Use fputc in place of putc to avoid -Wunused-value warning (AIX).
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
28e7fd62 3 Copyright (C) 1990-2013 Free Software Foundation, Inc.
8926118c 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
086df311 24#include "bfdlink.h"
c906108c
SS
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "target.h"
30#include "value.h"
31#include "symfile.h"
32#include "objfiles.h"
0378c332 33#include "source.h"
c906108c
SS
34#include "gdbcmd.h"
35#include "breakpoint.h"
36#include "language.h"
37#include "complaints.h"
38#include "demangle.h"
fb14de7b
UW
39#include "inferior.h"
40#include "regcache.h"
5b5d99cf 41#include "filenames.h" /* for DOSish file names */
c906108c 42#include "gdb-stabs.h"
04ea0df1 43#include "gdb_obstack.h"
d75b5104 44#include "completer.h"
af5f3db6 45#include "bcache.h"
2de7ced7 46#include "hashtab.h"
dbda9972 47#include "readline/readline.h"
7e8580c1 48#include "gdb_assert.h"
fe898f56 49#include "block.h"
ea53e89f 50#include "observer.h"
c1bd25fd 51#include "exec.h"
9bdcbae7 52#include "parser-defs.h"
8756216b 53#include "varobj.h"
77069918 54#include "elf-bfd.h"
e85a822c 55#include "solib.h"
f1838a98 56#include "remote.h"
1bfeeb0f 57#include "stack.h"
cbb099e8 58#include "gdb_bfd.h"
529480d0 59#include "cli/cli-utils.h"
c906108c 60
c906108c
SS
61#include <sys/types.h>
62#include <fcntl.h>
63#include "gdb_string.h"
64#include "gdb_stat.h"
65#include <ctype.h>
66#include <time.h>
2b71414d 67#include <sys/time.h>
c906108c 68
ccefe4c4 69#include "psymtab.h"
c906108c 70
3e43a32a
MS
71int (*deprecated_ui_load_progress_hook) (const char *section,
72 unsigned long num);
9a4105ab 73void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
74 unsigned long section_sent,
75 unsigned long section_size,
76 unsigned long total_sent,
c2d11a7d 77 unsigned long total_size);
769d7dc4
AC
78void (*deprecated_pre_add_symbol_hook) (const char *);
79void (*deprecated_post_add_symbol_hook) (void);
c906108c 80
74b7792f
AC
81static void clear_symtab_users_cleanup (void *ignore);
82
c378eb4e
MS
83/* Global variables owned by this file. */
84int readnow_symbol_files; /* Read full symbols immediately. */
c906108c 85
c378eb4e 86/* Functions this file defines. */
c906108c 87
a14ed312 88static void load_command (char *, int);
c906108c 89
d7db6da9
FN
90static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
91
a14ed312 92static void add_symbol_file_command (char *, int);
c906108c 93
a14ed312 94bfd *symfile_bfd_open (char *);
c906108c 95
0e931cf0
JB
96int get_section_index (struct objfile *, char *);
97
00b5771c 98static const struct sym_fns *find_sym_fns (bfd *);
c906108c 99
a14ed312 100static void decrement_reading_symtab (void *);
c906108c 101
a14ed312 102static void overlay_invalidate_all (void);
c906108c 103
a14ed312 104static void overlay_auto_command (char *, int);
c906108c 105
a14ed312 106static void overlay_manual_command (char *, int);
c906108c 107
a14ed312 108static void overlay_off_command (char *, int);
c906108c 109
a14ed312 110static void overlay_load_command (char *, int);
c906108c 111
a14ed312 112static void overlay_command (char *, int);
c906108c 113
a14ed312 114static void simple_free_overlay_table (void);
c906108c 115
e17a4113
UW
116static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
117 enum bfd_endian);
c906108c 118
a14ed312 119static int simple_read_overlay_table (void);
c906108c 120
a14ed312 121static int simple_overlay_update_1 (struct obj_section *);
c906108c 122
a14ed312 123static void add_filename_language (char *ext, enum language lang);
392a587b 124
a14ed312 125static void info_ext_lang_command (char *args, int from_tty);
392a587b 126
a14ed312 127static void init_filename_language_table (void);
392a587b 128
31d99776
DJ
129static void symfile_find_segment_sections (struct objfile *objfile);
130
a14ed312 131void _initialize_symfile (void);
c906108c
SS
132
133/* List of all available sym_fns. On gdb startup, each object file reader
134 calls add_symtab_fns() to register information on each format it is
c378eb4e 135 prepared to read. */
c906108c 136
00b5771c
TT
137typedef const struct sym_fns *sym_fns_ptr;
138DEF_VEC_P (sym_fns_ptr);
139
140static VEC (sym_fns_ptr) *symtab_fns = NULL;
c906108c 141
b7209cb4
FF
142/* If non-zero, shared library symbols will be added automatically
143 when the inferior is created, new libraries are loaded, or when
144 attaching to the inferior. This is almost always what users will
145 want to have happen; but for very large programs, the startup time
146 will be excessive, and so if this is a problem, the user can clear
147 this flag and then add the shared library symbols as needed. Note
148 that there is a potential for confusion, since if the shared
c906108c 149 library symbols are not loaded, commands like "info fun" will *not*
0d14a781 150 report all the functions that are actually present. */
c906108c
SS
151
152int auto_solib_add = 1;
c906108c 153\f
c5aa993b 154
0d14a781 155/* True if we are reading a symbol table. */
c906108c
SS
156
157int currently_reading_symtab = 0;
158
159static void
fba45db2 160decrement_reading_symtab (void *dummy)
c906108c
SS
161{
162 currently_reading_symtab--;
163}
164
ccefe4c4
TT
165/* Increment currently_reading_symtab and return a cleanup that can be
166 used to decrement it. */
3b7bacac 167
ccefe4c4
TT
168struct cleanup *
169increment_reading_symtab (void)
c906108c 170{
ccefe4c4
TT
171 ++currently_reading_symtab;
172 return make_cleanup (decrement_reading_symtab, NULL);
c906108c
SS
173}
174
5417f6dc
RM
175/* Remember the lowest-addressed loadable section we've seen.
176 This function is called via bfd_map_over_sections.
c906108c
SS
177
178 In case of equal vmas, the section with the largest size becomes the
179 lowest-addressed loadable section.
180
181 If the vmas and sizes are equal, the last section is considered the
182 lowest-addressed loadable section. */
183
184void
4efb68b1 185find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 186{
c5aa993b 187 asection **lowest = (asection **) obj;
c906108c 188
eb73e134 189 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
190 return;
191 if (!*lowest)
192 *lowest = sect; /* First loadable section */
193 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
194 *lowest = sect; /* A lower loadable section */
195 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
196 && (bfd_section_size (abfd, (*lowest))
197 <= bfd_section_size (abfd, sect)))
198 *lowest = sect;
199}
200
d76488d8
TT
201/* Create a new section_addr_info, with room for NUM_SECTIONS. The
202 new object's 'num_sections' field is set to 0; it must be updated
203 by the caller. */
a39a16c4
MM
204
205struct section_addr_info *
206alloc_section_addr_info (size_t num_sections)
207{
208 struct section_addr_info *sap;
209 size_t size;
210
211 size = (sizeof (struct section_addr_info)
212 + sizeof (struct other_sections) * (num_sections - 1));
213 sap = (struct section_addr_info *) xmalloc (size);
214 memset (sap, 0, size);
a39a16c4
MM
215
216 return sap;
217}
62557bbc
KB
218
219/* Build (allocate and populate) a section_addr_info struct from
c378eb4e 220 an existing section table. */
62557bbc
KB
221
222extern struct section_addr_info *
0542c86d
PA
223build_section_addr_info_from_section_table (const struct target_section *start,
224 const struct target_section *end)
62557bbc
KB
225{
226 struct section_addr_info *sap;
0542c86d 227 const struct target_section *stp;
62557bbc
KB
228 int oidx;
229
a39a16c4 230 sap = alloc_section_addr_info (end - start);
62557bbc
KB
231
232 for (stp = start, oidx = 0; stp != end; stp++)
233 {
5417f6dc 234 if (bfd_get_section_flags (stp->bfd,
fbd35540 235 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 236 && oidx < end - start)
62557bbc
KB
237 {
238 sap->other[oidx].addr = stp->addr;
5417f6dc 239 sap->other[oidx].name
fbd35540 240 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
65cf3563
TT
241 sap->other[oidx].sectindex
242 = gdb_bfd_section_index (stp->bfd, stp->the_bfd_section);
62557bbc
KB
243 oidx++;
244 }
245 }
246
d76488d8
TT
247 sap->num_sections = oidx;
248
62557bbc
KB
249 return sap;
250}
251
82ccf5a5 252/* Create a section_addr_info from section offsets in ABFD. */
089b4803 253
82ccf5a5
JK
254static struct section_addr_info *
255build_section_addr_info_from_bfd (bfd *abfd)
089b4803
TG
256{
257 struct section_addr_info *sap;
258 int i;
259 struct bfd_section *sec;
260
82ccf5a5
JK
261 sap = alloc_section_addr_info (bfd_count_sections (abfd));
262 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
263 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
012836ea 264 {
82ccf5a5
JK
265 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
266 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
65cf3563 267 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
012836ea
JK
268 i++;
269 }
d76488d8
TT
270
271 sap->num_sections = i;
272
089b4803
TG
273 return sap;
274}
275
82ccf5a5
JK
276/* Create a section_addr_info from section offsets in OBJFILE. */
277
278struct section_addr_info *
279build_section_addr_info_from_objfile (const struct objfile *objfile)
280{
281 struct section_addr_info *sap;
282 int i;
283
284 /* Before reread_symbols gets rewritten it is not safe to call:
285 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
286 */
287 sap = build_section_addr_info_from_bfd (objfile->obfd);
d76488d8 288 for (i = 0; i < sap->num_sections; i++)
82ccf5a5
JK
289 {
290 int sectindex = sap->other[i].sectindex;
291
292 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
293 }
294 return sap;
295}
62557bbc 296
c378eb4e 297/* Free all memory allocated by build_section_addr_info_from_section_table. */
62557bbc
KB
298
299extern void
300free_section_addr_info (struct section_addr_info *sap)
301{
302 int idx;
303
a39a16c4 304 for (idx = 0; idx < sap->num_sections; idx++)
d76488d8 305 xfree (sap->other[idx].name);
b8c9b27d 306 xfree (sap);
62557bbc
KB
307}
308
e8289572 309/* Initialize OBJFILE's sect_index_* members. */
3b7bacac 310
e8289572
JB
311static void
312init_objfile_sect_indices (struct objfile *objfile)
c906108c 313{
e8289572 314 asection *sect;
c906108c 315 int i;
5417f6dc 316
b8fbeb18 317 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 318 if (sect)
b8fbeb18
EZ
319 objfile->sect_index_text = sect->index;
320
321 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 322 if (sect)
b8fbeb18
EZ
323 objfile->sect_index_data = sect->index;
324
325 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 326 if (sect)
b8fbeb18
EZ
327 objfile->sect_index_bss = sect->index;
328
329 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 330 if (sect)
b8fbeb18
EZ
331 objfile->sect_index_rodata = sect->index;
332
bbcd32ad
FF
333 /* This is where things get really weird... We MUST have valid
334 indices for the various sect_index_* members or gdb will abort.
335 So if for example, there is no ".text" section, we have to
31d99776
DJ
336 accomodate that. First, check for a file with the standard
337 one or two segments. */
338
339 symfile_find_segment_sections (objfile);
340
341 /* Except when explicitly adding symbol files at some address,
342 section_offsets contains nothing but zeros, so it doesn't matter
343 which slot in section_offsets the individual sect_index_* members
344 index into. So if they are all zero, it is safe to just point
345 all the currently uninitialized indices to the first slot. But
346 beware: if this is the main executable, it may be relocated
347 later, e.g. by the remote qOffsets packet, and then this will
348 be wrong! That's why we try segments first. */
bbcd32ad
FF
349
350 for (i = 0; i < objfile->num_sections; i++)
351 {
352 if (ANOFFSET (objfile->section_offsets, i) != 0)
353 {
354 break;
355 }
356 }
357 if (i == objfile->num_sections)
358 {
359 if (objfile->sect_index_text == -1)
360 objfile->sect_index_text = 0;
361 if (objfile->sect_index_data == -1)
362 objfile->sect_index_data = 0;
363 if (objfile->sect_index_bss == -1)
364 objfile->sect_index_bss = 0;
365 if (objfile->sect_index_rodata == -1)
366 objfile->sect_index_rodata = 0;
367 }
b8fbeb18 368}
c906108c 369
c1bd25fd
DJ
370/* The arguments to place_section. */
371
372struct place_section_arg
373{
374 struct section_offsets *offsets;
375 CORE_ADDR lowest;
376};
377
378/* Find a unique offset to use for loadable section SECT if
379 the user did not provide an offset. */
380
2c0b251b 381static void
c1bd25fd
DJ
382place_section (bfd *abfd, asection *sect, void *obj)
383{
384 struct place_section_arg *arg = obj;
385 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
386 int done;
3bd72c6f 387 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 388
2711e456
DJ
389 /* We are only interested in allocated sections. */
390 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
391 return;
392
393 /* If the user specified an offset, honor it. */
65cf3563 394 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
c1bd25fd
DJ
395 return;
396
397 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
398 start_addr = (arg->lowest + align - 1) & -align;
399
c1bd25fd
DJ
400 do {
401 asection *cur_sec;
c1bd25fd 402
c1bd25fd
DJ
403 done = 1;
404
405 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
406 {
407 int indx = cur_sec->index;
c1bd25fd
DJ
408
409 /* We don't need to compare against ourself. */
410 if (cur_sec == sect)
411 continue;
412
2711e456
DJ
413 /* We can only conflict with allocated sections. */
414 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
415 continue;
416
417 /* If the section offset is 0, either the section has not been placed
418 yet, or it was the lowest section placed (in which case LOWEST
419 will be past its end). */
420 if (offsets[indx] == 0)
421 continue;
422
423 /* If this section would overlap us, then we must move up. */
424 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
425 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
426 {
427 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
428 start_addr = (start_addr + align - 1) & -align;
429 done = 0;
3bd72c6f 430 break;
c1bd25fd
DJ
431 }
432
433 /* Otherwise, we appear to be OK. So far. */
434 }
435 }
436 while (!done);
437
65cf3563 438 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
c1bd25fd 439 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 440}
e8289572 441
75242ef4
JK
442/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
443 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
444 entries. */
e8289572
JB
445
446void
75242ef4
JK
447relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
448 int num_sections,
3189cb12 449 const struct section_addr_info *addrs)
e8289572
JB
450{
451 int i;
452
75242ef4 453 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 454
c378eb4e 455 /* Now calculate offsets for section that were specified by the caller. */
d76488d8 456 for (i = 0; i < addrs->num_sections; i++)
e8289572 457 {
3189cb12 458 const struct other_sections *osp;
e8289572 459
75242ef4 460 osp = &addrs->other[i];
5488dafb 461 if (osp->sectindex == -1)
e8289572
JB
462 continue;
463
c378eb4e 464 /* Record all sections in offsets. */
e8289572 465 /* The section_offsets in the objfile are here filled in using
c378eb4e 466 the BFD index. */
75242ef4
JK
467 section_offsets->offsets[osp->sectindex] = osp->addr;
468 }
469}
470
1276c759
JK
471/* Transform section name S for a name comparison. prelink can split section
472 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
473 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
474 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
475 (`.sbss') section has invalid (increased) virtual address. */
476
477static const char *
478addr_section_name (const char *s)
479{
480 if (strcmp (s, ".dynbss") == 0)
481 return ".bss";
482 if (strcmp (s, ".sdynbss") == 0)
483 return ".sbss";
484
485 return s;
486}
487
82ccf5a5
JK
488/* qsort comparator for addrs_section_sort. Sort entries in ascending order by
489 their (name, sectindex) pair. sectindex makes the sort by name stable. */
490
491static int
492addrs_section_compar (const void *ap, const void *bp)
493{
494 const struct other_sections *a = *((struct other_sections **) ap);
495 const struct other_sections *b = *((struct other_sections **) bp);
22e048c9 496 int retval;
82ccf5a5 497
1276c759 498 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
82ccf5a5
JK
499 if (retval)
500 return retval;
501
5488dafb 502 return a->sectindex - b->sectindex;
82ccf5a5
JK
503}
504
505/* Provide sorted array of pointers to sections of ADDRS. The array is
506 terminated by NULL. Caller is responsible to call xfree for it. */
507
508static struct other_sections **
509addrs_section_sort (struct section_addr_info *addrs)
510{
511 struct other_sections **array;
512 int i;
513
514 /* `+ 1' for the NULL terminator. */
515 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
d76488d8 516 for (i = 0; i < addrs->num_sections; i++)
82ccf5a5
JK
517 array[i] = &addrs->other[i];
518 array[i] = NULL;
519
520 qsort (array, i, sizeof (*array), addrs_section_compar);
521
522 return array;
523}
524
75242ef4 525/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
526 also SECTINDEXes specific to ABFD there. This function can be used to
527 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
528
529void
530addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
531{
532 asection *lower_sect;
75242ef4
JK
533 CORE_ADDR lower_offset;
534 int i;
82ccf5a5
JK
535 struct cleanup *my_cleanup;
536 struct section_addr_info *abfd_addrs;
537 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
538 struct other_sections **addrs_to_abfd_addrs;
75242ef4
JK
539
540 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
541 continguous sections. */
542 lower_sect = NULL;
543 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
544 if (lower_sect == NULL)
545 {
546 warning (_("no loadable sections found in added symbol-file %s"),
547 bfd_get_filename (abfd));
548 lower_offset = 0;
e8289572 549 }
75242ef4
JK
550 else
551 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
552
82ccf5a5
JK
553 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
554 in ABFD. Section names are not unique - there can be multiple sections of
555 the same name. Also the sections of the same name do not have to be
556 adjacent to each other. Some sections may be present only in one of the
557 files. Even sections present in both files do not have to be in the same
558 order.
559
560 Use stable sort by name for the sections in both files. Then linearly
561 scan both lists matching as most of the entries as possible. */
562
563 addrs_sorted = addrs_section_sort (addrs);
564 my_cleanup = make_cleanup (xfree, addrs_sorted);
565
566 abfd_addrs = build_section_addr_info_from_bfd (abfd);
567 make_cleanup_free_section_addr_info (abfd_addrs);
568 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
569 make_cleanup (xfree, abfd_addrs_sorted);
570
c378eb4e
MS
571 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
572 ABFD_ADDRS_SORTED. */
82ccf5a5
JK
573
574 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
575 * addrs->num_sections);
576 make_cleanup (xfree, addrs_to_abfd_addrs);
577
578 while (*addrs_sorted)
579 {
1276c759 580 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
82ccf5a5
JK
581
582 while (*abfd_addrs_sorted
1276c759
JK
583 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
584 sect_name) < 0)
82ccf5a5
JK
585 abfd_addrs_sorted++;
586
587 if (*abfd_addrs_sorted
1276c759
JK
588 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
589 sect_name) == 0)
82ccf5a5
JK
590 {
591 int index_in_addrs;
592
593 /* Make the found item directly addressable from ADDRS. */
594 index_in_addrs = *addrs_sorted - addrs->other;
595 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
596 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
597
598 /* Never use the same ABFD entry twice. */
599 abfd_addrs_sorted++;
600 }
601
602 addrs_sorted++;
603 }
604
75242ef4
JK
605 /* Calculate offsets for the loadable sections.
606 FIXME! Sections must be in order of increasing loadable section
607 so that contiguous sections can use the lower-offset!!!
608
609 Adjust offsets if the segments are not contiguous.
610 If the section is contiguous, its offset should be set to
611 the offset of the highest loadable section lower than it
612 (the loadable section directly below it in memory).
613 this_offset = lower_offset = lower_addr - lower_orig_addr */
614
d76488d8 615 for (i = 0; i < addrs->num_sections; i++)
75242ef4 616 {
82ccf5a5 617 struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
618
619 if (sect)
75242ef4 620 {
c378eb4e 621 /* This is the index used by BFD. */
82ccf5a5 622 addrs->other[i].sectindex = sect->sectindex;
672d9c23
JK
623
624 if (addrs->other[i].addr != 0)
75242ef4 625 {
82ccf5a5 626 addrs->other[i].addr -= sect->addr;
75242ef4 627 lower_offset = addrs->other[i].addr;
75242ef4
JK
628 }
629 else
672d9c23 630 addrs->other[i].addr = lower_offset;
75242ef4
JK
631 }
632 else
672d9c23 633 {
1276c759
JK
634 /* addr_section_name transformation is not used for SECT_NAME. */
635 const char *sect_name = addrs->other[i].name;
636
b0fcb67f
JK
637 /* This section does not exist in ABFD, which is normally
638 unexpected and we want to issue a warning.
639
4d9743af
JK
640 However, the ELF prelinker does create a few sections which are
641 marked in the main executable as loadable (they are loaded in
642 memory from the DYNAMIC segment) and yet are not present in
643 separate debug info files. This is fine, and should not cause
644 a warning. Shared libraries contain just the section
645 ".gnu.liblist" but it is not marked as loadable there. There is
646 no other way to identify them than by their name as the sections
1276c759
JK
647 created by prelink have no special flags.
648
649 For the sections `.bss' and `.sbss' see addr_section_name. */
b0fcb67f
JK
650
651 if (!(strcmp (sect_name, ".gnu.liblist") == 0
4d9743af 652 || strcmp (sect_name, ".gnu.conflict") == 0
1276c759
JK
653 || (strcmp (sect_name, ".bss") == 0
654 && i > 0
655 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
656 && addrs_to_abfd_addrs[i - 1] != NULL)
657 || (strcmp (sect_name, ".sbss") == 0
658 && i > 0
659 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
660 && addrs_to_abfd_addrs[i - 1] != NULL)))
b0fcb67f
JK
661 warning (_("section %s not found in %s"), sect_name,
662 bfd_get_filename (abfd));
663
672d9c23 664 addrs->other[i].addr = 0;
5488dafb 665 addrs->other[i].sectindex = -1;
672d9c23 666 }
75242ef4 667 }
82ccf5a5
JK
668
669 do_cleanups (my_cleanup);
75242ef4
JK
670}
671
672/* Parse the user's idea of an offset for dynamic linking, into our idea
673 of how to represent it for fast symbol reading. This is the default
674 version of the sym_fns.sym_offsets function for symbol readers that
675 don't need to do anything special. It allocates a section_offsets table
676 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
677
678void
679default_symfile_offsets (struct objfile *objfile,
3189cb12 680 const struct section_addr_info *addrs)
75242ef4 681{
d445b2f6 682 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
75242ef4
JK
683 objfile->section_offsets = (struct section_offsets *)
684 obstack_alloc (&objfile->objfile_obstack,
685 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
686 relative_addr_info_to_section_offsets (objfile->section_offsets,
687 objfile->num_sections, addrs);
e8289572 688
c1bd25fd
DJ
689 /* For relocatable files, all loadable sections will start at zero.
690 The zero is meaningless, so try to pick arbitrary addresses such
691 that no loadable sections overlap. This algorithm is quadratic,
692 but the number of sections in a single object file is generally
693 small. */
694 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
695 {
696 struct place_section_arg arg;
2711e456
DJ
697 bfd *abfd = objfile->obfd;
698 asection *cur_sec;
2711e456
DJ
699
700 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
701 /* We do not expect this to happen; just skip this step if the
702 relocatable file has a section with an assigned VMA. */
703 if (bfd_section_vma (abfd, cur_sec) != 0)
704 break;
705
706 if (cur_sec == NULL)
707 {
708 CORE_ADDR *offsets = objfile->section_offsets->offsets;
709
710 /* Pick non-overlapping offsets for sections the user did not
711 place explicitly. */
712 arg.offsets = objfile->section_offsets;
713 arg.lowest = 0;
714 bfd_map_over_sections (objfile->obfd, place_section, &arg);
715
716 /* Correctly filling in the section offsets is not quite
717 enough. Relocatable files have two properties that
718 (most) shared objects do not:
719
720 - Their debug information will contain relocations. Some
721 shared libraries do also, but many do not, so this can not
722 be assumed.
723
724 - If there are multiple code sections they will be loaded
725 at different relative addresses in memory than they are
726 in the objfile, since all sections in the file will start
727 at address zero.
728
729 Because GDB has very limited ability to map from an
730 address in debug info to the correct code section,
731 it relies on adding SECT_OFF_TEXT to things which might be
732 code. If we clear all the section offsets, and set the
733 section VMAs instead, then symfile_relocate_debug_section
734 will return meaningful debug information pointing at the
735 correct sections.
736
737 GDB has too many different data structures for section
738 addresses - a bfd, objfile, and so_list all have section
739 tables, as does exec_ops. Some of these could probably
740 be eliminated. */
741
742 for (cur_sec = abfd->sections; cur_sec != NULL;
743 cur_sec = cur_sec->next)
744 {
745 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
746 continue;
747
748 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
3e43a32a
MS
749 exec_set_section_address (bfd_get_filename (abfd),
750 cur_sec->index,
30510692 751 offsets[cur_sec->index]);
2711e456
DJ
752 offsets[cur_sec->index] = 0;
753 }
754 }
c1bd25fd
DJ
755 }
756
e8289572 757 /* Remember the bfd indexes for the .text, .data, .bss and
c378eb4e 758 .rodata sections. */
e8289572
JB
759 init_objfile_sect_indices (objfile);
760}
761
31d99776
DJ
762/* Divide the file into segments, which are individual relocatable units.
763 This is the default version of the sym_fns.sym_segments function for
764 symbol readers that do not have an explicit representation of segments.
765 It assumes that object files do not have segments, and fully linked
766 files have a single segment. */
767
768struct symfile_segment_data *
769default_symfile_segments (bfd *abfd)
770{
771 int num_sections, i;
772 asection *sect;
773 struct symfile_segment_data *data;
774 CORE_ADDR low, high;
775
776 /* Relocatable files contain enough information to position each
777 loadable section independently; they should not be relocated
778 in segments. */
779 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
780 return NULL;
781
782 /* Make sure there is at least one loadable section in the file. */
783 for (sect = abfd->sections; sect != NULL; sect = sect->next)
784 {
785 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
786 continue;
787
788 break;
789 }
790 if (sect == NULL)
791 return NULL;
792
793 low = bfd_get_section_vma (abfd, sect);
794 high = low + bfd_get_section_size (sect);
795
796 data = XZALLOC (struct symfile_segment_data);
797 data->num_segments = 1;
798 data->segment_bases = XCALLOC (1, CORE_ADDR);
799 data->segment_sizes = XCALLOC (1, CORE_ADDR);
800
801 num_sections = bfd_count_sections (abfd);
802 data->segment_info = XCALLOC (num_sections, int);
803
804 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
805 {
806 CORE_ADDR vma;
807
808 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
809 continue;
810
811 vma = bfd_get_section_vma (abfd, sect);
812 if (vma < low)
813 low = vma;
814 if (vma + bfd_get_section_size (sect) > high)
815 high = vma + bfd_get_section_size (sect);
816
817 data->segment_info[i] = 1;
818 }
819
820 data->segment_bases[0] = low;
821 data->segment_sizes[0] = high - low;
822
823 return data;
824}
825
608e2dbb
TT
826/* This is a convenience function to call sym_read for OBJFILE and
827 possibly force the partial symbols to be read. */
828
829static void
830read_symbols (struct objfile *objfile, int add_flags)
831{
832 (*objfile->sf->sym_read) (objfile, add_flags);
8a92335b
JK
833
834 /* find_separate_debug_file_in_section should be called only if there is
835 single binary with no existing separate debug info file. */
836 if (!objfile_has_partial_symbols (objfile)
837 && objfile->separate_debug_objfile == NULL
838 && objfile->separate_debug_objfile_backlink == NULL)
608e2dbb
TT
839 {
840 bfd *abfd = find_separate_debug_file_in_section (objfile);
841 struct cleanup *cleanup = make_cleanup_bfd_unref (abfd);
842
843 if (abfd != NULL)
844 symbol_file_add_separate (abfd, add_flags, objfile);
845
846 do_cleanups (cleanup);
847 }
848 if ((add_flags & SYMFILE_NO_READ) == 0)
849 require_partial_symbols (objfile, 0);
850}
851
3d6e24f0
JB
852/* Initialize entry point information for this objfile. */
853
854static void
855init_entry_point_info (struct objfile *objfile)
856{
857 /* Save startup file's range of PC addresses to help blockframe.c
858 decide where the bottom of the stack is. */
859
860 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
861 {
862 /* Executable file -- record its entry point so we'll recognize
863 the startup file because it contains the entry point. */
864 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
865 objfile->ei.entry_point_p = 1;
866 }
867 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
868 && bfd_get_start_address (objfile->obfd) != 0)
869 {
870 /* Some shared libraries may have entry points set and be
871 runnable. There's no clear way to indicate this, so just check
872 for values other than zero. */
873 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
874 objfile->ei.entry_point_p = 1;
875 }
876 else
877 {
878 /* Examination of non-executable.o files. Short-circuit this stuff. */
879 objfile->ei.entry_point_p = 0;
880 }
881
882 if (objfile->ei.entry_point_p)
883 {
884 CORE_ADDR entry_point = objfile->ei.entry_point;
885
886 /* Make certain that the address points at real code, and not a
887 function descriptor. */
888 entry_point
889 = gdbarch_convert_from_func_ptr_addr (objfile->gdbarch,
890 entry_point,
891 &current_target);
892
893 /* Remove any ISA markers, so that this matches entries in the
894 symbol table. */
895 objfile->ei.entry_point
896 = gdbarch_addr_bits_remove (objfile->gdbarch, entry_point);
897 }
898}
899
c906108c
SS
900/* Process a symbol file, as either the main file or as a dynamically
901 loaded file.
902
36e4d068
JB
903 This function does not set the OBJFILE's entry-point info.
904
96baa820
JM
905 OBJFILE is where the symbols are to be read from.
906
7e8580c1
JB
907 ADDRS is the list of section load addresses. If the user has given
908 an 'add-symbol-file' command, then this is the list of offsets and
909 addresses he or she provided as arguments to the command; or, if
910 we're handling a shared library, these are the actual addresses the
911 sections are loaded at, according to the inferior's dynamic linker
912 (as gleaned by GDB's shared library code). We convert each address
913 into an offset from the section VMA's as it appears in the object
914 file, and then call the file's sym_offsets function to convert this
915 into a format-specific offset table --- a `struct section_offsets'.
916 If ADDRS is non-zero, OFFSETS must be zero.
917
918 OFFSETS is a table of section offsets already in the right
919 format-specific representation. NUM_OFFSETS is the number of
920 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
921 assume this is the proper table the call to sym_offsets described
922 above would produce. Instead of calling sym_offsets, we just dump
923 it right into objfile->section_offsets. (When we're re-reading
924 symbols from an objfile, we don't have the original load address
925 list any more; all we have is the section offset table.) If
926 OFFSETS is non-zero, ADDRS must be zero.
96baa820 927
7eedccfa
PP
928 ADD_FLAGS encodes verbosity level, whether this is main symbol or
929 an extra symbol file such as dynamically loaded code, and wether
930 breakpoint reset should be deferred. */
c906108c 931
36e4d068
JB
932static void
933syms_from_objfile_1 (struct objfile *objfile,
934 struct section_addr_info *addrs,
3189cb12 935 const struct section_offsets *offsets,
36e4d068
JB
936 int num_offsets,
937 int add_flags)
c906108c 938{
a39a16c4 939 struct section_addr_info *local_addr = NULL;
c906108c 940 struct cleanup *old_chain;
7eedccfa 941 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 942
7e8580c1 943 gdb_assert (! (addrs && offsets));
2acceee2 944
31d99776 945 objfile->sf = find_sym_fns (objfile->obfd);
c906108c 946
75245b24 947 if (objfile->sf == NULL)
36e4d068
JB
948 {
949 /* No symbols to load, but we still need to make sure
950 that the section_offsets table is allocated. */
d445b2f6 951 int num_sections = gdb_bfd_count_sections (objfile->obfd);
a7bfba49 952 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
36e4d068
JB
953
954 objfile->num_sections = num_sections;
955 objfile->section_offsets
956 = obstack_alloc (&objfile->objfile_obstack, size);
957 memset (objfile->section_offsets, 0, size);
958 return;
959 }
75245b24 960
c906108c
SS
961 /* Make sure that partially constructed symbol tables will be cleaned up
962 if an error occurs during symbol reading. */
74b7792f 963 old_chain = make_cleanup_free_objfile (objfile);
c906108c 964
a39a16c4
MM
965 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
966 list. We now establish the convention that an addr of zero means
c378eb4e 967 no load address was specified. */
a39a16c4
MM
968 if (! addrs && ! offsets)
969 {
d445b2f6 970 local_addr = alloc_section_addr_info (1);
a39a16c4
MM
971 make_cleanup (xfree, local_addr);
972 addrs = local_addr;
973 }
974
975 /* Now either addrs or offsets is non-zero. */
976
c5aa993b 977 if (mainline)
c906108c
SS
978 {
979 /* We will modify the main symbol table, make sure that all its users
c5aa993b 980 will be cleaned up if an error occurs during symbol reading. */
74b7792f 981 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
982
983 /* Since no error yet, throw away the old symbol table. */
984
985 if (symfile_objfile != NULL)
986 {
987 free_objfile (symfile_objfile);
adb7f338 988 gdb_assert (symfile_objfile == NULL);
c906108c
SS
989 }
990
991 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
992 If the user wants to get rid of them, they should do "symbol-file"
993 without arguments first. Not sure this is the best behavior
994 (PR 2207). */
c906108c 995
c5aa993b 996 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
997 }
998
999 /* Convert addr into an offset rather than an absolute address.
1000 We find the lowest address of a loaded segment in the objfile,
53a5351d 1001 and assume that <addr> is where that got loaded.
c906108c 1002
53a5351d
JM
1003 We no longer warn if the lowest section is not a text segment (as
1004 happens for the PA64 port. */
d76488d8 1005 if (addrs && addrs->num_sections > 0)
75242ef4 1006 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
1007
1008 /* Initialize symbol reading routines for this objfile, allow complaints to
1009 appear for this new file, and record how verbose to be, then do the
c378eb4e 1010 initial symbol reading for this file. */
c906108c 1011
c5aa993b 1012 (*objfile->sf->sym_init) (objfile);
7eedccfa 1013 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 1014
7e8580c1
JB
1015 if (addrs)
1016 (*objfile->sf->sym_offsets) (objfile, addrs);
1017 else
1018 {
1019 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
1020
1021 /* Just copy in the offset table directly as given to us. */
1022 objfile->num_sections = num_offsets;
1023 objfile->section_offsets
1024 = ((struct section_offsets *)
8b92e4d5 1025 obstack_alloc (&objfile->objfile_obstack, size));
7e8580c1
JB
1026 memcpy (objfile->section_offsets, offsets, size);
1027
1028 init_objfile_sect_indices (objfile);
1029 }
c906108c 1030
608e2dbb 1031 read_symbols (objfile, add_flags);
b11896a5 1032
c906108c
SS
1033 /* Discard cleanups as symbol reading was successful. */
1034
1035 discard_cleanups (old_chain);
f7545552 1036 xfree (local_addr);
c906108c
SS
1037}
1038
36e4d068
JB
1039/* Same as syms_from_objfile_1, but also initializes the objfile
1040 entry-point info. */
1041
1042void
1043syms_from_objfile (struct objfile *objfile,
1044 struct section_addr_info *addrs,
3189cb12 1045 const struct section_offsets *offsets,
36e4d068
JB
1046 int num_offsets,
1047 int add_flags)
1048{
1049 syms_from_objfile_1 (objfile, addrs, offsets, num_offsets, add_flags);
1050 init_entry_point_info (objfile);
1051}
1052
c906108c
SS
1053/* Perform required actions after either reading in the initial
1054 symbols for a new objfile, or mapping in the symbols from a reusable
c1e56572 1055 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c5aa993b 1056
c906108c 1057void
7eedccfa 1058new_symfile_objfile (struct objfile *objfile, int add_flags)
c906108c 1059{
c906108c 1060 /* If this is the main symbol file we have to clean up all users of the
c378eb4e 1061 old main symbol file. Otherwise it is sufficient to fixup all the
c906108c 1062 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1063 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1064 {
1065 /* OK, make it the "real" symbol file. */
1066 symfile_objfile = objfile;
1067
c1e56572 1068 clear_symtab_users (add_flags);
c906108c 1069 }
7eedccfa 1070 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1071 {
69de3c6a 1072 breakpoint_re_set ();
c906108c
SS
1073 }
1074
1075 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 1076 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
1077}
1078
1079/* Process a symbol file, as either the main file or as a dynamically
1080 loaded file.
1081
5417f6dc 1082 ABFD is a BFD already open on the file, as from symfile_bfd_open.
8ac244b4 1083 A new reference is acquired by this function.
7904e09f 1084
7eedccfa
PP
1085 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1086 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f
JB
1087
1088 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
7eedccfa
PP
1089 syms_from_objfile, above.
1090 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1091
63524580
JK
1092 PARENT is the original objfile if ABFD is a separate debug info file.
1093 Otherwise PARENT is NULL.
1094
c906108c 1095 Upon success, returns a pointer to the objfile that was added.
c378eb4e 1096 Upon failure, jumps back to command level (never returns). */
7eedccfa 1097
7904e09f 1098static struct objfile *
7eedccfa
PP
1099symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1100 int add_flags,
7904e09f 1101 struct section_addr_info *addrs,
3189cb12 1102 const struct section_offsets *offsets,
7904e09f 1103 int num_offsets,
63524580 1104 int flags, struct objfile *parent)
c906108c
SS
1105{
1106 struct objfile *objfile;
5417f6dc 1107 const char *name = bfd_get_filename (abfd);
7eedccfa 1108 const int from_tty = add_flags & SYMFILE_VERBOSE;
0838fb57 1109 const int mainline = add_flags & SYMFILE_MAINLINE;
b11896a5
TT
1110 const int should_print = ((from_tty || info_verbose)
1111 && (readnow_symbol_files
1112 || (add_flags & SYMFILE_NO_READ) == 0));
c906108c 1113
9291a0cd 1114 if (readnow_symbol_files)
b11896a5
TT
1115 {
1116 flags |= OBJF_READNOW;
1117 add_flags &= ~SYMFILE_NO_READ;
1118 }
9291a0cd 1119
5417f6dc
RM
1120 /* Give user a chance to burp if we'd be
1121 interactively wiping out any existing symbols. */
c906108c
SS
1122
1123 if ((have_full_symbols () || have_partial_symbols ())
0838fb57 1124 && mainline
c906108c 1125 && from_tty
9e2f0ad4 1126 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1127 error (_("Not confirmed."));
c906108c 1128
0838fb57 1129 objfile = allocate_objfile (abfd, flags | (mainline ? OBJF_MAINLINE : 0));
c906108c 1130
63524580
JK
1131 if (parent)
1132 add_separate_debug_objfile (objfile, parent);
1133
78a4a9b9
AC
1134 /* We either created a new mapped symbol table, mapped an existing
1135 symbol table file which has not had initial symbol reading
c378eb4e 1136 performed, or need to read an unmapped symbol table. */
b11896a5 1137 if (should_print)
c906108c 1138 {
769d7dc4
AC
1139 if (deprecated_pre_add_symbol_hook)
1140 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1141 else
c906108c 1142 {
55333a84
DE
1143 printf_unfiltered (_("Reading symbols from %s..."), name);
1144 wrap_here ("");
1145 gdb_flush (gdb_stdout);
c906108c 1146 }
c906108c 1147 }
78a4a9b9 1148 syms_from_objfile (objfile, addrs, offsets, num_offsets,
7eedccfa 1149 add_flags);
c906108c
SS
1150
1151 /* We now have at least a partial symbol table. Check to see if the
1152 user requested that all symbols be read on initial access via either
1153 the gdb startup command line or on a per symbol file basis. Expand
c378eb4e 1154 all partial symbol tables for this objfile if so. */
c906108c 1155
9291a0cd 1156 if ((flags & OBJF_READNOW))
c906108c 1157 {
b11896a5 1158 if (should_print)
c906108c 1159 {
a3f17187 1160 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1161 wrap_here ("");
1162 gdb_flush (gdb_stdout);
1163 }
1164
ccefe4c4
TT
1165 if (objfile->sf)
1166 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1167 }
1168
b11896a5 1169 if (should_print && !objfile_has_symbols (objfile))
cb3c37b2
JB
1170 {
1171 wrap_here ("");
55333a84 1172 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1173 wrap_here ("");
1174 }
1175
b11896a5 1176 if (should_print)
c906108c 1177 {
769d7dc4
AC
1178 if (deprecated_post_add_symbol_hook)
1179 deprecated_post_add_symbol_hook ();
c906108c 1180 else
55333a84 1181 printf_unfiltered (_("done.\n"));
c906108c
SS
1182 }
1183
481d0f41
JB
1184 /* We print some messages regardless of whether 'from_tty ||
1185 info_verbose' is true, so make sure they go out at the right
1186 time. */
1187 gdb_flush (gdb_stdout);
1188
109f874e 1189 if (objfile->sf == NULL)
8caee43b
PP
1190 {
1191 observer_notify_new_objfile (objfile);
c378eb4e 1192 return objfile; /* No symbols. */
8caee43b 1193 }
109f874e 1194
7eedccfa 1195 new_symfile_objfile (objfile, add_flags);
c906108c 1196
06d3b283 1197 observer_notify_new_objfile (objfile);
c906108c 1198
ce7d4522 1199 bfd_cache_close_all ();
c906108c
SS
1200 return (objfile);
1201}
1202
9cce227f
TG
1203/* Add BFD as a separate debug file for OBJFILE. */
1204
1205void
1206symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1207{
15d123c9 1208 struct objfile *new_objfile;
089b4803
TG
1209 struct section_addr_info *sap;
1210 struct cleanup *my_cleanup;
1211
1212 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1213 because sections of BFD may not match sections of OBJFILE and because
1214 vma may have been modified by tools such as prelink. */
1215 sap = build_section_addr_info_from_objfile (objfile);
1216 my_cleanup = make_cleanup_free_section_addr_info (sap);
9cce227f 1217
15d123c9 1218 new_objfile = symbol_file_add_with_addrs_or_offsets
9cce227f 1219 (bfd, symfile_flags,
089b4803 1220 sap, NULL, 0,
9cce227f 1221 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
63524580
JK
1222 | OBJF_USERLOADED),
1223 objfile);
089b4803
TG
1224
1225 do_cleanups (my_cleanup);
9cce227f 1226}
7904e09f 1227
eb4556d7
JB
1228/* Process the symbol file ABFD, as either the main file or as a
1229 dynamically loaded file.
1230
1231 See symbol_file_add_with_addrs_or_offsets's comments for
1232 details. */
3b7bacac 1233
eb4556d7 1234struct objfile *
7eedccfa 1235symbol_file_add_from_bfd (bfd *abfd, int add_flags,
eb4556d7 1236 struct section_addr_info *addrs,
63524580 1237 int flags, struct objfile *parent)
eb4556d7 1238{
7eedccfa 1239 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
63524580 1240 flags, parent);
eb4556d7
JB
1241}
1242
7904e09f
JB
1243/* Process a symbol file, as either the main file or as a dynamically
1244 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1245 for details. */
3b7bacac 1246
7904e09f 1247struct objfile *
7eedccfa
PP
1248symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1249 int flags)
7904e09f 1250{
8ac244b4
TT
1251 bfd *bfd = symfile_bfd_open (name);
1252 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1253 struct objfile *objf;
1254
882f447f 1255 objf = symbol_file_add_from_bfd (bfd, add_flags, addrs, flags, NULL);
8ac244b4
TT
1256 do_cleanups (cleanup);
1257 return objf;
7904e09f
JB
1258}
1259
d7db6da9
FN
1260/* Call symbol_file_add() with default values and update whatever is
1261 affected by the loading of a new main().
1262 Used when the file is supplied in the gdb command line
1263 and by some targets with special loading requirements.
1264 The auxiliary function, symbol_file_add_main_1(), has the flags
1265 argument for the switches that can only be specified in the symbol_file
1266 command itself. */
5417f6dc 1267
1adeb98a
FN
1268void
1269symbol_file_add_main (char *args, int from_tty)
1270{
d7db6da9
FN
1271 symbol_file_add_main_1 (args, from_tty, 0);
1272}
1273
1274static void
1275symbol_file_add_main_1 (char *args, int from_tty, int flags)
1276{
7dcd53a0
TT
1277 const int add_flags = (current_inferior ()->symfile_flags
1278 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1279
7eedccfa 1280 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1281
d7db6da9
FN
1282 /* Getting new symbols may change our opinion about
1283 what is frameless. */
1284 reinit_frame_cache ();
1285
7dcd53a0
TT
1286 if ((flags & SYMFILE_NO_READ) == 0)
1287 set_initial_language ();
1adeb98a
FN
1288}
1289
1290void
1291symbol_file_clear (int from_tty)
1292{
1293 if ((have_full_symbols () || have_partial_symbols ())
1294 && from_tty
0430b0d6
AS
1295 && (symfile_objfile
1296 ? !query (_("Discard symbol table from `%s'? "),
1297 symfile_objfile->name)
1298 : !query (_("Discard symbol table? "))))
8a3fe4f8 1299 error (_("Not confirmed."));
1adeb98a 1300
0133421a
JK
1301 /* solib descriptors may have handles to objfiles. Wipe them before their
1302 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1303 no_shared_libraries (NULL, from_tty);
1304
0133421a
JK
1305 free_all_objfiles ();
1306
adb7f338 1307 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1308 if (from_tty)
1309 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1310}
1311
5b5d99cf 1312static int
287ccc17 1313separate_debug_file_exists (const char *name, unsigned long crc,
32a0e547 1314 struct objfile *parent_objfile)
5b5d99cf 1315{
904578ed
JK
1316 unsigned long file_crc;
1317 int file_crc_p;
f1838a98 1318 bfd *abfd;
32a0e547 1319 struct stat parent_stat, abfd_stat;
904578ed 1320 int verified_as_different;
32a0e547
JK
1321
1322 /* Find a separate debug info file as if symbols would be present in
1323 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1324 section can contain just the basename of PARENT_OBJFILE without any
1325 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
c378eb4e 1326 the separate debug infos with the same basename can exist. */
32a0e547 1327
0ba1096a 1328 if (filename_cmp (name, parent_objfile->name) == 0)
32a0e547 1329 return 0;
5b5d99cf 1330
08d2cd74 1331 abfd = gdb_bfd_open_maybe_remote (name);
f1838a98
UW
1332
1333 if (!abfd)
5b5d99cf
JB
1334 return 0;
1335
0ba1096a 1336 /* Verify symlinks were not the cause of filename_cmp name difference above.
32a0e547
JK
1337
1338 Some operating systems, e.g. Windows, do not provide a meaningful
1339 st_ino; they always set it to zero. (Windows does provide a
1340 meaningful st_dev.) Do not indicate a duplicate library in that
1341 case. While there is no guarantee that a system that provides
1342 meaningful inode numbers will never set st_ino to zero, this is
1343 merely an optimization, so we do not need to worry about false
1344 negatives. */
1345
1346 if (bfd_stat (abfd, &abfd_stat) == 0
904578ed
JK
1347 && abfd_stat.st_ino != 0
1348 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
32a0e547 1349 {
904578ed
JK
1350 if (abfd_stat.st_dev == parent_stat.st_dev
1351 && abfd_stat.st_ino == parent_stat.st_ino)
1352 {
cbb099e8 1353 gdb_bfd_unref (abfd);
904578ed
JK
1354 return 0;
1355 }
1356 verified_as_different = 1;
32a0e547 1357 }
904578ed
JK
1358 else
1359 verified_as_different = 0;
32a0e547 1360
dccee2de 1361 file_crc_p = gdb_bfd_crc (abfd, &file_crc);
5b5d99cf 1362
cbb099e8 1363 gdb_bfd_unref (abfd);
5b5d99cf 1364
904578ed
JK
1365 if (!file_crc_p)
1366 return 0;
1367
287ccc17
JK
1368 if (crc != file_crc)
1369 {
dccee2de
TT
1370 unsigned long parent_crc;
1371
904578ed
JK
1372 /* If one (or both) the files are accessed for example the via "remote:"
1373 gdbserver way it does not support the bfd_stat operation. Verify
1374 whether those two files are not the same manually. */
1375
dccee2de 1376 if (!verified_as_different)
904578ed 1377 {
dccee2de 1378 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
904578ed
JK
1379 return 0;
1380 }
1381
dccee2de 1382 if (verified_as_different || parent_crc != file_crc)
904578ed
JK
1383 warning (_("the debug information found in \"%s\""
1384 " does not match \"%s\" (CRC mismatch).\n"),
1385 name, parent_objfile->name);
1386
287ccc17
JK
1387 return 0;
1388 }
1389
1390 return 1;
5b5d99cf
JB
1391}
1392
aa28a74e 1393char *debug_file_directory = NULL;
920d2a44
AC
1394static void
1395show_debug_file_directory (struct ui_file *file, int from_tty,
1396 struct cmd_list_element *c, const char *value)
1397{
3e43a32a
MS
1398 fprintf_filtered (file,
1399 _("The directory where separate debug "
1400 "symbols are searched for is \"%s\".\n"),
920d2a44
AC
1401 value);
1402}
5b5d99cf
JB
1403
1404#if ! defined (DEBUG_SUBDIRECTORY)
1405#define DEBUG_SUBDIRECTORY ".debug"
1406#endif
1407
1db33378
PP
1408/* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1409 where the original file resides (may not be the same as
1410 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
7edbb660
DE
1411 looking for. CANON_DIR is the "realpath" form of DIR.
1412 DIR must contain a trailing '/'.
1413 Returns the path of the file with separate debug info, of NULL. */
1db33378
PP
1414
1415static char *
1416find_separate_debug_file (const char *dir,
1417 const char *canon_dir,
1418 const char *debuglink,
1419 unsigned long crc32, struct objfile *objfile)
9cce227f 1420{
1db33378
PP
1421 char *debugdir;
1422 char *debugfile;
9cce227f 1423 int i;
e4ab2fad
JK
1424 VEC (char_ptr) *debugdir_vec;
1425 struct cleanup *back_to;
1426 int ix;
5b5d99cf 1427
1db33378 1428 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1ffa32ee 1429 i = strlen (dir);
1db33378
PP
1430 if (canon_dir != NULL && strlen (canon_dir) > i)
1431 i = strlen (canon_dir);
1ffa32ee 1432
25522fae
JK
1433 debugfile = xmalloc (strlen (debug_file_directory) + 1
1434 + i
1435 + strlen (DEBUG_SUBDIRECTORY)
1436 + strlen ("/")
1db33378 1437 + strlen (debuglink)
25522fae 1438 + 1);
5b5d99cf
JB
1439
1440 /* First try in the same directory as the original file. */
1441 strcpy (debugfile, dir);
1db33378 1442 strcat (debugfile, debuglink);
5b5d99cf 1443
32a0e547 1444 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1445 return debugfile;
5417f6dc 1446
5b5d99cf
JB
1447 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1448 strcpy (debugfile, dir);
1449 strcat (debugfile, DEBUG_SUBDIRECTORY);
1450 strcat (debugfile, "/");
1db33378 1451 strcat (debugfile, debuglink);
5b5d99cf 1452
32a0e547 1453 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1454 return debugfile;
5417f6dc 1455
24ddea62 1456 /* Then try in the global debugfile directories.
f888f159 1457
24ddea62
JK
1458 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1459 cause "/..." lookups. */
5417f6dc 1460
e4ab2fad
JK
1461 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1462 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
24ddea62 1463
e4ab2fad
JK
1464 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1465 {
1466 strcpy (debugfile, debugdir);
aa28a74e 1467 strcat (debugfile, "/");
24ddea62 1468 strcat (debugfile, dir);
1db33378 1469 strcat (debugfile, debuglink);
aa28a74e 1470
32a0e547 1471 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1472 return debugfile;
24ddea62
JK
1473
1474 /* If the file is in the sysroot, try using its base path in the
1475 global debugfile directory. */
1db33378
PP
1476 if (canon_dir != NULL
1477 && filename_ncmp (canon_dir, gdb_sysroot,
0ba1096a 1478 strlen (gdb_sysroot)) == 0
1db33378 1479 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
24ddea62 1480 {
e4ab2fad 1481 strcpy (debugfile, debugdir);
1db33378 1482 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
24ddea62 1483 strcat (debugfile, "/");
1db33378 1484 strcat (debugfile, debuglink);
24ddea62 1485
32a0e547 1486 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1487 return debugfile;
24ddea62 1488 }
aa28a74e 1489 }
f888f159 1490
e4ab2fad 1491 do_cleanups (back_to);
25522fae 1492 xfree (debugfile);
1db33378
PP
1493 return NULL;
1494}
1495
7edbb660 1496/* Modify PATH to contain only "[/]directory/" part of PATH.
1db33378
PP
1497 If there were no directory separators in PATH, PATH will be empty
1498 string on return. */
1499
1500static void
1501terminate_after_last_dir_separator (char *path)
1502{
1503 int i;
1504
1505 /* Strip off the final filename part, leaving the directory name,
1506 followed by a slash. The directory can be relative or absolute. */
1507 for (i = strlen(path) - 1; i >= 0; i--)
1508 if (IS_DIR_SEPARATOR (path[i]))
1509 break;
1510
1511 /* If I is -1 then no directory is present there and DIR will be "". */
1512 path[i + 1] = '\0';
1513}
1514
1515/* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1516 Returns pathname, or NULL. */
1517
1518char *
1519find_separate_debug_file_by_debuglink (struct objfile *objfile)
1520{
1521 char *debuglink;
1522 char *dir, *canon_dir;
1523 char *debugfile;
1524 unsigned long crc32;
1525 struct cleanup *cleanups;
1526
cc0ea93c 1527 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1db33378
PP
1528
1529 if (debuglink == NULL)
1530 {
1531 /* There's no separate debug info, hence there's no way we could
1532 load it => no warning. */
1533 return NULL;
1534 }
1535
71bdabee 1536 cleanups = make_cleanup (xfree, debuglink);
1db33378 1537 dir = xstrdup (objfile->name);
71bdabee 1538 make_cleanup (xfree, dir);
1db33378
PP
1539 terminate_after_last_dir_separator (dir);
1540 canon_dir = lrealpath (dir);
1541
1542 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1543 crc32, objfile);
1544 xfree (canon_dir);
1545
1546 if (debugfile == NULL)
1547 {
1548#ifdef HAVE_LSTAT
1549 /* For PR gdb/9538, try again with realpath (if different from the
1550 original). */
1551
1552 struct stat st_buf;
1553
1554 if (lstat (objfile->name, &st_buf) == 0 && S_ISLNK(st_buf.st_mode))
1555 {
1556 char *symlink_dir;
1557
1558 symlink_dir = lrealpath (objfile->name);
1559 if (symlink_dir != NULL)
1560 {
1561 make_cleanup (xfree, symlink_dir);
1562 terminate_after_last_dir_separator (symlink_dir);
1563 if (strcmp (dir, symlink_dir) != 0)
1564 {
1565 /* Different directory, so try using it. */
1566 debugfile = find_separate_debug_file (symlink_dir,
1567 symlink_dir,
1568 debuglink,
1569 crc32,
1570 objfile);
1571 }
1572 }
1573 }
1574#endif /* HAVE_LSTAT */
1575 }
aa28a74e 1576
1db33378 1577 do_cleanups (cleanups);
25522fae 1578 return debugfile;
5b5d99cf
JB
1579}
1580
c906108c
SS
1581/* This is the symbol-file command. Read the file, analyze its
1582 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1583 the command is rather bizarre:
1584
1585 1. The function buildargv implements various quoting conventions
1586 which are undocumented and have little or nothing in common with
1587 the way things are quoted (or not quoted) elsewhere in GDB.
1588
1589 2. Options are used, which are not generally used in GDB (perhaps
1590 "set mapped on", "set readnow on" would be better)
1591
1592 3. The order of options matters, which is contrary to GNU
c906108c
SS
1593 conventions (because it is confusing and inconvenient). */
1594
1595void
fba45db2 1596symbol_file_command (char *args, int from_tty)
c906108c 1597{
c906108c
SS
1598 dont_repeat ();
1599
1600 if (args == NULL)
1601 {
1adeb98a 1602 symbol_file_clear (from_tty);
c906108c
SS
1603 }
1604 else
1605 {
d1a41061 1606 char **argv = gdb_buildargv (args);
cb2f3a29
MK
1607 int flags = OBJF_USERLOADED;
1608 struct cleanup *cleanups;
1609 char *name = NULL;
1610
7a292a7a 1611 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1612 while (*argv != NULL)
1613 {
78a4a9b9
AC
1614 if (strcmp (*argv, "-readnow") == 0)
1615 flags |= OBJF_READNOW;
1616 else if (**argv == '-')
8a3fe4f8 1617 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1618 else
1619 {
cb2f3a29 1620 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1621 name = *argv;
78a4a9b9 1622 }
cb2f3a29 1623
c906108c
SS
1624 argv++;
1625 }
1626
1627 if (name == NULL)
cb2f3a29
MK
1628 error (_("no symbol file name was specified"));
1629
c906108c
SS
1630 do_cleanups (cleanups);
1631 }
1632}
1633
1634/* Set the initial language.
1635
cb2f3a29
MK
1636 FIXME: A better solution would be to record the language in the
1637 psymtab when reading partial symbols, and then use it (if known) to
1638 set the language. This would be a win for formats that encode the
1639 language in an easily discoverable place, such as DWARF. For
1640 stabs, we can jump through hoops looking for specially named
1641 symbols or try to intuit the language from the specific type of
1642 stabs we find, but we can't do that until later when we read in
1643 full symbols. */
c906108c 1644
8b60591b 1645void
fba45db2 1646set_initial_language (void)
c906108c 1647{
c5aa993b 1648 enum language lang = language_unknown;
c906108c 1649
01f8c46d
JK
1650 if (language_of_main != language_unknown)
1651 lang = language_of_main;
1652 else
1653 {
1654 const char *filename;
f888f159 1655
01f8c46d
JK
1656 filename = find_main_filename ();
1657 if (filename != NULL)
1658 lang = deduce_language_from_filename (filename);
1659 }
cb2f3a29 1660
ccefe4c4
TT
1661 if (lang == language_unknown)
1662 {
1663 /* Make C the default language */
1664 lang = language_c;
c906108c 1665 }
ccefe4c4
TT
1666
1667 set_language (lang);
1668 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1669}
1670
874f5765 1671/* If NAME is a remote name open the file using remote protocol, otherwise
cbb099e8
TT
1672 open it normally. Returns a new reference to the BFD. On error,
1673 returns NULL with the BFD error set. */
874f5765
TG
1674
1675bfd *
08d2cd74 1676gdb_bfd_open_maybe_remote (const char *name)
874f5765 1677{
520b0001
TT
1678 bfd *result;
1679
874f5765 1680 if (remote_filename_p (name))
520b0001 1681 result = remote_bfd_open (name, gnutarget);
874f5765 1682 else
1c00ec6b 1683 result = gdb_bfd_open (name, gnutarget, -1);
520b0001 1684
520b0001 1685 return result;
874f5765
TG
1686}
1687
cb2f3a29
MK
1688/* Open the file specified by NAME and hand it off to BFD for
1689 preliminary analysis. Return a newly initialized bfd *, which
1690 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1691 absolute). In case of trouble, error() is called. */
c906108c
SS
1692
1693bfd *
fba45db2 1694symfile_bfd_open (char *name)
c906108c
SS
1695{
1696 bfd *sym_bfd;
1697 int desc;
1698 char *absolute_name;
faab9922 1699 struct cleanup *back_to;
c906108c 1700
f1838a98
UW
1701 if (remote_filename_p (name))
1702 {
520b0001 1703 sym_bfd = remote_bfd_open (name, gnutarget);
f1838a98 1704 if (!sym_bfd)
a4453b7e
TT
1705 error (_("`%s': can't open to read symbols: %s."), name,
1706 bfd_errmsg (bfd_get_error ()));
f1838a98
UW
1707
1708 if (!bfd_check_format (sym_bfd, bfd_object))
1709 {
f9a062ff 1710 make_cleanup_bfd_unref (sym_bfd);
f1838a98
UW
1711 error (_("`%s': can't read symbols: %s."), name,
1712 bfd_errmsg (bfd_get_error ()));
1713 }
1714
1715 return sym_bfd;
1716 }
1717
cb2f3a29 1718 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c
SS
1719
1720 /* Look down path for it, allocate 2nd new malloc'd copy. */
cb2f3a29 1721 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
fbdebf46 1722 O_RDONLY | O_BINARY, &absolute_name);
608506ed 1723#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1724 if (desc < 0)
1725 {
1726 char *exename = alloca (strlen (name) + 5);
433759f7 1727
c906108c 1728 strcat (strcpy (exename, name), ".exe");
014d698b 1729 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
fbdebf46 1730 O_RDONLY | O_BINARY, &absolute_name);
c906108c
SS
1731 }
1732#endif
1733 if (desc < 0)
1734 {
b8c9b27d 1735 make_cleanup (xfree, name);
c906108c
SS
1736 perror_with_name (name);
1737 }
cb2f3a29 1738
cb2f3a29
MK
1739 xfree (name);
1740 name = absolute_name;
faab9922 1741 back_to = make_cleanup (xfree, name);
c906108c 1742
1c00ec6b 1743 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
c906108c 1744 if (!sym_bfd)
faab9922
JK
1745 error (_("`%s': can't open to read symbols: %s."), name,
1746 bfd_errmsg (bfd_get_error ()));
549c1eea 1747 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1748
1749 if (!bfd_check_format (sym_bfd, bfd_object))
1750 {
f9a062ff 1751 make_cleanup_bfd_unref (sym_bfd);
f1838a98 1752 error (_("`%s': can't read symbols: %s."), name,
c906108c
SS
1753 bfd_errmsg (bfd_get_error ()));
1754 }
cb2f3a29 1755
faab9922
JK
1756 do_cleanups (back_to);
1757
cb2f3a29 1758 return sym_bfd;
c906108c
SS
1759}
1760
cb2f3a29
MK
1761/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1762 the section was not found. */
1763
0e931cf0
JB
1764int
1765get_section_index (struct objfile *objfile, char *section_name)
1766{
1767 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1768
0e931cf0
JB
1769 if (sect)
1770 return sect->index;
1771 else
1772 return -1;
1773}
1774
cb2f3a29
MK
1775/* Link SF into the global symtab_fns list. Called on startup by the
1776 _initialize routine in each object file format reader, to register
b021a221 1777 information about each format the reader is prepared to handle. */
c906108c
SS
1778
1779void
00b5771c 1780add_symtab_fns (const struct sym_fns *sf)
c906108c 1781{
00b5771c 1782 VEC_safe_push (sym_fns_ptr, symtab_fns, sf);
c906108c
SS
1783}
1784
cb2f3a29
MK
1785/* Initialize OBJFILE to read symbols from its associated BFD. It
1786 either returns or calls error(). The result is an initialized
1787 struct sym_fns in the objfile structure, that contains cached
1788 information about the symbol file. */
c906108c 1789
00b5771c 1790static const struct sym_fns *
31d99776 1791find_sym_fns (bfd *abfd)
c906108c 1792{
00b5771c 1793 const struct sym_fns *sf;
31d99776 1794 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
00b5771c 1795 int i;
c906108c 1796
75245b24
MS
1797 if (our_flavour == bfd_target_srec_flavour
1798 || our_flavour == bfd_target_ihex_flavour
1799 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1800 return NULL; /* No symbols. */
75245b24 1801
00b5771c 1802 for (i = 0; VEC_iterate (sym_fns_ptr, symtab_fns, i, sf); ++i)
31d99776
DJ
1803 if (our_flavour == sf->sym_flavour)
1804 return sf;
cb2f3a29 1805
8a3fe4f8 1806 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1807 bfd_get_target (abfd));
c906108c
SS
1808}
1809\f
cb2f3a29 1810
c906108c
SS
1811/* This function runs the load command of our current target. */
1812
1813static void
fba45db2 1814load_command (char *arg, int from_tty)
c906108c 1815{
e5cc9f32
JB
1816 dont_repeat ();
1817
4487aabf
PA
1818 /* The user might be reloading because the binary has changed. Take
1819 this opportunity to check. */
1820 reopen_exec_file ();
1821 reread_symbols ();
1822
c906108c 1823 if (arg == NULL)
1986bccd
AS
1824 {
1825 char *parg;
1826 int count = 0;
1827
1828 parg = arg = get_exec_file (1);
1829
1830 /* Count how many \ " ' tab space there are in the name. */
1831 while ((parg = strpbrk (parg, "\\\"'\t ")))
1832 {
1833 parg++;
1834 count++;
1835 }
1836
1837 if (count)
1838 {
1839 /* We need to quote this string so buildargv can pull it apart. */
1840 char *temp = xmalloc (strlen (arg) + count + 1 );
1841 char *ptemp = temp;
1842 char *prev;
1843
1844 make_cleanup (xfree, temp);
1845
1846 prev = parg = arg;
1847 while ((parg = strpbrk (parg, "\\\"'\t ")))
1848 {
1849 strncpy (ptemp, prev, parg - prev);
1850 ptemp += parg - prev;
1851 prev = parg++;
1852 *ptemp++ = '\\';
1853 }
1854 strcpy (ptemp, prev);
1855
1856 arg = temp;
1857 }
1858 }
1859
c906108c 1860 target_load (arg, from_tty);
2889e661
JB
1861
1862 /* After re-loading the executable, we don't really know which
1863 overlays are mapped any more. */
1864 overlay_cache_invalid = 1;
c906108c
SS
1865}
1866
1867/* This version of "load" should be usable for any target. Currently
1868 it is just used for remote targets, not inftarg.c or core files,
1869 on the theory that only in that case is it useful.
1870
1871 Avoiding xmodem and the like seems like a win (a) because we don't have
1872 to worry about finding it, and (b) On VMS, fork() is very slow and so
1873 we don't want to run a subprocess. On the other hand, I'm not sure how
1874 performance compares. */
917317f4 1875
917317f4
JM
1876static int validate_download = 0;
1877
e4f9b4d5
MS
1878/* Callback service function for generic_load (bfd_map_over_sections). */
1879
1880static void
1881add_section_size_callback (bfd *abfd, asection *asec, void *data)
1882{
1883 bfd_size_type *sum = data;
1884
2c500098 1885 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1886}
1887
1888/* Opaque data for load_section_callback. */
1889struct load_section_data {
f698ca8e 1890 CORE_ADDR load_offset;
a76d924d
DJ
1891 struct load_progress_data *progress_data;
1892 VEC(memory_write_request_s) *requests;
1893};
1894
1895/* Opaque data for load_progress. */
1896struct load_progress_data {
1897 /* Cumulative data. */
e4f9b4d5
MS
1898 unsigned long write_count;
1899 unsigned long data_count;
1900 bfd_size_type total_size;
a76d924d
DJ
1901};
1902
1903/* Opaque data for load_progress for a single section. */
1904struct load_progress_section_data {
1905 struct load_progress_data *cumulative;
cf7a04e8 1906
a76d924d 1907 /* Per-section data. */
cf7a04e8
DJ
1908 const char *section_name;
1909 ULONGEST section_sent;
1910 ULONGEST section_size;
1911 CORE_ADDR lma;
1912 gdb_byte *buffer;
e4f9b4d5
MS
1913};
1914
a76d924d 1915/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1916
1917static void
1918load_progress (ULONGEST bytes, void *untyped_arg)
1919{
a76d924d
DJ
1920 struct load_progress_section_data *args = untyped_arg;
1921 struct load_progress_data *totals;
1922
1923 if (args == NULL)
1924 /* Writing padding data. No easy way to get at the cumulative
1925 stats, so just ignore this. */
1926 return;
1927
1928 totals = args->cumulative;
1929
1930 if (bytes == 0 && args->section_sent == 0)
1931 {
1932 /* The write is just starting. Let the user know we've started
1933 this section. */
79a45e25 1934 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
5af949e3 1935 args->section_name, hex_string (args->section_size),
f5656ead 1936 paddress (target_gdbarch (), args->lma));
a76d924d
DJ
1937 return;
1938 }
cf7a04e8
DJ
1939
1940 if (validate_download)
1941 {
1942 /* Broken memories and broken monitors manifest themselves here
1943 when bring new computers to life. This doubles already slow
1944 downloads. */
1945 /* NOTE: cagney/1999-10-18: A more efficient implementation
1946 might add a verify_memory() method to the target vector and
1947 then use that. remote.c could implement that method using
1948 the ``qCRC'' packet. */
1949 gdb_byte *check = xmalloc (bytes);
1950 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1951
1952 if (target_read_memory (args->lma, check, bytes) != 0)
5af949e3 1953 error (_("Download verify read failed at %s"),
f5656ead 1954 paddress (target_gdbarch (), args->lma));
cf7a04e8 1955 if (memcmp (args->buffer, check, bytes) != 0)
5af949e3 1956 error (_("Download verify compare failed at %s"),
f5656ead 1957 paddress (target_gdbarch (), args->lma));
cf7a04e8
DJ
1958 do_cleanups (verify_cleanups);
1959 }
a76d924d 1960 totals->data_count += bytes;
cf7a04e8
DJ
1961 args->lma += bytes;
1962 args->buffer += bytes;
a76d924d 1963 totals->write_count += 1;
cf7a04e8 1964 args->section_sent += bytes;
522002f9 1965 if (check_quit_flag ()
cf7a04e8
DJ
1966 || (deprecated_ui_load_progress_hook != NULL
1967 && deprecated_ui_load_progress_hook (args->section_name,
1968 args->section_sent)))
1969 error (_("Canceled the download"));
1970
1971 if (deprecated_show_load_progress != NULL)
1972 deprecated_show_load_progress (args->section_name,
1973 args->section_sent,
1974 args->section_size,
a76d924d
DJ
1975 totals->data_count,
1976 totals->total_size);
cf7a04e8
DJ
1977}
1978
e4f9b4d5
MS
1979/* Callback service function for generic_load (bfd_map_over_sections). */
1980
1981static void
1982load_section_callback (bfd *abfd, asection *asec, void *data)
1983{
a76d924d 1984 struct memory_write_request *new_request;
e4f9b4d5 1985 struct load_section_data *args = data;
a76d924d 1986 struct load_progress_section_data *section_data;
cf7a04e8
DJ
1987 bfd_size_type size = bfd_get_section_size (asec);
1988 gdb_byte *buffer;
cf7a04e8 1989 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 1990
cf7a04e8
DJ
1991 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1992 return;
e4f9b4d5 1993
cf7a04e8
DJ
1994 if (size == 0)
1995 return;
e4f9b4d5 1996
a76d924d
DJ
1997 new_request = VEC_safe_push (memory_write_request_s,
1998 args->requests, NULL);
1999 memset (new_request, 0, sizeof (struct memory_write_request));
2000 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
2001 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
3e43a32a
MS
2002 new_request->end = new_request->begin + size; /* FIXME Should size
2003 be in instead? */
a76d924d
DJ
2004 new_request->data = xmalloc (size);
2005 new_request->baton = section_data;
cf7a04e8 2006
a76d924d 2007 buffer = new_request->data;
cf7a04e8 2008
a76d924d
DJ
2009 section_data->cumulative = args->progress_data;
2010 section_data->section_name = sect_name;
2011 section_data->section_size = size;
2012 section_data->lma = new_request->begin;
2013 section_data->buffer = buffer;
cf7a04e8
DJ
2014
2015 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
2016}
2017
2018/* Clean up an entire memory request vector, including load
2019 data and progress records. */
cf7a04e8 2020
a76d924d
DJ
2021static void
2022clear_memory_write_data (void *arg)
2023{
2024 VEC(memory_write_request_s) **vec_p = arg;
2025 VEC(memory_write_request_s) *vec = *vec_p;
2026 int i;
2027 struct memory_write_request *mr;
cf7a04e8 2028
a76d924d
DJ
2029 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2030 {
2031 xfree (mr->data);
2032 xfree (mr->baton);
2033 }
2034 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
2035}
2036
c906108c 2037void
917317f4 2038generic_load (char *args, int from_tty)
c906108c 2039{
c906108c 2040 bfd *loadfile_bfd;
2b71414d 2041 struct timeval start_time, end_time;
917317f4 2042 char *filename;
1986bccd 2043 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 2044 struct load_section_data cbdata;
a76d924d 2045 struct load_progress_data total_progress;
79a45e25 2046 struct ui_out *uiout = current_uiout;
a76d924d 2047
e4f9b4d5 2048 CORE_ADDR entry;
1986bccd 2049 char **argv;
e4f9b4d5 2050
a76d924d
DJ
2051 memset (&cbdata, 0, sizeof (cbdata));
2052 memset (&total_progress, 0, sizeof (total_progress));
2053 cbdata.progress_data = &total_progress;
2054
2055 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 2056
d1a41061
PP
2057 if (args == NULL)
2058 error_no_arg (_("file to load"));
1986bccd 2059
d1a41061 2060 argv = gdb_buildargv (args);
1986bccd
AS
2061 make_cleanup_freeargv (argv);
2062
2063 filename = tilde_expand (argv[0]);
2064 make_cleanup (xfree, filename);
2065
2066 if (argv[1] != NULL)
917317f4 2067 {
f698ca8e 2068 const char *endptr;
ba5f2f8a 2069
f698ca8e 2070 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
1986bccd
AS
2071
2072 /* If the last word was not a valid number then
2073 treat it as a file name with spaces in. */
2074 if (argv[1] == endptr)
2075 error (_("Invalid download offset:%s."), argv[1]);
2076
2077 if (argv[2] != NULL)
2078 error (_("Too many parameters."));
917317f4 2079 }
c906108c 2080
c378eb4e 2081 /* Open the file for loading. */
1c00ec6b 2082 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
c906108c
SS
2083 if (loadfile_bfd == NULL)
2084 {
2085 perror_with_name (filename);
2086 return;
2087 }
917317f4 2088
f9a062ff 2089 make_cleanup_bfd_unref (loadfile_bfd);
c906108c 2090
c5aa993b 2091 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 2092 {
8a3fe4f8 2093 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
2094 bfd_errmsg (bfd_get_error ()));
2095 }
c5aa993b 2096
5417f6dc 2097 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
2098 (void *) &total_progress.total_size);
2099
2100 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 2101
2b71414d 2102 gettimeofday (&start_time, NULL);
c906108c 2103
a76d924d
DJ
2104 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2105 load_progress) != 0)
2106 error (_("Load failed"));
c906108c 2107
2b71414d 2108 gettimeofday (&end_time, NULL);
ba5f2f8a 2109
e4f9b4d5 2110 entry = bfd_get_start_address (loadfile_bfd);
8c2b9656 2111 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
e4f9b4d5 2112 ui_out_text (uiout, "Start address ");
f5656ead 2113 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch (), entry));
e4f9b4d5 2114 ui_out_text (uiout, ", load size ");
a76d924d 2115 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 2116 ui_out_text (uiout, "\n");
e4f9b4d5
MS
2117 /* We were doing this in remote-mips.c, I suspect it is right
2118 for other targets too. */
fb14de7b 2119 regcache_write_pc (get_current_regcache (), entry);
c906108c 2120
38963c97
DJ
2121 /* Reset breakpoints, now that we have changed the load image. For
2122 instance, breakpoints may have been set (or reset, by
2123 post_create_inferior) while connected to the target but before we
2124 loaded the program. In that case, the prologue analyzer could
2125 have read instructions from the target to find the right
2126 breakpoint locations. Loading has changed the contents of that
2127 memory. */
2128
2129 breakpoint_re_set ();
2130
7ca9f392
AC
2131 /* FIXME: are we supposed to call symbol_file_add or not? According
2132 to a comment from remote-mips.c (where a call to symbol_file_add
2133 was commented out), making the call confuses GDB if more than one
2134 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 2135 others don't (or didn't - perhaps they have all been deleted). */
c906108c 2136
a76d924d
DJ
2137 print_transfer_performance (gdb_stdout, total_progress.data_count,
2138 total_progress.write_count,
2139 &start_time, &end_time);
c906108c
SS
2140
2141 do_cleanups (old_cleanups);
2142}
2143
c378eb4e 2144/* Report how fast the transfer went. */
c906108c 2145
917317f4 2146void
d9fcf2fb 2147print_transfer_performance (struct ui_file *stream,
917317f4
JM
2148 unsigned long data_count,
2149 unsigned long write_count,
2b71414d
DJ
2150 const struct timeval *start_time,
2151 const struct timeval *end_time)
917317f4 2152{
9f43d28c 2153 ULONGEST time_count;
79a45e25 2154 struct ui_out *uiout = current_uiout;
2b71414d
DJ
2155
2156 /* Compute the elapsed time in milliseconds, as a tradeoff between
2157 accuracy and overflow. */
2158 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2159 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2160
8b93c638
JM
2161 ui_out_text (uiout, "Transfer rate: ");
2162 if (time_count > 0)
2163 {
9f43d28c
DJ
2164 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2165
2166 if (ui_out_is_mi_like_p (uiout))
2167 {
2168 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2169 ui_out_text (uiout, " bits/sec");
2170 }
2171 else if (rate < 1024)
2172 {
2173 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2174 ui_out_text (uiout, " bytes/sec");
2175 }
2176 else
2177 {
2178 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2179 ui_out_text (uiout, " KB/sec");
2180 }
8b93c638
JM
2181 }
2182 else
2183 {
ba5f2f8a 2184 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 2185 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
2186 }
2187 if (write_count > 0)
2188 {
2189 ui_out_text (uiout, ", ");
ba5f2f8a 2190 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
2191 ui_out_text (uiout, " bytes/write");
2192 }
2193 ui_out_text (uiout, ".\n");
c906108c
SS
2194}
2195
2196/* This function allows the addition of incrementally linked object files.
2197 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2198/* Note: ezannoni 2000-04-13 This function/command used to have a
2199 special case syntax for the rombug target (Rombug is the boot
2200 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2201 rombug case, the user doesn't need to supply a text address,
2202 instead a call to target_link() (in target.c) would supply the
c378eb4e 2203 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2204
c906108c 2205static void
fba45db2 2206add_symbol_file_command (char *args, int from_tty)
c906108c 2207{
5af949e3 2208 struct gdbarch *gdbarch = get_current_arch ();
db162d44 2209 char *filename = NULL;
2df3850c 2210 int flags = OBJF_USERLOADED;
c906108c 2211 char *arg;
db162d44 2212 int section_index = 0;
2acceee2
JM
2213 int argcnt = 0;
2214 int sec_num = 0;
2215 int i;
db162d44
EZ
2216 int expecting_sec_name = 0;
2217 int expecting_sec_addr = 0;
5b96932b 2218 char **argv;
db162d44 2219
a39a16c4 2220 struct sect_opt
2acceee2 2221 {
2acceee2
JM
2222 char *name;
2223 char *value;
a39a16c4 2224 };
db162d44 2225
a39a16c4
MM
2226 struct section_addr_info *section_addrs;
2227 struct sect_opt *sect_opts = NULL;
2228 size_t num_sect_opts = 0;
3017564a 2229 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2230
a39a16c4 2231 num_sect_opts = 16;
5417f6dc 2232 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
2233 * sizeof (struct sect_opt));
2234
c906108c
SS
2235 dont_repeat ();
2236
2237 if (args == NULL)
8a3fe4f8 2238 error (_("add-symbol-file takes a file name and an address"));
c906108c 2239
d1a41061 2240 argv = gdb_buildargv (args);
5b96932b 2241 make_cleanup_freeargv (argv);
db162d44 2242
5b96932b
AS
2243 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2244 {
c378eb4e 2245 /* Process the argument. */
db162d44 2246 if (argcnt == 0)
c906108c 2247 {
c378eb4e 2248 /* The first argument is the file name. */
db162d44 2249 filename = tilde_expand (arg);
3017564a 2250 make_cleanup (xfree, filename);
c906108c 2251 }
db162d44 2252 else
7a78ae4e
ND
2253 if (argcnt == 1)
2254 {
2255 /* The second argument is always the text address at which
c378eb4e 2256 to load the program. */
7a78ae4e
ND
2257 sect_opts[section_index].name = ".text";
2258 sect_opts[section_index].value = arg;
f414f22f 2259 if (++section_index >= num_sect_opts)
a39a16c4
MM
2260 {
2261 num_sect_opts *= 2;
5417f6dc 2262 sect_opts = ((struct sect_opt *)
a39a16c4 2263 xrealloc (sect_opts,
5417f6dc 2264 num_sect_opts
a39a16c4
MM
2265 * sizeof (struct sect_opt)));
2266 }
7a78ae4e
ND
2267 }
2268 else
2269 {
2270 /* It's an option (starting with '-') or it's an argument
c378eb4e 2271 to an option. */
7a78ae4e
ND
2272
2273 if (*arg == '-')
2274 {
78a4a9b9
AC
2275 if (strcmp (arg, "-readnow") == 0)
2276 flags |= OBJF_READNOW;
2277 else if (strcmp (arg, "-s") == 0)
2278 {
2279 expecting_sec_name = 1;
2280 expecting_sec_addr = 1;
2281 }
7a78ae4e
ND
2282 }
2283 else
2284 {
2285 if (expecting_sec_name)
db162d44 2286 {
7a78ae4e
ND
2287 sect_opts[section_index].name = arg;
2288 expecting_sec_name = 0;
db162d44
EZ
2289 }
2290 else
7a78ae4e
ND
2291 if (expecting_sec_addr)
2292 {
2293 sect_opts[section_index].value = arg;
2294 expecting_sec_addr = 0;
f414f22f 2295 if (++section_index >= num_sect_opts)
a39a16c4
MM
2296 {
2297 num_sect_opts *= 2;
5417f6dc 2298 sect_opts = ((struct sect_opt *)
a39a16c4 2299 xrealloc (sect_opts,
5417f6dc 2300 num_sect_opts
a39a16c4
MM
2301 * sizeof (struct sect_opt)));
2302 }
7a78ae4e
ND
2303 }
2304 else
3e43a32a 2305 error (_("USAGE: add-symbol-file <filename> <textaddress>"
412946b6 2306 " [-readnow] [-s <secname> <addr>]*"));
7a78ae4e
ND
2307 }
2308 }
c906108c 2309 }
c906108c 2310
927890d0
JB
2311 /* This command takes at least two arguments. The first one is a
2312 filename, and the second is the address where this file has been
2313 loaded. Abort now if this address hasn't been provided by the
2314 user. */
2315 if (section_index < 1)
2316 error (_("The address where %s has been loaded is missing"), filename);
2317
c378eb4e 2318 /* Print the prompt for the query below. And save the arguments into
db162d44
EZ
2319 a sect_addr_info structure to be passed around to other
2320 functions. We have to split this up into separate print
bb599908 2321 statements because hex_string returns a local static
c378eb4e 2322 string. */
5417f6dc 2323
a3f17187 2324 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2325 section_addrs = alloc_section_addr_info (section_index);
2326 make_cleanup (xfree, section_addrs);
db162d44 2327 for (i = 0; i < section_index; i++)
c906108c 2328 {
db162d44
EZ
2329 CORE_ADDR addr;
2330 char *val = sect_opts[i].value;
2331 char *sec = sect_opts[i].name;
5417f6dc 2332
ae822768 2333 addr = parse_and_eval_address (val);
db162d44 2334
db162d44 2335 /* Here we store the section offsets in the order they were
c378eb4e 2336 entered on the command line. */
a39a16c4
MM
2337 section_addrs->other[sec_num].name = sec;
2338 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2339 printf_unfiltered ("\t%s_addr = %s\n", sec,
2340 paddress (gdbarch, addr));
db162d44
EZ
2341 sec_num++;
2342
5417f6dc 2343 /* The object's sections are initialized when a
db162d44 2344 call is made to build_objfile_section_table (objfile).
5417f6dc 2345 This happens in reread_symbols.
db162d44
EZ
2346 At this point, we don't know what file type this is,
2347 so we can't determine what section names are valid. */
2acceee2 2348 }
d76488d8 2349 section_addrs->num_sections = sec_num;
db162d44 2350
2acceee2 2351 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2352 error (_("Not confirmed."));
c906108c 2353
7eedccfa
PP
2354 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2355 section_addrs, flags);
c906108c
SS
2356
2357 /* Getting new symbols may change our opinion about what is
2358 frameless. */
2359 reinit_frame_cache ();
db162d44 2360 do_cleanups (my_cleanups);
c906108c
SS
2361}
2362\f
70992597 2363
4ac39b97
JK
2364typedef struct objfile *objfilep;
2365
2366DEF_VEC_P (objfilep);
2367
c906108c 2368/* Re-read symbols if a symbol-file has changed. */
3b7bacac 2369
c906108c 2370void
fba45db2 2371reread_symbols (void)
c906108c
SS
2372{
2373 struct objfile *objfile;
2374 long new_modtime;
c906108c
SS
2375 struct stat new_statbuf;
2376 int res;
4ac39b97
JK
2377 VEC (objfilep) *new_objfiles = NULL;
2378 struct cleanup *all_cleanups;
2379
2380 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
c906108c
SS
2381
2382 /* With the addition of shared libraries, this should be modified,
2383 the load time should be saved in the partial symbol tables, since
2384 different tables may come from different source files. FIXME.
2385 This routine should then walk down each partial symbol table
c378eb4e 2386 and see if the symbol table that it originates from has been changed. */
c906108c 2387
c5aa993b
JM
2388 for (objfile = object_files; objfile; objfile = objfile->next)
2389 {
9cce227f
TG
2390 /* solib-sunos.c creates one objfile with obfd. */
2391 if (objfile->obfd == NULL)
2392 continue;
2393
2394 /* Separate debug objfiles are handled in the main objfile. */
2395 if (objfile->separate_debug_objfile_backlink)
2396 continue;
2397
02aeec7b
JB
2398 /* If this object is from an archive (what you usually create with
2399 `ar', often called a `static library' on most systems, though
2400 a `shared library' on AIX is also an archive), then you should
2401 stat on the archive name, not member name. */
9cce227f
TG
2402 if (objfile->obfd->my_archive)
2403 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2404 else
9cce227f
TG
2405 res = stat (objfile->name, &new_statbuf);
2406 if (res != 0)
2407 {
c378eb4e 2408 /* FIXME, should use print_sys_errmsg but it's not filtered. */
9cce227f
TG
2409 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2410 objfile->name);
2411 continue;
2412 }
2413 new_modtime = new_statbuf.st_mtime;
2414 if (new_modtime != objfile->mtime)
2415 {
2416 struct cleanup *old_cleanups;
2417 struct section_offsets *offsets;
2418 int num_offsets;
2419 char *obfd_filename;
2420
2421 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2422 objfile->name);
2423
2424 /* There are various functions like symbol_file_add,
2425 symfile_bfd_open, syms_from_objfile, etc., which might
2426 appear to do what we want. But they have various other
2427 effects which we *don't* want. So we just do stuff
2428 ourselves. We don't worry about mapped files (for one thing,
2429 any mapped file will be out of date). */
2430
2431 /* If we get an error, blow away this objfile (not sure if
2432 that is the correct response for things like shared
2433 libraries). */
2434 old_cleanups = make_cleanup_free_objfile (objfile);
2435 /* We need to do this whenever any symbols go away. */
2436 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2437
0ba1096a
KT
2438 if (exec_bfd != NULL
2439 && filename_cmp (bfd_get_filename (objfile->obfd),
2440 bfd_get_filename (exec_bfd)) == 0)
9cce227f
TG
2441 {
2442 /* Reload EXEC_BFD without asking anything. */
2443
2444 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2445 }
2446
f6eeced0
JK
2447 /* Keep the calls order approx. the same as in free_objfile. */
2448
2449 /* Free the separate debug objfiles. It will be
2450 automatically recreated by sym_read. */
2451 free_objfile_separate_debug (objfile);
2452
2453 /* Remove any references to this objfile in the global
2454 value lists. */
2455 preserve_values (objfile);
2456
2457 /* Nuke all the state that we will re-read. Much of the following
2458 code which sets things to NULL really is necessary to tell
2459 other parts of GDB that there is nothing currently there.
2460
2461 Try to keep the freeing order compatible with free_objfile. */
2462
2463 if (objfile->sf != NULL)
2464 {
2465 (*objfile->sf->sym_finish) (objfile);
2466 }
2467
2468 clear_objfile_data (objfile);
2469
e1507e95 2470 /* Clean up any state BFD has sitting around. */
a4453b7e
TT
2471 {
2472 struct bfd *obfd = objfile->obfd;
2473
2474 obfd_filename = bfd_get_filename (objfile->obfd);
2475 /* Open the new BFD before freeing the old one, so that
2476 the filename remains live. */
08d2cd74 2477 objfile->obfd = gdb_bfd_open_maybe_remote (obfd_filename);
e1507e95
TT
2478 if (objfile->obfd == NULL)
2479 {
2480 /* We have to make a cleanup and error here, rather
2481 than erroring later, because once we unref OBFD,
2482 OBFD_FILENAME will be freed. */
2483 make_cleanup_bfd_unref (obfd);
2484 error (_("Can't open %s to read symbols."), obfd_filename);
2485 }
a4453b7e
TT
2486 gdb_bfd_unref (obfd);
2487 }
2488
e1507e95 2489 objfile->name = bfd_get_filename (objfile->obfd);
9cce227f
TG
2490 /* bfd_openr sets cacheable to true, which is what we want. */
2491 if (!bfd_check_format (objfile->obfd, bfd_object))
2492 error (_("Can't read symbols from %s: %s."), objfile->name,
2493 bfd_errmsg (bfd_get_error ()));
2494
2495 /* Save the offsets, we will nuke them with the rest of the
2496 objfile_obstack. */
2497 num_offsets = objfile->num_sections;
2498 offsets = ((struct section_offsets *)
2499 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2500 memcpy (offsets, objfile->section_offsets,
2501 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2502
9cce227f
TG
2503 /* FIXME: Do we have to free a whole linked list, or is this
2504 enough? */
2505 if (objfile->global_psymbols.list)
2506 xfree (objfile->global_psymbols.list);
2507 memset (&objfile->global_psymbols, 0,
2508 sizeof (objfile->global_psymbols));
2509 if (objfile->static_psymbols.list)
2510 xfree (objfile->static_psymbols.list);
2511 memset (&objfile->static_psymbols, 0,
2512 sizeof (objfile->static_psymbols));
2513
c378eb4e 2514 /* Free the obstacks for non-reusable objfiles. */
710e1a31
SW
2515 psymbol_bcache_free (objfile->psymbol_cache);
2516 objfile->psymbol_cache = psymbol_bcache_init ();
9cce227f
TG
2517 if (objfile->demangled_names_hash != NULL)
2518 {
2519 htab_delete (objfile->demangled_names_hash);
2520 objfile->demangled_names_hash = NULL;
2521 }
2522 obstack_free (&objfile->objfile_obstack, 0);
2523 objfile->sections = NULL;
2524 objfile->symtabs = NULL;
2525 objfile->psymtabs = NULL;
2526 objfile->psymtabs_addrmap = NULL;
2527 objfile->free_psymtabs = NULL;
34eaf542 2528 objfile->template_symbols = NULL;
9cce227f 2529 objfile->msymbols = NULL;
9cce227f
TG
2530 objfile->minimal_symbol_count = 0;
2531 memset (&objfile->msymbol_hash, 0,
2532 sizeof (objfile->msymbol_hash));
2533 memset (&objfile->msymbol_demangled_hash, 0,
2534 sizeof (objfile->msymbol_demangled_hash));
2535
706e3705
TT
2536 set_objfile_per_bfd (objfile);
2537
9cce227f
TG
2538 /* obstack_init also initializes the obstack so it is
2539 empty. We could use obstack_specify_allocation but
d82ea6a8 2540 gdb_obstack.h specifies the alloc/dealloc functions. */
9cce227f 2541 obstack_init (&objfile->objfile_obstack);
d82ea6a8 2542 build_objfile_section_table (objfile);
9cce227f
TG
2543 terminate_minimal_symbol_table (objfile);
2544
2545 /* We use the same section offsets as from last time. I'm not
2546 sure whether that is always correct for shared libraries. */
2547 objfile->section_offsets = (struct section_offsets *)
2548 obstack_alloc (&objfile->objfile_obstack,
2549 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2550 memcpy (objfile->section_offsets, offsets,
2551 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2552 objfile->num_sections = num_offsets;
2553
2554 /* What the hell is sym_new_init for, anyway? The concept of
2555 distinguishing between the main file and additional files
2556 in this way seems rather dubious. */
2557 if (objfile == symfile_objfile)
c906108c 2558 {
9cce227f 2559 (*objfile->sf->sym_new_init) (objfile);
c906108c 2560 }
9cce227f
TG
2561
2562 (*objfile->sf->sym_init) (objfile);
2563 clear_complaints (&symfile_complaints, 1, 1);
608e2dbb
TT
2564
2565 objfile->flags &= ~OBJF_PSYMTABS_READ;
2566 read_symbols (objfile, 0);
b11896a5 2567
9cce227f 2568 if (!objfile_has_symbols (objfile))
c906108c 2569 {
9cce227f
TG
2570 wrap_here ("");
2571 printf_unfiltered (_("(no debugging symbols found)\n"));
2572 wrap_here ("");
c5aa993b 2573 }
9cce227f
TG
2574
2575 /* We're done reading the symbol file; finish off complaints. */
2576 clear_complaints (&symfile_complaints, 0, 1);
2577
2578 /* Getting new symbols may change our opinion about what is
2579 frameless. */
2580
2581 reinit_frame_cache ();
2582
2583 /* Discard cleanups as symbol reading was successful. */
2584 discard_cleanups (old_cleanups);
2585
2586 /* If the mtime has changed between the time we set new_modtime
2587 and now, we *want* this to be out of date, so don't call stat
2588 again now. */
2589 objfile->mtime = new_modtime;
9cce227f 2590 init_entry_point_info (objfile);
4ac39b97
JK
2591
2592 VEC_safe_push (objfilep, new_objfiles, objfile);
c906108c
SS
2593 }
2594 }
c906108c 2595
4ac39b97 2596 if (new_objfiles)
ea53e89f 2597 {
4ac39b97
JK
2598 int ix;
2599
ff3536bc
UW
2600 /* Notify objfiles that we've modified objfile sections. */
2601 objfiles_changed ();
2602
c1e56572 2603 clear_symtab_users (0);
4ac39b97
JK
2604
2605 /* clear_objfile_data for each objfile was called before freeing it and
2606 observer_notify_new_objfile (NULL) has been called by
2607 clear_symtab_users above. Notify the new files now. */
2608 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2609 observer_notify_new_objfile (objfile);
2610
ea53e89f
JB
2611 /* At least one objfile has changed, so we can consider that
2612 the executable we're debugging has changed too. */
781b42b0 2613 observer_notify_executable_changed ();
ea53e89f 2614 }
4ac39b97
JK
2615
2616 do_cleanups (all_cleanups);
c906108c 2617}
c906108c
SS
2618\f
2619
c5aa993b
JM
2620typedef struct
2621{
2622 char *ext;
c906108c 2623 enum language lang;
c5aa993b
JM
2624}
2625filename_language;
c906108c 2626
c5aa993b 2627static filename_language *filename_language_table;
c906108c
SS
2628static int fl_table_size, fl_table_next;
2629
2630static void
fba45db2 2631add_filename_language (char *ext, enum language lang)
c906108c
SS
2632{
2633 if (fl_table_next >= fl_table_size)
2634 {
2635 fl_table_size += 10;
5417f6dc 2636 filename_language_table =
25bf3106
PM
2637 xrealloc (filename_language_table,
2638 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2639 }
2640
4fcf66da 2641 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2642 filename_language_table[fl_table_next].lang = lang;
2643 fl_table_next++;
2644}
2645
2646static char *ext_args;
920d2a44
AC
2647static void
2648show_ext_args (struct ui_file *file, int from_tty,
2649 struct cmd_list_element *c, const char *value)
2650{
3e43a32a
MS
2651 fprintf_filtered (file,
2652 _("Mapping between filename extension "
2653 "and source language is \"%s\".\n"),
920d2a44
AC
2654 value);
2655}
c906108c
SS
2656
2657static void
26c41df3 2658set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2659{
2660 int i;
2661 char *cp = ext_args;
2662 enum language lang;
2663
c378eb4e 2664 /* First arg is filename extension, starting with '.' */
c906108c 2665 if (*cp != '.')
8a3fe4f8 2666 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2667
2668 /* Find end of first arg. */
c5aa993b 2669 while (*cp && !isspace (*cp))
c906108c
SS
2670 cp++;
2671
2672 if (*cp == '\0')
3e43a32a
MS
2673 error (_("'%s': two arguments required -- "
2674 "filename extension and language"),
c906108c
SS
2675 ext_args);
2676
c378eb4e 2677 /* Null-terminate first arg. */
c5aa993b 2678 *cp++ = '\0';
c906108c
SS
2679
2680 /* Find beginning of second arg, which should be a source language. */
529480d0 2681 cp = skip_spaces (cp);
c906108c
SS
2682
2683 if (*cp == '\0')
3e43a32a
MS
2684 error (_("'%s': two arguments required -- "
2685 "filename extension and language"),
c906108c
SS
2686 ext_args);
2687
2688 /* Lookup the language from among those we know. */
2689 lang = language_enum (cp);
2690
2691 /* Now lookup the filename extension: do we already know it? */
2692 for (i = 0; i < fl_table_next; i++)
2693 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2694 break;
2695
2696 if (i >= fl_table_next)
2697 {
c378eb4e 2698 /* New file extension. */
c906108c
SS
2699 add_filename_language (ext_args, lang);
2700 }
2701 else
2702 {
c378eb4e 2703 /* Redefining a previously known filename extension. */
c906108c
SS
2704
2705 /* if (from_tty) */
2706 /* query ("Really make files of type %s '%s'?", */
2707 /* ext_args, language_str (lang)); */
2708
b8c9b27d 2709 xfree (filename_language_table[i].ext);
4fcf66da 2710 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2711 filename_language_table[i].lang = lang;
2712 }
2713}
2714
2715static void
fba45db2 2716info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2717{
2718 int i;
2719
a3f17187 2720 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2721 printf_filtered ("\n\n");
2722 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2723 printf_filtered ("\t%s\t- %s\n",
2724 filename_language_table[i].ext,
c906108c
SS
2725 language_str (filename_language_table[i].lang));
2726}
2727
2728static void
fba45db2 2729init_filename_language_table (void)
c906108c 2730{
c378eb4e 2731 if (fl_table_size == 0) /* Protect against repetition. */
c906108c
SS
2732 {
2733 fl_table_size = 20;
2734 fl_table_next = 0;
c5aa993b 2735 filename_language_table =
c906108c 2736 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b 2737 add_filename_language (".c", language_c);
6aecb9c2 2738 add_filename_language (".d", language_d);
c5aa993b
JM
2739 add_filename_language (".C", language_cplus);
2740 add_filename_language (".cc", language_cplus);
2741 add_filename_language (".cp", language_cplus);
2742 add_filename_language (".cpp", language_cplus);
2743 add_filename_language (".cxx", language_cplus);
2744 add_filename_language (".c++", language_cplus);
2745 add_filename_language (".java", language_java);
c906108c 2746 add_filename_language (".class", language_java);
da2cf7e0 2747 add_filename_language (".m", language_objc);
c5aa993b
JM
2748 add_filename_language (".f", language_fortran);
2749 add_filename_language (".F", language_fortran);
fd5700c7
JK
2750 add_filename_language (".for", language_fortran);
2751 add_filename_language (".FOR", language_fortran);
2752 add_filename_language (".ftn", language_fortran);
2753 add_filename_language (".FTN", language_fortran);
2754 add_filename_language (".fpp", language_fortran);
2755 add_filename_language (".FPP", language_fortran);
2756 add_filename_language (".f90", language_fortran);
2757 add_filename_language (".F90", language_fortran);
2758 add_filename_language (".f95", language_fortran);
2759 add_filename_language (".F95", language_fortran);
2760 add_filename_language (".f03", language_fortran);
2761 add_filename_language (".F03", language_fortran);
2762 add_filename_language (".f08", language_fortran);
2763 add_filename_language (".F08", language_fortran);
c5aa993b 2764 add_filename_language (".s", language_asm);
aa707ed0 2765 add_filename_language (".sx", language_asm);
c5aa993b 2766 add_filename_language (".S", language_asm);
c6fd39cd
PM
2767 add_filename_language (".pas", language_pascal);
2768 add_filename_language (".p", language_pascal);
2769 add_filename_language (".pp", language_pascal);
963a6417
PH
2770 add_filename_language (".adb", language_ada);
2771 add_filename_language (".ads", language_ada);
2772 add_filename_language (".a", language_ada);
2773 add_filename_language (".ada", language_ada);
dde59185 2774 add_filename_language (".dg", language_ada);
c906108c
SS
2775 }
2776}
2777
2778enum language
dd786858 2779deduce_language_from_filename (const char *filename)
c906108c
SS
2780{
2781 int i;
2782 char *cp;
2783
2784 if (filename != NULL)
2785 if ((cp = strrchr (filename, '.')) != NULL)
2786 for (i = 0; i < fl_table_next; i++)
2787 if (strcmp (cp, filename_language_table[i].ext) == 0)
2788 return filename_language_table[i].lang;
2789
2790 return language_unknown;
2791}
2792\f
2793/* allocate_symtab:
2794
2795 Allocate and partly initialize a new symbol table. Return a pointer
2796 to it. error() if no space.
2797
2798 Caller must set these fields:
c5aa993b
JM
2799 LINETABLE(symtab)
2800 symtab->blockvector
2801 symtab->dirname
2802 symtab->free_code
2803 symtab->free_ptr
c906108c
SS
2804 */
2805
2806struct symtab *
72b9f47f 2807allocate_symtab (const char *filename, struct objfile *objfile)
c906108c 2808{
52f0bd74 2809 struct symtab *symtab;
c906108c
SS
2810
2811 symtab = (struct symtab *)
4a146b47 2812 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2813 memset (symtab, 0, sizeof (*symtab));
10abe6bf 2814 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
706e3705 2815 objfile->per_bfd->filename_cache);
c5aa993b
JM
2816 symtab->fullname = NULL;
2817 symtab->language = deduce_language_from_filename (filename);
1c9e8358 2818 symtab->debugformat = "unknown";
c906108c 2819
c378eb4e 2820 /* Hook it to the objfile it comes from. */
c906108c 2821
c5aa993b
JM
2822 symtab->objfile = objfile;
2823 symtab->next = objfile->symtabs;
2824 objfile->symtabs = symtab;
c906108c 2825
45cfd468
DE
2826 if (symtab_create_debug)
2827 {
2828 /* Be a bit clever with debugging messages, and don't print objfile
2829 every time, only when it changes. */
2830 static char *last_objfile_name = NULL;
2831
2832 if (last_objfile_name == NULL
2833 || strcmp (last_objfile_name, objfile->name) != 0)
2834 {
2835 xfree (last_objfile_name);
2836 last_objfile_name = xstrdup (objfile->name);
2837 fprintf_unfiltered (gdb_stdlog,
2838 "Creating one or more symtabs for objfile %s ...\n",
2839 last_objfile_name);
2840 }
2841 fprintf_unfiltered (gdb_stdlog,
b3dbbd6f
PM
2842 "Created symtab %s for module %s.\n",
2843 host_address_to_string (symtab), filename);
45cfd468
DE
2844 }
2845
c906108c
SS
2846 return (symtab);
2847}
c906108c 2848\f
c5aa993b 2849
c906108c 2850/* Reset all data structures in gdb which may contain references to symbol
c1e56572 2851 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c906108c
SS
2852
2853void
c1e56572 2854clear_symtab_users (int add_flags)
c906108c
SS
2855{
2856 /* Someday, we should do better than this, by only blowing away
2857 the things that really need to be blown. */
c0501be5
DJ
2858
2859 /* Clear the "current" symtab first, because it is no longer valid.
2860 breakpoint_re_set may try to access the current symtab. */
2861 clear_current_source_symtab_and_line ();
2862
c906108c 2863 clear_displays ();
c1e56572
JK
2864 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2865 breakpoint_re_set ();
1bfeeb0f 2866 clear_last_displayed_sal ();
c906108c 2867 clear_pc_function_cache ();
06d3b283 2868 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2869
2870 /* Clear globals which might have pointed into a removed objfile.
2871 FIXME: It's not clear which of these are supposed to persist
2872 between expressions and which ought to be reset each time. */
2873 expression_context_block = NULL;
2874 innermost_block = NULL;
8756216b
DP
2875
2876 /* Varobj may refer to old symbols, perform a cleanup. */
2877 varobj_invalidate ();
2878
c906108c
SS
2879}
2880
74b7792f
AC
2881static void
2882clear_symtab_users_cleanup (void *ignore)
2883{
c1e56572 2884 clear_symtab_users (0);
74b7792f 2885}
c906108c 2886\f
c906108c
SS
2887/* OVERLAYS:
2888 The following code implements an abstraction for debugging overlay sections.
2889
2890 The target model is as follows:
2891 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2892 same VMA, each with its own unique LMA (or load address).
c906108c 2893 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2894 sections, one by one, from the load address into the VMA address.
5417f6dc 2895 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2896 sections should be considered to be mapped from the VMA to the LMA.
2897 This information is used for symbol lookup, and memory read/write.
5417f6dc 2898 For instance, if a section has been mapped then its contents
c5aa993b 2899 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2900
2901 Two levels of debugger support for overlays are available. One is
2902 "manual", in which the debugger relies on the user to tell it which
2903 overlays are currently mapped. This level of support is
2904 implemented entirely in the core debugger, and the information about
2905 whether a section is mapped is kept in the objfile->obj_section table.
2906
2907 The second level of support is "automatic", and is only available if
2908 the target-specific code provides functionality to read the target's
2909 overlay mapping table, and translate its contents for the debugger
2910 (by updating the mapped state information in the obj_section tables).
2911
2912 The interface is as follows:
c5aa993b
JM
2913 User commands:
2914 overlay map <name> -- tell gdb to consider this section mapped
2915 overlay unmap <name> -- tell gdb to consider this section unmapped
2916 overlay list -- list the sections that GDB thinks are mapped
2917 overlay read-target -- get the target's state of what's mapped
2918 overlay off/manual/auto -- set overlay debugging state
2919 Functional interface:
2920 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2921 section, return that section.
5417f6dc 2922 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 2923 the pc, either in its VMA or its LMA
714835d5 2924 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
2925 section_is_overlay(sect): true if section's VMA != LMA
2926 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2927 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2928 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2929 overlay_mapped_address(...): map an address from section's LMA to VMA
2930 overlay_unmapped_address(...): map an address from section's VMA to LMA
2931 symbol_overlayed_address(...): Return a "current" address for symbol:
2932 either in VMA or LMA depending on whether
c378eb4e 2933 the symbol's section is currently mapped. */
c906108c
SS
2934
2935/* Overlay debugging state: */
2936
d874f1e2 2937enum overlay_debugging_state overlay_debugging = ovly_off;
c378eb4e 2938int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
c906108c 2939
c906108c 2940/* Function: section_is_overlay (SECTION)
5417f6dc 2941 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
2942 SECTION is loaded at an address different from where it will "run". */
2943
2944int
714835d5 2945section_is_overlay (struct obj_section *section)
c906108c 2946{
714835d5
UW
2947 if (overlay_debugging && section)
2948 {
2949 bfd *abfd = section->objfile->obfd;
2950 asection *bfd_section = section->the_bfd_section;
f888f159 2951
714835d5
UW
2952 if (bfd_section_lma (abfd, bfd_section) != 0
2953 && bfd_section_lma (abfd, bfd_section)
2954 != bfd_section_vma (abfd, bfd_section))
2955 return 1;
2956 }
c906108c
SS
2957
2958 return 0;
2959}
2960
2961/* Function: overlay_invalidate_all (void)
2962 Invalidate the mapped state of all overlay sections (mark it as stale). */
2963
2964static void
fba45db2 2965overlay_invalidate_all (void)
c906108c 2966{
c5aa993b 2967 struct objfile *objfile;
c906108c
SS
2968 struct obj_section *sect;
2969
2970 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
2971 if (section_is_overlay (sect))
2972 sect->ovly_mapped = -1;
c906108c
SS
2973}
2974
714835d5 2975/* Function: section_is_mapped (SECTION)
5417f6dc 2976 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
2977
2978 Access to the ovly_mapped flag is restricted to this function, so
2979 that we can do automatic update. If the global flag
2980 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2981 overlay_invalidate_all. If the mapped state of the particular
2982 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2983
714835d5
UW
2984int
2985section_is_mapped (struct obj_section *osect)
c906108c 2986{
9216df95
UW
2987 struct gdbarch *gdbarch;
2988
714835d5 2989 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
2990 return 0;
2991
c5aa993b 2992 switch (overlay_debugging)
c906108c
SS
2993 {
2994 default:
d874f1e2 2995 case ovly_off:
c5aa993b 2996 return 0; /* overlay debugging off */
d874f1e2 2997 case ovly_auto: /* overlay debugging automatic */
1c772458 2998 /* Unles there is a gdbarch_overlay_update function,
c378eb4e 2999 there's really nothing useful to do here (can't really go auto). */
9216df95
UW
3000 gdbarch = get_objfile_arch (osect->objfile);
3001 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
3002 {
3003 if (overlay_cache_invalid)
3004 {
3005 overlay_invalidate_all ();
3006 overlay_cache_invalid = 0;
3007 }
3008 if (osect->ovly_mapped == -1)
9216df95 3009 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
3010 }
3011 /* fall thru to manual case */
d874f1e2 3012 case ovly_on: /* overlay debugging manual */
c906108c
SS
3013 return osect->ovly_mapped == 1;
3014 }
3015}
3016
c906108c
SS
3017/* Function: pc_in_unmapped_range
3018 If PC falls into the lma range of SECTION, return true, else false. */
3019
3020CORE_ADDR
714835d5 3021pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3022{
714835d5
UW
3023 if (section_is_overlay (section))
3024 {
3025 bfd *abfd = section->objfile->obfd;
3026 asection *bfd_section = section->the_bfd_section;
fbd35540 3027
714835d5
UW
3028 /* We assume the LMA is relocated by the same offset as the VMA. */
3029 bfd_vma size = bfd_get_section_size (bfd_section);
3030 CORE_ADDR offset = obj_section_offset (section);
3031
3032 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3033 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3034 return 1;
3035 }
c906108c 3036
c906108c
SS
3037 return 0;
3038}
3039
3040/* Function: pc_in_mapped_range
3041 If PC falls into the vma range of SECTION, return true, else false. */
3042
3043CORE_ADDR
714835d5 3044pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3045{
714835d5
UW
3046 if (section_is_overlay (section))
3047 {
3048 if (obj_section_addr (section) <= pc
3049 && pc < obj_section_endaddr (section))
3050 return 1;
3051 }
c906108c 3052
c906108c
SS
3053 return 0;
3054}
3055
9ec8e6a0
JB
3056/* Return true if the mapped ranges of sections A and B overlap, false
3057 otherwise. */
3b7bacac 3058
b9362cc7 3059static int
714835d5 3060sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3061{
714835d5
UW
3062 CORE_ADDR a_start = obj_section_addr (a);
3063 CORE_ADDR a_end = obj_section_endaddr (a);
3064 CORE_ADDR b_start = obj_section_addr (b);
3065 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3066
3067 return (a_start < b_end && b_start < a_end);
3068}
3069
c906108c
SS
3070/* Function: overlay_unmapped_address (PC, SECTION)
3071 Returns the address corresponding to PC in the unmapped (load) range.
3072 May be the same as PC. */
3073
3074CORE_ADDR
714835d5 3075overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3076{
714835d5
UW
3077 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3078 {
3079 bfd *abfd = section->objfile->obfd;
3080 asection *bfd_section = section->the_bfd_section;
fbd35540 3081
714835d5
UW
3082 return pc + bfd_section_lma (abfd, bfd_section)
3083 - bfd_section_vma (abfd, bfd_section);
3084 }
c906108c
SS
3085
3086 return pc;
3087}
3088
3089/* Function: overlay_mapped_address (PC, SECTION)
3090 Returns the address corresponding to PC in the mapped (runtime) range.
3091 May be the same as PC. */
3092
3093CORE_ADDR
714835d5 3094overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3095{
714835d5
UW
3096 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3097 {
3098 bfd *abfd = section->objfile->obfd;
3099 asection *bfd_section = section->the_bfd_section;
fbd35540 3100
714835d5
UW
3101 return pc + bfd_section_vma (abfd, bfd_section)
3102 - bfd_section_lma (abfd, bfd_section);
3103 }
c906108c
SS
3104
3105 return pc;
3106}
3107
5417f6dc 3108/* Function: symbol_overlayed_address
c906108c
SS
3109 Return one of two addresses (relative to the VMA or to the LMA),
3110 depending on whether the section is mapped or not. */
3111
c5aa993b 3112CORE_ADDR
714835d5 3113symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3114{
3115 if (overlay_debugging)
3116 {
c378eb4e 3117 /* If the symbol has no section, just return its regular address. */
c906108c
SS
3118 if (section == 0)
3119 return address;
c378eb4e
MS
3120 /* If the symbol's section is not an overlay, just return its
3121 address. */
c906108c
SS
3122 if (!section_is_overlay (section))
3123 return address;
c378eb4e 3124 /* If the symbol's section is mapped, just return its address. */
c906108c
SS
3125 if (section_is_mapped (section))
3126 return address;
3127 /*
3128 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3129 * then return its LOADED address rather than its vma address!!
3130 */
3131 return overlay_unmapped_address (address, section);
3132 }
3133 return address;
3134}
3135
5417f6dc 3136/* Function: find_pc_overlay (PC)
c906108c
SS
3137 Return the best-match overlay section for PC:
3138 If PC matches a mapped overlay section's VMA, return that section.
3139 Else if PC matches an unmapped section's VMA, return that section.
3140 Else if PC matches an unmapped section's LMA, return that section. */
3141
714835d5 3142struct obj_section *
fba45db2 3143find_pc_overlay (CORE_ADDR pc)
c906108c 3144{
c5aa993b 3145 struct objfile *objfile;
c906108c
SS
3146 struct obj_section *osect, *best_match = NULL;
3147
3148 if (overlay_debugging)
3149 ALL_OBJSECTIONS (objfile, osect)
714835d5 3150 if (section_is_overlay (osect))
c5aa993b 3151 {
714835d5 3152 if (pc_in_mapped_range (pc, osect))
c5aa993b 3153 {
714835d5
UW
3154 if (section_is_mapped (osect))
3155 return osect;
c5aa993b
JM
3156 else
3157 best_match = osect;
3158 }
714835d5 3159 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3160 best_match = osect;
3161 }
714835d5 3162 return best_match;
c906108c
SS
3163}
3164
3165/* Function: find_pc_mapped_section (PC)
5417f6dc 3166 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3167 currently marked as MAPPED, return that section. Else return NULL. */
3168
714835d5 3169struct obj_section *
fba45db2 3170find_pc_mapped_section (CORE_ADDR pc)
c906108c 3171{
c5aa993b 3172 struct objfile *objfile;
c906108c
SS
3173 struct obj_section *osect;
3174
3175 if (overlay_debugging)
3176 ALL_OBJSECTIONS (objfile, osect)
714835d5
UW
3177 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3178 return osect;
c906108c
SS
3179
3180 return NULL;
3181}
3182
3183/* Function: list_overlays_command
c378eb4e 3184 Print a list of mapped sections and their PC ranges. */
c906108c 3185
5d3055ad 3186static void
fba45db2 3187list_overlays_command (char *args, int from_tty)
c906108c 3188{
c5aa993b
JM
3189 int nmapped = 0;
3190 struct objfile *objfile;
c906108c
SS
3191 struct obj_section *osect;
3192
3193 if (overlay_debugging)
3194 ALL_OBJSECTIONS (objfile, osect)
714835d5 3195 if (section_is_mapped (osect))
c5aa993b 3196 {
5af949e3 3197 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c5aa993b
JM
3198 const char *name;
3199 bfd_vma lma, vma;
3200 int size;
3201
3202 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3203 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3204 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3205 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3206
3207 printf_filtered ("Section %s, loaded at ", name);
5af949e3 3208 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
c5aa993b 3209 puts_filtered (" - ");
5af949e3 3210 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
c5aa993b 3211 printf_filtered (", mapped at ");
5af949e3 3212 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
c5aa993b 3213 puts_filtered (" - ");
5af949e3 3214 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
c5aa993b
JM
3215 puts_filtered ("\n");
3216
3217 nmapped++;
3218 }
c906108c 3219 if (nmapped == 0)
a3f17187 3220 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3221}
3222
3223/* Function: map_overlay_command
3224 Mark the named section as mapped (ie. residing at its VMA address). */
3225
5d3055ad 3226static void
fba45db2 3227map_overlay_command (char *args, int from_tty)
c906108c 3228{
c5aa993b
JM
3229 struct objfile *objfile, *objfile2;
3230 struct obj_section *sec, *sec2;
c906108c
SS
3231
3232 if (!overlay_debugging)
3e43a32a
MS
3233 error (_("Overlay debugging not enabled. Use "
3234 "either the 'overlay auto' or\n"
3235 "the 'overlay manual' command."));
c906108c
SS
3236
3237 if (args == 0 || *args == 0)
8a3fe4f8 3238 error (_("Argument required: name of an overlay section"));
c906108c 3239
c378eb4e 3240 /* First, find a section matching the user supplied argument. */
c906108c
SS
3241 ALL_OBJSECTIONS (objfile, sec)
3242 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b 3243 {
c378eb4e 3244 /* Now, check to see if the section is an overlay. */
714835d5 3245 if (!section_is_overlay (sec))
c5aa993b
JM
3246 continue; /* not an overlay section */
3247
c378eb4e 3248 /* Mark the overlay as "mapped". */
c5aa993b
JM
3249 sec->ovly_mapped = 1;
3250
3251 /* Next, make a pass and unmap any sections that are
3252 overlapped by this new section: */
3253 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3254 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3255 {
3256 if (info_verbose)
a3f17187 3257 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3258 bfd_section_name (objfile->obfd,
3259 sec2->the_bfd_section));
c378eb4e 3260 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
c5aa993b
JM
3261 }
3262 return;
3263 }
8a3fe4f8 3264 error (_("No overlay section called %s"), args);
c906108c
SS
3265}
3266
3267/* Function: unmap_overlay_command
5417f6dc 3268 Mark the overlay section as unmapped
c906108c
SS
3269 (ie. resident in its LMA address range, rather than the VMA range). */
3270
5d3055ad 3271static void
fba45db2 3272unmap_overlay_command (char *args, int from_tty)
c906108c 3273{
c5aa993b 3274 struct objfile *objfile;
c906108c
SS
3275 struct obj_section *sec;
3276
3277 if (!overlay_debugging)
3e43a32a
MS
3278 error (_("Overlay debugging not enabled. "
3279 "Use either the 'overlay auto' or\n"
3280 "the 'overlay manual' command."));
c906108c
SS
3281
3282 if (args == 0 || *args == 0)
8a3fe4f8 3283 error (_("Argument required: name of an overlay section"));
c906108c 3284
c378eb4e 3285 /* First, find a section matching the user supplied argument. */
c906108c
SS
3286 ALL_OBJSECTIONS (objfile, sec)
3287 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3288 {
3289 if (!sec->ovly_mapped)
8a3fe4f8 3290 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3291 sec->ovly_mapped = 0;
3292 return;
3293 }
8a3fe4f8 3294 error (_("No overlay section called %s"), args);
c906108c
SS
3295}
3296
3297/* Function: overlay_auto_command
3298 A utility command to turn on overlay debugging.
c378eb4e 3299 Possibly this should be done via a set/show command. */
c906108c
SS
3300
3301static void
fba45db2 3302overlay_auto_command (char *args, int from_tty)
c906108c 3303{
d874f1e2 3304 overlay_debugging = ovly_auto;
1900040c 3305 enable_overlay_breakpoints ();
c906108c 3306 if (info_verbose)
a3f17187 3307 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3308}
3309
3310/* Function: overlay_manual_command
3311 A utility command to turn on overlay debugging.
c378eb4e 3312 Possibly this should be done via a set/show command. */
c906108c
SS
3313
3314static void
fba45db2 3315overlay_manual_command (char *args, int from_tty)
c906108c 3316{
d874f1e2 3317 overlay_debugging = ovly_on;
1900040c 3318 disable_overlay_breakpoints ();
c906108c 3319 if (info_verbose)
a3f17187 3320 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3321}
3322
3323/* Function: overlay_off_command
3324 A utility command to turn on overlay debugging.
c378eb4e 3325 Possibly this should be done via a set/show command. */
c906108c
SS
3326
3327static void
fba45db2 3328overlay_off_command (char *args, int from_tty)
c906108c 3329{
d874f1e2 3330 overlay_debugging = ovly_off;
1900040c 3331 disable_overlay_breakpoints ();
c906108c 3332 if (info_verbose)
a3f17187 3333 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3334}
3335
3336static void
fba45db2 3337overlay_load_command (char *args, int from_tty)
c906108c 3338{
e17c207e
UW
3339 struct gdbarch *gdbarch = get_current_arch ();
3340
3341 if (gdbarch_overlay_update_p (gdbarch))
3342 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3343 else
8a3fe4f8 3344 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3345}
3346
3347/* Function: overlay_command
c378eb4e 3348 A place-holder for a mis-typed command. */
c906108c 3349
c378eb4e 3350/* Command list chain containing all defined "overlay" subcommands. */
28578e6b 3351static struct cmd_list_element *overlaylist;
c906108c
SS
3352
3353static void
fba45db2 3354overlay_command (char *args, int from_tty)
c906108c 3355{
c5aa993b 3356 printf_unfiltered
c906108c
SS
3357 ("\"overlay\" must be followed by the name of an overlay command.\n");
3358 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3359}
3360
c906108c
SS
3361/* Target Overlays for the "Simplest" overlay manager:
3362
5417f6dc
RM
3363 This is GDB's default target overlay layer. It works with the
3364 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3365 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3366 so targets that use a different runtime overlay manager can
c906108c
SS
3367 substitute their own overlay_update function and take over the
3368 function pointer.
3369
3370 The overlay_update function pokes around in the target's data structures
3371 to see what overlays are mapped, and updates GDB's overlay mapping with
3372 this information.
3373
3374 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3375 unsigned _novlys; /# number of overlay sections #/
3376 unsigned _ovly_table[_novlys][4] = {
3377 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3378 {..., ..., ..., ...},
3379 }
3380 unsigned _novly_regions; /# number of overlay regions #/
3381 unsigned _ovly_region_table[_novly_regions][3] = {
3382 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3383 {..., ..., ...},
3384 }
c906108c
SS
3385 These functions will attempt to update GDB's mappedness state in the
3386 symbol section table, based on the target's mappedness state.
3387
3388 To do this, we keep a cached copy of the target's _ovly_table, and
3389 attempt to detect when the cached copy is invalidated. The main
3390 entry point is "simple_overlay_update(SECT), which looks up SECT in
3391 the cached table and re-reads only the entry for that section from
c378eb4e 3392 the target (whenever possible). */
c906108c
SS
3393
3394/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3395static unsigned (*cache_ovly_table)[4] = 0;
c5aa993b 3396static unsigned cache_novlys = 0;
c906108c 3397static CORE_ADDR cache_ovly_table_base = 0;
c5aa993b
JM
3398enum ovly_index
3399 {
3400 VMA, SIZE, LMA, MAPPED
3401 };
c906108c 3402
c378eb4e 3403/* Throw away the cached copy of _ovly_table. */
3b7bacac 3404
c906108c 3405static void
fba45db2 3406simple_free_overlay_table (void)
c906108c
SS
3407{
3408 if (cache_ovly_table)
b8c9b27d 3409 xfree (cache_ovly_table);
c5aa993b 3410 cache_novlys = 0;
c906108c
SS
3411 cache_ovly_table = NULL;
3412 cache_ovly_table_base = 0;
3413}
3414
9216df95 3415/* Read an array of ints of size SIZE from the target into a local buffer.
c378eb4e 3416 Convert to host order. int LEN is number of ints. */
3b7bacac 3417
c906108c 3418static void
9216df95 3419read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3420 int len, int size, enum bfd_endian byte_order)
c906108c 3421{
c378eb4e 3422 /* FIXME (alloca): Not safe if array is very large. */
9216df95 3423 gdb_byte *buf = alloca (len * size);
c5aa993b 3424 int i;
c906108c 3425
9216df95 3426 read_memory (memaddr, buf, len * size);
c906108c 3427 for (i = 0; i < len; i++)
e17a4113 3428 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3429}
3430
3431/* Find and grab a copy of the target _ovly_table
c378eb4e 3432 (and _novlys, which is needed for the table's size). */
3b7bacac 3433
c5aa993b 3434static int
fba45db2 3435simple_read_overlay_table (void)
c906108c 3436{
0d43edd1 3437 struct minimal_symbol *novlys_msym, *ovly_table_msym;
9216df95
UW
3438 struct gdbarch *gdbarch;
3439 int word_size;
e17a4113 3440 enum bfd_endian byte_order;
c906108c
SS
3441
3442 simple_free_overlay_table ();
9b27852e 3443 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3444 if (! novlys_msym)
c906108c 3445 {
8a3fe4f8 3446 error (_("Error reading inferior's overlay table: "
0d43edd1 3447 "couldn't find `_novlys' variable\n"
8a3fe4f8 3448 "in inferior. Use `overlay manual' mode."));
0d43edd1 3449 return 0;
c906108c 3450 }
0d43edd1 3451
9b27852e 3452 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3453 if (! ovly_table_msym)
3454 {
8a3fe4f8 3455 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3456 "`_ovly_table' array\n"
8a3fe4f8 3457 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3458 return 0;
3459 }
3460
9216df95
UW
3461 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3462 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3463 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3464
e17a4113
UW
3465 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3466 4, byte_order);
0d43edd1
JB
3467 cache_ovly_table
3468 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3469 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3470 read_target_long_array (cache_ovly_table_base,
777ea8f1 3471 (unsigned int *) cache_ovly_table,
e17a4113 3472 cache_novlys * 4, word_size, byte_order);
0d43edd1 3473
c5aa993b 3474 return 1; /* SUCCESS */
c906108c
SS
3475}
3476
5417f6dc 3477/* Function: simple_overlay_update_1
c906108c
SS
3478 A helper function for simple_overlay_update. Assuming a cached copy
3479 of _ovly_table exists, look through it to find an entry whose vma,
3480 lma and size match those of OSECT. Re-read the entry and make sure
3481 it still matches OSECT (else the table may no longer be valid).
3482 Set OSECT's mapped state to match the entry. Return: 1 for
3483 success, 0 for failure. */
3484
3485static int
fba45db2 3486simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3487{
3488 int i, size;
fbd35540
MS
3489 bfd *obfd = osect->objfile->obfd;
3490 asection *bsect = osect->the_bfd_section;
9216df95
UW
3491 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3492 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3493 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3494
2c500098 3495 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3496 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3497 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3498 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3499 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c 3500 {
9216df95
UW
3501 read_target_long_array (cache_ovly_table_base + i * word_size,
3502 (unsigned int *) cache_ovly_table[i],
e17a4113 3503 4, word_size, byte_order);
fbd35540
MS
3504 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3505 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3506 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3507 {
3508 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3509 return 1;
3510 }
c378eb4e 3511 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3512 return 0;
3513 }
3514 return 0;
3515}
3516
3517/* Function: simple_overlay_update
5417f6dc
RM
3518 If OSECT is NULL, then update all sections' mapped state
3519 (after re-reading the entire target _ovly_table).
3520 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3521 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3522 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3523 re-read the entire cache, and go ahead and update all sections. */
3524
1c772458 3525void
fba45db2 3526simple_overlay_update (struct obj_section *osect)
c906108c 3527{
c5aa993b 3528 struct objfile *objfile;
c906108c 3529
c378eb4e 3530 /* Were we given an osect to look up? NULL means do all of them. */
c906108c 3531 if (osect)
c378eb4e 3532 /* Have we got a cached copy of the target's overlay table? */
c906108c 3533 if (cache_ovly_table != NULL)
9cc89665
MS
3534 {
3535 /* Does its cached location match what's currently in the
3536 symtab? */
3537 struct minimal_symbol *minsym
3538 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3539
3540 if (minsym == NULL)
3541 error (_("Error reading inferior's overlay table: couldn't "
3542 "find `_ovly_table' array\n"
3543 "in inferior. Use `overlay manual' mode."));
3544
3545 if (cache_ovly_table_base == SYMBOL_VALUE_ADDRESS (minsym))
3546 /* Then go ahead and try to look up this single section in
3547 the cache. */
3548 if (simple_overlay_update_1 (osect))
3549 /* Found it! We're done. */
3550 return;
3551 }
c906108c
SS
3552
3553 /* Cached table no good: need to read the entire table anew.
3554 Or else we want all the sections, in which case it's actually
3555 more efficient to read the whole table in one block anyway. */
3556
0d43edd1
JB
3557 if (! simple_read_overlay_table ())
3558 return;
3559
c378eb4e 3560 /* Now may as well update all sections, even if only one was requested. */
c906108c 3561 ALL_OBJSECTIONS (objfile, osect)
714835d5 3562 if (section_is_overlay (osect))
c5aa993b
JM
3563 {
3564 int i, size;
fbd35540
MS
3565 bfd *obfd = osect->objfile->obfd;
3566 asection *bsect = osect->the_bfd_section;
c5aa993b 3567
2c500098 3568 size = bfd_get_section_size (bsect);
c5aa993b 3569 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3570 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3571 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3572 /* && cache_ovly_table[i][SIZE] == size */ )
c378eb4e 3573 { /* obj_section matches i'th entry in ovly_table. */
c5aa993b 3574 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
c378eb4e 3575 break; /* finished with inner for loop: break out. */
c5aa993b
JM
3576 }
3577 }
c906108c
SS
3578}
3579
086df311
DJ
3580/* Set the output sections and output offsets for section SECTP in
3581 ABFD. The relocation code in BFD will read these offsets, so we
3582 need to be sure they're initialized. We map each section to itself,
3583 with no offset; this means that SECTP->vma will be honored. */
3584
3585static void
3586symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3587{
3588 sectp->output_section = sectp;
3589 sectp->output_offset = 0;
3590}
3591
ac8035ab
TG
3592/* Default implementation for sym_relocate. */
3593
ac8035ab
TG
3594bfd_byte *
3595default_symfile_relocate (struct objfile *objfile, asection *sectp,
3596 bfd_byte *buf)
3597{
3019eac3
DE
3598 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3599 DWO file. */
3600 bfd *abfd = sectp->owner;
ac8035ab
TG
3601
3602 /* We're only interested in sections with relocation
3603 information. */
3604 if ((sectp->flags & SEC_RELOC) == 0)
3605 return NULL;
3606
3607 /* We will handle section offsets properly elsewhere, so relocate as if
3608 all sections begin at 0. */
3609 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3610
3611 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3612}
3613
086df311
DJ
3614/* Relocate the contents of a debug section SECTP in ABFD. The
3615 contents are stored in BUF if it is non-NULL, or returned in a
3616 malloc'd buffer otherwise.
3617
3618 For some platforms and debug info formats, shared libraries contain
3619 relocations against the debug sections (particularly for DWARF-2;
3620 one affected platform is PowerPC GNU/Linux, although it depends on
3621 the version of the linker in use). Also, ELF object files naturally
3622 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3623 the relocations in order to get the locations of symbols correct.
3624 Another example that may require relocation processing, is the
3625 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3626 debug section. */
086df311
DJ
3627
3628bfd_byte *
ac8035ab
TG
3629symfile_relocate_debug_section (struct objfile *objfile,
3630 asection *sectp, bfd_byte *buf)
086df311 3631{
ac8035ab 3632 gdb_assert (objfile->sf->sym_relocate);
086df311 3633
ac8035ab 3634 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3635}
c906108c 3636
31d99776
DJ
3637struct symfile_segment_data *
3638get_symfile_segment_data (bfd *abfd)
3639{
00b5771c 3640 const struct sym_fns *sf = find_sym_fns (abfd);
31d99776
DJ
3641
3642 if (sf == NULL)
3643 return NULL;
3644
3645 return sf->sym_segments (abfd);
3646}
3647
3648void
3649free_symfile_segment_data (struct symfile_segment_data *data)
3650{
3651 xfree (data->segment_bases);
3652 xfree (data->segment_sizes);
3653 xfree (data->segment_info);
3654 xfree (data);
3655}
3656
28c32713
JB
3657/* Given:
3658 - DATA, containing segment addresses from the object file ABFD, and
3659 the mapping from ABFD's sections onto the segments that own them,
3660 and
3661 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3662 segment addresses reported by the target,
3663 store the appropriate offsets for each section in OFFSETS.
3664
3665 If there are fewer entries in SEGMENT_BASES than there are segments
3666 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3667
8d385431
DJ
3668 If there are more entries, then ignore the extra. The target may
3669 not be able to distinguish between an empty data segment and a
3670 missing data segment; a missing text segment is less plausible. */
3b7bacac 3671
31d99776 3672int
3189cb12
DE
3673symfile_map_offsets_to_segments (bfd *abfd,
3674 const struct symfile_segment_data *data,
31d99776
DJ
3675 struct section_offsets *offsets,
3676 int num_segment_bases,
3677 const CORE_ADDR *segment_bases)
3678{
3679 int i;
3680 asection *sect;
3681
28c32713
JB
3682 /* It doesn't make sense to call this function unless you have some
3683 segment base addresses. */
202b96c1 3684 gdb_assert (num_segment_bases > 0);
28c32713 3685
31d99776
DJ
3686 /* If we do not have segment mappings for the object file, we
3687 can not relocate it by segments. */
3688 gdb_assert (data != NULL);
3689 gdb_assert (data->num_segments > 0);
3690
31d99776
DJ
3691 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3692 {
31d99776
DJ
3693 int which = data->segment_info[i];
3694
28c32713
JB
3695 gdb_assert (0 <= which && which <= data->num_segments);
3696
3697 /* Don't bother computing offsets for sections that aren't
3698 loaded as part of any segment. */
3699 if (! which)
3700 continue;
3701
3702 /* Use the last SEGMENT_BASES entry as the address of any extra
3703 segments mentioned in DATA->segment_info. */
31d99776 3704 if (which > num_segment_bases)
28c32713 3705 which = num_segment_bases;
31d99776 3706
28c32713
JB
3707 offsets->offsets[i] = (segment_bases[which - 1]
3708 - data->segment_bases[which - 1]);
31d99776
DJ
3709 }
3710
3711 return 1;
3712}
3713
3714static void
3715symfile_find_segment_sections (struct objfile *objfile)
3716{
3717 bfd *abfd = objfile->obfd;
3718 int i;
3719 asection *sect;
3720 struct symfile_segment_data *data;
3721
3722 data = get_symfile_segment_data (objfile->obfd);
3723 if (data == NULL)
3724 return;
3725
3726 if (data->num_segments != 1 && data->num_segments != 2)
3727 {
3728 free_symfile_segment_data (data);
3729 return;
3730 }
3731
3732 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3733 {
31d99776
DJ
3734 int which = data->segment_info[i];
3735
3736 if (which == 1)
3737 {
3738 if (objfile->sect_index_text == -1)
3739 objfile->sect_index_text = sect->index;
3740
3741 if (objfile->sect_index_rodata == -1)
3742 objfile->sect_index_rodata = sect->index;
3743 }
3744 else if (which == 2)
3745 {
3746 if (objfile->sect_index_data == -1)
3747 objfile->sect_index_data = sect->index;
3748
3749 if (objfile->sect_index_bss == -1)
3750 objfile->sect_index_bss = sect->index;
3751 }
3752 }
3753
3754 free_symfile_segment_data (data);
3755}
3756
c906108c 3757void
fba45db2 3758_initialize_symfile (void)
c906108c
SS
3759{
3760 struct cmd_list_element *c;
c5aa993b 3761
1a966eab
AC
3762 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3763Load symbol table from executable file FILE.\n\
c906108c 3764The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3765to execute."), &cmdlist);
5ba2abeb 3766 set_cmd_completer (c, filename_completer);
c906108c 3767
1a966eab 3768 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3769Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3e43a32a
MS
3770Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3771 ...]\nADDR is the starting address of the file's text.\n\
db162d44
EZ
3772The optional arguments are section-name section-address pairs and\n\
3773should be specified if the data and bss segments are not contiguous\n\
1a966eab 3774with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3775 &cmdlist);
5ba2abeb 3776 set_cmd_completer (c, filename_completer);
c906108c 3777
1a966eab
AC
3778 c = add_cmd ("load", class_files, load_command, _("\
3779Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
3780for access from GDB.\n\
3781A load OFFSET may also be given."), &cmdlist);
5ba2abeb 3782 set_cmd_completer (c, filename_completer);
c906108c 3783
c5aa993b 3784 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3785 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3786 "overlay ", 0, &cmdlist);
3787
3788 add_com_alias ("ovly", "overlay", class_alias, 1);
3789 add_com_alias ("ov", "overlay", class_alias, 1);
3790
c5aa993b 3791 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3792 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3793
c5aa993b 3794 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3795 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3796
c5aa993b 3797 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3798 _("List mappings of overlay sections."), &overlaylist);
c906108c 3799
c5aa993b 3800 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3801 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3802 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3803 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3804 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3805 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3806 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3807 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3808
3809 /* Filename extension to source language lookup table: */
3810 init_filename_language_table ();
26c41df3
AC
3811 add_setshow_string_noescape_cmd ("extension-language", class_files,
3812 &ext_args, _("\
3813Set mapping between filename extension and source language."), _("\
3814Show mapping between filename extension and source language."), _("\
3815Usage: set extension-language .foo bar"),
3816 set_ext_lang_command,
920d2a44 3817 show_ext_args,
26c41df3 3818 &setlist, &showlist);
c906108c 3819
c5aa993b 3820 add_info ("extensions", info_ext_lang_command,
1bedd215 3821 _("All filename extensions associated with a source language."));
917317f4 3822
525226b5
AC
3823 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3824 &debug_file_directory, _("\
24ddea62
JK
3825Set the directories where separate debug symbols are searched for."), _("\
3826Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
3827Separate debug symbols are first searched for in the same\n\
3828directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3829and lastly at the path of the directory of the binary with\n\
24ddea62 3830each global debug-file-directory component prepended."),
525226b5 3831 NULL,
920d2a44 3832 show_debug_file_directory,
525226b5 3833 &setlist, &showlist);
c906108c 3834}
This page took 2.037916 seconds and 4 git commands to generate.