buf)
3582{
3019eac3
DE
3583 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3584 DWO file. */
3585 bfd *abfd = sectp->owner;
ac8035ab
TG
3586
3587 /* We're only interested in sections with relocation
3588 information. */
3589 if ((sectp->flags & SEC_RELOC) == 0)
3590 return NULL;
3591
3592 /* We will handle section offsets properly elsewhere, so relocate as if
3593 all sections begin at 0. */
3594 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3595
3596 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3597}
3598
086df311
DJ
3599/* Relocate the contents of a debug section SECTP in ABFD. The
3600 contents are stored in BUF if it is non-NULL, or returned in a
3601 malloc'd buffer otherwise.
3602
3603 For some platforms and debug info formats, shared libraries contain
3604 relocations against the debug sections (particularly for DWARF-2;
3605 one affected platform is PowerPC GNU/Linux, although it depends on
3606 the version of the linker in use). Also, ELF object files naturally
3607 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3608 the relocations in order to get the locations of symbols correct.
3609 Another example that may require relocation processing, is the
3610 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3611 debug section. */
086df311
DJ
3612
3613bfd_byte *
ac8035ab
TG
3614symfile_relocate_debug_section (struct objfile *objfile,
3615 asection *sectp, bfd_byte *buf)
086df311 3616{
ac8035ab 3617 gdb_assert (objfile->sf->sym_relocate);
086df311 3618
ac8035ab 3619 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3620}
c906108c 3621
31d99776
DJ
3622struct symfile_segment_data *
3623get_symfile_segment_data (bfd *abfd)
3624{
00b5771c 3625 const struct sym_fns *sf = find_sym_fns (abfd);
31d99776
DJ
3626
3627 if (sf == NULL)
3628 return NULL;
3629
3630 return sf->sym_segments (abfd);
3631}
3632
3633void
3634free_symfile_segment_data (struct symfile_segment_data *data)
3635{
3636 xfree (data->segment_bases);
3637 xfree (data->segment_sizes);
3638 xfree (data->segment_info);
3639 xfree (data);
3640}
3641
28c32713
JB
3642/* Given:
3643 - DATA, containing segment addresses from the object file ABFD, and
3644 the mapping from ABFD's sections onto the segments that own them,
3645 and
3646 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3647 segment addresses reported by the target,
3648 store the appropriate offsets for each section in OFFSETS.
3649
3650 If there are fewer entries in SEGMENT_BASES than there are segments
3651 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3652
8d385431
DJ
3653 If there are more entries, then ignore the extra. The target may
3654 not be able to distinguish between an empty data segment and a
3655 missing data segment; a missing text segment is less plausible. */
3b7bacac 3656
31d99776 3657int
3189cb12
DE
3658symfile_map_offsets_to_segments (bfd *abfd,
3659 const struct symfile_segment_data *data,
31d99776
DJ
3660 struct section_offsets *offsets,
3661 int num_segment_bases,
3662 const CORE_ADDR *segment_bases)
3663{
3664 int i;
3665 asection *sect;
3666
28c32713
JB
3667 /* It doesn't make sense to call this function unless you have some
3668 segment base addresses. */
202b96c1 3669 gdb_assert (num_segment_bases > 0);
28c32713 3670
31d99776
DJ
3671 /* If we do not have segment mappings for the object file, we
3672 can not relocate it by segments. */
3673 gdb_assert (data != NULL);
3674 gdb_assert (data->num_segments > 0);
3675
31d99776
DJ
3676 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3677 {
31d99776
DJ
3678 int which = data->segment_info[i];
3679
28c32713
JB
3680 gdb_assert (0 <= which && which <= data->num_segments);
3681
3682 /* Don't bother computing offsets for sections that aren't
3683 loaded as part of any segment. */
3684 if (! which)
3685 continue;
3686
3687 /* Use the last SEGMENT_BASES entry as the address of any extra
3688 segments mentioned in DATA->segment_info. */
31d99776 3689 if (which > num_segment_bases)
28c32713 3690 which = num_segment_bases;
31d99776 3691
28c32713
JB
3692 offsets->offsets[i] = (segment_bases[which - 1]
3693 - data->segment_bases[which - 1]);
31d99776
DJ
3694 }
3695
3696 return 1;
3697}
3698
3699static void
3700symfile_find_segment_sections (struct objfile *objfile)
3701{
3702 bfd *abfd = objfile->obfd;
3703 int i;
3704 asection *sect;
3705 struct symfile_segment_data *data;
3706
3707 data = get_symfile_segment_data (objfile->obfd);
3708 if (data == NULL)
3709 return;
3710
3711 if (data->num_segments != 1 && data->num_segments != 2)
3712 {
3713 free_symfile_segment_data (data);
3714 return;
3715 }
3716
3717 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3718 {
31d99776
DJ
3719 int which = data->segment_info[i];
3720
3721 if (which == 1)
3722 {
3723 if (objfile->sect_index_text == -1)
3724 objfile->sect_index_text = sect->index;
3725
3726 if (objfile->sect_index_rodata == -1)
3727 objfile->sect_index_rodata = sect->index;
3728 }
3729 else if (which == 2)
3730 {
3731 if (objfile->sect_index_data == -1)
3732 objfile->sect_index_data = sect->index;
3733
3734 if (objfile->sect_index_bss == -1)
3735 objfile->sect_index_bss = sect->index;
3736 }
3737 }
3738
3739 free_symfile_segment_data (data);
3740}
3741
76ad5e1e
NB
3742/* Listen for free_objfile events. */
3743
3744static void
3745symfile_free_objfile (struct objfile *objfile)
3746{
c33b2f12
MM
3747 /* Remove the target sections owned by this objfile. */
3748 if (objfile != NULL)
76ad5e1e
NB
3749 remove_target_sections ((void *) objfile);
3750}
3751
540c2971
DE
3752/* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3753 Expand all symtabs that match the specified criteria.
3754 See quick_symbol_functions.expand_symtabs_matching for details. */
3755
3756void
14bc53a8
PA
3757expand_symtabs_matching
3758 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
b5ec771e 3759 const lookup_name_info &lookup_name,
14bc53a8
PA
3760 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3761 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3762 enum search_domain kind)
540c2971
DE
3763{
3764 struct objfile *objfile;
3765
3766 ALL_OBJFILES (objfile)
3767 {
3768 if (objfile->sf)
bb4142cf 3769 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
b5ec771e 3770 lookup_name,
276d885b 3771 symbol_matcher,
14bc53a8 3772 expansion_notify, kind);
540c2971
DE
3773 }
3774}
3775
3776/* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3777 Map function FUN over every file.
3778 See quick_symbol_functions.map_symbol_filenames for details. */
3779
3780void
bb4142cf
DE
3781map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3782 int need_fullname)
540c2971
DE
3783{
3784 struct objfile *objfile;
3785
3786 ALL_OBJFILES (objfile)
3787 {
3788 if (objfile->sf)
3789 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3790 need_fullname);
3791 }
3792}
3793
32fa66eb
SM
3794#if GDB_SELF_TEST
3795
3796namespace selftests {
3797namespace filename_language {
3798
32fa66eb
SM
3799static void test_filename_language ()
3800{
3801 /* This test messes up the filename_language_table global. */
593e3209 3802 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
32fa66eb
SM
3803
3804 /* Test deducing an unknown extension. */
3805 language lang = deduce_language_from_filename ("myfile.blah");
3806 SELF_CHECK (lang == language_unknown);
3807
3808 /* Test deducing a known extension. */
3809 lang = deduce_language_from_filename ("myfile.c");
3810 SELF_CHECK (lang == language_c);
3811
3812 /* Test adding a new extension using the internal API. */
3813 add_filename_language (".blah", language_pascal);
3814 lang = deduce_language_from_filename ("myfile.blah");
3815 SELF_CHECK (lang == language_pascal);
3816}
3817
3818static void
3819test_set_ext_lang_command ()
3820{
3821 /* This test messes up the filename_language_table global. */
593e3209 3822 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
32fa66eb
SM
3823
3824 /* Confirm that the .hello extension is not known. */
3825 language lang = deduce_language_from_filename ("cake.hello");
3826 SELF_CHECK (lang == language_unknown);
3827
3828 /* Test adding a new extension using the CLI command. */
3829 gdb::unique_xmalloc_ptr<char> args_holder (xstrdup (".hello rust"));
3830 ext_args = args_holder.get ();
3831 set_ext_lang_command (NULL, 1, NULL);
3832
3833 lang = deduce_language_from_filename ("cake.hello");
3834 SELF_CHECK (lang == language_rust);
3835
3836 /* Test overriding an existing extension using the CLI command. */
593e3209 3837 int size_before = filename_language_table.size ();
32fa66eb
SM
3838 args_holder.reset (xstrdup (".hello pascal"));
3839 ext_args = args_holder.get ();
3840 set_ext_lang_command (NULL, 1, NULL);
593e3209 3841 int size_after = filename_language_table.size ();
32fa66eb
SM
3842
3843 lang = deduce_language_from_filename ("cake.hello");
3844 SELF_CHECK (lang == language_pascal);
3845 SELF_CHECK (size_before == size_after);
3846}
3847
3848} /* namespace filename_language */
3849} /* namespace selftests */
3850
3851#endif /* GDB_SELF_TEST */
3852
c906108c 3853void
fba45db2 3854_initialize_symfile (void)
c906108c
SS
3855{
3856 struct cmd_list_element *c;
c5aa993b 3857
76727919 3858 gdb::observers::free_objfile.attach (symfile_free_objfile);
76ad5e1e 3859
97cbe998 3860#define READNOW_READNEVER_HELP \
8ca2f0b9
TT
3861 "The '-readnow' option will cause GDB to read the entire symbol file\n\
3862immediately. This makes the command slower, but may make future operations\n\
97cbe998
SDJ
3863faster.\n\
3864The '-readnever' option will prevent GDB from reading the symbol file's\n\
3865symbolic debug information."
8ca2f0b9 3866
1a966eab
AC
3867 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3868Load symbol table from executable file FILE.\n\
d4d429d5
PT
3869Usage: symbol-file [-readnow | -readnever] [-o OFF] FILE\n\
3870OFF is an optional offset which is added to each section address.\n\
c906108c 3871The `file' command can also load symbol tables, as well as setting the file\n\
97cbe998 3872to execute.\n" READNOW_READNEVER_HELP), &cmdlist);
5ba2abeb 3873 set_cmd_completer (c, filename_completer);
c906108c 3874
1a966eab 3875 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3876Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
291f9a96 3877Usage: add-symbol-file FILE [-readnow | -readnever] [-o OFF] [ADDR] \
ed6dfe51 3878[-s SECT-NAME SECT-ADDR]...\n\
02ca603a
TT
3879ADDR is the starting address of the file's text.\n\
3880Each '-s' argument provides a section name and address, and\n\
db162d44 3881should be specified if the data and bss segments are not contiguous\n\
291f9a96
PT
3882with the text. SECT-NAME is a section name to be loaded at SECT-ADDR.\n\
3883OFF is an optional offset which is added to the default load addresses\n\
3884of all sections for which no other address was specified.\n"
97cbe998 3885READNOW_READNEVER_HELP),
c906108c 3886 &cmdlist);
5ba2abeb 3887 set_cmd_completer (c, filename_completer);
c906108c 3888
63644780
NB
3889 c = add_cmd ("remove-symbol-file", class_files,
3890 remove_symbol_file_command, _("\
3891Remove a symbol file added via the add-symbol-file command.\n\
3892Usage: remove-symbol-file FILENAME\n\
3893 remove-symbol-file -a ADDRESS\n\
3894The file to remove can be identified by its filename or by an address\n\
3895that lies within the boundaries of this symbol file in memory."),
3896 &cmdlist);
3897
1a966eab
AC
3898 c = add_cmd ("load", class_files, load_command, _("\
3899Dynamically load FILE into the running program, and record its symbols\n\
1986bccd 3900for access from GDB.\n\
8ca2f0b9 3901Usage: load [FILE] [OFFSET]\n\
5cf30ebf
LM
3902An optional load OFFSET may also be given as a literal address.\n\
3903When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
8ca2f0b9 3904on its own."), &cmdlist);
5ba2abeb 3905 set_cmd_completer (c, filename_completer);
c906108c 3906
c5aa993b 3907 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3908 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3909 "overlay ", 0, &cmdlist);
3910
3911 add_com_alias ("ovly", "overlay", class_alias, 1);
3912 add_com_alias ("ov", "overlay", class_alias, 1);
3913
c5aa993b 3914 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3915 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3916
c5aa993b 3917 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3918 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3919
c5aa993b 3920 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3921 _("List mappings of overlay sections."), &overlaylist);
c906108c 3922
c5aa993b 3923 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3924 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3925 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3926 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3927 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3928 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3929 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3930 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3931
3932 /* Filename extension to source language lookup table: */
26c41df3
AC
3933 add_setshow_string_noescape_cmd ("extension-language", class_files,
3934 &ext_args, _("\
3935Set mapping between filename extension and source language."), _("\
3936Show mapping between filename extension and source language."), _("\
3937Usage: set extension-language .foo bar"),
3938 set_ext_lang_command,
920d2a44 3939 show_ext_args,
26c41df3 3940 &setlist, &showlist);
c906108c 3941
c5aa993b 3942 add_info ("extensions", info_ext_lang_command,
1bedd215 3943 _("All filename extensions associated with a source language."));
917317f4 3944
525226b5
AC
3945 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3946 &debug_file_directory, _("\
24ddea62
JK
3947Set the directories where separate debug symbols are searched for."), _("\
3948Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
3949Separate debug symbols are first searched for in the same\n\
3950directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3951and lastly at the path of the directory of the binary with\n\
24ddea62 3952each global debug-file-directory component prepended."),
525226b5 3953 NULL,
920d2a44 3954 show_debug_file_directory,
525226b5 3955 &setlist, &showlist);
770e7fc7
DE
3956
3957 add_setshow_enum_cmd ("symbol-loading", no_class,
3958 print_symbol_loading_enums, &print_symbol_loading,
3959 _("\
3960Set printing of symbol loading messages."), _("\
3961Show printing of symbol loading messages."), _("\
3962off == turn all messages off\n\
3963brief == print messages for the executable,\n\
3964 and brief messages for shared libraries\n\
3965full == print messages for the executable,\n\
3966 and messages for each shared library."),
3967 NULL,
3968 NULL,
3969 &setprintlist, &showprintlist);
c4dcb155
SM
3970
3971 add_setshow_boolean_cmd ("separate-debug-file", no_class,
3972 &separate_debug_file_debug, _("\
3973Set printing of separate debug info file search debug."), _("\
3974Show printing of separate debug info file search debug."), _("\
3975When on, GDB prints the searched locations while looking for separate debug \
3976info files."), NULL, NULL, &setdebuglist, &showdebuglist);
32fa66eb
SM
3977
3978#if GDB_SELF_TEST
3979 selftests::register_test
3980 ("filename_language", selftests::filename_language::test_filename_language);
3981 selftests::register_test
3982 ("set_ext_lang_command",
3983 selftests::filename_language::test_set_ext_lang_command);
3984#endif
c906108c 3985}
This page took 3.06456 seconds and 4 git commands to generate.