Document special use of target_type field in Ada structs.
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
6aba47ca 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4c38e0a4 4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
777ea8f1 5 Free Software Foundation, Inc.
8926118c 6
c906108c
SS
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
a9762ec7 13 the Free Software Foundation; either version 3 of the License, or
c5aa993b 14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b 21 You should have received a copy of the GNU General Public License
a9762ec7 22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
23
24#include "defs.h"
e17c207e 25#include "arch-utils.h"
086df311 26#include "bfdlink.h"
c906108c
SS
27#include "symtab.h"
28#include "gdbtypes.h"
29#include "gdbcore.h"
30#include "frame.h"
31#include "target.h"
32#include "value.h"
33#include "symfile.h"
34#include "objfiles.h"
0378c332 35#include "source.h"
c906108c
SS
36#include "gdbcmd.h"
37#include "breakpoint.h"
38#include "language.h"
39#include "complaints.h"
40#include "demangle.h"
fb14de7b
UW
41#include "inferior.h"
42#include "regcache.h"
5b5d99cf 43#include "filenames.h" /* for DOSish file names */
c906108c 44#include "gdb-stabs.h"
04ea0df1 45#include "gdb_obstack.h"
d75b5104 46#include "completer.h"
af5f3db6 47#include "bcache.h"
2de7ced7 48#include "hashtab.h"
dbda9972 49#include "readline/readline.h"
7e8580c1 50#include "gdb_assert.h"
fe898f56 51#include "block.h"
ea53e89f 52#include "observer.h"
c1bd25fd 53#include "exec.h"
9bdcbae7 54#include "parser-defs.h"
8756216b 55#include "varobj.h"
77069918 56#include "elf-bfd.h"
e85a822c 57#include "solib.h"
f1838a98 58#include "remote.h"
c906108c 59
c906108c
SS
60#include <sys/types.h>
61#include <fcntl.h>
62#include "gdb_string.h"
63#include "gdb_stat.h"
64#include <ctype.h>
65#include <time.h>
2b71414d 66#include <sys/time.h>
c906108c 67
ccefe4c4 68#include "psymtab.h"
c906108c 69
9a4105ab
AC
70int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
71void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
72 unsigned long section_sent,
73 unsigned long section_size,
74 unsigned long total_sent,
c2d11a7d 75 unsigned long total_size);
769d7dc4
AC
76void (*deprecated_pre_add_symbol_hook) (const char *);
77void (*deprecated_post_add_symbol_hook) (void);
c906108c 78
74b7792f
AC
79static void clear_symtab_users_cleanup (void *ignore);
80
c906108c 81/* Global variables owned by this file */
c5aa993b 82int readnow_symbol_files; /* Read full symbols immediately */
c906108c 83
c906108c
SS
84/* External variables and functions referenced. */
85
a14ed312 86extern void report_transfer_performance (unsigned long, time_t, time_t);
c906108c
SS
87
88/* Functions this file defines */
89
90#if 0
a14ed312
KB
91static int simple_read_overlay_region_table (void);
92static void simple_free_overlay_region_table (void);
c906108c
SS
93#endif
94
a14ed312 95static void load_command (char *, int);
c906108c 96
d7db6da9
FN
97static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
98
a14ed312 99static void add_symbol_file_command (char *, int);
c906108c 100
a14ed312 101bfd *symfile_bfd_open (char *);
c906108c 102
0e931cf0
JB
103int get_section_index (struct objfile *, char *);
104
31d99776 105static struct sym_fns *find_sym_fns (bfd *);
c906108c 106
a14ed312 107static void decrement_reading_symtab (void *);
c906108c 108
a14ed312 109static void overlay_invalidate_all (void);
c906108c 110
a14ed312 111void list_overlays_command (char *, int);
c906108c 112
a14ed312 113void map_overlay_command (char *, int);
c906108c 114
a14ed312 115void unmap_overlay_command (char *, int);
c906108c 116
a14ed312 117static void overlay_auto_command (char *, int);
c906108c 118
a14ed312 119static void overlay_manual_command (char *, int);
c906108c 120
a14ed312 121static void overlay_off_command (char *, int);
c906108c 122
a14ed312 123static void overlay_load_command (char *, int);
c906108c 124
a14ed312 125static void overlay_command (char *, int);
c906108c 126
a14ed312 127static void simple_free_overlay_table (void);
c906108c 128
e17a4113
UW
129static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
130 enum bfd_endian);
c906108c 131
a14ed312 132static int simple_read_overlay_table (void);
c906108c 133
a14ed312 134static int simple_overlay_update_1 (struct obj_section *);
c906108c 135
a14ed312 136static void add_filename_language (char *ext, enum language lang);
392a587b 137
a14ed312 138static void info_ext_lang_command (char *args, int from_tty);
392a587b 139
a14ed312 140static void init_filename_language_table (void);
392a587b 141
31d99776
DJ
142static void symfile_find_segment_sections (struct objfile *objfile);
143
a14ed312 144void _initialize_symfile (void);
c906108c
SS
145
146/* List of all available sym_fns. On gdb startup, each object file reader
147 calls add_symtab_fns() to register information on each format it is
148 prepared to read. */
149
150static struct sym_fns *symtab_fns = NULL;
151
152/* Flag for whether user will be reloading symbols multiple times.
153 Defaults to ON for VxWorks, otherwise OFF. */
154
155#ifdef SYMBOL_RELOADING_DEFAULT
156int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
157#else
158int symbol_reloading = 0;
159#endif
920d2a44
AC
160static void
161show_symbol_reloading (struct ui_file *file, int from_tty,
162 struct cmd_list_element *c, const char *value)
163{
164 fprintf_filtered (file, _("\
165Dynamic symbol table reloading multiple times in one run is %s.\n"),
166 value);
167}
168
b7209cb4
FF
169/* If non-zero, shared library symbols will be added automatically
170 when the inferior is created, new libraries are loaded, or when
171 attaching to the inferior. This is almost always what users will
172 want to have happen; but for very large programs, the startup time
173 will be excessive, and so if this is a problem, the user can clear
174 this flag and then add the shared library symbols as needed. Note
175 that there is a potential for confusion, since if the shared
c906108c 176 library symbols are not loaded, commands like "info fun" will *not*
b7209cb4 177 report all the functions that are actually present. */
c906108c
SS
178
179int auto_solib_add = 1;
b7209cb4
FF
180
181/* For systems that support it, a threshold size in megabytes. If
182 automatically adding a new library's symbol table to those already
183 known to the debugger would cause the total shared library symbol
184 size to exceed this threshhold, then the shlib's symbols are not
185 added. The threshold is ignored if the user explicitly asks for a
186 shlib to be added, such as when using the "sharedlibrary"
187 command. */
188
189int auto_solib_limit;
c906108c 190\f
c5aa993b 191
c906108c
SS
192/* Make a null terminated copy of the string at PTR with SIZE characters in
193 the obstack pointed to by OBSTACKP . Returns the address of the copy.
194 Note that the string at PTR does not have to be null terminated, I.E. it
195 may be part of a larger string and we are only saving a substring. */
196
197char *
63ca651f 198obsavestring (const char *ptr, int size, struct obstack *obstackp)
c906108c 199{
52f0bd74 200 char *p = (char *) obstack_alloc (obstackp, size + 1);
c906108c
SS
201 /* Open-coded memcpy--saves function call time. These strings are usually
202 short. FIXME: Is this really still true with a compiler that can
203 inline memcpy? */
204 {
aa1ee363
AC
205 const char *p1 = ptr;
206 char *p2 = p;
63ca651f 207 const char *end = ptr + size;
c906108c
SS
208 while (p1 != end)
209 *p2++ = *p1++;
210 }
211 p[size] = 0;
212 return p;
213}
214
215/* Concatenate strings S1, S2 and S3; return the new string. Space is found
216 in the obstack pointed to by OBSTACKP. */
217
218char *
fba45db2
KB
219obconcat (struct obstack *obstackp, const char *s1, const char *s2,
220 const char *s3)
c906108c 221{
52f0bd74
AC
222 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
223 char *val = (char *) obstack_alloc (obstackp, len);
c906108c
SS
224 strcpy (val, s1);
225 strcat (val, s2);
226 strcat (val, s3);
227 return val;
228}
229
ccefe4c4 230/* True if we are reading a symbol table. */
c906108c
SS
231
232int currently_reading_symtab = 0;
233
234static void
fba45db2 235decrement_reading_symtab (void *dummy)
c906108c
SS
236{
237 currently_reading_symtab--;
238}
239
ccefe4c4
TT
240/* Increment currently_reading_symtab and return a cleanup that can be
241 used to decrement it. */
242struct cleanup *
243increment_reading_symtab (void)
c906108c 244{
ccefe4c4
TT
245 ++currently_reading_symtab;
246 return make_cleanup (decrement_reading_symtab, NULL);
c906108c
SS
247}
248
5417f6dc
RM
249/* Remember the lowest-addressed loadable section we've seen.
250 This function is called via bfd_map_over_sections.
c906108c
SS
251
252 In case of equal vmas, the section with the largest size becomes the
253 lowest-addressed loadable section.
254
255 If the vmas and sizes are equal, the last section is considered the
256 lowest-addressed loadable section. */
257
258void
4efb68b1 259find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 260{
c5aa993b 261 asection **lowest = (asection **) obj;
c906108c 262
eb73e134 263 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
264 return;
265 if (!*lowest)
266 *lowest = sect; /* First loadable section */
267 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
268 *lowest = sect; /* A lower loadable section */
269 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
270 && (bfd_section_size (abfd, (*lowest))
271 <= bfd_section_size (abfd, sect)))
272 *lowest = sect;
273}
274
a39a16c4
MM
275/* Create a new section_addr_info, with room for NUM_SECTIONS. */
276
277struct section_addr_info *
278alloc_section_addr_info (size_t num_sections)
279{
280 struct section_addr_info *sap;
281 size_t size;
282
283 size = (sizeof (struct section_addr_info)
284 + sizeof (struct other_sections) * (num_sections - 1));
285 sap = (struct section_addr_info *) xmalloc (size);
286 memset (sap, 0, size);
287 sap->num_sections = num_sections;
288
289 return sap;
290}
62557bbc
KB
291
292/* Build (allocate and populate) a section_addr_info struct from
293 an existing section table. */
294
295extern struct section_addr_info *
0542c86d
PA
296build_section_addr_info_from_section_table (const struct target_section *start,
297 const struct target_section *end)
62557bbc
KB
298{
299 struct section_addr_info *sap;
0542c86d 300 const struct target_section *stp;
62557bbc
KB
301 int oidx;
302
a39a16c4 303 sap = alloc_section_addr_info (end - start);
62557bbc
KB
304
305 for (stp = start, oidx = 0; stp != end; stp++)
306 {
5417f6dc 307 if (bfd_get_section_flags (stp->bfd,
fbd35540 308 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 309 && oidx < end - start)
62557bbc
KB
310 {
311 sap->other[oidx].addr = stp->addr;
5417f6dc 312 sap->other[oidx].name
fbd35540 313 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
62557bbc
KB
314 sap->other[oidx].sectindex = stp->the_bfd_section->index;
315 oidx++;
316 }
317 }
318
319 return sap;
320}
321
82ccf5a5 322/* Create a section_addr_info from section offsets in ABFD. */
089b4803 323
82ccf5a5
JK
324static struct section_addr_info *
325build_section_addr_info_from_bfd (bfd *abfd)
089b4803
TG
326{
327 struct section_addr_info *sap;
328 int i;
329 struct bfd_section *sec;
330
82ccf5a5
JK
331 sap = alloc_section_addr_info (bfd_count_sections (abfd));
332 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
333 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
012836ea 334 {
82ccf5a5
JK
335 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
336 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
012836ea
JK
337 sap->other[i].sectindex = sec->index;
338 i++;
339 }
089b4803
TG
340 return sap;
341}
342
82ccf5a5
JK
343/* Create a section_addr_info from section offsets in OBJFILE. */
344
345struct section_addr_info *
346build_section_addr_info_from_objfile (const struct objfile *objfile)
347{
348 struct section_addr_info *sap;
349 int i;
350
351 /* Before reread_symbols gets rewritten it is not safe to call:
352 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
353 */
354 sap = build_section_addr_info_from_bfd (objfile->obfd);
355 for (i = 0; i < sap->num_sections && sap->other[i].name; i++)
356 {
357 int sectindex = sap->other[i].sectindex;
358
359 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
360 }
361 return sap;
362}
62557bbc
KB
363
364/* Free all memory allocated by build_section_addr_info_from_section_table. */
365
366extern void
367free_section_addr_info (struct section_addr_info *sap)
368{
369 int idx;
370
a39a16c4 371 for (idx = 0; idx < sap->num_sections; idx++)
62557bbc 372 if (sap->other[idx].name)
b8c9b27d
KB
373 xfree (sap->other[idx].name);
374 xfree (sap);
62557bbc
KB
375}
376
377
e8289572
JB
378/* Initialize OBJFILE's sect_index_* members. */
379static void
380init_objfile_sect_indices (struct objfile *objfile)
c906108c 381{
e8289572 382 asection *sect;
c906108c 383 int i;
5417f6dc 384
b8fbeb18 385 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 386 if (sect)
b8fbeb18
EZ
387 objfile->sect_index_text = sect->index;
388
389 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 390 if (sect)
b8fbeb18
EZ
391 objfile->sect_index_data = sect->index;
392
393 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 394 if (sect)
b8fbeb18
EZ
395 objfile->sect_index_bss = sect->index;
396
397 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 398 if (sect)
b8fbeb18
EZ
399 objfile->sect_index_rodata = sect->index;
400
bbcd32ad
FF
401 /* This is where things get really weird... We MUST have valid
402 indices for the various sect_index_* members or gdb will abort.
403 So if for example, there is no ".text" section, we have to
31d99776
DJ
404 accomodate that. First, check for a file with the standard
405 one or two segments. */
406
407 symfile_find_segment_sections (objfile);
408
409 /* Except when explicitly adding symbol files at some address,
410 section_offsets contains nothing but zeros, so it doesn't matter
411 which slot in section_offsets the individual sect_index_* members
412 index into. So if they are all zero, it is safe to just point
413 all the currently uninitialized indices to the first slot. But
414 beware: if this is the main executable, it may be relocated
415 later, e.g. by the remote qOffsets packet, and then this will
416 be wrong! That's why we try segments first. */
bbcd32ad
FF
417
418 for (i = 0; i < objfile->num_sections; i++)
419 {
420 if (ANOFFSET (objfile->section_offsets, i) != 0)
421 {
422 break;
423 }
424 }
425 if (i == objfile->num_sections)
426 {
427 if (objfile->sect_index_text == -1)
428 objfile->sect_index_text = 0;
429 if (objfile->sect_index_data == -1)
430 objfile->sect_index_data = 0;
431 if (objfile->sect_index_bss == -1)
432 objfile->sect_index_bss = 0;
433 if (objfile->sect_index_rodata == -1)
434 objfile->sect_index_rodata = 0;
435 }
b8fbeb18 436}
c906108c 437
c1bd25fd
DJ
438/* The arguments to place_section. */
439
440struct place_section_arg
441{
442 struct section_offsets *offsets;
443 CORE_ADDR lowest;
444};
445
446/* Find a unique offset to use for loadable section SECT if
447 the user did not provide an offset. */
448
2c0b251b 449static void
c1bd25fd
DJ
450place_section (bfd *abfd, asection *sect, void *obj)
451{
452 struct place_section_arg *arg = obj;
453 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
454 int done;
3bd72c6f 455 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 456
2711e456
DJ
457 /* We are only interested in allocated sections. */
458 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
459 return;
460
461 /* If the user specified an offset, honor it. */
462 if (offsets[sect->index] != 0)
463 return;
464
465 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
466 start_addr = (arg->lowest + align - 1) & -align;
467
c1bd25fd
DJ
468 do {
469 asection *cur_sec;
c1bd25fd 470
c1bd25fd
DJ
471 done = 1;
472
473 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
474 {
475 int indx = cur_sec->index;
476 CORE_ADDR cur_offset;
477
478 /* We don't need to compare against ourself. */
479 if (cur_sec == sect)
480 continue;
481
2711e456
DJ
482 /* We can only conflict with allocated sections. */
483 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
484 continue;
485
486 /* If the section offset is 0, either the section has not been placed
487 yet, or it was the lowest section placed (in which case LOWEST
488 will be past its end). */
489 if (offsets[indx] == 0)
490 continue;
491
492 /* If this section would overlap us, then we must move up. */
493 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
494 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
495 {
496 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
497 start_addr = (start_addr + align - 1) & -align;
498 done = 0;
3bd72c6f 499 break;
c1bd25fd
DJ
500 }
501
502 /* Otherwise, we appear to be OK. So far. */
503 }
504 }
505 while (!done);
506
507 offsets[sect->index] = start_addr;
508 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 509}
e8289572 510
75242ef4
JK
511/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
512 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
513 entries. */
e8289572
JB
514
515void
75242ef4
JK
516relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
517 int num_sections,
518 struct section_addr_info *addrs)
e8289572
JB
519{
520 int i;
521
75242ef4 522 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 523
75242ef4 524 /* Now calculate offsets for section that were specified by the caller. */
a39a16c4 525 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
e8289572 526 {
75242ef4 527 struct other_sections *osp;
e8289572 528
75242ef4 529 osp = &addrs->other[i];
e8289572
JB
530 if (osp->addr == 0)
531 continue;
532
533 /* Record all sections in offsets */
534 /* The section_offsets in the objfile are here filled in using
535 the BFD index. */
75242ef4
JK
536 section_offsets->offsets[osp->sectindex] = osp->addr;
537 }
538}
539
82ccf5a5
JK
540/* qsort comparator for addrs_section_sort. Sort entries in ascending order by
541 their (name, sectindex) pair. sectindex makes the sort by name stable. */
542
543static int
544addrs_section_compar (const void *ap, const void *bp)
545{
546 const struct other_sections *a = *((struct other_sections **) ap);
547 const struct other_sections *b = *((struct other_sections **) bp);
548 int retval, a_idx, b_idx;
549
550 retval = strcmp (a->name, b->name);
551 if (retval)
552 return retval;
553
554 /* SECTINDEX is undefined iff ADDR is zero. */
555 a_idx = a->addr == 0 ? 0 : a->sectindex;
556 b_idx = b->addr == 0 ? 0 : b->sectindex;
557 return a_idx - b_idx;
558}
559
560/* Provide sorted array of pointers to sections of ADDRS. The array is
561 terminated by NULL. Caller is responsible to call xfree for it. */
562
563static struct other_sections **
564addrs_section_sort (struct section_addr_info *addrs)
565{
566 struct other_sections **array;
567 int i;
568
569 /* `+ 1' for the NULL terminator. */
570 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
571 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
572 array[i] = &addrs->other[i];
573 array[i] = NULL;
574
575 qsort (array, i, sizeof (*array), addrs_section_compar);
576
577 return array;
578}
579
75242ef4 580/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
581 also SECTINDEXes specific to ABFD there. This function can be used to
582 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
583
584void
585addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
586{
587 asection *lower_sect;
75242ef4
JK
588 CORE_ADDR lower_offset;
589 int i;
82ccf5a5
JK
590 struct cleanup *my_cleanup;
591 struct section_addr_info *abfd_addrs;
592 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
593 struct other_sections **addrs_to_abfd_addrs;
75242ef4
JK
594
595 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
596 continguous sections. */
597 lower_sect = NULL;
598 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
599 if (lower_sect == NULL)
600 {
601 warning (_("no loadable sections found in added symbol-file %s"),
602 bfd_get_filename (abfd));
603 lower_offset = 0;
e8289572 604 }
75242ef4
JK
605 else
606 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
607
82ccf5a5
JK
608 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
609 in ABFD. Section names are not unique - there can be multiple sections of
610 the same name. Also the sections of the same name do not have to be
611 adjacent to each other. Some sections may be present only in one of the
612 files. Even sections present in both files do not have to be in the same
613 order.
614
615 Use stable sort by name for the sections in both files. Then linearly
616 scan both lists matching as most of the entries as possible. */
617
618 addrs_sorted = addrs_section_sort (addrs);
619 my_cleanup = make_cleanup (xfree, addrs_sorted);
620
621 abfd_addrs = build_section_addr_info_from_bfd (abfd);
622 make_cleanup_free_section_addr_info (abfd_addrs);
623 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
624 make_cleanup (xfree, abfd_addrs_sorted);
625
626 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and ABFD_ADDRS_SORTED. */
627
628 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
629 * addrs->num_sections);
630 make_cleanup (xfree, addrs_to_abfd_addrs);
631
632 while (*addrs_sorted)
633 {
634 const char *sect_name = (*addrs_sorted)->name;
635
636 while (*abfd_addrs_sorted
637 && strcmp ((*abfd_addrs_sorted)->name, sect_name) < 0)
638 abfd_addrs_sorted++;
639
640 if (*abfd_addrs_sorted
641 && strcmp ((*abfd_addrs_sorted)->name, sect_name) == 0)
642 {
643 int index_in_addrs;
644
645 /* Make the found item directly addressable from ADDRS. */
646 index_in_addrs = *addrs_sorted - addrs->other;
647 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
648 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
649
650 /* Never use the same ABFD entry twice. */
651 abfd_addrs_sorted++;
652 }
653
654 addrs_sorted++;
655 }
656
75242ef4
JK
657 /* Calculate offsets for the loadable sections.
658 FIXME! Sections must be in order of increasing loadable section
659 so that contiguous sections can use the lower-offset!!!
660
661 Adjust offsets if the segments are not contiguous.
662 If the section is contiguous, its offset should be set to
663 the offset of the highest loadable section lower than it
664 (the loadable section directly below it in memory).
665 this_offset = lower_offset = lower_addr - lower_orig_addr */
666
667 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
668 {
b0fcb67f 669 const char *sect_name = addrs->other[i].name;
82ccf5a5 670 struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
671
672 if (sect)
75242ef4 673 {
672d9c23 674 /* This is the index used by BFD. */
82ccf5a5 675 addrs->other[i].sectindex = sect->sectindex;
672d9c23
JK
676
677 if (addrs->other[i].addr != 0)
75242ef4 678 {
82ccf5a5 679 addrs->other[i].addr -= sect->addr;
75242ef4 680 lower_offset = addrs->other[i].addr;
75242ef4
JK
681 }
682 else
672d9c23 683 addrs->other[i].addr = lower_offset;
75242ef4
JK
684 }
685 else
672d9c23 686 {
b0fcb67f
JK
687 /* This section does not exist in ABFD, which is normally
688 unexpected and we want to issue a warning.
689
4d9743af
JK
690 However, the ELF prelinker does create a few sections which are
691 marked in the main executable as loadable (they are loaded in
692 memory from the DYNAMIC segment) and yet are not present in
693 separate debug info files. This is fine, and should not cause
694 a warning. Shared libraries contain just the section
695 ".gnu.liblist" but it is not marked as loadable there. There is
696 no other way to identify them than by their name as the sections
697 created by prelink have no special flags. */
b0fcb67f
JK
698
699 if (!(strcmp (sect_name, ".gnu.liblist") == 0
4d9743af
JK
700 || strcmp (sect_name, ".gnu.conflict") == 0
701 || strcmp (sect_name, ".dynbss") == 0
702 || strcmp (sect_name, ".sdynbss") == 0))
b0fcb67f
JK
703 warning (_("section %s not found in %s"), sect_name,
704 bfd_get_filename (abfd));
705
672d9c23
JK
706 addrs->other[i].addr = 0;
707
708 /* SECTINDEX is invalid if ADDR is zero. */
709 }
75242ef4 710 }
82ccf5a5
JK
711
712 do_cleanups (my_cleanup);
75242ef4
JK
713}
714
715/* Parse the user's idea of an offset for dynamic linking, into our idea
716 of how to represent it for fast symbol reading. This is the default
717 version of the sym_fns.sym_offsets function for symbol readers that
718 don't need to do anything special. It allocates a section_offsets table
719 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
720
721void
722default_symfile_offsets (struct objfile *objfile,
723 struct section_addr_info *addrs)
724{
725 objfile->num_sections = bfd_count_sections (objfile->obfd);
726 objfile->section_offsets = (struct section_offsets *)
727 obstack_alloc (&objfile->objfile_obstack,
728 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
729 relative_addr_info_to_section_offsets (objfile->section_offsets,
730 objfile->num_sections, addrs);
e8289572 731
c1bd25fd
DJ
732 /* For relocatable files, all loadable sections will start at zero.
733 The zero is meaningless, so try to pick arbitrary addresses such
734 that no loadable sections overlap. This algorithm is quadratic,
735 but the number of sections in a single object file is generally
736 small. */
737 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
738 {
739 struct place_section_arg arg;
2711e456
DJ
740 bfd *abfd = objfile->obfd;
741 asection *cur_sec;
742 CORE_ADDR lowest = 0;
743
744 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
745 /* We do not expect this to happen; just skip this step if the
746 relocatable file has a section with an assigned VMA. */
747 if (bfd_section_vma (abfd, cur_sec) != 0)
748 break;
749
750 if (cur_sec == NULL)
751 {
752 CORE_ADDR *offsets = objfile->section_offsets->offsets;
753
754 /* Pick non-overlapping offsets for sections the user did not
755 place explicitly. */
756 arg.offsets = objfile->section_offsets;
757 arg.lowest = 0;
758 bfd_map_over_sections (objfile->obfd, place_section, &arg);
759
760 /* Correctly filling in the section offsets is not quite
761 enough. Relocatable files have two properties that
762 (most) shared objects do not:
763
764 - Their debug information will contain relocations. Some
765 shared libraries do also, but many do not, so this can not
766 be assumed.
767
768 - If there are multiple code sections they will be loaded
769 at different relative addresses in memory than they are
770 in the objfile, since all sections in the file will start
771 at address zero.
772
773 Because GDB has very limited ability to map from an
774 address in debug info to the correct code section,
775 it relies on adding SECT_OFF_TEXT to things which might be
776 code. If we clear all the section offsets, and set the
777 section VMAs instead, then symfile_relocate_debug_section
778 will return meaningful debug information pointing at the
779 correct sections.
780
781 GDB has too many different data structures for section
782 addresses - a bfd, objfile, and so_list all have section
783 tables, as does exec_ops. Some of these could probably
784 be eliminated. */
785
786 for (cur_sec = abfd->sections; cur_sec != NULL;
787 cur_sec = cur_sec->next)
788 {
789 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
790 continue;
791
792 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
30510692
DJ
793 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
794 offsets[cur_sec->index]);
2711e456
DJ
795 offsets[cur_sec->index] = 0;
796 }
797 }
c1bd25fd
DJ
798 }
799
e8289572
JB
800 /* Remember the bfd indexes for the .text, .data, .bss and
801 .rodata sections. */
802 init_objfile_sect_indices (objfile);
803}
804
805
31d99776
DJ
806/* Divide the file into segments, which are individual relocatable units.
807 This is the default version of the sym_fns.sym_segments function for
808 symbol readers that do not have an explicit representation of segments.
809 It assumes that object files do not have segments, and fully linked
810 files have a single segment. */
811
812struct symfile_segment_data *
813default_symfile_segments (bfd *abfd)
814{
815 int num_sections, i;
816 asection *sect;
817 struct symfile_segment_data *data;
818 CORE_ADDR low, high;
819
820 /* Relocatable files contain enough information to position each
821 loadable section independently; they should not be relocated
822 in segments. */
823 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
824 return NULL;
825
826 /* Make sure there is at least one loadable section in the file. */
827 for (sect = abfd->sections; sect != NULL; sect = sect->next)
828 {
829 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
830 continue;
831
832 break;
833 }
834 if (sect == NULL)
835 return NULL;
836
837 low = bfd_get_section_vma (abfd, sect);
838 high = low + bfd_get_section_size (sect);
839
840 data = XZALLOC (struct symfile_segment_data);
841 data->num_segments = 1;
842 data->segment_bases = XCALLOC (1, CORE_ADDR);
843 data->segment_sizes = XCALLOC (1, CORE_ADDR);
844
845 num_sections = bfd_count_sections (abfd);
846 data->segment_info = XCALLOC (num_sections, int);
847
848 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
849 {
850 CORE_ADDR vma;
851
852 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
853 continue;
854
855 vma = bfd_get_section_vma (abfd, sect);
856 if (vma < low)
857 low = vma;
858 if (vma + bfd_get_section_size (sect) > high)
859 high = vma + bfd_get_section_size (sect);
860
861 data->segment_info[i] = 1;
862 }
863
864 data->segment_bases[0] = low;
865 data->segment_sizes[0] = high - low;
866
867 return data;
868}
869
c906108c
SS
870/* Process a symbol file, as either the main file or as a dynamically
871 loaded file.
872
96baa820
JM
873 OBJFILE is where the symbols are to be read from.
874
7e8580c1
JB
875 ADDRS is the list of section load addresses. If the user has given
876 an 'add-symbol-file' command, then this is the list of offsets and
877 addresses he or she provided as arguments to the command; or, if
878 we're handling a shared library, these are the actual addresses the
879 sections are loaded at, according to the inferior's dynamic linker
880 (as gleaned by GDB's shared library code). We convert each address
881 into an offset from the section VMA's as it appears in the object
882 file, and then call the file's sym_offsets function to convert this
883 into a format-specific offset table --- a `struct section_offsets'.
884 If ADDRS is non-zero, OFFSETS must be zero.
885
886 OFFSETS is a table of section offsets already in the right
887 format-specific representation. NUM_OFFSETS is the number of
888 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
889 assume this is the proper table the call to sym_offsets described
890 above would produce. Instead of calling sym_offsets, we just dump
891 it right into objfile->section_offsets. (When we're re-reading
892 symbols from an objfile, we don't have the original load address
893 list any more; all we have is the section offset table.) If
894 OFFSETS is non-zero, ADDRS must be zero.
96baa820 895
7eedccfa
PP
896 ADD_FLAGS encodes verbosity level, whether this is main symbol or
897 an extra symbol file such as dynamically loaded code, and wether
898 breakpoint reset should be deferred. */
c906108c
SS
899
900void
7e8580c1
JB
901syms_from_objfile (struct objfile *objfile,
902 struct section_addr_info *addrs,
903 struct section_offsets *offsets,
904 int num_offsets,
7eedccfa 905 int add_flags)
c906108c 906{
a39a16c4 907 struct section_addr_info *local_addr = NULL;
c906108c 908 struct cleanup *old_chain;
7eedccfa 909 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 910
7e8580c1 911 gdb_assert (! (addrs && offsets));
2acceee2 912
c906108c 913 init_entry_point_info (objfile);
31d99776 914 objfile->sf = find_sym_fns (objfile->obfd);
c906108c 915
75245b24
MS
916 if (objfile->sf == NULL)
917 return; /* No symbols. */
918
c906108c
SS
919 /* Make sure that partially constructed symbol tables will be cleaned up
920 if an error occurs during symbol reading. */
74b7792f 921 old_chain = make_cleanup_free_objfile (objfile);
c906108c 922
a39a16c4
MM
923 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
924 list. We now establish the convention that an addr of zero means
925 no load address was specified. */
926 if (! addrs && ! offsets)
927 {
5417f6dc 928 local_addr
a39a16c4
MM
929 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
930 make_cleanup (xfree, local_addr);
931 addrs = local_addr;
932 }
933
934 /* Now either addrs or offsets is non-zero. */
935
c5aa993b 936 if (mainline)
c906108c
SS
937 {
938 /* We will modify the main symbol table, make sure that all its users
c5aa993b 939 will be cleaned up if an error occurs during symbol reading. */
74b7792f 940 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
941
942 /* Since no error yet, throw away the old symbol table. */
943
944 if (symfile_objfile != NULL)
945 {
946 free_objfile (symfile_objfile);
adb7f338 947 gdb_assert (symfile_objfile == NULL);
c906108c
SS
948 }
949
950 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
951 If the user wants to get rid of them, they should do "symbol-file"
952 without arguments first. Not sure this is the best behavior
953 (PR 2207). */
c906108c 954
c5aa993b 955 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
956 }
957
958 /* Convert addr into an offset rather than an absolute address.
959 We find the lowest address of a loaded segment in the objfile,
53a5351d 960 and assume that <addr> is where that got loaded.
c906108c 961
53a5351d
JM
962 We no longer warn if the lowest section is not a text segment (as
963 happens for the PA64 port. */
0d15807d 964 if (addrs && addrs->other[0].name)
75242ef4 965 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
966
967 /* Initialize symbol reading routines for this objfile, allow complaints to
968 appear for this new file, and record how verbose to be, then do the
969 initial symbol reading for this file. */
970
c5aa993b 971 (*objfile->sf->sym_init) (objfile);
7eedccfa 972 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 973
7e8580c1
JB
974 if (addrs)
975 (*objfile->sf->sym_offsets) (objfile, addrs);
976 else
977 {
978 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
979
980 /* Just copy in the offset table directly as given to us. */
981 objfile->num_sections = num_offsets;
982 objfile->section_offsets
983 = ((struct section_offsets *)
8b92e4d5 984 obstack_alloc (&objfile->objfile_obstack, size));
7e8580c1
JB
985 memcpy (objfile->section_offsets, offsets, size);
986
987 init_objfile_sect_indices (objfile);
988 }
c906108c 989
f4352531 990 (*objfile->sf->sym_read) (objfile, add_flags);
c906108c 991
c906108c
SS
992 /* Discard cleanups as symbol reading was successful. */
993
994 discard_cleanups (old_chain);
f7545552 995 xfree (local_addr);
c906108c
SS
996}
997
998/* Perform required actions after either reading in the initial
999 symbols for a new objfile, or mapping in the symbols from a reusable
1000 objfile. */
c5aa993b 1001
c906108c 1002void
7eedccfa 1003new_symfile_objfile (struct objfile *objfile, int add_flags)
c906108c
SS
1004{
1005
1006 /* If this is the main symbol file we have to clean up all users of the
1007 old main symbol file. Otherwise it is sufficient to fixup all the
1008 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1009 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1010 {
1011 /* OK, make it the "real" symbol file. */
1012 symfile_objfile = objfile;
1013
1014 clear_symtab_users ();
1015 }
7eedccfa 1016 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1017 {
69de3c6a 1018 breakpoint_re_set ();
c906108c
SS
1019 }
1020
1021 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 1022 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
1023}
1024
1025/* Process a symbol file, as either the main file or as a dynamically
1026 loaded file.
1027
5417f6dc
RM
1028 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1029 This BFD will be closed on error, and is always consumed by this function.
7904e09f 1030
7eedccfa
PP
1031 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1032 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f
JB
1033
1034 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
7eedccfa
PP
1035 syms_from_objfile, above.
1036 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1037
c906108c
SS
1038 Upon success, returns a pointer to the objfile that was added.
1039 Upon failure, jumps back to command level (never returns). */
7eedccfa 1040
7904e09f 1041static struct objfile *
7eedccfa
PP
1042symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1043 int add_flags,
7904e09f
JB
1044 struct section_addr_info *addrs,
1045 struct section_offsets *offsets,
1046 int num_offsets,
7eedccfa 1047 int flags)
c906108c
SS
1048{
1049 struct objfile *objfile;
a39a16c4 1050 struct cleanup *my_cleanups;
5417f6dc 1051 const char *name = bfd_get_filename (abfd);
7eedccfa 1052 const int from_tty = add_flags & SYMFILE_VERBOSE;
c906108c 1053
5417f6dc 1054 my_cleanups = make_cleanup_bfd_close (abfd);
c906108c 1055
5417f6dc
RM
1056 /* Give user a chance to burp if we'd be
1057 interactively wiping out any existing symbols. */
c906108c
SS
1058
1059 if ((have_full_symbols () || have_partial_symbols ())
7eedccfa 1060 && (add_flags & SYMFILE_MAINLINE)
c906108c 1061 && from_tty
9e2f0ad4 1062 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1063 error (_("Not confirmed."));
c906108c 1064
2df3850c 1065 objfile = allocate_objfile (abfd, flags);
5417f6dc 1066 discard_cleanups (my_cleanups);
c906108c 1067
78a4a9b9
AC
1068 /* We either created a new mapped symbol table, mapped an existing
1069 symbol table file which has not had initial symbol reading
1070 performed, or need to read an unmapped symbol table. */
1071 if (from_tty || info_verbose)
c906108c 1072 {
769d7dc4
AC
1073 if (deprecated_pre_add_symbol_hook)
1074 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1075 else
c906108c 1076 {
55333a84
DE
1077 printf_unfiltered (_("Reading symbols from %s..."), name);
1078 wrap_here ("");
1079 gdb_flush (gdb_stdout);
c906108c 1080 }
c906108c 1081 }
78a4a9b9 1082 syms_from_objfile (objfile, addrs, offsets, num_offsets,
7eedccfa 1083 add_flags);
c906108c
SS
1084
1085 /* We now have at least a partial symbol table. Check to see if the
1086 user requested that all symbols be read on initial access via either
1087 the gdb startup command line or on a per symbol file basis. Expand
1088 all partial symbol tables for this objfile if so. */
1089
2acceee2 1090 if ((flags & OBJF_READNOW) || readnow_symbol_files)
c906108c 1091 {
55333a84 1092 if (from_tty || info_verbose)
c906108c 1093 {
a3f17187 1094 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1095 wrap_here ("");
1096 gdb_flush (gdb_stdout);
1097 }
1098
ccefe4c4
TT
1099 if (objfile->sf)
1100 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1101 }
1102
55333a84 1103 if ((from_tty || info_verbose)
e361b228 1104 && !objfile_has_symbols (objfile))
cb3c37b2
JB
1105 {
1106 wrap_here ("");
55333a84 1107 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1108 wrap_here ("");
1109 }
1110
c906108c
SS
1111 if (from_tty || info_verbose)
1112 {
769d7dc4
AC
1113 if (deprecated_post_add_symbol_hook)
1114 deprecated_post_add_symbol_hook ();
c906108c 1115 else
55333a84 1116 printf_unfiltered (_("done.\n"));
c906108c
SS
1117 }
1118
481d0f41
JB
1119 /* We print some messages regardless of whether 'from_tty ||
1120 info_verbose' is true, so make sure they go out at the right
1121 time. */
1122 gdb_flush (gdb_stdout);
1123
a39a16c4
MM
1124 do_cleanups (my_cleanups);
1125
109f874e 1126 if (objfile->sf == NULL)
8caee43b
PP
1127 {
1128 observer_notify_new_objfile (objfile);
1129 return objfile; /* No symbols. */
1130 }
109f874e 1131
7eedccfa 1132 new_symfile_objfile (objfile, add_flags);
c906108c 1133
06d3b283 1134 observer_notify_new_objfile (objfile);
c906108c 1135
ce7d4522 1136 bfd_cache_close_all ();
c906108c
SS
1137 return (objfile);
1138}
1139
9cce227f
TG
1140/* Add BFD as a separate debug file for OBJFILE. */
1141
1142void
1143symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1144{
15d123c9 1145 struct objfile *new_objfile;
089b4803
TG
1146 struct section_addr_info *sap;
1147 struct cleanup *my_cleanup;
1148
1149 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1150 because sections of BFD may not match sections of OBJFILE and because
1151 vma may have been modified by tools such as prelink. */
1152 sap = build_section_addr_info_from_objfile (objfile);
1153 my_cleanup = make_cleanup_free_section_addr_info (sap);
9cce227f 1154
15d123c9 1155 new_objfile = symbol_file_add_with_addrs_or_offsets
9cce227f 1156 (bfd, symfile_flags,
089b4803 1157 sap, NULL, 0,
9cce227f
TG
1158 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1159 | OBJF_USERLOADED));
089b4803
TG
1160
1161 do_cleanups (my_cleanup);
9cce227f 1162
15d123c9 1163 add_separate_debug_objfile (new_objfile, objfile);
9cce227f 1164}
7904e09f 1165
eb4556d7
JB
1166/* Process the symbol file ABFD, as either the main file or as a
1167 dynamically loaded file.
1168
1169 See symbol_file_add_with_addrs_or_offsets's comments for
1170 details. */
1171struct objfile *
7eedccfa 1172symbol_file_add_from_bfd (bfd *abfd, int add_flags,
eb4556d7 1173 struct section_addr_info *addrs,
7eedccfa 1174 int flags)
eb4556d7 1175{
7eedccfa
PP
1176 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1177 flags);
eb4556d7
JB
1178}
1179
1180
7904e09f
JB
1181/* Process a symbol file, as either the main file or as a dynamically
1182 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1183 for details. */
1184struct objfile *
7eedccfa
PP
1185symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1186 int flags)
7904e09f 1187{
7eedccfa
PP
1188 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1189 flags);
7904e09f
JB
1190}
1191
1192
d7db6da9
FN
1193/* Call symbol_file_add() with default values and update whatever is
1194 affected by the loading of a new main().
1195 Used when the file is supplied in the gdb command line
1196 and by some targets with special loading requirements.
1197 The auxiliary function, symbol_file_add_main_1(), has the flags
1198 argument for the switches that can only be specified in the symbol_file
1199 command itself. */
5417f6dc 1200
1adeb98a
FN
1201void
1202symbol_file_add_main (char *args, int from_tty)
1203{
d7db6da9
FN
1204 symbol_file_add_main_1 (args, from_tty, 0);
1205}
1206
1207static void
1208symbol_file_add_main_1 (char *args, int from_tty, int flags)
1209{
7eedccfa
PP
1210 const int add_flags = SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0);
1211 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1212
d7db6da9
FN
1213 /* Getting new symbols may change our opinion about
1214 what is frameless. */
1215 reinit_frame_cache ();
1216
1217 set_initial_language ();
1adeb98a
FN
1218}
1219
1220void
1221symbol_file_clear (int from_tty)
1222{
1223 if ((have_full_symbols () || have_partial_symbols ())
1224 && from_tty
0430b0d6
AS
1225 && (symfile_objfile
1226 ? !query (_("Discard symbol table from `%s'? "),
1227 symfile_objfile->name)
1228 : !query (_("Discard symbol table? "))))
8a3fe4f8 1229 error (_("Not confirmed."));
1adeb98a 1230
0133421a
JK
1231 /* solib descriptors may have handles to objfiles. Wipe them before their
1232 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1233 no_shared_libraries (NULL, from_tty);
1234
0133421a
JK
1235 free_all_objfiles ();
1236
adb7f338 1237 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1238 if (from_tty)
1239 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1240}
1241
5b5d99cf
JB
1242static char *
1243get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1244{
1245 asection *sect;
1246 bfd_size_type debuglink_size;
1247 unsigned long crc32;
1248 char *contents;
1249 int crc_offset;
1250 unsigned char *p;
5417f6dc 1251
5b5d99cf
JB
1252 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1253
1254 if (sect == NULL)
1255 return NULL;
1256
1257 debuglink_size = bfd_section_size (objfile->obfd, sect);
5417f6dc 1258
5b5d99cf
JB
1259 contents = xmalloc (debuglink_size);
1260 bfd_get_section_contents (objfile->obfd, sect, contents,
1261 (file_ptr)0, (bfd_size_type)debuglink_size);
1262
1263 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1264 crc_offset = strlen (contents) + 1;
1265 crc_offset = (crc_offset + 3) & ~3;
1266
1267 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
5417f6dc 1268
5b5d99cf
JB
1269 *crc32_out = crc32;
1270 return contents;
1271}
1272
1273static int
287ccc17 1274separate_debug_file_exists (const char *name, unsigned long crc,
32a0e547 1275 struct objfile *parent_objfile)
5b5d99cf
JB
1276{
1277 unsigned long file_crc = 0;
f1838a98 1278 bfd *abfd;
777ea8f1 1279 gdb_byte buffer[8*1024];
5b5d99cf 1280 int count;
32a0e547
JK
1281 struct stat parent_stat, abfd_stat;
1282
1283 /* Find a separate debug info file as if symbols would be present in
1284 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1285 section can contain just the basename of PARENT_OBJFILE without any
1286 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1287 the separate debug infos with the same basename can exist. */
1288
1289 if (strcmp (name, parent_objfile->name) == 0)
1290 return 0;
5b5d99cf 1291
874f5765 1292 abfd = bfd_open_maybe_remote (name);
f1838a98
UW
1293
1294 if (!abfd)
5b5d99cf
JB
1295 return 0;
1296
32a0e547
JK
1297 /* Verify symlinks were not the cause of strcmp name difference above.
1298
1299 Some operating systems, e.g. Windows, do not provide a meaningful
1300 st_ino; they always set it to zero. (Windows does provide a
1301 meaningful st_dev.) Do not indicate a duplicate library in that
1302 case. While there is no guarantee that a system that provides
1303 meaningful inode numbers will never set st_ino to zero, this is
1304 merely an optimization, so we do not need to worry about false
1305 negatives. */
1306
1307 if (bfd_stat (abfd, &abfd_stat) == 0
1308 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0
1309 && abfd_stat.st_dev == parent_stat.st_dev
1310 && abfd_stat.st_ino == parent_stat.st_ino
1311 && abfd_stat.st_ino != 0)
1312 {
1313 bfd_close (abfd);
1314 return 0;
1315 }
1316
f1838a98 1317 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
5b5d99cf
JB
1318 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1319
f1838a98 1320 bfd_close (abfd);
5b5d99cf 1321
287ccc17
JK
1322 if (crc != file_crc)
1323 {
1324 warning (_("the debug information found in \"%s\""
1325 " does not match \"%s\" (CRC mismatch).\n"),
32a0e547 1326 name, parent_objfile->name);
287ccc17
JK
1327 return 0;
1328 }
1329
1330 return 1;
5b5d99cf
JB
1331}
1332
aa28a74e 1333char *debug_file_directory = NULL;
920d2a44
AC
1334static void
1335show_debug_file_directory (struct ui_file *file, int from_tty,
1336 struct cmd_list_element *c, const char *value)
1337{
1338 fprintf_filtered (file, _("\
1339The directory where separate debug symbols are searched for is \"%s\".\n"),
1340 value);
1341}
5b5d99cf
JB
1342
1343#if ! defined (DEBUG_SUBDIRECTORY)
1344#define DEBUG_SUBDIRECTORY ".debug"
1345#endif
1346
9cce227f
TG
1347char *
1348find_separate_debug_file_by_debuglink (struct objfile *objfile)
1349{
1350 asection *sect;
1351 char *basename, *name_copy, *debugdir;
1352 char *dir = NULL;
1353 char *debugfile = NULL;
1354 char *canon_name = NULL;
1355 bfd_size_type debuglink_size;
1356 unsigned long crc32;
1357 int i;
5b5d99cf
JB
1358
1359 basename = get_debug_link_info (objfile, &crc32);
1360
1361 if (basename == NULL)
287ccc17
JK
1362 /* There's no separate debug info, hence there's no way we could
1363 load it => no warning. */
25522fae 1364 goto cleanup_return_debugfile;
5417f6dc 1365
5b5d99cf
JB
1366 dir = xstrdup (objfile->name);
1367
fe36c4f4
JB
1368 /* Strip off the final filename part, leaving the directory name,
1369 followed by a slash. Objfile names should always be absolute and
1370 tilde-expanded, so there should always be a slash in there
1371 somewhere. */
5b5d99cf
JB
1372 for (i = strlen(dir) - 1; i >= 0; i--)
1373 {
1374 if (IS_DIR_SEPARATOR (dir[i]))
1375 break;
1376 }
fe36c4f4 1377 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
5b5d99cf 1378 dir[i+1] = '\0';
5417f6dc 1379
1ffa32ee
JK
1380 /* Set I to max (strlen (canon_name), strlen (dir)). */
1381 canon_name = lrealpath (dir);
1382 i = strlen (dir);
1383 if (canon_name && strlen (canon_name) > i)
1384 i = strlen (canon_name);
1385
25522fae
JK
1386 debugfile = xmalloc (strlen (debug_file_directory) + 1
1387 + i
1388 + strlen (DEBUG_SUBDIRECTORY)
1389 + strlen ("/")
1390 + strlen (basename)
1391 + 1);
5b5d99cf
JB
1392
1393 /* First try in the same directory as the original file. */
1394 strcpy (debugfile, dir);
1395 strcat (debugfile, basename);
1396
32a0e547 1397 if (separate_debug_file_exists (debugfile, crc32, objfile))
25522fae 1398 goto cleanup_return_debugfile;
5417f6dc 1399
5b5d99cf
JB
1400 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1401 strcpy (debugfile, dir);
1402 strcat (debugfile, DEBUG_SUBDIRECTORY);
1403 strcat (debugfile, "/");
1404 strcat (debugfile, basename);
1405
32a0e547 1406 if (separate_debug_file_exists (debugfile, crc32, objfile))
25522fae 1407 goto cleanup_return_debugfile;
5417f6dc 1408
24ddea62
JK
1409 /* Then try in the global debugfile directories.
1410
1411 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1412 cause "/..." lookups. */
5417f6dc 1413
24ddea62
JK
1414 debugdir = debug_file_directory;
1415 do
aa28a74e 1416 {
24ddea62
JK
1417 char *debugdir_end;
1418
1419 while (*debugdir == DIRNAME_SEPARATOR)
1420 debugdir++;
1421
1422 debugdir_end = strchr (debugdir, DIRNAME_SEPARATOR);
1423 if (debugdir_end == NULL)
1424 debugdir_end = &debugdir[strlen (debugdir)];
1425
1426 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1427 debugfile[debugdir_end - debugdir] = 0;
aa28a74e 1428 strcat (debugfile, "/");
24ddea62 1429 strcat (debugfile, dir);
aa28a74e
DJ
1430 strcat (debugfile, basename);
1431
32a0e547 1432 if (separate_debug_file_exists (debugfile, crc32, objfile))
25522fae 1433 goto cleanup_return_debugfile;
24ddea62
JK
1434
1435 /* If the file is in the sysroot, try using its base path in the
1436 global debugfile directory. */
1437 if (canon_name
1438 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1439 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1440 {
1441 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1442 debugfile[debugdir_end - debugdir] = 0;
1443 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1444 strcat (debugfile, "/");
1445 strcat (debugfile, basename);
1446
32a0e547 1447 if (separate_debug_file_exists (debugfile, crc32, objfile))
24ddea62
JK
1448 goto cleanup_return_debugfile;
1449 }
1450
1451 debugdir = debugdir_end;
aa28a74e 1452 }
24ddea62 1453 while (*debugdir != 0);
aa28a74e 1454
25522fae
JK
1455 xfree (debugfile);
1456 debugfile = NULL;
aa28a74e 1457
25522fae
JK
1458cleanup_return_debugfile:
1459 xfree (canon_name);
5b5d99cf
JB
1460 xfree (basename);
1461 xfree (dir);
25522fae 1462 return debugfile;
5b5d99cf
JB
1463}
1464
1465
c906108c
SS
1466/* This is the symbol-file command. Read the file, analyze its
1467 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1468 the command is rather bizarre:
1469
1470 1. The function buildargv implements various quoting conventions
1471 which are undocumented and have little or nothing in common with
1472 the way things are quoted (or not quoted) elsewhere in GDB.
1473
1474 2. Options are used, which are not generally used in GDB (perhaps
1475 "set mapped on", "set readnow on" would be better)
1476
1477 3. The order of options matters, which is contrary to GNU
c906108c
SS
1478 conventions (because it is confusing and inconvenient). */
1479
1480void
fba45db2 1481symbol_file_command (char *args, int from_tty)
c906108c 1482{
c906108c
SS
1483 dont_repeat ();
1484
1485 if (args == NULL)
1486 {
1adeb98a 1487 symbol_file_clear (from_tty);
c906108c
SS
1488 }
1489 else
1490 {
d1a41061 1491 char **argv = gdb_buildargv (args);
cb2f3a29
MK
1492 int flags = OBJF_USERLOADED;
1493 struct cleanup *cleanups;
1494 char *name = NULL;
1495
7a292a7a 1496 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1497 while (*argv != NULL)
1498 {
78a4a9b9
AC
1499 if (strcmp (*argv, "-readnow") == 0)
1500 flags |= OBJF_READNOW;
1501 else if (**argv == '-')
8a3fe4f8 1502 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1503 else
1504 {
cb2f3a29 1505 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1506 name = *argv;
78a4a9b9 1507 }
cb2f3a29 1508
c906108c
SS
1509 argv++;
1510 }
1511
1512 if (name == NULL)
cb2f3a29
MK
1513 error (_("no symbol file name was specified"));
1514
c906108c
SS
1515 do_cleanups (cleanups);
1516 }
1517}
1518
1519/* Set the initial language.
1520
cb2f3a29
MK
1521 FIXME: A better solution would be to record the language in the
1522 psymtab when reading partial symbols, and then use it (if known) to
1523 set the language. This would be a win for formats that encode the
1524 language in an easily discoverable place, such as DWARF. For
1525 stabs, we can jump through hoops looking for specially named
1526 symbols or try to intuit the language from the specific type of
1527 stabs we find, but we can't do that until later when we read in
1528 full symbols. */
c906108c 1529
8b60591b 1530void
fba45db2 1531set_initial_language (void)
c906108c 1532{
ccefe4c4 1533 char *filename;
c5aa993b 1534 enum language lang = language_unknown;
c906108c 1535
ccefe4c4
TT
1536 filename = find_main_filename ();
1537 if (filename != NULL)
1538 lang = deduce_language_from_filename (filename);
cb2f3a29 1539
ccefe4c4
TT
1540 if (lang == language_unknown)
1541 {
1542 /* Make C the default language */
1543 lang = language_c;
c906108c 1544 }
ccefe4c4
TT
1545
1546 set_language (lang);
1547 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1548}
1549
874f5765
TG
1550/* If NAME is a remote name open the file using remote protocol, otherwise
1551 open it normally. */
1552
1553bfd *
1554bfd_open_maybe_remote (const char *name)
1555{
1556 if (remote_filename_p (name))
1557 return remote_bfd_open (name, gnutarget);
1558 else
1559 return bfd_openr (name, gnutarget);
1560}
1561
1562
cb2f3a29
MK
1563/* Open the file specified by NAME and hand it off to BFD for
1564 preliminary analysis. Return a newly initialized bfd *, which
1565 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1566 absolute). In case of trouble, error() is called. */
c906108c
SS
1567
1568bfd *
fba45db2 1569symfile_bfd_open (char *name)
c906108c
SS
1570{
1571 bfd *sym_bfd;
1572 int desc;
1573 char *absolute_name;
1574
f1838a98
UW
1575 if (remote_filename_p (name))
1576 {
1577 name = xstrdup (name);
1578 sym_bfd = remote_bfd_open (name, gnutarget);
1579 if (!sym_bfd)
1580 {
1581 make_cleanup (xfree, name);
1582 error (_("`%s': can't open to read symbols: %s."), name,
1583 bfd_errmsg (bfd_get_error ()));
1584 }
1585
1586 if (!bfd_check_format (sym_bfd, bfd_object))
1587 {
1588 bfd_close (sym_bfd);
1589 make_cleanup (xfree, name);
1590 error (_("`%s': can't read symbols: %s."), name,
1591 bfd_errmsg (bfd_get_error ()));
1592 }
1593
1594 return sym_bfd;
1595 }
1596
cb2f3a29 1597 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c
SS
1598
1599 /* Look down path for it, allocate 2nd new malloc'd copy. */
cb2f3a29 1600 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
fbdebf46 1601 O_RDONLY | O_BINARY, &absolute_name);
608506ed 1602#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1603 if (desc < 0)
1604 {
1605 char *exename = alloca (strlen (name) + 5);
1606 strcat (strcpy (exename, name), ".exe");
014d698b 1607 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
fbdebf46 1608 O_RDONLY | O_BINARY, &absolute_name);
c906108c
SS
1609 }
1610#endif
1611 if (desc < 0)
1612 {
b8c9b27d 1613 make_cleanup (xfree, name);
c906108c
SS
1614 perror_with_name (name);
1615 }
cb2f3a29
MK
1616
1617 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1618 bfd. It'll be freed in free_objfile(). */
1619 xfree (name);
1620 name = absolute_name;
c906108c 1621
9f76c2cd 1622 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
c906108c
SS
1623 if (!sym_bfd)
1624 {
1625 close (desc);
b8c9b27d 1626 make_cleanup (xfree, name);
f1838a98 1627 error (_("`%s': can't open to read symbols: %s."), name,
c906108c
SS
1628 bfd_errmsg (bfd_get_error ()));
1629 }
549c1eea 1630 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1631
1632 if (!bfd_check_format (sym_bfd, bfd_object))
1633 {
cb2f3a29
MK
1634 /* FIXME: should be checking for errors from bfd_close (for one
1635 thing, on error it does not free all the storage associated
1636 with the bfd). */
1637 bfd_close (sym_bfd); /* This also closes desc. */
b8c9b27d 1638 make_cleanup (xfree, name);
f1838a98 1639 error (_("`%s': can't read symbols: %s."), name,
c906108c
SS
1640 bfd_errmsg (bfd_get_error ()));
1641 }
cb2f3a29 1642
4f6f9936
JK
1643 /* bfd_usrdata exists for applications and libbfd must not touch it. */
1644 gdb_assert (bfd_usrdata (sym_bfd) == NULL);
1645
cb2f3a29 1646 return sym_bfd;
c906108c
SS
1647}
1648
cb2f3a29
MK
1649/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1650 the section was not found. */
1651
0e931cf0
JB
1652int
1653get_section_index (struct objfile *objfile, char *section_name)
1654{
1655 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1656
0e931cf0
JB
1657 if (sect)
1658 return sect->index;
1659 else
1660 return -1;
1661}
1662
cb2f3a29
MK
1663/* Link SF into the global symtab_fns list. Called on startup by the
1664 _initialize routine in each object file format reader, to register
1665 information about each format the the reader is prepared to
1666 handle. */
c906108c
SS
1667
1668void
fba45db2 1669add_symtab_fns (struct sym_fns *sf)
c906108c
SS
1670{
1671 sf->next = symtab_fns;
1672 symtab_fns = sf;
1673}
1674
cb2f3a29
MK
1675/* Initialize OBJFILE to read symbols from its associated BFD. It
1676 either returns or calls error(). The result is an initialized
1677 struct sym_fns in the objfile structure, that contains cached
1678 information about the symbol file. */
c906108c 1679
31d99776
DJ
1680static struct sym_fns *
1681find_sym_fns (bfd *abfd)
c906108c
SS
1682{
1683 struct sym_fns *sf;
31d99776 1684 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
c906108c 1685
75245b24
MS
1686 if (our_flavour == bfd_target_srec_flavour
1687 || our_flavour == bfd_target_ihex_flavour
1688 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1689 return NULL; /* No symbols. */
75245b24 1690
c5aa993b 1691 for (sf = symtab_fns; sf != NULL; sf = sf->next)
31d99776
DJ
1692 if (our_flavour == sf->sym_flavour)
1693 return sf;
cb2f3a29 1694
8a3fe4f8 1695 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1696 bfd_get_target (abfd));
c906108c
SS
1697}
1698\f
cb2f3a29 1699
c906108c
SS
1700/* This function runs the load command of our current target. */
1701
1702static void
fba45db2 1703load_command (char *arg, int from_tty)
c906108c 1704{
4487aabf
PA
1705 /* The user might be reloading because the binary has changed. Take
1706 this opportunity to check. */
1707 reopen_exec_file ();
1708 reread_symbols ();
1709
c906108c 1710 if (arg == NULL)
1986bccd
AS
1711 {
1712 char *parg;
1713 int count = 0;
1714
1715 parg = arg = get_exec_file (1);
1716
1717 /* Count how many \ " ' tab space there are in the name. */
1718 while ((parg = strpbrk (parg, "\\\"'\t ")))
1719 {
1720 parg++;
1721 count++;
1722 }
1723
1724 if (count)
1725 {
1726 /* We need to quote this string so buildargv can pull it apart. */
1727 char *temp = xmalloc (strlen (arg) + count + 1 );
1728 char *ptemp = temp;
1729 char *prev;
1730
1731 make_cleanup (xfree, temp);
1732
1733 prev = parg = arg;
1734 while ((parg = strpbrk (parg, "\\\"'\t ")))
1735 {
1736 strncpy (ptemp, prev, parg - prev);
1737 ptemp += parg - prev;
1738 prev = parg++;
1739 *ptemp++ = '\\';
1740 }
1741 strcpy (ptemp, prev);
1742
1743 arg = temp;
1744 }
1745 }
1746
c906108c 1747 target_load (arg, from_tty);
2889e661
JB
1748
1749 /* After re-loading the executable, we don't really know which
1750 overlays are mapped any more. */
1751 overlay_cache_invalid = 1;
c906108c
SS
1752}
1753
1754/* This version of "load" should be usable for any target. Currently
1755 it is just used for remote targets, not inftarg.c or core files,
1756 on the theory that only in that case is it useful.
1757
1758 Avoiding xmodem and the like seems like a win (a) because we don't have
1759 to worry about finding it, and (b) On VMS, fork() is very slow and so
1760 we don't want to run a subprocess. On the other hand, I'm not sure how
1761 performance compares. */
917317f4 1762
917317f4
JM
1763static int validate_download = 0;
1764
e4f9b4d5
MS
1765/* Callback service function for generic_load (bfd_map_over_sections). */
1766
1767static void
1768add_section_size_callback (bfd *abfd, asection *asec, void *data)
1769{
1770 bfd_size_type *sum = data;
1771
2c500098 1772 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1773}
1774
1775/* Opaque data for load_section_callback. */
1776struct load_section_data {
1777 unsigned long load_offset;
a76d924d
DJ
1778 struct load_progress_data *progress_data;
1779 VEC(memory_write_request_s) *requests;
1780};
1781
1782/* Opaque data for load_progress. */
1783struct load_progress_data {
1784 /* Cumulative data. */
e4f9b4d5
MS
1785 unsigned long write_count;
1786 unsigned long data_count;
1787 bfd_size_type total_size;
a76d924d
DJ
1788};
1789
1790/* Opaque data for load_progress for a single section. */
1791struct load_progress_section_data {
1792 struct load_progress_data *cumulative;
cf7a04e8 1793
a76d924d 1794 /* Per-section data. */
cf7a04e8
DJ
1795 const char *section_name;
1796 ULONGEST section_sent;
1797 ULONGEST section_size;
1798 CORE_ADDR lma;
1799 gdb_byte *buffer;
e4f9b4d5
MS
1800};
1801
a76d924d 1802/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1803
1804static void
1805load_progress (ULONGEST bytes, void *untyped_arg)
1806{
a76d924d
DJ
1807 struct load_progress_section_data *args = untyped_arg;
1808 struct load_progress_data *totals;
1809
1810 if (args == NULL)
1811 /* Writing padding data. No easy way to get at the cumulative
1812 stats, so just ignore this. */
1813 return;
1814
1815 totals = args->cumulative;
1816
1817 if (bytes == 0 && args->section_sent == 0)
1818 {
1819 /* The write is just starting. Let the user know we've started
1820 this section. */
5af949e3
UW
1821 ui_out_message (uiout, 0, "Loading section %s, size %s lma %s\n",
1822 args->section_name, hex_string (args->section_size),
1823 paddress (target_gdbarch, args->lma));
a76d924d
DJ
1824 return;
1825 }
cf7a04e8
DJ
1826
1827 if (validate_download)
1828 {
1829 /* Broken memories and broken monitors manifest themselves here
1830 when bring new computers to life. This doubles already slow
1831 downloads. */
1832 /* NOTE: cagney/1999-10-18: A more efficient implementation
1833 might add a verify_memory() method to the target vector and
1834 then use that. remote.c could implement that method using
1835 the ``qCRC'' packet. */
1836 gdb_byte *check = xmalloc (bytes);
1837 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1838
1839 if (target_read_memory (args->lma, check, bytes) != 0)
5af949e3
UW
1840 error (_("Download verify read failed at %s"),
1841 paddress (target_gdbarch, args->lma));
cf7a04e8 1842 if (memcmp (args->buffer, check, bytes) != 0)
5af949e3
UW
1843 error (_("Download verify compare failed at %s"),
1844 paddress (target_gdbarch, args->lma));
cf7a04e8
DJ
1845 do_cleanups (verify_cleanups);
1846 }
a76d924d 1847 totals->data_count += bytes;
cf7a04e8
DJ
1848 args->lma += bytes;
1849 args->buffer += bytes;
a76d924d 1850 totals->write_count += 1;
cf7a04e8
DJ
1851 args->section_sent += bytes;
1852 if (quit_flag
1853 || (deprecated_ui_load_progress_hook != NULL
1854 && deprecated_ui_load_progress_hook (args->section_name,
1855 args->section_sent)))
1856 error (_("Canceled the download"));
1857
1858 if (deprecated_show_load_progress != NULL)
1859 deprecated_show_load_progress (args->section_name,
1860 args->section_sent,
1861 args->section_size,
a76d924d
DJ
1862 totals->data_count,
1863 totals->total_size);
cf7a04e8
DJ
1864}
1865
e4f9b4d5
MS
1866/* Callback service function for generic_load (bfd_map_over_sections). */
1867
1868static void
1869load_section_callback (bfd *abfd, asection *asec, void *data)
1870{
a76d924d 1871 struct memory_write_request *new_request;
e4f9b4d5 1872 struct load_section_data *args = data;
a76d924d 1873 struct load_progress_section_data *section_data;
cf7a04e8
DJ
1874 bfd_size_type size = bfd_get_section_size (asec);
1875 gdb_byte *buffer;
cf7a04e8 1876 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 1877
cf7a04e8
DJ
1878 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1879 return;
e4f9b4d5 1880
cf7a04e8
DJ
1881 if (size == 0)
1882 return;
e4f9b4d5 1883
a76d924d
DJ
1884 new_request = VEC_safe_push (memory_write_request_s,
1885 args->requests, NULL);
1886 memset (new_request, 0, sizeof (struct memory_write_request));
1887 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1888 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1889 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1890 new_request->data = xmalloc (size);
1891 new_request->baton = section_data;
cf7a04e8 1892
a76d924d 1893 buffer = new_request->data;
cf7a04e8 1894
a76d924d
DJ
1895 section_data->cumulative = args->progress_data;
1896 section_data->section_name = sect_name;
1897 section_data->section_size = size;
1898 section_data->lma = new_request->begin;
1899 section_data->buffer = buffer;
cf7a04e8
DJ
1900
1901 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
1902}
1903
1904/* Clean up an entire memory request vector, including load
1905 data and progress records. */
cf7a04e8 1906
a76d924d
DJ
1907static void
1908clear_memory_write_data (void *arg)
1909{
1910 VEC(memory_write_request_s) **vec_p = arg;
1911 VEC(memory_write_request_s) *vec = *vec_p;
1912 int i;
1913 struct memory_write_request *mr;
cf7a04e8 1914
a76d924d
DJ
1915 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1916 {
1917 xfree (mr->data);
1918 xfree (mr->baton);
1919 }
1920 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
1921}
1922
c906108c 1923void
917317f4 1924generic_load (char *args, int from_tty)
c906108c 1925{
c906108c 1926 bfd *loadfile_bfd;
2b71414d 1927 struct timeval start_time, end_time;
917317f4 1928 char *filename;
1986bccd 1929 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 1930 struct load_section_data cbdata;
a76d924d
DJ
1931 struct load_progress_data total_progress;
1932
e4f9b4d5 1933 CORE_ADDR entry;
1986bccd 1934 char **argv;
e4f9b4d5 1935
a76d924d
DJ
1936 memset (&cbdata, 0, sizeof (cbdata));
1937 memset (&total_progress, 0, sizeof (total_progress));
1938 cbdata.progress_data = &total_progress;
1939
1940 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 1941
d1a41061
PP
1942 if (args == NULL)
1943 error_no_arg (_("file to load"));
1986bccd 1944
d1a41061 1945 argv = gdb_buildargv (args);
1986bccd
AS
1946 make_cleanup_freeargv (argv);
1947
1948 filename = tilde_expand (argv[0]);
1949 make_cleanup (xfree, filename);
1950
1951 if (argv[1] != NULL)
917317f4
JM
1952 {
1953 char *endptr;
ba5f2f8a 1954
1986bccd
AS
1955 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1956
1957 /* If the last word was not a valid number then
1958 treat it as a file name with spaces in. */
1959 if (argv[1] == endptr)
1960 error (_("Invalid download offset:%s."), argv[1]);
1961
1962 if (argv[2] != NULL)
1963 error (_("Too many parameters."));
917317f4 1964 }
c906108c 1965
917317f4 1966 /* Open the file for loading. */
c906108c
SS
1967 loadfile_bfd = bfd_openr (filename, gnutarget);
1968 if (loadfile_bfd == NULL)
1969 {
1970 perror_with_name (filename);
1971 return;
1972 }
917317f4 1973
c906108c
SS
1974 /* FIXME: should be checking for errors from bfd_close (for one thing,
1975 on error it does not free all the storage associated with the
1976 bfd). */
5c65bbb6 1977 make_cleanup_bfd_close (loadfile_bfd);
c906108c 1978
c5aa993b 1979 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 1980 {
8a3fe4f8 1981 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
1982 bfd_errmsg (bfd_get_error ()));
1983 }
c5aa993b 1984
5417f6dc 1985 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
1986 (void *) &total_progress.total_size);
1987
1988 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 1989
2b71414d 1990 gettimeofday (&start_time, NULL);
c906108c 1991
a76d924d
DJ
1992 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1993 load_progress) != 0)
1994 error (_("Load failed"));
c906108c 1995
2b71414d 1996 gettimeofday (&end_time, NULL);
ba5f2f8a 1997
e4f9b4d5 1998 entry = bfd_get_start_address (loadfile_bfd);
e4f9b4d5 1999 ui_out_text (uiout, "Start address ");
5af949e3 2000 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
e4f9b4d5 2001 ui_out_text (uiout, ", load size ");
a76d924d 2002 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 2003 ui_out_text (uiout, "\n");
e4f9b4d5
MS
2004 /* We were doing this in remote-mips.c, I suspect it is right
2005 for other targets too. */
fb14de7b 2006 regcache_write_pc (get_current_regcache (), entry);
c906108c 2007
38963c97
DJ
2008 /* Reset breakpoints, now that we have changed the load image. For
2009 instance, breakpoints may have been set (or reset, by
2010 post_create_inferior) while connected to the target but before we
2011 loaded the program. In that case, the prologue analyzer could
2012 have read instructions from the target to find the right
2013 breakpoint locations. Loading has changed the contents of that
2014 memory. */
2015
2016 breakpoint_re_set ();
2017
7ca9f392
AC
2018 /* FIXME: are we supposed to call symbol_file_add or not? According
2019 to a comment from remote-mips.c (where a call to symbol_file_add
2020 was commented out), making the call confuses GDB if more than one
2021 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 2022 others don't (or didn't - perhaps they have all been deleted). */
c906108c 2023
a76d924d
DJ
2024 print_transfer_performance (gdb_stdout, total_progress.data_count,
2025 total_progress.write_count,
2026 &start_time, &end_time);
c906108c
SS
2027
2028 do_cleanups (old_cleanups);
2029}
2030
2031/* Report how fast the transfer went. */
2032
917317f4
JM
2033/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2034 replaced by print_transfer_performance (with a very different
2035 function signature). */
2036
c906108c 2037void
fba45db2
KB
2038report_transfer_performance (unsigned long data_count, time_t start_time,
2039 time_t end_time)
c906108c 2040{
2b71414d
DJ
2041 struct timeval start, end;
2042
2043 start.tv_sec = start_time;
2044 start.tv_usec = 0;
2045 end.tv_sec = end_time;
2046 end.tv_usec = 0;
2047
2048 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
917317f4
JM
2049}
2050
2051void
d9fcf2fb 2052print_transfer_performance (struct ui_file *stream,
917317f4
JM
2053 unsigned long data_count,
2054 unsigned long write_count,
2b71414d
DJ
2055 const struct timeval *start_time,
2056 const struct timeval *end_time)
917317f4 2057{
9f43d28c 2058 ULONGEST time_count;
2b71414d
DJ
2059
2060 /* Compute the elapsed time in milliseconds, as a tradeoff between
2061 accuracy and overflow. */
2062 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2063 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2064
8b93c638
JM
2065 ui_out_text (uiout, "Transfer rate: ");
2066 if (time_count > 0)
2067 {
9f43d28c
DJ
2068 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2069
2070 if (ui_out_is_mi_like_p (uiout))
2071 {
2072 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2073 ui_out_text (uiout, " bits/sec");
2074 }
2075 else if (rate < 1024)
2076 {
2077 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2078 ui_out_text (uiout, " bytes/sec");
2079 }
2080 else
2081 {
2082 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2083 ui_out_text (uiout, " KB/sec");
2084 }
8b93c638
JM
2085 }
2086 else
2087 {
ba5f2f8a 2088 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 2089 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
2090 }
2091 if (write_count > 0)
2092 {
2093 ui_out_text (uiout, ", ");
ba5f2f8a 2094 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
2095 ui_out_text (uiout, " bytes/write");
2096 }
2097 ui_out_text (uiout, ".\n");
c906108c
SS
2098}
2099
2100/* This function allows the addition of incrementally linked object files.
2101 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2102/* Note: ezannoni 2000-04-13 This function/command used to have a
2103 special case syntax for the rombug target (Rombug is the boot
2104 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2105 rombug case, the user doesn't need to supply a text address,
2106 instead a call to target_link() (in target.c) would supply the
2107 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2108
c906108c 2109static void
fba45db2 2110add_symbol_file_command (char *args, int from_tty)
c906108c 2111{
5af949e3 2112 struct gdbarch *gdbarch = get_current_arch ();
db162d44 2113 char *filename = NULL;
2df3850c 2114 int flags = OBJF_USERLOADED;
c906108c 2115 char *arg;
2acceee2 2116 int expecting_option = 0;
db162d44 2117 int section_index = 0;
2acceee2
JM
2118 int argcnt = 0;
2119 int sec_num = 0;
2120 int i;
db162d44
EZ
2121 int expecting_sec_name = 0;
2122 int expecting_sec_addr = 0;
5b96932b 2123 char **argv;
db162d44 2124
a39a16c4 2125 struct sect_opt
2acceee2 2126 {
2acceee2
JM
2127 char *name;
2128 char *value;
a39a16c4 2129 };
db162d44 2130
a39a16c4
MM
2131 struct section_addr_info *section_addrs;
2132 struct sect_opt *sect_opts = NULL;
2133 size_t num_sect_opts = 0;
3017564a 2134 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2135
a39a16c4 2136 num_sect_opts = 16;
5417f6dc 2137 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
2138 * sizeof (struct sect_opt));
2139
c906108c
SS
2140 dont_repeat ();
2141
2142 if (args == NULL)
8a3fe4f8 2143 error (_("add-symbol-file takes a file name and an address"));
c906108c 2144
d1a41061 2145 argv = gdb_buildargv (args);
5b96932b 2146 make_cleanup_freeargv (argv);
db162d44 2147
5b96932b
AS
2148 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2149 {
2150 /* Process the argument. */
db162d44 2151 if (argcnt == 0)
c906108c 2152 {
db162d44
EZ
2153 /* The first argument is the file name. */
2154 filename = tilde_expand (arg);
3017564a 2155 make_cleanup (xfree, filename);
c906108c 2156 }
db162d44 2157 else
7a78ae4e
ND
2158 if (argcnt == 1)
2159 {
2160 /* The second argument is always the text address at which
2161 to load the program. */
2162 sect_opts[section_index].name = ".text";
2163 sect_opts[section_index].value = arg;
f414f22f 2164 if (++section_index >= num_sect_opts)
a39a16c4
MM
2165 {
2166 num_sect_opts *= 2;
5417f6dc 2167 sect_opts = ((struct sect_opt *)
a39a16c4 2168 xrealloc (sect_opts,
5417f6dc 2169 num_sect_opts
a39a16c4
MM
2170 * sizeof (struct sect_opt)));
2171 }
7a78ae4e
ND
2172 }
2173 else
2174 {
2175 /* It's an option (starting with '-') or it's an argument
2176 to an option */
2177
2178 if (*arg == '-')
2179 {
78a4a9b9
AC
2180 if (strcmp (arg, "-readnow") == 0)
2181 flags |= OBJF_READNOW;
2182 else if (strcmp (arg, "-s") == 0)
2183 {
2184 expecting_sec_name = 1;
2185 expecting_sec_addr = 1;
2186 }
7a78ae4e
ND
2187 }
2188 else
2189 {
2190 if (expecting_sec_name)
db162d44 2191 {
7a78ae4e
ND
2192 sect_opts[section_index].name = arg;
2193 expecting_sec_name = 0;
db162d44
EZ
2194 }
2195 else
7a78ae4e
ND
2196 if (expecting_sec_addr)
2197 {
2198 sect_opts[section_index].value = arg;
2199 expecting_sec_addr = 0;
f414f22f 2200 if (++section_index >= num_sect_opts)
a39a16c4
MM
2201 {
2202 num_sect_opts *= 2;
5417f6dc 2203 sect_opts = ((struct sect_opt *)
a39a16c4 2204 xrealloc (sect_opts,
5417f6dc 2205 num_sect_opts
a39a16c4
MM
2206 * sizeof (struct sect_opt)));
2207 }
7a78ae4e
ND
2208 }
2209 else
8a3fe4f8 2210 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
7a78ae4e
ND
2211 }
2212 }
c906108c 2213 }
c906108c 2214
927890d0
JB
2215 /* This command takes at least two arguments. The first one is a
2216 filename, and the second is the address where this file has been
2217 loaded. Abort now if this address hasn't been provided by the
2218 user. */
2219 if (section_index < 1)
2220 error (_("The address where %s has been loaded is missing"), filename);
2221
db162d44
EZ
2222 /* Print the prompt for the query below. And save the arguments into
2223 a sect_addr_info structure to be passed around to other
2224 functions. We have to split this up into separate print
bb599908 2225 statements because hex_string returns a local static
db162d44 2226 string. */
5417f6dc 2227
a3f17187 2228 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2229 section_addrs = alloc_section_addr_info (section_index);
2230 make_cleanup (xfree, section_addrs);
db162d44 2231 for (i = 0; i < section_index; i++)
c906108c 2232 {
db162d44
EZ
2233 CORE_ADDR addr;
2234 char *val = sect_opts[i].value;
2235 char *sec = sect_opts[i].name;
5417f6dc 2236
ae822768 2237 addr = parse_and_eval_address (val);
db162d44 2238
db162d44
EZ
2239 /* Here we store the section offsets in the order they were
2240 entered on the command line. */
a39a16c4
MM
2241 section_addrs->other[sec_num].name = sec;
2242 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2243 printf_unfiltered ("\t%s_addr = %s\n", sec,
2244 paddress (gdbarch, addr));
db162d44
EZ
2245 sec_num++;
2246
5417f6dc 2247 /* The object's sections are initialized when a
db162d44 2248 call is made to build_objfile_section_table (objfile).
5417f6dc 2249 This happens in reread_symbols.
db162d44
EZ
2250 At this point, we don't know what file type this is,
2251 so we can't determine what section names are valid. */
2acceee2 2252 }
db162d44 2253
2acceee2 2254 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2255 error (_("Not confirmed."));
c906108c 2256
7eedccfa
PP
2257 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2258 section_addrs, flags);
c906108c
SS
2259
2260 /* Getting new symbols may change our opinion about what is
2261 frameless. */
2262 reinit_frame_cache ();
db162d44 2263 do_cleanups (my_cleanups);
c906108c
SS
2264}
2265\f
70992597 2266
c906108c
SS
2267/* Re-read symbols if a symbol-file has changed. */
2268void
fba45db2 2269reread_symbols (void)
c906108c
SS
2270{
2271 struct objfile *objfile;
2272 long new_modtime;
2273 int reread_one = 0;
2274 struct stat new_statbuf;
2275 int res;
2276
2277 /* With the addition of shared libraries, this should be modified,
2278 the load time should be saved in the partial symbol tables, since
2279 different tables may come from different source files. FIXME.
2280 This routine should then walk down each partial symbol table
2281 and see if the symbol table that it originates from has been changed */
2282
c5aa993b
JM
2283 for (objfile = object_files; objfile; objfile = objfile->next)
2284 {
9cce227f
TG
2285 /* solib-sunos.c creates one objfile with obfd. */
2286 if (objfile->obfd == NULL)
2287 continue;
2288
2289 /* Separate debug objfiles are handled in the main objfile. */
2290 if (objfile->separate_debug_objfile_backlink)
2291 continue;
2292
02aeec7b
JB
2293 /* If this object is from an archive (what you usually create with
2294 `ar', often called a `static library' on most systems, though
2295 a `shared library' on AIX is also an archive), then you should
2296 stat on the archive name, not member name. */
9cce227f
TG
2297 if (objfile->obfd->my_archive)
2298 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2299 else
9cce227f
TG
2300 res = stat (objfile->name, &new_statbuf);
2301 if (res != 0)
2302 {
2303 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2304 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2305 objfile->name);
2306 continue;
2307 }
2308 new_modtime = new_statbuf.st_mtime;
2309 if (new_modtime != objfile->mtime)
2310 {
2311 struct cleanup *old_cleanups;
2312 struct section_offsets *offsets;
2313 int num_offsets;
2314 char *obfd_filename;
2315
2316 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2317 objfile->name);
2318
2319 /* There are various functions like symbol_file_add,
2320 symfile_bfd_open, syms_from_objfile, etc., which might
2321 appear to do what we want. But they have various other
2322 effects which we *don't* want. So we just do stuff
2323 ourselves. We don't worry about mapped files (for one thing,
2324 any mapped file will be out of date). */
2325
2326 /* If we get an error, blow away this objfile (not sure if
2327 that is the correct response for things like shared
2328 libraries). */
2329 old_cleanups = make_cleanup_free_objfile (objfile);
2330 /* We need to do this whenever any symbols go away. */
2331 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2332
2333 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2334 bfd_get_filename (exec_bfd)) == 0)
2335 {
2336 /* Reload EXEC_BFD without asking anything. */
2337
2338 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2339 }
2340
2341 /* Clean up any state BFD has sitting around. We don't need
2342 to close the descriptor but BFD lacks a way of closing the
2343 BFD without closing the descriptor. */
2344 obfd_filename = bfd_get_filename (objfile->obfd);
2345 if (!bfd_close (objfile->obfd))
2346 error (_("Can't close BFD for %s: %s"), objfile->name,
2347 bfd_errmsg (bfd_get_error ()));
874f5765 2348 objfile->obfd = bfd_open_maybe_remote (obfd_filename);
9cce227f
TG
2349 if (objfile->obfd == NULL)
2350 error (_("Can't open %s to read symbols."), objfile->name);
2351 else
2352 objfile->obfd = gdb_bfd_ref (objfile->obfd);
2353 /* bfd_openr sets cacheable to true, which is what we want. */
2354 if (!bfd_check_format (objfile->obfd, bfd_object))
2355 error (_("Can't read symbols from %s: %s."), objfile->name,
2356 bfd_errmsg (bfd_get_error ()));
2357
2358 /* Save the offsets, we will nuke them with the rest of the
2359 objfile_obstack. */
2360 num_offsets = objfile->num_sections;
2361 offsets = ((struct section_offsets *)
2362 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2363 memcpy (offsets, objfile->section_offsets,
2364 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2365
2366 /* Remove any references to this objfile in the global
2367 value lists. */
2368 preserve_values (objfile);
2369
2370 /* Nuke all the state that we will re-read. Much of the following
2371 code which sets things to NULL really is necessary to tell
2372 other parts of GDB that there is nothing currently there.
2373
2374 Try to keep the freeing order compatible with free_objfile. */
2375
2376 if (objfile->sf != NULL)
2377 {
2378 (*objfile->sf->sym_finish) (objfile);
2379 }
2380
2381 clear_objfile_data (objfile);
2382
15d123c9 2383 /* Free the separate debug objfiles. It will be
9cce227f 2384 automatically recreated by sym_read. */
15d123c9 2385 free_objfile_separate_debug (objfile);
9cce227f
TG
2386
2387 /* FIXME: Do we have to free a whole linked list, or is this
2388 enough? */
2389 if (objfile->global_psymbols.list)
2390 xfree (objfile->global_psymbols.list);
2391 memset (&objfile->global_psymbols, 0,
2392 sizeof (objfile->global_psymbols));
2393 if (objfile->static_psymbols.list)
2394 xfree (objfile->static_psymbols.list);
2395 memset (&objfile->static_psymbols, 0,
2396 sizeof (objfile->static_psymbols));
2397
2398 /* Free the obstacks for non-reusable objfiles */
2399 bcache_xfree (objfile->psymbol_cache);
2400 objfile->psymbol_cache = bcache_xmalloc ();
2401 bcache_xfree (objfile->macro_cache);
2402 objfile->macro_cache = bcache_xmalloc ();
2403 bcache_xfree (objfile->filename_cache);
2404 objfile->filename_cache = bcache_xmalloc ();
2405 if (objfile->demangled_names_hash != NULL)
2406 {
2407 htab_delete (objfile->demangled_names_hash);
2408 objfile->demangled_names_hash = NULL;
2409 }
2410 obstack_free (&objfile->objfile_obstack, 0);
2411 objfile->sections = NULL;
2412 objfile->symtabs = NULL;
2413 objfile->psymtabs = NULL;
2414 objfile->psymtabs_addrmap = NULL;
2415 objfile->free_psymtabs = NULL;
2416 objfile->cp_namespace_symtab = NULL;
2417 objfile->msymbols = NULL;
2418 objfile->deprecated_sym_private = NULL;
2419 objfile->minimal_symbol_count = 0;
2420 memset (&objfile->msymbol_hash, 0,
2421 sizeof (objfile->msymbol_hash));
2422 memset (&objfile->msymbol_demangled_hash, 0,
2423 sizeof (objfile->msymbol_demangled_hash));
2424
2425 objfile->psymbol_cache = bcache_xmalloc ();
2426 objfile->macro_cache = bcache_xmalloc ();
2427 objfile->filename_cache = bcache_xmalloc ();
2428 /* obstack_init also initializes the obstack so it is
2429 empty. We could use obstack_specify_allocation but
2430 gdb_obstack.h specifies the alloc/dealloc
2431 functions. */
2432 obstack_init (&objfile->objfile_obstack);
2433 if (build_objfile_section_table (objfile))
2434 {
2435 error (_("Can't find the file sections in `%s': %s"),
2436 objfile->name, bfd_errmsg (bfd_get_error ()));
2437 }
2438 terminate_minimal_symbol_table (objfile);
2439
2440 /* We use the same section offsets as from last time. I'm not
2441 sure whether that is always correct for shared libraries. */
2442 objfile->section_offsets = (struct section_offsets *)
2443 obstack_alloc (&objfile->objfile_obstack,
2444 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2445 memcpy (objfile->section_offsets, offsets,
2446 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2447 objfile->num_sections = num_offsets;
2448
2449 /* What the hell is sym_new_init for, anyway? The concept of
2450 distinguishing between the main file and additional files
2451 in this way seems rather dubious. */
2452 if (objfile == symfile_objfile)
c906108c 2453 {
9cce227f 2454 (*objfile->sf->sym_new_init) (objfile);
c906108c 2455 }
9cce227f
TG
2456
2457 (*objfile->sf->sym_init) (objfile);
2458 clear_complaints (&symfile_complaints, 1, 1);
2459 /* Do not set flags as this is safe and we don't want to be
2460 verbose. */
2461 (*objfile->sf->sym_read) (objfile, 0);
2462 if (!objfile_has_symbols (objfile))
c906108c 2463 {
9cce227f
TG
2464 wrap_here ("");
2465 printf_unfiltered (_("(no debugging symbols found)\n"));
2466 wrap_here ("");
c5aa993b 2467 }
9cce227f
TG
2468
2469 /* We're done reading the symbol file; finish off complaints. */
2470 clear_complaints (&symfile_complaints, 0, 1);
2471
2472 /* Getting new symbols may change our opinion about what is
2473 frameless. */
2474
2475 reinit_frame_cache ();
2476
2477 /* Discard cleanups as symbol reading was successful. */
2478 discard_cleanups (old_cleanups);
2479
2480 /* If the mtime has changed between the time we set new_modtime
2481 and now, we *want* this to be out of date, so don't call stat
2482 again now. */
2483 objfile->mtime = new_modtime;
2484 reread_one = 1;
2485 init_entry_point_info (objfile);
c906108c
SS
2486 }
2487 }
c906108c
SS
2488
2489 if (reread_one)
ea53e89f 2490 {
ff3536bc
UW
2491 /* Notify objfiles that we've modified objfile sections. */
2492 objfiles_changed ();
2493
ea53e89f
JB
2494 clear_symtab_users ();
2495 /* At least one objfile has changed, so we can consider that
2496 the executable we're debugging has changed too. */
781b42b0 2497 observer_notify_executable_changed ();
ea53e89f 2498 }
c906108c 2499}
c906108c
SS
2500\f
2501
c5aa993b
JM
2502
2503typedef struct
2504{
2505 char *ext;
c906108c 2506 enum language lang;
c5aa993b
JM
2507}
2508filename_language;
c906108c 2509
c5aa993b 2510static filename_language *filename_language_table;
c906108c
SS
2511static int fl_table_size, fl_table_next;
2512
2513static void
fba45db2 2514add_filename_language (char *ext, enum language lang)
c906108c
SS
2515{
2516 if (fl_table_next >= fl_table_size)
2517 {
2518 fl_table_size += 10;
5417f6dc 2519 filename_language_table =
25bf3106
PM
2520 xrealloc (filename_language_table,
2521 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2522 }
2523
4fcf66da 2524 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2525 filename_language_table[fl_table_next].lang = lang;
2526 fl_table_next++;
2527}
2528
2529static char *ext_args;
920d2a44
AC
2530static void
2531show_ext_args (struct ui_file *file, int from_tty,
2532 struct cmd_list_element *c, const char *value)
2533{
2534 fprintf_filtered (file, _("\
2535Mapping between filename extension and source language is \"%s\".\n"),
2536 value);
2537}
c906108c
SS
2538
2539static void
26c41df3 2540set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2541{
2542 int i;
2543 char *cp = ext_args;
2544 enum language lang;
2545
2546 /* First arg is filename extension, starting with '.' */
2547 if (*cp != '.')
8a3fe4f8 2548 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2549
2550 /* Find end of first arg. */
c5aa993b 2551 while (*cp && !isspace (*cp))
c906108c
SS
2552 cp++;
2553
2554 if (*cp == '\0')
8a3fe4f8 2555 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2556 ext_args);
2557
2558 /* Null-terminate first arg */
c5aa993b 2559 *cp++ = '\0';
c906108c
SS
2560
2561 /* Find beginning of second arg, which should be a source language. */
2562 while (*cp && isspace (*cp))
2563 cp++;
2564
2565 if (*cp == '\0')
8a3fe4f8 2566 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2567 ext_args);
2568
2569 /* Lookup the language from among those we know. */
2570 lang = language_enum (cp);
2571
2572 /* Now lookup the filename extension: do we already know it? */
2573 for (i = 0; i < fl_table_next; i++)
2574 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2575 break;
2576
2577 if (i >= fl_table_next)
2578 {
2579 /* new file extension */
2580 add_filename_language (ext_args, lang);
2581 }
2582 else
2583 {
2584 /* redefining a previously known filename extension */
2585
2586 /* if (from_tty) */
2587 /* query ("Really make files of type %s '%s'?", */
2588 /* ext_args, language_str (lang)); */
2589
b8c9b27d 2590 xfree (filename_language_table[i].ext);
4fcf66da 2591 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2592 filename_language_table[i].lang = lang;
2593 }
2594}
2595
2596static void
fba45db2 2597info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2598{
2599 int i;
2600
a3f17187 2601 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2602 printf_filtered ("\n\n");
2603 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2604 printf_filtered ("\t%s\t- %s\n",
2605 filename_language_table[i].ext,
c906108c
SS
2606 language_str (filename_language_table[i].lang));
2607}
2608
2609static void
fba45db2 2610init_filename_language_table (void)
c906108c
SS
2611{
2612 if (fl_table_size == 0) /* protect against repetition */
2613 {
2614 fl_table_size = 20;
2615 fl_table_next = 0;
c5aa993b 2616 filename_language_table =
c906108c 2617 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b
JM
2618 add_filename_language (".c", language_c);
2619 add_filename_language (".C", language_cplus);
2620 add_filename_language (".cc", language_cplus);
2621 add_filename_language (".cp", language_cplus);
2622 add_filename_language (".cpp", language_cplus);
2623 add_filename_language (".cxx", language_cplus);
2624 add_filename_language (".c++", language_cplus);
2625 add_filename_language (".java", language_java);
c906108c 2626 add_filename_language (".class", language_java);
da2cf7e0 2627 add_filename_language (".m", language_objc);
c5aa993b
JM
2628 add_filename_language (".f", language_fortran);
2629 add_filename_language (".F", language_fortran);
2630 add_filename_language (".s", language_asm);
aa707ed0 2631 add_filename_language (".sx", language_asm);
c5aa993b 2632 add_filename_language (".S", language_asm);
c6fd39cd
PM
2633 add_filename_language (".pas", language_pascal);
2634 add_filename_language (".p", language_pascal);
2635 add_filename_language (".pp", language_pascal);
963a6417
PH
2636 add_filename_language (".adb", language_ada);
2637 add_filename_language (".ads", language_ada);
2638 add_filename_language (".a", language_ada);
2639 add_filename_language (".ada", language_ada);
c906108c
SS
2640 }
2641}
2642
2643enum language
fba45db2 2644deduce_language_from_filename (char *filename)
c906108c
SS
2645{
2646 int i;
2647 char *cp;
2648
2649 if (filename != NULL)
2650 if ((cp = strrchr (filename, '.')) != NULL)
2651 for (i = 0; i < fl_table_next; i++)
2652 if (strcmp (cp, filename_language_table[i].ext) == 0)
2653 return filename_language_table[i].lang;
2654
2655 return language_unknown;
2656}
2657\f
2658/* allocate_symtab:
2659
2660 Allocate and partly initialize a new symbol table. Return a pointer
2661 to it. error() if no space.
2662
2663 Caller must set these fields:
c5aa993b
JM
2664 LINETABLE(symtab)
2665 symtab->blockvector
2666 symtab->dirname
2667 symtab->free_code
2668 symtab->free_ptr
c906108c
SS
2669 */
2670
2671struct symtab *
fba45db2 2672allocate_symtab (char *filename, struct objfile *objfile)
c906108c 2673{
52f0bd74 2674 struct symtab *symtab;
c906108c
SS
2675
2676 symtab = (struct symtab *)
4a146b47 2677 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2678 memset (symtab, 0, sizeof (*symtab));
10abe6bf
TT
2679 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2680 objfile->filename_cache);
c5aa993b
JM
2681 symtab->fullname = NULL;
2682 symtab->language = deduce_language_from_filename (filename);
1c9e8358 2683 symtab->debugformat = "unknown";
c906108c
SS
2684
2685 /* Hook it to the objfile it comes from */
2686
c5aa993b
JM
2687 symtab->objfile = objfile;
2688 symtab->next = objfile->symtabs;
2689 objfile->symtabs = symtab;
c906108c 2690
c906108c
SS
2691 return (symtab);
2692}
c906108c 2693\f
c5aa993b 2694
c906108c
SS
2695/* Reset all data structures in gdb which may contain references to symbol
2696 table data. */
2697
2698void
fba45db2 2699clear_symtab_users (void)
c906108c
SS
2700{
2701 /* Someday, we should do better than this, by only blowing away
2702 the things that really need to be blown. */
c0501be5
DJ
2703
2704 /* Clear the "current" symtab first, because it is no longer valid.
2705 breakpoint_re_set may try to access the current symtab. */
2706 clear_current_source_symtab_and_line ();
2707
c906108c 2708 clear_displays ();
c906108c 2709 breakpoint_re_set ();
6c95b8df 2710 set_default_breakpoint (0, NULL, 0, 0, 0);
c906108c 2711 clear_pc_function_cache ();
06d3b283 2712 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2713
2714 /* Clear globals which might have pointed into a removed objfile.
2715 FIXME: It's not clear which of these are supposed to persist
2716 between expressions and which ought to be reset each time. */
2717 expression_context_block = NULL;
2718 innermost_block = NULL;
8756216b
DP
2719
2720 /* Varobj may refer to old symbols, perform a cleanup. */
2721 varobj_invalidate ();
2722
c906108c
SS
2723}
2724
74b7792f
AC
2725static void
2726clear_symtab_users_cleanup (void *ignore)
2727{
2728 clear_symtab_users ();
2729}
c906108c 2730\f
c906108c
SS
2731/* OVERLAYS:
2732 The following code implements an abstraction for debugging overlay sections.
2733
2734 The target model is as follows:
2735 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2736 same VMA, each with its own unique LMA (or load address).
c906108c 2737 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2738 sections, one by one, from the load address into the VMA address.
5417f6dc 2739 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2740 sections should be considered to be mapped from the VMA to the LMA.
2741 This information is used for symbol lookup, and memory read/write.
5417f6dc 2742 For instance, if a section has been mapped then its contents
c5aa993b 2743 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2744
2745 Two levels of debugger support for overlays are available. One is
2746 "manual", in which the debugger relies on the user to tell it which
2747 overlays are currently mapped. This level of support is
2748 implemented entirely in the core debugger, and the information about
2749 whether a section is mapped is kept in the objfile->obj_section table.
2750
2751 The second level of support is "automatic", and is only available if
2752 the target-specific code provides functionality to read the target's
2753 overlay mapping table, and translate its contents for the debugger
2754 (by updating the mapped state information in the obj_section tables).
2755
2756 The interface is as follows:
c5aa993b
JM
2757 User commands:
2758 overlay map <name> -- tell gdb to consider this section mapped
2759 overlay unmap <name> -- tell gdb to consider this section unmapped
2760 overlay list -- list the sections that GDB thinks are mapped
2761 overlay read-target -- get the target's state of what's mapped
2762 overlay off/manual/auto -- set overlay debugging state
2763 Functional interface:
2764 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2765 section, return that section.
5417f6dc 2766 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 2767 the pc, either in its VMA or its LMA
714835d5 2768 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
2769 section_is_overlay(sect): true if section's VMA != LMA
2770 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2771 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2772 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2773 overlay_mapped_address(...): map an address from section's LMA to VMA
2774 overlay_unmapped_address(...): map an address from section's VMA to LMA
2775 symbol_overlayed_address(...): Return a "current" address for symbol:
2776 either in VMA or LMA depending on whether
2777 the symbol's section is currently mapped
c906108c
SS
2778 */
2779
2780/* Overlay debugging state: */
2781
d874f1e2 2782enum overlay_debugging_state overlay_debugging = ovly_off;
c906108c
SS
2783int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2784
c906108c 2785/* Function: section_is_overlay (SECTION)
5417f6dc 2786 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
2787 SECTION is loaded at an address different from where it will "run". */
2788
2789int
714835d5 2790section_is_overlay (struct obj_section *section)
c906108c 2791{
714835d5
UW
2792 if (overlay_debugging && section)
2793 {
2794 bfd *abfd = section->objfile->obfd;
2795 asection *bfd_section = section->the_bfd_section;
2796
2797 if (bfd_section_lma (abfd, bfd_section) != 0
2798 && bfd_section_lma (abfd, bfd_section)
2799 != bfd_section_vma (abfd, bfd_section))
2800 return 1;
2801 }
c906108c
SS
2802
2803 return 0;
2804}
2805
2806/* Function: overlay_invalidate_all (void)
2807 Invalidate the mapped state of all overlay sections (mark it as stale). */
2808
2809static void
fba45db2 2810overlay_invalidate_all (void)
c906108c 2811{
c5aa993b 2812 struct objfile *objfile;
c906108c
SS
2813 struct obj_section *sect;
2814
2815 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
2816 if (section_is_overlay (sect))
2817 sect->ovly_mapped = -1;
c906108c
SS
2818}
2819
714835d5 2820/* Function: section_is_mapped (SECTION)
5417f6dc 2821 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
2822
2823 Access to the ovly_mapped flag is restricted to this function, so
2824 that we can do automatic update. If the global flag
2825 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2826 overlay_invalidate_all. If the mapped state of the particular
2827 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2828
714835d5
UW
2829int
2830section_is_mapped (struct obj_section *osect)
c906108c 2831{
9216df95
UW
2832 struct gdbarch *gdbarch;
2833
714835d5 2834 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
2835 return 0;
2836
c5aa993b 2837 switch (overlay_debugging)
c906108c
SS
2838 {
2839 default:
d874f1e2 2840 case ovly_off:
c5aa993b 2841 return 0; /* overlay debugging off */
d874f1e2 2842 case ovly_auto: /* overlay debugging automatic */
1c772458 2843 /* Unles there is a gdbarch_overlay_update function,
c5aa993b 2844 there's really nothing useful to do here (can't really go auto) */
9216df95
UW
2845 gdbarch = get_objfile_arch (osect->objfile);
2846 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
2847 {
2848 if (overlay_cache_invalid)
2849 {
2850 overlay_invalidate_all ();
2851 overlay_cache_invalid = 0;
2852 }
2853 if (osect->ovly_mapped == -1)
9216df95 2854 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
2855 }
2856 /* fall thru to manual case */
d874f1e2 2857 case ovly_on: /* overlay debugging manual */
c906108c
SS
2858 return osect->ovly_mapped == 1;
2859 }
2860}
2861
c906108c
SS
2862/* Function: pc_in_unmapped_range
2863 If PC falls into the lma range of SECTION, return true, else false. */
2864
2865CORE_ADDR
714835d5 2866pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 2867{
714835d5
UW
2868 if (section_is_overlay (section))
2869 {
2870 bfd *abfd = section->objfile->obfd;
2871 asection *bfd_section = section->the_bfd_section;
fbd35540 2872
714835d5
UW
2873 /* We assume the LMA is relocated by the same offset as the VMA. */
2874 bfd_vma size = bfd_get_section_size (bfd_section);
2875 CORE_ADDR offset = obj_section_offset (section);
2876
2877 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
2878 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
2879 return 1;
2880 }
c906108c 2881
c906108c
SS
2882 return 0;
2883}
2884
2885/* Function: pc_in_mapped_range
2886 If PC falls into the vma range of SECTION, return true, else false. */
2887
2888CORE_ADDR
714835d5 2889pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 2890{
714835d5
UW
2891 if (section_is_overlay (section))
2892 {
2893 if (obj_section_addr (section) <= pc
2894 && pc < obj_section_endaddr (section))
2895 return 1;
2896 }
c906108c 2897
c906108c
SS
2898 return 0;
2899}
2900
9ec8e6a0
JB
2901
2902/* Return true if the mapped ranges of sections A and B overlap, false
2903 otherwise. */
b9362cc7 2904static int
714835d5 2905sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 2906{
714835d5
UW
2907 CORE_ADDR a_start = obj_section_addr (a);
2908 CORE_ADDR a_end = obj_section_endaddr (a);
2909 CORE_ADDR b_start = obj_section_addr (b);
2910 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
2911
2912 return (a_start < b_end && b_start < a_end);
2913}
2914
c906108c
SS
2915/* Function: overlay_unmapped_address (PC, SECTION)
2916 Returns the address corresponding to PC in the unmapped (load) range.
2917 May be the same as PC. */
2918
2919CORE_ADDR
714835d5 2920overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 2921{
714835d5
UW
2922 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
2923 {
2924 bfd *abfd = section->objfile->obfd;
2925 asection *bfd_section = section->the_bfd_section;
fbd35540 2926
714835d5
UW
2927 return pc + bfd_section_lma (abfd, bfd_section)
2928 - bfd_section_vma (abfd, bfd_section);
2929 }
c906108c
SS
2930
2931 return pc;
2932}
2933
2934/* Function: overlay_mapped_address (PC, SECTION)
2935 Returns the address corresponding to PC in the mapped (runtime) range.
2936 May be the same as PC. */
2937
2938CORE_ADDR
714835d5 2939overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 2940{
714835d5
UW
2941 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
2942 {
2943 bfd *abfd = section->objfile->obfd;
2944 asection *bfd_section = section->the_bfd_section;
fbd35540 2945
714835d5
UW
2946 return pc + bfd_section_vma (abfd, bfd_section)
2947 - bfd_section_lma (abfd, bfd_section);
2948 }
c906108c
SS
2949
2950 return pc;
2951}
2952
2953
5417f6dc 2954/* Function: symbol_overlayed_address
c906108c
SS
2955 Return one of two addresses (relative to the VMA or to the LMA),
2956 depending on whether the section is mapped or not. */
2957
c5aa993b 2958CORE_ADDR
714835d5 2959symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
2960{
2961 if (overlay_debugging)
2962 {
2963 /* If the symbol has no section, just return its regular address. */
2964 if (section == 0)
2965 return address;
2966 /* If the symbol's section is not an overlay, just return its address */
2967 if (!section_is_overlay (section))
2968 return address;
2969 /* If the symbol's section is mapped, just return its address */
2970 if (section_is_mapped (section))
2971 return address;
2972 /*
2973 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
2974 * then return its LOADED address rather than its vma address!!
2975 */
2976 return overlay_unmapped_address (address, section);
2977 }
2978 return address;
2979}
2980
5417f6dc 2981/* Function: find_pc_overlay (PC)
c906108c
SS
2982 Return the best-match overlay section for PC:
2983 If PC matches a mapped overlay section's VMA, return that section.
2984 Else if PC matches an unmapped section's VMA, return that section.
2985 Else if PC matches an unmapped section's LMA, return that section. */
2986
714835d5 2987struct obj_section *
fba45db2 2988find_pc_overlay (CORE_ADDR pc)
c906108c 2989{
c5aa993b 2990 struct objfile *objfile;
c906108c
SS
2991 struct obj_section *osect, *best_match = NULL;
2992
2993 if (overlay_debugging)
2994 ALL_OBJSECTIONS (objfile, osect)
714835d5 2995 if (section_is_overlay (osect))
c5aa993b 2996 {
714835d5 2997 if (pc_in_mapped_range (pc, osect))
c5aa993b 2998 {
714835d5
UW
2999 if (section_is_mapped (osect))
3000 return osect;
c5aa993b
JM
3001 else
3002 best_match = osect;
3003 }
714835d5 3004 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3005 best_match = osect;
3006 }
714835d5 3007 return best_match;
c906108c
SS
3008}
3009
3010/* Function: find_pc_mapped_section (PC)
5417f6dc 3011 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3012 currently marked as MAPPED, return that section. Else return NULL. */
3013
714835d5 3014struct obj_section *
fba45db2 3015find_pc_mapped_section (CORE_ADDR pc)
c906108c 3016{
c5aa993b 3017 struct objfile *objfile;
c906108c
SS
3018 struct obj_section *osect;
3019
3020 if (overlay_debugging)
3021 ALL_OBJSECTIONS (objfile, osect)
714835d5
UW
3022 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3023 return osect;
c906108c
SS
3024
3025 return NULL;
3026}
3027
3028/* Function: list_overlays_command
3029 Print a list of mapped sections and their PC ranges */
3030
3031void
fba45db2 3032list_overlays_command (char *args, int from_tty)
c906108c 3033{
c5aa993b
JM
3034 int nmapped = 0;
3035 struct objfile *objfile;
c906108c
SS
3036 struct obj_section *osect;
3037
3038 if (overlay_debugging)
3039 ALL_OBJSECTIONS (objfile, osect)
714835d5 3040 if (section_is_mapped (osect))
c5aa993b 3041 {
5af949e3 3042 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c5aa993b
JM
3043 const char *name;
3044 bfd_vma lma, vma;
3045 int size;
3046
3047 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3048 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3049 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3050 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3051
3052 printf_filtered ("Section %s, loaded at ", name);
5af949e3 3053 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
c5aa993b 3054 puts_filtered (" - ");
5af949e3 3055 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
c5aa993b 3056 printf_filtered (", mapped at ");
5af949e3 3057 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
c5aa993b 3058 puts_filtered (" - ");
5af949e3 3059 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
c5aa993b
JM
3060 puts_filtered ("\n");
3061
3062 nmapped++;
3063 }
c906108c 3064 if (nmapped == 0)
a3f17187 3065 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3066}
3067
3068/* Function: map_overlay_command
3069 Mark the named section as mapped (ie. residing at its VMA address). */
3070
3071void
fba45db2 3072map_overlay_command (char *args, int from_tty)
c906108c 3073{
c5aa993b
JM
3074 struct objfile *objfile, *objfile2;
3075 struct obj_section *sec, *sec2;
c906108c
SS
3076
3077 if (!overlay_debugging)
8a3fe4f8 3078 error (_("\
515ad16c 3079Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3080the 'overlay manual' command."));
c906108c
SS
3081
3082 if (args == 0 || *args == 0)
8a3fe4f8 3083 error (_("Argument required: name of an overlay section"));
c906108c
SS
3084
3085 /* First, find a section matching the user supplied argument */
3086 ALL_OBJSECTIONS (objfile, sec)
3087 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3088 {
3089 /* Now, check to see if the section is an overlay. */
714835d5 3090 if (!section_is_overlay (sec))
c5aa993b
JM
3091 continue; /* not an overlay section */
3092
3093 /* Mark the overlay as "mapped" */
3094 sec->ovly_mapped = 1;
3095
3096 /* Next, make a pass and unmap any sections that are
3097 overlapped by this new section: */
3098 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3099 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3100 {
3101 if (info_verbose)
a3f17187 3102 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3103 bfd_section_name (objfile->obfd,
3104 sec2->the_bfd_section));
3105 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3106 }
3107 return;
3108 }
8a3fe4f8 3109 error (_("No overlay section called %s"), args);
c906108c
SS
3110}
3111
3112/* Function: unmap_overlay_command
5417f6dc 3113 Mark the overlay section as unmapped
c906108c
SS
3114 (ie. resident in its LMA address range, rather than the VMA range). */
3115
3116void
fba45db2 3117unmap_overlay_command (char *args, int from_tty)
c906108c 3118{
c5aa993b 3119 struct objfile *objfile;
c906108c
SS
3120 struct obj_section *sec;
3121
3122 if (!overlay_debugging)
8a3fe4f8 3123 error (_("\
515ad16c 3124Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3125the 'overlay manual' command."));
c906108c
SS
3126
3127 if (args == 0 || *args == 0)
8a3fe4f8 3128 error (_("Argument required: name of an overlay section"));
c906108c
SS
3129
3130 /* First, find a section matching the user supplied argument */
3131 ALL_OBJSECTIONS (objfile, sec)
3132 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3133 {
3134 if (!sec->ovly_mapped)
8a3fe4f8 3135 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3136 sec->ovly_mapped = 0;
3137 return;
3138 }
8a3fe4f8 3139 error (_("No overlay section called %s"), args);
c906108c
SS
3140}
3141
3142/* Function: overlay_auto_command
3143 A utility command to turn on overlay debugging.
3144 Possibly this should be done via a set/show command. */
3145
3146static void
fba45db2 3147overlay_auto_command (char *args, int from_tty)
c906108c 3148{
d874f1e2 3149 overlay_debugging = ovly_auto;
1900040c 3150 enable_overlay_breakpoints ();
c906108c 3151 if (info_verbose)
a3f17187 3152 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3153}
3154
3155/* Function: overlay_manual_command
3156 A utility command to turn on overlay debugging.
3157 Possibly this should be done via a set/show command. */
3158
3159static void
fba45db2 3160overlay_manual_command (char *args, int from_tty)
c906108c 3161{
d874f1e2 3162 overlay_debugging = ovly_on;
1900040c 3163 disable_overlay_breakpoints ();
c906108c 3164 if (info_verbose)
a3f17187 3165 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3166}
3167
3168/* Function: overlay_off_command
3169 A utility command to turn on overlay debugging.
3170 Possibly this should be done via a set/show command. */
3171
3172static void
fba45db2 3173overlay_off_command (char *args, int from_tty)
c906108c 3174{
d874f1e2 3175 overlay_debugging = ovly_off;
1900040c 3176 disable_overlay_breakpoints ();
c906108c 3177 if (info_verbose)
a3f17187 3178 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3179}
3180
3181static void
fba45db2 3182overlay_load_command (char *args, int from_tty)
c906108c 3183{
e17c207e
UW
3184 struct gdbarch *gdbarch = get_current_arch ();
3185
3186 if (gdbarch_overlay_update_p (gdbarch))
3187 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3188 else
8a3fe4f8 3189 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3190}
3191
3192/* Function: overlay_command
3193 A place-holder for a mis-typed command */
3194
3195/* Command list chain containing all defined "overlay" subcommands. */
3196struct cmd_list_element *overlaylist;
3197
3198static void
fba45db2 3199overlay_command (char *args, int from_tty)
c906108c 3200{
c5aa993b 3201 printf_unfiltered
c906108c
SS
3202 ("\"overlay\" must be followed by the name of an overlay command.\n");
3203 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3204}
3205
3206
3207/* Target Overlays for the "Simplest" overlay manager:
3208
5417f6dc
RM
3209 This is GDB's default target overlay layer. It works with the
3210 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3211 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3212 so targets that use a different runtime overlay manager can
c906108c
SS
3213 substitute their own overlay_update function and take over the
3214 function pointer.
3215
3216 The overlay_update function pokes around in the target's data structures
3217 to see what overlays are mapped, and updates GDB's overlay mapping with
3218 this information.
3219
3220 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3221 unsigned _novlys; /# number of overlay sections #/
3222 unsigned _ovly_table[_novlys][4] = {
3223 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3224 {..., ..., ..., ...},
3225 }
3226 unsigned _novly_regions; /# number of overlay regions #/
3227 unsigned _ovly_region_table[_novly_regions][3] = {
3228 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3229 {..., ..., ...},
3230 }
c906108c
SS
3231 These functions will attempt to update GDB's mappedness state in the
3232 symbol section table, based on the target's mappedness state.
3233
3234 To do this, we keep a cached copy of the target's _ovly_table, and
3235 attempt to detect when the cached copy is invalidated. The main
3236 entry point is "simple_overlay_update(SECT), which looks up SECT in
3237 the cached table and re-reads only the entry for that section from
3238 the target (whenever possible).
3239 */
3240
3241/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3242static unsigned (*cache_ovly_table)[4] = 0;
c906108c 3243#if 0
c5aa993b 3244static unsigned (*cache_ovly_region_table)[3] = 0;
c906108c 3245#endif
c5aa993b 3246static unsigned cache_novlys = 0;
c906108c 3247#if 0
c5aa993b 3248static unsigned cache_novly_regions = 0;
c906108c
SS
3249#endif
3250static CORE_ADDR cache_ovly_table_base = 0;
3251#if 0
3252static CORE_ADDR cache_ovly_region_table_base = 0;
3253#endif
c5aa993b
JM
3254enum ovly_index
3255 {
3256 VMA, SIZE, LMA, MAPPED
3257 };
c906108c
SS
3258
3259/* Throw away the cached copy of _ovly_table */
3260static void
fba45db2 3261simple_free_overlay_table (void)
c906108c
SS
3262{
3263 if (cache_ovly_table)
b8c9b27d 3264 xfree (cache_ovly_table);
c5aa993b 3265 cache_novlys = 0;
c906108c
SS
3266 cache_ovly_table = NULL;
3267 cache_ovly_table_base = 0;
3268}
3269
3270#if 0
3271/* Throw away the cached copy of _ovly_region_table */
3272static void
fba45db2 3273simple_free_overlay_region_table (void)
c906108c
SS
3274{
3275 if (cache_ovly_region_table)
b8c9b27d 3276 xfree (cache_ovly_region_table);
c5aa993b 3277 cache_novly_regions = 0;
c906108c
SS
3278 cache_ovly_region_table = NULL;
3279 cache_ovly_region_table_base = 0;
3280}
3281#endif
3282
9216df95 3283/* Read an array of ints of size SIZE from the target into a local buffer.
c906108c
SS
3284 Convert to host order. int LEN is number of ints */
3285static void
9216df95 3286read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3287 int len, int size, enum bfd_endian byte_order)
c906108c 3288{
34c0bd93 3289 /* FIXME (alloca): Not safe if array is very large. */
9216df95 3290 gdb_byte *buf = alloca (len * size);
c5aa993b 3291 int i;
c906108c 3292
9216df95 3293 read_memory (memaddr, buf, len * size);
c906108c 3294 for (i = 0; i < len; i++)
e17a4113 3295 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3296}
3297
3298/* Find and grab a copy of the target _ovly_table
3299 (and _novlys, which is needed for the table's size) */
c5aa993b 3300static int
fba45db2 3301simple_read_overlay_table (void)
c906108c 3302{
0d43edd1 3303 struct minimal_symbol *novlys_msym, *ovly_table_msym;
9216df95
UW
3304 struct gdbarch *gdbarch;
3305 int word_size;
e17a4113 3306 enum bfd_endian byte_order;
c906108c
SS
3307
3308 simple_free_overlay_table ();
9b27852e 3309 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3310 if (! novlys_msym)
c906108c 3311 {
8a3fe4f8 3312 error (_("Error reading inferior's overlay table: "
0d43edd1 3313 "couldn't find `_novlys' variable\n"
8a3fe4f8 3314 "in inferior. Use `overlay manual' mode."));
0d43edd1 3315 return 0;
c906108c 3316 }
0d43edd1 3317
9b27852e 3318 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3319 if (! ovly_table_msym)
3320 {
8a3fe4f8 3321 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3322 "`_ovly_table' array\n"
8a3fe4f8 3323 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3324 return 0;
3325 }
3326
9216df95
UW
3327 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3328 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3329 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3330
e17a4113
UW
3331 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3332 4, byte_order);
0d43edd1
JB
3333 cache_ovly_table
3334 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3335 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3336 read_target_long_array (cache_ovly_table_base,
777ea8f1 3337 (unsigned int *) cache_ovly_table,
e17a4113 3338 cache_novlys * 4, word_size, byte_order);
0d43edd1 3339
c5aa993b 3340 return 1; /* SUCCESS */
c906108c
SS
3341}
3342
3343#if 0
3344/* Find and grab a copy of the target _ovly_region_table
3345 (and _novly_regions, which is needed for the table's size) */
c5aa993b 3346static int
fba45db2 3347simple_read_overlay_region_table (void)
c906108c
SS
3348{
3349 struct minimal_symbol *msym;
e17a4113
UW
3350 struct gdbarch *gdbarch;
3351 int word_size;
3352 enum bfd_endian byte_order;
c906108c
SS
3353
3354 simple_free_overlay_region_table ();
9b27852e 3355 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
e17a4113 3356 if (msym == NULL)
c5aa993b 3357 return 0; /* failure */
e17a4113
UW
3358
3359 gdbarch = get_objfile_arch (msymbol_objfile (msym));
3360 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3361 byte_order = gdbarch_byte_order (gdbarch);
3362
3363 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym),
3364 4, byte_order);
3365
c906108c
SS
3366 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3367 if (cache_ovly_region_table != NULL)
3368 {
9b27852e 3369 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
c906108c
SS
3370 if (msym != NULL)
3371 {
3372 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
c5aa993b 3373 read_target_long_array (cache_ovly_region_table_base,
777ea8f1 3374 (unsigned int *) cache_ovly_region_table,
e17a4113
UW
3375 cache_novly_regions * 3,
3376 word_size, byte_order);
c906108c 3377 }
c5aa993b
JM
3378 else
3379 return 0; /* failure */
c906108c 3380 }
c5aa993b
JM
3381 else
3382 return 0; /* failure */
3383 return 1; /* SUCCESS */
c906108c
SS
3384}
3385#endif
3386
5417f6dc 3387/* Function: simple_overlay_update_1
c906108c
SS
3388 A helper function for simple_overlay_update. Assuming a cached copy
3389 of _ovly_table exists, look through it to find an entry whose vma,
3390 lma and size match those of OSECT. Re-read the entry and make sure
3391 it still matches OSECT (else the table may no longer be valid).
3392 Set OSECT's mapped state to match the entry. Return: 1 for
3393 success, 0 for failure. */
3394
3395static int
fba45db2 3396simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3397{
3398 int i, size;
fbd35540
MS
3399 bfd *obfd = osect->objfile->obfd;
3400 asection *bsect = osect->the_bfd_section;
9216df95
UW
3401 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3402 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3403 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3404
2c500098 3405 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3406 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3407 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3408 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3409 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c 3410 {
9216df95
UW
3411 read_target_long_array (cache_ovly_table_base + i * word_size,
3412 (unsigned int *) cache_ovly_table[i],
e17a4113 3413 4, word_size, byte_order);
fbd35540
MS
3414 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3415 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3416 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3417 {
3418 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3419 return 1;
3420 }
fbd35540 3421 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3422 return 0;
3423 }
3424 return 0;
3425}
3426
3427/* Function: simple_overlay_update
5417f6dc
RM
3428 If OSECT is NULL, then update all sections' mapped state
3429 (after re-reading the entire target _ovly_table).
3430 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3431 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3432 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3433 re-read the entire cache, and go ahead and update all sections. */
3434
1c772458 3435void
fba45db2 3436simple_overlay_update (struct obj_section *osect)
c906108c 3437{
c5aa993b 3438 struct objfile *objfile;
c906108c
SS
3439
3440 /* Were we given an osect to look up? NULL means do all of them. */
3441 if (osect)
3442 /* Have we got a cached copy of the target's overlay table? */
3443 if (cache_ovly_table != NULL)
3444 /* Does its cached location match what's currently in the symtab? */
c5aa993b 3445 if (cache_ovly_table_base ==
9b27852e 3446 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
c906108c
SS
3447 /* Then go ahead and try to look up this single section in the cache */
3448 if (simple_overlay_update_1 (osect))
3449 /* Found it! We're done. */
3450 return;
3451
3452 /* Cached table no good: need to read the entire table anew.
3453 Or else we want all the sections, in which case it's actually
3454 more efficient to read the whole table in one block anyway. */
3455
0d43edd1
JB
3456 if (! simple_read_overlay_table ())
3457 return;
3458
c906108c
SS
3459 /* Now may as well update all sections, even if only one was requested. */
3460 ALL_OBJSECTIONS (objfile, osect)
714835d5 3461 if (section_is_overlay (osect))
c5aa993b
JM
3462 {
3463 int i, size;
fbd35540
MS
3464 bfd *obfd = osect->objfile->obfd;
3465 asection *bsect = osect->the_bfd_section;
c5aa993b 3466
2c500098 3467 size = bfd_get_section_size (bsect);
c5aa993b 3468 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3469 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3470 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3471 /* && cache_ovly_table[i][SIZE] == size */ )
3472 { /* obj_section matches i'th entry in ovly_table */
c5aa993b
JM
3473 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3474 break; /* finished with inner for loop: break out */
3475 }
3476 }
c906108c
SS
3477}
3478
086df311
DJ
3479/* Set the output sections and output offsets for section SECTP in
3480 ABFD. The relocation code in BFD will read these offsets, so we
3481 need to be sure they're initialized. We map each section to itself,
3482 with no offset; this means that SECTP->vma will be honored. */
3483
3484static void
3485symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3486{
3487 sectp->output_section = sectp;
3488 sectp->output_offset = 0;
3489}
3490
ac8035ab
TG
3491/* Default implementation for sym_relocate. */
3492
3493
3494bfd_byte *
3495default_symfile_relocate (struct objfile *objfile, asection *sectp,
3496 bfd_byte *buf)
3497{
3498 bfd *abfd = objfile->obfd;
3499
3500 /* We're only interested in sections with relocation
3501 information. */
3502 if ((sectp->flags & SEC_RELOC) == 0)
3503 return NULL;
3504
3505 /* We will handle section offsets properly elsewhere, so relocate as if
3506 all sections begin at 0. */
3507 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3508
3509 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3510}
3511
086df311
DJ
3512/* Relocate the contents of a debug section SECTP in ABFD. The
3513 contents are stored in BUF if it is non-NULL, or returned in a
3514 malloc'd buffer otherwise.
3515
3516 For some platforms and debug info formats, shared libraries contain
3517 relocations against the debug sections (particularly for DWARF-2;
3518 one affected platform is PowerPC GNU/Linux, although it depends on
3519 the version of the linker in use). Also, ELF object files naturally
3520 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3521 the relocations in order to get the locations of symbols correct.
3522 Another example that may require relocation processing, is the
3523 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3524 debug section. */
086df311
DJ
3525
3526bfd_byte *
ac8035ab
TG
3527symfile_relocate_debug_section (struct objfile *objfile,
3528 asection *sectp, bfd_byte *buf)
086df311 3529{
ac8035ab 3530 gdb_assert (objfile->sf->sym_relocate);
086df311 3531
ac8035ab 3532 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3533}
c906108c 3534
31d99776
DJ
3535struct symfile_segment_data *
3536get_symfile_segment_data (bfd *abfd)
3537{
3538 struct sym_fns *sf = find_sym_fns (abfd);
3539
3540 if (sf == NULL)
3541 return NULL;
3542
3543 return sf->sym_segments (abfd);
3544}
3545
3546void
3547free_symfile_segment_data (struct symfile_segment_data *data)
3548{
3549 xfree (data->segment_bases);
3550 xfree (data->segment_sizes);
3551 xfree (data->segment_info);
3552 xfree (data);
3553}
3554
28c32713
JB
3555
3556/* Given:
3557 - DATA, containing segment addresses from the object file ABFD, and
3558 the mapping from ABFD's sections onto the segments that own them,
3559 and
3560 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3561 segment addresses reported by the target,
3562 store the appropriate offsets for each section in OFFSETS.
3563
3564 If there are fewer entries in SEGMENT_BASES than there are segments
3565 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3566
8d385431
DJ
3567 If there are more entries, then ignore the extra. The target may
3568 not be able to distinguish between an empty data segment and a
3569 missing data segment; a missing text segment is less plausible. */
31d99776
DJ
3570int
3571symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3572 struct section_offsets *offsets,
3573 int num_segment_bases,
3574 const CORE_ADDR *segment_bases)
3575{
3576 int i;
3577 asection *sect;
3578
28c32713
JB
3579 /* It doesn't make sense to call this function unless you have some
3580 segment base addresses. */
202b96c1 3581 gdb_assert (num_segment_bases > 0);
28c32713 3582
31d99776
DJ
3583 /* If we do not have segment mappings for the object file, we
3584 can not relocate it by segments. */
3585 gdb_assert (data != NULL);
3586 gdb_assert (data->num_segments > 0);
3587
31d99776
DJ
3588 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3589 {
31d99776
DJ
3590 int which = data->segment_info[i];
3591
28c32713
JB
3592 gdb_assert (0 <= which && which <= data->num_segments);
3593
3594 /* Don't bother computing offsets for sections that aren't
3595 loaded as part of any segment. */
3596 if (! which)
3597 continue;
3598
3599 /* Use the last SEGMENT_BASES entry as the address of any extra
3600 segments mentioned in DATA->segment_info. */
31d99776 3601 if (which > num_segment_bases)
28c32713 3602 which = num_segment_bases;
31d99776 3603
28c32713
JB
3604 offsets->offsets[i] = (segment_bases[which - 1]
3605 - data->segment_bases[which - 1]);
31d99776
DJ
3606 }
3607
3608 return 1;
3609}
3610
3611static void
3612symfile_find_segment_sections (struct objfile *objfile)
3613{
3614 bfd *abfd = objfile->obfd;
3615 int i;
3616 asection *sect;
3617 struct symfile_segment_data *data;
3618
3619 data = get_symfile_segment_data (objfile->obfd);
3620 if (data == NULL)
3621 return;
3622
3623 if (data->num_segments != 1 && data->num_segments != 2)
3624 {
3625 free_symfile_segment_data (data);
3626 return;
3627 }
3628
3629 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3630 {
3631 CORE_ADDR vma;
3632 int which = data->segment_info[i];
3633
3634 if (which == 1)
3635 {
3636 if (objfile->sect_index_text == -1)
3637 objfile->sect_index_text = sect->index;
3638
3639 if (objfile->sect_index_rodata == -1)
3640 objfile->sect_index_rodata = sect->index;
3641 }
3642 else if (which == 2)
3643 {
3644 if (objfile->sect_index_data == -1)
3645 objfile->sect_index_data = sect->index;
3646
3647 if (objfile->sect_index_bss == -1)
3648 objfile->sect_index_bss = sect->index;
3649 }
3650 }
3651
3652 free_symfile_segment_data (data);
3653}
3654
c906108c 3655void
fba45db2 3656_initialize_symfile (void)
c906108c
SS
3657{
3658 struct cmd_list_element *c;
c5aa993b 3659
1a966eab
AC
3660 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3661Load symbol table from executable file FILE.\n\
c906108c 3662The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3663to execute."), &cmdlist);
5ba2abeb 3664 set_cmd_completer (c, filename_completer);
c906108c 3665
1a966eab 3666 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3667Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
1a966eab 3668Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
2acceee2 3669ADDR is the starting address of the file's text.\n\
db162d44
EZ
3670The optional arguments are section-name section-address pairs and\n\
3671should be specified if the data and bss segments are not contiguous\n\
1a966eab 3672with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3673 &cmdlist);
5ba2abeb 3674 set_cmd_completer (c, filename_completer);
c906108c 3675
1a966eab
AC
3676 c = add_cmd ("load", class_files, load_command, _("\
3677Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
3678for access from GDB.\n\
3679A load OFFSET may also be given."), &cmdlist);
5ba2abeb 3680 set_cmd_completer (c, filename_completer);
c906108c 3681
5bf193a2
AC
3682 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3683 &symbol_reloading, _("\
3684Set dynamic symbol table reloading multiple times in one run."), _("\
3685Show dynamic symbol table reloading multiple times in one run."), NULL,
3686 NULL,
920d2a44 3687 show_symbol_reloading,
5bf193a2 3688 &setlist, &showlist);
c906108c 3689
c5aa993b 3690 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3691 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3692 "overlay ", 0, &cmdlist);
3693
3694 add_com_alias ("ovly", "overlay", class_alias, 1);
3695 add_com_alias ("ov", "overlay", class_alias, 1);
3696
c5aa993b 3697 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3698 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3699
c5aa993b 3700 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3701 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3702
c5aa993b 3703 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3704 _("List mappings of overlay sections."), &overlaylist);
c906108c 3705
c5aa993b 3706 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3707 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3708 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3709 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3710 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3711 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3712 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3713 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3714
3715 /* Filename extension to source language lookup table: */
3716 init_filename_language_table ();
26c41df3
AC
3717 add_setshow_string_noescape_cmd ("extension-language", class_files,
3718 &ext_args, _("\
3719Set mapping between filename extension and source language."), _("\
3720Show mapping between filename extension and source language."), _("\
3721Usage: set extension-language .foo bar"),
3722 set_ext_lang_command,
920d2a44 3723 show_ext_args,
26c41df3 3724 &setlist, &showlist);
c906108c 3725
c5aa993b 3726 add_info ("extensions", info_ext_lang_command,
1bedd215 3727 _("All filename extensions associated with a source language."));
917317f4 3728
525226b5
AC
3729 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3730 &debug_file_directory, _("\
24ddea62
JK
3731Set the directories where separate debug symbols are searched for."), _("\
3732Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
3733Separate debug symbols are first searched for in the same\n\
3734directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3735and lastly at the path of the directory of the binary with\n\
24ddea62 3736each global debug-file-directory component prepended."),
525226b5 3737 NULL,
920d2a44 3738 show_debug_file_directory,
525226b5 3739 &setlist, &showlist);
c906108c 3740}
This page took 1.461101 seconds and 4 git commands to generate.