Replace the block_found global with explicit data-flow
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
32d0add0 3 Copyright (C) 1990-2015 Free Software Foundation, Inc.
8926118c 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
086df311 24#include "bfdlink.h"
c906108c
SS
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "target.h"
30#include "value.h"
31#include "symfile.h"
32#include "objfiles.h"
0378c332 33#include "source.h"
c906108c
SS
34#include "gdbcmd.h"
35#include "breakpoint.h"
36#include "language.h"
37#include "complaints.h"
38#include "demangle.h"
fb14de7b
UW
39#include "inferior.h"
40#include "regcache.h"
5b5d99cf 41#include "filenames.h" /* for DOSish file names */
c906108c 42#include "gdb-stabs.h"
04ea0df1 43#include "gdb_obstack.h"
d75b5104 44#include "completer.h"
af5f3db6 45#include "bcache.h"
2de7ced7 46#include "hashtab.h"
dbda9972 47#include "readline/readline.h"
fe898f56 48#include "block.h"
ea53e89f 49#include "observer.h"
c1bd25fd 50#include "exec.h"
9bdcbae7 51#include "parser-defs.h"
8756216b 52#include "varobj.h"
77069918 53#include "elf-bfd.h"
e85a822c 54#include "solib.h"
f1838a98 55#include "remote.h"
1bfeeb0f 56#include "stack.h"
cbb099e8 57#include "gdb_bfd.h"
529480d0 58#include "cli/cli-utils.h"
c906108c 59
c906108c
SS
60#include <sys/types.h>
61#include <fcntl.h>
53ce3c39 62#include <sys/stat.h>
c906108c
SS
63#include <ctype.h>
64#include <time.h>
2b71414d 65#include <sys/time.h>
c906108c 66
ccefe4c4 67#include "psymtab.h"
c906108c 68
3e43a32a
MS
69int (*deprecated_ui_load_progress_hook) (const char *section,
70 unsigned long num);
9a4105ab 71void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
72 unsigned long section_sent,
73 unsigned long section_size,
74 unsigned long total_sent,
c2d11a7d 75 unsigned long total_size);
769d7dc4
AC
76void (*deprecated_pre_add_symbol_hook) (const char *);
77void (*deprecated_post_add_symbol_hook) (void);
c906108c 78
74b7792f
AC
79static void clear_symtab_users_cleanup (void *ignore);
80
c378eb4e
MS
81/* Global variables owned by this file. */
82int readnow_symbol_files; /* Read full symbols immediately. */
c906108c 83
c378eb4e 84/* Functions this file defines. */
c906108c 85
a14ed312 86static void load_command (char *, int);
c906108c 87
69150c3d 88static void symbol_file_add_main_1 (const char *args, int from_tty, int flags);
d7db6da9 89
a14ed312 90static void add_symbol_file_command (char *, int);
c906108c 91
00b5771c 92static const struct sym_fns *find_sym_fns (bfd *);
c906108c 93
a14ed312 94static void decrement_reading_symtab (void *);
c906108c 95
a14ed312 96static void overlay_invalidate_all (void);
c906108c 97
a14ed312 98static void overlay_auto_command (char *, int);
c906108c 99
a14ed312 100static void overlay_manual_command (char *, int);
c906108c 101
a14ed312 102static void overlay_off_command (char *, int);
c906108c 103
a14ed312 104static void overlay_load_command (char *, int);
c906108c 105
a14ed312 106static void overlay_command (char *, int);
c906108c 107
a14ed312 108static void simple_free_overlay_table (void);
c906108c 109
e17a4113
UW
110static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
111 enum bfd_endian);
c906108c 112
a14ed312 113static int simple_read_overlay_table (void);
c906108c 114
a14ed312 115static int simple_overlay_update_1 (struct obj_section *);
c906108c 116
a14ed312 117static void add_filename_language (char *ext, enum language lang);
392a587b 118
a14ed312 119static void info_ext_lang_command (char *args, int from_tty);
392a587b 120
a14ed312 121static void init_filename_language_table (void);
392a587b 122
31d99776
DJ
123static void symfile_find_segment_sections (struct objfile *objfile);
124
a14ed312 125void _initialize_symfile (void);
c906108c
SS
126
127/* List of all available sym_fns. On gdb startup, each object file reader
128 calls add_symtab_fns() to register information on each format it is
c378eb4e 129 prepared to read. */
c906108c 130
c256e171
DE
131typedef struct
132{
133 /* BFD flavour that we handle. */
134 enum bfd_flavour sym_flavour;
135
136 /* The "vtable" of symbol functions. */
137 const struct sym_fns *sym_fns;
138} registered_sym_fns;
00b5771c 139
c256e171
DE
140DEF_VEC_O (registered_sym_fns);
141
142static VEC (registered_sym_fns) *symtab_fns = NULL;
c906108c 143
770e7fc7
DE
144/* Values for "set print symbol-loading". */
145
146const char print_symbol_loading_off[] = "off";
147const char print_symbol_loading_brief[] = "brief";
148const char print_symbol_loading_full[] = "full";
149static const char *print_symbol_loading_enums[] =
150{
151 print_symbol_loading_off,
152 print_symbol_loading_brief,
153 print_symbol_loading_full,
154 NULL
155};
156static const char *print_symbol_loading = print_symbol_loading_full;
157
b7209cb4
FF
158/* If non-zero, shared library symbols will be added automatically
159 when the inferior is created, new libraries are loaded, or when
160 attaching to the inferior. This is almost always what users will
161 want to have happen; but for very large programs, the startup time
162 will be excessive, and so if this is a problem, the user can clear
163 this flag and then add the shared library symbols as needed. Note
164 that there is a potential for confusion, since if the shared
c906108c 165 library symbols are not loaded, commands like "info fun" will *not*
0d14a781 166 report all the functions that are actually present. */
c906108c
SS
167
168int auto_solib_add = 1;
c906108c 169\f
c5aa993b 170
770e7fc7
DE
171/* Return non-zero if symbol-loading messages should be printed.
172 FROM_TTY is the standard from_tty argument to gdb commands.
173 If EXEC is non-zero the messages are for the executable.
174 Otherwise, messages are for shared libraries.
175 If FULL is non-zero then the caller is printing a detailed message.
176 E.g., the message includes the shared library name.
177 Otherwise, the caller is printing a brief "summary" message. */
178
179int
180print_symbol_loading_p (int from_tty, int exec, int full)
181{
182 if (!from_tty && !info_verbose)
183 return 0;
184
185 if (exec)
186 {
187 /* We don't check FULL for executables, there are few such
188 messages, therefore brief == full. */
189 return print_symbol_loading != print_symbol_loading_off;
190 }
191 if (full)
192 return print_symbol_loading == print_symbol_loading_full;
193 return print_symbol_loading == print_symbol_loading_brief;
194}
195
0d14a781 196/* True if we are reading a symbol table. */
c906108c
SS
197
198int currently_reading_symtab = 0;
199
200static void
fba45db2 201decrement_reading_symtab (void *dummy)
c906108c
SS
202{
203 currently_reading_symtab--;
2cb9c859 204 gdb_assert (currently_reading_symtab >= 0);
c906108c
SS
205}
206
ccefe4c4
TT
207/* Increment currently_reading_symtab and return a cleanup that can be
208 used to decrement it. */
3b7bacac 209
ccefe4c4
TT
210struct cleanup *
211increment_reading_symtab (void)
c906108c 212{
ccefe4c4 213 ++currently_reading_symtab;
2cb9c859 214 gdb_assert (currently_reading_symtab > 0);
ccefe4c4 215 return make_cleanup (decrement_reading_symtab, NULL);
c906108c
SS
216}
217
5417f6dc
RM
218/* Remember the lowest-addressed loadable section we've seen.
219 This function is called via bfd_map_over_sections.
c906108c
SS
220
221 In case of equal vmas, the section with the largest size becomes the
222 lowest-addressed loadable section.
223
224 If the vmas and sizes are equal, the last section is considered the
225 lowest-addressed loadable section. */
226
227void
4efb68b1 228find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 229{
c5aa993b 230 asection **lowest = (asection **) obj;
c906108c 231
eb73e134 232 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
233 return;
234 if (!*lowest)
235 *lowest = sect; /* First loadable section */
236 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
237 *lowest = sect; /* A lower loadable section */
238 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
239 && (bfd_section_size (abfd, (*lowest))
240 <= bfd_section_size (abfd, sect)))
241 *lowest = sect;
242}
243
d76488d8
TT
244/* Create a new section_addr_info, with room for NUM_SECTIONS. The
245 new object's 'num_sections' field is set to 0; it must be updated
246 by the caller. */
a39a16c4
MM
247
248struct section_addr_info *
249alloc_section_addr_info (size_t num_sections)
250{
251 struct section_addr_info *sap;
252 size_t size;
253
254 size = (sizeof (struct section_addr_info)
255 + sizeof (struct other_sections) * (num_sections - 1));
256 sap = (struct section_addr_info *) xmalloc (size);
257 memset (sap, 0, size);
a39a16c4
MM
258
259 return sap;
260}
62557bbc
KB
261
262/* Build (allocate and populate) a section_addr_info struct from
c378eb4e 263 an existing section table. */
62557bbc
KB
264
265extern struct section_addr_info *
0542c86d
PA
266build_section_addr_info_from_section_table (const struct target_section *start,
267 const struct target_section *end)
62557bbc
KB
268{
269 struct section_addr_info *sap;
0542c86d 270 const struct target_section *stp;
62557bbc
KB
271 int oidx;
272
a39a16c4 273 sap = alloc_section_addr_info (end - start);
62557bbc
KB
274
275 for (stp = start, oidx = 0; stp != end; stp++)
276 {
2b2848e2
DE
277 struct bfd_section *asect = stp->the_bfd_section;
278 bfd *abfd = asect->owner;
279
280 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 281 && oidx < end - start)
62557bbc
KB
282 {
283 sap->other[oidx].addr = stp->addr;
2b2848e2
DE
284 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
285 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
62557bbc
KB
286 oidx++;
287 }
288 }
289
d76488d8
TT
290 sap->num_sections = oidx;
291
62557bbc
KB
292 return sap;
293}
294
82ccf5a5 295/* Create a section_addr_info from section offsets in ABFD. */
089b4803 296
82ccf5a5
JK
297static struct section_addr_info *
298build_section_addr_info_from_bfd (bfd *abfd)
089b4803
TG
299{
300 struct section_addr_info *sap;
301 int i;
302 struct bfd_section *sec;
303
82ccf5a5
JK
304 sap = alloc_section_addr_info (bfd_count_sections (abfd));
305 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
306 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
012836ea 307 {
82ccf5a5
JK
308 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
309 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
65cf3563 310 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
012836ea
JK
311 i++;
312 }
d76488d8
TT
313
314 sap->num_sections = i;
315
089b4803
TG
316 return sap;
317}
318
82ccf5a5
JK
319/* Create a section_addr_info from section offsets in OBJFILE. */
320
321struct section_addr_info *
322build_section_addr_info_from_objfile (const struct objfile *objfile)
323{
324 struct section_addr_info *sap;
325 int i;
326
327 /* Before reread_symbols gets rewritten it is not safe to call:
328 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
329 */
330 sap = build_section_addr_info_from_bfd (objfile->obfd);
d76488d8 331 for (i = 0; i < sap->num_sections; i++)
82ccf5a5
JK
332 {
333 int sectindex = sap->other[i].sectindex;
334
335 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
336 }
337 return sap;
338}
62557bbc 339
c378eb4e 340/* Free all memory allocated by build_section_addr_info_from_section_table. */
62557bbc
KB
341
342extern void
343free_section_addr_info (struct section_addr_info *sap)
344{
345 int idx;
346
a39a16c4 347 for (idx = 0; idx < sap->num_sections; idx++)
d76488d8 348 xfree (sap->other[idx].name);
b8c9b27d 349 xfree (sap);
62557bbc
KB
350}
351
e8289572 352/* Initialize OBJFILE's sect_index_* members. */
3b7bacac 353
e8289572
JB
354static void
355init_objfile_sect_indices (struct objfile *objfile)
c906108c 356{
e8289572 357 asection *sect;
c906108c 358 int i;
5417f6dc 359
b8fbeb18 360 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 361 if (sect)
b8fbeb18
EZ
362 objfile->sect_index_text = sect->index;
363
364 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 365 if (sect)
b8fbeb18
EZ
366 objfile->sect_index_data = sect->index;
367
368 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 369 if (sect)
b8fbeb18
EZ
370 objfile->sect_index_bss = sect->index;
371
372 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 373 if (sect)
b8fbeb18
EZ
374 objfile->sect_index_rodata = sect->index;
375
bbcd32ad
FF
376 /* This is where things get really weird... We MUST have valid
377 indices for the various sect_index_* members or gdb will abort.
378 So if for example, there is no ".text" section, we have to
31d99776
DJ
379 accomodate that. First, check for a file with the standard
380 one or two segments. */
381
382 symfile_find_segment_sections (objfile);
383
384 /* Except when explicitly adding symbol files at some address,
385 section_offsets contains nothing but zeros, so it doesn't matter
386 which slot in section_offsets the individual sect_index_* members
387 index into. So if they are all zero, it is safe to just point
388 all the currently uninitialized indices to the first slot. But
389 beware: if this is the main executable, it may be relocated
390 later, e.g. by the remote qOffsets packet, and then this will
391 be wrong! That's why we try segments first. */
bbcd32ad
FF
392
393 for (i = 0; i < objfile->num_sections; i++)
394 {
395 if (ANOFFSET (objfile->section_offsets, i) != 0)
396 {
397 break;
398 }
399 }
400 if (i == objfile->num_sections)
401 {
402 if (objfile->sect_index_text == -1)
403 objfile->sect_index_text = 0;
404 if (objfile->sect_index_data == -1)
405 objfile->sect_index_data = 0;
406 if (objfile->sect_index_bss == -1)
407 objfile->sect_index_bss = 0;
408 if (objfile->sect_index_rodata == -1)
409 objfile->sect_index_rodata = 0;
410 }
b8fbeb18 411}
c906108c 412
c1bd25fd
DJ
413/* The arguments to place_section. */
414
415struct place_section_arg
416{
417 struct section_offsets *offsets;
418 CORE_ADDR lowest;
419};
420
421/* Find a unique offset to use for loadable section SECT if
422 the user did not provide an offset. */
423
2c0b251b 424static void
c1bd25fd
DJ
425place_section (bfd *abfd, asection *sect, void *obj)
426{
427 struct place_section_arg *arg = obj;
428 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
429 int done;
3bd72c6f 430 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 431
2711e456
DJ
432 /* We are only interested in allocated sections. */
433 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
434 return;
435
436 /* If the user specified an offset, honor it. */
65cf3563 437 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
c1bd25fd
DJ
438 return;
439
440 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
441 start_addr = (arg->lowest + align - 1) & -align;
442
c1bd25fd
DJ
443 do {
444 asection *cur_sec;
c1bd25fd 445
c1bd25fd
DJ
446 done = 1;
447
448 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
449 {
450 int indx = cur_sec->index;
c1bd25fd
DJ
451
452 /* We don't need to compare against ourself. */
453 if (cur_sec == sect)
454 continue;
455
2711e456
DJ
456 /* We can only conflict with allocated sections. */
457 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
458 continue;
459
460 /* If the section offset is 0, either the section has not been placed
461 yet, or it was the lowest section placed (in which case LOWEST
462 will be past its end). */
463 if (offsets[indx] == 0)
464 continue;
465
466 /* If this section would overlap us, then we must move up. */
467 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
468 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
469 {
470 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
471 start_addr = (start_addr + align - 1) & -align;
472 done = 0;
3bd72c6f 473 break;
c1bd25fd
DJ
474 }
475
476 /* Otherwise, we appear to be OK. So far. */
477 }
478 }
479 while (!done);
480
65cf3563 481 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
c1bd25fd 482 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 483}
e8289572 484
75242ef4
JK
485/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
486 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
487 entries. */
e8289572
JB
488
489void
75242ef4
JK
490relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
491 int num_sections,
3189cb12 492 const struct section_addr_info *addrs)
e8289572
JB
493{
494 int i;
495
75242ef4 496 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 497
c378eb4e 498 /* Now calculate offsets for section that were specified by the caller. */
d76488d8 499 for (i = 0; i < addrs->num_sections; i++)
e8289572 500 {
3189cb12 501 const struct other_sections *osp;
e8289572 502
75242ef4 503 osp = &addrs->other[i];
5488dafb 504 if (osp->sectindex == -1)
e8289572
JB
505 continue;
506
c378eb4e 507 /* Record all sections in offsets. */
e8289572 508 /* The section_offsets in the objfile are here filled in using
c378eb4e 509 the BFD index. */
75242ef4
JK
510 section_offsets->offsets[osp->sectindex] = osp->addr;
511 }
512}
513
1276c759
JK
514/* Transform section name S for a name comparison. prelink can split section
515 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
516 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
517 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
518 (`.sbss') section has invalid (increased) virtual address. */
519
520static const char *
521addr_section_name (const char *s)
522{
523 if (strcmp (s, ".dynbss") == 0)
524 return ".bss";
525 if (strcmp (s, ".sdynbss") == 0)
526 return ".sbss";
527
528 return s;
529}
530
82ccf5a5
JK
531/* qsort comparator for addrs_section_sort. Sort entries in ascending order by
532 their (name, sectindex) pair. sectindex makes the sort by name stable. */
533
534static int
535addrs_section_compar (const void *ap, const void *bp)
536{
537 const struct other_sections *a = *((struct other_sections **) ap);
538 const struct other_sections *b = *((struct other_sections **) bp);
22e048c9 539 int retval;
82ccf5a5 540
1276c759 541 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
82ccf5a5
JK
542 if (retval)
543 return retval;
544
5488dafb 545 return a->sectindex - b->sectindex;
82ccf5a5
JK
546}
547
548/* Provide sorted array of pointers to sections of ADDRS. The array is
549 terminated by NULL. Caller is responsible to call xfree for it. */
550
551static struct other_sections **
552addrs_section_sort (struct section_addr_info *addrs)
553{
554 struct other_sections **array;
555 int i;
556
557 /* `+ 1' for the NULL terminator. */
558 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
d76488d8 559 for (i = 0; i < addrs->num_sections; i++)
82ccf5a5
JK
560 array[i] = &addrs->other[i];
561 array[i] = NULL;
562
563 qsort (array, i, sizeof (*array), addrs_section_compar);
564
565 return array;
566}
567
75242ef4 568/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
569 also SECTINDEXes specific to ABFD there. This function can be used to
570 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
571
572void
573addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
574{
575 asection *lower_sect;
75242ef4
JK
576 CORE_ADDR lower_offset;
577 int i;
82ccf5a5
JK
578 struct cleanup *my_cleanup;
579 struct section_addr_info *abfd_addrs;
580 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
581 struct other_sections **addrs_to_abfd_addrs;
75242ef4
JK
582
583 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
584 continguous sections. */
585 lower_sect = NULL;
586 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
587 if (lower_sect == NULL)
588 {
589 warning (_("no loadable sections found in added symbol-file %s"),
590 bfd_get_filename (abfd));
591 lower_offset = 0;
e8289572 592 }
75242ef4
JK
593 else
594 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
595
82ccf5a5
JK
596 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
597 in ABFD. Section names are not unique - there can be multiple sections of
598 the same name. Also the sections of the same name do not have to be
599 adjacent to each other. Some sections may be present only in one of the
600 files. Even sections present in both files do not have to be in the same
601 order.
602
603 Use stable sort by name for the sections in both files. Then linearly
604 scan both lists matching as most of the entries as possible. */
605
606 addrs_sorted = addrs_section_sort (addrs);
607 my_cleanup = make_cleanup (xfree, addrs_sorted);
608
609 abfd_addrs = build_section_addr_info_from_bfd (abfd);
610 make_cleanup_free_section_addr_info (abfd_addrs);
611 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
612 make_cleanup (xfree, abfd_addrs_sorted);
613
c378eb4e
MS
614 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
615 ABFD_ADDRS_SORTED. */
82ccf5a5
JK
616
617 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
618 * addrs->num_sections);
619 make_cleanup (xfree, addrs_to_abfd_addrs);
620
621 while (*addrs_sorted)
622 {
1276c759 623 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
82ccf5a5
JK
624
625 while (*abfd_addrs_sorted
1276c759
JK
626 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
627 sect_name) < 0)
82ccf5a5
JK
628 abfd_addrs_sorted++;
629
630 if (*abfd_addrs_sorted
1276c759
JK
631 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
632 sect_name) == 0)
82ccf5a5
JK
633 {
634 int index_in_addrs;
635
636 /* Make the found item directly addressable from ADDRS. */
637 index_in_addrs = *addrs_sorted - addrs->other;
638 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
639 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
640
641 /* Never use the same ABFD entry twice. */
642 abfd_addrs_sorted++;
643 }
644
645 addrs_sorted++;
646 }
647
75242ef4
JK
648 /* Calculate offsets for the loadable sections.
649 FIXME! Sections must be in order of increasing loadable section
650 so that contiguous sections can use the lower-offset!!!
651
652 Adjust offsets if the segments are not contiguous.
653 If the section is contiguous, its offset should be set to
654 the offset of the highest loadable section lower than it
655 (the loadable section directly below it in memory).
656 this_offset = lower_offset = lower_addr - lower_orig_addr */
657
d76488d8 658 for (i = 0; i < addrs->num_sections; i++)
75242ef4 659 {
82ccf5a5 660 struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
661
662 if (sect)
75242ef4 663 {
c378eb4e 664 /* This is the index used by BFD. */
82ccf5a5 665 addrs->other[i].sectindex = sect->sectindex;
672d9c23
JK
666
667 if (addrs->other[i].addr != 0)
75242ef4 668 {
82ccf5a5 669 addrs->other[i].addr -= sect->addr;
75242ef4 670 lower_offset = addrs->other[i].addr;
75242ef4
JK
671 }
672 else
672d9c23 673 addrs->other[i].addr = lower_offset;
75242ef4
JK
674 }
675 else
672d9c23 676 {
1276c759
JK
677 /* addr_section_name transformation is not used for SECT_NAME. */
678 const char *sect_name = addrs->other[i].name;
679
b0fcb67f
JK
680 /* This section does not exist in ABFD, which is normally
681 unexpected and we want to issue a warning.
682
4d9743af
JK
683 However, the ELF prelinker does create a few sections which are
684 marked in the main executable as loadable (they are loaded in
685 memory from the DYNAMIC segment) and yet are not present in
686 separate debug info files. This is fine, and should not cause
687 a warning. Shared libraries contain just the section
688 ".gnu.liblist" but it is not marked as loadable there. There is
689 no other way to identify them than by their name as the sections
1276c759
JK
690 created by prelink have no special flags.
691
692 For the sections `.bss' and `.sbss' see addr_section_name. */
b0fcb67f
JK
693
694 if (!(strcmp (sect_name, ".gnu.liblist") == 0
4d9743af 695 || strcmp (sect_name, ".gnu.conflict") == 0
1276c759
JK
696 || (strcmp (sect_name, ".bss") == 0
697 && i > 0
698 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
699 && addrs_to_abfd_addrs[i - 1] != NULL)
700 || (strcmp (sect_name, ".sbss") == 0
701 && i > 0
702 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
703 && addrs_to_abfd_addrs[i - 1] != NULL)))
b0fcb67f
JK
704 warning (_("section %s not found in %s"), sect_name,
705 bfd_get_filename (abfd));
706
672d9c23 707 addrs->other[i].addr = 0;
5488dafb 708 addrs->other[i].sectindex = -1;
672d9c23 709 }
75242ef4 710 }
82ccf5a5
JK
711
712 do_cleanups (my_cleanup);
75242ef4
JK
713}
714
715/* Parse the user's idea of an offset for dynamic linking, into our idea
716 of how to represent it for fast symbol reading. This is the default
717 version of the sym_fns.sym_offsets function for symbol readers that
718 don't need to do anything special. It allocates a section_offsets table
719 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
720
721void
722default_symfile_offsets (struct objfile *objfile,
3189cb12 723 const struct section_addr_info *addrs)
75242ef4 724{
d445b2f6 725 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
75242ef4
JK
726 objfile->section_offsets = (struct section_offsets *)
727 obstack_alloc (&objfile->objfile_obstack,
728 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
729 relative_addr_info_to_section_offsets (objfile->section_offsets,
730 objfile->num_sections, addrs);
e8289572 731
c1bd25fd
DJ
732 /* For relocatable files, all loadable sections will start at zero.
733 The zero is meaningless, so try to pick arbitrary addresses such
734 that no loadable sections overlap. This algorithm is quadratic,
735 but the number of sections in a single object file is generally
736 small. */
737 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
738 {
739 struct place_section_arg arg;
2711e456
DJ
740 bfd *abfd = objfile->obfd;
741 asection *cur_sec;
2711e456
DJ
742
743 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
744 /* We do not expect this to happen; just skip this step if the
745 relocatable file has a section with an assigned VMA. */
746 if (bfd_section_vma (abfd, cur_sec) != 0)
747 break;
748
749 if (cur_sec == NULL)
750 {
751 CORE_ADDR *offsets = objfile->section_offsets->offsets;
752
753 /* Pick non-overlapping offsets for sections the user did not
754 place explicitly. */
755 arg.offsets = objfile->section_offsets;
756 arg.lowest = 0;
757 bfd_map_over_sections (objfile->obfd, place_section, &arg);
758
759 /* Correctly filling in the section offsets is not quite
760 enough. Relocatable files have two properties that
761 (most) shared objects do not:
762
763 - Their debug information will contain relocations. Some
764 shared libraries do also, but many do not, so this can not
765 be assumed.
766
767 - If there are multiple code sections they will be loaded
768 at different relative addresses in memory than they are
769 in the objfile, since all sections in the file will start
770 at address zero.
771
772 Because GDB has very limited ability to map from an
773 address in debug info to the correct code section,
774 it relies on adding SECT_OFF_TEXT to things which might be
775 code. If we clear all the section offsets, and set the
776 section VMAs instead, then symfile_relocate_debug_section
777 will return meaningful debug information pointing at the
778 correct sections.
779
780 GDB has too many different data structures for section
781 addresses - a bfd, objfile, and so_list all have section
782 tables, as does exec_ops. Some of these could probably
783 be eliminated. */
784
785 for (cur_sec = abfd->sections; cur_sec != NULL;
786 cur_sec = cur_sec->next)
787 {
788 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
789 continue;
790
791 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
3e43a32a
MS
792 exec_set_section_address (bfd_get_filename (abfd),
793 cur_sec->index,
30510692 794 offsets[cur_sec->index]);
2711e456
DJ
795 offsets[cur_sec->index] = 0;
796 }
797 }
c1bd25fd
DJ
798 }
799
e8289572 800 /* Remember the bfd indexes for the .text, .data, .bss and
c378eb4e 801 .rodata sections. */
e8289572
JB
802 init_objfile_sect_indices (objfile);
803}
804
31d99776
DJ
805/* Divide the file into segments, which are individual relocatable units.
806 This is the default version of the sym_fns.sym_segments function for
807 symbol readers that do not have an explicit representation of segments.
808 It assumes that object files do not have segments, and fully linked
809 files have a single segment. */
810
811struct symfile_segment_data *
812default_symfile_segments (bfd *abfd)
813{
814 int num_sections, i;
815 asection *sect;
816 struct symfile_segment_data *data;
817 CORE_ADDR low, high;
818
819 /* Relocatable files contain enough information to position each
820 loadable section independently; they should not be relocated
821 in segments. */
822 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
823 return NULL;
824
825 /* Make sure there is at least one loadable section in the file. */
826 for (sect = abfd->sections; sect != NULL; sect = sect->next)
827 {
828 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
829 continue;
830
831 break;
832 }
833 if (sect == NULL)
834 return NULL;
835
836 low = bfd_get_section_vma (abfd, sect);
837 high = low + bfd_get_section_size (sect);
838
41bf6aca 839 data = XCNEW (struct symfile_segment_data);
31d99776 840 data->num_segments = 1;
fc270c35
TT
841 data->segment_bases = XCNEW (CORE_ADDR);
842 data->segment_sizes = XCNEW (CORE_ADDR);
31d99776
DJ
843
844 num_sections = bfd_count_sections (abfd);
fc270c35 845 data->segment_info = XCNEWVEC (int, num_sections);
31d99776
DJ
846
847 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
848 {
849 CORE_ADDR vma;
850
851 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
852 continue;
853
854 vma = bfd_get_section_vma (abfd, sect);
855 if (vma < low)
856 low = vma;
857 if (vma + bfd_get_section_size (sect) > high)
858 high = vma + bfd_get_section_size (sect);
859
860 data->segment_info[i] = 1;
861 }
862
863 data->segment_bases[0] = low;
864 data->segment_sizes[0] = high - low;
865
866 return data;
867}
868
608e2dbb
TT
869/* This is a convenience function to call sym_read for OBJFILE and
870 possibly force the partial symbols to be read. */
871
872static void
873read_symbols (struct objfile *objfile, int add_flags)
874{
875 (*objfile->sf->sym_read) (objfile, add_flags);
34643a32 876 objfile->per_bfd->minsyms_read = 1;
8a92335b
JK
877
878 /* find_separate_debug_file_in_section should be called only if there is
879 single binary with no existing separate debug info file. */
880 if (!objfile_has_partial_symbols (objfile)
881 && objfile->separate_debug_objfile == NULL
882 && objfile->separate_debug_objfile_backlink == NULL)
608e2dbb
TT
883 {
884 bfd *abfd = find_separate_debug_file_in_section (objfile);
885 struct cleanup *cleanup = make_cleanup_bfd_unref (abfd);
886
887 if (abfd != NULL)
24ba069a
JK
888 {
889 /* find_separate_debug_file_in_section uses the same filename for the
890 virtual section-as-bfd like the bfd filename containing the
891 section. Therefore use also non-canonical name form for the same
892 file containing the section. */
893 symbol_file_add_separate (abfd, objfile->original_name, add_flags,
894 objfile);
895 }
608e2dbb
TT
896
897 do_cleanups (cleanup);
898 }
899 if ((add_flags & SYMFILE_NO_READ) == 0)
900 require_partial_symbols (objfile, 0);
901}
902
3d6e24f0
JB
903/* Initialize entry point information for this objfile. */
904
905static void
906init_entry_point_info (struct objfile *objfile)
907{
6ef55de7
TT
908 struct entry_info *ei = &objfile->per_bfd->ei;
909
910 if (ei->initialized)
911 return;
912 ei->initialized = 1;
913
3d6e24f0
JB
914 /* Save startup file's range of PC addresses to help blockframe.c
915 decide where the bottom of the stack is. */
916
917 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
918 {
919 /* Executable file -- record its entry point so we'll recognize
920 the startup file because it contains the entry point. */
6ef55de7
TT
921 ei->entry_point = bfd_get_start_address (objfile->obfd);
922 ei->entry_point_p = 1;
3d6e24f0
JB
923 }
924 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
925 && bfd_get_start_address (objfile->obfd) != 0)
926 {
927 /* Some shared libraries may have entry points set and be
928 runnable. There's no clear way to indicate this, so just check
929 for values other than zero. */
6ef55de7
TT
930 ei->entry_point = bfd_get_start_address (objfile->obfd);
931 ei->entry_point_p = 1;
3d6e24f0
JB
932 }
933 else
934 {
935 /* Examination of non-executable.o files. Short-circuit this stuff. */
6ef55de7 936 ei->entry_point_p = 0;
3d6e24f0
JB
937 }
938
6ef55de7 939 if (ei->entry_point_p)
3d6e24f0 940 {
53eddfa6 941 struct obj_section *osect;
6ef55de7 942 CORE_ADDR entry_point = ei->entry_point;
53eddfa6 943 int found;
3d6e24f0
JB
944
945 /* Make certain that the address points at real code, and not a
946 function descriptor. */
947 entry_point
df6d5441 948 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
3d6e24f0
JB
949 entry_point,
950 &current_target);
951
952 /* Remove any ISA markers, so that this matches entries in the
953 symbol table. */
6ef55de7 954 ei->entry_point
df6d5441 955 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
53eddfa6
TT
956
957 found = 0;
958 ALL_OBJFILE_OSECTIONS (objfile, osect)
959 {
960 struct bfd_section *sect = osect->the_bfd_section;
961
962 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
963 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
964 + bfd_get_section_size (sect)))
965 {
6ef55de7 966 ei->the_bfd_section_index
53eddfa6
TT
967 = gdb_bfd_section_index (objfile->obfd, sect);
968 found = 1;
969 break;
970 }
971 }
972
973 if (!found)
6ef55de7 974 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
3d6e24f0
JB
975 }
976}
977
c906108c
SS
978/* Process a symbol file, as either the main file or as a dynamically
979 loaded file.
980
36e4d068
JB
981 This function does not set the OBJFILE's entry-point info.
982
96baa820
JM
983 OBJFILE is where the symbols are to be read from.
984
7e8580c1
JB
985 ADDRS is the list of section load addresses. If the user has given
986 an 'add-symbol-file' command, then this is the list of offsets and
987 addresses he or she provided as arguments to the command; or, if
988 we're handling a shared library, these are the actual addresses the
989 sections are loaded at, according to the inferior's dynamic linker
990 (as gleaned by GDB's shared library code). We convert each address
991 into an offset from the section VMA's as it appears in the object
992 file, and then call the file's sym_offsets function to convert this
993 into a format-specific offset table --- a `struct section_offsets'.
96baa820 994
7eedccfa
PP
995 ADD_FLAGS encodes verbosity level, whether this is main symbol or
996 an extra symbol file such as dynamically loaded code, and wether
997 breakpoint reset should be deferred. */
c906108c 998
36e4d068
JB
999static void
1000syms_from_objfile_1 (struct objfile *objfile,
1001 struct section_addr_info *addrs,
36e4d068 1002 int add_flags)
c906108c 1003{
a39a16c4 1004 struct section_addr_info *local_addr = NULL;
c906108c 1005 struct cleanup *old_chain;
7eedccfa 1006 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 1007
8fb8eb5c 1008 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
c906108c 1009
75245b24 1010 if (objfile->sf == NULL)
36e4d068
JB
1011 {
1012 /* No symbols to load, but we still need to make sure
1013 that the section_offsets table is allocated. */
d445b2f6 1014 int num_sections = gdb_bfd_count_sections (objfile->obfd);
a7bfba49 1015 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
36e4d068
JB
1016
1017 objfile->num_sections = num_sections;
1018 objfile->section_offsets
1019 = obstack_alloc (&objfile->objfile_obstack, size);
1020 memset (objfile->section_offsets, 0, size);
1021 return;
1022 }
75245b24 1023
c906108c
SS
1024 /* Make sure that partially constructed symbol tables will be cleaned up
1025 if an error occurs during symbol reading. */
74b7792f 1026 old_chain = make_cleanup_free_objfile (objfile);
c906108c 1027
6bf667bb
DE
1028 /* If ADDRS is NULL, put together a dummy address list.
1029 We now establish the convention that an addr of zero means
c378eb4e 1030 no load address was specified. */
6bf667bb 1031 if (! addrs)
a39a16c4 1032 {
d445b2f6 1033 local_addr = alloc_section_addr_info (1);
a39a16c4
MM
1034 make_cleanup (xfree, local_addr);
1035 addrs = local_addr;
1036 }
1037
c5aa993b 1038 if (mainline)
c906108c
SS
1039 {
1040 /* We will modify the main symbol table, make sure that all its users
c5aa993b 1041 will be cleaned up if an error occurs during symbol reading. */
74b7792f 1042 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
1043
1044 /* Since no error yet, throw away the old symbol table. */
1045
1046 if (symfile_objfile != NULL)
1047 {
1048 free_objfile (symfile_objfile);
adb7f338 1049 gdb_assert (symfile_objfile == NULL);
c906108c
SS
1050 }
1051
1052 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
1053 If the user wants to get rid of them, they should do "symbol-file"
1054 without arguments first. Not sure this is the best behavior
1055 (PR 2207). */
c906108c 1056
c5aa993b 1057 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
1058 }
1059
1060 /* Convert addr into an offset rather than an absolute address.
1061 We find the lowest address of a loaded segment in the objfile,
53a5351d 1062 and assume that <addr> is where that got loaded.
c906108c 1063
53a5351d
JM
1064 We no longer warn if the lowest section is not a text segment (as
1065 happens for the PA64 port. */
6bf667bb 1066 if (addrs->num_sections > 0)
75242ef4 1067 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
1068
1069 /* Initialize symbol reading routines for this objfile, allow complaints to
1070 appear for this new file, and record how verbose to be, then do the
c378eb4e 1071 initial symbol reading for this file. */
c906108c 1072
c5aa993b 1073 (*objfile->sf->sym_init) (objfile);
7eedccfa 1074 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 1075
6bf667bb 1076 (*objfile->sf->sym_offsets) (objfile, addrs);
c906108c 1077
608e2dbb 1078 read_symbols (objfile, add_flags);
b11896a5 1079
c906108c
SS
1080 /* Discard cleanups as symbol reading was successful. */
1081
1082 discard_cleanups (old_chain);
f7545552 1083 xfree (local_addr);
c906108c
SS
1084}
1085
36e4d068
JB
1086/* Same as syms_from_objfile_1, but also initializes the objfile
1087 entry-point info. */
1088
6bf667bb 1089static void
36e4d068
JB
1090syms_from_objfile (struct objfile *objfile,
1091 struct section_addr_info *addrs,
36e4d068
JB
1092 int add_flags)
1093{
6bf667bb 1094 syms_from_objfile_1 (objfile, addrs, add_flags);
36e4d068
JB
1095 init_entry_point_info (objfile);
1096}
1097
c906108c
SS
1098/* Perform required actions after either reading in the initial
1099 symbols for a new objfile, or mapping in the symbols from a reusable
c1e56572 1100 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c5aa993b 1101
e7d52ed3
DE
1102static void
1103finish_new_objfile (struct objfile *objfile, int add_flags)
c906108c 1104{
c906108c 1105 /* If this is the main symbol file we have to clean up all users of the
c378eb4e 1106 old main symbol file. Otherwise it is sufficient to fixup all the
c906108c 1107 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1108 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1109 {
1110 /* OK, make it the "real" symbol file. */
1111 symfile_objfile = objfile;
1112
c1e56572 1113 clear_symtab_users (add_flags);
c906108c 1114 }
7eedccfa 1115 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1116 {
69de3c6a 1117 breakpoint_re_set ();
c906108c
SS
1118 }
1119
1120 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 1121 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
1122}
1123
1124/* Process a symbol file, as either the main file or as a dynamically
1125 loaded file.
1126
5417f6dc 1127 ABFD is a BFD already open on the file, as from symfile_bfd_open.
8ac244b4 1128 A new reference is acquired by this function.
7904e09f 1129
24ba069a
JK
1130 For NAME description see allocate_objfile's definition.
1131
7eedccfa
PP
1132 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1133 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f 1134
6bf667bb 1135 ADDRS is as described for syms_from_objfile_1, above.
7eedccfa 1136 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1137
63524580
JK
1138 PARENT is the original objfile if ABFD is a separate debug info file.
1139 Otherwise PARENT is NULL.
1140
c906108c 1141 Upon success, returns a pointer to the objfile that was added.
c378eb4e 1142 Upon failure, jumps back to command level (never returns). */
7eedccfa 1143
7904e09f 1144static struct objfile *
24ba069a 1145symbol_file_add_with_addrs (bfd *abfd, const char *name, int add_flags,
6bf667bb
DE
1146 struct section_addr_info *addrs,
1147 int flags, struct objfile *parent)
c906108c
SS
1148{
1149 struct objfile *objfile;
7eedccfa 1150 const int from_tty = add_flags & SYMFILE_VERBOSE;
0838fb57 1151 const int mainline = add_flags & SYMFILE_MAINLINE;
770e7fc7 1152 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
b11896a5
TT
1153 && (readnow_symbol_files
1154 || (add_flags & SYMFILE_NO_READ) == 0));
c906108c 1155
9291a0cd 1156 if (readnow_symbol_files)
b11896a5
TT
1157 {
1158 flags |= OBJF_READNOW;
1159 add_flags &= ~SYMFILE_NO_READ;
1160 }
9291a0cd 1161
5417f6dc
RM
1162 /* Give user a chance to burp if we'd be
1163 interactively wiping out any existing symbols. */
c906108c
SS
1164
1165 if ((have_full_symbols () || have_partial_symbols ())
0838fb57 1166 && mainline
c906108c 1167 && from_tty
9e2f0ad4 1168 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1169 error (_("Not confirmed."));
c906108c 1170
24ba069a
JK
1171 objfile = allocate_objfile (abfd, name,
1172 flags | (mainline ? OBJF_MAINLINE : 0));
c906108c 1173
63524580
JK
1174 if (parent)
1175 add_separate_debug_objfile (objfile, parent);
1176
78a4a9b9
AC
1177 /* We either created a new mapped symbol table, mapped an existing
1178 symbol table file which has not had initial symbol reading
c378eb4e 1179 performed, or need to read an unmapped symbol table. */
b11896a5 1180 if (should_print)
c906108c 1181 {
769d7dc4
AC
1182 if (deprecated_pre_add_symbol_hook)
1183 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1184 else
c906108c 1185 {
55333a84
DE
1186 printf_unfiltered (_("Reading symbols from %s..."), name);
1187 wrap_here ("");
1188 gdb_flush (gdb_stdout);
c906108c 1189 }
c906108c 1190 }
6bf667bb 1191 syms_from_objfile (objfile, addrs, add_flags);
c906108c
SS
1192
1193 /* We now have at least a partial symbol table. Check to see if the
1194 user requested that all symbols be read on initial access via either
1195 the gdb startup command line or on a per symbol file basis. Expand
c378eb4e 1196 all partial symbol tables for this objfile if so. */
c906108c 1197
9291a0cd 1198 if ((flags & OBJF_READNOW))
c906108c 1199 {
b11896a5 1200 if (should_print)
c906108c 1201 {
a3f17187 1202 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1203 wrap_here ("");
1204 gdb_flush (gdb_stdout);
1205 }
1206
ccefe4c4
TT
1207 if (objfile->sf)
1208 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1209 }
1210
b11896a5 1211 if (should_print && !objfile_has_symbols (objfile))
cb3c37b2
JB
1212 {
1213 wrap_here ("");
55333a84 1214 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1215 wrap_here ("");
1216 }
1217
b11896a5 1218 if (should_print)
c906108c 1219 {
769d7dc4
AC
1220 if (deprecated_post_add_symbol_hook)
1221 deprecated_post_add_symbol_hook ();
c906108c 1222 else
55333a84 1223 printf_unfiltered (_("done.\n"));
c906108c
SS
1224 }
1225
481d0f41
JB
1226 /* We print some messages regardless of whether 'from_tty ||
1227 info_verbose' is true, so make sure they go out at the right
1228 time. */
1229 gdb_flush (gdb_stdout);
1230
109f874e 1231 if (objfile->sf == NULL)
8caee43b
PP
1232 {
1233 observer_notify_new_objfile (objfile);
c378eb4e 1234 return objfile; /* No symbols. */
8caee43b 1235 }
109f874e 1236
e7d52ed3 1237 finish_new_objfile (objfile, add_flags);
c906108c 1238
06d3b283 1239 observer_notify_new_objfile (objfile);
c906108c 1240
ce7d4522 1241 bfd_cache_close_all ();
c906108c
SS
1242 return (objfile);
1243}
1244
24ba069a
JK
1245/* Add BFD as a separate debug file for OBJFILE. For NAME description
1246 see allocate_objfile's definition. */
9cce227f
TG
1247
1248void
24ba069a
JK
1249symbol_file_add_separate (bfd *bfd, const char *name, int symfile_flags,
1250 struct objfile *objfile)
9cce227f 1251{
15d123c9 1252 struct objfile *new_objfile;
089b4803
TG
1253 struct section_addr_info *sap;
1254 struct cleanup *my_cleanup;
1255
1256 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1257 because sections of BFD may not match sections of OBJFILE and because
1258 vma may have been modified by tools such as prelink. */
1259 sap = build_section_addr_info_from_objfile (objfile);
1260 my_cleanup = make_cleanup_free_section_addr_info (sap);
9cce227f 1261
6bf667bb 1262 new_objfile = symbol_file_add_with_addrs
24ba069a 1263 (bfd, name, symfile_flags, sap,
9cce227f 1264 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
63524580
JK
1265 | OBJF_USERLOADED),
1266 objfile);
089b4803
TG
1267
1268 do_cleanups (my_cleanup);
9cce227f 1269}
7904e09f 1270
eb4556d7
JB
1271/* Process the symbol file ABFD, as either the main file or as a
1272 dynamically loaded file.
6bf667bb 1273 See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1274
eb4556d7 1275struct objfile *
24ba069a 1276symbol_file_add_from_bfd (bfd *abfd, const char *name, int add_flags,
eb4556d7 1277 struct section_addr_info *addrs,
63524580 1278 int flags, struct objfile *parent)
eb4556d7 1279{
24ba069a
JK
1280 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1281 parent);
eb4556d7
JB
1282}
1283
7904e09f 1284/* Process a symbol file, as either the main file or as a dynamically
6bf667bb 1285 loaded file. See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1286
7904e09f 1287struct objfile *
69150c3d
JK
1288symbol_file_add (const char *name, int add_flags,
1289 struct section_addr_info *addrs, int flags)
7904e09f 1290{
8ac244b4
TT
1291 bfd *bfd = symfile_bfd_open (name);
1292 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1293 struct objfile *objf;
1294
24ba069a 1295 objf = symbol_file_add_from_bfd (bfd, name, add_flags, addrs, flags, NULL);
8ac244b4
TT
1296 do_cleanups (cleanup);
1297 return objf;
7904e09f
JB
1298}
1299
d7db6da9
FN
1300/* Call symbol_file_add() with default values and update whatever is
1301 affected by the loading of a new main().
1302 Used when the file is supplied in the gdb command line
1303 and by some targets with special loading requirements.
1304 The auxiliary function, symbol_file_add_main_1(), has the flags
1305 argument for the switches that can only be specified in the symbol_file
1306 command itself. */
5417f6dc 1307
1adeb98a 1308void
69150c3d 1309symbol_file_add_main (const char *args, int from_tty)
1adeb98a 1310{
d7db6da9
FN
1311 symbol_file_add_main_1 (args, from_tty, 0);
1312}
1313
1314static void
69150c3d 1315symbol_file_add_main_1 (const char *args, int from_tty, int flags)
d7db6da9 1316{
7dcd53a0
TT
1317 const int add_flags = (current_inferior ()->symfile_flags
1318 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1319
7eedccfa 1320 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1321
d7db6da9
FN
1322 /* Getting new symbols may change our opinion about
1323 what is frameless. */
1324 reinit_frame_cache ();
1325
7dcd53a0
TT
1326 if ((flags & SYMFILE_NO_READ) == 0)
1327 set_initial_language ();
1adeb98a
FN
1328}
1329
1330void
1331symbol_file_clear (int from_tty)
1332{
1333 if ((have_full_symbols () || have_partial_symbols ())
1334 && from_tty
0430b0d6
AS
1335 && (symfile_objfile
1336 ? !query (_("Discard symbol table from `%s'? "),
4262abfb 1337 objfile_name (symfile_objfile))
0430b0d6 1338 : !query (_("Discard symbol table? "))))
8a3fe4f8 1339 error (_("Not confirmed."));
1adeb98a 1340
0133421a
JK
1341 /* solib descriptors may have handles to objfiles. Wipe them before their
1342 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1343 no_shared_libraries (NULL, from_tty);
1344
0133421a
JK
1345 free_all_objfiles ();
1346
adb7f338 1347 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1348 if (from_tty)
1349 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1350}
1351
5b5d99cf 1352static int
287ccc17 1353separate_debug_file_exists (const char *name, unsigned long crc,
32a0e547 1354 struct objfile *parent_objfile)
5b5d99cf 1355{
904578ed
JK
1356 unsigned long file_crc;
1357 int file_crc_p;
f1838a98 1358 bfd *abfd;
32a0e547 1359 struct stat parent_stat, abfd_stat;
904578ed 1360 int verified_as_different;
32a0e547
JK
1361
1362 /* Find a separate debug info file as if symbols would be present in
1363 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1364 section can contain just the basename of PARENT_OBJFILE without any
1365 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
c378eb4e 1366 the separate debug infos with the same basename can exist. */
32a0e547 1367
4262abfb 1368 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
32a0e547 1369 return 0;
5b5d99cf 1370
2938e6cf 1371 abfd = gdb_bfd_open (name, gnutarget, -1);
f1838a98
UW
1372
1373 if (!abfd)
5b5d99cf
JB
1374 return 0;
1375
0ba1096a 1376 /* Verify symlinks were not the cause of filename_cmp name difference above.
32a0e547
JK
1377
1378 Some operating systems, e.g. Windows, do not provide a meaningful
1379 st_ino; they always set it to zero. (Windows does provide a
0a93529c
GB
1380 meaningful st_dev.) Files accessed from gdbservers that do not
1381 support the vFile:fstat packet will also have st_ino set to zero.
1382 Do not indicate a duplicate library in either case. While there
1383 is no guarantee that a system that provides meaningful inode
1384 numbers will never set st_ino to zero, this is merely an
1385 optimization, so we do not need to worry about false negatives. */
32a0e547
JK
1386
1387 if (bfd_stat (abfd, &abfd_stat) == 0
904578ed
JK
1388 && abfd_stat.st_ino != 0
1389 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
32a0e547 1390 {
904578ed
JK
1391 if (abfd_stat.st_dev == parent_stat.st_dev
1392 && abfd_stat.st_ino == parent_stat.st_ino)
1393 {
cbb099e8 1394 gdb_bfd_unref (abfd);
904578ed
JK
1395 return 0;
1396 }
1397 verified_as_different = 1;
32a0e547 1398 }
904578ed
JK
1399 else
1400 verified_as_different = 0;
32a0e547 1401
dccee2de 1402 file_crc_p = gdb_bfd_crc (abfd, &file_crc);
5b5d99cf 1403
cbb099e8 1404 gdb_bfd_unref (abfd);
5b5d99cf 1405
904578ed
JK
1406 if (!file_crc_p)
1407 return 0;
1408
287ccc17
JK
1409 if (crc != file_crc)
1410 {
dccee2de
TT
1411 unsigned long parent_crc;
1412
0a93529c
GB
1413 /* If the files could not be verified as different with
1414 bfd_stat then we need to calculate the parent's CRC
1415 to verify whether the files are different or not. */
904578ed 1416
dccee2de 1417 if (!verified_as_different)
904578ed 1418 {
dccee2de 1419 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
904578ed
JK
1420 return 0;
1421 }
1422
dccee2de 1423 if (verified_as_different || parent_crc != file_crc)
904578ed
JK
1424 warning (_("the debug information found in \"%s\""
1425 " does not match \"%s\" (CRC mismatch).\n"),
4262abfb 1426 name, objfile_name (parent_objfile));
904578ed 1427
287ccc17
JK
1428 return 0;
1429 }
1430
1431 return 1;
5b5d99cf
JB
1432}
1433
aa28a74e 1434char *debug_file_directory = NULL;
920d2a44
AC
1435static void
1436show_debug_file_directory (struct ui_file *file, int from_tty,
1437 struct cmd_list_element *c, const char *value)
1438{
3e43a32a
MS
1439 fprintf_filtered (file,
1440 _("The directory where separate debug "
1441 "symbols are searched for is \"%s\".\n"),
920d2a44
AC
1442 value);
1443}
5b5d99cf
JB
1444
1445#if ! defined (DEBUG_SUBDIRECTORY)
1446#define DEBUG_SUBDIRECTORY ".debug"
1447#endif
1448
1db33378
PP
1449/* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1450 where the original file resides (may not be the same as
1451 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
7edbb660
DE
1452 looking for. CANON_DIR is the "realpath" form of DIR.
1453 DIR must contain a trailing '/'.
1454 Returns the path of the file with separate debug info, of NULL. */
1db33378
PP
1455
1456static char *
1457find_separate_debug_file (const char *dir,
1458 const char *canon_dir,
1459 const char *debuglink,
1460 unsigned long crc32, struct objfile *objfile)
9cce227f 1461{
1db33378
PP
1462 char *debugdir;
1463 char *debugfile;
9cce227f 1464 int i;
e4ab2fad
JK
1465 VEC (char_ptr) *debugdir_vec;
1466 struct cleanup *back_to;
1467 int ix;
5b5d99cf 1468
1db33378 1469 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1ffa32ee 1470 i = strlen (dir);
1db33378
PP
1471 if (canon_dir != NULL && strlen (canon_dir) > i)
1472 i = strlen (canon_dir);
1ffa32ee 1473
25522fae
JK
1474 debugfile = xmalloc (strlen (debug_file_directory) + 1
1475 + i
1476 + strlen (DEBUG_SUBDIRECTORY)
1477 + strlen ("/")
1db33378 1478 + strlen (debuglink)
25522fae 1479 + 1);
5b5d99cf
JB
1480
1481 /* First try in the same directory as the original file. */
1482 strcpy (debugfile, dir);
1db33378 1483 strcat (debugfile, debuglink);
5b5d99cf 1484
32a0e547 1485 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1486 return debugfile;
5417f6dc 1487
5b5d99cf
JB
1488 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1489 strcpy (debugfile, dir);
1490 strcat (debugfile, DEBUG_SUBDIRECTORY);
1491 strcat (debugfile, "/");
1db33378 1492 strcat (debugfile, debuglink);
5b5d99cf 1493
32a0e547 1494 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1495 return debugfile;
5417f6dc 1496
24ddea62 1497 /* Then try in the global debugfile directories.
f888f159 1498
24ddea62
JK
1499 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1500 cause "/..." lookups. */
5417f6dc 1501
e4ab2fad
JK
1502 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1503 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
24ddea62 1504
e4ab2fad
JK
1505 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1506 {
1507 strcpy (debugfile, debugdir);
aa28a74e 1508 strcat (debugfile, "/");
24ddea62 1509 strcat (debugfile, dir);
1db33378 1510 strcat (debugfile, debuglink);
aa28a74e 1511
32a0e547 1512 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1513 {
1514 do_cleanups (back_to);
1515 return debugfile;
1516 }
24ddea62
JK
1517
1518 /* If the file is in the sysroot, try using its base path in the
1519 global debugfile directory. */
1db33378
PP
1520 if (canon_dir != NULL
1521 && filename_ncmp (canon_dir, gdb_sysroot,
0ba1096a 1522 strlen (gdb_sysroot)) == 0
1db33378 1523 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
24ddea62 1524 {
e4ab2fad 1525 strcpy (debugfile, debugdir);
1db33378 1526 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
24ddea62 1527 strcat (debugfile, "/");
1db33378 1528 strcat (debugfile, debuglink);
24ddea62 1529
32a0e547 1530 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1531 {
1532 do_cleanups (back_to);
1533 return debugfile;
1534 }
24ddea62 1535 }
aa28a74e 1536 }
f888f159 1537
e4ab2fad 1538 do_cleanups (back_to);
25522fae 1539 xfree (debugfile);
1db33378
PP
1540 return NULL;
1541}
1542
7edbb660 1543/* Modify PATH to contain only "[/]directory/" part of PATH.
1db33378
PP
1544 If there were no directory separators in PATH, PATH will be empty
1545 string on return. */
1546
1547static void
1548terminate_after_last_dir_separator (char *path)
1549{
1550 int i;
1551
1552 /* Strip off the final filename part, leaving the directory name,
1553 followed by a slash. The directory can be relative or absolute. */
1554 for (i = strlen(path) - 1; i >= 0; i--)
1555 if (IS_DIR_SEPARATOR (path[i]))
1556 break;
1557
1558 /* If I is -1 then no directory is present there and DIR will be "". */
1559 path[i + 1] = '\0';
1560}
1561
1562/* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1563 Returns pathname, or NULL. */
1564
1565char *
1566find_separate_debug_file_by_debuglink (struct objfile *objfile)
1567{
1568 char *debuglink;
1569 char *dir, *canon_dir;
1570 char *debugfile;
1571 unsigned long crc32;
1572 struct cleanup *cleanups;
1573
cc0ea93c 1574 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1db33378
PP
1575
1576 if (debuglink == NULL)
1577 {
1578 /* There's no separate debug info, hence there's no way we could
1579 load it => no warning. */
1580 return NULL;
1581 }
1582
71bdabee 1583 cleanups = make_cleanup (xfree, debuglink);
4262abfb 1584 dir = xstrdup (objfile_name (objfile));
71bdabee 1585 make_cleanup (xfree, dir);
1db33378
PP
1586 terminate_after_last_dir_separator (dir);
1587 canon_dir = lrealpath (dir);
1588
1589 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1590 crc32, objfile);
1591 xfree (canon_dir);
1592
1593 if (debugfile == NULL)
1594 {
1db33378
PP
1595 /* For PR gdb/9538, try again with realpath (if different from the
1596 original). */
1597
1598 struct stat st_buf;
1599
4262abfb
JK
1600 if (lstat (objfile_name (objfile), &st_buf) == 0
1601 && S_ISLNK (st_buf.st_mode))
1db33378
PP
1602 {
1603 char *symlink_dir;
1604
4262abfb 1605 symlink_dir = lrealpath (objfile_name (objfile));
1db33378
PP
1606 if (symlink_dir != NULL)
1607 {
1608 make_cleanup (xfree, symlink_dir);
1609 terminate_after_last_dir_separator (symlink_dir);
1610 if (strcmp (dir, symlink_dir) != 0)
1611 {
1612 /* Different directory, so try using it. */
1613 debugfile = find_separate_debug_file (symlink_dir,
1614 symlink_dir,
1615 debuglink,
1616 crc32,
1617 objfile);
1618 }
1619 }
1620 }
1db33378 1621 }
aa28a74e 1622
1db33378 1623 do_cleanups (cleanups);
25522fae 1624 return debugfile;
5b5d99cf
JB
1625}
1626
c906108c
SS
1627/* This is the symbol-file command. Read the file, analyze its
1628 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1629 the command is rather bizarre:
1630
1631 1. The function buildargv implements various quoting conventions
1632 which are undocumented and have little or nothing in common with
1633 the way things are quoted (or not quoted) elsewhere in GDB.
1634
1635 2. Options are used, which are not generally used in GDB (perhaps
1636 "set mapped on", "set readnow on" would be better)
1637
1638 3. The order of options matters, which is contrary to GNU
c906108c
SS
1639 conventions (because it is confusing and inconvenient). */
1640
1641void
fba45db2 1642symbol_file_command (char *args, int from_tty)
c906108c 1643{
c906108c
SS
1644 dont_repeat ();
1645
1646 if (args == NULL)
1647 {
1adeb98a 1648 symbol_file_clear (from_tty);
c906108c
SS
1649 }
1650 else
1651 {
d1a41061 1652 char **argv = gdb_buildargv (args);
cb2f3a29
MK
1653 int flags = OBJF_USERLOADED;
1654 struct cleanup *cleanups;
1655 char *name = NULL;
1656
7a292a7a 1657 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1658 while (*argv != NULL)
1659 {
78a4a9b9
AC
1660 if (strcmp (*argv, "-readnow") == 0)
1661 flags |= OBJF_READNOW;
1662 else if (**argv == '-')
8a3fe4f8 1663 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1664 else
1665 {
cb2f3a29 1666 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1667 name = *argv;
78a4a9b9 1668 }
cb2f3a29 1669
c906108c
SS
1670 argv++;
1671 }
1672
1673 if (name == NULL)
cb2f3a29
MK
1674 error (_("no symbol file name was specified"));
1675
c906108c
SS
1676 do_cleanups (cleanups);
1677 }
1678}
1679
1680/* Set the initial language.
1681
cb2f3a29
MK
1682 FIXME: A better solution would be to record the language in the
1683 psymtab when reading partial symbols, and then use it (if known) to
1684 set the language. This would be a win for formats that encode the
1685 language in an easily discoverable place, such as DWARF. For
1686 stabs, we can jump through hoops looking for specially named
1687 symbols or try to intuit the language from the specific type of
1688 stabs we find, but we can't do that until later when we read in
1689 full symbols. */
c906108c 1690
8b60591b 1691void
fba45db2 1692set_initial_language (void)
c906108c 1693{
9e6c82ad 1694 enum language lang = main_language ();
c906108c 1695
9e6c82ad 1696 if (lang == language_unknown)
01f8c46d 1697 {
bf6d8a91 1698 char *name = main_name ();
d12307c1 1699 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
f888f159 1700
bf6d8a91
TT
1701 if (sym != NULL)
1702 lang = SYMBOL_LANGUAGE (sym);
01f8c46d 1703 }
cb2f3a29 1704
ccefe4c4
TT
1705 if (lang == language_unknown)
1706 {
1707 /* Make C the default language */
1708 lang = language_c;
c906108c 1709 }
ccefe4c4
TT
1710
1711 set_language (lang);
1712 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1713}
1714
cb2f3a29
MK
1715/* Open the file specified by NAME and hand it off to BFD for
1716 preliminary analysis. Return a newly initialized bfd *, which
1717 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1718 absolute). In case of trouble, error() is called. */
c906108c
SS
1719
1720bfd *
97a41605 1721symfile_bfd_open (const char *name)
c906108c
SS
1722{
1723 bfd *sym_bfd;
97a41605
GB
1724 int desc = -1;
1725 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c 1726
97a41605 1727 if (!is_target_filename (name))
f1838a98 1728 {
97a41605 1729 char *expanded_name, *absolute_name;
f1838a98 1730
97a41605 1731 expanded_name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c 1732
97a41605
GB
1733 /* Look down path for it, allocate 2nd new malloc'd copy. */
1734 desc = openp (getenv ("PATH"),
1735 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1736 expanded_name, O_RDONLY | O_BINARY, &absolute_name);
608506ed 1737#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
97a41605
GB
1738 if (desc < 0)
1739 {
1740 char *exename = alloca (strlen (expanded_name) + 5);
433759f7 1741
97a41605
GB
1742 strcat (strcpy (exename, expanded_name), ".exe");
1743 desc = openp (getenv ("PATH"),
1744 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1745 exename, O_RDONLY | O_BINARY, &absolute_name);
1746 }
c906108c 1747#endif
97a41605
GB
1748 if (desc < 0)
1749 {
1750 make_cleanup (xfree, expanded_name);
1751 perror_with_name (expanded_name);
1752 }
cb2f3a29 1753
97a41605
GB
1754 xfree (expanded_name);
1755 make_cleanup (xfree, absolute_name);
1756 name = absolute_name;
1757 }
c906108c 1758
1c00ec6b 1759 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
c906108c 1760 if (!sym_bfd)
faab9922
JK
1761 error (_("`%s': can't open to read symbols: %s."), name,
1762 bfd_errmsg (bfd_get_error ()));
97a41605
GB
1763
1764 if (!gdb_bfd_has_target_filename (sym_bfd))
1765 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1766
1767 if (!bfd_check_format (sym_bfd, bfd_object))
1768 {
f9a062ff 1769 make_cleanup_bfd_unref (sym_bfd);
f1838a98 1770 error (_("`%s': can't read symbols: %s."), name,
c906108c
SS
1771 bfd_errmsg (bfd_get_error ()));
1772 }
cb2f3a29 1773
faab9922
JK
1774 do_cleanups (back_to);
1775
cb2f3a29 1776 return sym_bfd;
c906108c
SS
1777}
1778
cb2f3a29
MK
1779/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1780 the section was not found. */
1781
0e931cf0
JB
1782int
1783get_section_index (struct objfile *objfile, char *section_name)
1784{
1785 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1786
0e931cf0
JB
1787 if (sect)
1788 return sect->index;
1789 else
1790 return -1;
1791}
1792
c256e171
DE
1793/* Link SF into the global symtab_fns list.
1794 FLAVOUR is the file format that SF handles.
1795 Called on startup by the _initialize routine in each object file format
1796 reader, to register information about each format the reader is prepared
1797 to handle. */
c906108c
SS
1798
1799void
c256e171 1800add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
c906108c 1801{
c256e171
DE
1802 registered_sym_fns fns = { flavour, sf };
1803
1804 VEC_safe_push (registered_sym_fns, symtab_fns, &fns);
c906108c
SS
1805}
1806
cb2f3a29
MK
1807/* Initialize OBJFILE to read symbols from its associated BFD. It
1808 either returns or calls error(). The result is an initialized
1809 struct sym_fns in the objfile structure, that contains cached
1810 information about the symbol file. */
c906108c 1811
00b5771c 1812static const struct sym_fns *
31d99776 1813find_sym_fns (bfd *abfd)
c906108c 1814{
c256e171 1815 registered_sym_fns *rsf;
31d99776 1816 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
00b5771c 1817 int i;
c906108c 1818
75245b24
MS
1819 if (our_flavour == bfd_target_srec_flavour
1820 || our_flavour == bfd_target_ihex_flavour
1821 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1822 return NULL; /* No symbols. */
75245b24 1823
c256e171
DE
1824 for (i = 0; VEC_iterate (registered_sym_fns, symtab_fns, i, rsf); ++i)
1825 if (our_flavour == rsf->sym_flavour)
1826 return rsf->sym_fns;
cb2f3a29 1827
8a3fe4f8 1828 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1829 bfd_get_target (abfd));
c906108c
SS
1830}
1831\f
cb2f3a29 1832
c906108c
SS
1833/* This function runs the load command of our current target. */
1834
1835static void
fba45db2 1836load_command (char *arg, int from_tty)
c906108c 1837{
5b3fca71
TT
1838 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1839
e5cc9f32
JB
1840 dont_repeat ();
1841
4487aabf
PA
1842 /* The user might be reloading because the binary has changed. Take
1843 this opportunity to check. */
1844 reopen_exec_file ();
1845 reread_symbols ();
1846
c906108c 1847 if (arg == NULL)
1986bccd
AS
1848 {
1849 char *parg;
1850 int count = 0;
1851
1852 parg = arg = get_exec_file (1);
1853
1854 /* Count how many \ " ' tab space there are in the name. */
1855 while ((parg = strpbrk (parg, "\\\"'\t ")))
1856 {
1857 parg++;
1858 count++;
1859 }
1860
1861 if (count)
1862 {
1863 /* We need to quote this string so buildargv can pull it apart. */
1864 char *temp = xmalloc (strlen (arg) + count + 1 );
1865 char *ptemp = temp;
1866 char *prev;
1867
1868 make_cleanup (xfree, temp);
1869
1870 prev = parg = arg;
1871 while ((parg = strpbrk (parg, "\\\"'\t ")))
1872 {
1873 strncpy (ptemp, prev, parg - prev);
1874 ptemp += parg - prev;
1875 prev = parg++;
1876 *ptemp++ = '\\';
1877 }
1878 strcpy (ptemp, prev);
1879
1880 arg = temp;
1881 }
1882 }
1883
c906108c 1884 target_load (arg, from_tty);
2889e661
JB
1885
1886 /* After re-loading the executable, we don't really know which
1887 overlays are mapped any more. */
1888 overlay_cache_invalid = 1;
5b3fca71
TT
1889
1890 do_cleanups (cleanup);
c906108c
SS
1891}
1892
1893/* This version of "load" should be usable for any target. Currently
1894 it is just used for remote targets, not inftarg.c or core files,
1895 on the theory that only in that case is it useful.
1896
1897 Avoiding xmodem and the like seems like a win (a) because we don't have
1898 to worry about finding it, and (b) On VMS, fork() is very slow and so
1899 we don't want to run a subprocess. On the other hand, I'm not sure how
1900 performance compares. */
917317f4 1901
917317f4
JM
1902static int validate_download = 0;
1903
e4f9b4d5
MS
1904/* Callback service function for generic_load (bfd_map_over_sections). */
1905
1906static void
1907add_section_size_callback (bfd *abfd, asection *asec, void *data)
1908{
1909 bfd_size_type *sum = data;
1910
2c500098 1911 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1912}
1913
1914/* Opaque data for load_section_callback. */
1915struct load_section_data {
f698ca8e 1916 CORE_ADDR load_offset;
a76d924d
DJ
1917 struct load_progress_data *progress_data;
1918 VEC(memory_write_request_s) *requests;
1919};
1920
1921/* Opaque data for load_progress. */
1922struct load_progress_data {
1923 /* Cumulative data. */
e4f9b4d5
MS
1924 unsigned long write_count;
1925 unsigned long data_count;
1926 bfd_size_type total_size;
a76d924d
DJ
1927};
1928
1929/* Opaque data for load_progress for a single section. */
1930struct load_progress_section_data {
1931 struct load_progress_data *cumulative;
cf7a04e8 1932
a76d924d 1933 /* Per-section data. */
cf7a04e8
DJ
1934 const char *section_name;
1935 ULONGEST section_sent;
1936 ULONGEST section_size;
1937 CORE_ADDR lma;
1938 gdb_byte *buffer;
e4f9b4d5
MS
1939};
1940
a76d924d 1941/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1942
1943static void
1944load_progress (ULONGEST bytes, void *untyped_arg)
1945{
a76d924d
DJ
1946 struct load_progress_section_data *args = untyped_arg;
1947 struct load_progress_data *totals;
1948
1949 if (args == NULL)
1950 /* Writing padding data. No easy way to get at the cumulative
1951 stats, so just ignore this. */
1952 return;
1953
1954 totals = args->cumulative;
1955
1956 if (bytes == 0 && args->section_sent == 0)
1957 {
1958 /* The write is just starting. Let the user know we've started
1959 this section. */
79a45e25 1960 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
5af949e3 1961 args->section_name, hex_string (args->section_size),
f5656ead 1962 paddress (target_gdbarch (), args->lma));
a76d924d
DJ
1963 return;
1964 }
cf7a04e8
DJ
1965
1966 if (validate_download)
1967 {
1968 /* Broken memories and broken monitors manifest themselves here
1969 when bring new computers to life. This doubles already slow
1970 downloads. */
1971 /* NOTE: cagney/1999-10-18: A more efficient implementation
1972 might add a verify_memory() method to the target vector and
1973 then use that. remote.c could implement that method using
1974 the ``qCRC'' packet. */
1975 gdb_byte *check = xmalloc (bytes);
1976 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1977
1978 if (target_read_memory (args->lma, check, bytes) != 0)
5af949e3 1979 error (_("Download verify read failed at %s"),
f5656ead 1980 paddress (target_gdbarch (), args->lma));
cf7a04e8 1981 if (memcmp (args->buffer, check, bytes) != 0)
5af949e3 1982 error (_("Download verify compare failed at %s"),
f5656ead 1983 paddress (target_gdbarch (), args->lma));
cf7a04e8
DJ
1984 do_cleanups (verify_cleanups);
1985 }
a76d924d 1986 totals->data_count += bytes;
cf7a04e8
DJ
1987 args->lma += bytes;
1988 args->buffer += bytes;
a76d924d 1989 totals->write_count += 1;
cf7a04e8 1990 args->section_sent += bytes;
522002f9 1991 if (check_quit_flag ()
cf7a04e8
DJ
1992 || (deprecated_ui_load_progress_hook != NULL
1993 && deprecated_ui_load_progress_hook (args->section_name,
1994 args->section_sent)))
1995 error (_("Canceled the download"));
1996
1997 if (deprecated_show_load_progress != NULL)
1998 deprecated_show_load_progress (args->section_name,
1999 args->section_sent,
2000 args->section_size,
a76d924d
DJ
2001 totals->data_count,
2002 totals->total_size);
cf7a04e8
DJ
2003}
2004
e4f9b4d5
MS
2005/* Callback service function for generic_load (bfd_map_over_sections). */
2006
2007static void
2008load_section_callback (bfd *abfd, asection *asec, void *data)
2009{
a76d924d 2010 struct memory_write_request *new_request;
e4f9b4d5 2011 struct load_section_data *args = data;
a76d924d 2012 struct load_progress_section_data *section_data;
cf7a04e8
DJ
2013 bfd_size_type size = bfd_get_section_size (asec);
2014 gdb_byte *buffer;
cf7a04e8 2015 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 2016
cf7a04e8
DJ
2017 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2018 return;
e4f9b4d5 2019
cf7a04e8
DJ
2020 if (size == 0)
2021 return;
e4f9b4d5 2022
a76d924d
DJ
2023 new_request = VEC_safe_push (memory_write_request_s,
2024 args->requests, NULL);
2025 memset (new_request, 0, sizeof (struct memory_write_request));
2026 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
2027 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
3e43a32a
MS
2028 new_request->end = new_request->begin + size; /* FIXME Should size
2029 be in instead? */
a76d924d
DJ
2030 new_request->data = xmalloc (size);
2031 new_request->baton = section_data;
cf7a04e8 2032
a76d924d 2033 buffer = new_request->data;
cf7a04e8 2034
a76d924d
DJ
2035 section_data->cumulative = args->progress_data;
2036 section_data->section_name = sect_name;
2037 section_data->section_size = size;
2038 section_data->lma = new_request->begin;
2039 section_data->buffer = buffer;
cf7a04e8
DJ
2040
2041 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
2042}
2043
2044/* Clean up an entire memory request vector, including load
2045 data and progress records. */
cf7a04e8 2046
a76d924d
DJ
2047static void
2048clear_memory_write_data (void *arg)
2049{
2050 VEC(memory_write_request_s) **vec_p = arg;
2051 VEC(memory_write_request_s) *vec = *vec_p;
2052 int i;
2053 struct memory_write_request *mr;
cf7a04e8 2054
a76d924d
DJ
2055 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2056 {
2057 xfree (mr->data);
2058 xfree (mr->baton);
2059 }
2060 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
2061}
2062
c906108c 2063void
9cbe5fff 2064generic_load (const char *args, int from_tty)
c906108c 2065{
c906108c 2066 bfd *loadfile_bfd;
2b71414d 2067 struct timeval start_time, end_time;
917317f4 2068 char *filename;
1986bccd 2069 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 2070 struct load_section_data cbdata;
a76d924d 2071 struct load_progress_data total_progress;
79a45e25 2072 struct ui_out *uiout = current_uiout;
a76d924d 2073
e4f9b4d5 2074 CORE_ADDR entry;
1986bccd 2075 char **argv;
e4f9b4d5 2076
a76d924d
DJ
2077 memset (&cbdata, 0, sizeof (cbdata));
2078 memset (&total_progress, 0, sizeof (total_progress));
2079 cbdata.progress_data = &total_progress;
2080
2081 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 2082
d1a41061
PP
2083 if (args == NULL)
2084 error_no_arg (_("file to load"));
1986bccd 2085
d1a41061 2086 argv = gdb_buildargv (args);
1986bccd
AS
2087 make_cleanup_freeargv (argv);
2088
2089 filename = tilde_expand (argv[0]);
2090 make_cleanup (xfree, filename);
2091
2092 if (argv[1] != NULL)
917317f4 2093 {
f698ca8e 2094 const char *endptr;
ba5f2f8a 2095
f698ca8e 2096 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
1986bccd
AS
2097
2098 /* If the last word was not a valid number then
2099 treat it as a file name with spaces in. */
2100 if (argv[1] == endptr)
2101 error (_("Invalid download offset:%s."), argv[1]);
2102
2103 if (argv[2] != NULL)
2104 error (_("Too many parameters."));
917317f4 2105 }
c906108c 2106
c378eb4e 2107 /* Open the file for loading. */
1c00ec6b 2108 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
c906108c
SS
2109 if (loadfile_bfd == NULL)
2110 {
2111 perror_with_name (filename);
2112 return;
2113 }
917317f4 2114
f9a062ff 2115 make_cleanup_bfd_unref (loadfile_bfd);
c906108c 2116
c5aa993b 2117 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 2118 {
8a3fe4f8 2119 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
2120 bfd_errmsg (bfd_get_error ()));
2121 }
c5aa993b 2122
5417f6dc 2123 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
2124 (void *) &total_progress.total_size);
2125
2126 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 2127
2b71414d 2128 gettimeofday (&start_time, NULL);
c906108c 2129
a76d924d
DJ
2130 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2131 load_progress) != 0)
2132 error (_("Load failed"));
c906108c 2133
2b71414d 2134 gettimeofday (&end_time, NULL);
ba5f2f8a 2135
e4f9b4d5 2136 entry = bfd_get_start_address (loadfile_bfd);
8c2b9656 2137 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
e4f9b4d5 2138 ui_out_text (uiout, "Start address ");
f5656ead 2139 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch (), entry));
e4f9b4d5 2140 ui_out_text (uiout, ", load size ");
a76d924d 2141 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 2142 ui_out_text (uiout, "\n");
e4f9b4d5
MS
2143 /* We were doing this in remote-mips.c, I suspect it is right
2144 for other targets too. */
fb14de7b 2145 regcache_write_pc (get_current_regcache (), entry);
c906108c 2146
38963c97
DJ
2147 /* Reset breakpoints, now that we have changed the load image. For
2148 instance, breakpoints may have been set (or reset, by
2149 post_create_inferior) while connected to the target but before we
2150 loaded the program. In that case, the prologue analyzer could
2151 have read instructions from the target to find the right
2152 breakpoint locations. Loading has changed the contents of that
2153 memory. */
2154
2155 breakpoint_re_set ();
2156
7ca9f392
AC
2157 /* FIXME: are we supposed to call symbol_file_add or not? According
2158 to a comment from remote-mips.c (where a call to symbol_file_add
2159 was commented out), making the call confuses GDB if more than one
2160 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 2161 others don't (or didn't - perhaps they have all been deleted). */
c906108c 2162
a76d924d
DJ
2163 print_transfer_performance (gdb_stdout, total_progress.data_count,
2164 total_progress.write_count,
2165 &start_time, &end_time);
c906108c
SS
2166
2167 do_cleanups (old_cleanups);
2168}
2169
c378eb4e 2170/* Report how fast the transfer went. */
c906108c 2171
917317f4 2172void
d9fcf2fb 2173print_transfer_performance (struct ui_file *stream,
917317f4
JM
2174 unsigned long data_count,
2175 unsigned long write_count,
2b71414d
DJ
2176 const struct timeval *start_time,
2177 const struct timeval *end_time)
917317f4 2178{
9f43d28c 2179 ULONGEST time_count;
79a45e25 2180 struct ui_out *uiout = current_uiout;
2b71414d
DJ
2181
2182 /* Compute the elapsed time in milliseconds, as a tradeoff between
2183 accuracy and overflow. */
2184 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2185 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2186
8b93c638
JM
2187 ui_out_text (uiout, "Transfer rate: ");
2188 if (time_count > 0)
2189 {
9f43d28c
DJ
2190 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2191
2192 if (ui_out_is_mi_like_p (uiout))
2193 {
2194 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2195 ui_out_text (uiout, " bits/sec");
2196 }
2197 else if (rate < 1024)
2198 {
2199 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2200 ui_out_text (uiout, " bytes/sec");
2201 }
2202 else
2203 {
2204 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2205 ui_out_text (uiout, " KB/sec");
2206 }
8b93c638
JM
2207 }
2208 else
2209 {
ba5f2f8a 2210 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 2211 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
2212 }
2213 if (write_count > 0)
2214 {
2215 ui_out_text (uiout, ", ");
ba5f2f8a 2216 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
2217 ui_out_text (uiout, " bytes/write");
2218 }
2219 ui_out_text (uiout, ".\n");
c906108c
SS
2220}
2221
2222/* This function allows the addition of incrementally linked object files.
2223 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2224/* Note: ezannoni 2000-04-13 This function/command used to have a
2225 special case syntax for the rombug target (Rombug is the boot
2226 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2227 rombug case, the user doesn't need to supply a text address,
2228 instead a call to target_link() (in target.c) would supply the
c378eb4e 2229 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2230
c906108c 2231static void
fba45db2 2232add_symbol_file_command (char *args, int from_tty)
c906108c 2233{
5af949e3 2234 struct gdbarch *gdbarch = get_current_arch ();
db162d44 2235 char *filename = NULL;
d03de421 2236 int flags = OBJF_USERLOADED | OBJF_SHARED;
c906108c 2237 char *arg;
db162d44 2238 int section_index = 0;
2acceee2
JM
2239 int argcnt = 0;
2240 int sec_num = 0;
2241 int i;
db162d44
EZ
2242 int expecting_sec_name = 0;
2243 int expecting_sec_addr = 0;
5b96932b 2244 char **argv;
76ad5e1e 2245 struct objfile *objf;
db162d44 2246
a39a16c4 2247 struct sect_opt
2acceee2 2248 {
2acceee2
JM
2249 char *name;
2250 char *value;
a39a16c4 2251 };
db162d44 2252
a39a16c4
MM
2253 struct section_addr_info *section_addrs;
2254 struct sect_opt *sect_opts = NULL;
2255 size_t num_sect_opts = 0;
3017564a 2256 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2257
a39a16c4 2258 num_sect_opts = 16;
5417f6dc 2259 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
2260 * sizeof (struct sect_opt));
2261
c906108c
SS
2262 dont_repeat ();
2263
2264 if (args == NULL)
8a3fe4f8 2265 error (_("add-symbol-file takes a file name and an address"));
c906108c 2266
d1a41061 2267 argv = gdb_buildargv (args);
5b96932b 2268 make_cleanup_freeargv (argv);
db162d44 2269
5b96932b
AS
2270 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2271 {
c378eb4e 2272 /* Process the argument. */
db162d44 2273 if (argcnt == 0)
c906108c 2274 {
c378eb4e 2275 /* The first argument is the file name. */
db162d44 2276 filename = tilde_expand (arg);
3017564a 2277 make_cleanup (xfree, filename);
c906108c 2278 }
41dc8db8
MB
2279 else if (argcnt == 1)
2280 {
2281 /* The second argument is always the text address at which
2282 to load the program. */
2283 sect_opts[section_index].name = ".text";
2284 sect_opts[section_index].value = arg;
2285 if (++section_index >= num_sect_opts)
2286 {
2287 num_sect_opts *= 2;
2288 sect_opts = ((struct sect_opt *)
2289 xrealloc (sect_opts,
2290 num_sect_opts
2291 * sizeof (struct sect_opt)));
2292 }
2293 }
db162d44 2294 else
41dc8db8
MB
2295 {
2296 /* It's an option (starting with '-') or it's an argument
2297 to an option. */
41dc8db8
MB
2298 if (expecting_sec_name)
2299 {
2300 sect_opts[section_index].name = arg;
2301 expecting_sec_name = 0;
2302 }
2303 else if (expecting_sec_addr)
2304 {
2305 sect_opts[section_index].value = arg;
2306 expecting_sec_addr = 0;
2307 if (++section_index >= num_sect_opts)
2308 {
2309 num_sect_opts *= 2;
2310 sect_opts = ((struct sect_opt *)
2311 xrealloc (sect_opts,
2312 num_sect_opts
2313 * sizeof (struct sect_opt)));
2314 }
2315 }
2316 else if (strcmp (arg, "-readnow") == 0)
2317 flags |= OBJF_READNOW;
2318 else if (strcmp (arg, "-s") == 0)
2319 {
2320 expecting_sec_name = 1;
2321 expecting_sec_addr = 1;
2322 }
2323 else
2324 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2325 " [-readnow] [-s <secname> <addr>]*"));
2326 }
c906108c 2327 }
c906108c 2328
927890d0
JB
2329 /* This command takes at least two arguments. The first one is a
2330 filename, and the second is the address where this file has been
2331 loaded. Abort now if this address hasn't been provided by the
2332 user. */
2333 if (section_index < 1)
2334 error (_("The address where %s has been loaded is missing"), filename);
2335
c378eb4e 2336 /* Print the prompt for the query below. And save the arguments into
db162d44
EZ
2337 a sect_addr_info structure to be passed around to other
2338 functions. We have to split this up into separate print
bb599908 2339 statements because hex_string returns a local static
c378eb4e 2340 string. */
5417f6dc 2341
a3f17187 2342 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2343 section_addrs = alloc_section_addr_info (section_index);
2344 make_cleanup (xfree, section_addrs);
db162d44 2345 for (i = 0; i < section_index; i++)
c906108c 2346 {
db162d44
EZ
2347 CORE_ADDR addr;
2348 char *val = sect_opts[i].value;
2349 char *sec = sect_opts[i].name;
5417f6dc 2350
ae822768 2351 addr = parse_and_eval_address (val);
db162d44 2352
db162d44 2353 /* Here we store the section offsets in the order they were
c378eb4e 2354 entered on the command line. */
a39a16c4
MM
2355 section_addrs->other[sec_num].name = sec;
2356 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2357 printf_unfiltered ("\t%s_addr = %s\n", sec,
2358 paddress (gdbarch, addr));
db162d44
EZ
2359 sec_num++;
2360
5417f6dc 2361 /* The object's sections are initialized when a
db162d44 2362 call is made to build_objfile_section_table (objfile).
5417f6dc 2363 This happens in reread_symbols.
db162d44
EZ
2364 At this point, we don't know what file type this is,
2365 so we can't determine what section names are valid. */
2acceee2 2366 }
d76488d8 2367 section_addrs->num_sections = sec_num;
db162d44 2368
2acceee2 2369 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2370 error (_("Not confirmed."));
c906108c 2371
76ad5e1e
NB
2372 objf = symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2373 section_addrs, flags);
2374
2375 add_target_sections_of_objfile (objf);
c906108c
SS
2376
2377 /* Getting new symbols may change our opinion about what is
2378 frameless. */
2379 reinit_frame_cache ();
db162d44 2380 do_cleanups (my_cleanups);
c906108c
SS
2381}
2382\f
70992597 2383
63644780
NB
2384/* This function removes a symbol file that was added via add-symbol-file. */
2385
2386static void
2387remove_symbol_file_command (char *args, int from_tty)
2388{
2389 char **argv;
2390 struct objfile *objf = NULL;
2391 struct cleanup *my_cleanups;
2392 struct program_space *pspace = current_program_space;
2393 struct gdbarch *gdbarch = get_current_arch ();
2394
2395 dont_repeat ();
2396
2397 if (args == NULL)
2398 error (_("remove-symbol-file: no symbol file provided"));
2399
2400 my_cleanups = make_cleanup (null_cleanup, NULL);
2401
2402 argv = gdb_buildargv (args);
2403
2404 if (strcmp (argv[0], "-a") == 0)
2405 {
2406 /* Interpret the next argument as an address. */
2407 CORE_ADDR addr;
2408
2409 if (argv[1] == NULL)
2410 error (_("Missing address argument"));
2411
2412 if (argv[2] != NULL)
2413 error (_("Junk after %s"), argv[1]);
2414
2415 addr = parse_and_eval_address (argv[1]);
2416
2417 ALL_OBJFILES (objf)
2418 {
d03de421
PA
2419 if ((objf->flags & OBJF_USERLOADED) != 0
2420 && (objf->flags & OBJF_SHARED) != 0
63644780
NB
2421 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2422 break;
2423 }
2424 }
2425 else if (argv[0] != NULL)
2426 {
2427 /* Interpret the current argument as a file name. */
2428 char *filename;
2429
2430 if (argv[1] != NULL)
2431 error (_("Junk after %s"), argv[0]);
2432
2433 filename = tilde_expand (argv[0]);
2434 make_cleanup (xfree, filename);
2435
2436 ALL_OBJFILES (objf)
2437 {
d03de421
PA
2438 if ((objf->flags & OBJF_USERLOADED) != 0
2439 && (objf->flags & OBJF_SHARED) != 0
63644780
NB
2440 && objf->pspace == pspace
2441 && filename_cmp (filename, objfile_name (objf)) == 0)
2442 break;
2443 }
2444 }
2445
2446 if (objf == NULL)
2447 error (_("No symbol file found"));
2448
2449 if (from_tty
2450 && !query (_("Remove symbol table from file \"%s\"? "),
2451 objfile_name (objf)))
2452 error (_("Not confirmed."));
2453
2454 free_objfile (objf);
2455 clear_symtab_users (0);
2456
2457 do_cleanups (my_cleanups);
2458}
2459
4ac39b97
JK
2460typedef struct objfile *objfilep;
2461
2462DEF_VEC_P (objfilep);
2463
c906108c 2464/* Re-read symbols if a symbol-file has changed. */
3b7bacac 2465
c906108c 2466void
fba45db2 2467reread_symbols (void)
c906108c
SS
2468{
2469 struct objfile *objfile;
2470 long new_modtime;
c906108c
SS
2471 struct stat new_statbuf;
2472 int res;
4ac39b97
JK
2473 VEC (objfilep) *new_objfiles = NULL;
2474 struct cleanup *all_cleanups;
2475
2476 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
c906108c
SS
2477
2478 /* With the addition of shared libraries, this should be modified,
2479 the load time should be saved in the partial symbol tables, since
2480 different tables may come from different source files. FIXME.
2481 This routine should then walk down each partial symbol table
c378eb4e 2482 and see if the symbol table that it originates from has been changed. */
c906108c 2483
c5aa993b
JM
2484 for (objfile = object_files; objfile; objfile = objfile->next)
2485 {
9cce227f
TG
2486 if (objfile->obfd == NULL)
2487 continue;
2488
2489 /* Separate debug objfiles are handled in the main objfile. */
2490 if (objfile->separate_debug_objfile_backlink)
2491 continue;
2492
02aeec7b
JB
2493 /* If this object is from an archive (what you usually create with
2494 `ar', often called a `static library' on most systems, though
2495 a `shared library' on AIX is also an archive), then you should
2496 stat on the archive name, not member name. */
9cce227f
TG
2497 if (objfile->obfd->my_archive)
2498 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2499 else
4262abfb 2500 res = stat (objfile_name (objfile), &new_statbuf);
9cce227f
TG
2501 if (res != 0)
2502 {
c378eb4e 2503 /* FIXME, should use print_sys_errmsg but it's not filtered. */
9cce227f 2504 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
4262abfb 2505 objfile_name (objfile));
9cce227f
TG
2506 continue;
2507 }
2508 new_modtime = new_statbuf.st_mtime;
2509 if (new_modtime != objfile->mtime)
2510 {
2511 struct cleanup *old_cleanups;
2512 struct section_offsets *offsets;
2513 int num_offsets;
24ba069a 2514 char *original_name;
9cce227f
TG
2515
2516 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
4262abfb 2517 objfile_name (objfile));
9cce227f
TG
2518
2519 /* There are various functions like symbol_file_add,
2520 symfile_bfd_open, syms_from_objfile, etc., which might
2521 appear to do what we want. But they have various other
2522 effects which we *don't* want. So we just do stuff
2523 ourselves. We don't worry about mapped files (for one thing,
2524 any mapped file will be out of date). */
2525
2526 /* If we get an error, blow away this objfile (not sure if
2527 that is the correct response for things like shared
2528 libraries). */
2529 old_cleanups = make_cleanup_free_objfile (objfile);
2530 /* We need to do this whenever any symbols go away. */
2531 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2532
0ba1096a
KT
2533 if (exec_bfd != NULL
2534 && filename_cmp (bfd_get_filename (objfile->obfd),
2535 bfd_get_filename (exec_bfd)) == 0)
9cce227f
TG
2536 {
2537 /* Reload EXEC_BFD without asking anything. */
2538
2539 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2540 }
2541
f6eeced0
JK
2542 /* Keep the calls order approx. the same as in free_objfile. */
2543
2544 /* Free the separate debug objfiles. It will be
2545 automatically recreated by sym_read. */
2546 free_objfile_separate_debug (objfile);
2547
2548 /* Remove any references to this objfile in the global
2549 value lists. */
2550 preserve_values (objfile);
2551
2552 /* Nuke all the state that we will re-read. Much of the following
2553 code which sets things to NULL really is necessary to tell
2554 other parts of GDB that there is nothing currently there.
2555
2556 Try to keep the freeing order compatible with free_objfile. */
2557
2558 if (objfile->sf != NULL)
2559 {
2560 (*objfile->sf->sym_finish) (objfile);
2561 }
2562
2563 clear_objfile_data (objfile);
2564
e1507e95 2565 /* Clean up any state BFD has sitting around. */
a4453b7e
TT
2566 {
2567 struct bfd *obfd = objfile->obfd;
d3846e71 2568 char *obfd_filename;
a4453b7e
TT
2569
2570 obfd_filename = bfd_get_filename (objfile->obfd);
2571 /* Open the new BFD before freeing the old one, so that
2572 the filename remains live. */
2938e6cf 2573 objfile->obfd = gdb_bfd_open (obfd_filename, gnutarget, -1);
e1507e95
TT
2574 if (objfile->obfd == NULL)
2575 {
2576 /* We have to make a cleanup and error here, rather
2577 than erroring later, because once we unref OBFD,
2578 OBFD_FILENAME will be freed. */
2579 make_cleanup_bfd_unref (obfd);
2580 error (_("Can't open %s to read symbols."), obfd_filename);
2581 }
a4453b7e
TT
2582 gdb_bfd_unref (obfd);
2583 }
2584
24ba069a
JK
2585 original_name = xstrdup (objfile->original_name);
2586 make_cleanup (xfree, original_name);
2587
9cce227f
TG
2588 /* bfd_openr sets cacheable to true, which is what we want. */
2589 if (!bfd_check_format (objfile->obfd, bfd_object))
4262abfb 2590 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
9cce227f
TG
2591 bfd_errmsg (bfd_get_error ()));
2592
2593 /* Save the offsets, we will nuke them with the rest of the
2594 objfile_obstack. */
2595 num_offsets = objfile->num_sections;
2596 offsets = ((struct section_offsets *)
2597 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2598 memcpy (offsets, objfile->section_offsets,
2599 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2600
9cce227f
TG
2601 /* FIXME: Do we have to free a whole linked list, or is this
2602 enough? */
2603 if (objfile->global_psymbols.list)
2604 xfree (objfile->global_psymbols.list);
2605 memset (&objfile->global_psymbols, 0,
2606 sizeof (objfile->global_psymbols));
2607 if (objfile->static_psymbols.list)
2608 xfree (objfile->static_psymbols.list);
2609 memset (&objfile->static_psymbols, 0,
2610 sizeof (objfile->static_psymbols));
2611
c378eb4e 2612 /* Free the obstacks for non-reusable objfiles. */
710e1a31
SW
2613 psymbol_bcache_free (objfile->psymbol_cache);
2614 objfile->psymbol_cache = psymbol_bcache_init ();
9cce227f
TG
2615 obstack_free (&objfile->objfile_obstack, 0);
2616 objfile->sections = NULL;
43f3e411 2617 objfile->compunit_symtabs = NULL;
9cce227f
TG
2618 objfile->psymtabs = NULL;
2619 objfile->psymtabs_addrmap = NULL;
2620 objfile->free_psymtabs = NULL;
34eaf542 2621 objfile->template_symbols = NULL;
9cce227f 2622
9cce227f
TG
2623 /* obstack_init also initializes the obstack so it is
2624 empty. We could use obstack_specify_allocation but
d82ea6a8 2625 gdb_obstack.h specifies the alloc/dealloc functions. */
9cce227f 2626 obstack_init (&objfile->objfile_obstack);
779bd270 2627
846060df
JB
2628 /* set_objfile_per_bfd potentially allocates the per-bfd
2629 data on the objfile's obstack (if sharing data across
2630 multiple users is not possible), so it's important to
2631 do it *after* the obstack has been initialized. */
2632 set_objfile_per_bfd (objfile);
2633
24ba069a
JK
2634 objfile->original_name = obstack_copy0 (&objfile->objfile_obstack,
2635 original_name,
2636 strlen (original_name));
2637
779bd270
DE
2638 /* Reset the sym_fns pointer. The ELF reader can change it
2639 based on whether .gdb_index is present, and we need it to
2640 start over. PR symtab/15885 */
8fb8eb5c 2641 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
779bd270 2642
d82ea6a8 2643 build_objfile_section_table (objfile);
9cce227f
TG
2644 terminate_minimal_symbol_table (objfile);
2645
2646 /* We use the same section offsets as from last time. I'm not
2647 sure whether that is always correct for shared libraries. */
2648 objfile->section_offsets = (struct section_offsets *)
2649 obstack_alloc (&objfile->objfile_obstack,
2650 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2651 memcpy (objfile->section_offsets, offsets,
2652 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2653 objfile->num_sections = num_offsets;
2654
2655 /* What the hell is sym_new_init for, anyway? The concept of
2656 distinguishing between the main file and additional files
2657 in this way seems rather dubious. */
2658 if (objfile == symfile_objfile)
c906108c 2659 {
9cce227f 2660 (*objfile->sf->sym_new_init) (objfile);
c906108c 2661 }
9cce227f
TG
2662
2663 (*objfile->sf->sym_init) (objfile);
2664 clear_complaints (&symfile_complaints, 1, 1);
608e2dbb
TT
2665
2666 objfile->flags &= ~OBJF_PSYMTABS_READ;
2667 read_symbols (objfile, 0);
b11896a5 2668
9cce227f 2669 if (!objfile_has_symbols (objfile))
c906108c 2670 {
9cce227f
TG
2671 wrap_here ("");
2672 printf_unfiltered (_("(no debugging symbols found)\n"));
2673 wrap_here ("");
c5aa993b 2674 }
9cce227f
TG
2675
2676 /* We're done reading the symbol file; finish off complaints. */
2677 clear_complaints (&symfile_complaints, 0, 1);
2678
2679 /* Getting new symbols may change our opinion about what is
2680 frameless. */
2681
2682 reinit_frame_cache ();
2683
2684 /* Discard cleanups as symbol reading was successful. */
2685 discard_cleanups (old_cleanups);
2686
2687 /* If the mtime has changed between the time we set new_modtime
2688 and now, we *want* this to be out of date, so don't call stat
2689 again now. */
2690 objfile->mtime = new_modtime;
9cce227f 2691 init_entry_point_info (objfile);
4ac39b97
JK
2692
2693 VEC_safe_push (objfilep, new_objfiles, objfile);
c906108c
SS
2694 }
2695 }
c906108c 2696
4ac39b97 2697 if (new_objfiles)
ea53e89f 2698 {
4ac39b97
JK
2699 int ix;
2700
ff3536bc
UW
2701 /* Notify objfiles that we've modified objfile sections. */
2702 objfiles_changed ();
2703
c1e56572 2704 clear_symtab_users (0);
4ac39b97
JK
2705
2706 /* clear_objfile_data for each objfile was called before freeing it and
2707 observer_notify_new_objfile (NULL) has been called by
2708 clear_symtab_users above. Notify the new files now. */
2709 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2710 observer_notify_new_objfile (objfile);
2711
ea53e89f
JB
2712 /* At least one objfile has changed, so we can consider that
2713 the executable we're debugging has changed too. */
781b42b0 2714 observer_notify_executable_changed ();
ea53e89f 2715 }
4ac39b97
JK
2716
2717 do_cleanups (all_cleanups);
c906108c 2718}
c906108c
SS
2719\f
2720
c5aa993b
JM
2721typedef struct
2722{
2723 char *ext;
c906108c 2724 enum language lang;
c5aa993b
JM
2725}
2726filename_language;
c906108c 2727
c5aa993b 2728static filename_language *filename_language_table;
c906108c
SS
2729static int fl_table_size, fl_table_next;
2730
2731static void
fba45db2 2732add_filename_language (char *ext, enum language lang)
c906108c
SS
2733{
2734 if (fl_table_next >= fl_table_size)
2735 {
2736 fl_table_size += 10;
5417f6dc 2737 filename_language_table =
25bf3106
PM
2738 xrealloc (filename_language_table,
2739 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2740 }
2741
4fcf66da 2742 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2743 filename_language_table[fl_table_next].lang = lang;
2744 fl_table_next++;
2745}
2746
2747static char *ext_args;
920d2a44
AC
2748static void
2749show_ext_args (struct ui_file *file, int from_tty,
2750 struct cmd_list_element *c, const char *value)
2751{
3e43a32a
MS
2752 fprintf_filtered (file,
2753 _("Mapping between filename extension "
2754 "and source language is \"%s\".\n"),
920d2a44
AC
2755 value);
2756}
c906108c
SS
2757
2758static void
26c41df3 2759set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2760{
2761 int i;
2762 char *cp = ext_args;
2763 enum language lang;
2764
c378eb4e 2765 /* First arg is filename extension, starting with '.' */
c906108c 2766 if (*cp != '.')
8a3fe4f8 2767 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2768
2769 /* Find end of first arg. */
c5aa993b 2770 while (*cp && !isspace (*cp))
c906108c
SS
2771 cp++;
2772
2773 if (*cp == '\0')
3e43a32a
MS
2774 error (_("'%s': two arguments required -- "
2775 "filename extension and language"),
c906108c
SS
2776 ext_args);
2777
c378eb4e 2778 /* Null-terminate first arg. */
c5aa993b 2779 *cp++ = '\0';
c906108c
SS
2780
2781 /* Find beginning of second arg, which should be a source language. */
529480d0 2782 cp = skip_spaces (cp);
c906108c
SS
2783
2784 if (*cp == '\0')
3e43a32a
MS
2785 error (_("'%s': two arguments required -- "
2786 "filename extension and language"),
c906108c
SS
2787 ext_args);
2788
2789 /* Lookup the language from among those we know. */
2790 lang = language_enum (cp);
2791
2792 /* Now lookup the filename extension: do we already know it? */
2793 for (i = 0; i < fl_table_next; i++)
2794 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2795 break;
2796
2797 if (i >= fl_table_next)
2798 {
c378eb4e 2799 /* New file extension. */
c906108c
SS
2800 add_filename_language (ext_args, lang);
2801 }
2802 else
2803 {
c378eb4e 2804 /* Redefining a previously known filename extension. */
c906108c
SS
2805
2806 /* if (from_tty) */
2807 /* query ("Really make files of type %s '%s'?", */
2808 /* ext_args, language_str (lang)); */
2809
b8c9b27d 2810 xfree (filename_language_table[i].ext);
4fcf66da 2811 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2812 filename_language_table[i].lang = lang;
2813 }
2814}
2815
2816static void
fba45db2 2817info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2818{
2819 int i;
2820
a3f17187 2821 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2822 printf_filtered ("\n\n");
2823 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2824 printf_filtered ("\t%s\t- %s\n",
2825 filename_language_table[i].ext,
c906108c
SS
2826 language_str (filename_language_table[i].lang));
2827}
2828
2829static void
fba45db2 2830init_filename_language_table (void)
c906108c 2831{
c378eb4e 2832 if (fl_table_size == 0) /* Protect against repetition. */
c906108c
SS
2833 {
2834 fl_table_size = 20;
2835 fl_table_next = 0;
c5aa993b 2836 filename_language_table =
c906108c 2837 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b 2838 add_filename_language (".c", language_c);
6aecb9c2 2839 add_filename_language (".d", language_d);
c5aa993b
JM
2840 add_filename_language (".C", language_cplus);
2841 add_filename_language (".cc", language_cplus);
2842 add_filename_language (".cp", language_cplus);
2843 add_filename_language (".cpp", language_cplus);
2844 add_filename_language (".cxx", language_cplus);
2845 add_filename_language (".c++", language_cplus);
2846 add_filename_language (".java", language_java);
c906108c 2847 add_filename_language (".class", language_java);
da2cf7e0 2848 add_filename_language (".m", language_objc);
c5aa993b
JM
2849 add_filename_language (".f", language_fortran);
2850 add_filename_language (".F", language_fortran);
fd5700c7
JK
2851 add_filename_language (".for", language_fortran);
2852 add_filename_language (".FOR", language_fortran);
2853 add_filename_language (".ftn", language_fortran);
2854 add_filename_language (".FTN", language_fortran);
2855 add_filename_language (".fpp", language_fortran);
2856 add_filename_language (".FPP", language_fortran);
2857 add_filename_language (".f90", language_fortran);
2858 add_filename_language (".F90", language_fortran);
2859 add_filename_language (".f95", language_fortran);
2860 add_filename_language (".F95", language_fortran);
2861 add_filename_language (".f03", language_fortran);
2862 add_filename_language (".F03", language_fortran);
2863 add_filename_language (".f08", language_fortran);
2864 add_filename_language (".F08", language_fortran);
c5aa993b 2865 add_filename_language (".s", language_asm);
aa707ed0 2866 add_filename_language (".sx", language_asm);
c5aa993b 2867 add_filename_language (".S", language_asm);
c6fd39cd
PM
2868 add_filename_language (".pas", language_pascal);
2869 add_filename_language (".p", language_pascal);
2870 add_filename_language (".pp", language_pascal);
963a6417
PH
2871 add_filename_language (".adb", language_ada);
2872 add_filename_language (".ads", language_ada);
2873 add_filename_language (".a", language_ada);
2874 add_filename_language (".ada", language_ada);
dde59185 2875 add_filename_language (".dg", language_ada);
c906108c
SS
2876 }
2877}
2878
2879enum language
dd786858 2880deduce_language_from_filename (const char *filename)
c906108c
SS
2881{
2882 int i;
2883 char *cp;
2884
2885 if (filename != NULL)
2886 if ((cp = strrchr (filename, '.')) != NULL)
2887 for (i = 0; i < fl_table_next; i++)
2888 if (strcmp (cp, filename_language_table[i].ext) == 0)
2889 return filename_language_table[i].lang;
2890
2891 return language_unknown;
2892}
2893\f
43f3e411
DE
2894/* Allocate and initialize a new symbol table.
2895 CUST is from the result of allocate_compunit_symtab. */
c906108c
SS
2896
2897struct symtab *
43f3e411 2898allocate_symtab (struct compunit_symtab *cust, const char *filename)
c906108c 2899{
43f3e411
DE
2900 struct objfile *objfile = cust->objfile;
2901 struct symtab *symtab
2902 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
c906108c 2903
21ea9eec
TT
2904 symtab->filename = bcache (filename, strlen (filename) + 1,
2905 objfile->per_bfd->filename_cache);
c5aa993b
JM
2906 symtab->fullname = NULL;
2907 symtab->language = deduce_language_from_filename (filename);
c906108c 2908
db0fec5c
DE
2909 /* This can be very verbose with lots of headers.
2910 Only print at higher debug levels. */
2911 if (symtab_create_debug >= 2)
45cfd468
DE
2912 {
2913 /* Be a bit clever with debugging messages, and don't print objfile
2914 every time, only when it changes. */
2915 static char *last_objfile_name = NULL;
2916
2917 if (last_objfile_name == NULL
4262abfb 2918 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
45cfd468
DE
2919 {
2920 xfree (last_objfile_name);
4262abfb 2921 last_objfile_name = xstrdup (objfile_name (objfile));
45cfd468
DE
2922 fprintf_unfiltered (gdb_stdlog,
2923 "Creating one or more symtabs for objfile %s ...\n",
2924 last_objfile_name);
2925 }
2926 fprintf_unfiltered (gdb_stdlog,
b3dbbd6f
PM
2927 "Created symtab %s for module %s.\n",
2928 host_address_to_string (symtab), filename);
45cfd468
DE
2929 }
2930
43f3e411
DE
2931 /* Add it to CUST's list of symtabs. */
2932 if (cust->filetabs == NULL)
2933 {
2934 cust->filetabs = symtab;
2935 cust->last_filetab = symtab;
2936 }
2937 else
2938 {
2939 cust->last_filetab->next = symtab;
2940 cust->last_filetab = symtab;
2941 }
2942
2943 /* Backlink to the containing compunit symtab. */
2944 symtab->compunit_symtab = cust;
2945
2946 return symtab;
2947}
2948
2949/* Allocate and initialize a new compunit.
2950 NAME is the name of the main source file, if there is one, or some
2951 descriptive text if there are no source files. */
2952
2953struct compunit_symtab *
2954allocate_compunit_symtab (struct objfile *objfile, const char *name)
2955{
2956 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2957 struct compunit_symtab);
2958 const char *saved_name;
2959
2960 cu->objfile = objfile;
2961
2962 /* The name we record here is only for display/debugging purposes.
2963 Just save the basename to avoid path issues (too long for display,
2964 relative vs absolute, etc.). */
2965 saved_name = lbasename (name);
2966 cu->name = obstack_copy0 (&objfile->objfile_obstack, saved_name,
2967 strlen (saved_name));
2968
2969 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2970
2971 if (symtab_create_debug)
2972 {
2973 fprintf_unfiltered (gdb_stdlog,
2974 "Created compunit symtab %s for %s.\n",
2975 host_address_to_string (cu),
2976 cu->name);
2977 }
2978
2979 return cu;
2980}
2981
2982/* Hook CU to the objfile it comes from. */
2983
2984void
2985add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2986{
2987 cu->next = cu->objfile->compunit_symtabs;
2988 cu->objfile->compunit_symtabs = cu;
c906108c 2989}
c906108c 2990\f
c5aa993b 2991
c906108c 2992/* Reset all data structures in gdb which may contain references to symbol
c1e56572 2993 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c906108c
SS
2994
2995void
c1e56572 2996clear_symtab_users (int add_flags)
c906108c
SS
2997{
2998 /* Someday, we should do better than this, by only blowing away
2999 the things that really need to be blown. */
c0501be5
DJ
3000
3001 /* Clear the "current" symtab first, because it is no longer valid.
3002 breakpoint_re_set may try to access the current symtab. */
3003 clear_current_source_symtab_and_line ();
3004
c906108c 3005 clear_displays ();
1bfeeb0f 3006 clear_last_displayed_sal ();
c906108c 3007 clear_pc_function_cache ();
06d3b283 3008 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
3009
3010 /* Clear globals which might have pointed into a removed objfile.
3011 FIXME: It's not clear which of these are supposed to persist
3012 between expressions and which ought to be reset each time. */
3013 expression_context_block = NULL;
3014 innermost_block = NULL;
8756216b
DP
3015
3016 /* Varobj may refer to old symbols, perform a cleanup. */
3017 varobj_invalidate ();
3018
e700d1b2
JB
3019 /* Now that the various caches have been cleared, we can re_set
3020 our breakpoints without risking it using stale data. */
3021 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
3022 breakpoint_re_set ();
c906108c
SS
3023}
3024
74b7792f
AC
3025static void
3026clear_symtab_users_cleanup (void *ignore)
3027{
c1e56572 3028 clear_symtab_users (0);
74b7792f 3029}
c906108c 3030\f
c906108c
SS
3031/* OVERLAYS:
3032 The following code implements an abstraction for debugging overlay sections.
3033
3034 The target model is as follows:
3035 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 3036 same VMA, each with its own unique LMA (or load address).
c906108c 3037 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 3038 sections, one by one, from the load address into the VMA address.
5417f6dc 3039 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
3040 sections should be considered to be mapped from the VMA to the LMA.
3041 This information is used for symbol lookup, and memory read/write.
5417f6dc 3042 For instance, if a section has been mapped then its contents
c5aa993b 3043 should be read from the VMA, otherwise from the LMA.
c906108c
SS
3044
3045 Two levels of debugger support for overlays are available. One is
3046 "manual", in which the debugger relies on the user to tell it which
3047 overlays are currently mapped. This level of support is
3048 implemented entirely in the core debugger, and the information about
3049 whether a section is mapped is kept in the objfile->obj_section table.
3050
3051 The second level of support is "automatic", and is only available if
3052 the target-specific code provides functionality to read the target's
3053 overlay mapping table, and translate its contents for the debugger
3054 (by updating the mapped state information in the obj_section tables).
3055
3056 The interface is as follows:
c5aa993b
JM
3057 User commands:
3058 overlay map <name> -- tell gdb to consider this section mapped
3059 overlay unmap <name> -- tell gdb to consider this section unmapped
3060 overlay list -- list the sections that GDB thinks are mapped
3061 overlay read-target -- get the target's state of what's mapped
3062 overlay off/manual/auto -- set overlay debugging state
3063 Functional interface:
3064 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3065 section, return that section.
5417f6dc 3066 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 3067 the pc, either in its VMA or its LMA
714835d5 3068 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
3069 section_is_overlay(sect): true if section's VMA != LMA
3070 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3071 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 3072 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
3073 overlay_mapped_address(...): map an address from section's LMA to VMA
3074 overlay_unmapped_address(...): map an address from section's VMA to LMA
3075 symbol_overlayed_address(...): Return a "current" address for symbol:
3076 either in VMA or LMA depending on whether
c378eb4e 3077 the symbol's section is currently mapped. */
c906108c
SS
3078
3079/* Overlay debugging state: */
3080
d874f1e2 3081enum overlay_debugging_state overlay_debugging = ovly_off;
c378eb4e 3082int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
c906108c 3083
c906108c 3084/* Function: section_is_overlay (SECTION)
5417f6dc 3085 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
3086 SECTION is loaded at an address different from where it will "run". */
3087
3088int
714835d5 3089section_is_overlay (struct obj_section *section)
c906108c 3090{
714835d5
UW
3091 if (overlay_debugging && section)
3092 {
3093 bfd *abfd = section->objfile->obfd;
3094 asection *bfd_section = section->the_bfd_section;
f888f159 3095
714835d5
UW
3096 if (bfd_section_lma (abfd, bfd_section) != 0
3097 && bfd_section_lma (abfd, bfd_section)
3098 != bfd_section_vma (abfd, bfd_section))
3099 return 1;
3100 }
c906108c
SS
3101
3102 return 0;
3103}
3104
3105/* Function: overlay_invalidate_all (void)
3106 Invalidate the mapped state of all overlay sections (mark it as stale). */
3107
3108static void
fba45db2 3109overlay_invalidate_all (void)
c906108c 3110{
c5aa993b 3111 struct objfile *objfile;
c906108c
SS
3112 struct obj_section *sect;
3113
3114 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
3115 if (section_is_overlay (sect))
3116 sect->ovly_mapped = -1;
c906108c
SS
3117}
3118
714835d5 3119/* Function: section_is_mapped (SECTION)
5417f6dc 3120 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3121
3122 Access to the ovly_mapped flag is restricted to this function, so
3123 that we can do automatic update. If the global flag
3124 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3125 overlay_invalidate_all. If the mapped state of the particular
3126 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3127
714835d5
UW
3128int
3129section_is_mapped (struct obj_section *osect)
c906108c 3130{
9216df95
UW
3131 struct gdbarch *gdbarch;
3132
714835d5 3133 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
3134 return 0;
3135
c5aa993b 3136 switch (overlay_debugging)
c906108c
SS
3137 {
3138 default:
d874f1e2 3139 case ovly_off:
c5aa993b 3140 return 0; /* overlay debugging off */
d874f1e2 3141 case ovly_auto: /* overlay debugging automatic */
1c772458 3142 /* Unles there is a gdbarch_overlay_update function,
c378eb4e 3143 there's really nothing useful to do here (can't really go auto). */
9216df95
UW
3144 gdbarch = get_objfile_arch (osect->objfile);
3145 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
3146 {
3147 if (overlay_cache_invalid)
3148 {
3149 overlay_invalidate_all ();
3150 overlay_cache_invalid = 0;
3151 }
3152 if (osect->ovly_mapped == -1)
9216df95 3153 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
3154 }
3155 /* fall thru to manual case */
d874f1e2 3156 case ovly_on: /* overlay debugging manual */
c906108c
SS
3157 return osect->ovly_mapped == 1;
3158 }
3159}
3160
c906108c
SS
3161/* Function: pc_in_unmapped_range
3162 If PC falls into the lma range of SECTION, return true, else false. */
3163
3164CORE_ADDR
714835d5 3165pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3166{
714835d5
UW
3167 if (section_is_overlay (section))
3168 {
3169 bfd *abfd = section->objfile->obfd;
3170 asection *bfd_section = section->the_bfd_section;
fbd35540 3171
714835d5
UW
3172 /* We assume the LMA is relocated by the same offset as the VMA. */
3173 bfd_vma size = bfd_get_section_size (bfd_section);
3174 CORE_ADDR offset = obj_section_offset (section);
3175
3176 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3177 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3178 return 1;
3179 }
c906108c 3180
c906108c
SS
3181 return 0;
3182}
3183
3184/* Function: pc_in_mapped_range
3185 If PC falls into the vma range of SECTION, return true, else false. */
3186
3187CORE_ADDR
714835d5 3188pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3189{
714835d5
UW
3190 if (section_is_overlay (section))
3191 {
3192 if (obj_section_addr (section) <= pc
3193 && pc < obj_section_endaddr (section))
3194 return 1;
3195 }
c906108c 3196
c906108c
SS
3197 return 0;
3198}
3199
9ec8e6a0
JB
3200/* Return true if the mapped ranges of sections A and B overlap, false
3201 otherwise. */
3b7bacac 3202
b9362cc7 3203static int
714835d5 3204sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3205{
714835d5
UW
3206 CORE_ADDR a_start = obj_section_addr (a);
3207 CORE_ADDR a_end = obj_section_endaddr (a);
3208 CORE_ADDR b_start = obj_section_addr (b);
3209 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3210
3211 return (a_start < b_end && b_start < a_end);
3212}
3213
c906108c
SS
3214/* Function: overlay_unmapped_address (PC, SECTION)
3215 Returns the address corresponding to PC in the unmapped (load) range.
3216 May be the same as PC. */
3217
3218CORE_ADDR
714835d5 3219overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3220{
714835d5
UW
3221 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3222 {
3223 bfd *abfd = section->objfile->obfd;
3224 asection *bfd_section = section->the_bfd_section;
fbd35540 3225
714835d5
UW
3226 return pc + bfd_section_lma (abfd, bfd_section)
3227 - bfd_section_vma (abfd, bfd_section);
3228 }
c906108c
SS
3229
3230 return pc;
3231}
3232
3233/* Function: overlay_mapped_address (PC, SECTION)
3234 Returns the address corresponding to PC in the mapped (runtime) range.
3235 May be the same as PC. */
3236
3237CORE_ADDR
714835d5 3238overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3239{
714835d5
UW
3240 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3241 {
3242 bfd *abfd = section->objfile->obfd;
3243 asection *bfd_section = section->the_bfd_section;
fbd35540 3244
714835d5
UW
3245 return pc + bfd_section_vma (abfd, bfd_section)
3246 - bfd_section_lma (abfd, bfd_section);
3247 }
c906108c
SS
3248
3249 return pc;
3250}
3251
5417f6dc 3252/* Function: symbol_overlayed_address
c906108c
SS
3253 Return one of two addresses (relative to the VMA or to the LMA),
3254 depending on whether the section is mapped or not. */
3255
c5aa993b 3256CORE_ADDR
714835d5 3257symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3258{
3259 if (overlay_debugging)
3260 {
c378eb4e 3261 /* If the symbol has no section, just return its regular address. */
c906108c
SS
3262 if (section == 0)
3263 return address;
c378eb4e
MS
3264 /* If the symbol's section is not an overlay, just return its
3265 address. */
c906108c
SS
3266 if (!section_is_overlay (section))
3267 return address;
c378eb4e 3268 /* If the symbol's section is mapped, just return its address. */
c906108c
SS
3269 if (section_is_mapped (section))
3270 return address;
3271 /*
3272 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3273 * then return its LOADED address rather than its vma address!!
3274 */
3275 return overlay_unmapped_address (address, section);
3276 }
3277 return address;
3278}
3279
5417f6dc 3280/* Function: find_pc_overlay (PC)
c906108c
SS
3281 Return the best-match overlay section for PC:
3282 If PC matches a mapped overlay section's VMA, return that section.
3283 Else if PC matches an unmapped section's VMA, return that section.
3284 Else if PC matches an unmapped section's LMA, return that section. */
3285
714835d5 3286struct obj_section *
fba45db2 3287find_pc_overlay (CORE_ADDR pc)
c906108c 3288{
c5aa993b 3289 struct objfile *objfile;
c906108c
SS
3290 struct obj_section *osect, *best_match = NULL;
3291
3292 if (overlay_debugging)
3293 ALL_OBJSECTIONS (objfile, osect)
714835d5 3294 if (section_is_overlay (osect))
c5aa993b 3295 {
714835d5 3296 if (pc_in_mapped_range (pc, osect))
c5aa993b 3297 {
714835d5
UW
3298 if (section_is_mapped (osect))
3299 return osect;
c5aa993b
JM
3300 else
3301 best_match = osect;
3302 }
714835d5 3303 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3304 best_match = osect;
3305 }
714835d5 3306 return best_match;
c906108c
SS
3307}
3308
3309/* Function: find_pc_mapped_section (PC)
5417f6dc 3310 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3311 currently marked as MAPPED, return that section. Else return NULL. */
3312
714835d5 3313struct obj_section *
fba45db2 3314find_pc_mapped_section (CORE_ADDR pc)
c906108c 3315{
c5aa993b 3316 struct objfile *objfile;
c906108c
SS
3317 struct obj_section *osect;
3318
3319 if (overlay_debugging)
3320 ALL_OBJSECTIONS (objfile, osect)
714835d5
UW
3321 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3322 return osect;
c906108c
SS
3323
3324 return NULL;
3325}
3326
3327/* Function: list_overlays_command
c378eb4e 3328 Print a list of mapped sections and their PC ranges. */
c906108c 3329
5d3055ad 3330static void
fba45db2 3331list_overlays_command (char *args, int from_tty)
c906108c 3332{
c5aa993b
JM
3333 int nmapped = 0;
3334 struct objfile *objfile;
c906108c
SS
3335 struct obj_section *osect;
3336
3337 if (overlay_debugging)
3338 ALL_OBJSECTIONS (objfile, osect)
714835d5 3339 if (section_is_mapped (osect))
c5aa993b 3340 {
5af949e3 3341 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c5aa993b
JM
3342 const char *name;
3343 bfd_vma lma, vma;
3344 int size;
3345
3346 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3347 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3348 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3349 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3350
3351 printf_filtered ("Section %s, loaded at ", name);
5af949e3 3352 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
c5aa993b 3353 puts_filtered (" - ");
5af949e3 3354 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
c5aa993b 3355 printf_filtered (", mapped at ");
5af949e3 3356 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
c5aa993b 3357 puts_filtered (" - ");
5af949e3 3358 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
c5aa993b
JM
3359 puts_filtered ("\n");
3360
3361 nmapped++;
3362 }
c906108c 3363 if (nmapped == 0)
a3f17187 3364 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3365}
3366
3367/* Function: map_overlay_command
3368 Mark the named section as mapped (ie. residing at its VMA address). */
3369
5d3055ad 3370static void
fba45db2 3371map_overlay_command (char *args, int from_tty)
c906108c 3372{
c5aa993b
JM
3373 struct objfile *objfile, *objfile2;
3374 struct obj_section *sec, *sec2;
c906108c
SS
3375
3376 if (!overlay_debugging)
3e43a32a
MS
3377 error (_("Overlay debugging not enabled. Use "
3378 "either the 'overlay auto' or\n"
3379 "the 'overlay manual' command."));
c906108c
SS
3380
3381 if (args == 0 || *args == 0)
8a3fe4f8 3382 error (_("Argument required: name of an overlay section"));
c906108c 3383
c378eb4e 3384 /* First, find a section matching the user supplied argument. */
c906108c
SS
3385 ALL_OBJSECTIONS (objfile, sec)
3386 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b 3387 {
c378eb4e 3388 /* Now, check to see if the section is an overlay. */
714835d5 3389 if (!section_is_overlay (sec))
c5aa993b
JM
3390 continue; /* not an overlay section */
3391
c378eb4e 3392 /* Mark the overlay as "mapped". */
c5aa993b
JM
3393 sec->ovly_mapped = 1;
3394
3395 /* Next, make a pass and unmap any sections that are
3396 overlapped by this new section: */
3397 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3398 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3399 {
3400 if (info_verbose)
a3f17187 3401 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3402 bfd_section_name (objfile->obfd,
3403 sec2->the_bfd_section));
c378eb4e 3404 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
c5aa993b
JM
3405 }
3406 return;
3407 }
8a3fe4f8 3408 error (_("No overlay section called %s"), args);
c906108c
SS
3409}
3410
3411/* Function: unmap_overlay_command
5417f6dc 3412 Mark the overlay section as unmapped
c906108c
SS
3413 (ie. resident in its LMA address range, rather than the VMA range). */
3414
5d3055ad 3415static void
fba45db2 3416unmap_overlay_command (char *args, int from_tty)
c906108c 3417{
c5aa993b 3418 struct objfile *objfile;
7a270e0c 3419 struct obj_section *sec = NULL;
c906108c
SS
3420
3421 if (!overlay_debugging)
3e43a32a
MS
3422 error (_("Overlay debugging not enabled. "
3423 "Use either the 'overlay auto' or\n"
3424 "the 'overlay manual' command."));
c906108c
SS
3425
3426 if (args == 0 || *args == 0)
8a3fe4f8 3427 error (_("Argument required: name of an overlay section"));
c906108c 3428
c378eb4e 3429 /* First, find a section matching the user supplied argument. */
c906108c
SS
3430 ALL_OBJSECTIONS (objfile, sec)
3431 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3432 {
3433 if (!sec->ovly_mapped)
8a3fe4f8 3434 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3435 sec->ovly_mapped = 0;
3436 return;
3437 }
8a3fe4f8 3438 error (_("No overlay section called %s"), args);
c906108c
SS
3439}
3440
3441/* Function: overlay_auto_command
3442 A utility command to turn on overlay debugging.
c378eb4e 3443 Possibly this should be done via a set/show command. */
c906108c
SS
3444
3445static void
fba45db2 3446overlay_auto_command (char *args, int from_tty)
c906108c 3447{
d874f1e2 3448 overlay_debugging = ovly_auto;
1900040c 3449 enable_overlay_breakpoints ();
c906108c 3450 if (info_verbose)
a3f17187 3451 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3452}
3453
3454/* Function: overlay_manual_command
3455 A utility command to turn on overlay debugging.
c378eb4e 3456 Possibly this should be done via a set/show command. */
c906108c
SS
3457
3458static void
fba45db2 3459overlay_manual_command (char *args, int from_tty)
c906108c 3460{
d874f1e2 3461 overlay_debugging = ovly_on;
1900040c 3462 disable_overlay_breakpoints ();
c906108c 3463 if (info_verbose)
a3f17187 3464 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3465}
3466
3467/* Function: overlay_off_command
3468 A utility command to turn on overlay debugging.
c378eb4e 3469 Possibly this should be done via a set/show command. */
c906108c
SS
3470
3471static void
fba45db2 3472overlay_off_command (char *args, int from_tty)
c906108c 3473{
d874f1e2 3474 overlay_debugging = ovly_off;
1900040c 3475 disable_overlay_breakpoints ();
c906108c 3476 if (info_verbose)
a3f17187 3477 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3478}
3479
3480static void
fba45db2 3481overlay_load_command (char *args, int from_tty)
c906108c 3482{
e17c207e
UW
3483 struct gdbarch *gdbarch = get_current_arch ();
3484
3485 if (gdbarch_overlay_update_p (gdbarch))
3486 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3487 else
8a3fe4f8 3488 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3489}
3490
3491/* Function: overlay_command
c378eb4e 3492 A place-holder for a mis-typed command. */
c906108c 3493
c378eb4e 3494/* Command list chain containing all defined "overlay" subcommands. */
28578e6b 3495static struct cmd_list_element *overlaylist;
c906108c
SS
3496
3497static void
fba45db2 3498overlay_command (char *args, int from_tty)
c906108c 3499{
c5aa993b 3500 printf_unfiltered
c906108c 3501 ("\"overlay\" must be followed by the name of an overlay command.\n");
635c7e8a 3502 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
c906108c
SS
3503}
3504
c906108c
SS
3505/* Target Overlays for the "Simplest" overlay manager:
3506
5417f6dc
RM
3507 This is GDB's default target overlay layer. It works with the
3508 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3509 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3510 so targets that use a different runtime overlay manager can
c906108c
SS
3511 substitute their own overlay_update function and take over the
3512 function pointer.
3513
3514 The overlay_update function pokes around in the target's data structures
3515 to see what overlays are mapped, and updates GDB's overlay mapping with
3516 this information.
3517
3518 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3519 unsigned _novlys; /# number of overlay sections #/
3520 unsigned _ovly_table[_novlys][4] = {
3521 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3522 {..., ..., ..., ...},
3523 }
3524 unsigned _novly_regions; /# number of overlay regions #/
3525 unsigned _ovly_region_table[_novly_regions][3] = {
3526 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3527 {..., ..., ...},
3528 }
c906108c
SS
3529 These functions will attempt to update GDB's mappedness state in the
3530 symbol section table, based on the target's mappedness state.
3531
3532 To do this, we keep a cached copy of the target's _ovly_table, and
3533 attempt to detect when the cached copy is invalidated. The main
3534 entry point is "simple_overlay_update(SECT), which looks up SECT in
3535 the cached table and re-reads only the entry for that section from
c378eb4e 3536 the target (whenever possible). */
c906108c
SS
3537
3538/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3539static unsigned (*cache_ovly_table)[4] = 0;
c5aa993b 3540static unsigned cache_novlys = 0;
c906108c 3541static CORE_ADDR cache_ovly_table_base = 0;
c5aa993b
JM
3542enum ovly_index
3543 {
3544 VMA, SIZE, LMA, MAPPED
3545 };
c906108c 3546
c378eb4e 3547/* Throw away the cached copy of _ovly_table. */
3b7bacac 3548
c906108c 3549static void
fba45db2 3550simple_free_overlay_table (void)
c906108c
SS
3551{
3552 if (cache_ovly_table)
b8c9b27d 3553 xfree (cache_ovly_table);
c5aa993b 3554 cache_novlys = 0;
c906108c
SS
3555 cache_ovly_table = NULL;
3556 cache_ovly_table_base = 0;
3557}
3558
9216df95 3559/* Read an array of ints of size SIZE from the target into a local buffer.
c378eb4e 3560 Convert to host order. int LEN is number of ints. */
3b7bacac 3561
c906108c 3562static void
9216df95 3563read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3564 int len, int size, enum bfd_endian byte_order)
c906108c 3565{
c378eb4e 3566 /* FIXME (alloca): Not safe if array is very large. */
9216df95 3567 gdb_byte *buf = alloca (len * size);
c5aa993b 3568 int i;
c906108c 3569
9216df95 3570 read_memory (memaddr, buf, len * size);
c906108c 3571 for (i = 0; i < len; i++)
e17a4113 3572 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3573}
3574
3575/* Find and grab a copy of the target _ovly_table
c378eb4e 3576 (and _novlys, which is needed for the table's size). */
3b7bacac 3577
c5aa993b 3578static int
fba45db2 3579simple_read_overlay_table (void)
c906108c 3580{
3b7344d5 3581 struct bound_minimal_symbol novlys_msym;
7c7b6655 3582 struct bound_minimal_symbol ovly_table_msym;
9216df95
UW
3583 struct gdbarch *gdbarch;
3584 int word_size;
e17a4113 3585 enum bfd_endian byte_order;
c906108c
SS
3586
3587 simple_free_overlay_table ();
9b27852e 3588 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3b7344d5 3589 if (! novlys_msym.minsym)
c906108c 3590 {
8a3fe4f8 3591 error (_("Error reading inferior's overlay table: "
0d43edd1 3592 "couldn't find `_novlys' variable\n"
8a3fe4f8 3593 "in inferior. Use `overlay manual' mode."));
0d43edd1 3594 return 0;
c906108c 3595 }
0d43edd1 3596
7c7b6655
TT
3597 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3598 if (! ovly_table_msym.minsym)
0d43edd1 3599 {
8a3fe4f8 3600 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3601 "`_ovly_table' array\n"
8a3fe4f8 3602 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3603 return 0;
3604 }
3605
7c7b6655 3606 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
9216df95 3607 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3608 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3609
77e371c0
TT
3610 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3611 4, byte_order);
0d43edd1
JB
3612 cache_ovly_table
3613 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
77e371c0 3614 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
0d43edd1 3615 read_target_long_array (cache_ovly_table_base,
777ea8f1 3616 (unsigned int *) cache_ovly_table,
e17a4113 3617 cache_novlys * 4, word_size, byte_order);
0d43edd1 3618
c5aa993b 3619 return 1; /* SUCCESS */
c906108c
SS
3620}
3621
5417f6dc 3622/* Function: simple_overlay_update_1
c906108c
SS
3623 A helper function for simple_overlay_update. Assuming a cached copy
3624 of _ovly_table exists, look through it to find an entry whose vma,
3625 lma and size match those of OSECT. Re-read the entry and make sure
3626 it still matches OSECT (else the table may no longer be valid).
3627 Set OSECT's mapped state to match the entry. Return: 1 for
3628 success, 0 for failure. */
3629
3630static int
fba45db2 3631simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3632{
3633 int i, size;
fbd35540
MS
3634 bfd *obfd = osect->objfile->obfd;
3635 asection *bsect = osect->the_bfd_section;
9216df95
UW
3636 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3637 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3638 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3639
2c500098 3640 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3641 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3642 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3643 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3644 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c 3645 {
9216df95
UW
3646 read_target_long_array (cache_ovly_table_base + i * word_size,
3647 (unsigned int *) cache_ovly_table[i],
e17a4113 3648 4, word_size, byte_order);
fbd35540
MS
3649 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3650 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3651 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3652 {
3653 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3654 return 1;
3655 }
c378eb4e 3656 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3657 return 0;
3658 }
3659 return 0;
3660}
3661
3662/* Function: simple_overlay_update
5417f6dc
RM
3663 If OSECT is NULL, then update all sections' mapped state
3664 (after re-reading the entire target _ovly_table).
3665 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3666 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3667 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3668 re-read the entire cache, and go ahead and update all sections. */
3669
1c772458 3670void
fba45db2 3671simple_overlay_update (struct obj_section *osect)
c906108c 3672{
c5aa993b 3673 struct objfile *objfile;
c906108c 3674
c378eb4e 3675 /* Were we given an osect to look up? NULL means do all of them. */
c906108c 3676 if (osect)
c378eb4e 3677 /* Have we got a cached copy of the target's overlay table? */
c906108c 3678 if (cache_ovly_table != NULL)
9cc89665
MS
3679 {
3680 /* Does its cached location match what's currently in the
3681 symtab? */
3b7344d5 3682 struct bound_minimal_symbol minsym
9cc89665
MS
3683 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3684
3b7344d5 3685 if (minsym.minsym == NULL)
9cc89665
MS
3686 error (_("Error reading inferior's overlay table: couldn't "
3687 "find `_ovly_table' array\n"
3688 "in inferior. Use `overlay manual' mode."));
3689
77e371c0 3690 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
9cc89665
MS
3691 /* Then go ahead and try to look up this single section in
3692 the cache. */
3693 if (simple_overlay_update_1 (osect))
3694 /* Found it! We're done. */
3695 return;
3696 }
c906108c
SS
3697
3698 /* Cached table no good: need to read the entire table anew.
3699 Or else we want all the sections, in which case it's actually
3700 more efficient to read the whole table in one block anyway. */
3701
0d43edd1
JB
3702 if (! simple_read_overlay_table ())
3703 return;
3704
c378eb4e 3705 /* Now may as well update all sections, even if only one was requested. */
c906108c 3706 ALL_OBJSECTIONS (objfile, osect)
714835d5 3707 if (section_is_overlay (osect))
c5aa993b
JM
3708 {
3709 int i, size;
fbd35540
MS
3710 bfd *obfd = osect->objfile->obfd;
3711 asection *bsect = osect->the_bfd_section;
c5aa993b 3712
2c500098 3713 size = bfd_get_section_size (bsect);
c5aa993b 3714 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3715 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3716 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3717 /* && cache_ovly_table[i][SIZE] == size */ )
c378eb4e 3718 { /* obj_section matches i'th entry in ovly_table. */
c5aa993b 3719 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
c378eb4e 3720 break; /* finished with inner for loop: break out. */
c5aa993b
JM
3721 }
3722 }
c906108c
SS
3723}
3724
086df311
DJ
3725/* Set the output sections and output offsets for section SECTP in
3726 ABFD. The relocation code in BFD will read these offsets, so we
3727 need to be sure they're initialized. We map each section to itself,
3728 with no offset; this means that SECTP->vma will be honored. */
3729
3730static void
3731symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3732{
3733 sectp->output_section = sectp;
3734 sectp->output_offset = 0;
3735}
3736
ac8035ab
TG
3737/* Default implementation for sym_relocate. */
3738
ac8035ab
TG
3739bfd_byte *
3740default_symfile_relocate (struct objfile *objfile, asection *sectp,
3741 bfd_byte *buf)
3742{
3019eac3
DE
3743 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3744 DWO file. */
3745 bfd *abfd = sectp->owner;
ac8035ab
TG
3746
3747 /* We're only interested in sections with relocation
3748 information. */
3749 if ((sectp->flags & SEC_RELOC) == 0)
3750 return NULL;
3751
3752 /* We will handle section offsets properly elsewhere, so relocate as if
3753 all sections begin at 0. */
3754 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3755
3756 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3757}
3758
086df311
DJ
3759/* Relocate the contents of a debug section SECTP in ABFD. The
3760 contents are stored in BUF if it is non-NULL, or returned in a
3761 malloc'd buffer otherwise.
3762
3763 For some platforms and debug info formats, shared libraries contain
3764 relocations against the debug sections (particularly for DWARF-2;
3765 one affected platform is PowerPC GNU/Linux, although it depends on
3766 the version of the linker in use). Also, ELF object files naturally
3767 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3768 the relocations in order to get the locations of symbols correct.
3769 Another example that may require relocation processing, is the
3770 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3771 debug section. */
086df311
DJ
3772
3773bfd_byte *
ac8035ab
TG
3774symfile_relocate_debug_section (struct objfile *objfile,
3775 asection *sectp, bfd_byte *buf)
086df311 3776{
ac8035ab 3777 gdb_assert (objfile->sf->sym_relocate);
086df311 3778
ac8035ab 3779 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3780}
c906108c 3781
31d99776
DJ
3782struct symfile_segment_data *
3783get_symfile_segment_data (bfd *abfd)
3784{
00b5771c 3785 const struct sym_fns *sf = find_sym_fns (abfd);
31d99776
DJ
3786
3787 if (sf == NULL)
3788 return NULL;
3789
3790 return sf->sym_segments (abfd);
3791}
3792
3793void
3794free_symfile_segment_data (struct symfile_segment_data *data)
3795{
3796 xfree (data->segment_bases);
3797 xfree (data->segment_sizes);
3798 xfree (data->segment_info);
3799 xfree (data);
3800}
3801
28c32713
JB
3802/* Given:
3803 - DATA, containing segment addresses from the object file ABFD, and
3804 the mapping from ABFD's sections onto the segments that own them,
3805 and
3806 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3807 segment addresses reported by the target,
3808 store the appropriate offsets for each section in OFFSETS.
3809
3810 If there are fewer entries in SEGMENT_BASES than there are segments
3811 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3812
8d385431
DJ
3813 If there are more entries, then ignore the extra. The target may
3814 not be able to distinguish between an empty data segment and a
3815 missing data segment; a missing text segment is less plausible. */
3b7bacac 3816
31d99776 3817int
3189cb12
DE
3818symfile_map_offsets_to_segments (bfd *abfd,
3819 const struct symfile_segment_data *data,
31d99776
DJ
3820 struct section_offsets *offsets,
3821 int num_segment_bases,
3822 const CORE_ADDR *segment_bases)
3823{
3824 int i;
3825 asection *sect;
3826
28c32713
JB
3827 /* It doesn't make sense to call this function unless you have some
3828 segment base addresses. */
202b96c1 3829 gdb_assert (num_segment_bases > 0);
28c32713 3830
31d99776
DJ
3831 /* If we do not have segment mappings for the object file, we
3832 can not relocate it by segments. */
3833 gdb_assert (data != NULL);
3834 gdb_assert (data->num_segments > 0);
3835
31d99776
DJ
3836 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3837 {
31d99776
DJ
3838 int which = data->segment_info[i];
3839
28c32713
JB
3840 gdb_assert (0 <= which && which <= data->num_segments);
3841
3842 /* Don't bother computing offsets for sections that aren't
3843 loaded as part of any segment. */
3844 if (! which)
3845 continue;
3846
3847 /* Use the last SEGMENT_BASES entry as the address of any extra
3848 segments mentioned in DATA->segment_info. */
31d99776 3849 if (which > num_segment_bases)
28c32713 3850 which = num_segment_bases;
31d99776 3851
28c32713
JB
3852 offsets->offsets[i] = (segment_bases[which - 1]
3853 - data->segment_bases[which - 1]);
31d99776
DJ
3854 }
3855
3856 return 1;
3857}
3858
3859static void
3860symfile_find_segment_sections (struct objfile *objfile)
3861{
3862 bfd *abfd = objfile->obfd;
3863 int i;
3864 asection *sect;
3865 struct symfile_segment_data *data;
3866
3867 data = get_symfile_segment_data (objfile->obfd);
3868 if (data == NULL)
3869 return;
3870
3871 if (data->num_segments != 1 && data->num_segments != 2)
3872 {
3873 free_symfile_segment_data (data);
3874 return;
3875 }
3876
3877 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3878 {
31d99776
DJ
3879 int which = data->segment_info[i];
3880
3881 if (which == 1)
3882 {
3883 if (objfile->sect_index_text == -1)
3884 objfile->sect_index_text = sect->index;
3885
3886 if (objfile->sect_index_rodata == -1)
3887 objfile->sect_index_rodata = sect->index;
3888 }
3889 else if (which == 2)
3890 {
3891 if (objfile->sect_index_data == -1)
3892 objfile->sect_index_data = sect->index;
3893
3894 if (objfile->sect_index_bss == -1)
3895 objfile->sect_index_bss = sect->index;
3896 }
3897 }
3898
3899 free_symfile_segment_data (data);
3900}
3901
76ad5e1e
NB
3902/* Listen for free_objfile events. */
3903
3904static void
3905symfile_free_objfile (struct objfile *objfile)
3906{
c33b2f12
MM
3907 /* Remove the target sections owned by this objfile. */
3908 if (objfile != NULL)
76ad5e1e
NB
3909 remove_target_sections ((void *) objfile);
3910}
3911
540c2971
DE
3912/* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3913 Expand all symtabs that match the specified criteria.
3914 See quick_symbol_functions.expand_symtabs_matching for details. */
3915
3916void
bb4142cf
DE
3917expand_symtabs_matching (expand_symtabs_file_matcher_ftype *file_matcher,
3918 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
276d885b 3919 expand_symtabs_exp_notify_ftype *expansion_notify,
bb4142cf
DE
3920 enum search_domain kind,
3921 void *data)
540c2971
DE
3922{
3923 struct objfile *objfile;
3924
3925 ALL_OBJFILES (objfile)
3926 {
3927 if (objfile->sf)
bb4142cf 3928 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
276d885b
GB
3929 symbol_matcher,
3930 expansion_notify, kind,
bb4142cf 3931 data);
540c2971
DE
3932 }
3933}
3934
3935/* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3936 Map function FUN over every file.
3937 See quick_symbol_functions.map_symbol_filenames for details. */
3938
3939void
bb4142cf
DE
3940map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3941 int need_fullname)
540c2971
DE
3942{
3943 struct objfile *objfile;
3944
3945 ALL_OBJFILES (objfile)
3946 {
3947 if (objfile->sf)
3948 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3949 need_fullname);
3950 }
3951}
3952
c906108c 3953void
fba45db2 3954_initialize_symfile (void)
c906108c
SS
3955{
3956 struct cmd_list_element *c;
c5aa993b 3957
76ad5e1e
NB
3958 observer_attach_free_objfile (symfile_free_objfile);
3959
1a966eab
AC
3960 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3961Load symbol table from executable file FILE.\n\
c906108c 3962The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3963to execute."), &cmdlist);
5ba2abeb 3964 set_cmd_completer (c, filename_completer);
c906108c 3965
1a966eab 3966 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3967Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3e43a32a
MS
3968Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3969 ...]\nADDR is the starting address of the file's text.\n\
db162d44
EZ
3970The optional arguments are section-name section-address pairs and\n\
3971should be specified if the data and bss segments are not contiguous\n\
1a966eab 3972with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3973 &cmdlist);
5ba2abeb 3974 set_cmd_completer (c, filename_completer);
c906108c 3975
63644780
NB
3976 c = add_cmd ("remove-symbol-file", class_files,
3977 remove_symbol_file_command, _("\
3978Remove a symbol file added via the add-symbol-file command.\n\
3979Usage: remove-symbol-file FILENAME\n\
3980 remove-symbol-file -a ADDRESS\n\
3981The file to remove can be identified by its filename or by an address\n\
3982that lies within the boundaries of this symbol file in memory."),
3983 &cmdlist);
3984
1a966eab
AC
3985 c = add_cmd ("load", class_files, load_command, _("\
3986Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
3987for access from GDB.\n\
3988A load OFFSET may also be given."), &cmdlist);
5ba2abeb 3989 set_cmd_completer (c, filename_completer);
c906108c 3990
c5aa993b 3991 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3992 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3993 "overlay ", 0, &cmdlist);
3994
3995 add_com_alias ("ovly", "overlay", class_alias, 1);
3996 add_com_alias ("ov", "overlay", class_alias, 1);
3997
c5aa993b 3998 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3999 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 4000
c5aa993b 4001 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 4002 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 4003
c5aa993b 4004 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 4005 _("List mappings of overlay sections."), &overlaylist);
c906108c 4006
c5aa993b 4007 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 4008 _("Enable overlay debugging."), &overlaylist);
c5aa993b 4009 add_cmd ("off", class_support, overlay_off_command,
1a966eab 4010 _("Disable overlay debugging."), &overlaylist);
c5aa993b 4011 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 4012 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 4013 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 4014 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
4015
4016 /* Filename extension to source language lookup table: */
4017 init_filename_language_table ();
26c41df3
AC
4018 add_setshow_string_noescape_cmd ("extension-language", class_files,
4019 &ext_args, _("\
4020Set mapping between filename extension and source language."), _("\
4021Show mapping between filename extension and source language."), _("\
4022Usage: set extension-language .foo bar"),
4023 set_ext_lang_command,
920d2a44 4024 show_ext_args,
26c41df3 4025 &setlist, &showlist);
c906108c 4026
c5aa993b 4027 add_info ("extensions", info_ext_lang_command,
1bedd215 4028 _("All filename extensions associated with a source language."));
917317f4 4029
525226b5
AC
4030 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4031 &debug_file_directory, _("\
24ddea62
JK
4032Set the directories where separate debug symbols are searched for."), _("\
4033Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
4034Separate debug symbols are first searched for in the same\n\
4035directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4036and lastly at the path of the directory of the binary with\n\
24ddea62 4037each global debug-file-directory component prepended."),
525226b5 4038 NULL,
920d2a44 4039 show_debug_file_directory,
525226b5 4040 &setlist, &showlist);
770e7fc7
DE
4041
4042 add_setshow_enum_cmd ("symbol-loading", no_class,
4043 print_symbol_loading_enums, &print_symbol_loading,
4044 _("\
4045Set printing of symbol loading messages."), _("\
4046Show printing of symbol loading messages."), _("\
4047off == turn all messages off\n\
4048brief == print messages for the executable,\n\
4049 and brief messages for shared libraries\n\
4050full == print messages for the executable,\n\
4051 and messages for each shared library."),
4052 NULL,
4053 NULL,
4054 &setprintlist, &showprintlist);
c906108c 4055}
This page took 2.064927 seconds and 4 git commands to generate.