* doc/binutils.texi (--only-keep-debug): Relocate stray para here ...
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
6aba47ca 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
0fb0cc75 4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
777ea8f1 5 Free Software Foundation, Inc.
8926118c 6
c906108c
SS
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
a9762ec7 13 the Free Software Foundation; either version 3 of the License, or
c5aa993b 14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b 21 You should have received a copy of the GNU General Public License
a9762ec7 22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
23
24#include "defs.h"
e17c207e 25#include "arch-utils.h"
086df311 26#include "bfdlink.h"
c906108c
SS
27#include "symtab.h"
28#include "gdbtypes.h"
29#include "gdbcore.h"
30#include "frame.h"
31#include "target.h"
32#include "value.h"
33#include "symfile.h"
34#include "objfiles.h"
0378c332 35#include "source.h"
c906108c
SS
36#include "gdbcmd.h"
37#include "breakpoint.h"
38#include "language.h"
39#include "complaints.h"
40#include "demangle.h"
fb14de7b
UW
41#include "inferior.h"
42#include "regcache.h"
5b5d99cf 43#include "filenames.h" /* for DOSish file names */
c906108c 44#include "gdb-stabs.h"
04ea0df1 45#include "gdb_obstack.h"
d75b5104 46#include "completer.h"
af5f3db6 47#include "bcache.h"
2de7ced7 48#include "hashtab.h"
dbda9972 49#include "readline/readline.h"
7e8580c1 50#include "gdb_assert.h"
fe898f56 51#include "block.h"
ea53e89f 52#include "observer.h"
c1bd25fd 53#include "exec.h"
9bdcbae7 54#include "parser-defs.h"
8756216b 55#include "varobj.h"
77069918 56#include "elf-bfd.h"
e85a822c 57#include "solib.h"
f1838a98 58#include "remote.h"
c906108c 59
c906108c
SS
60#include <sys/types.h>
61#include <fcntl.h>
62#include "gdb_string.h"
63#include "gdb_stat.h"
64#include <ctype.h>
65#include <time.h>
2b71414d 66#include <sys/time.h>
c906108c 67
c906108c 68
9a4105ab
AC
69int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
70void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
71 unsigned long section_sent,
72 unsigned long section_size,
73 unsigned long total_sent,
c2d11a7d 74 unsigned long total_size);
769d7dc4
AC
75void (*deprecated_pre_add_symbol_hook) (const char *);
76void (*deprecated_post_add_symbol_hook) (void);
c906108c 77
74b7792f
AC
78static void clear_symtab_users_cleanup (void *ignore);
79
c906108c 80/* Global variables owned by this file */
c5aa993b 81int readnow_symbol_files; /* Read full symbols immediately */
c906108c 82
c906108c
SS
83/* External variables and functions referenced. */
84
a14ed312 85extern void report_transfer_performance (unsigned long, time_t, time_t);
c906108c
SS
86
87/* Functions this file defines */
88
89#if 0
a14ed312
KB
90static int simple_read_overlay_region_table (void);
91static void simple_free_overlay_region_table (void);
c906108c
SS
92#endif
93
a14ed312 94static void load_command (char *, int);
c906108c 95
d7db6da9
FN
96static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
97
a14ed312 98static void add_symbol_file_command (char *, int);
c906108c 99
5b5d99cf
JB
100static void reread_separate_symbols (struct objfile *objfile);
101
a14ed312 102static void cashier_psymtab (struct partial_symtab *);
c906108c 103
a14ed312 104bfd *symfile_bfd_open (char *);
c906108c 105
0e931cf0
JB
106int get_section_index (struct objfile *, char *);
107
31d99776 108static struct sym_fns *find_sym_fns (bfd *);
c906108c 109
a14ed312 110static void decrement_reading_symtab (void *);
c906108c 111
a14ed312 112static void overlay_invalidate_all (void);
c906108c 113
a14ed312 114void list_overlays_command (char *, int);
c906108c 115
a14ed312 116void map_overlay_command (char *, int);
c906108c 117
a14ed312 118void unmap_overlay_command (char *, int);
c906108c 119
a14ed312 120static void overlay_auto_command (char *, int);
c906108c 121
a14ed312 122static void overlay_manual_command (char *, int);
c906108c 123
a14ed312 124static void overlay_off_command (char *, int);
c906108c 125
a14ed312 126static void overlay_load_command (char *, int);
c906108c 127
a14ed312 128static void overlay_command (char *, int);
c906108c 129
a14ed312 130static void simple_free_overlay_table (void);
c906108c 131
e17a4113
UW
132static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
133 enum bfd_endian);
c906108c 134
a14ed312 135static int simple_read_overlay_table (void);
c906108c 136
a14ed312 137static int simple_overlay_update_1 (struct obj_section *);
c906108c 138
a14ed312 139static void add_filename_language (char *ext, enum language lang);
392a587b 140
a14ed312 141static void info_ext_lang_command (char *args, int from_tty);
392a587b 142
5b5d99cf
JB
143static char *find_separate_debug_file (struct objfile *objfile);
144
a14ed312 145static void init_filename_language_table (void);
392a587b 146
31d99776
DJ
147static void symfile_find_segment_sections (struct objfile *objfile);
148
a14ed312 149void _initialize_symfile (void);
c906108c
SS
150
151/* List of all available sym_fns. On gdb startup, each object file reader
152 calls add_symtab_fns() to register information on each format it is
153 prepared to read. */
154
155static struct sym_fns *symtab_fns = NULL;
156
157/* Flag for whether user will be reloading symbols multiple times.
158 Defaults to ON for VxWorks, otherwise OFF. */
159
160#ifdef SYMBOL_RELOADING_DEFAULT
161int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
162#else
163int symbol_reloading = 0;
164#endif
920d2a44
AC
165static void
166show_symbol_reloading (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
168{
169 fprintf_filtered (file, _("\
170Dynamic symbol table reloading multiple times in one run is %s.\n"),
171 value);
172}
173
bf250677
DE
174/* If non-zero, gdb will notify the user when it is loading symbols
175 from a file. This is almost always what users will want to have happen;
176 but for programs with lots of dynamically linked libraries, the output
177 can be more noise than signal. */
178
179int print_symbol_loading = 1;
c906108c 180
b7209cb4
FF
181/* If non-zero, shared library symbols will be added automatically
182 when the inferior is created, new libraries are loaded, or when
183 attaching to the inferior. This is almost always what users will
184 want to have happen; but for very large programs, the startup time
185 will be excessive, and so if this is a problem, the user can clear
186 this flag and then add the shared library symbols as needed. Note
187 that there is a potential for confusion, since if the shared
c906108c 188 library symbols are not loaded, commands like "info fun" will *not*
b7209cb4 189 report all the functions that are actually present. */
c906108c
SS
190
191int auto_solib_add = 1;
b7209cb4
FF
192
193/* For systems that support it, a threshold size in megabytes. If
194 automatically adding a new library's symbol table to those already
195 known to the debugger would cause the total shared library symbol
196 size to exceed this threshhold, then the shlib's symbols are not
197 added. The threshold is ignored if the user explicitly asks for a
198 shlib to be added, such as when using the "sharedlibrary"
199 command. */
200
201int auto_solib_limit;
c906108c 202\f
c5aa993b 203
0fe19209
DC
204/* This compares two partial symbols by names, using strcmp_iw_ordered
205 for the comparison. */
c906108c
SS
206
207static int
0cd64fe2 208compare_psymbols (const void *s1p, const void *s2p)
c906108c 209{
0fe19209
DC
210 struct partial_symbol *const *s1 = s1p;
211 struct partial_symbol *const *s2 = s2p;
212
4725b721
PH
213 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
214 SYMBOL_SEARCH_NAME (*s2));
c906108c
SS
215}
216
217void
fba45db2 218sort_pst_symbols (struct partial_symtab *pst)
c906108c
SS
219{
220 /* Sort the global list; don't sort the static list */
221
c5aa993b
JM
222 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
223 pst->n_global_syms, sizeof (struct partial_symbol *),
c906108c
SS
224 compare_psymbols);
225}
226
c906108c
SS
227/* Make a null terminated copy of the string at PTR with SIZE characters in
228 the obstack pointed to by OBSTACKP . Returns the address of the copy.
229 Note that the string at PTR does not have to be null terminated, I.E. it
230 may be part of a larger string and we are only saving a substring. */
231
232char *
63ca651f 233obsavestring (const char *ptr, int size, struct obstack *obstackp)
c906108c 234{
52f0bd74 235 char *p = (char *) obstack_alloc (obstackp, size + 1);
c906108c
SS
236 /* Open-coded memcpy--saves function call time. These strings are usually
237 short. FIXME: Is this really still true with a compiler that can
238 inline memcpy? */
239 {
aa1ee363
AC
240 const char *p1 = ptr;
241 char *p2 = p;
63ca651f 242 const char *end = ptr + size;
c906108c
SS
243 while (p1 != end)
244 *p2++ = *p1++;
245 }
246 p[size] = 0;
247 return p;
248}
249
250/* Concatenate strings S1, S2 and S3; return the new string. Space is found
251 in the obstack pointed to by OBSTACKP. */
252
253char *
fba45db2
KB
254obconcat (struct obstack *obstackp, const char *s1, const char *s2,
255 const char *s3)
c906108c 256{
52f0bd74
AC
257 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
258 char *val = (char *) obstack_alloc (obstackp, len);
c906108c
SS
259 strcpy (val, s1);
260 strcat (val, s2);
261 strcat (val, s3);
262 return val;
263}
264
265/* True if we are nested inside psymtab_to_symtab. */
266
267int currently_reading_symtab = 0;
268
269static void
fba45db2 270decrement_reading_symtab (void *dummy)
c906108c
SS
271{
272 currently_reading_symtab--;
273}
274
275/* Get the symbol table that corresponds to a partial_symtab.
276 This is fast after the first time you do it. In fact, there
277 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
278 case inline. */
279
280struct symtab *
aa1ee363 281psymtab_to_symtab (struct partial_symtab *pst)
c906108c
SS
282{
283 /* If it's been looked up before, return it. */
284 if (pst->symtab)
285 return pst->symtab;
286
287 /* If it has not yet been read in, read it. */
288 if (!pst->readin)
c5aa993b 289 {
c906108c
SS
290 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
291 currently_reading_symtab++;
292 (*pst->read_symtab) (pst);
293 do_cleanups (back_to);
294 }
295
296 return pst->symtab;
297}
298
5417f6dc
RM
299/* Remember the lowest-addressed loadable section we've seen.
300 This function is called via bfd_map_over_sections.
c906108c
SS
301
302 In case of equal vmas, the section with the largest size becomes the
303 lowest-addressed loadable section.
304
305 If the vmas and sizes are equal, the last section is considered the
306 lowest-addressed loadable section. */
307
308void
4efb68b1 309find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 310{
c5aa993b 311 asection **lowest = (asection **) obj;
c906108c
SS
312
313 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
314 return;
315 if (!*lowest)
316 *lowest = sect; /* First loadable section */
317 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
318 *lowest = sect; /* A lower loadable section */
319 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
320 && (bfd_section_size (abfd, (*lowest))
321 <= bfd_section_size (abfd, sect)))
322 *lowest = sect;
323}
324
a39a16c4
MM
325/* Create a new section_addr_info, with room for NUM_SECTIONS. */
326
327struct section_addr_info *
328alloc_section_addr_info (size_t num_sections)
329{
330 struct section_addr_info *sap;
331 size_t size;
332
333 size = (sizeof (struct section_addr_info)
334 + sizeof (struct other_sections) * (num_sections - 1));
335 sap = (struct section_addr_info *) xmalloc (size);
336 memset (sap, 0, size);
337 sap->num_sections = num_sections;
338
339 return sap;
340}
62557bbc 341
7b90c3f9
JB
342
343/* Return a freshly allocated copy of ADDRS. The section names, if
344 any, are also freshly allocated copies of those in ADDRS. */
345struct section_addr_info *
346copy_section_addr_info (struct section_addr_info *addrs)
347{
348 struct section_addr_info *copy
349 = alloc_section_addr_info (addrs->num_sections);
350 int i;
351
352 copy->num_sections = addrs->num_sections;
353 for (i = 0; i < addrs->num_sections; i++)
354 {
355 copy->other[i].addr = addrs->other[i].addr;
356 if (addrs->other[i].name)
357 copy->other[i].name = xstrdup (addrs->other[i].name);
358 else
359 copy->other[i].name = NULL;
360 copy->other[i].sectindex = addrs->other[i].sectindex;
361 }
362
363 return copy;
364}
365
366
367
62557bbc
KB
368/* Build (allocate and populate) a section_addr_info struct from
369 an existing section table. */
370
371extern struct section_addr_info *
0542c86d
PA
372build_section_addr_info_from_section_table (const struct target_section *start,
373 const struct target_section *end)
62557bbc
KB
374{
375 struct section_addr_info *sap;
0542c86d 376 const struct target_section *stp;
62557bbc
KB
377 int oidx;
378
a39a16c4 379 sap = alloc_section_addr_info (end - start);
62557bbc
KB
380
381 for (stp = start, oidx = 0; stp != end; stp++)
382 {
5417f6dc 383 if (bfd_get_section_flags (stp->bfd,
fbd35540 384 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 385 && oidx < end - start)
62557bbc
KB
386 {
387 sap->other[oidx].addr = stp->addr;
5417f6dc 388 sap->other[oidx].name
fbd35540 389 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
62557bbc
KB
390 sap->other[oidx].sectindex = stp->the_bfd_section->index;
391 oidx++;
392 }
393 }
394
395 return sap;
396}
397
398
399/* Free all memory allocated by build_section_addr_info_from_section_table. */
400
401extern void
402free_section_addr_info (struct section_addr_info *sap)
403{
404 int idx;
405
a39a16c4 406 for (idx = 0; idx < sap->num_sections; idx++)
62557bbc 407 if (sap->other[idx].name)
b8c9b27d
KB
408 xfree (sap->other[idx].name);
409 xfree (sap);
62557bbc
KB
410}
411
412
e8289572
JB
413/* Initialize OBJFILE's sect_index_* members. */
414static void
415init_objfile_sect_indices (struct objfile *objfile)
c906108c 416{
e8289572 417 asection *sect;
c906108c 418 int i;
5417f6dc 419
b8fbeb18 420 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 421 if (sect)
b8fbeb18
EZ
422 objfile->sect_index_text = sect->index;
423
424 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 425 if (sect)
b8fbeb18
EZ
426 objfile->sect_index_data = sect->index;
427
428 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 429 if (sect)
b8fbeb18
EZ
430 objfile->sect_index_bss = sect->index;
431
432 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 433 if (sect)
b8fbeb18
EZ
434 objfile->sect_index_rodata = sect->index;
435
bbcd32ad
FF
436 /* This is where things get really weird... We MUST have valid
437 indices for the various sect_index_* members or gdb will abort.
438 So if for example, there is no ".text" section, we have to
31d99776
DJ
439 accomodate that. First, check for a file with the standard
440 one or two segments. */
441
442 symfile_find_segment_sections (objfile);
443
444 /* Except when explicitly adding symbol files at some address,
445 section_offsets contains nothing but zeros, so it doesn't matter
446 which slot in section_offsets the individual sect_index_* members
447 index into. So if they are all zero, it is safe to just point
448 all the currently uninitialized indices to the first slot. But
449 beware: if this is the main executable, it may be relocated
450 later, e.g. by the remote qOffsets packet, and then this will
451 be wrong! That's why we try segments first. */
bbcd32ad
FF
452
453 for (i = 0; i < objfile->num_sections; i++)
454 {
455 if (ANOFFSET (objfile->section_offsets, i) != 0)
456 {
457 break;
458 }
459 }
460 if (i == objfile->num_sections)
461 {
462 if (objfile->sect_index_text == -1)
463 objfile->sect_index_text = 0;
464 if (objfile->sect_index_data == -1)
465 objfile->sect_index_data = 0;
466 if (objfile->sect_index_bss == -1)
467 objfile->sect_index_bss = 0;
468 if (objfile->sect_index_rodata == -1)
469 objfile->sect_index_rodata = 0;
470 }
b8fbeb18 471}
c906108c 472
c1bd25fd
DJ
473/* The arguments to place_section. */
474
475struct place_section_arg
476{
477 struct section_offsets *offsets;
478 CORE_ADDR lowest;
479};
480
481/* Find a unique offset to use for loadable section SECT if
482 the user did not provide an offset. */
483
2c0b251b 484static void
c1bd25fd
DJ
485place_section (bfd *abfd, asection *sect, void *obj)
486{
487 struct place_section_arg *arg = obj;
488 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
489 int done;
3bd72c6f 490 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 491
2711e456
DJ
492 /* We are only interested in allocated sections. */
493 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
494 return;
495
496 /* If the user specified an offset, honor it. */
497 if (offsets[sect->index] != 0)
498 return;
499
500 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
501 start_addr = (arg->lowest + align - 1) & -align;
502
c1bd25fd
DJ
503 do {
504 asection *cur_sec;
c1bd25fd 505
c1bd25fd
DJ
506 done = 1;
507
508 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
509 {
510 int indx = cur_sec->index;
511 CORE_ADDR cur_offset;
512
513 /* We don't need to compare against ourself. */
514 if (cur_sec == sect)
515 continue;
516
2711e456
DJ
517 /* We can only conflict with allocated sections. */
518 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
519 continue;
520
521 /* If the section offset is 0, either the section has not been placed
522 yet, or it was the lowest section placed (in which case LOWEST
523 will be past its end). */
524 if (offsets[indx] == 0)
525 continue;
526
527 /* If this section would overlap us, then we must move up. */
528 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
529 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
530 {
531 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
532 start_addr = (start_addr + align - 1) & -align;
533 done = 0;
3bd72c6f 534 break;
c1bd25fd
DJ
535 }
536
537 /* Otherwise, we appear to be OK. So far. */
538 }
539 }
540 while (!done);
541
542 offsets[sect->index] = start_addr;
543 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 544}
e8289572
JB
545
546/* Parse the user's idea of an offset for dynamic linking, into our idea
5417f6dc 547 of how to represent it for fast symbol reading. This is the default
e8289572
JB
548 version of the sym_fns.sym_offsets function for symbol readers that
549 don't need to do anything special. It allocates a section_offsets table
550 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
551
552void
553default_symfile_offsets (struct objfile *objfile,
554 struct section_addr_info *addrs)
555{
556 int i;
557
a39a16c4 558 objfile->num_sections = bfd_count_sections (objfile->obfd);
e8289572 559 objfile->section_offsets = (struct section_offsets *)
5417f6dc 560 obstack_alloc (&objfile->objfile_obstack,
a39a16c4 561 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
5417f6dc 562 memset (objfile->section_offsets, 0,
a39a16c4 563 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
e8289572
JB
564
565 /* Now calculate offsets for section that were specified by the
566 caller. */
a39a16c4 567 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
e8289572
JB
568 {
569 struct other_sections *osp ;
570
571 osp = &addrs->other[i] ;
572 if (osp->addr == 0)
573 continue;
574
575 /* Record all sections in offsets */
576 /* The section_offsets in the objfile are here filled in using
577 the BFD index. */
578 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
579 }
580
c1bd25fd
DJ
581 /* For relocatable files, all loadable sections will start at zero.
582 The zero is meaningless, so try to pick arbitrary addresses such
583 that no loadable sections overlap. This algorithm is quadratic,
584 but the number of sections in a single object file is generally
585 small. */
586 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
587 {
588 struct place_section_arg arg;
2711e456
DJ
589 bfd *abfd = objfile->obfd;
590 asection *cur_sec;
591 CORE_ADDR lowest = 0;
592
593 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
594 /* We do not expect this to happen; just skip this step if the
595 relocatable file has a section with an assigned VMA. */
596 if (bfd_section_vma (abfd, cur_sec) != 0)
597 break;
598
599 if (cur_sec == NULL)
600 {
601 CORE_ADDR *offsets = objfile->section_offsets->offsets;
602
603 /* Pick non-overlapping offsets for sections the user did not
604 place explicitly. */
605 arg.offsets = objfile->section_offsets;
606 arg.lowest = 0;
607 bfd_map_over_sections (objfile->obfd, place_section, &arg);
608
609 /* Correctly filling in the section offsets is not quite
610 enough. Relocatable files have two properties that
611 (most) shared objects do not:
612
613 - Their debug information will contain relocations. Some
614 shared libraries do also, but many do not, so this can not
615 be assumed.
616
617 - If there are multiple code sections they will be loaded
618 at different relative addresses in memory than they are
619 in the objfile, since all sections in the file will start
620 at address zero.
621
622 Because GDB has very limited ability to map from an
623 address in debug info to the correct code section,
624 it relies on adding SECT_OFF_TEXT to things which might be
625 code. If we clear all the section offsets, and set the
626 section VMAs instead, then symfile_relocate_debug_section
627 will return meaningful debug information pointing at the
628 correct sections.
629
630 GDB has too many different data structures for section
631 addresses - a bfd, objfile, and so_list all have section
632 tables, as does exec_ops. Some of these could probably
633 be eliminated. */
634
635 for (cur_sec = abfd->sections; cur_sec != NULL;
636 cur_sec = cur_sec->next)
637 {
638 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
639 continue;
640
641 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
30510692
DJ
642 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
643 offsets[cur_sec->index]);
2711e456
DJ
644 offsets[cur_sec->index] = 0;
645 }
646 }
c1bd25fd
DJ
647 }
648
e8289572
JB
649 /* Remember the bfd indexes for the .text, .data, .bss and
650 .rodata sections. */
651 init_objfile_sect_indices (objfile);
652}
653
654
31d99776
DJ
655/* Divide the file into segments, which are individual relocatable units.
656 This is the default version of the sym_fns.sym_segments function for
657 symbol readers that do not have an explicit representation of segments.
658 It assumes that object files do not have segments, and fully linked
659 files have a single segment. */
660
661struct symfile_segment_data *
662default_symfile_segments (bfd *abfd)
663{
664 int num_sections, i;
665 asection *sect;
666 struct symfile_segment_data *data;
667 CORE_ADDR low, high;
668
669 /* Relocatable files contain enough information to position each
670 loadable section independently; they should not be relocated
671 in segments. */
672 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
673 return NULL;
674
675 /* Make sure there is at least one loadable section in the file. */
676 for (sect = abfd->sections; sect != NULL; sect = sect->next)
677 {
678 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
679 continue;
680
681 break;
682 }
683 if (sect == NULL)
684 return NULL;
685
686 low = bfd_get_section_vma (abfd, sect);
687 high = low + bfd_get_section_size (sect);
688
689 data = XZALLOC (struct symfile_segment_data);
690 data->num_segments = 1;
691 data->segment_bases = XCALLOC (1, CORE_ADDR);
692 data->segment_sizes = XCALLOC (1, CORE_ADDR);
693
694 num_sections = bfd_count_sections (abfd);
695 data->segment_info = XCALLOC (num_sections, int);
696
697 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
698 {
699 CORE_ADDR vma;
700
701 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
702 continue;
703
704 vma = bfd_get_section_vma (abfd, sect);
705 if (vma < low)
706 low = vma;
707 if (vma + bfd_get_section_size (sect) > high)
708 high = vma + bfd_get_section_size (sect);
709
710 data->segment_info[i] = 1;
711 }
712
713 data->segment_bases[0] = low;
714 data->segment_sizes[0] = high - low;
715
716 return data;
717}
718
c906108c
SS
719/* Process a symbol file, as either the main file or as a dynamically
720 loaded file.
721
96baa820
JM
722 OBJFILE is where the symbols are to be read from.
723
7e8580c1
JB
724 ADDRS is the list of section load addresses. If the user has given
725 an 'add-symbol-file' command, then this is the list of offsets and
726 addresses he or she provided as arguments to the command; or, if
727 we're handling a shared library, these are the actual addresses the
728 sections are loaded at, according to the inferior's dynamic linker
729 (as gleaned by GDB's shared library code). We convert each address
730 into an offset from the section VMA's as it appears in the object
731 file, and then call the file's sym_offsets function to convert this
732 into a format-specific offset table --- a `struct section_offsets'.
733 If ADDRS is non-zero, OFFSETS must be zero.
734
735 OFFSETS is a table of section offsets already in the right
736 format-specific representation. NUM_OFFSETS is the number of
737 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
738 assume this is the proper table the call to sym_offsets described
739 above would produce. Instead of calling sym_offsets, we just dump
740 it right into objfile->section_offsets. (When we're re-reading
741 symbols from an objfile, we don't have the original load address
742 list any more; all we have is the section offset table.) If
743 OFFSETS is non-zero, ADDRS must be zero.
96baa820 744
7eedccfa
PP
745 ADD_FLAGS encodes verbosity level, whether this is main symbol or
746 an extra symbol file such as dynamically loaded code, and wether
747 breakpoint reset should be deferred. */
c906108c
SS
748
749void
7e8580c1
JB
750syms_from_objfile (struct objfile *objfile,
751 struct section_addr_info *addrs,
752 struct section_offsets *offsets,
753 int num_offsets,
7eedccfa 754 int add_flags)
c906108c 755{
a39a16c4 756 struct section_addr_info *local_addr = NULL;
c906108c 757 struct cleanup *old_chain;
7eedccfa 758 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 759
7e8580c1 760 gdb_assert (! (addrs && offsets));
2acceee2 761
c906108c 762 init_entry_point_info (objfile);
31d99776 763 objfile->sf = find_sym_fns (objfile->obfd);
c906108c 764
75245b24
MS
765 if (objfile->sf == NULL)
766 return; /* No symbols. */
767
c906108c
SS
768 /* Make sure that partially constructed symbol tables will be cleaned up
769 if an error occurs during symbol reading. */
74b7792f 770 old_chain = make_cleanup_free_objfile (objfile);
c906108c 771
a39a16c4
MM
772 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
773 list. We now establish the convention that an addr of zero means
774 no load address was specified. */
775 if (! addrs && ! offsets)
776 {
5417f6dc 777 local_addr
a39a16c4
MM
778 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
779 make_cleanup (xfree, local_addr);
780 addrs = local_addr;
781 }
782
783 /* Now either addrs or offsets is non-zero. */
784
c5aa993b 785 if (mainline)
c906108c
SS
786 {
787 /* We will modify the main symbol table, make sure that all its users
c5aa993b 788 will be cleaned up if an error occurs during symbol reading. */
74b7792f 789 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
790
791 /* Since no error yet, throw away the old symbol table. */
792
793 if (symfile_objfile != NULL)
794 {
795 free_objfile (symfile_objfile);
796 symfile_objfile = NULL;
797 }
798
799 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
800 If the user wants to get rid of them, they should do "symbol-file"
801 without arguments first. Not sure this is the best behavior
802 (PR 2207). */
c906108c 803
c5aa993b 804 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
805 }
806
807 /* Convert addr into an offset rather than an absolute address.
808 We find the lowest address of a loaded segment in the objfile,
53a5351d 809 and assume that <addr> is where that got loaded.
c906108c 810
53a5351d
JM
811 We no longer warn if the lowest section is not a text segment (as
812 happens for the PA64 port. */
1549f619 813 if (!mainline && addrs && addrs->other[0].name)
c906108c 814 {
1549f619
EZ
815 asection *lower_sect;
816 asection *sect;
817 CORE_ADDR lower_offset;
818 int i;
819
5417f6dc 820 /* Find lowest loadable section to be used as starting point for
2acceee2
JM
821 continguous sections. FIXME!! won't work without call to find
822 .text first, but this assumes text is lowest section. */
823 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
824 if (lower_sect == NULL)
c906108c 825 bfd_map_over_sections (objfile->obfd, find_lowest_section,
4efb68b1 826 &lower_sect);
2acceee2 827 if (lower_sect == NULL)
ff8e85c3
PA
828 {
829 warning (_("no loadable sections found in added symbol-file %s"),
830 objfile->name);
831 lower_offset = 0;
832 }
2acceee2 833 else
ff8e85c3 834 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
5417f6dc 835
13de58df 836 /* Calculate offsets for the loadable sections.
2acceee2
JM
837 FIXME! Sections must be in order of increasing loadable section
838 so that contiguous sections can use the lower-offset!!!
5417f6dc 839
13de58df
JB
840 Adjust offsets if the segments are not contiguous.
841 If the section is contiguous, its offset should be set to
2acceee2
JM
842 the offset of the highest loadable section lower than it
843 (the loadable section directly below it in memory).
844 this_offset = lower_offset = lower_addr - lower_orig_addr */
845
1549f619 846 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
7e8580c1
JB
847 {
848 if (addrs->other[i].addr != 0)
849 {
850 sect = bfd_get_section_by_name (objfile->obfd,
851 addrs->other[i].name);
852 if (sect)
853 {
854 addrs->other[i].addr
855 -= bfd_section_vma (objfile->obfd, sect);
856 lower_offset = addrs->other[i].addr;
857 /* This is the index used by BFD. */
858 addrs->other[i].sectindex = sect->index ;
859 }
860 else
861 {
8a3fe4f8 862 warning (_("section %s not found in %s"),
5417f6dc 863 addrs->other[i].name,
7e8580c1
JB
864 objfile->name);
865 addrs->other[i].addr = 0;
866 }
867 }
868 else
869 addrs->other[i].addr = lower_offset;
870 }
c906108c
SS
871 }
872
873 /* Initialize symbol reading routines for this objfile, allow complaints to
874 appear for this new file, and record how verbose to be, then do the
875 initial symbol reading for this file. */
876
c5aa993b 877 (*objfile->sf->sym_init) (objfile);
7eedccfa 878 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 879
7e8580c1
JB
880 if (addrs)
881 (*objfile->sf->sym_offsets) (objfile, addrs);
882 else
883 {
884 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
885
886 /* Just copy in the offset table directly as given to us. */
887 objfile->num_sections = num_offsets;
888 objfile->section_offsets
889 = ((struct section_offsets *)
8b92e4d5 890 obstack_alloc (&objfile->objfile_obstack, size));
7e8580c1
JB
891 memcpy (objfile->section_offsets, offsets, size);
892
893 init_objfile_sect_indices (objfile);
894 }
c906108c 895
96baa820 896 (*objfile->sf->sym_read) (objfile, mainline);
c906108c 897
c906108c
SS
898 /* Discard cleanups as symbol reading was successful. */
899
900 discard_cleanups (old_chain);
f7545552 901 xfree (local_addr);
c906108c
SS
902}
903
904/* Perform required actions after either reading in the initial
905 symbols for a new objfile, or mapping in the symbols from a reusable
906 objfile. */
c5aa993b 907
c906108c 908void
7eedccfa 909new_symfile_objfile (struct objfile *objfile, int add_flags)
c906108c
SS
910{
911
912 /* If this is the main symbol file we have to clean up all users of the
913 old main symbol file. Otherwise it is sufficient to fixup all the
914 breakpoints that may have been redefined by this symbol file. */
7eedccfa 915 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
916 {
917 /* OK, make it the "real" symbol file. */
918 symfile_objfile = objfile;
919
920 clear_symtab_users ();
921 }
7eedccfa 922 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 923 {
69de3c6a 924 breakpoint_re_set ();
c906108c
SS
925 }
926
927 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 928 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
929}
930
931/* Process a symbol file, as either the main file or as a dynamically
932 loaded file.
933
5417f6dc
RM
934 ABFD is a BFD already open on the file, as from symfile_bfd_open.
935 This BFD will be closed on error, and is always consumed by this function.
7904e09f 936
7eedccfa
PP
937 ADD_FLAGS encodes verbosity, whether this is main symbol file or
938 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f
JB
939
940 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
7eedccfa
PP
941 syms_from_objfile, above.
942 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 943
c906108c
SS
944 Upon success, returns a pointer to the objfile that was added.
945 Upon failure, jumps back to command level (never returns). */
7eedccfa 946
7904e09f 947static struct objfile *
7eedccfa
PP
948symbol_file_add_with_addrs_or_offsets (bfd *abfd,
949 int add_flags,
7904e09f
JB
950 struct section_addr_info *addrs,
951 struct section_offsets *offsets,
952 int num_offsets,
7eedccfa 953 int flags)
c906108c
SS
954{
955 struct objfile *objfile;
956 struct partial_symtab *psymtab;
77069918 957 char *debugfile = NULL;
7b90c3f9 958 struct section_addr_info *orig_addrs = NULL;
a39a16c4 959 struct cleanup *my_cleanups;
5417f6dc 960 const char *name = bfd_get_filename (abfd);
7eedccfa 961 const int from_tty = add_flags & SYMFILE_VERBOSE;
c906108c 962
5417f6dc 963 my_cleanups = make_cleanup_bfd_close (abfd);
c906108c 964
5417f6dc
RM
965 /* Give user a chance to burp if we'd be
966 interactively wiping out any existing symbols. */
c906108c
SS
967
968 if ((have_full_symbols () || have_partial_symbols ())
7eedccfa 969 && (add_flags & SYMFILE_MAINLINE)
c906108c 970 && from_tty
9e2f0ad4 971 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 972 error (_("Not confirmed."));
c906108c 973
2df3850c 974 objfile = allocate_objfile (abfd, flags);
5417f6dc 975 discard_cleanups (my_cleanups);
c906108c 976
a39a16c4 977 if (addrs)
63cd24fe 978 {
7b90c3f9
JB
979 orig_addrs = copy_section_addr_info (addrs);
980 make_cleanup_free_section_addr_info (orig_addrs);
63cd24fe 981 }
a39a16c4 982
78a4a9b9
AC
983 /* We either created a new mapped symbol table, mapped an existing
984 symbol table file which has not had initial symbol reading
985 performed, or need to read an unmapped symbol table. */
986 if (from_tty || info_verbose)
c906108c 987 {
769d7dc4
AC
988 if (deprecated_pre_add_symbol_hook)
989 deprecated_pre_add_symbol_hook (name);
78a4a9b9 990 else
c906108c 991 {
bf250677
DE
992 if (print_symbol_loading)
993 {
994 printf_unfiltered (_("Reading symbols from %s..."), name);
995 wrap_here ("");
996 gdb_flush (gdb_stdout);
997 }
c906108c 998 }
c906108c 999 }
78a4a9b9 1000 syms_from_objfile (objfile, addrs, offsets, num_offsets,
7eedccfa 1001 add_flags);
c906108c
SS
1002
1003 /* We now have at least a partial symbol table. Check to see if the
1004 user requested that all symbols be read on initial access via either
1005 the gdb startup command line or on a per symbol file basis. Expand
1006 all partial symbol tables for this objfile if so. */
1007
2acceee2 1008 if ((flags & OBJF_READNOW) || readnow_symbol_files)
c906108c 1009 {
bf250677 1010 if ((from_tty || info_verbose) && print_symbol_loading)
c906108c 1011 {
a3f17187 1012 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1013 wrap_here ("");
1014 gdb_flush (gdb_stdout);
1015 }
1016
c5aa993b 1017 for (psymtab = objfile->psymtabs;
c906108c 1018 psymtab != NULL;
c5aa993b 1019 psymtab = psymtab->next)
c906108c
SS
1020 {
1021 psymtab_to_symtab (psymtab);
1022 }
1023 }
1024
77069918
JK
1025 /* If the file has its own symbol tables it has no separate debug info.
1026 `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to SYMTABS/PSYMTABS.
1027 `.gnu_debuglink' may no longer be present with `.note.gnu.build-id'. */
1028 if (objfile->psymtabs == NULL)
1029 debugfile = find_separate_debug_file (objfile);
5b5d99cf
JB
1030 if (debugfile)
1031 {
5b5d99cf
JB
1032 if (addrs != NULL)
1033 {
1034 objfile->separate_debug_objfile
7eedccfa 1035 = symbol_file_add (debugfile, add_flags, orig_addrs, flags);
5b5d99cf
JB
1036 }
1037 else
1038 {
1039 objfile->separate_debug_objfile
7eedccfa 1040 = symbol_file_add (debugfile, add_flags, NULL, flags);
5b5d99cf
JB
1041 }
1042 objfile->separate_debug_objfile->separate_debug_objfile_backlink
1043 = objfile;
5417f6dc 1044
5b5d99cf
JB
1045 /* Put the separate debug object before the normal one, this is so that
1046 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
1047 put_objfile_before (objfile->separate_debug_objfile, objfile);
5417f6dc 1048
5b5d99cf
JB
1049 xfree (debugfile);
1050 }
5417f6dc 1051
bf250677
DE
1052 if (!have_partial_symbols () && !have_full_symbols ()
1053 && print_symbol_loading)
cb3c37b2
JB
1054 {
1055 wrap_here ("");
d4c0a7a0 1056 printf_unfiltered (_("(no debugging symbols found)"));
8f5ba92b 1057 if (from_tty || info_verbose)
d4c0a7a0 1058 printf_unfiltered ("...");
8f5ba92b 1059 else
d4c0a7a0 1060 printf_unfiltered ("\n");
cb3c37b2
JB
1061 wrap_here ("");
1062 }
1063
c906108c
SS
1064 if (from_tty || info_verbose)
1065 {
769d7dc4
AC
1066 if (deprecated_post_add_symbol_hook)
1067 deprecated_post_add_symbol_hook ();
c906108c 1068 else
c5aa993b 1069 {
bf250677
DE
1070 if (print_symbol_loading)
1071 printf_unfiltered (_("done.\n"));
c5aa993b 1072 }
c906108c
SS
1073 }
1074
481d0f41
JB
1075 /* We print some messages regardless of whether 'from_tty ||
1076 info_verbose' is true, so make sure they go out at the right
1077 time. */
1078 gdb_flush (gdb_stdout);
1079
a39a16c4
MM
1080 do_cleanups (my_cleanups);
1081
109f874e 1082 if (objfile->sf == NULL)
8caee43b
PP
1083 {
1084 observer_notify_new_objfile (objfile);
1085 return objfile; /* No symbols. */
1086 }
109f874e 1087
7eedccfa 1088 new_symfile_objfile (objfile, add_flags);
c906108c 1089
06d3b283 1090 observer_notify_new_objfile (objfile);
c906108c 1091
ce7d4522 1092 bfd_cache_close_all ();
c906108c
SS
1093 return (objfile);
1094}
1095
7904e09f 1096
eb4556d7
JB
1097/* Process the symbol file ABFD, as either the main file or as a
1098 dynamically loaded file.
1099
1100 See symbol_file_add_with_addrs_or_offsets's comments for
1101 details. */
1102struct objfile *
7eedccfa 1103symbol_file_add_from_bfd (bfd *abfd, int add_flags,
eb4556d7 1104 struct section_addr_info *addrs,
7eedccfa 1105 int flags)
eb4556d7 1106{
7eedccfa
PP
1107 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1108 flags);
eb4556d7
JB
1109}
1110
1111
7904e09f
JB
1112/* Process a symbol file, as either the main file or as a dynamically
1113 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1114 for details. */
1115struct objfile *
7eedccfa
PP
1116symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1117 int flags)
7904e09f 1118{
7eedccfa
PP
1119 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1120 flags);
7904e09f
JB
1121}
1122
1123
d7db6da9
FN
1124/* Call symbol_file_add() with default values and update whatever is
1125 affected by the loading of a new main().
1126 Used when the file is supplied in the gdb command line
1127 and by some targets with special loading requirements.
1128 The auxiliary function, symbol_file_add_main_1(), has the flags
1129 argument for the switches that can only be specified in the symbol_file
1130 command itself. */
5417f6dc 1131
1adeb98a
FN
1132void
1133symbol_file_add_main (char *args, int from_tty)
1134{
d7db6da9
FN
1135 symbol_file_add_main_1 (args, from_tty, 0);
1136}
1137
1138static void
1139symbol_file_add_main_1 (char *args, int from_tty, int flags)
1140{
7eedccfa
PP
1141 const int add_flags = SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0);
1142 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1143
d7db6da9
FN
1144 /* Getting new symbols may change our opinion about
1145 what is frameless. */
1146 reinit_frame_cache ();
1147
1148 set_initial_language ();
1adeb98a
FN
1149}
1150
1151void
1152symbol_file_clear (int from_tty)
1153{
1154 if ((have_full_symbols () || have_partial_symbols ())
1155 && from_tty
0430b0d6
AS
1156 && (symfile_objfile
1157 ? !query (_("Discard symbol table from `%s'? "),
1158 symfile_objfile->name)
1159 : !query (_("Discard symbol table? "))))
8a3fe4f8 1160 error (_("Not confirmed."));
1adeb98a 1161
d10c338d 1162 free_all_objfiles ();
1adeb98a 1163
d10c338d
DE
1164 /* solib descriptors may have handles to objfiles. Since their
1165 storage has just been released, we'd better wipe the solib
1166 descriptors as well. */
1167 no_shared_libraries (NULL, from_tty);
1168
1169 symfile_objfile = NULL;
1170 if (from_tty)
1171 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1172}
1173
77069918
JK
1174struct build_id
1175 {
1176 size_t size;
1177 gdb_byte data[1];
1178 };
1179
1180/* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
1181
1182static struct build_id *
1183build_id_bfd_get (bfd *abfd)
1184{
1185 struct build_id *retval;
1186
1187 if (!bfd_check_format (abfd, bfd_object)
1188 || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1189 || elf_tdata (abfd)->build_id == NULL)
1190 return NULL;
1191
1192 retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size);
1193 retval->size = elf_tdata (abfd)->build_id_size;
1194 memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size);
1195
1196 return retval;
1197}
1198
1199/* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
1200
1201static int
1202build_id_verify (const char *filename, struct build_id *check)
1203{
1204 bfd *abfd;
1205 struct build_id *found = NULL;
1206 int retval = 0;
1207
1208 /* We expect to be silent on the non-existing files. */
f1838a98
UW
1209 if (remote_filename_p (filename))
1210 abfd = remote_bfd_open (filename, gnutarget);
1211 else
1212 abfd = bfd_openr (filename, gnutarget);
77069918
JK
1213 if (abfd == NULL)
1214 return 0;
1215
1216 found = build_id_bfd_get (abfd);
1217
1218 if (found == NULL)
1219 warning (_("File \"%s\" has no build-id, file skipped"), filename);
1220 else if (found->size != check->size
1221 || memcmp (found->data, check->data, found->size) != 0)
1222 warning (_("File \"%s\" has a different build-id, file skipped"), filename);
1223 else
1224 retval = 1;
1225
1226 if (!bfd_close (abfd))
1227 warning (_("cannot close \"%s\": %s"), filename,
1228 bfd_errmsg (bfd_get_error ()));
bb01da77
TT
1229
1230 xfree (found);
1231
77069918
JK
1232 return retval;
1233}
1234
1235static char *
1236build_id_to_debug_filename (struct build_id *build_id)
1237{
1238 char *link, *s, *retval = NULL;
1239 gdb_byte *data = build_id->data;
1240 size_t size = build_id->size;
1241
1242 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1243 link = xmalloc (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1244 + 2 * size + (sizeof ".debug" - 1) + 1);
1245 s = link + sprintf (link, "%s/.build-id/", debug_file_directory);
1246 if (size > 0)
1247 {
1248 size--;
1249 s += sprintf (s, "%02x", (unsigned) *data++);
1250 }
1251 if (size > 0)
1252 *s++ = '/';
1253 while (size-- > 0)
1254 s += sprintf (s, "%02x", (unsigned) *data++);
1255 strcpy (s, ".debug");
1256
1257 /* lrealpath() is expensive even for the usually non-existent files. */
1258 if (access (link, F_OK) == 0)
1259 retval = lrealpath (link);
1260 xfree (link);
1261
1262 if (retval != NULL && !build_id_verify (retval, build_id))
1263 {
1264 xfree (retval);
1265 retval = NULL;
1266 }
1267
1268 return retval;
1269}
1270
5b5d99cf
JB
1271static char *
1272get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1273{
1274 asection *sect;
1275 bfd_size_type debuglink_size;
1276 unsigned long crc32;
1277 char *contents;
1278 int crc_offset;
1279 unsigned char *p;
5417f6dc 1280
5b5d99cf
JB
1281 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1282
1283 if (sect == NULL)
1284 return NULL;
1285
1286 debuglink_size = bfd_section_size (objfile->obfd, sect);
5417f6dc 1287
5b5d99cf
JB
1288 contents = xmalloc (debuglink_size);
1289 bfd_get_section_contents (objfile->obfd, sect, contents,
1290 (file_ptr)0, (bfd_size_type)debuglink_size);
1291
1292 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1293 crc_offset = strlen (contents) + 1;
1294 crc_offset = (crc_offset + 3) & ~3;
1295
1296 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
5417f6dc 1297
5b5d99cf
JB
1298 *crc32_out = crc32;
1299 return contents;
1300}
1301
1302static int
1303separate_debug_file_exists (const char *name, unsigned long crc)
1304{
1305 unsigned long file_crc = 0;
f1838a98 1306 bfd *abfd;
777ea8f1 1307 gdb_byte buffer[8*1024];
5b5d99cf
JB
1308 int count;
1309
f1838a98
UW
1310 if (remote_filename_p (name))
1311 abfd = remote_bfd_open (name, gnutarget);
1312 else
1313 abfd = bfd_openr (name, gnutarget);
1314
1315 if (!abfd)
5b5d99cf
JB
1316 return 0;
1317
f1838a98 1318 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
5b5d99cf
JB
1319 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1320
f1838a98 1321 bfd_close (abfd);
5b5d99cf
JB
1322
1323 return crc == file_crc;
1324}
1325
aa28a74e 1326char *debug_file_directory = NULL;
920d2a44
AC
1327static void
1328show_debug_file_directory (struct ui_file *file, int from_tty,
1329 struct cmd_list_element *c, const char *value)
1330{
1331 fprintf_filtered (file, _("\
1332The directory where separate debug symbols are searched for is \"%s\".\n"),
1333 value);
1334}
5b5d99cf
JB
1335
1336#if ! defined (DEBUG_SUBDIRECTORY)
1337#define DEBUG_SUBDIRECTORY ".debug"
1338#endif
1339
1340static char *
1341find_separate_debug_file (struct objfile *objfile)
1342{
1343 asection *sect;
1344 char *basename;
1345 char *dir;
1346 char *debugfile;
1347 char *name_copy;
aa28a74e 1348 char *canon_name;
5b5d99cf
JB
1349 bfd_size_type debuglink_size;
1350 unsigned long crc32;
1351 int i;
77069918
JK
1352 struct build_id *build_id;
1353
1354 build_id = build_id_bfd_get (objfile->obfd);
1355 if (build_id != NULL)
1356 {
1357 char *build_id_name;
1358
1359 build_id_name = build_id_to_debug_filename (build_id);
bb01da77 1360 xfree (build_id);
77069918
JK
1361 /* Prevent looping on a stripped .debug file. */
1362 if (build_id_name != NULL && strcmp (build_id_name, objfile->name) == 0)
1363 {
1364 warning (_("\"%s\": separate debug info file has no debug info"),
1365 build_id_name);
1366 xfree (build_id_name);
1367 }
1368 else if (build_id_name != NULL)
1369 return build_id_name;
1370 }
5b5d99cf
JB
1371
1372 basename = get_debug_link_info (objfile, &crc32);
1373
1374 if (basename == NULL)
1375 return NULL;
5417f6dc 1376
5b5d99cf
JB
1377 dir = xstrdup (objfile->name);
1378
fe36c4f4
JB
1379 /* Strip off the final filename part, leaving the directory name,
1380 followed by a slash. Objfile names should always be absolute and
1381 tilde-expanded, so there should always be a slash in there
1382 somewhere. */
5b5d99cf
JB
1383 for (i = strlen(dir) - 1; i >= 0; i--)
1384 {
1385 if (IS_DIR_SEPARATOR (dir[i]))
1386 break;
1387 }
fe36c4f4 1388 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
5b5d99cf 1389 dir[i+1] = '\0';
5417f6dc 1390
1ffa32ee
JK
1391 /* Set I to max (strlen (canon_name), strlen (dir)). */
1392 canon_name = lrealpath (dir);
1393 i = strlen (dir);
1394 if (canon_name && strlen (canon_name) > i)
1395 i = strlen (canon_name);
1396
5b5d99cf 1397 debugfile = alloca (strlen (debug_file_directory) + 1
1ffa32ee 1398 + i
5b5d99cf
JB
1399 + strlen (DEBUG_SUBDIRECTORY)
1400 + strlen ("/")
5417f6dc 1401 + strlen (basename)
5b5d99cf
JB
1402 + 1);
1403
1404 /* First try in the same directory as the original file. */
1405 strcpy (debugfile, dir);
1406 strcat (debugfile, basename);
1407
1408 if (separate_debug_file_exists (debugfile, crc32))
1409 {
1410 xfree (basename);
1411 xfree (dir);
1ffa32ee 1412 xfree (canon_name);
5b5d99cf
JB
1413 return xstrdup (debugfile);
1414 }
5417f6dc 1415
5b5d99cf
JB
1416 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1417 strcpy (debugfile, dir);
1418 strcat (debugfile, DEBUG_SUBDIRECTORY);
1419 strcat (debugfile, "/");
1420 strcat (debugfile, basename);
1421
1422 if (separate_debug_file_exists (debugfile, crc32))
1423 {
1424 xfree (basename);
1425 xfree (dir);
1ffa32ee 1426 xfree (canon_name);
5b5d99cf
JB
1427 return xstrdup (debugfile);
1428 }
5417f6dc 1429
5b5d99cf
JB
1430 /* Then try in the global debugfile directory. */
1431 strcpy (debugfile, debug_file_directory);
1432 strcat (debugfile, "/");
1433 strcat (debugfile, dir);
5b5d99cf
JB
1434 strcat (debugfile, basename);
1435
1436 if (separate_debug_file_exists (debugfile, crc32))
1437 {
1438 xfree (basename);
1439 xfree (dir);
1ffa32ee 1440 xfree (canon_name);
5b5d99cf
JB
1441 return xstrdup (debugfile);
1442 }
5417f6dc 1443
aa28a74e
DJ
1444 /* If the file is in the sysroot, try using its base path in the
1445 global debugfile directory. */
aa28a74e
DJ
1446 if (canon_name
1447 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1448 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1449 {
1450 strcpy (debugfile, debug_file_directory);
1451 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1452 strcat (debugfile, "/");
1453 strcat (debugfile, basename);
1454
1455 if (separate_debug_file_exists (debugfile, crc32))
1456 {
1457 xfree (canon_name);
1458 xfree (basename);
1459 xfree (dir);
1460 return xstrdup (debugfile);
1461 }
1462 }
1463
1464 if (canon_name)
1465 xfree (canon_name);
1466
5b5d99cf
JB
1467 xfree (basename);
1468 xfree (dir);
1469 return NULL;
1470}
1471
1472
c906108c
SS
1473/* This is the symbol-file command. Read the file, analyze its
1474 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1475 the command is rather bizarre:
1476
1477 1. The function buildargv implements various quoting conventions
1478 which are undocumented and have little or nothing in common with
1479 the way things are quoted (or not quoted) elsewhere in GDB.
1480
1481 2. Options are used, which are not generally used in GDB (perhaps
1482 "set mapped on", "set readnow on" would be better)
1483
1484 3. The order of options matters, which is contrary to GNU
c906108c
SS
1485 conventions (because it is confusing and inconvenient). */
1486
1487void
fba45db2 1488symbol_file_command (char *args, int from_tty)
c906108c 1489{
c906108c
SS
1490 dont_repeat ();
1491
1492 if (args == NULL)
1493 {
1adeb98a 1494 symbol_file_clear (from_tty);
c906108c
SS
1495 }
1496 else
1497 {
d1a41061 1498 char **argv = gdb_buildargv (args);
cb2f3a29
MK
1499 int flags = OBJF_USERLOADED;
1500 struct cleanup *cleanups;
1501 char *name = NULL;
1502
7a292a7a 1503 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1504 while (*argv != NULL)
1505 {
78a4a9b9
AC
1506 if (strcmp (*argv, "-readnow") == 0)
1507 flags |= OBJF_READNOW;
1508 else if (**argv == '-')
8a3fe4f8 1509 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1510 else
1511 {
cb2f3a29 1512 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1513 name = *argv;
78a4a9b9 1514 }
cb2f3a29 1515
c906108c
SS
1516 argv++;
1517 }
1518
1519 if (name == NULL)
cb2f3a29
MK
1520 error (_("no symbol file name was specified"));
1521
c906108c
SS
1522 do_cleanups (cleanups);
1523 }
1524}
1525
1526/* Set the initial language.
1527
cb2f3a29
MK
1528 FIXME: A better solution would be to record the language in the
1529 psymtab when reading partial symbols, and then use it (if known) to
1530 set the language. This would be a win for formats that encode the
1531 language in an easily discoverable place, such as DWARF. For
1532 stabs, we can jump through hoops looking for specially named
1533 symbols or try to intuit the language from the specific type of
1534 stabs we find, but we can't do that until later when we read in
1535 full symbols. */
c906108c 1536
8b60591b 1537void
fba45db2 1538set_initial_language (void)
c906108c
SS
1539{
1540 struct partial_symtab *pst;
c5aa993b 1541 enum language lang = language_unknown;
c906108c
SS
1542
1543 pst = find_main_psymtab ();
1544 if (pst != NULL)
1545 {
c5aa993b 1546 if (pst->filename != NULL)
cb2f3a29
MK
1547 lang = deduce_language_from_filename (pst->filename);
1548
c906108c
SS
1549 if (lang == language_unknown)
1550 {
c5aa993b
JM
1551 /* Make C the default language */
1552 lang = language_c;
c906108c 1553 }
cb2f3a29 1554
c906108c 1555 set_language (lang);
cb2f3a29 1556 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1557 }
1558}
1559
cb2f3a29
MK
1560/* Open the file specified by NAME and hand it off to BFD for
1561 preliminary analysis. Return a newly initialized bfd *, which
1562 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1563 absolute). In case of trouble, error() is called. */
c906108c
SS
1564
1565bfd *
fba45db2 1566symfile_bfd_open (char *name)
c906108c
SS
1567{
1568 bfd *sym_bfd;
1569 int desc;
1570 char *absolute_name;
1571
f1838a98
UW
1572 if (remote_filename_p (name))
1573 {
1574 name = xstrdup (name);
1575 sym_bfd = remote_bfd_open (name, gnutarget);
1576 if (!sym_bfd)
1577 {
1578 make_cleanup (xfree, name);
1579 error (_("`%s': can't open to read symbols: %s."), name,
1580 bfd_errmsg (bfd_get_error ()));
1581 }
1582
1583 if (!bfd_check_format (sym_bfd, bfd_object))
1584 {
1585 bfd_close (sym_bfd);
1586 make_cleanup (xfree, name);
1587 error (_("`%s': can't read symbols: %s."), name,
1588 bfd_errmsg (bfd_get_error ()));
1589 }
1590
1591 return sym_bfd;
1592 }
1593
cb2f3a29 1594 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c
SS
1595
1596 /* Look down path for it, allocate 2nd new malloc'd copy. */
cb2f3a29 1597 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
fbdebf46 1598 O_RDONLY | O_BINARY, &absolute_name);
608506ed 1599#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1600 if (desc < 0)
1601 {
1602 char *exename = alloca (strlen (name) + 5);
1603 strcat (strcpy (exename, name), ".exe");
014d698b 1604 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
fbdebf46 1605 O_RDONLY | O_BINARY, &absolute_name);
c906108c
SS
1606 }
1607#endif
1608 if (desc < 0)
1609 {
b8c9b27d 1610 make_cleanup (xfree, name);
c906108c
SS
1611 perror_with_name (name);
1612 }
cb2f3a29
MK
1613
1614 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1615 bfd. It'll be freed in free_objfile(). */
1616 xfree (name);
1617 name = absolute_name;
c906108c 1618
9f76c2cd 1619 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
c906108c
SS
1620 if (!sym_bfd)
1621 {
1622 close (desc);
b8c9b27d 1623 make_cleanup (xfree, name);
f1838a98 1624 error (_("`%s': can't open to read symbols: %s."), name,
c906108c
SS
1625 bfd_errmsg (bfd_get_error ()));
1626 }
549c1eea 1627 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1628
1629 if (!bfd_check_format (sym_bfd, bfd_object))
1630 {
cb2f3a29
MK
1631 /* FIXME: should be checking for errors from bfd_close (for one
1632 thing, on error it does not free all the storage associated
1633 with the bfd). */
1634 bfd_close (sym_bfd); /* This also closes desc. */
b8c9b27d 1635 make_cleanup (xfree, name);
f1838a98 1636 error (_("`%s': can't read symbols: %s."), name,
c906108c
SS
1637 bfd_errmsg (bfd_get_error ()));
1638 }
cb2f3a29 1639
4f6f9936
JK
1640 /* bfd_usrdata exists for applications and libbfd must not touch it. */
1641 gdb_assert (bfd_usrdata (sym_bfd) == NULL);
1642
cb2f3a29 1643 return sym_bfd;
c906108c
SS
1644}
1645
cb2f3a29
MK
1646/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1647 the section was not found. */
1648
0e931cf0
JB
1649int
1650get_section_index (struct objfile *objfile, char *section_name)
1651{
1652 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1653
0e931cf0
JB
1654 if (sect)
1655 return sect->index;
1656 else
1657 return -1;
1658}
1659
cb2f3a29
MK
1660/* Link SF into the global symtab_fns list. Called on startup by the
1661 _initialize routine in each object file format reader, to register
1662 information about each format the the reader is prepared to
1663 handle. */
c906108c
SS
1664
1665void
fba45db2 1666add_symtab_fns (struct sym_fns *sf)
c906108c
SS
1667{
1668 sf->next = symtab_fns;
1669 symtab_fns = sf;
1670}
1671
cb2f3a29
MK
1672/* Initialize OBJFILE to read symbols from its associated BFD. It
1673 either returns or calls error(). The result is an initialized
1674 struct sym_fns in the objfile structure, that contains cached
1675 information about the symbol file. */
c906108c 1676
31d99776
DJ
1677static struct sym_fns *
1678find_sym_fns (bfd *abfd)
c906108c
SS
1679{
1680 struct sym_fns *sf;
31d99776 1681 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
c906108c 1682
75245b24
MS
1683 if (our_flavour == bfd_target_srec_flavour
1684 || our_flavour == bfd_target_ihex_flavour
1685 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1686 return NULL; /* No symbols. */
75245b24 1687
c5aa993b 1688 for (sf = symtab_fns; sf != NULL; sf = sf->next)
31d99776
DJ
1689 if (our_flavour == sf->sym_flavour)
1690 return sf;
cb2f3a29 1691
8a3fe4f8 1692 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1693 bfd_get_target (abfd));
c906108c
SS
1694}
1695\f
cb2f3a29 1696
c906108c
SS
1697/* This function runs the load command of our current target. */
1698
1699static void
fba45db2 1700load_command (char *arg, int from_tty)
c906108c 1701{
4487aabf
PA
1702 /* The user might be reloading because the binary has changed. Take
1703 this opportunity to check. */
1704 reopen_exec_file ();
1705 reread_symbols ();
1706
c906108c 1707 if (arg == NULL)
1986bccd
AS
1708 {
1709 char *parg;
1710 int count = 0;
1711
1712 parg = arg = get_exec_file (1);
1713
1714 /* Count how many \ " ' tab space there are in the name. */
1715 while ((parg = strpbrk (parg, "\\\"'\t ")))
1716 {
1717 parg++;
1718 count++;
1719 }
1720
1721 if (count)
1722 {
1723 /* We need to quote this string so buildargv can pull it apart. */
1724 char *temp = xmalloc (strlen (arg) + count + 1 );
1725 char *ptemp = temp;
1726 char *prev;
1727
1728 make_cleanup (xfree, temp);
1729
1730 prev = parg = arg;
1731 while ((parg = strpbrk (parg, "\\\"'\t ")))
1732 {
1733 strncpy (ptemp, prev, parg - prev);
1734 ptemp += parg - prev;
1735 prev = parg++;
1736 *ptemp++ = '\\';
1737 }
1738 strcpy (ptemp, prev);
1739
1740 arg = temp;
1741 }
1742 }
1743
c906108c 1744 target_load (arg, from_tty);
2889e661
JB
1745
1746 /* After re-loading the executable, we don't really know which
1747 overlays are mapped any more. */
1748 overlay_cache_invalid = 1;
c906108c
SS
1749}
1750
1751/* This version of "load" should be usable for any target. Currently
1752 it is just used for remote targets, not inftarg.c or core files,
1753 on the theory that only in that case is it useful.
1754
1755 Avoiding xmodem and the like seems like a win (a) because we don't have
1756 to worry about finding it, and (b) On VMS, fork() is very slow and so
1757 we don't want to run a subprocess. On the other hand, I'm not sure how
1758 performance compares. */
917317f4 1759
917317f4
JM
1760static int validate_download = 0;
1761
e4f9b4d5
MS
1762/* Callback service function for generic_load (bfd_map_over_sections). */
1763
1764static void
1765add_section_size_callback (bfd *abfd, asection *asec, void *data)
1766{
1767 bfd_size_type *sum = data;
1768
2c500098 1769 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1770}
1771
1772/* Opaque data for load_section_callback. */
1773struct load_section_data {
1774 unsigned long load_offset;
a76d924d
DJ
1775 struct load_progress_data *progress_data;
1776 VEC(memory_write_request_s) *requests;
1777};
1778
1779/* Opaque data for load_progress. */
1780struct load_progress_data {
1781 /* Cumulative data. */
e4f9b4d5
MS
1782 unsigned long write_count;
1783 unsigned long data_count;
1784 bfd_size_type total_size;
a76d924d
DJ
1785};
1786
1787/* Opaque data for load_progress for a single section. */
1788struct load_progress_section_data {
1789 struct load_progress_data *cumulative;
cf7a04e8 1790
a76d924d 1791 /* Per-section data. */
cf7a04e8
DJ
1792 const char *section_name;
1793 ULONGEST section_sent;
1794 ULONGEST section_size;
1795 CORE_ADDR lma;
1796 gdb_byte *buffer;
e4f9b4d5
MS
1797};
1798
a76d924d 1799/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1800
1801static void
1802load_progress (ULONGEST bytes, void *untyped_arg)
1803{
a76d924d
DJ
1804 struct load_progress_section_data *args = untyped_arg;
1805 struct load_progress_data *totals;
1806
1807 if (args == NULL)
1808 /* Writing padding data. No easy way to get at the cumulative
1809 stats, so just ignore this. */
1810 return;
1811
1812 totals = args->cumulative;
1813
1814 if (bytes == 0 && args->section_sent == 0)
1815 {
1816 /* The write is just starting. Let the user know we've started
1817 this section. */
5af949e3
UW
1818 ui_out_message (uiout, 0, "Loading section %s, size %s lma %s\n",
1819 args->section_name, hex_string (args->section_size),
1820 paddress (target_gdbarch, args->lma));
a76d924d
DJ
1821 return;
1822 }
cf7a04e8
DJ
1823
1824 if (validate_download)
1825 {
1826 /* Broken memories and broken monitors manifest themselves here
1827 when bring new computers to life. This doubles already slow
1828 downloads. */
1829 /* NOTE: cagney/1999-10-18: A more efficient implementation
1830 might add a verify_memory() method to the target vector and
1831 then use that. remote.c could implement that method using
1832 the ``qCRC'' packet. */
1833 gdb_byte *check = xmalloc (bytes);
1834 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1835
1836 if (target_read_memory (args->lma, check, bytes) != 0)
5af949e3
UW
1837 error (_("Download verify read failed at %s"),
1838 paddress (target_gdbarch, args->lma));
cf7a04e8 1839 if (memcmp (args->buffer, check, bytes) != 0)
5af949e3
UW
1840 error (_("Download verify compare failed at %s"),
1841 paddress (target_gdbarch, args->lma));
cf7a04e8
DJ
1842 do_cleanups (verify_cleanups);
1843 }
a76d924d 1844 totals->data_count += bytes;
cf7a04e8
DJ
1845 args->lma += bytes;
1846 args->buffer += bytes;
a76d924d 1847 totals->write_count += 1;
cf7a04e8
DJ
1848 args->section_sent += bytes;
1849 if (quit_flag
1850 || (deprecated_ui_load_progress_hook != NULL
1851 && deprecated_ui_load_progress_hook (args->section_name,
1852 args->section_sent)))
1853 error (_("Canceled the download"));
1854
1855 if (deprecated_show_load_progress != NULL)
1856 deprecated_show_load_progress (args->section_name,
1857 args->section_sent,
1858 args->section_size,
a76d924d
DJ
1859 totals->data_count,
1860 totals->total_size);
cf7a04e8
DJ
1861}
1862
e4f9b4d5
MS
1863/* Callback service function for generic_load (bfd_map_over_sections). */
1864
1865static void
1866load_section_callback (bfd *abfd, asection *asec, void *data)
1867{
a76d924d 1868 struct memory_write_request *new_request;
e4f9b4d5 1869 struct load_section_data *args = data;
a76d924d 1870 struct load_progress_section_data *section_data;
cf7a04e8
DJ
1871 bfd_size_type size = bfd_get_section_size (asec);
1872 gdb_byte *buffer;
cf7a04e8 1873 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 1874
cf7a04e8
DJ
1875 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1876 return;
e4f9b4d5 1877
cf7a04e8
DJ
1878 if (size == 0)
1879 return;
e4f9b4d5 1880
a76d924d
DJ
1881 new_request = VEC_safe_push (memory_write_request_s,
1882 args->requests, NULL);
1883 memset (new_request, 0, sizeof (struct memory_write_request));
1884 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1885 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1886 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1887 new_request->data = xmalloc (size);
1888 new_request->baton = section_data;
cf7a04e8 1889
a76d924d 1890 buffer = new_request->data;
cf7a04e8 1891
a76d924d
DJ
1892 section_data->cumulative = args->progress_data;
1893 section_data->section_name = sect_name;
1894 section_data->section_size = size;
1895 section_data->lma = new_request->begin;
1896 section_data->buffer = buffer;
cf7a04e8
DJ
1897
1898 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
1899}
1900
1901/* Clean up an entire memory request vector, including load
1902 data and progress records. */
cf7a04e8 1903
a76d924d
DJ
1904static void
1905clear_memory_write_data (void *arg)
1906{
1907 VEC(memory_write_request_s) **vec_p = arg;
1908 VEC(memory_write_request_s) *vec = *vec_p;
1909 int i;
1910 struct memory_write_request *mr;
cf7a04e8 1911
a76d924d
DJ
1912 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1913 {
1914 xfree (mr->data);
1915 xfree (mr->baton);
1916 }
1917 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
1918}
1919
c906108c 1920void
917317f4 1921generic_load (char *args, int from_tty)
c906108c 1922{
c906108c 1923 bfd *loadfile_bfd;
2b71414d 1924 struct timeval start_time, end_time;
917317f4 1925 char *filename;
1986bccd 1926 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 1927 struct load_section_data cbdata;
a76d924d
DJ
1928 struct load_progress_data total_progress;
1929
e4f9b4d5 1930 CORE_ADDR entry;
1986bccd 1931 char **argv;
e4f9b4d5 1932
a76d924d
DJ
1933 memset (&cbdata, 0, sizeof (cbdata));
1934 memset (&total_progress, 0, sizeof (total_progress));
1935 cbdata.progress_data = &total_progress;
1936
1937 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 1938
d1a41061
PP
1939 if (args == NULL)
1940 error_no_arg (_("file to load"));
1986bccd 1941
d1a41061 1942 argv = gdb_buildargv (args);
1986bccd
AS
1943 make_cleanup_freeargv (argv);
1944
1945 filename = tilde_expand (argv[0]);
1946 make_cleanup (xfree, filename);
1947
1948 if (argv[1] != NULL)
917317f4
JM
1949 {
1950 char *endptr;
ba5f2f8a 1951
1986bccd
AS
1952 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1953
1954 /* If the last word was not a valid number then
1955 treat it as a file name with spaces in. */
1956 if (argv[1] == endptr)
1957 error (_("Invalid download offset:%s."), argv[1]);
1958
1959 if (argv[2] != NULL)
1960 error (_("Too many parameters."));
917317f4 1961 }
c906108c 1962
917317f4 1963 /* Open the file for loading. */
c906108c
SS
1964 loadfile_bfd = bfd_openr (filename, gnutarget);
1965 if (loadfile_bfd == NULL)
1966 {
1967 perror_with_name (filename);
1968 return;
1969 }
917317f4 1970
c906108c
SS
1971 /* FIXME: should be checking for errors from bfd_close (for one thing,
1972 on error it does not free all the storage associated with the
1973 bfd). */
5c65bbb6 1974 make_cleanup_bfd_close (loadfile_bfd);
c906108c 1975
c5aa993b 1976 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 1977 {
8a3fe4f8 1978 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
1979 bfd_errmsg (bfd_get_error ()));
1980 }
c5aa993b 1981
5417f6dc 1982 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
1983 (void *) &total_progress.total_size);
1984
1985 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 1986
2b71414d 1987 gettimeofday (&start_time, NULL);
c906108c 1988
a76d924d
DJ
1989 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1990 load_progress) != 0)
1991 error (_("Load failed"));
c906108c 1992
2b71414d 1993 gettimeofday (&end_time, NULL);
ba5f2f8a 1994
e4f9b4d5 1995 entry = bfd_get_start_address (loadfile_bfd);
e4f9b4d5 1996 ui_out_text (uiout, "Start address ");
5af949e3 1997 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
e4f9b4d5 1998 ui_out_text (uiout, ", load size ");
a76d924d 1999 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 2000 ui_out_text (uiout, "\n");
e4f9b4d5
MS
2001 /* We were doing this in remote-mips.c, I suspect it is right
2002 for other targets too. */
fb14de7b 2003 regcache_write_pc (get_current_regcache (), entry);
c906108c 2004
7ca9f392
AC
2005 /* FIXME: are we supposed to call symbol_file_add or not? According
2006 to a comment from remote-mips.c (where a call to symbol_file_add
2007 was commented out), making the call confuses GDB if more than one
2008 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 2009 others don't (or didn't - perhaps they have all been deleted). */
c906108c 2010
a76d924d
DJ
2011 print_transfer_performance (gdb_stdout, total_progress.data_count,
2012 total_progress.write_count,
2013 &start_time, &end_time);
c906108c
SS
2014
2015 do_cleanups (old_cleanups);
2016}
2017
2018/* Report how fast the transfer went. */
2019
917317f4
JM
2020/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2021 replaced by print_transfer_performance (with a very different
2022 function signature). */
2023
c906108c 2024void
fba45db2
KB
2025report_transfer_performance (unsigned long data_count, time_t start_time,
2026 time_t end_time)
c906108c 2027{
2b71414d
DJ
2028 struct timeval start, end;
2029
2030 start.tv_sec = start_time;
2031 start.tv_usec = 0;
2032 end.tv_sec = end_time;
2033 end.tv_usec = 0;
2034
2035 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
917317f4
JM
2036}
2037
2038void
d9fcf2fb 2039print_transfer_performance (struct ui_file *stream,
917317f4
JM
2040 unsigned long data_count,
2041 unsigned long write_count,
2b71414d
DJ
2042 const struct timeval *start_time,
2043 const struct timeval *end_time)
917317f4 2044{
9f43d28c 2045 ULONGEST time_count;
2b71414d
DJ
2046
2047 /* Compute the elapsed time in milliseconds, as a tradeoff between
2048 accuracy and overflow. */
2049 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2050 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2051
8b93c638
JM
2052 ui_out_text (uiout, "Transfer rate: ");
2053 if (time_count > 0)
2054 {
9f43d28c
DJ
2055 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2056
2057 if (ui_out_is_mi_like_p (uiout))
2058 {
2059 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2060 ui_out_text (uiout, " bits/sec");
2061 }
2062 else if (rate < 1024)
2063 {
2064 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2065 ui_out_text (uiout, " bytes/sec");
2066 }
2067 else
2068 {
2069 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2070 ui_out_text (uiout, " KB/sec");
2071 }
8b93c638
JM
2072 }
2073 else
2074 {
ba5f2f8a 2075 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 2076 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
2077 }
2078 if (write_count > 0)
2079 {
2080 ui_out_text (uiout, ", ");
ba5f2f8a 2081 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
2082 ui_out_text (uiout, " bytes/write");
2083 }
2084 ui_out_text (uiout, ".\n");
c906108c
SS
2085}
2086
2087/* This function allows the addition of incrementally linked object files.
2088 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2089/* Note: ezannoni 2000-04-13 This function/command used to have a
2090 special case syntax for the rombug target (Rombug is the boot
2091 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2092 rombug case, the user doesn't need to supply a text address,
2093 instead a call to target_link() (in target.c) would supply the
2094 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2095
c906108c 2096static void
fba45db2 2097add_symbol_file_command (char *args, int from_tty)
c906108c 2098{
5af949e3 2099 struct gdbarch *gdbarch = get_current_arch ();
db162d44 2100 char *filename = NULL;
2df3850c 2101 int flags = OBJF_USERLOADED;
c906108c 2102 char *arg;
2acceee2 2103 int expecting_option = 0;
db162d44 2104 int section_index = 0;
2acceee2
JM
2105 int argcnt = 0;
2106 int sec_num = 0;
2107 int i;
db162d44
EZ
2108 int expecting_sec_name = 0;
2109 int expecting_sec_addr = 0;
5b96932b 2110 char **argv;
db162d44 2111
a39a16c4 2112 struct sect_opt
2acceee2 2113 {
2acceee2
JM
2114 char *name;
2115 char *value;
a39a16c4 2116 };
db162d44 2117
a39a16c4
MM
2118 struct section_addr_info *section_addrs;
2119 struct sect_opt *sect_opts = NULL;
2120 size_t num_sect_opts = 0;
3017564a 2121 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2122
a39a16c4 2123 num_sect_opts = 16;
5417f6dc 2124 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
2125 * sizeof (struct sect_opt));
2126
c906108c
SS
2127 dont_repeat ();
2128
2129 if (args == NULL)
8a3fe4f8 2130 error (_("add-symbol-file takes a file name and an address"));
c906108c 2131
d1a41061 2132 argv = gdb_buildargv (args);
5b96932b 2133 make_cleanup_freeargv (argv);
db162d44 2134
5b96932b
AS
2135 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2136 {
2137 /* Process the argument. */
db162d44 2138 if (argcnt == 0)
c906108c 2139 {
db162d44
EZ
2140 /* The first argument is the file name. */
2141 filename = tilde_expand (arg);
3017564a 2142 make_cleanup (xfree, filename);
c906108c 2143 }
db162d44 2144 else
7a78ae4e
ND
2145 if (argcnt == 1)
2146 {
2147 /* The second argument is always the text address at which
2148 to load the program. */
2149 sect_opts[section_index].name = ".text";
2150 sect_opts[section_index].value = arg;
f414f22f 2151 if (++section_index >= num_sect_opts)
a39a16c4
MM
2152 {
2153 num_sect_opts *= 2;
5417f6dc 2154 sect_opts = ((struct sect_opt *)
a39a16c4 2155 xrealloc (sect_opts,
5417f6dc 2156 num_sect_opts
a39a16c4
MM
2157 * sizeof (struct sect_opt)));
2158 }
7a78ae4e
ND
2159 }
2160 else
2161 {
2162 /* It's an option (starting with '-') or it's an argument
2163 to an option */
2164
2165 if (*arg == '-')
2166 {
78a4a9b9
AC
2167 if (strcmp (arg, "-readnow") == 0)
2168 flags |= OBJF_READNOW;
2169 else if (strcmp (arg, "-s") == 0)
2170 {
2171 expecting_sec_name = 1;
2172 expecting_sec_addr = 1;
2173 }
7a78ae4e
ND
2174 }
2175 else
2176 {
2177 if (expecting_sec_name)
db162d44 2178 {
7a78ae4e
ND
2179 sect_opts[section_index].name = arg;
2180 expecting_sec_name = 0;
db162d44
EZ
2181 }
2182 else
7a78ae4e
ND
2183 if (expecting_sec_addr)
2184 {
2185 sect_opts[section_index].value = arg;
2186 expecting_sec_addr = 0;
f414f22f 2187 if (++section_index >= num_sect_opts)
a39a16c4
MM
2188 {
2189 num_sect_opts *= 2;
5417f6dc 2190 sect_opts = ((struct sect_opt *)
a39a16c4 2191 xrealloc (sect_opts,
5417f6dc 2192 num_sect_opts
a39a16c4
MM
2193 * sizeof (struct sect_opt)));
2194 }
7a78ae4e
ND
2195 }
2196 else
8a3fe4f8 2197 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
7a78ae4e
ND
2198 }
2199 }
c906108c 2200 }
c906108c 2201
927890d0
JB
2202 /* This command takes at least two arguments. The first one is a
2203 filename, and the second is the address where this file has been
2204 loaded. Abort now if this address hasn't been provided by the
2205 user. */
2206 if (section_index < 1)
2207 error (_("The address where %s has been loaded is missing"), filename);
2208
db162d44
EZ
2209 /* Print the prompt for the query below. And save the arguments into
2210 a sect_addr_info structure to be passed around to other
2211 functions. We have to split this up into separate print
bb599908 2212 statements because hex_string returns a local static
db162d44 2213 string. */
5417f6dc 2214
a3f17187 2215 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2216 section_addrs = alloc_section_addr_info (section_index);
2217 make_cleanup (xfree, section_addrs);
db162d44 2218 for (i = 0; i < section_index; i++)
c906108c 2219 {
db162d44
EZ
2220 CORE_ADDR addr;
2221 char *val = sect_opts[i].value;
2222 char *sec = sect_opts[i].name;
5417f6dc 2223
ae822768 2224 addr = parse_and_eval_address (val);
db162d44 2225
db162d44
EZ
2226 /* Here we store the section offsets in the order they were
2227 entered on the command line. */
a39a16c4
MM
2228 section_addrs->other[sec_num].name = sec;
2229 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2230 printf_unfiltered ("\t%s_addr = %s\n", sec,
2231 paddress (gdbarch, addr));
db162d44
EZ
2232 sec_num++;
2233
5417f6dc 2234 /* The object's sections are initialized when a
db162d44 2235 call is made to build_objfile_section_table (objfile).
5417f6dc 2236 This happens in reread_symbols.
db162d44
EZ
2237 At this point, we don't know what file type this is,
2238 so we can't determine what section names are valid. */
2acceee2 2239 }
db162d44 2240
2acceee2 2241 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2242 error (_("Not confirmed."));
c906108c 2243
7eedccfa
PP
2244 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2245 section_addrs, flags);
c906108c
SS
2246
2247 /* Getting new symbols may change our opinion about what is
2248 frameless. */
2249 reinit_frame_cache ();
db162d44 2250 do_cleanups (my_cleanups);
c906108c
SS
2251}
2252\f
70992597 2253
c906108c
SS
2254/* Re-read symbols if a symbol-file has changed. */
2255void
fba45db2 2256reread_symbols (void)
c906108c
SS
2257{
2258 struct objfile *objfile;
2259 long new_modtime;
2260 int reread_one = 0;
2261 struct stat new_statbuf;
2262 int res;
2263
2264 /* With the addition of shared libraries, this should be modified,
2265 the load time should be saved in the partial symbol tables, since
2266 different tables may come from different source files. FIXME.
2267 This routine should then walk down each partial symbol table
2268 and see if the symbol table that it originates from has been changed */
2269
c5aa993b
JM
2270 for (objfile = object_files; objfile; objfile = objfile->next)
2271 {
2272 if (objfile->obfd)
2273 {
52d16ba8 2274#ifdef DEPRECATED_IBM6000_TARGET
c5aa993b
JM
2275 /* If this object is from a shared library, then you should
2276 stat on the library name, not member name. */
c906108c 2277
c5aa993b
JM
2278 if (objfile->obfd->my_archive)
2279 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2280 else
c906108c 2281#endif
c5aa993b
JM
2282 res = stat (objfile->name, &new_statbuf);
2283 if (res != 0)
c906108c 2284 {
c5aa993b 2285 /* FIXME, should use print_sys_errmsg but it's not filtered. */
a3f17187 2286 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
c5aa993b
JM
2287 objfile->name);
2288 continue;
c906108c 2289 }
c5aa993b
JM
2290 new_modtime = new_statbuf.st_mtime;
2291 if (new_modtime != objfile->mtime)
c906108c 2292 {
c5aa993b
JM
2293 struct cleanup *old_cleanups;
2294 struct section_offsets *offsets;
2295 int num_offsets;
c5aa993b
JM
2296 char *obfd_filename;
2297
a3f17187 2298 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
c5aa993b
JM
2299 objfile->name);
2300
2301 /* There are various functions like symbol_file_add,
2302 symfile_bfd_open, syms_from_objfile, etc., which might
2303 appear to do what we want. But they have various other
2304 effects which we *don't* want. So we just do stuff
2305 ourselves. We don't worry about mapped files (for one thing,
2306 any mapped file will be out of date). */
2307
2308 /* If we get an error, blow away this objfile (not sure if
2309 that is the correct response for things like shared
2310 libraries). */
74b7792f 2311 old_cleanups = make_cleanup_free_objfile (objfile);
c5aa993b 2312 /* We need to do this whenever any symbols go away. */
74b7792f 2313 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c5aa993b 2314
b2de52bb
JK
2315 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2316 bfd_get_filename (exec_bfd)) == 0)
2317 {
2318 /* Reload EXEC_BFD without asking anything. */
2319
2320 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2321 }
2322
c5aa993b
JM
2323 /* Clean up any state BFD has sitting around. We don't need
2324 to close the descriptor but BFD lacks a way of closing the
2325 BFD without closing the descriptor. */
2326 obfd_filename = bfd_get_filename (objfile->obfd);
2327 if (!bfd_close (objfile->obfd))
8a3fe4f8 2328 error (_("Can't close BFD for %s: %s"), objfile->name,
c5aa993b 2329 bfd_errmsg (bfd_get_error ()));
f1838a98
UW
2330 if (remote_filename_p (obfd_filename))
2331 objfile->obfd = remote_bfd_open (obfd_filename, gnutarget);
2332 else
2333 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
c5aa993b 2334 if (objfile->obfd == NULL)
8a3fe4f8 2335 error (_("Can't open %s to read symbols."), objfile->name);
3db741ef
PP
2336 else
2337 objfile->obfd = gdb_bfd_ref (objfile->obfd);
c5aa993b
JM
2338 /* bfd_openr sets cacheable to true, which is what we want. */
2339 if (!bfd_check_format (objfile->obfd, bfd_object))
8a3fe4f8 2340 error (_("Can't read symbols from %s: %s."), objfile->name,
c5aa993b
JM
2341 bfd_errmsg (bfd_get_error ()));
2342
2343 /* Save the offsets, we will nuke them with the rest of the
8b92e4d5 2344 objfile_obstack. */
c5aa993b 2345 num_offsets = objfile->num_sections;
5417f6dc 2346 offsets = ((struct section_offsets *)
a39a16c4 2347 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
5417f6dc 2348 memcpy (offsets, objfile->section_offsets,
a39a16c4 2349 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b 2350
ae5a43e0
DJ
2351 /* Remove any references to this objfile in the global
2352 value lists. */
2353 preserve_values (objfile);
2354
c5aa993b
JM
2355 /* Nuke all the state that we will re-read. Much of the following
2356 code which sets things to NULL really is necessary to tell
5b2ab461
JK
2357 other parts of GDB that there is nothing currently there.
2358
2359 Try to keep the freeing order compatible with free_objfile. */
2360
2361 if (objfile->sf != NULL)
2362 {
2363 (*objfile->sf->sym_finish) (objfile);
2364 }
2365
2366 clear_objfile_data (objfile);
c5aa993b
JM
2367
2368 /* FIXME: Do we have to free a whole linked list, or is this
2369 enough? */
2370 if (objfile->global_psymbols.list)
2dc74dc1 2371 xfree (objfile->global_psymbols.list);
c5aa993b
JM
2372 memset (&objfile->global_psymbols, 0,
2373 sizeof (objfile->global_psymbols));
2374 if (objfile->static_psymbols.list)
2dc74dc1 2375 xfree (objfile->static_psymbols.list);
c5aa993b
JM
2376 memset (&objfile->static_psymbols, 0,
2377 sizeof (objfile->static_psymbols));
2378
2379 /* Free the obstacks for non-reusable objfiles */
af5f3db6
AC
2380 bcache_xfree (objfile->psymbol_cache);
2381 objfile->psymbol_cache = bcache_xmalloc ();
2382 bcache_xfree (objfile->macro_cache);
2383 objfile->macro_cache = bcache_xmalloc ();
2de7ced7
DJ
2384 if (objfile->demangled_names_hash != NULL)
2385 {
2386 htab_delete (objfile->demangled_names_hash);
2387 objfile->demangled_names_hash = NULL;
2388 }
b99607ea 2389 obstack_free (&objfile->objfile_obstack, 0);
c5aa993b
JM
2390 objfile->sections = NULL;
2391 objfile->symtabs = NULL;
2392 objfile->psymtabs = NULL;
930123b7 2393 objfile->psymtabs_addrmap = NULL;
c5aa993b 2394 objfile->free_psymtabs = NULL;
a1b8c067 2395 objfile->cp_namespace_symtab = NULL;
c5aa993b 2396 objfile->msymbols = NULL;
0a6ddd08 2397 objfile->deprecated_sym_private = NULL;
c5aa993b 2398 objfile->minimal_symbol_count = 0;
0a83117a
MS
2399 memset (&objfile->msymbol_hash, 0,
2400 sizeof (objfile->msymbol_hash));
2401 memset (&objfile->msymbol_demangled_hash, 0,
2402 sizeof (objfile->msymbol_demangled_hash));
c5aa993b 2403
af5f3db6
AC
2404 objfile->psymbol_cache = bcache_xmalloc ();
2405 objfile->macro_cache = bcache_xmalloc ();
1ab21617
EZ
2406 /* obstack_init also initializes the obstack so it is
2407 empty. We could use obstack_specify_allocation but
2408 gdb_obstack.h specifies the alloc/dealloc
2409 functions. */
2410 obstack_init (&objfile->objfile_obstack);
c5aa993b
JM
2411 if (build_objfile_section_table (objfile))
2412 {
8a3fe4f8 2413 error (_("Can't find the file sections in `%s': %s"),
c5aa993b
JM
2414 objfile->name, bfd_errmsg (bfd_get_error ()));
2415 }
15831452 2416 terminate_minimal_symbol_table (objfile);
c5aa993b
JM
2417
2418 /* We use the same section offsets as from last time. I'm not
2419 sure whether that is always correct for shared libraries. */
2420 objfile->section_offsets = (struct section_offsets *)
5417f6dc 2421 obstack_alloc (&objfile->objfile_obstack,
a39a16c4 2422 SIZEOF_N_SECTION_OFFSETS (num_offsets));
5417f6dc 2423 memcpy (objfile->section_offsets, offsets,
a39a16c4 2424 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b
JM
2425 objfile->num_sections = num_offsets;
2426
2427 /* What the hell is sym_new_init for, anyway? The concept of
2428 distinguishing between the main file and additional files
2429 in this way seems rather dubious. */
2430 if (objfile == symfile_objfile)
2431 {
2432 (*objfile->sf->sym_new_init) (objfile);
c5aa993b
JM
2433 }
2434
2435 (*objfile->sf->sym_init) (objfile);
b9caf505 2436 clear_complaints (&symfile_complaints, 1, 1);
c5aa993b
JM
2437 /* The "mainline" parameter is a hideous hack; I think leaving it
2438 zero is OK since dbxread.c also does what it needs to do if
2439 objfile->global_psymbols.size is 0. */
96baa820 2440 (*objfile->sf->sym_read) (objfile, 0);
c5aa993b
JM
2441 if (!have_partial_symbols () && !have_full_symbols ())
2442 {
2443 wrap_here ("");
a3f17187 2444 printf_unfiltered (_("(no debugging symbols found)\n"));
c5aa993b
JM
2445 wrap_here ("");
2446 }
c5aa993b
JM
2447
2448 /* We're done reading the symbol file; finish off complaints. */
b9caf505 2449 clear_complaints (&symfile_complaints, 0, 1);
c906108c 2450
c5aa993b
JM
2451 /* Getting new symbols may change our opinion about what is
2452 frameless. */
c906108c 2453
c5aa993b 2454 reinit_frame_cache ();
c906108c 2455
c5aa993b
JM
2456 /* Discard cleanups as symbol reading was successful. */
2457 discard_cleanups (old_cleanups);
c906108c 2458
c5aa993b
JM
2459 /* If the mtime has changed between the time we set new_modtime
2460 and now, we *want* this to be out of date, so don't call stat
2461 again now. */
2462 objfile->mtime = new_modtime;
2463 reread_one = 1;
5b5d99cf 2464 reread_separate_symbols (objfile);
6528a9ea 2465 init_entry_point_info (objfile);
c5aa993b 2466 }
c906108c
SS
2467 }
2468 }
c906108c
SS
2469
2470 if (reread_one)
ea53e89f 2471 {
ff3536bc
UW
2472 /* Notify objfiles that we've modified objfile sections. */
2473 objfiles_changed ();
2474
ea53e89f
JB
2475 clear_symtab_users ();
2476 /* At least one objfile has changed, so we can consider that
2477 the executable we're debugging has changed too. */
781b42b0 2478 observer_notify_executable_changed ();
ea53e89f 2479 }
c906108c 2480}
5b5d99cf
JB
2481
2482
2483/* Handle separate debug info for OBJFILE, which has just been
2484 re-read:
2485 - If we had separate debug info before, but now we don't, get rid
2486 of the separated objfile.
2487 - If we didn't have separated debug info before, but now we do,
2488 read in the new separated debug info file.
2489 - If the debug link points to a different file, toss the old one
2490 and read the new one.
2491 This function does *not* handle the case where objfile is still
2492 using the same separate debug info file, but that file's timestamp
2493 has changed. That case should be handled by the loop in
2494 reread_symbols already. */
2495static void
2496reread_separate_symbols (struct objfile *objfile)
2497{
2498 char *debug_file;
2499 unsigned long crc32;
2500
2501 /* Does the updated objfile's debug info live in a
2502 separate file? */
2503 debug_file = find_separate_debug_file (objfile);
2504
2505 if (objfile->separate_debug_objfile)
2506 {
2507 /* There are two cases where we need to get rid of
2508 the old separated debug info objfile:
2509 - if the new primary objfile doesn't have
2510 separated debug info, or
2511 - if the new primary objfile has separate debug
2512 info, but it's under a different filename.
5417f6dc 2513
5b5d99cf
JB
2514 If the old and new objfiles both have separate
2515 debug info, under the same filename, then we're
2516 okay --- if the separated file's contents have
2517 changed, we will have caught that when we
2518 visited it in this function's outermost
2519 loop. */
2520 if (! debug_file
2521 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2522 free_objfile (objfile->separate_debug_objfile);
2523 }
2524
2525 /* If the new objfile has separate debug info, and we
2526 haven't loaded it already, do so now. */
2527 if (debug_file
2528 && ! objfile->separate_debug_objfile)
2529 {
2530 /* Use the same section offset table as objfile itself.
2531 Preserve the flags from objfile that make sense. */
2532 objfile->separate_debug_objfile
2533 = (symbol_file_add_with_addrs_or_offsets
5417f6dc 2534 (symfile_bfd_open (debug_file),
7eedccfa 2535 info_verbose ? SYMFILE_VERBOSE : 0,
5b5d99cf
JB
2536 0, /* No addr table. */
2537 objfile->section_offsets, objfile->num_sections,
78a4a9b9 2538 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
5b5d99cf
JB
2539 | OBJF_USERLOADED)));
2540 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2541 = objfile;
2542 }
73780b3c
MS
2543 if (debug_file)
2544 xfree (debug_file);
5b5d99cf
JB
2545}
2546
2547
c906108c
SS
2548\f
2549
c5aa993b
JM
2550
2551typedef struct
2552{
2553 char *ext;
c906108c 2554 enum language lang;
c5aa993b
JM
2555}
2556filename_language;
c906108c 2557
c5aa993b 2558static filename_language *filename_language_table;
c906108c
SS
2559static int fl_table_size, fl_table_next;
2560
2561static void
fba45db2 2562add_filename_language (char *ext, enum language lang)
c906108c
SS
2563{
2564 if (fl_table_next >= fl_table_size)
2565 {
2566 fl_table_size += 10;
5417f6dc 2567 filename_language_table =
25bf3106
PM
2568 xrealloc (filename_language_table,
2569 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2570 }
2571
4fcf66da 2572 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2573 filename_language_table[fl_table_next].lang = lang;
2574 fl_table_next++;
2575}
2576
2577static char *ext_args;
920d2a44
AC
2578static void
2579show_ext_args (struct ui_file *file, int from_tty,
2580 struct cmd_list_element *c, const char *value)
2581{
2582 fprintf_filtered (file, _("\
2583Mapping between filename extension and source language is \"%s\".\n"),
2584 value);
2585}
c906108c
SS
2586
2587static void
26c41df3 2588set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2589{
2590 int i;
2591 char *cp = ext_args;
2592 enum language lang;
2593
2594 /* First arg is filename extension, starting with '.' */
2595 if (*cp != '.')
8a3fe4f8 2596 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2597
2598 /* Find end of first arg. */
c5aa993b 2599 while (*cp && !isspace (*cp))
c906108c
SS
2600 cp++;
2601
2602 if (*cp == '\0')
8a3fe4f8 2603 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2604 ext_args);
2605
2606 /* Null-terminate first arg */
c5aa993b 2607 *cp++ = '\0';
c906108c
SS
2608
2609 /* Find beginning of second arg, which should be a source language. */
2610 while (*cp && isspace (*cp))
2611 cp++;
2612
2613 if (*cp == '\0')
8a3fe4f8 2614 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2615 ext_args);
2616
2617 /* Lookup the language from among those we know. */
2618 lang = language_enum (cp);
2619
2620 /* Now lookup the filename extension: do we already know it? */
2621 for (i = 0; i < fl_table_next; i++)
2622 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2623 break;
2624
2625 if (i >= fl_table_next)
2626 {
2627 /* new file extension */
2628 add_filename_language (ext_args, lang);
2629 }
2630 else
2631 {
2632 /* redefining a previously known filename extension */
2633
2634 /* if (from_tty) */
2635 /* query ("Really make files of type %s '%s'?", */
2636 /* ext_args, language_str (lang)); */
2637
b8c9b27d 2638 xfree (filename_language_table[i].ext);
4fcf66da 2639 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2640 filename_language_table[i].lang = lang;
2641 }
2642}
2643
2644static void
fba45db2 2645info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2646{
2647 int i;
2648
a3f17187 2649 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2650 printf_filtered ("\n\n");
2651 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2652 printf_filtered ("\t%s\t- %s\n",
2653 filename_language_table[i].ext,
c906108c
SS
2654 language_str (filename_language_table[i].lang));
2655}
2656
2657static void
fba45db2 2658init_filename_language_table (void)
c906108c
SS
2659{
2660 if (fl_table_size == 0) /* protect against repetition */
2661 {
2662 fl_table_size = 20;
2663 fl_table_next = 0;
c5aa993b 2664 filename_language_table =
c906108c 2665 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b
JM
2666 add_filename_language (".c", language_c);
2667 add_filename_language (".C", language_cplus);
2668 add_filename_language (".cc", language_cplus);
2669 add_filename_language (".cp", language_cplus);
2670 add_filename_language (".cpp", language_cplus);
2671 add_filename_language (".cxx", language_cplus);
2672 add_filename_language (".c++", language_cplus);
2673 add_filename_language (".java", language_java);
c906108c 2674 add_filename_language (".class", language_java);
da2cf7e0 2675 add_filename_language (".m", language_objc);
c5aa993b
JM
2676 add_filename_language (".f", language_fortran);
2677 add_filename_language (".F", language_fortran);
2678 add_filename_language (".s", language_asm);
aa707ed0 2679 add_filename_language (".sx", language_asm);
c5aa993b 2680 add_filename_language (".S", language_asm);
c6fd39cd
PM
2681 add_filename_language (".pas", language_pascal);
2682 add_filename_language (".p", language_pascal);
2683 add_filename_language (".pp", language_pascal);
963a6417
PH
2684 add_filename_language (".adb", language_ada);
2685 add_filename_language (".ads", language_ada);
2686 add_filename_language (".a", language_ada);
2687 add_filename_language (".ada", language_ada);
c906108c
SS
2688 }
2689}
2690
2691enum language
fba45db2 2692deduce_language_from_filename (char *filename)
c906108c
SS
2693{
2694 int i;
2695 char *cp;
2696
2697 if (filename != NULL)
2698 if ((cp = strrchr (filename, '.')) != NULL)
2699 for (i = 0; i < fl_table_next; i++)
2700 if (strcmp (cp, filename_language_table[i].ext) == 0)
2701 return filename_language_table[i].lang;
2702
2703 return language_unknown;
2704}
2705\f
2706/* allocate_symtab:
2707
2708 Allocate and partly initialize a new symbol table. Return a pointer
2709 to it. error() if no space.
2710
2711 Caller must set these fields:
c5aa993b
JM
2712 LINETABLE(symtab)
2713 symtab->blockvector
2714 symtab->dirname
2715 symtab->free_code
2716 symtab->free_ptr
2717 possibly free_named_symtabs (symtab->filename);
c906108c
SS
2718 */
2719
2720struct symtab *
fba45db2 2721allocate_symtab (char *filename, struct objfile *objfile)
c906108c 2722{
52f0bd74 2723 struct symtab *symtab;
c906108c
SS
2724
2725 symtab = (struct symtab *)
4a146b47 2726 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2727 memset (symtab, 0, sizeof (*symtab));
c5aa993b 2728 symtab->filename = obsavestring (filename, strlen (filename),
4a146b47 2729 &objfile->objfile_obstack);
c5aa993b
JM
2730 symtab->fullname = NULL;
2731 symtab->language = deduce_language_from_filename (filename);
2732 symtab->debugformat = obsavestring ("unknown", 7,
4a146b47 2733 &objfile->objfile_obstack);
c906108c
SS
2734
2735 /* Hook it to the objfile it comes from */
2736
c5aa993b
JM
2737 symtab->objfile = objfile;
2738 symtab->next = objfile->symtabs;
2739 objfile->symtabs = symtab;
c906108c 2740
c906108c
SS
2741 return (symtab);
2742}
2743
2744struct partial_symtab *
fba45db2 2745allocate_psymtab (char *filename, struct objfile *objfile)
c906108c
SS
2746{
2747 struct partial_symtab *psymtab;
2748
c5aa993b 2749 if (objfile->free_psymtabs)
c906108c 2750 {
c5aa993b
JM
2751 psymtab = objfile->free_psymtabs;
2752 objfile->free_psymtabs = psymtab->next;
c906108c
SS
2753 }
2754 else
2755 psymtab = (struct partial_symtab *)
8b92e4d5 2756 obstack_alloc (&objfile->objfile_obstack,
c906108c
SS
2757 sizeof (struct partial_symtab));
2758
2759 memset (psymtab, 0, sizeof (struct partial_symtab));
c5aa993b 2760 psymtab->filename = obsavestring (filename, strlen (filename),
8b92e4d5 2761 &objfile->objfile_obstack);
c5aa993b 2762 psymtab->symtab = NULL;
c906108c
SS
2763
2764 /* Prepend it to the psymtab list for the objfile it belongs to.
2765 Psymtabs are searched in most recent inserted -> least recent
2766 inserted order. */
2767
c5aa993b
JM
2768 psymtab->objfile = objfile;
2769 psymtab->next = objfile->psymtabs;
2770 objfile->psymtabs = psymtab;
c906108c
SS
2771#if 0
2772 {
2773 struct partial_symtab **prev_pst;
c5aa993b
JM
2774 psymtab->objfile = objfile;
2775 psymtab->next = NULL;
2776 prev_pst = &(objfile->psymtabs);
c906108c 2777 while ((*prev_pst) != NULL)
c5aa993b 2778 prev_pst = &((*prev_pst)->next);
c906108c 2779 (*prev_pst) = psymtab;
c5aa993b 2780 }
c906108c 2781#endif
c5aa993b 2782
c906108c
SS
2783 return (psymtab);
2784}
2785
2786void
fba45db2 2787discard_psymtab (struct partial_symtab *pst)
c906108c
SS
2788{
2789 struct partial_symtab **prev_pst;
2790
2791 /* From dbxread.c:
2792 Empty psymtabs happen as a result of header files which don't
2793 have any symbols in them. There can be a lot of them. But this
2794 check is wrong, in that a psymtab with N_SLINE entries but
2795 nothing else is not empty, but we don't realize that. Fixing
2796 that without slowing things down might be tricky. */
2797
2798 /* First, snip it out of the psymtab chain */
2799
2800 prev_pst = &(pst->objfile->psymtabs);
2801 while ((*prev_pst) != pst)
2802 prev_pst = &((*prev_pst)->next);
2803 (*prev_pst) = pst->next;
2804
2805 /* Next, put it on a free list for recycling */
2806
2807 pst->next = pst->objfile->free_psymtabs;
2808 pst->objfile->free_psymtabs = pst;
2809}
c906108c 2810\f
c5aa993b 2811
c906108c
SS
2812/* Reset all data structures in gdb which may contain references to symbol
2813 table data. */
2814
2815void
fba45db2 2816clear_symtab_users (void)
c906108c
SS
2817{
2818 /* Someday, we should do better than this, by only blowing away
2819 the things that really need to be blown. */
c0501be5
DJ
2820
2821 /* Clear the "current" symtab first, because it is no longer valid.
2822 breakpoint_re_set may try to access the current symtab. */
2823 clear_current_source_symtab_and_line ();
2824
c906108c 2825 clear_displays ();
c906108c
SS
2826 breakpoint_re_set ();
2827 set_default_breakpoint (0, 0, 0, 0);
c906108c 2828 clear_pc_function_cache ();
06d3b283 2829 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2830
2831 /* Clear globals which might have pointed into a removed objfile.
2832 FIXME: It's not clear which of these are supposed to persist
2833 between expressions and which ought to be reset each time. */
2834 expression_context_block = NULL;
2835 innermost_block = NULL;
8756216b
DP
2836
2837 /* Varobj may refer to old symbols, perform a cleanup. */
2838 varobj_invalidate ();
2839
c906108c
SS
2840}
2841
74b7792f
AC
2842static void
2843clear_symtab_users_cleanup (void *ignore)
2844{
2845 clear_symtab_users ();
2846}
2847
c906108c
SS
2848/* clear_symtab_users_once:
2849
2850 This function is run after symbol reading, or from a cleanup.
2851 If an old symbol table was obsoleted, the old symbol table
5417f6dc 2852 has been blown away, but the other GDB data structures that may
c906108c
SS
2853 reference it have not yet been cleared or re-directed. (The old
2854 symtab was zapped, and the cleanup queued, in free_named_symtab()
2855 below.)
2856
2857 This function can be queued N times as a cleanup, or called
2858 directly; it will do all the work the first time, and then will be a
2859 no-op until the next time it is queued. This works by bumping a
2860 counter at queueing time. Much later when the cleanup is run, or at
2861 the end of symbol processing (in case the cleanup is discarded), if
2862 the queued count is greater than the "done-count", we do the work
2863 and set the done-count to the queued count. If the queued count is
2864 less than or equal to the done-count, we just ignore the call. This
2865 is needed because reading a single .o file will often replace many
2866 symtabs (one per .h file, for example), and we don't want to reset
2867 the breakpoints N times in the user's face.
2868
2869 The reason we both queue a cleanup, and call it directly after symbol
2870 reading, is because the cleanup protects us in case of errors, but is
2871 discarded if symbol reading is successful. */
2872
2873#if 0
2874/* FIXME: As free_named_symtabs is currently a big noop this function
2875 is no longer needed. */
a14ed312 2876static void clear_symtab_users_once (void);
c906108c
SS
2877
2878static int clear_symtab_users_queued;
2879static int clear_symtab_users_done;
2880
2881static void
fba45db2 2882clear_symtab_users_once (void)
c906108c
SS
2883{
2884 /* Enforce once-per-`do_cleanups'-semantics */
2885 if (clear_symtab_users_queued <= clear_symtab_users_done)
2886 return;
2887 clear_symtab_users_done = clear_symtab_users_queued;
2888
2889 clear_symtab_users ();
2890}
2891#endif
2892
2893/* Delete the specified psymtab, and any others that reference it. */
2894
2895static void
fba45db2 2896cashier_psymtab (struct partial_symtab *pst)
c906108c
SS
2897{
2898 struct partial_symtab *ps, *pprev = NULL;
2899 int i;
2900
2901 /* Find its previous psymtab in the chain */
c5aa993b
JM
2902 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2903 {
2904 if (ps == pst)
2905 break;
2906 pprev = ps;
2907 }
c906108c 2908
c5aa993b
JM
2909 if (ps)
2910 {
2911 /* Unhook it from the chain. */
2912 if (ps == pst->objfile->psymtabs)
2913 pst->objfile->psymtabs = ps->next;
2914 else
2915 pprev->next = ps->next;
2916
2917 /* FIXME, we can't conveniently deallocate the entries in the
2918 partial_symbol lists (global_psymbols/static_psymbols) that
2919 this psymtab points to. These just take up space until all
2920 the psymtabs are reclaimed. Ditto the dependencies list and
8b92e4d5 2921 filename, which are all in the objfile_obstack. */
c5aa993b
JM
2922
2923 /* We need to cashier any psymtab that has this one as a dependency... */
2924 again:
2925 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2926 {
2927 for (i = 0; i < ps->number_of_dependencies; i++)
2928 {
2929 if (ps->dependencies[i] == pst)
2930 {
2931 cashier_psymtab (ps);
2932 goto again; /* Must restart, chain has been munged. */
2933 }
2934 }
c906108c 2935 }
c906108c 2936 }
c906108c
SS
2937}
2938
2939/* If a symtab or psymtab for filename NAME is found, free it along
2940 with any dependent breakpoints, displays, etc.
2941 Used when loading new versions of object modules with the "add-file"
2942 command. This is only called on the top-level symtab or psymtab's name;
2943 it is not called for subsidiary files such as .h files.
2944
2945 Return value is 1 if we blew away the environment, 0 if not.
7e73cedf 2946 FIXME. The return value appears to never be used.
c906108c
SS
2947
2948 FIXME. I think this is not the best way to do this. We should
2949 work on being gentler to the environment while still cleaning up
2950 all stray pointers into the freed symtab. */
2951
2952int
fba45db2 2953free_named_symtabs (char *name)
c906108c
SS
2954{
2955#if 0
2956 /* FIXME: With the new method of each objfile having it's own
2957 psymtab list, this function needs serious rethinking. In particular,
2958 why was it ever necessary to toss psymtabs with specific compilation
2959 unit filenames, as opposed to all psymtabs from a particular symbol
2960 file? -- fnf
2961 Well, the answer is that some systems permit reloading of particular
2962 compilation units. We want to blow away any old info about these
2963 compilation units, regardless of which objfiles they arrived in. --gnu. */
2964
52f0bd74
AC
2965 struct symtab *s;
2966 struct symtab *prev;
2967 struct partial_symtab *ps;
c906108c
SS
2968 struct blockvector *bv;
2969 int blewit = 0;
2970
2971 /* We only wack things if the symbol-reload switch is set. */
2972 if (!symbol_reloading)
2973 return 0;
2974
2975 /* Some symbol formats have trouble providing file names... */
2976 if (name == 0 || *name == '\0')
2977 return 0;
2978
2979 /* Look for a psymtab with the specified name. */
2980
2981again2:
c5aa993b
JM
2982 for (ps = partial_symtab_list; ps; ps = ps->next)
2983 {
6314a349 2984 if (strcmp (name, ps->filename) == 0)
c5aa993b
JM
2985 {
2986 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2987 goto again2; /* Must restart, chain has been munged */
2988 }
c906108c 2989 }
c906108c
SS
2990
2991 /* Look for a symtab with the specified name. */
2992
2993 for (s = symtab_list; s; s = s->next)
2994 {
6314a349 2995 if (strcmp (name, s->filename) == 0)
c906108c
SS
2996 break;
2997 prev = s;
2998 }
2999
3000 if (s)
3001 {
3002 if (s == symtab_list)
3003 symtab_list = s->next;
3004 else
3005 prev->next = s->next;
3006
3007 /* For now, queue a delete for all breakpoints, displays, etc., whether
c5aa993b
JM
3008 or not they depend on the symtab being freed. This should be
3009 changed so that only those data structures affected are deleted. */
c906108c
SS
3010
3011 /* But don't delete anything if the symtab is empty.
c5aa993b
JM
3012 This test is necessary due to a bug in "dbxread.c" that
3013 causes empty symtabs to be created for N_SO symbols that
3014 contain the pathname of the object file. (This problem
3015 has been fixed in GDB 3.9x). */
c906108c
SS
3016
3017 bv = BLOCKVECTOR (s);
3018 if (BLOCKVECTOR_NBLOCKS (bv) > 2
3019 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
3020 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
3021 {
e2e0b3e5 3022 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
b9caf505 3023 name);
c906108c
SS
3024 clear_symtab_users_queued++;
3025 make_cleanup (clear_symtab_users_once, 0);
3026 blewit = 1;
c5aa993b
JM
3027 }
3028 else
e2e0b3e5
AC
3029 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
3030 name);
c906108c
SS
3031
3032 free_symtab (s);
3033 }
3034 else
3035 {
3036 /* It is still possible that some breakpoints will be affected
c5aa993b
JM
3037 even though no symtab was found, since the file might have
3038 been compiled without debugging, and hence not be associated
3039 with a symtab. In order to handle this correctly, we would need
3040 to keep a list of text address ranges for undebuggable files.
3041 For now, we do nothing, since this is a fairly obscure case. */
c906108c
SS
3042 ;
3043 }
3044
3045 /* FIXME, what about the minimal symbol table? */
3046 return blewit;
3047#else
3048 return (0);
3049#endif
3050}
3051\f
3052/* Allocate and partially fill a partial symtab. It will be
3053 completely filled at the end of the symbol list.
3054
d4f3574e 3055 FILENAME is the name of the symbol-file we are reading from. */
c906108c
SS
3056
3057struct partial_symtab *
fba45db2
KB
3058start_psymtab_common (struct objfile *objfile,
3059 struct section_offsets *section_offsets, char *filename,
3060 CORE_ADDR textlow, struct partial_symbol **global_syms,
3061 struct partial_symbol **static_syms)
c906108c
SS
3062{
3063 struct partial_symtab *psymtab;
3064
3065 psymtab = allocate_psymtab (filename, objfile);
c5aa993b
JM
3066 psymtab->section_offsets = section_offsets;
3067 psymtab->textlow = textlow;
3068 psymtab->texthigh = psymtab->textlow; /* default */
3069 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
3070 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
c906108c
SS
3071 return (psymtab);
3072}
3073\f
2e618c13
AR
3074/* Helper function, initialises partial symbol structure and stashes
3075 it into objfile's bcache. Note that our caching mechanism will
3076 use all fields of struct partial_symbol to determine hash value of the
3077 structure. In other words, having two symbols with the same name but
3078 different domain (or address) is possible and correct. */
3079
11d31d94 3080static const struct partial_symbol *
2e618c13
AR
3081add_psymbol_to_bcache (char *name, int namelength, domain_enum domain,
3082 enum address_class class,
3083 long val, /* Value as a long */
3084 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3085 enum language language, struct objfile *objfile,
3086 int *added)
3087{
3088 char *buf = name;
3089 /* psymbol is static so that there will be no uninitialized gaps in the
3090 structure which might contain random data, causing cache misses in
3091 bcache. */
3092 static struct partial_symbol psymbol;
3093
3094 if (name[namelength] != '\0')
3095 {
3096 buf = alloca (namelength + 1);
3097 /* Create local copy of the partial symbol */
3098 memcpy (buf, name, namelength);
3099 buf[namelength] = '\0';
3100 }
3101 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
3102 if (val != 0)
3103 {
3104 SYMBOL_VALUE (&psymbol) = val;
3105 }
3106 else
3107 {
3108 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
3109 }
3110 SYMBOL_SECTION (&psymbol) = 0;
3111 SYMBOL_LANGUAGE (&psymbol) = language;
3112 PSYMBOL_DOMAIN (&psymbol) = domain;
3113 PSYMBOL_CLASS (&psymbol) = class;
3114
3115 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
3116
3117 /* Stash the partial symbol away in the cache */
11d31d94
TT
3118 return bcache_full (&psymbol, sizeof (struct partial_symbol),
3119 objfile->psymbol_cache, added);
2e618c13
AR
3120}
3121
3122/* Helper function, adds partial symbol to the given partial symbol
3123 list. */
3124
3125static void
3126append_psymbol_to_list (struct psymbol_allocation_list *list,
11d31d94 3127 const struct partial_symbol *psym,
2e618c13
AR
3128 struct objfile *objfile)
3129{
3130 if (list->next >= list->list + list->size)
3131 extend_psymbol_list (list, objfile);
11d31d94 3132 *list->next++ = (struct partial_symbol *) psym;
2e618c13
AR
3133 OBJSTAT (objfile, n_psyms++);
3134}
3135
c906108c 3136/* Add a symbol with a long value to a psymtab.
5417f6dc 3137 Since one arg is a struct, we pass in a ptr and deref it (sigh).
5c4e30ca
DC
3138 Return the partial symbol that has been added. */
3139
3140/* NOTE: carlton/2003-09-11: The reason why we return the partial
3141 symbol is so that callers can get access to the symbol's demangled
3142 name, which they don't have any cheap way to determine otherwise.
3143 (Currenly, dwarf2read.c is the only file who uses that information,
3144 though it's possible that other readers might in the future.)
3145 Elena wasn't thrilled about that, and I don't blame her, but we
3146 couldn't come up with a better way to get that information. If
3147 it's needed in other situations, we could consider breaking up
3148 SYMBOL_SET_NAMES to provide access to the demangled name lookup
3149 cache. */
3150
3151const struct partial_symbol *
176620f1 3152add_psymbol_to_list (char *name, int namelength, domain_enum domain,
fba45db2 3153 enum address_class class,
2e618c13
AR
3154 struct psymbol_allocation_list *list,
3155 long val, /* Value as a long */
fba45db2
KB
3156 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3157 enum language language, struct objfile *objfile)
c906108c 3158{
11d31d94 3159 const struct partial_symbol *psym;
2de7ced7 3160
2e618c13 3161 int added;
c906108c
SS
3162
3163 /* Stash the partial symbol away in the cache */
2e618c13
AR
3164 psym = add_psymbol_to_bcache (name, namelength, domain, class,
3165 val, coreaddr, language, objfile, &added);
c906108c 3166
2e618c13
AR
3167 /* Do not duplicate global partial symbols. */
3168 if (list == &objfile->global_psymbols
3169 && !added)
3170 return psym;
5c4e30ca 3171
2e618c13
AR
3172 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
3173 append_psymbol_to_list (list, psym, objfile);
5c4e30ca 3174 return psym;
c906108c
SS
3175}
3176
c906108c
SS
3177/* Initialize storage for partial symbols. */
3178
3179void
fba45db2 3180init_psymbol_list (struct objfile *objfile, int total_symbols)
c906108c
SS
3181{
3182 /* Free any previously allocated psymbol lists. */
c5aa993b
JM
3183
3184 if (objfile->global_psymbols.list)
c906108c 3185 {
2dc74dc1 3186 xfree (objfile->global_psymbols.list);
c906108c 3187 }
c5aa993b 3188 if (objfile->static_psymbols.list)
c906108c 3189 {
2dc74dc1 3190 xfree (objfile->static_psymbols.list);
c906108c 3191 }
c5aa993b 3192
c906108c
SS
3193 /* Current best guess is that approximately a twentieth
3194 of the total symbols (in a debugging file) are global or static
3195 oriented symbols */
c906108c 3196
c5aa993b
JM
3197 objfile->global_psymbols.size = total_symbols / 10;
3198 objfile->static_psymbols.size = total_symbols / 10;
3199
3200 if (objfile->global_psymbols.size > 0)
c906108c 3201 {
c5aa993b
JM
3202 objfile->global_psymbols.next =
3203 objfile->global_psymbols.list = (struct partial_symbol **)
7936743b
AC
3204 xmalloc ((objfile->global_psymbols.size
3205 * sizeof (struct partial_symbol *)));
c906108c 3206 }
c5aa993b 3207 if (objfile->static_psymbols.size > 0)
c906108c 3208 {
c5aa993b
JM
3209 objfile->static_psymbols.next =
3210 objfile->static_psymbols.list = (struct partial_symbol **)
7936743b
AC
3211 xmalloc ((objfile->static_psymbols.size
3212 * sizeof (struct partial_symbol *)));
c906108c
SS
3213 }
3214}
3215
3216/* OVERLAYS:
3217 The following code implements an abstraction for debugging overlay sections.
3218
3219 The target model is as follows:
3220 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 3221 same VMA, each with its own unique LMA (or load address).
c906108c 3222 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 3223 sections, one by one, from the load address into the VMA address.
5417f6dc 3224 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
3225 sections should be considered to be mapped from the VMA to the LMA.
3226 This information is used for symbol lookup, and memory read/write.
5417f6dc 3227 For instance, if a section has been mapped then its contents
c5aa993b 3228 should be read from the VMA, otherwise from the LMA.
c906108c
SS
3229
3230 Two levels of debugger support for overlays are available. One is
3231 "manual", in which the debugger relies on the user to tell it which
3232 overlays are currently mapped. This level of support is
3233 implemented entirely in the core debugger, and the information about
3234 whether a section is mapped is kept in the objfile->obj_section table.
3235
3236 The second level of support is "automatic", and is only available if
3237 the target-specific code provides functionality to read the target's
3238 overlay mapping table, and translate its contents for the debugger
3239 (by updating the mapped state information in the obj_section tables).
3240
3241 The interface is as follows:
c5aa993b
JM
3242 User commands:
3243 overlay map <name> -- tell gdb to consider this section mapped
3244 overlay unmap <name> -- tell gdb to consider this section unmapped
3245 overlay list -- list the sections that GDB thinks are mapped
3246 overlay read-target -- get the target's state of what's mapped
3247 overlay off/manual/auto -- set overlay debugging state
3248 Functional interface:
3249 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3250 section, return that section.
5417f6dc 3251 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 3252 the pc, either in its VMA or its LMA
714835d5 3253 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
3254 section_is_overlay(sect): true if section's VMA != LMA
3255 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3256 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 3257 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
3258 overlay_mapped_address(...): map an address from section's LMA to VMA
3259 overlay_unmapped_address(...): map an address from section's VMA to LMA
3260 symbol_overlayed_address(...): Return a "current" address for symbol:
3261 either in VMA or LMA depending on whether
3262 the symbol's section is currently mapped
c906108c
SS
3263 */
3264
3265/* Overlay debugging state: */
3266
d874f1e2 3267enum overlay_debugging_state overlay_debugging = ovly_off;
c906108c
SS
3268int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
3269
c906108c 3270/* Function: section_is_overlay (SECTION)
5417f6dc 3271 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
3272 SECTION is loaded at an address different from where it will "run". */
3273
3274int
714835d5 3275section_is_overlay (struct obj_section *section)
c906108c 3276{
714835d5
UW
3277 if (overlay_debugging && section)
3278 {
3279 bfd *abfd = section->objfile->obfd;
3280 asection *bfd_section = section->the_bfd_section;
3281
3282 if (bfd_section_lma (abfd, bfd_section) != 0
3283 && bfd_section_lma (abfd, bfd_section)
3284 != bfd_section_vma (abfd, bfd_section))
3285 return 1;
3286 }
c906108c
SS
3287
3288 return 0;
3289}
3290
3291/* Function: overlay_invalidate_all (void)
3292 Invalidate the mapped state of all overlay sections (mark it as stale). */
3293
3294static void
fba45db2 3295overlay_invalidate_all (void)
c906108c 3296{
c5aa993b 3297 struct objfile *objfile;
c906108c
SS
3298 struct obj_section *sect;
3299
3300 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
3301 if (section_is_overlay (sect))
3302 sect->ovly_mapped = -1;
c906108c
SS
3303}
3304
714835d5 3305/* Function: section_is_mapped (SECTION)
5417f6dc 3306 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3307
3308 Access to the ovly_mapped flag is restricted to this function, so
3309 that we can do automatic update. If the global flag
3310 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3311 overlay_invalidate_all. If the mapped state of the particular
3312 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3313
714835d5
UW
3314int
3315section_is_mapped (struct obj_section *osect)
c906108c 3316{
9216df95
UW
3317 struct gdbarch *gdbarch;
3318
714835d5 3319 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
3320 return 0;
3321
c5aa993b 3322 switch (overlay_debugging)
c906108c
SS
3323 {
3324 default:
d874f1e2 3325 case ovly_off:
c5aa993b 3326 return 0; /* overlay debugging off */
d874f1e2 3327 case ovly_auto: /* overlay debugging automatic */
1c772458 3328 /* Unles there is a gdbarch_overlay_update function,
c5aa993b 3329 there's really nothing useful to do here (can't really go auto) */
9216df95
UW
3330 gdbarch = get_objfile_arch (osect->objfile);
3331 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
3332 {
3333 if (overlay_cache_invalid)
3334 {
3335 overlay_invalidate_all ();
3336 overlay_cache_invalid = 0;
3337 }
3338 if (osect->ovly_mapped == -1)
9216df95 3339 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
3340 }
3341 /* fall thru to manual case */
d874f1e2 3342 case ovly_on: /* overlay debugging manual */
c906108c
SS
3343 return osect->ovly_mapped == 1;
3344 }
3345}
3346
c906108c
SS
3347/* Function: pc_in_unmapped_range
3348 If PC falls into the lma range of SECTION, return true, else false. */
3349
3350CORE_ADDR
714835d5 3351pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3352{
714835d5
UW
3353 if (section_is_overlay (section))
3354 {
3355 bfd *abfd = section->objfile->obfd;
3356 asection *bfd_section = section->the_bfd_section;
fbd35540 3357
714835d5
UW
3358 /* We assume the LMA is relocated by the same offset as the VMA. */
3359 bfd_vma size = bfd_get_section_size (bfd_section);
3360 CORE_ADDR offset = obj_section_offset (section);
3361
3362 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3363 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3364 return 1;
3365 }
c906108c 3366
c906108c
SS
3367 return 0;
3368}
3369
3370/* Function: pc_in_mapped_range
3371 If PC falls into the vma range of SECTION, return true, else false. */
3372
3373CORE_ADDR
714835d5 3374pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3375{
714835d5
UW
3376 if (section_is_overlay (section))
3377 {
3378 if (obj_section_addr (section) <= pc
3379 && pc < obj_section_endaddr (section))
3380 return 1;
3381 }
c906108c 3382
c906108c
SS
3383 return 0;
3384}
3385
9ec8e6a0
JB
3386
3387/* Return true if the mapped ranges of sections A and B overlap, false
3388 otherwise. */
b9362cc7 3389static int
714835d5 3390sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3391{
714835d5
UW
3392 CORE_ADDR a_start = obj_section_addr (a);
3393 CORE_ADDR a_end = obj_section_endaddr (a);
3394 CORE_ADDR b_start = obj_section_addr (b);
3395 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3396
3397 return (a_start < b_end && b_start < a_end);
3398}
3399
c906108c
SS
3400/* Function: overlay_unmapped_address (PC, SECTION)
3401 Returns the address corresponding to PC in the unmapped (load) range.
3402 May be the same as PC. */
3403
3404CORE_ADDR
714835d5 3405overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3406{
714835d5
UW
3407 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3408 {
3409 bfd *abfd = section->objfile->obfd;
3410 asection *bfd_section = section->the_bfd_section;
fbd35540 3411
714835d5
UW
3412 return pc + bfd_section_lma (abfd, bfd_section)
3413 - bfd_section_vma (abfd, bfd_section);
3414 }
c906108c
SS
3415
3416 return pc;
3417}
3418
3419/* Function: overlay_mapped_address (PC, SECTION)
3420 Returns the address corresponding to PC in the mapped (runtime) range.
3421 May be the same as PC. */
3422
3423CORE_ADDR
714835d5 3424overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3425{
714835d5
UW
3426 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3427 {
3428 bfd *abfd = section->objfile->obfd;
3429 asection *bfd_section = section->the_bfd_section;
fbd35540 3430
714835d5
UW
3431 return pc + bfd_section_vma (abfd, bfd_section)
3432 - bfd_section_lma (abfd, bfd_section);
3433 }
c906108c
SS
3434
3435 return pc;
3436}
3437
3438
5417f6dc 3439/* Function: symbol_overlayed_address
c906108c
SS
3440 Return one of two addresses (relative to the VMA or to the LMA),
3441 depending on whether the section is mapped or not. */
3442
c5aa993b 3443CORE_ADDR
714835d5 3444symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3445{
3446 if (overlay_debugging)
3447 {
3448 /* If the symbol has no section, just return its regular address. */
3449 if (section == 0)
3450 return address;
3451 /* If the symbol's section is not an overlay, just return its address */
3452 if (!section_is_overlay (section))
3453 return address;
3454 /* If the symbol's section is mapped, just return its address */
3455 if (section_is_mapped (section))
3456 return address;
3457 /*
3458 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3459 * then return its LOADED address rather than its vma address!!
3460 */
3461 return overlay_unmapped_address (address, section);
3462 }
3463 return address;
3464}
3465
5417f6dc 3466/* Function: find_pc_overlay (PC)
c906108c
SS
3467 Return the best-match overlay section for PC:
3468 If PC matches a mapped overlay section's VMA, return that section.
3469 Else if PC matches an unmapped section's VMA, return that section.
3470 Else if PC matches an unmapped section's LMA, return that section. */
3471
714835d5 3472struct obj_section *
fba45db2 3473find_pc_overlay (CORE_ADDR pc)
c906108c 3474{
c5aa993b 3475 struct objfile *objfile;
c906108c
SS
3476 struct obj_section *osect, *best_match = NULL;
3477
3478 if (overlay_debugging)
3479 ALL_OBJSECTIONS (objfile, osect)
714835d5 3480 if (section_is_overlay (osect))
c5aa993b 3481 {
714835d5 3482 if (pc_in_mapped_range (pc, osect))
c5aa993b 3483 {
714835d5
UW
3484 if (section_is_mapped (osect))
3485 return osect;
c5aa993b
JM
3486 else
3487 best_match = osect;
3488 }
714835d5 3489 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3490 best_match = osect;
3491 }
714835d5 3492 return best_match;
c906108c
SS
3493}
3494
3495/* Function: find_pc_mapped_section (PC)
5417f6dc 3496 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3497 currently marked as MAPPED, return that section. Else return NULL. */
3498
714835d5 3499struct obj_section *
fba45db2 3500find_pc_mapped_section (CORE_ADDR pc)
c906108c 3501{
c5aa993b 3502 struct objfile *objfile;
c906108c
SS
3503 struct obj_section *osect;
3504
3505 if (overlay_debugging)
3506 ALL_OBJSECTIONS (objfile, osect)
714835d5
UW
3507 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3508 return osect;
c906108c
SS
3509
3510 return NULL;
3511}
3512
3513/* Function: list_overlays_command
3514 Print a list of mapped sections and their PC ranges */
3515
3516void
fba45db2 3517list_overlays_command (char *args, int from_tty)
c906108c 3518{
c5aa993b
JM
3519 int nmapped = 0;
3520 struct objfile *objfile;
c906108c
SS
3521 struct obj_section *osect;
3522
3523 if (overlay_debugging)
3524 ALL_OBJSECTIONS (objfile, osect)
714835d5 3525 if (section_is_mapped (osect))
c5aa993b 3526 {
5af949e3 3527 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c5aa993b
JM
3528 const char *name;
3529 bfd_vma lma, vma;
3530 int size;
3531
3532 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3533 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3534 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3535 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3536
3537 printf_filtered ("Section %s, loaded at ", name);
5af949e3 3538 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
c5aa993b 3539 puts_filtered (" - ");
5af949e3 3540 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
c5aa993b 3541 printf_filtered (", mapped at ");
5af949e3 3542 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
c5aa993b 3543 puts_filtered (" - ");
5af949e3 3544 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
c5aa993b
JM
3545 puts_filtered ("\n");
3546
3547 nmapped++;
3548 }
c906108c 3549 if (nmapped == 0)
a3f17187 3550 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3551}
3552
3553/* Function: map_overlay_command
3554 Mark the named section as mapped (ie. residing at its VMA address). */
3555
3556void
fba45db2 3557map_overlay_command (char *args, int from_tty)
c906108c 3558{
c5aa993b
JM
3559 struct objfile *objfile, *objfile2;
3560 struct obj_section *sec, *sec2;
c906108c
SS
3561
3562 if (!overlay_debugging)
8a3fe4f8 3563 error (_("\
515ad16c 3564Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3565the 'overlay manual' command."));
c906108c
SS
3566
3567 if (args == 0 || *args == 0)
8a3fe4f8 3568 error (_("Argument required: name of an overlay section"));
c906108c
SS
3569
3570 /* First, find a section matching the user supplied argument */
3571 ALL_OBJSECTIONS (objfile, sec)
3572 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3573 {
3574 /* Now, check to see if the section is an overlay. */
714835d5 3575 if (!section_is_overlay (sec))
c5aa993b
JM
3576 continue; /* not an overlay section */
3577
3578 /* Mark the overlay as "mapped" */
3579 sec->ovly_mapped = 1;
3580
3581 /* Next, make a pass and unmap any sections that are
3582 overlapped by this new section: */
3583 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3584 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3585 {
3586 if (info_verbose)
a3f17187 3587 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3588 bfd_section_name (objfile->obfd,
3589 sec2->the_bfd_section));
3590 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3591 }
3592 return;
3593 }
8a3fe4f8 3594 error (_("No overlay section called %s"), args);
c906108c
SS
3595}
3596
3597/* Function: unmap_overlay_command
5417f6dc 3598 Mark the overlay section as unmapped
c906108c
SS
3599 (ie. resident in its LMA address range, rather than the VMA range). */
3600
3601void
fba45db2 3602unmap_overlay_command (char *args, int from_tty)
c906108c 3603{
c5aa993b 3604 struct objfile *objfile;
c906108c
SS
3605 struct obj_section *sec;
3606
3607 if (!overlay_debugging)
8a3fe4f8 3608 error (_("\
515ad16c 3609Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3610the 'overlay manual' command."));
c906108c
SS
3611
3612 if (args == 0 || *args == 0)
8a3fe4f8 3613 error (_("Argument required: name of an overlay section"));
c906108c
SS
3614
3615 /* First, find a section matching the user supplied argument */
3616 ALL_OBJSECTIONS (objfile, sec)
3617 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3618 {
3619 if (!sec->ovly_mapped)
8a3fe4f8 3620 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3621 sec->ovly_mapped = 0;
3622 return;
3623 }
8a3fe4f8 3624 error (_("No overlay section called %s"), args);
c906108c
SS
3625}
3626
3627/* Function: overlay_auto_command
3628 A utility command to turn on overlay debugging.
3629 Possibly this should be done via a set/show command. */
3630
3631static void
fba45db2 3632overlay_auto_command (char *args, int from_tty)
c906108c 3633{
d874f1e2 3634 overlay_debugging = ovly_auto;
1900040c 3635 enable_overlay_breakpoints ();
c906108c 3636 if (info_verbose)
a3f17187 3637 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3638}
3639
3640/* Function: overlay_manual_command
3641 A utility command to turn on overlay debugging.
3642 Possibly this should be done via a set/show command. */
3643
3644static void
fba45db2 3645overlay_manual_command (char *args, int from_tty)
c906108c 3646{
d874f1e2 3647 overlay_debugging = ovly_on;
1900040c 3648 disable_overlay_breakpoints ();
c906108c 3649 if (info_verbose)
a3f17187 3650 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3651}
3652
3653/* Function: overlay_off_command
3654 A utility command to turn on overlay debugging.
3655 Possibly this should be done via a set/show command. */
3656
3657static void
fba45db2 3658overlay_off_command (char *args, int from_tty)
c906108c 3659{
d874f1e2 3660 overlay_debugging = ovly_off;
1900040c 3661 disable_overlay_breakpoints ();
c906108c 3662 if (info_verbose)
a3f17187 3663 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3664}
3665
3666static void
fba45db2 3667overlay_load_command (char *args, int from_tty)
c906108c 3668{
e17c207e
UW
3669 struct gdbarch *gdbarch = get_current_arch ();
3670
3671 if (gdbarch_overlay_update_p (gdbarch))
3672 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3673 else
8a3fe4f8 3674 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3675}
3676
3677/* Function: overlay_command
3678 A place-holder for a mis-typed command */
3679
3680/* Command list chain containing all defined "overlay" subcommands. */
3681struct cmd_list_element *overlaylist;
3682
3683static void
fba45db2 3684overlay_command (char *args, int from_tty)
c906108c 3685{
c5aa993b 3686 printf_unfiltered
c906108c
SS
3687 ("\"overlay\" must be followed by the name of an overlay command.\n");
3688 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3689}
3690
3691
3692/* Target Overlays for the "Simplest" overlay manager:
3693
5417f6dc
RM
3694 This is GDB's default target overlay layer. It works with the
3695 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3696 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3697 so targets that use a different runtime overlay manager can
c906108c
SS
3698 substitute their own overlay_update function and take over the
3699 function pointer.
3700
3701 The overlay_update function pokes around in the target's data structures
3702 to see what overlays are mapped, and updates GDB's overlay mapping with
3703 this information.
3704
3705 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3706 unsigned _novlys; /# number of overlay sections #/
3707 unsigned _ovly_table[_novlys][4] = {
3708 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3709 {..., ..., ..., ...},
3710 }
3711 unsigned _novly_regions; /# number of overlay regions #/
3712 unsigned _ovly_region_table[_novly_regions][3] = {
3713 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3714 {..., ..., ...},
3715 }
c906108c
SS
3716 These functions will attempt to update GDB's mappedness state in the
3717 symbol section table, based on the target's mappedness state.
3718
3719 To do this, we keep a cached copy of the target's _ovly_table, and
3720 attempt to detect when the cached copy is invalidated. The main
3721 entry point is "simple_overlay_update(SECT), which looks up SECT in
3722 the cached table and re-reads only the entry for that section from
3723 the target (whenever possible).
3724 */
3725
3726/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3727static unsigned (*cache_ovly_table)[4] = 0;
c906108c 3728#if 0
c5aa993b 3729static unsigned (*cache_ovly_region_table)[3] = 0;
c906108c 3730#endif
c5aa993b 3731static unsigned cache_novlys = 0;
c906108c 3732#if 0
c5aa993b 3733static unsigned cache_novly_regions = 0;
c906108c
SS
3734#endif
3735static CORE_ADDR cache_ovly_table_base = 0;
3736#if 0
3737static CORE_ADDR cache_ovly_region_table_base = 0;
3738#endif
c5aa993b
JM
3739enum ovly_index
3740 {
3741 VMA, SIZE, LMA, MAPPED
3742 };
c906108c
SS
3743
3744/* Throw away the cached copy of _ovly_table */
3745static void
fba45db2 3746simple_free_overlay_table (void)
c906108c
SS
3747{
3748 if (cache_ovly_table)
b8c9b27d 3749 xfree (cache_ovly_table);
c5aa993b 3750 cache_novlys = 0;
c906108c
SS
3751 cache_ovly_table = NULL;
3752 cache_ovly_table_base = 0;
3753}
3754
3755#if 0
3756/* Throw away the cached copy of _ovly_region_table */
3757static void
fba45db2 3758simple_free_overlay_region_table (void)
c906108c
SS
3759{
3760 if (cache_ovly_region_table)
b8c9b27d 3761 xfree (cache_ovly_region_table);
c5aa993b 3762 cache_novly_regions = 0;
c906108c
SS
3763 cache_ovly_region_table = NULL;
3764 cache_ovly_region_table_base = 0;
3765}
3766#endif
3767
9216df95 3768/* Read an array of ints of size SIZE from the target into a local buffer.
c906108c
SS
3769 Convert to host order. int LEN is number of ints */
3770static void
9216df95 3771read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3772 int len, int size, enum bfd_endian byte_order)
c906108c 3773{
34c0bd93 3774 /* FIXME (alloca): Not safe if array is very large. */
9216df95 3775 gdb_byte *buf = alloca (len * size);
c5aa993b 3776 int i;
c906108c 3777
9216df95 3778 read_memory (memaddr, buf, len * size);
c906108c 3779 for (i = 0; i < len; i++)
e17a4113 3780 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3781}
3782
3783/* Find and grab a copy of the target _ovly_table
3784 (and _novlys, which is needed for the table's size) */
c5aa993b 3785static int
fba45db2 3786simple_read_overlay_table (void)
c906108c 3787{
0d43edd1 3788 struct minimal_symbol *novlys_msym, *ovly_table_msym;
9216df95
UW
3789 struct gdbarch *gdbarch;
3790 int word_size;
e17a4113 3791 enum bfd_endian byte_order;
c906108c
SS
3792
3793 simple_free_overlay_table ();
9b27852e 3794 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3795 if (! novlys_msym)
c906108c 3796 {
8a3fe4f8 3797 error (_("Error reading inferior's overlay table: "
0d43edd1 3798 "couldn't find `_novlys' variable\n"
8a3fe4f8 3799 "in inferior. Use `overlay manual' mode."));
0d43edd1 3800 return 0;
c906108c 3801 }
0d43edd1 3802
9b27852e 3803 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3804 if (! ovly_table_msym)
3805 {
8a3fe4f8 3806 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3807 "`_ovly_table' array\n"
8a3fe4f8 3808 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3809 return 0;
3810 }
3811
9216df95
UW
3812 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3813 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3814 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3815
e17a4113
UW
3816 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3817 4, byte_order);
0d43edd1
JB
3818 cache_ovly_table
3819 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3820 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3821 read_target_long_array (cache_ovly_table_base,
777ea8f1 3822 (unsigned int *) cache_ovly_table,
e17a4113 3823 cache_novlys * 4, word_size, byte_order);
0d43edd1 3824
c5aa993b 3825 return 1; /* SUCCESS */
c906108c
SS
3826}
3827
3828#if 0
3829/* Find and grab a copy of the target _ovly_region_table
3830 (and _novly_regions, which is needed for the table's size) */
c5aa993b 3831static int
fba45db2 3832simple_read_overlay_region_table (void)
c906108c
SS
3833{
3834 struct minimal_symbol *msym;
e17a4113
UW
3835 struct gdbarch *gdbarch;
3836 int word_size;
3837 enum bfd_endian byte_order;
c906108c
SS
3838
3839 simple_free_overlay_region_table ();
9b27852e 3840 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
e17a4113 3841 if (msym == NULL)
c5aa993b 3842 return 0; /* failure */
e17a4113
UW
3843
3844 gdbarch = get_objfile_arch (msymbol_objfile (msym));
3845 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3846 byte_order = gdbarch_byte_order (gdbarch);
3847
3848 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym),
3849 4, byte_order);
3850
c906108c
SS
3851 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3852 if (cache_ovly_region_table != NULL)
3853 {
9b27852e 3854 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
c906108c
SS
3855 if (msym != NULL)
3856 {
3857 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
c5aa993b 3858 read_target_long_array (cache_ovly_region_table_base,
777ea8f1 3859 (unsigned int *) cache_ovly_region_table,
e17a4113
UW
3860 cache_novly_regions * 3,
3861 word_size, byte_order);
c906108c 3862 }
c5aa993b
JM
3863 else
3864 return 0; /* failure */
c906108c 3865 }
c5aa993b
JM
3866 else
3867 return 0; /* failure */
3868 return 1; /* SUCCESS */
c906108c
SS
3869}
3870#endif
3871
5417f6dc 3872/* Function: simple_overlay_update_1
c906108c
SS
3873 A helper function for simple_overlay_update. Assuming a cached copy
3874 of _ovly_table exists, look through it to find an entry whose vma,
3875 lma and size match those of OSECT. Re-read the entry and make sure
3876 it still matches OSECT (else the table may no longer be valid).
3877 Set OSECT's mapped state to match the entry. Return: 1 for
3878 success, 0 for failure. */
3879
3880static int
fba45db2 3881simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3882{
3883 int i, size;
fbd35540
MS
3884 bfd *obfd = osect->objfile->obfd;
3885 asection *bsect = osect->the_bfd_section;
9216df95
UW
3886 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3887 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3888 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3889
2c500098 3890 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3891 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3892 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3893 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3894 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c 3895 {
9216df95
UW
3896 read_target_long_array (cache_ovly_table_base + i * word_size,
3897 (unsigned int *) cache_ovly_table[i],
e17a4113 3898 4, word_size, byte_order);
fbd35540
MS
3899 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3900 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3901 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3902 {
3903 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3904 return 1;
3905 }
fbd35540 3906 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3907 return 0;
3908 }
3909 return 0;
3910}
3911
3912/* Function: simple_overlay_update
5417f6dc
RM
3913 If OSECT is NULL, then update all sections' mapped state
3914 (after re-reading the entire target _ovly_table).
3915 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3916 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3917 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3918 re-read the entire cache, and go ahead and update all sections. */
3919
1c772458 3920void
fba45db2 3921simple_overlay_update (struct obj_section *osect)
c906108c 3922{
c5aa993b 3923 struct objfile *objfile;
c906108c
SS
3924
3925 /* Were we given an osect to look up? NULL means do all of them. */
3926 if (osect)
3927 /* Have we got a cached copy of the target's overlay table? */
3928 if (cache_ovly_table != NULL)
3929 /* Does its cached location match what's currently in the symtab? */
c5aa993b 3930 if (cache_ovly_table_base ==
9b27852e 3931 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
c906108c
SS
3932 /* Then go ahead and try to look up this single section in the cache */
3933 if (simple_overlay_update_1 (osect))
3934 /* Found it! We're done. */
3935 return;
3936
3937 /* Cached table no good: need to read the entire table anew.
3938 Or else we want all the sections, in which case it's actually
3939 more efficient to read the whole table in one block anyway. */
3940
0d43edd1
JB
3941 if (! simple_read_overlay_table ())
3942 return;
3943
c906108c
SS
3944 /* Now may as well update all sections, even if only one was requested. */
3945 ALL_OBJSECTIONS (objfile, osect)
714835d5 3946 if (section_is_overlay (osect))
c5aa993b
JM
3947 {
3948 int i, size;
fbd35540
MS
3949 bfd *obfd = osect->objfile->obfd;
3950 asection *bsect = osect->the_bfd_section;
c5aa993b 3951
2c500098 3952 size = bfd_get_section_size (bsect);
c5aa993b 3953 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3954 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3955 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3956 /* && cache_ovly_table[i][SIZE] == size */ )
3957 { /* obj_section matches i'th entry in ovly_table */
c5aa993b
JM
3958 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3959 break; /* finished with inner for loop: break out */
3960 }
3961 }
c906108c
SS
3962}
3963
086df311
DJ
3964/* Set the output sections and output offsets for section SECTP in
3965 ABFD. The relocation code in BFD will read these offsets, so we
3966 need to be sure they're initialized. We map each section to itself,
3967 with no offset; this means that SECTP->vma will be honored. */
3968
3969static void
3970symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3971{
3972 sectp->output_section = sectp;
3973 sectp->output_offset = 0;
3974}
3975
3976/* Relocate the contents of a debug section SECTP in ABFD. The
3977 contents are stored in BUF if it is non-NULL, or returned in a
3978 malloc'd buffer otherwise.
3979
3980 For some platforms and debug info formats, shared libraries contain
3981 relocations against the debug sections (particularly for DWARF-2;
3982 one affected platform is PowerPC GNU/Linux, although it depends on
3983 the version of the linker in use). Also, ELF object files naturally
3984 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3985 the relocations in order to get the locations of symbols correct.
3986 Another example that may require relocation processing, is the
3987 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3988 debug section. */
086df311
DJ
3989
3990bfd_byte *
3991symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3992{
065a2c74 3993 /* We're only interested in sections with relocation
086df311
DJ
3994 information. */
3995 if ((sectp->flags & SEC_RELOC) == 0)
3996 return NULL;
086df311
DJ
3997
3998 /* We will handle section offsets properly elsewhere, so relocate as if
3999 all sections begin at 0. */
4000 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
4001
97606a13 4002 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
086df311 4003}
c906108c 4004
31d99776
DJ
4005struct symfile_segment_data *
4006get_symfile_segment_data (bfd *abfd)
4007{
4008 struct sym_fns *sf = find_sym_fns (abfd);
4009
4010 if (sf == NULL)
4011 return NULL;
4012
4013 return sf->sym_segments (abfd);
4014}
4015
4016void
4017free_symfile_segment_data (struct symfile_segment_data *data)
4018{
4019 xfree (data->segment_bases);
4020 xfree (data->segment_sizes);
4021 xfree (data->segment_info);
4022 xfree (data);
4023}
4024
28c32713
JB
4025
4026/* Given:
4027 - DATA, containing segment addresses from the object file ABFD, and
4028 the mapping from ABFD's sections onto the segments that own them,
4029 and
4030 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
4031 segment addresses reported by the target,
4032 store the appropriate offsets for each section in OFFSETS.
4033
4034 If there are fewer entries in SEGMENT_BASES than there are segments
4035 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
4036
8d385431
DJ
4037 If there are more entries, then ignore the extra. The target may
4038 not be able to distinguish between an empty data segment and a
4039 missing data segment; a missing text segment is less plausible. */
31d99776
DJ
4040int
4041symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
4042 struct section_offsets *offsets,
4043 int num_segment_bases,
4044 const CORE_ADDR *segment_bases)
4045{
4046 int i;
4047 asection *sect;
4048
28c32713
JB
4049 /* It doesn't make sense to call this function unless you have some
4050 segment base addresses. */
4051 gdb_assert (segment_bases > 0);
4052
31d99776
DJ
4053 /* If we do not have segment mappings for the object file, we
4054 can not relocate it by segments. */
4055 gdb_assert (data != NULL);
4056 gdb_assert (data->num_segments > 0);
4057
31d99776
DJ
4058 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4059 {
31d99776
DJ
4060 int which = data->segment_info[i];
4061
28c32713
JB
4062 gdb_assert (0 <= which && which <= data->num_segments);
4063
4064 /* Don't bother computing offsets for sections that aren't
4065 loaded as part of any segment. */
4066 if (! which)
4067 continue;
4068
4069 /* Use the last SEGMENT_BASES entry as the address of any extra
4070 segments mentioned in DATA->segment_info. */
31d99776 4071 if (which > num_segment_bases)
28c32713 4072 which = num_segment_bases;
31d99776 4073
28c32713
JB
4074 offsets->offsets[i] = (segment_bases[which - 1]
4075 - data->segment_bases[which - 1]);
31d99776
DJ
4076 }
4077
4078 return 1;
4079}
4080
4081static void
4082symfile_find_segment_sections (struct objfile *objfile)
4083{
4084 bfd *abfd = objfile->obfd;
4085 int i;
4086 asection *sect;
4087 struct symfile_segment_data *data;
4088
4089 data = get_symfile_segment_data (objfile->obfd);
4090 if (data == NULL)
4091 return;
4092
4093 if (data->num_segments != 1 && data->num_segments != 2)
4094 {
4095 free_symfile_segment_data (data);
4096 return;
4097 }
4098
4099 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4100 {
4101 CORE_ADDR vma;
4102 int which = data->segment_info[i];
4103
4104 if (which == 1)
4105 {
4106 if (objfile->sect_index_text == -1)
4107 objfile->sect_index_text = sect->index;
4108
4109 if (objfile->sect_index_rodata == -1)
4110 objfile->sect_index_rodata = sect->index;
4111 }
4112 else if (which == 2)
4113 {
4114 if (objfile->sect_index_data == -1)
4115 objfile->sect_index_data = sect->index;
4116
4117 if (objfile->sect_index_bss == -1)
4118 objfile->sect_index_bss = sect->index;
4119 }
4120 }
4121
4122 free_symfile_segment_data (data);
4123}
4124
c906108c 4125void
fba45db2 4126_initialize_symfile (void)
c906108c
SS
4127{
4128 struct cmd_list_element *c;
c5aa993b 4129
1a966eab
AC
4130 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
4131Load symbol table from executable file FILE.\n\
c906108c 4132The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 4133to execute."), &cmdlist);
5ba2abeb 4134 set_cmd_completer (c, filename_completer);
c906108c 4135
1a966eab 4136 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 4137Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
1a966eab 4138Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
2acceee2 4139ADDR is the starting address of the file's text.\n\
db162d44
EZ
4140The optional arguments are section-name section-address pairs and\n\
4141should be specified if the data and bss segments are not contiguous\n\
1a966eab 4142with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 4143 &cmdlist);
5ba2abeb 4144 set_cmd_completer (c, filename_completer);
c906108c 4145
1a966eab
AC
4146 c = add_cmd ("load", class_files, load_command, _("\
4147Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
4148for access from GDB.\n\
4149A load OFFSET may also be given."), &cmdlist);
5ba2abeb 4150 set_cmd_completer (c, filename_completer);
c906108c 4151
5bf193a2
AC
4152 add_setshow_boolean_cmd ("symbol-reloading", class_support,
4153 &symbol_reloading, _("\
4154Set dynamic symbol table reloading multiple times in one run."), _("\
4155Show dynamic symbol table reloading multiple times in one run."), NULL,
4156 NULL,
920d2a44 4157 show_symbol_reloading,
5bf193a2 4158 &setlist, &showlist);
c906108c 4159
c5aa993b 4160 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 4161 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
4162 "overlay ", 0, &cmdlist);
4163
4164 add_com_alias ("ovly", "overlay", class_alias, 1);
4165 add_com_alias ("ov", "overlay", class_alias, 1);
4166
c5aa993b 4167 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 4168 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 4169
c5aa993b 4170 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 4171 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 4172
c5aa993b 4173 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 4174 _("List mappings of overlay sections."), &overlaylist);
c906108c 4175
c5aa993b 4176 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 4177 _("Enable overlay debugging."), &overlaylist);
c5aa993b 4178 add_cmd ("off", class_support, overlay_off_command,
1a966eab 4179 _("Disable overlay debugging."), &overlaylist);
c5aa993b 4180 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 4181 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 4182 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 4183 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
4184
4185 /* Filename extension to source language lookup table: */
4186 init_filename_language_table ();
26c41df3
AC
4187 add_setshow_string_noescape_cmd ("extension-language", class_files,
4188 &ext_args, _("\
4189Set mapping between filename extension and source language."), _("\
4190Show mapping between filename extension and source language."), _("\
4191Usage: set extension-language .foo bar"),
4192 set_ext_lang_command,
920d2a44 4193 show_ext_args,
26c41df3 4194 &setlist, &showlist);
c906108c 4195
c5aa993b 4196 add_info ("extensions", info_ext_lang_command,
1bedd215 4197 _("All filename extensions associated with a source language."));
917317f4 4198
525226b5
AC
4199 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4200 &debug_file_directory, _("\
4201Set the directory where separate debug symbols are searched for."), _("\
4202Show the directory where separate debug symbols are searched for."), _("\
4203Separate debug symbols are first searched for in the same\n\
4204directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4205and lastly at the path of the directory of the binary with\n\
4206the global debug-file directory prepended."),
4207 NULL,
920d2a44 4208 show_debug_file_directory,
525226b5 4209 &setlist, &showlist);
bf250677
DE
4210
4211 add_setshow_boolean_cmd ("symbol-loading", no_class,
4212 &print_symbol_loading, _("\
4213Set printing of symbol loading messages."), _("\
4214Show printing of symbol loading messages."), NULL,
4215 NULL,
4216 NULL,
4217 &setprintlist, &showprintlist);
c906108c 4218}
This page took 1.340707 seconds and 4 git commands to generate.