* cisco-core.c (cisco_core_file_failing_command): Make static.
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
0b302171 3 Copyright (C) 1990-2012 Free Software Foundation, Inc.
8926118c 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
086df311 24#include "bfdlink.h"
c906108c
SS
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "target.h"
30#include "value.h"
31#include "symfile.h"
32#include "objfiles.h"
0378c332 33#include "source.h"
c906108c
SS
34#include "gdbcmd.h"
35#include "breakpoint.h"
36#include "language.h"
37#include "complaints.h"
38#include "demangle.h"
fb14de7b
UW
39#include "inferior.h"
40#include "regcache.h"
5b5d99cf 41#include "filenames.h" /* for DOSish file names */
c906108c 42#include "gdb-stabs.h"
04ea0df1 43#include "gdb_obstack.h"
d75b5104 44#include "completer.h"
af5f3db6 45#include "bcache.h"
2de7ced7 46#include "hashtab.h"
dbda9972 47#include "readline/readline.h"
7e8580c1 48#include "gdb_assert.h"
fe898f56 49#include "block.h"
ea53e89f 50#include "observer.h"
c1bd25fd 51#include "exec.h"
9bdcbae7 52#include "parser-defs.h"
8756216b 53#include "varobj.h"
77069918 54#include "elf-bfd.h"
e85a822c 55#include "solib.h"
f1838a98 56#include "remote.h"
1bfeeb0f 57#include "stack.h"
cbb099e8 58#include "gdb_bfd.h"
c906108c 59
c906108c
SS
60#include <sys/types.h>
61#include <fcntl.h>
62#include "gdb_string.h"
63#include "gdb_stat.h"
64#include <ctype.h>
65#include <time.h>
2b71414d 66#include <sys/time.h>
c906108c 67
ccefe4c4 68#include "psymtab.h"
c906108c 69
3e43a32a
MS
70int (*deprecated_ui_load_progress_hook) (const char *section,
71 unsigned long num);
9a4105ab 72void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
73 unsigned long section_sent,
74 unsigned long section_size,
75 unsigned long total_sent,
c2d11a7d 76 unsigned long total_size);
769d7dc4
AC
77void (*deprecated_pre_add_symbol_hook) (const char *);
78void (*deprecated_post_add_symbol_hook) (void);
c906108c 79
74b7792f
AC
80static void clear_symtab_users_cleanup (void *ignore);
81
c378eb4e
MS
82/* Global variables owned by this file. */
83int readnow_symbol_files; /* Read full symbols immediately. */
c906108c 84
c378eb4e 85/* External variables and functions referenced. */
c906108c 86
a14ed312 87extern void report_transfer_performance (unsigned long, time_t, time_t);
c906108c 88
c378eb4e 89/* Functions this file defines. */
c906108c 90
a14ed312 91static void load_command (char *, int);
c906108c 92
d7db6da9
FN
93static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
94
a14ed312 95static void add_symbol_file_command (char *, int);
c906108c 96
a14ed312 97bfd *symfile_bfd_open (char *);
c906108c 98
0e931cf0
JB
99int get_section_index (struct objfile *, char *);
100
00b5771c 101static const struct sym_fns *find_sym_fns (bfd *);
c906108c 102
a14ed312 103static void decrement_reading_symtab (void *);
c906108c 104
a14ed312 105static void overlay_invalidate_all (void);
c906108c 106
a14ed312 107void list_overlays_command (char *, int);
c906108c 108
a14ed312 109void map_overlay_command (char *, int);
c906108c 110
a14ed312 111void unmap_overlay_command (char *, int);
c906108c 112
a14ed312 113static void overlay_auto_command (char *, int);
c906108c 114
a14ed312 115static void overlay_manual_command (char *, int);
c906108c 116
a14ed312 117static void overlay_off_command (char *, int);
c906108c 118
a14ed312 119static void overlay_load_command (char *, int);
c906108c 120
a14ed312 121static void overlay_command (char *, int);
c906108c 122
a14ed312 123static void simple_free_overlay_table (void);
c906108c 124
e17a4113
UW
125static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
126 enum bfd_endian);
c906108c 127
a14ed312 128static int simple_read_overlay_table (void);
c906108c 129
a14ed312 130static int simple_overlay_update_1 (struct obj_section *);
c906108c 131
a14ed312 132static void add_filename_language (char *ext, enum language lang);
392a587b 133
a14ed312 134static void info_ext_lang_command (char *args, int from_tty);
392a587b 135
a14ed312 136static void init_filename_language_table (void);
392a587b 137
31d99776
DJ
138static void symfile_find_segment_sections (struct objfile *objfile);
139
a14ed312 140void _initialize_symfile (void);
c906108c
SS
141
142/* List of all available sym_fns. On gdb startup, each object file reader
143 calls add_symtab_fns() to register information on each format it is
c378eb4e 144 prepared to read. */
c906108c 145
00b5771c
TT
146typedef const struct sym_fns *sym_fns_ptr;
147DEF_VEC_P (sym_fns_ptr);
148
149static VEC (sym_fns_ptr) *symtab_fns = NULL;
c906108c 150
b7209cb4
FF
151/* If non-zero, shared library symbols will be added automatically
152 when the inferior is created, new libraries are loaded, or when
153 attaching to the inferior. This is almost always what users will
154 want to have happen; but for very large programs, the startup time
155 will be excessive, and so if this is a problem, the user can clear
156 this flag and then add the shared library symbols as needed. Note
157 that there is a potential for confusion, since if the shared
c906108c 158 library symbols are not loaded, commands like "info fun" will *not*
0d14a781 159 report all the functions that are actually present. */
c906108c
SS
160
161int auto_solib_add = 1;
c906108c 162\f
c5aa993b 163
c906108c
SS
164/* Make a null terminated copy of the string at PTR with SIZE characters in
165 the obstack pointed to by OBSTACKP . Returns the address of the copy.
c378eb4e 166 Note that the string at PTR does not have to be null terminated, I.e. it
0d14a781 167 may be part of a larger string and we are only saving a substring. */
c906108c
SS
168
169char *
63ca651f 170obsavestring (const char *ptr, int size, struct obstack *obstackp)
c906108c 171{
52f0bd74 172 char *p = (char *) obstack_alloc (obstackp, size + 1);
c906108c
SS
173 /* Open-coded memcpy--saves function call time. These strings are usually
174 short. FIXME: Is this really still true with a compiler that can
c378eb4e 175 inline memcpy? */
c906108c 176 {
aa1ee363
AC
177 const char *p1 = ptr;
178 char *p2 = p;
63ca651f 179 const char *end = ptr + size;
433759f7 180
c906108c
SS
181 while (p1 != end)
182 *p2++ = *p1++;
183 }
184 p[size] = 0;
185 return p;
186}
187
3e43a32a
MS
188/* Concatenate NULL terminated variable argument list of `const char *'
189 strings; return the new string. Space is found in the OBSTACKP.
190 Argument list must be terminated by a sentinel expression `(char *)
191 NULL'. */
c906108c
SS
192
193char *
48cb83fd 194obconcat (struct obstack *obstackp, ...)
c906108c 195{
48cb83fd
JK
196 va_list ap;
197
198 va_start (ap, obstackp);
199 for (;;)
200 {
201 const char *s = va_arg (ap, const char *);
202
203 if (s == NULL)
204 break;
205
206 obstack_grow_str (obstackp, s);
207 }
208 va_end (ap);
209 obstack_1grow (obstackp, 0);
210
211 return obstack_finish (obstackp);
c906108c
SS
212}
213
0d14a781 214/* True if we are reading a symbol table. */
c906108c
SS
215
216int currently_reading_symtab = 0;
217
218static void
fba45db2 219decrement_reading_symtab (void *dummy)
c906108c
SS
220{
221 currently_reading_symtab--;
222}
223
ccefe4c4
TT
224/* Increment currently_reading_symtab and return a cleanup that can be
225 used to decrement it. */
226struct cleanup *
227increment_reading_symtab (void)
c906108c 228{
ccefe4c4
TT
229 ++currently_reading_symtab;
230 return make_cleanup (decrement_reading_symtab, NULL);
c906108c
SS
231}
232
5417f6dc
RM
233/* Remember the lowest-addressed loadable section we've seen.
234 This function is called via bfd_map_over_sections.
c906108c
SS
235
236 In case of equal vmas, the section with the largest size becomes the
237 lowest-addressed loadable section.
238
239 If the vmas and sizes are equal, the last section is considered the
240 lowest-addressed loadable section. */
241
242void
4efb68b1 243find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 244{
c5aa993b 245 asection **lowest = (asection **) obj;
c906108c 246
eb73e134 247 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
248 return;
249 if (!*lowest)
250 *lowest = sect; /* First loadable section */
251 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
252 *lowest = sect; /* A lower loadable section */
253 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
254 && (bfd_section_size (abfd, (*lowest))
255 <= bfd_section_size (abfd, sect)))
256 *lowest = sect;
257}
258
a39a16c4
MM
259/* Create a new section_addr_info, with room for NUM_SECTIONS. */
260
261struct section_addr_info *
262alloc_section_addr_info (size_t num_sections)
263{
264 struct section_addr_info *sap;
265 size_t size;
266
267 size = (sizeof (struct section_addr_info)
268 + sizeof (struct other_sections) * (num_sections - 1));
269 sap = (struct section_addr_info *) xmalloc (size);
270 memset (sap, 0, size);
271 sap->num_sections = num_sections;
272
273 return sap;
274}
62557bbc
KB
275
276/* Build (allocate and populate) a section_addr_info struct from
c378eb4e 277 an existing section table. */
62557bbc
KB
278
279extern struct section_addr_info *
0542c86d
PA
280build_section_addr_info_from_section_table (const struct target_section *start,
281 const struct target_section *end)
62557bbc
KB
282{
283 struct section_addr_info *sap;
0542c86d 284 const struct target_section *stp;
62557bbc
KB
285 int oidx;
286
a39a16c4 287 sap = alloc_section_addr_info (end - start);
62557bbc
KB
288
289 for (stp = start, oidx = 0; stp != end; stp++)
290 {
5417f6dc 291 if (bfd_get_section_flags (stp->bfd,
fbd35540 292 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 293 && oidx < end - start)
62557bbc
KB
294 {
295 sap->other[oidx].addr = stp->addr;
5417f6dc 296 sap->other[oidx].name
fbd35540 297 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
62557bbc
KB
298 sap->other[oidx].sectindex = stp->the_bfd_section->index;
299 oidx++;
300 }
301 }
302
303 return sap;
304}
305
82ccf5a5 306/* Create a section_addr_info from section offsets in ABFD. */
089b4803 307
82ccf5a5
JK
308static struct section_addr_info *
309build_section_addr_info_from_bfd (bfd *abfd)
089b4803
TG
310{
311 struct section_addr_info *sap;
312 int i;
313 struct bfd_section *sec;
314
82ccf5a5
JK
315 sap = alloc_section_addr_info (bfd_count_sections (abfd));
316 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
317 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
012836ea 318 {
82ccf5a5
JK
319 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
320 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
012836ea
JK
321 sap->other[i].sectindex = sec->index;
322 i++;
323 }
089b4803
TG
324 return sap;
325}
326
82ccf5a5
JK
327/* Create a section_addr_info from section offsets in OBJFILE. */
328
329struct section_addr_info *
330build_section_addr_info_from_objfile (const struct objfile *objfile)
331{
332 struct section_addr_info *sap;
333 int i;
334
335 /* Before reread_symbols gets rewritten it is not safe to call:
336 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
337 */
338 sap = build_section_addr_info_from_bfd (objfile->obfd);
339 for (i = 0; i < sap->num_sections && sap->other[i].name; i++)
340 {
341 int sectindex = sap->other[i].sectindex;
342
343 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
344 }
345 return sap;
346}
62557bbc 347
c378eb4e 348/* Free all memory allocated by build_section_addr_info_from_section_table. */
62557bbc
KB
349
350extern void
351free_section_addr_info (struct section_addr_info *sap)
352{
353 int idx;
354
a39a16c4 355 for (idx = 0; idx < sap->num_sections; idx++)
62557bbc 356 if (sap->other[idx].name)
b8c9b27d
KB
357 xfree (sap->other[idx].name);
358 xfree (sap);
62557bbc
KB
359}
360
361
e8289572
JB
362/* Initialize OBJFILE's sect_index_* members. */
363static void
364init_objfile_sect_indices (struct objfile *objfile)
c906108c 365{
e8289572 366 asection *sect;
c906108c 367 int i;
5417f6dc 368
b8fbeb18 369 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 370 if (sect)
b8fbeb18
EZ
371 objfile->sect_index_text = sect->index;
372
373 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 374 if (sect)
b8fbeb18
EZ
375 objfile->sect_index_data = sect->index;
376
377 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 378 if (sect)
b8fbeb18
EZ
379 objfile->sect_index_bss = sect->index;
380
381 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 382 if (sect)
b8fbeb18
EZ
383 objfile->sect_index_rodata = sect->index;
384
bbcd32ad
FF
385 /* This is where things get really weird... We MUST have valid
386 indices for the various sect_index_* members or gdb will abort.
387 So if for example, there is no ".text" section, we have to
31d99776
DJ
388 accomodate that. First, check for a file with the standard
389 one or two segments. */
390
391 symfile_find_segment_sections (objfile);
392
393 /* Except when explicitly adding symbol files at some address,
394 section_offsets contains nothing but zeros, so it doesn't matter
395 which slot in section_offsets the individual sect_index_* members
396 index into. So if they are all zero, it is safe to just point
397 all the currently uninitialized indices to the first slot. But
398 beware: if this is the main executable, it may be relocated
399 later, e.g. by the remote qOffsets packet, and then this will
400 be wrong! That's why we try segments first. */
bbcd32ad
FF
401
402 for (i = 0; i < objfile->num_sections; i++)
403 {
404 if (ANOFFSET (objfile->section_offsets, i) != 0)
405 {
406 break;
407 }
408 }
409 if (i == objfile->num_sections)
410 {
411 if (objfile->sect_index_text == -1)
412 objfile->sect_index_text = 0;
413 if (objfile->sect_index_data == -1)
414 objfile->sect_index_data = 0;
415 if (objfile->sect_index_bss == -1)
416 objfile->sect_index_bss = 0;
417 if (objfile->sect_index_rodata == -1)
418 objfile->sect_index_rodata = 0;
419 }
b8fbeb18 420}
c906108c 421
c1bd25fd
DJ
422/* The arguments to place_section. */
423
424struct place_section_arg
425{
426 struct section_offsets *offsets;
427 CORE_ADDR lowest;
428};
429
430/* Find a unique offset to use for loadable section SECT if
431 the user did not provide an offset. */
432
2c0b251b 433static void
c1bd25fd
DJ
434place_section (bfd *abfd, asection *sect, void *obj)
435{
436 struct place_section_arg *arg = obj;
437 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
438 int done;
3bd72c6f 439 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 440
2711e456
DJ
441 /* We are only interested in allocated sections. */
442 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
443 return;
444
445 /* If the user specified an offset, honor it. */
446 if (offsets[sect->index] != 0)
447 return;
448
449 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
450 start_addr = (arg->lowest + align - 1) & -align;
451
c1bd25fd
DJ
452 do {
453 asection *cur_sec;
c1bd25fd 454
c1bd25fd
DJ
455 done = 1;
456
457 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
458 {
459 int indx = cur_sec->index;
c1bd25fd
DJ
460
461 /* We don't need to compare against ourself. */
462 if (cur_sec == sect)
463 continue;
464
2711e456
DJ
465 /* We can only conflict with allocated sections. */
466 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
467 continue;
468
469 /* If the section offset is 0, either the section has not been placed
470 yet, or it was the lowest section placed (in which case LOWEST
471 will be past its end). */
472 if (offsets[indx] == 0)
473 continue;
474
475 /* If this section would overlap us, then we must move up. */
476 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
477 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
478 {
479 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
480 start_addr = (start_addr + align - 1) & -align;
481 done = 0;
3bd72c6f 482 break;
c1bd25fd
DJ
483 }
484
485 /* Otherwise, we appear to be OK. So far. */
486 }
487 }
488 while (!done);
489
490 offsets[sect->index] = start_addr;
491 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 492}
e8289572 493
75242ef4
JK
494/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
495 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
496 entries. */
e8289572
JB
497
498void
75242ef4
JK
499relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
500 int num_sections,
501 struct section_addr_info *addrs)
e8289572
JB
502{
503 int i;
504
75242ef4 505 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 506
c378eb4e 507 /* Now calculate offsets for section that were specified by the caller. */
a39a16c4 508 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
e8289572 509 {
75242ef4 510 struct other_sections *osp;
e8289572 511
75242ef4 512 osp = &addrs->other[i];
5488dafb 513 if (osp->sectindex == -1)
e8289572
JB
514 continue;
515
c378eb4e 516 /* Record all sections in offsets. */
e8289572 517 /* The section_offsets in the objfile are here filled in using
c378eb4e 518 the BFD index. */
75242ef4
JK
519 section_offsets->offsets[osp->sectindex] = osp->addr;
520 }
521}
522
1276c759
JK
523/* Transform section name S for a name comparison. prelink can split section
524 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
525 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
526 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
527 (`.sbss') section has invalid (increased) virtual address. */
528
529static const char *
530addr_section_name (const char *s)
531{
532 if (strcmp (s, ".dynbss") == 0)
533 return ".bss";
534 if (strcmp (s, ".sdynbss") == 0)
535 return ".sbss";
536
537 return s;
538}
539
82ccf5a5
JK
540/* qsort comparator for addrs_section_sort. Sort entries in ascending order by
541 their (name, sectindex) pair. sectindex makes the sort by name stable. */
542
543static int
544addrs_section_compar (const void *ap, const void *bp)
545{
546 const struct other_sections *a = *((struct other_sections **) ap);
547 const struct other_sections *b = *((struct other_sections **) bp);
22e048c9 548 int retval;
82ccf5a5 549
1276c759 550 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
82ccf5a5
JK
551 if (retval)
552 return retval;
553
5488dafb 554 return a->sectindex - b->sectindex;
82ccf5a5
JK
555}
556
557/* Provide sorted array of pointers to sections of ADDRS. The array is
558 terminated by NULL. Caller is responsible to call xfree for it. */
559
560static struct other_sections **
561addrs_section_sort (struct section_addr_info *addrs)
562{
563 struct other_sections **array;
564 int i;
565
566 /* `+ 1' for the NULL terminator. */
567 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
568 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
569 array[i] = &addrs->other[i];
570 array[i] = NULL;
571
572 qsort (array, i, sizeof (*array), addrs_section_compar);
573
574 return array;
575}
576
75242ef4 577/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
578 also SECTINDEXes specific to ABFD there. This function can be used to
579 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
580
581void
582addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
583{
584 asection *lower_sect;
75242ef4
JK
585 CORE_ADDR lower_offset;
586 int i;
82ccf5a5
JK
587 struct cleanup *my_cleanup;
588 struct section_addr_info *abfd_addrs;
589 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
590 struct other_sections **addrs_to_abfd_addrs;
75242ef4
JK
591
592 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
593 continguous sections. */
594 lower_sect = NULL;
595 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
596 if (lower_sect == NULL)
597 {
598 warning (_("no loadable sections found in added symbol-file %s"),
599 bfd_get_filename (abfd));
600 lower_offset = 0;
e8289572 601 }
75242ef4
JK
602 else
603 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
604
82ccf5a5
JK
605 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
606 in ABFD. Section names are not unique - there can be multiple sections of
607 the same name. Also the sections of the same name do not have to be
608 adjacent to each other. Some sections may be present only in one of the
609 files. Even sections present in both files do not have to be in the same
610 order.
611
612 Use stable sort by name for the sections in both files. Then linearly
613 scan both lists matching as most of the entries as possible. */
614
615 addrs_sorted = addrs_section_sort (addrs);
616 my_cleanup = make_cleanup (xfree, addrs_sorted);
617
618 abfd_addrs = build_section_addr_info_from_bfd (abfd);
619 make_cleanup_free_section_addr_info (abfd_addrs);
620 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
621 make_cleanup (xfree, abfd_addrs_sorted);
622
c378eb4e
MS
623 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
624 ABFD_ADDRS_SORTED. */
82ccf5a5
JK
625
626 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
627 * addrs->num_sections);
628 make_cleanup (xfree, addrs_to_abfd_addrs);
629
630 while (*addrs_sorted)
631 {
1276c759 632 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
82ccf5a5
JK
633
634 while (*abfd_addrs_sorted
1276c759
JK
635 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
636 sect_name) < 0)
82ccf5a5
JK
637 abfd_addrs_sorted++;
638
639 if (*abfd_addrs_sorted
1276c759
JK
640 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
641 sect_name) == 0)
82ccf5a5
JK
642 {
643 int index_in_addrs;
644
645 /* Make the found item directly addressable from ADDRS. */
646 index_in_addrs = *addrs_sorted - addrs->other;
647 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
648 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
649
650 /* Never use the same ABFD entry twice. */
651 abfd_addrs_sorted++;
652 }
653
654 addrs_sorted++;
655 }
656
75242ef4
JK
657 /* Calculate offsets for the loadable sections.
658 FIXME! Sections must be in order of increasing loadable section
659 so that contiguous sections can use the lower-offset!!!
660
661 Adjust offsets if the segments are not contiguous.
662 If the section is contiguous, its offset should be set to
663 the offset of the highest loadable section lower than it
664 (the loadable section directly below it in memory).
665 this_offset = lower_offset = lower_addr - lower_orig_addr */
666
667 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
668 {
82ccf5a5 669 struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
670
671 if (sect)
75242ef4 672 {
c378eb4e 673 /* This is the index used by BFD. */
82ccf5a5 674 addrs->other[i].sectindex = sect->sectindex;
672d9c23
JK
675
676 if (addrs->other[i].addr != 0)
75242ef4 677 {
82ccf5a5 678 addrs->other[i].addr -= sect->addr;
75242ef4 679 lower_offset = addrs->other[i].addr;
75242ef4
JK
680 }
681 else
672d9c23 682 addrs->other[i].addr = lower_offset;
75242ef4
JK
683 }
684 else
672d9c23 685 {
1276c759
JK
686 /* addr_section_name transformation is not used for SECT_NAME. */
687 const char *sect_name = addrs->other[i].name;
688
b0fcb67f
JK
689 /* This section does not exist in ABFD, which is normally
690 unexpected and we want to issue a warning.
691
4d9743af
JK
692 However, the ELF prelinker does create a few sections which are
693 marked in the main executable as loadable (they are loaded in
694 memory from the DYNAMIC segment) and yet are not present in
695 separate debug info files. This is fine, and should not cause
696 a warning. Shared libraries contain just the section
697 ".gnu.liblist" but it is not marked as loadable there. There is
698 no other way to identify them than by their name as the sections
1276c759
JK
699 created by prelink have no special flags.
700
701 For the sections `.bss' and `.sbss' see addr_section_name. */
b0fcb67f
JK
702
703 if (!(strcmp (sect_name, ".gnu.liblist") == 0
4d9743af 704 || strcmp (sect_name, ".gnu.conflict") == 0
1276c759
JK
705 || (strcmp (sect_name, ".bss") == 0
706 && i > 0
707 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
708 && addrs_to_abfd_addrs[i - 1] != NULL)
709 || (strcmp (sect_name, ".sbss") == 0
710 && i > 0
711 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
712 && addrs_to_abfd_addrs[i - 1] != NULL)))
b0fcb67f
JK
713 warning (_("section %s not found in %s"), sect_name,
714 bfd_get_filename (abfd));
715
672d9c23 716 addrs->other[i].addr = 0;
5488dafb 717 addrs->other[i].sectindex = -1;
672d9c23 718 }
75242ef4 719 }
82ccf5a5
JK
720
721 do_cleanups (my_cleanup);
75242ef4
JK
722}
723
724/* Parse the user's idea of an offset for dynamic linking, into our idea
725 of how to represent it for fast symbol reading. This is the default
726 version of the sym_fns.sym_offsets function for symbol readers that
727 don't need to do anything special. It allocates a section_offsets table
728 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
729
730void
731default_symfile_offsets (struct objfile *objfile,
732 struct section_addr_info *addrs)
733{
734 objfile->num_sections = bfd_count_sections (objfile->obfd);
735 objfile->section_offsets = (struct section_offsets *)
736 obstack_alloc (&objfile->objfile_obstack,
737 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
738 relative_addr_info_to_section_offsets (objfile->section_offsets,
739 objfile->num_sections, addrs);
e8289572 740
c1bd25fd
DJ
741 /* For relocatable files, all loadable sections will start at zero.
742 The zero is meaningless, so try to pick arbitrary addresses such
743 that no loadable sections overlap. This algorithm is quadratic,
744 but the number of sections in a single object file is generally
745 small. */
746 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
747 {
748 struct place_section_arg arg;
2711e456
DJ
749 bfd *abfd = objfile->obfd;
750 asection *cur_sec;
2711e456
DJ
751
752 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
753 /* We do not expect this to happen; just skip this step if the
754 relocatable file has a section with an assigned VMA. */
755 if (bfd_section_vma (abfd, cur_sec) != 0)
756 break;
757
758 if (cur_sec == NULL)
759 {
760 CORE_ADDR *offsets = objfile->section_offsets->offsets;
761
762 /* Pick non-overlapping offsets for sections the user did not
763 place explicitly. */
764 arg.offsets = objfile->section_offsets;
765 arg.lowest = 0;
766 bfd_map_over_sections (objfile->obfd, place_section, &arg);
767
768 /* Correctly filling in the section offsets is not quite
769 enough. Relocatable files have two properties that
770 (most) shared objects do not:
771
772 - Their debug information will contain relocations. Some
773 shared libraries do also, but many do not, so this can not
774 be assumed.
775
776 - If there are multiple code sections they will be loaded
777 at different relative addresses in memory than they are
778 in the objfile, since all sections in the file will start
779 at address zero.
780
781 Because GDB has very limited ability to map from an
782 address in debug info to the correct code section,
783 it relies on adding SECT_OFF_TEXT to things which might be
784 code. If we clear all the section offsets, and set the
785 section VMAs instead, then symfile_relocate_debug_section
786 will return meaningful debug information pointing at the
787 correct sections.
788
789 GDB has too many different data structures for section
790 addresses - a bfd, objfile, and so_list all have section
791 tables, as does exec_ops. Some of these could probably
792 be eliminated. */
793
794 for (cur_sec = abfd->sections; cur_sec != NULL;
795 cur_sec = cur_sec->next)
796 {
797 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
798 continue;
799
800 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
3e43a32a
MS
801 exec_set_section_address (bfd_get_filename (abfd),
802 cur_sec->index,
30510692 803 offsets[cur_sec->index]);
2711e456
DJ
804 offsets[cur_sec->index] = 0;
805 }
806 }
c1bd25fd
DJ
807 }
808
e8289572 809 /* Remember the bfd indexes for the .text, .data, .bss and
c378eb4e 810 .rodata sections. */
e8289572
JB
811 init_objfile_sect_indices (objfile);
812}
813
814
31d99776
DJ
815/* Divide the file into segments, which are individual relocatable units.
816 This is the default version of the sym_fns.sym_segments function for
817 symbol readers that do not have an explicit representation of segments.
818 It assumes that object files do not have segments, and fully linked
819 files have a single segment. */
820
821struct symfile_segment_data *
822default_symfile_segments (bfd *abfd)
823{
824 int num_sections, i;
825 asection *sect;
826 struct symfile_segment_data *data;
827 CORE_ADDR low, high;
828
829 /* Relocatable files contain enough information to position each
830 loadable section independently; they should not be relocated
831 in segments. */
832 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
833 return NULL;
834
835 /* Make sure there is at least one loadable section in the file. */
836 for (sect = abfd->sections; sect != NULL; sect = sect->next)
837 {
838 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
839 continue;
840
841 break;
842 }
843 if (sect == NULL)
844 return NULL;
845
846 low = bfd_get_section_vma (abfd, sect);
847 high = low + bfd_get_section_size (sect);
848
849 data = XZALLOC (struct symfile_segment_data);
850 data->num_segments = 1;
851 data->segment_bases = XCALLOC (1, CORE_ADDR);
852 data->segment_sizes = XCALLOC (1, CORE_ADDR);
853
854 num_sections = bfd_count_sections (abfd);
855 data->segment_info = XCALLOC (num_sections, int);
856
857 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
858 {
859 CORE_ADDR vma;
860
861 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
862 continue;
863
864 vma = bfd_get_section_vma (abfd, sect);
865 if (vma < low)
866 low = vma;
867 if (vma + bfd_get_section_size (sect) > high)
868 high = vma + bfd_get_section_size (sect);
869
870 data->segment_info[i] = 1;
871 }
872
873 data->segment_bases[0] = low;
874 data->segment_sizes[0] = high - low;
875
876 return data;
877}
878
c906108c
SS
879/* Process a symbol file, as either the main file or as a dynamically
880 loaded file.
881
96baa820
JM
882 OBJFILE is where the symbols are to be read from.
883
7e8580c1
JB
884 ADDRS is the list of section load addresses. If the user has given
885 an 'add-symbol-file' command, then this is the list of offsets and
886 addresses he or she provided as arguments to the command; or, if
887 we're handling a shared library, these are the actual addresses the
888 sections are loaded at, according to the inferior's dynamic linker
889 (as gleaned by GDB's shared library code). We convert each address
890 into an offset from the section VMA's as it appears in the object
891 file, and then call the file's sym_offsets function to convert this
892 into a format-specific offset table --- a `struct section_offsets'.
893 If ADDRS is non-zero, OFFSETS must be zero.
894
895 OFFSETS is a table of section offsets already in the right
896 format-specific representation. NUM_OFFSETS is the number of
897 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
898 assume this is the proper table the call to sym_offsets described
899 above would produce. Instead of calling sym_offsets, we just dump
900 it right into objfile->section_offsets. (When we're re-reading
901 symbols from an objfile, we don't have the original load address
902 list any more; all we have is the section offset table.) If
903 OFFSETS is non-zero, ADDRS must be zero.
96baa820 904
7eedccfa
PP
905 ADD_FLAGS encodes verbosity level, whether this is main symbol or
906 an extra symbol file such as dynamically loaded code, and wether
907 breakpoint reset should be deferred. */
c906108c
SS
908
909void
7e8580c1
JB
910syms_from_objfile (struct objfile *objfile,
911 struct section_addr_info *addrs,
912 struct section_offsets *offsets,
913 int num_offsets,
7eedccfa 914 int add_flags)
c906108c 915{
a39a16c4 916 struct section_addr_info *local_addr = NULL;
c906108c 917 struct cleanup *old_chain;
7eedccfa 918 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 919
7e8580c1 920 gdb_assert (! (addrs && offsets));
2acceee2 921
c906108c 922 init_entry_point_info (objfile);
31d99776 923 objfile->sf = find_sym_fns (objfile->obfd);
c906108c 924
75245b24 925 if (objfile->sf == NULL)
c378eb4e 926 return; /* No symbols. */
75245b24 927
c906108c
SS
928 /* Make sure that partially constructed symbol tables will be cleaned up
929 if an error occurs during symbol reading. */
74b7792f 930 old_chain = make_cleanup_free_objfile (objfile);
c906108c 931
a39a16c4
MM
932 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
933 list. We now establish the convention that an addr of zero means
c378eb4e 934 no load address was specified. */
a39a16c4
MM
935 if (! addrs && ! offsets)
936 {
5417f6dc 937 local_addr
a39a16c4
MM
938 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
939 make_cleanup (xfree, local_addr);
940 addrs = local_addr;
941 }
942
943 /* Now either addrs or offsets is non-zero. */
944
c5aa993b 945 if (mainline)
c906108c
SS
946 {
947 /* We will modify the main symbol table, make sure that all its users
c5aa993b 948 will be cleaned up if an error occurs during symbol reading. */
74b7792f 949 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
950
951 /* Since no error yet, throw away the old symbol table. */
952
953 if (symfile_objfile != NULL)
954 {
955 free_objfile (symfile_objfile);
adb7f338 956 gdb_assert (symfile_objfile == NULL);
c906108c
SS
957 }
958
959 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
960 If the user wants to get rid of them, they should do "symbol-file"
961 without arguments first. Not sure this is the best behavior
962 (PR 2207). */
c906108c 963
c5aa993b 964 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
965 }
966
967 /* Convert addr into an offset rather than an absolute address.
968 We find the lowest address of a loaded segment in the objfile,
53a5351d 969 and assume that <addr> is where that got loaded.
c906108c 970
53a5351d
JM
971 We no longer warn if the lowest section is not a text segment (as
972 happens for the PA64 port. */
0d15807d 973 if (addrs && addrs->other[0].name)
75242ef4 974 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
975
976 /* Initialize symbol reading routines for this objfile, allow complaints to
977 appear for this new file, and record how verbose to be, then do the
c378eb4e 978 initial symbol reading for this file. */
c906108c 979
c5aa993b 980 (*objfile->sf->sym_init) (objfile);
7eedccfa 981 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 982
7e8580c1
JB
983 if (addrs)
984 (*objfile->sf->sym_offsets) (objfile, addrs);
985 else
986 {
987 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
988
989 /* Just copy in the offset table directly as given to us. */
990 objfile->num_sections = num_offsets;
991 objfile->section_offsets
992 = ((struct section_offsets *)
8b92e4d5 993 obstack_alloc (&objfile->objfile_obstack, size));
7e8580c1
JB
994 memcpy (objfile->section_offsets, offsets, size);
995
996 init_objfile_sect_indices (objfile);
997 }
c906108c 998
f4352531 999 (*objfile->sf->sym_read) (objfile, add_flags);
c906108c 1000
b11896a5
TT
1001 if ((add_flags & SYMFILE_NO_READ) == 0)
1002 require_partial_symbols (objfile, 0);
1003
c906108c
SS
1004 /* Discard cleanups as symbol reading was successful. */
1005
1006 discard_cleanups (old_chain);
f7545552 1007 xfree (local_addr);
c906108c
SS
1008}
1009
1010/* Perform required actions after either reading in the initial
1011 symbols for a new objfile, or mapping in the symbols from a reusable
c1e56572 1012 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c5aa993b 1013
c906108c 1014void
7eedccfa 1015new_symfile_objfile (struct objfile *objfile, int add_flags)
c906108c 1016{
c906108c 1017 /* If this is the main symbol file we have to clean up all users of the
c378eb4e 1018 old main symbol file. Otherwise it is sufficient to fixup all the
c906108c 1019 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1020 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1021 {
1022 /* OK, make it the "real" symbol file. */
1023 symfile_objfile = objfile;
1024
c1e56572 1025 clear_symtab_users (add_flags);
c906108c 1026 }
7eedccfa 1027 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1028 {
69de3c6a 1029 breakpoint_re_set ();
c906108c
SS
1030 }
1031
1032 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 1033 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
1034}
1035
1036/* Process a symbol file, as either the main file or as a dynamically
1037 loaded file.
1038
5417f6dc
RM
1039 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1040 This BFD will be closed on error, and is always consumed by this function.
7904e09f 1041
7eedccfa
PP
1042 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1043 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f
JB
1044
1045 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
7eedccfa
PP
1046 syms_from_objfile, above.
1047 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1048
63524580
JK
1049 PARENT is the original objfile if ABFD is a separate debug info file.
1050 Otherwise PARENT is NULL.
1051
c906108c 1052 Upon success, returns a pointer to the objfile that was added.
c378eb4e 1053 Upon failure, jumps back to command level (never returns). */
7eedccfa 1054
7904e09f 1055static struct objfile *
7eedccfa
PP
1056symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1057 int add_flags,
7904e09f
JB
1058 struct section_addr_info *addrs,
1059 struct section_offsets *offsets,
1060 int num_offsets,
63524580 1061 int flags, struct objfile *parent)
c906108c
SS
1062{
1063 struct objfile *objfile;
a39a16c4 1064 struct cleanup *my_cleanups;
5417f6dc 1065 const char *name = bfd_get_filename (abfd);
7eedccfa 1066 const int from_tty = add_flags & SYMFILE_VERBOSE;
0838fb57 1067 const int mainline = add_flags & SYMFILE_MAINLINE;
b11896a5
TT
1068 const int should_print = ((from_tty || info_verbose)
1069 && (readnow_symbol_files
1070 || (add_flags & SYMFILE_NO_READ) == 0));
c906108c 1071
9291a0cd 1072 if (readnow_symbol_files)
b11896a5
TT
1073 {
1074 flags |= OBJF_READNOW;
1075 add_flags &= ~SYMFILE_NO_READ;
1076 }
9291a0cd 1077
f9a062ff 1078 my_cleanups = make_cleanup_bfd_unref (abfd);
c906108c 1079
5417f6dc
RM
1080 /* Give user a chance to burp if we'd be
1081 interactively wiping out any existing symbols. */
c906108c
SS
1082
1083 if ((have_full_symbols () || have_partial_symbols ())
0838fb57 1084 && mainline
c906108c 1085 && from_tty
9e2f0ad4 1086 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1087 error (_("Not confirmed."));
c906108c 1088
0838fb57 1089 objfile = allocate_objfile (abfd, flags | (mainline ? OBJF_MAINLINE : 0));
5417f6dc 1090 discard_cleanups (my_cleanups);
c906108c 1091
63524580
JK
1092 if (parent)
1093 add_separate_debug_objfile (objfile, parent);
1094
78a4a9b9
AC
1095 /* We either created a new mapped symbol table, mapped an existing
1096 symbol table file which has not had initial symbol reading
c378eb4e 1097 performed, or need to read an unmapped symbol table. */
b11896a5 1098 if (should_print)
c906108c 1099 {
769d7dc4
AC
1100 if (deprecated_pre_add_symbol_hook)
1101 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1102 else
c906108c 1103 {
55333a84
DE
1104 printf_unfiltered (_("Reading symbols from %s..."), name);
1105 wrap_here ("");
1106 gdb_flush (gdb_stdout);
c906108c 1107 }
c906108c 1108 }
78a4a9b9 1109 syms_from_objfile (objfile, addrs, offsets, num_offsets,
7eedccfa 1110 add_flags);
c906108c
SS
1111
1112 /* We now have at least a partial symbol table. Check to see if the
1113 user requested that all symbols be read on initial access via either
1114 the gdb startup command line or on a per symbol file basis. Expand
c378eb4e 1115 all partial symbol tables for this objfile if so. */
c906108c 1116
9291a0cd 1117 if ((flags & OBJF_READNOW))
c906108c 1118 {
b11896a5 1119 if (should_print)
c906108c 1120 {
a3f17187 1121 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1122 wrap_here ("");
1123 gdb_flush (gdb_stdout);
1124 }
1125
ccefe4c4
TT
1126 if (objfile->sf)
1127 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1128 }
1129
b11896a5 1130 if (should_print && !objfile_has_symbols (objfile))
cb3c37b2
JB
1131 {
1132 wrap_here ("");
55333a84 1133 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1134 wrap_here ("");
1135 }
1136
b11896a5 1137 if (should_print)
c906108c 1138 {
769d7dc4
AC
1139 if (deprecated_post_add_symbol_hook)
1140 deprecated_post_add_symbol_hook ();
c906108c 1141 else
55333a84 1142 printf_unfiltered (_("done.\n"));
c906108c
SS
1143 }
1144
481d0f41
JB
1145 /* We print some messages regardless of whether 'from_tty ||
1146 info_verbose' is true, so make sure they go out at the right
1147 time. */
1148 gdb_flush (gdb_stdout);
1149
109f874e 1150 if (objfile->sf == NULL)
8caee43b
PP
1151 {
1152 observer_notify_new_objfile (objfile);
c378eb4e 1153 return objfile; /* No symbols. */
8caee43b 1154 }
109f874e 1155
7eedccfa 1156 new_symfile_objfile (objfile, add_flags);
c906108c 1157
06d3b283 1158 observer_notify_new_objfile (objfile);
c906108c 1159
ce7d4522 1160 bfd_cache_close_all ();
c906108c
SS
1161 return (objfile);
1162}
1163
9cce227f
TG
1164/* Add BFD as a separate debug file for OBJFILE. */
1165
1166void
1167symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1168{
15d123c9 1169 struct objfile *new_objfile;
089b4803
TG
1170 struct section_addr_info *sap;
1171 struct cleanup *my_cleanup;
1172
1173 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1174 because sections of BFD may not match sections of OBJFILE and because
1175 vma may have been modified by tools such as prelink. */
1176 sap = build_section_addr_info_from_objfile (objfile);
1177 my_cleanup = make_cleanup_free_section_addr_info (sap);
9cce227f 1178
15d123c9 1179 new_objfile = symbol_file_add_with_addrs_or_offsets
9cce227f 1180 (bfd, symfile_flags,
089b4803 1181 sap, NULL, 0,
9cce227f 1182 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
63524580
JK
1183 | OBJF_USERLOADED),
1184 objfile);
089b4803
TG
1185
1186 do_cleanups (my_cleanup);
9cce227f 1187}
7904e09f 1188
eb4556d7
JB
1189/* Process the symbol file ABFD, as either the main file or as a
1190 dynamically loaded file.
1191
1192 See symbol_file_add_with_addrs_or_offsets's comments for
1193 details. */
1194struct objfile *
7eedccfa 1195symbol_file_add_from_bfd (bfd *abfd, int add_flags,
eb4556d7 1196 struct section_addr_info *addrs,
63524580 1197 int flags, struct objfile *parent)
eb4556d7 1198{
7eedccfa 1199 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
63524580 1200 flags, parent);
eb4556d7
JB
1201}
1202
1203
7904e09f
JB
1204/* Process a symbol file, as either the main file or as a dynamically
1205 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1206 for details. */
1207struct objfile *
7eedccfa
PP
1208symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1209 int flags)
7904e09f 1210{
7eedccfa 1211 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
63524580 1212 flags, NULL);
7904e09f
JB
1213}
1214
1215
d7db6da9
FN
1216/* Call symbol_file_add() with default values and update whatever is
1217 affected by the loading of a new main().
1218 Used when the file is supplied in the gdb command line
1219 and by some targets with special loading requirements.
1220 The auxiliary function, symbol_file_add_main_1(), has the flags
1221 argument for the switches that can only be specified in the symbol_file
1222 command itself. */
5417f6dc 1223
1adeb98a
FN
1224void
1225symbol_file_add_main (char *args, int from_tty)
1226{
d7db6da9
FN
1227 symbol_file_add_main_1 (args, from_tty, 0);
1228}
1229
1230static void
1231symbol_file_add_main_1 (char *args, int from_tty, int flags)
1232{
7dcd53a0
TT
1233 const int add_flags = (current_inferior ()->symfile_flags
1234 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1235
7eedccfa 1236 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1237
d7db6da9
FN
1238 /* Getting new symbols may change our opinion about
1239 what is frameless. */
1240 reinit_frame_cache ();
1241
7dcd53a0
TT
1242 if ((flags & SYMFILE_NO_READ) == 0)
1243 set_initial_language ();
1adeb98a
FN
1244}
1245
1246void
1247symbol_file_clear (int from_tty)
1248{
1249 if ((have_full_symbols () || have_partial_symbols ())
1250 && from_tty
0430b0d6
AS
1251 && (symfile_objfile
1252 ? !query (_("Discard symbol table from `%s'? "),
1253 symfile_objfile->name)
1254 : !query (_("Discard symbol table? "))))
8a3fe4f8 1255 error (_("Not confirmed."));
1adeb98a 1256
0133421a
JK
1257 /* solib descriptors may have handles to objfiles. Wipe them before their
1258 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1259 no_shared_libraries (NULL, from_tty);
1260
0133421a
JK
1261 free_all_objfiles ();
1262
adb7f338 1263 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1264 if (from_tty)
1265 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1266}
1267
5b5d99cf
JB
1268static char *
1269get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1270{
1271 asection *sect;
1272 bfd_size_type debuglink_size;
1273 unsigned long crc32;
1274 char *contents;
1275 int crc_offset;
5417f6dc 1276
5b5d99cf
JB
1277 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1278
1279 if (sect == NULL)
1280 return NULL;
1281
1282 debuglink_size = bfd_section_size (objfile->obfd, sect);
5417f6dc 1283
5b5d99cf
JB
1284 contents = xmalloc (debuglink_size);
1285 bfd_get_section_contents (objfile->obfd, sect, contents,
1286 (file_ptr)0, (bfd_size_type)debuglink_size);
1287
c378eb4e 1288 /* Crc value is stored after the filename, aligned up to 4 bytes. */
5b5d99cf
JB
1289 crc_offset = strlen (contents) + 1;
1290 crc_offset = (crc_offset + 3) & ~3;
1291
1292 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
5417f6dc 1293
5b5d99cf
JB
1294 *crc32_out = crc32;
1295 return contents;
1296}
1297
904578ed
JK
1298/* Return 32-bit CRC for ABFD. If successful store it to *FILE_CRC_RETURN and
1299 return 1. Otherwise print a warning and return 0. ABFD seek position is
1300 not preserved. */
1301
1302static int
1303get_file_crc (bfd *abfd, unsigned long *file_crc_return)
1304{
1305 unsigned long file_crc = 0;
1306
1307 if (bfd_seek (abfd, 0, SEEK_SET) != 0)
1308 {
1309 warning (_("Problem reading \"%s\" for CRC: %s"),
1310 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
1311 return 0;
1312 }
1313
1314 for (;;)
1315 {
1316 gdb_byte buffer[8 * 1024];
1317 bfd_size_type count;
1318
1319 count = bfd_bread (buffer, sizeof (buffer), abfd);
1320 if (count == (bfd_size_type) -1)
1321 {
1322 warning (_("Problem reading \"%s\" for CRC: %s"),
1323 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
1324 return 0;
1325 }
1326 if (count == 0)
1327 break;
1328 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1329 }
1330
1331 *file_crc_return = file_crc;
1332 return 1;
1333}
1334
5b5d99cf 1335static int
287ccc17 1336separate_debug_file_exists (const char *name, unsigned long crc,
32a0e547 1337 struct objfile *parent_objfile)
5b5d99cf 1338{
904578ed
JK
1339 unsigned long file_crc;
1340 int file_crc_p;
f1838a98 1341 bfd *abfd;
32a0e547 1342 struct stat parent_stat, abfd_stat;
904578ed 1343 int verified_as_different;
32a0e547
JK
1344
1345 /* Find a separate debug info file as if symbols would be present in
1346 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1347 section can contain just the basename of PARENT_OBJFILE without any
1348 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
c378eb4e 1349 the separate debug infos with the same basename can exist. */
32a0e547 1350
0ba1096a 1351 if (filename_cmp (name, parent_objfile->name) == 0)
32a0e547 1352 return 0;
5b5d99cf 1353
874f5765 1354 abfd = bfd_open_maybe_remote (name);
f1838a98
UW
1355
1356 if (!abfd)
5b5d99cf
JB
1357 return 0;
1358
0ba1096a 1359 /* Verify symlinks were not the cause of filename_cmp name difference above.
32a0e547
JK
1360
1361 Some operating systems, e.g. Windows, do not provide a meaningful
1362 st_ino; they always set it to zero. (Windows does provide a
1363 meaningful st_dev.) Do not indicate a duplicate library in that
1364 case. While there is no guarantee that a system that provides
1365 meaningful inode numbers will never set st_ino to zero, this is
1366 merely an optimization, so we do not need to worry about false
1367 negatives. */
1368
1369 if (bfd_stat (abfd, &abfd_stat) == 0
904578ed
JK
1370 && abfd_stat.st_ino != 0
1371 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
32a0e547 1372 {
904578ed
JK
1373 if (abfd_stat.st_dev == parent_stat.st_dev
1374 && abfd_stat.st_ino == parent_stat.st_ino)
1375 {
cbb099e8 1376 gdb_bfd_unref (abfd);
904578ed
JK
1377 return 0;
1378 }
1379 verified_as_different = 1;
32a0e547 1380 }
904578ed
JK
1381 else
1382 verified_as_different = 0;
32a0e547 1383
904578ed 1384 file_crc_p = get_file_crc (abfd, &file_crc);
5b5d99cf 1385
cbb099e8 1386 gdb_bfd_unref (abfd);
5b5d99cf 1387
904578ed
JK
1388 if (!file_crc_p)
1389 return 0;
1390
287ccc17
JK
1391 if (crc != file_crc)
1392 {
904578ed
JK
1393 /* If one (or both) the files are accessed for example the via "remote:"
1394 gdbserver way it does not support the bfd_stat operation. Verify
1395 whether those two files are not the same manually. */
1396
1397 if (!verified_as_different && !parent_objfile->crc32_p)
1398 {
1399 parent_objfile->crc32_p = get_file_crc (parent_objfile->obfd,
1400 &parent_objfile->crc32);
1401 if (!parent_objfile->crc32_p)
1402 return 0;
1403 }
1404
0e8aefe7 1405 if (verified_as_different || parent_objfile->crc32 != file_crc)
904578ed
JK
1406 warning (_("the debug information found in \"%s\""
1407 " does not match \"%s\" (CRC mismatch).\n"),
1408 name, parent_objfile->name);
1409
287ccc17
JK
1410 return 0;
1411 }
1412
1413 return 1;
5b5d99cf
JB
1414}
1415
aa28a74e 1416char *debug_file_directory = NULL;
920d2a44
AC
1417static void
1418show_debug_file_directory (struct ui_file *file, int from_tty,
1419 struct cmd_list_element *c, const char *value)
1420{
3e43a32a
MS
1421 fprintf_filtered (file,
1422 _("The directory where separate debug "
1423 "symbols are searched for is \"%s\".\n"),
920d2a44
AC
1424 value);
1425}
5b5d99cf
JB
1426
1427#if ! defined (DEBUG_SUBDIRECTORY)
1428#define DEBUG_SUBDIRECTORY ".debug"
1429#endif
1430
1db33378
PP
1431/* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1432 where the original file resides (may not be the same as
1433 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1434 looking for. Returns the name of the debuginfo, of NULL. */
1435
1436static char *
1437find_separate_debug_file (const char *dir,
1438 const char *canon_dir,
1439 const char *debuglink,
1440 unsigned long crc32, struct objfile *objfile)
9cce227f 1441{
1db33378
PP
1442 char *debugdir;
1443 char *debugfile;
9cce227f 1444 int i;
e4ab2fad
JK
1445 VEC (char_ptr) *debugdir_vec;
1446 struct cleanup *back_to;
1447 int ix;
5b5d99cf 1448
1db33378 1449 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1ffa32ee 1450 i = strlen (dir);
1db33378
PP
1451 if (canon_dir != NULL && strlen (canon_dir) > i)
1452 i = strlen (canon_dir);
1ffa32ee 1453
25522fae
JK
1454 debugfile = xmalloc (strlen (debug_file_directory) + 1
1455 + i
1456 + strlen (DEBUG_SUBDIRECTORY)
1457 + strlen ("/")
1db33378 1458 + strlen (debuglink)
25522fae 1459 + 1);
5b5d99cf
JB
1460
1461 /* First try in the same directory as the original file. */
1462 strcpy (debugfile, dir);
1db33378 1463 strcat (debugfile, debuglink);
5b5d99cf 1464
32a0e547 1465 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1466 return debugfile;
5417f6dc 1467
5b5d99cf
JB
1468 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1469 strcpy (debugfile, dir);
1470 strcat (debugfile, DEBUG_SUBDIRECTORY);
1471 strcat (debugfile, "/");
1db33378 1472 strcat (debugfile, debuglink);
5b5d99cf 1473
32a0e547 1474 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1475 return debugfile;
5417f6dc 1476
24ddea62 1477 /* Then try in the global debugfile directories.
f888f159 1478
24ddea62
JK
1479 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1480 cause "/..." lookups. */
5417f6dc 1481
e4ab2fad
JK
1482 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1483 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
24ddea62 1484
e4ab2fad
JK
1485 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1486 {
1487 strcpy (debugfile, debugdir);
aa28a74e 1488 strcat (debugfile, "/");
24ddea62 1489 strcat (debugfile, dir);
1db33378 1490 strcat (debugfile, debuglink);
aa28a74e 1491
32a0e547 1492 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1493 return debugfile;
24ddea62
JK
1494
1495 /* If the file is in the sysroot, try using its base path in the
1496 global debugfile directory. */
1db33378
PP
1497 if (canon_dir != NULL
1498 && filename_ncmp (canon_dir, gdb_sysroot,
0ba1096a 1499 strlen (gdb_sysroot)) == 0
1db33378 1500 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
24ddea62 1501 {
e4ab2fad 1502 strcpy (debugfile, debugdir);
1db33378 1503 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
24ddea62 1504 strcat (debugfile, "/");
1db33378 1505 strcat (debugfile, debuglink);
24ddea62 1506
32a0e547 1507 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1508 return debugfile;
24ddea62 1509 }
aa28a74e 1510 }
f888f159 1511
e4ab2fad 1512 do_cleanups (back_to);
25522fae 1513 xfree (debugfile);
1db33378
PP
1514 return NULL;
1515}
1516
1517/* Modify PATH to contain only "directory/" part of PATH.
1518 If there were no directory separators in PATH, PATH will be empty
1519 string on return. */
1520
1521static void
1522terminate_after_last_dir_separator (char *path)
1523{
1524 int i;
1525
1526 /* Strip off the final filename part, leaving the directory name,
1527 followed by a slash. The directory can be relative or absolute. */
1528 for (i = strlen(path) - 1; i >= 0; i--)
1529 if (IS_DIR_SEPARATOR (path[i]))
1530 break;
1531
1532 /* If I is -1 then no directory is present there and DIR will be "". */
1533 path[i + 1] = '\0';
1534}
1535
1536/* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1537 Returns pathname, or NULL. */
1538
1539char *
1540find_separate_debug_file_by_debuglink (struct objfile *objfile)
1541{
1542 char *debuglink;
1543 char *dir, *canon_dir;
1544 char *debugfile;
1545 unsigned long crc32;
1546 struct cleanup *cleanups;
1547
1548 debuglink = get_debug_link_info (objfile, &crc32);
1549
1550 if (debuglink == NULL)
1551 {
1552 /* There's no separate debug info, hence there's no way we could
1553 load it => no warning. */
1554 return NULL;
1555 }
1556
71bdabee 1557 cleanups = make_cleanup (xfree, debuglink);
1db33378 1558 dir = xstrdup (objfile->name);
71bdabee 1559 make_cleanup (xfree, dir);
1db33378
PP
1560 terminate_after_last_dir_separator (dir);
1561 canon_dir = lrealpath (dir);
1562
1563 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1564 crc32, objfile);
1565 xfree (canon_dir);
1566
1567 if (debugfile == NULL)
1568 {
1569#ifdef HAVE_LSTAT
1570 /* For PR gdb/9538, try again with realpath (if different from the
1571 original). */
1572
1573 struct stat st_buf;
1574
1575 if (lstat (objfile->name, &st_buf) == 0 && S_ISLNK(st_buf.st_mode))
1576 {
1577 char *symlink_dir;
1578
1579 symlink_dir = lrealpath (objfile->name);
1580 if (symlink_dir != NULL)
1581 {
1582 make_cleanup (xfree, symlink_dir);
1583 terminate_after_last_dir_separator (symlink_dir);
1584 if (strcmp (dir, symlink_dir) != 0)
1585 {
1586 /* Different directory, so try using it. */
1587 debugfile = find_separate_debug_file (symlink_dir,
1588 symlink_dir,
1589 debuglink,
1590 crc32,
1591 objfile);
1592 }
1593 }
1594 }
1595#endif /* HAVE_LSTAT */
1596 }
aa28a74e 1597
1db33378 1598 do_cleanups (cleanups);
25522fae 1599 return debugfile;
5b5d99cf
JB
1600}
1601
1602
c906108c
SS
1603/* This is the symbol-file command. Read the file, analyze its
1604 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1605 the command is rather bizarre:
1606
1607 1. The function buildargv implements various quoting conventions
1608 which are undocumented and have little or nothing in common with
1609 the way things are quoted (or not quoted) elsewhere in GDB.
1610
1611 2. Options are used, which are not generally used in GDB (perhaps
1612 "set mapped on", "set readnow on" would be better)
1613
1614 3. The order of options matters, which is contrary to GNU
c906108c
SS
1615 conventions (because it is confusing and inconvenient). */
1616
1617void
fba45db2 1618symbol_file_command (char *args, int from_tty)
c906108c 1619{
c906108c
SS
1620 dont_repeat ();
1621
1622 if (args == NULL)
1623 {
1adeb98a 1624 symbol_file_clear (from_tty);
c906108c
SS
1625 }
1626 else
1627 {
d1a41061 1628 char **argv = gdb_buildargv (args);
cb2f3a29
MK
1629 int flags = OBJF_USERLOADED;
1630 struct cleanup *cleanups;
1631 char *name = NULL;
1632
7a292a7a 1633 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1634 while (*argv != NULL)
1635 {
78a4a9b9
AC
1636 if (strcmp (*argv, "-readnow") == 0)
1637 flags |= OBJF_READNOW;
1638 else if (**argv == '-')
8a3fe4f8 1639 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1640 else
1641 {
cb2f3a29 1642 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1643 name = *argv;
78a4a9b9 1644 }
cb2f3a29 1645
c906108c
SS
1646 argv++;
1647 }
1648
1649 if (name == NULL)
cb2f3a29
MK
1650 error (_("no symbol file name was specified"));
1651
c906108c
SS
1652 do_cleanups (cleanups);
1653 }
1654}
1655
1656/* Set the initial language.
1657
cb2f3a29
MK
1658 FIXME: A better solution would be to record the language in the
1659 psymtab when reading partial symbols, and then use it (if known) to
1660 set the language. This would be a win for formats that encode the
1661 language in an easily discoverable place, such as DWARF. For
1662 stabs, we can jump through hoops looking for specially named
1663 symbols or try to intuit the language from the specific type of
1664 stabs we find, but we can't do that until later when we read in
1665 full symbols. */
c906108c 1666
8b60591b 1667void
fba45db2 1668set_initial_language (void)
c906108c 1669{
c5aa993b 1670 enum language lang = language_unknown;
c906108c 1671
01f8c46d
JK
1672 if (language_of_main != language_unknown)
1673 lang = language_of_main;
1674 else
1675 {
1676 const char *filename;
f888f159 1677
01f8c46d
JK
1678 filename = find_main_filename ();
1679 if (filename != NULL)
1680 lang = deduce_language_from_filename (filename);
1681 }
cb2f3a29 1682
ccefe4c4
TT
1683 if (lang == language_unknown)
1684 {
1685 /* Make C the default language */
1686 lang = language_c;
c906108c 1687 }
ccefe4c4
TT
1688
1689 set_language (lang);
1690 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1691}
1692
874f5765 1693/* If NAME is a remote name open the file using remote protocol, otherwise
cbb099e8
TT
1694 open it normally. Returns a new reference to the BFD. On error,
1695 returns NULL with the BFD error set. */
874f5765
TG
1696
1697bfd *
1698bfd_open_maybe_remote (const char *name)
1699{
1700 if (remote_filename_p (name))
cbb099e8 1701 return gdb_bfd_ref (remote_bfd_open (name, gnutarget));
874f5765 1702 else
a4453b7e
TT
1703 {
1704 bfd *result = gdb_bfd_ref (bfd_openr (name, gnutarget));
1705
1706 if (result != NULL)
1707 gdb_bfd_stash_filename (result);
1708 return result;
1709 }
874f5765
TG
1710}
1711
1712
cb2f3a29
MK
1713/* Open the file specified by NAME and hand it off to BFD for
1714 preliminary analysis. Return a newly initialized bfd *, which
1715 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1716 absolute). In case of trouble, error() is called. */
c906108c
SS
1717
1718bfd *
fba45db2 1719symfile_bfd_open (char *name)
c906108c
SS
1720{
1721 bfd *sym_bfd;
1722 int desc;
1723 char *absolute_name;
1724
f1838a98
UW
1725 if (remote_filename_p (name))
1726 {
cbb099e8 1727 sym_bfd = gdb_bfd_ref (remote_bfd_open (name, gnutarget));
f1838a98 1728 if (!sym_bfd)
a4453b7e
TT
1729 error (_("`%s': can't open to read symbols: %s."), name,
1730 bfd_errmsg (bfd_get_error ()));
f1838a98
UW
1731
1732 if (!bfd_check_format (sym_bfd, bfd_object))
1733 {
f9a062ff 1734 make_cleanup_bfd_unref (sym_bfd);
f1838a98
UW
1735 error (_("`%s': can't read symbols: %s."), name,
1736 bfd_errmsg (bfd_get_error ()));
1737 }
1738
1739 return sym_bfd;
1740 }
1741
cb2f3a29 1742 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c
SS
1743
1744 /* Look down path for it, allocate 2nd new malloc'd copy. */
cb2f3a29 1745 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
fbdebf46 1746 O_RDONLY | O_BINARY, &absolute_name);
608506ed 1747#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1748 if (desc < 0)
1749 {
1750 char *exename = alloca (strlen (name) + 5);
433759f7 1751
c906108c 1752 strcat (strcpy (exename, name), ".exe");
014d698b 1753 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
fbdebf46 1754 O_RDONLY | O_BINARY, &absolute_name);
c906108c
SS
1755 }
1756#endif
1757 if (desc < 0)
1758 {
b8c9b27d 1759 make_cleanup (xfree, name);
c906108c
SS
1760 perror_with_name (name);
1761 }
cb2f3a29 1762
cb2f3a29
MK
1763 xfree (name);
1764 name = absolute_name;
a4453b7e 1765 make_cleanup (xfree, name);
c906108c 1766
cbb099e8 1767 sym_bfd = gdb_bfd_ref (bfd_fopen (name, gnutarget, FOPEN_RB, desc));
c906108c
SS
1768 if (!sym_bfd)
1769 {
b8c9b27d 1770 make_cleanup (xfree, name);
f1838a98 1771 error (_("`%s': can't open to read symbols: %s."), name,
c906108c
SS
1772 bfd_errmsg (bfd_get_error ()));
1773 }
549c1eea 1774 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1775
1776 if (!bfd_check_format (sym_bfd, bfd_object))
1777 {
f9a062ff 1778 make_cleanup_bfd_unref (sym_bfd);
f1838a98 1779 error (_("`%s': can't read symbols: %s."), name,
c906108c
SS
1780 bfd_errmsg (bfd_get_error ()));
1781 }
cb2f3a29 1782
a4453b7e
TT
1783 gdb_bfd_stash_filename (sym_bfd);
1784
cb2f3a29 1785 return sym_bfd;
c906108c
SS
1786}
1787
cb2f3a29
MK
1788/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1789 the section was not found. */
1790
0e931cf0
JB
1791int
1792get_section_index (struct objfile *objfile, char *section_name)
1793{
1794 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1795
0e931cf0
JB
1796 if (sect)
1797 return sect->index;
1798 else
1799 return -1;
1800}
1801
cb2f3a29
MK
1802/* Link SF into the global symtab_fns list. Called on startup by the
1803 _initialize routine in each object file format reader, to register
b021a221 1804 information about each format the reader is prepared to handle. */
c906108c
SS
1805
1806void
00b5771c 1807add_symtab_fns (const struct sym_fns *sf)
c906108c 1808{
00b5771c 1809 VEC_safe_push (sym_fns_ptr, symtab_fns, sf);
c906108c
SS
1810}
1811
cb2f3a29
MK
1812/* Initialize OBJFILE to read symbols from its associated BFD. It
1813 either returns or calls error(). The result is an initialized
1814 struct sym_fns in the objfile structure, that contains cached
1815 information about the symbol file. */
c906108c 1816
00b5771c 1817static const struct sym_fns *
31d99776 1818find_sym_fns (bfd *abfd)
c906108c 1819{
00b5771c 1820 const struct sym_fns *sf;
31d99776 1821 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
00b5771c 1822 int i;
c906108c 1823
75245b24
MS
1824 if (our_flavour == bfd_target_srec_flavour
1825 || our_flavour == bfd_target_ihex_flavour
1826 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1827 return NULL; /* No symbols. */
75245b24 1828
00b5771c 1829 for (i = 0; VEC_iterate (sym_fns_ptr, symtab_fns, i, sf); ++i)
31d99776
DJ
1830 if (our_flavour == sf->sym_flavour)
1831 return sf;
cb2f3a29 1832
8a3fe4f8 1833 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1834 bfd_get_target (abfd));
c906108c
SS
1835}
1836\f
cb2f3a29 1837
c906108c
SS
1838/* This function runs the load command of our current target. */
1839
1840static void
fba45db2 1841load_command (char *arg, int from_tty)
c906108c 1842{
e5cc9f32
JB
1843 dont_repeat ();
1844
4487aabf
PA
1845 /* The user might be reloading because the binary has changed. Take
1846 this opportunity to check. */
1847 reopen_exec_file ();
1848 reread_symbols ();
1849
c906108c 1850 if (arg == NULL)
1986bccd
AS
1851 {
1852 char *parg;
1853 int count = 0;
1854
1855 parg = arg = get_exec_file (1);
1856
1857 /* Count how many \ " ' tab space there are in the name. */
1858 while ((parg = strpbrk (parg, "\\\"'\t ")))
1859 {
1860 parg++;
1861 count++;
1862 }
1863
1864 if (count)
1865 {
1866 /* We need to quote this string so buildargv can pull it apart. */
1867 char *temp = xmalloc (strlen (arg) + count + 1 );
1868 char *ptemp = temp;
1869 char *prev;
1870
1871 make_cleanup (xfree, temp);
1872
1873 prev = parg = arg;
1874 while ((parg = strpbrk (parg, "\\\"'\t ")))
1875 {
1876 strncpy (ptemp, prev, parg - prev);
1877 ptemp += parg - prev;
1878 prev = parg++;
1879 *ptemp++ = '\\';
1880 }
1881 strcpy (ptemp, prev);
1882
1883 arg = temp;
1884 }
1885 }
1886
c906108c 1887 target_load (arg, from_tty);
2889e661
JB
1888
1889 /* After re-loading the executable, we don't really know which
1890 overlays are mapped any more. */
1891 overlay_cache_invalid = 1;
c906108c
SS
1892}
1893
1894/* This version of "load" should be usable for any target. Currently
1895 it is just used for remote targets, not inftarg.c or core files,
1896 on the theory that only in that case is it useful.
1897
1898 Avoiding xmodem and the like seems like a win (a) because we don't have
1899 to worry about finding it, and (b) On VMS, fork() is very slow and so
1900 we don't want to run a subprocess. On the other hand, I'm not sure how
1901 performance compares. */
917317f4 1902
917317f4
JM
1903static int validate_download = 0;
1904
e4f9b4d5
MS
1905/* Callback service function for generic_load (bfd_map_over_sections). */
1906
1907static void
1908add_section_size_callback (bfd *abfd, asection *asec, void *data)
1909{
1910 bfd_size_type *sum = data;
1911
2c500098 1912 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1913}
1914
1915/* Opaque data for load_section_callback. */
1916struct load_section_data {
1917 unsigned long load_offset;
a76d924d
DJ
1918 struct load_progress_data *progress_data;
1919 VEC(memory_write_request_s) *requests;
1920};
1921
1922/* Opaque data for load_progress. */
1923struct load_progress_data {
1924 /* Cumulative data. */
e4f9b4d5
MS
1925 unsigned long write_count;
1926 unsigned long data_count;
1927 bfd_size_type total_size;
a76d924d
DJ
1928};
1929
1930/* Opaque data for load_progress for a single section. */
1931struct load_progress_section_data {
1932 struct load_progress_data *cumulative;
cf7a04e8 1933
a76d924d 1934 /* Per-section data. */
cf7a04e8
DJ
1935 const char *section_name;
1936 ULONGEST section_sent;
1937 ULONGEST section_size;
1938 CORE_ADDR lma;
1939 gdb_byte *buffer;
e4f9b4d5
MS
1940};
1941
a76d924d 1942/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1943
1944static void
1945load_progress (ULONGEST bytes, void *untyped_arg)
1946{
a76d924d
DJ
1947 struct load_progress_section_data *args = untyped_arg;
1948 struct load_progress_data *totals;
1949
1950 if (args == NULL)
1951 /* Writing padding data. No easy way to get at the cumulative
1952 stats, so just ignore this. */
1953 return;
1954
1955 totals = args->cumulative;
1956
1957 if (bytes == 0 && args->section_sent == 0)
1958 {
1959 /* The write is just starting. Let the user know we've started
1960 this section. */
79a45e25 1961 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
5af949e3
UW
1962 args->section_name, hex_string (args->section_size),
1963 paddress (target_gdbarch, args->lma));
a76d924d
DJ
1964 return;
1965 }
cf7a04e8
DJ
1966
1967 if (validate_download)
1968 {
1969 /* Broken memories and broken monitors manifest themselves here
1970 when bring new computers to life. This doubles already slow
1971 downloads. */
1972 /* NOTE: cagney/1999-10-18: A more efficient implementation
1973 might add a verify_memory() method to the target vector and
1974 then use that. remote.c could implement that method using
1975 the ``qCRC'' packet. */
1976 gdb_byte *check = xmalloc (bytes);
1977 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1978
1979 if (target_read_memory (args->lma, check, bytes) != 0)
5af949e3
UW
1980 error (_("Download verify read failed at %s"),
1981 paddress (target_gdbarch, args->lma));
cf7a04e8 1982 if (memcmp (args->buffer, check, bytes) != 0)
5af949e3
UW
1983 error (_("Download verify compare failed at %s"),
1984 paddress (target_gdbarch, args->lma));
cf7a04e8
DJ
1985 do_cleanups (verify_cleanups);
1986 }
a76d924d 1987 totals->data_count += bytes;
cf7a04e8
DJ
1988 args->lma += bytes;
1989 args->buffer += bytes;
a76d924d 1990 totals->write_count += 1;
cf7a04e8
DJ
1991 args->section_sent += bytes;
1992 if (quit_flag
1993 || (deprecated_ui_load_progress_hook != NULL
1994 && deprecated_ui_load_progress_hook (args->section_name,
1995 args->section_sent)))
1996 error (_("Canceled the download"));
1997
1998 if (deprecated_show_load_progress != NULL)
1999 deprecated_show_load_progress (args->section_name,
2000 args->section_sent,
2001 args->section_size,
a76d924d
DJ
2002 totals->data_count,
2003 totals->total_size);
cf7a04e8
DJ
2004}
2005
e4f9b4d5
MS
2006/* Callback service function for generic_load (bfd_map_over_sections). */
2007
2008static void
2009load_section_callback (bfd *abfd, asection *asec, void *data)
2010{
a76d924d 2011 struct memory_write_request *new_request;
e4f9b4d5 2012 struct load_section_data *args = data;
a76d924d 2013 struct load_progress_section_data *section_data;
cf7a04e8
DJ
2014 bfd_size_type size = bfd_get_section_size (asec);
2015 gdb_byte *buffer;
cf7a04e8 2016 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 2017
cf7a04e8
DJ
2018 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2019 return;
e4f9b4d5 2020
cf7a04e8
DJ
2021 if (size == 0)
2022 return;
e4f9b4d5 2023
a76d924d
DJ
2024 new_request = VEC_safe_push (memory_write_request_s,
2025 args->requests, NULL);
2026 memset (new_request, 0, sizeof (struct memory_write_request));
2027 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
2028 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
3e43a32a
MS
2029 new_request->end = new_request->begin + size; /* FIXME Should size
2030 be in instead? */
a76d924d
DJ
2031 new_request->data = xmalloc (size);
2032 new_request->baton = section_data;
cf7a04e8 2033
a76d924d 2034 buffer = new_request->data;
cf7a04e8 2035
a76d924d
DJ
2036 section_data->cumulative = args->progress_data;
2037 section_data->section_name = sect_name;
2038 section_data->section_size = size;
2039 section_data->lma = new_request->begin;
2040 section_data->buffer = buffer;
cf7a04e8
DJ
2041
2042 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
2043}
2044
2045/* Clean up an entire memory request vector, including load
2046 data and progress records. */
cf7a04e8 2047
a76d924d
DJ
2048static void
2049clear_memory_write_data (void *arg)
2050{
2051 VEC(memory_write_request_s) **vec_p = arg;
2052 VEC(memory_write_request_s) *vec = *vec_p;
2053 int i;
2054 struct memory_write_request *mr;
cf7a04e8 2055
a76d924d
DJ
2056 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2057 {
2058 xfree (mr->data);
2059 xfree (mr->baton);
2060 }
2061 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
2062}
2063
c906108c 2064void
917317f4 2065generic_load (char *args, int from_tty)
c906108c 2066{
c906108c 2067 bfd *loadfile_bfd;
2b71414d 2068 struct timeval start_time, end_time;
917317f4 2069 char *filename;
1986bccd 2070 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 2071 struct load_section_data cbdata;
a76d924d 2072 struct load_progress_data total_progress;
79a45e25 2073 struct ui_out *uiout = current_uiout;
a76d924d 2074
e4f9b4d5 2075 CORE_ADDR entry;
1986bccd 2076 char **argv;
e4f9b4d5 2077
a76d924d
DJ
2078 memset (&cbdata, 0, sizeof (cbdata));
2079 memset (&total_progress, 0, sizeof (total_progress));
2080 cbdata.progress_data = &total_progress;
2081
2082 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 2083
d1a41061
PP
2084 if (args == NULL)
2085 error_no_arg (_("file to load"));
1986bccd 2086
d1a41061 2087 argv = gdb_buildargv (args);
1986bccd
AS
2088 make_cleanup_freeargv (argv);
2089
2090 filename = tilde_expand (argv[0]);
2091 make_cleanup (xfree, filename);
2092
2093 if (argv[1] != NULL)
917317f4
JM
2094 {
2095 char *endptr;
ba5f2f8a 2096
1986bccd
AS
2097 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
2098
2099 /* If the last word was not a valid number then
2100 treat it as a file name with spaces in. */
2101 if (argv[1] == endptr)
2102 error (_("Invalid download offset:%s."), argv[1]);
2103
2104 if (argv[2] != NULL)
2105 error (_("Too many parameters."));
917317f4 2106 }
c906108c 2107
c378eb4e 2108 /* Open the file for loading. */
cbb099e8 2109 loadfile_bfd = gdb_bfd_ref (bfd_openr (filename, gnutarget));
c906108c
SS
2110 if (loadfile_bfd == NULL)
2111 {
2112 perror_with_name (filename);
2113 return;
2114 }
917317f4 2115
f9a062ff 2116 make_cleanup_bfd_unref (loadfile_bfd);
c906108c 2117
c5aa993b 2118 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 2119 {
8a3fe4f8 2120 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
2121 bfd_errmsg (bfd_get_error ()));
2122 }
c5aa993b 2123
5417f6dc 2124 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
2125 (void *) &total_progress.total_size);
2126
2127 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 2128
2b71414d 2129 gettimeofday (&start_time, NULL);
c906108c 2130
a76d924d
DJ
2131 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2132 load_progress) != 0)
2133 error (_("Load failed"));
c906108c 2134
2b71414d 2135 gettimeofday (&end_time, NULL);
ba5f2f8a 2136
e4f9b4d5 2137 entry = bfd_get_start_address (loadfile_bfd);
e4f9b4d5 2138 ui_out_text (uiout, "Start address ");
5af949e3 2139 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
e4f9b4d5 2140 ui_out_text (uiout, ", load size ");
a76d924d 2141 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 2142 ui_out_text (uiout, "\n");
e4f9b4d5
MS
2143 /* We were doing this in remote-mips.c, I suspect it is right
2144 for other targets too. */
fb14de7b 2145 regcache_write_pc (get_current_regcache (), entry);
c906108c 2146
38963c97
DJ
2147 /* Reset breakpoints, now that we have changed the load image. For
2148 instance, breakpoints may have been set (or reset, by
2149 post_create_inferior) while connected to the target but before we
2150 loaded the program. In that case, the prologue analyzer could
2151 have read instructions from the target to find the right
2152 breakpoint locations. Loading has changed the contents of that
2153 memory. */
2154
2155 breakpoint_re_set ();
2156
7ca9f392
AC
2157 /* FIXME: are we supposed to call symbol_file_add or not? According
2158 to a comment from remote-mips.c (where a call to symbol_file_add
2159 was commented out), making the call confuses GDB if more than one
2160 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 2161 others don't (or didn't - perhaps they have all been deleted). */
c906108c 2162
a76d924d
DJ
2163 print_transfer_performance (gdb_stdout, total_progress.data_count,
2164 total_progress.write_count,
2165 &start_time, &end_time);
c906108c
SS
2166
2167 do_cleanups (old_cleanups);
2168}
2169
c378eb4e 2170/* Report how fast the transfer went. */
c906108c 2171
917317f4
JM
2172/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2173 replaced by print_transfer_performance (with a very different
c378eb4e 2174 function signature). */
917317f4 2175
c906108c 2176void
fba45db2
KB
2177report_transfer_performance (unsigned long data_count, time_t start_time,
2178 time_t end_time)
c906108c 2179{
2b71414d
DJ
2180 struct timeval start, end;
2181
2182 start.tv_sec = start_time;
2183 start.tv_usec = 0;
2184 end.tv_sec = end_time;
2185 end.tv_usec = 0;
2186
2187 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
917317f4
JM
2188}
2189
2190void
d9fcf2fb 2191print_transfer_performance (struct ui_file *stream,
917317f4
JM
2192 unsigned long data_count,
2193 unsigned long write_count,
2b71414d
DJ
2194 const struct timeval *start_time,
2195 const struct timeval *end_time)
917317f4 2196{
9f43d28c 2197 ULONGEST time_count;
79a45e25 2198 struct ui_out *uiout = current_uiout;
2b71414d
DJ
2199
2200 /* Compute the elapsed time in milliseconds, as a tradeoff between
2201 accuracy and overflow. */
2202 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2203 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2204
8b93c638
JM
2205 ui_out_text (uiout, "Transfer rate: ");
2206 if (time_count > 0)
2207 {
9f43d28c
DJ
2208 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2209
2210 if (ui_out_is_mi_like_p (uiout))
2211 {
2212 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2213 ui_out_text (uiout, " bits/sec");
2214 }
2215 else if (rate < 1024)
2216 {
2217 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2218 ui_out_text (uiout, " bytes/sec");
2219 }
2220 else
2221 {
2222 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2223 ui_out_text (uiout, " KB/sec");
2224 }
8b93c638
JM
2225 }
2226 else
2227 {
ba5f2f8a 2228 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 2229 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
2230 }
2231 if (write_count > 0)
2232 {
2233 ui_out_text (uiout, ", ");
ba5f2f8a 2234 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
2235 ui_out_text (uiout, " bytes/write");
2236 }
2237 ui_out_text (uiout, ".\n");
c906108c
SS
2238}
2239
2240/* This function allows the addition of incrementally linked object files.
2241 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2242/* Note: ezannoni 2000-04-13 This function/command used to have a
2243 special case syntax for the rombug target (Rombug is the boot
2244 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2245 rombug case, the user doesn't need to supply a text address,
2246 instead a call to target_link() (in target.c) would supply the
c378eb4e 2247 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2248
c906108c 2249static void
fba45db2 2250add_symbol_file_command (char *args, int from_tty)
c906108c 2251{
5af949e3 2252 struct gdbarch *gdbarch = get_current_arch ();
db162d44 2253 char *filename = NULL;
2df3850c 2254 int flags = OBJF_USERLOADED;
c906108c 2255 char *arg;
db162d44 2256 int section_index = 0;
2acceee2
JM
2257 int argcnt = 0;
2258 int sec_num = 0;
2259 int i;
db162d44
EZ
2260 int expecting_sec_name = 0;
2261 int expecting_sec_addr = 0;
5b96932b 2262 char **argv;
db162d44 2263
a39a16c4 2264 struct sect_opt
2acceee2 2265 {
2acceee2
JM
2266 char *name;
2267 char *value;
a39a16c4 2268 };
db162d44 2269
a39a16c4
MM
2270 struct section_addr_info *section_addrs;
2271 struct sect_opt *sect_opts = NULL;
2272 size_t num_sect_opts = 0;
3017564a 2273 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2274
a39a16c4 2275 num_sect_opts = 16;
5417f6dc 2276 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
2277 * sizeof (struct sect_opt));
2278
c906108c
SS
2279 dont_repeat ();
2280
2281 if (args == NULL)
8a3fe4f8 2282 error (_("add-symbol-file takes a file name and an address"));
c906108c 2283
d1a41061 2284 argv = gdb_buildargv (args);
5b96932b 2285 make_cleanup_freeargv (argv);
db162d44 2286
5b96932b
AS
2287 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2288 {
c378eb4e 2289 /* Process the argument. */
db162d44 2290 if (argcnt == 0)
c906108c 2291 {
c378eb4e 2292 /* The first argument is the file name. */
db162d44 2293 filename = tilde_expand (arg);
3017564a 2294 make_cleanup (xfree, filename);
c906108c 2295 }
db162d44 2296 else
7a78ae4e
ND
2297 if (argcnt == 1)
2298 {
2299 /* The second argument is always the text address at which
c378eb4e 2300 to load the program. */
7a78ae4e
ND
2301 sect_opts[section_index].name = ".text";
2302 sect_opts[section_index].value = arg;
f414f22f 2303 if (++section_index >= num_sect_opts)
a39a16c4
MM
2304 {
2305 num_sect_opts *= 2;
5417f6dc 2306 sect_opts = ((struct sect_opt *)
a39a16c4 2307 xrealloc (sect_opts,
5417f6dc 2308 num_sect_opts
a39a16c4
MM
2309 * sizeof (struct sect_opt)));
2310 }
7a78ae4e
ND
2311 }
2312 else
2313 {
2314 /* It's an option (starting with '-') or it's an argument
c378eb4e 2315 to an option. */
7a78ae4e
ND
2316
2317 if (*arg == '-')
2318 {
78a4a9b9
AC
2319 if (strcmp (arg, "-readnow") == 0)
2320 flags |= OBJF_READNOW;
2321 else if (strcmp (arg, "-s") == 0)
2322 {
2323 expecting_sec_name = 1;
2324 expecting_sec_addr = 1;
2325 }
7a78ae4e
ND
2326 }
2327 else
2328 {
2329 if (expecting_sec_name)
db162d44 2330 {
7a78ae4e
ND
2331 sect_opts[section_index].name = arg;
2332 expecting_sec_name = 0;
db162d44
EZ
2333 }
2334 else
7a78ae4e
ND
2335 if (expecting_sec_addr)
2336 {
2337 sect_opts[section_index].value = arg;
2338 expecting_sec_addr = 0;
f414f22f 2339 if (++section_index >= num_sect_opts)
a39a16c4
MM
2340 {
2341 num_sect_opts *= 2;
5417f6dc 2342 sect_opts = ((struct sect_opt *)
a39a16c4 2343 xrealloc (sect_opts,
5417f6dc 2344 num_sect_opts
a39a16c4
MM
2345 * sizeof (struct sect_opt)));
2346 }
7a78ae4e
ND
2347 }
2348 else
3e43a32a 2349 error (_("USAGE: add-symbol-file <filename> <textaddress>"
412946b6 2350 " [-readnow] [-s <secname> <addr>]*"));
7a78ae4e
ND
2351 }
2352 }
c906108c 2353 }
c906108c 2354
927890d0
JB
2355 /* This command takes at least two arguments. The first one is a
2356 filename, and the second is the address where this file has been
2357 loaded. Abort now if this address hasn't been provided by the
2358 user. */
2359 if (section_index < 1)
2360 error (_("The address where %s has been loaded is missing"), filename);
2361
c378eb4e 2362 /* Print the prompt for the query below. And save the arguments into
db162d44
EZ
2363 a sect_addr_info structure to be passed around to other
2364 functions. We have to split this up into separate print
bb599908 2365 statements because hex_string returns a local static
c378eb4e 2366 string. */
5417f6dc 2367
a3f17187 2368 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2369 section_addrs = alloc_section_addr_info (section_index);
2370 make_cleanup (xfree, section_addrs);
db162d44 2371 for (i = 0; i < section_index; i++)
c906108c 2372 {
db162d44
EZ
2373 CORE_ADDR addr;
2374 char *val = sect_opts[i].value;
2375 char *sec = sect_opts[i].name;
5417f6dc 2376
ae822768 2377 addr = parse_and_eval_address (val);
db162d44 2378
db162d44 2379 /* Here we store the section offsets in the order they were
c378eb4e 2380 entered on the command line. */
a39a16c4
MM
2381 section_addrs->other[sec_num].name = sec;
2382 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2383 printf_unfiltered ("\t%s_addr = %s\n", sec,
2384 paddress (gdbarch, addr));
db162d44
EZ
2385 sec_num++;
2386
5417f6dc 2387 /* The object's sections are initialized when a
db162d44 2388 call is made to build_objfile_section_table (objfile).
5417f6dc 2389 This happens in reread_symbols.
db162d44
EZ
2390 At this point, we don't know what file type this is,
2391 so we can't determine what section names are valid. */
2acceee2 2392 }
db162d44 2393
2acceee2 2394 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2395 error (_("Not confirmed."));
c906108c 2396
7eedccfa
PP
2397 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2398 section_addrs, flags);
c906108c
SS
2399
2400 /* Getting new symbols may change our opinion about what is
2401 frameless. */
2402 reinit_frame_cache ();
db162d44 2403 do_cleanups (my_cleanups);
c906108c
SS
2404}
2405\f
70992597 2406
4ac39b97
JK
2407typedef struct objfile *objfilep;
2408
2409DEF_VEC_P (objfilep);
2410
c906108c
SS
2411/* Re-read symbols if a symbol-file has changed. */
2412void
fba45db2 2413reread_symbols (void)
c906108c
SS
2414{
2415 struct objfile *objfile;
2416 long new_modtime;
c906108c
SS
2417 struct stat new_statbuf;
2418 int res;
4ac39b97
JK
2419 VEC (objfilep) *new_objfiles = NULL;
2420 struct cleanup *all_cleanups;
2421
2422 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
c906108c
SS
2423
2424 /* With the addition of shared libraries, this should be modified,
2425 the load time should be saved in the partial symbol tables, since
2426 different tables may come from different source files. FIXME.
2427 This routine should then walk down each partial symbol table
c378eb4e 2428 and see if the symbol table that it originates from has been changed. */
c906108c 2429
c5aa993b
JM
2430 for (objfile = object_files; objfile; objfile = objfile->next)
2431 {
9cce227f
TG
2432 /* solib-sunos.c creates one objfile with obfd. */
2433 if (objfile->obfd == NULL)
2434 continue;
2435
2436 /* Separate debug objfiles are handled in the main objfile. */
2437 if (objfile->separate_debug_objfile_backlink)
2438 continue;
2439
02aeec7b
JB
2440 /* If this object is from an archive (what you usually create with
2441 `ar', often called a `static library' on most systems, though
2442 a `shared library' on AIX is also an archive), then you should
2443 stat on the archive name, not member name. */
9cce227f
TG
2444 if (objfile->obfd->my_archive)
2445 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2446 else
9cce227f
TG
2447 res = stat (objfile->name, &new_statbuf);
2448 if (res != 0)
2449 {
c378eb4e 2450 /* FIXME, should use print_sys_errmsg but it's not filtered. */
9cce227f
TG
2451 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2452 objfile->name);
2453 continue;
2454 }
2455 new_modtime = new_statbuf.st_mtime;
2456 if (new_modtime != objfile->mtime)
2457 {
2458 struct cleanup *old_cleanups;
2459 struct section_offsets *offsets;
2460 int num_offsets;
2461 char *obfd_filename;
2462
2463 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2464 objfile->name);
2465
2466 /* There are various functions like symbol_file_add,
2467 symfile_bfd_open, syms_from_objfile, etc., which might
2468 appear to do what we want. But they have various other
2469 effects which we *don't* want. So we just do stuff
2470 ourselves. We don't worry about mapped files (for one thing,
2471 any mapped file will be out of date). */
2472
2473 /* If we get an error, blow away this objfile (not sure if
2474 that is the correct response for things like shared
2475 libraries). */
2476 old_cleanups = make_cleanup_free_objfile (objfile);
2477 /* We need to do this whenever any symbols go away. */
2478 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2479
0ba1096a
KT
2480 if (exec_bfd != NULL
2481 && filename_cmp (bfd_get_filename (objfile->obfd),
2482 bfd_get_filename (exec_bfd)) == 0)
9cce227f
TG
2483 {
2484 /* Reload EXEC_BFD without asking anything. */
2485
2486 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2487 }
2488
f6eeced0
JK
2489 /* Keep the calls order approx. the same as in free_objfile. */
2490
2491 /* Free the separate debug objfiles. It will be
2492 automatically recreated by sym_read. */
2493 free_objfile_separate_debug (objfile);
2494
2495 /* Remove any references to this objfile in the global
2496 value lists. */
2497 preserve_values (objfile);
2498
2499 /* Nuke all the state that we will re-read. Much of the following
2500 code which sets things to NULL really is necessary to tell
2501 other parts of GDB that there is nothing currently there.
2502
2503 Try to keep the freeing order compatible with free_objfile. */
2504
2505 if (objfile->sf != NULL)
2506 {
2507 (*objfile->sf->sym_finish) (objfile);
2508 }
2509
2510 clear_objfile_data (objfile);
2511
9cce227f
TG
2512 /* Clean up any state BFD has sitting around. We don't need
2513 to close the descriptor but BFD lacks a way of closing the
2514 BFD without closing the descriptor. */
a4453b7e
TT
2515 {
2516 struct bfd *obfd = objfile->obfd;
2517
2518 obfd_filename = bfd_get_filename (objfile->obfd);
2519 /* Open the new BFD before freeing the old one, so that
2520 the filename remains live. */
2521 objfile->obfd = bfd_open_maybe_remote (obfd_filename);
2522 gdb_bfd_unref (obfd);
2523 }
2524
9cce227f
TG
2525 if (objfile->obfd == NULL)
2526 error (_("Can't open %s to read symbols."), objfile->name);
9cce227f
TG
2527 /* bfd_openr sets cacheable to true, which is what we want. */
2528 if (!bfd_check_format (objfile->obfd, bfd_object))
2529 error (_("Can't read symbols from %s: %s."), objfile->name,
2530 bfd_errmsg (bfd_get_error ()));
2531
2532 /* Save the offsets, we will nuke them with the rest of the
2533 objfile_obstack. */
2534 num_offsets = objfile->num_sections;
2535 offsets = ((struct section_offsets *)
2536 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2537 memcpy (offsets, objfile->section_offsets,
2538 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2539
9cce227f
TG
2540 /* FIXME: Do we have to free a whole linked list, or is this
2541 enough? */
2542 if (objfile->global_psymbols.list)
2543 xfree (objfile->global_psymbols.list);
2544 memset (&objfile->global_psymbols, 0,
2545 sizeof (objfile->global_psymbols));
2546 if (objfile->static_psymbols.list)
2547 xfree (objfile->static_psymbols.list);
2548 memset (&objfile->static_psymbols, 0,
2549 sizeof (objfile->static_psymbols));
2550
c378eb4e 2551 /* Free the obstacks for non-reusable objfiles. */
710e1a31
SW
2552 psymbol_bcache_free (objfile->psymbol_cache);
2553 objfile->psymbol_cache = psymbol_bcache_init ();
9cce227f 2554 bcache_xfree (objfile->macro_cache);
cbd70537 2555 objfile->macro_cache = bcache_xmalloc (NULL, NULL);
9cce227f 2556 bcache_xfree (objfile->filename_cache);
cbd70537 2557 objfile->filename_cache = bcache_xmalloc (NULL,NULL);
9cce227f
TG
2558 if (objfile->demangled_names_hash != NULL)
2559 {
2560 htab_delete (objfile->demangled_names_hash);
2561 objfile->demangled_names_hash = NULL;
2562 }
2563 obstack_free (&objfile->objfile_obstack, 0);
2564 objfile->sections = NULL;
2565 objfile->symtabs = NULL;
2566 objfile->psymtabs = NULL;
2567 objfile->psymtabs_addrmap = NULL;
2568 objfile->free_psymtabs = NULL;
34eaf542 2569 objfile->template_symbols = NULL;
9cce227f
TG
2570 objfile->msymbols = NULL;
2571 objfile->deprecated_sym_private = NULL;
2572 objfile->minimal_symbol_count = 0;
2573 memset (&objfile->msymbol_hash, 0,
2574 sizeof (objfile->msymbol_hash));
2575 memset (&objfile->msymbol_demangled_hash, 0,
2576 sizeof (objfile->msymbol_demangled_hash));
2577
9cce227f
TG
2578 /* obstack_init also initializes the obstack so it is
2579 empty. We could use obstack_specify_allocation but
d82ea6a8 2580 gdb_obstack.h specifies the alloc/dealloc functions. */
9cce227f 2581 obstack_init (&objfile->objfile_obstack);
d82ea6a8 2582 build_objfile_section_table (objfile);
9cce227f
TG
2583 terminate_minimal_symbol_table (objfile);
2584
2585 /* We use the same section offsets as from last time. I'm not
2586 sure whether that is always correct for shared libraries. */
2587 objfile->section_offsets = (struct section_offsets *)
2588 obstack_alloc (&objfile->objfile_obstack,
2589 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2590 memcpy (objfile->section_offsets, offsets,
2591 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2592 objfile->num_sections = num_offsets;
2593
2594 /* What the hell is sym_new_init for, anyway? The concept of
2595 distinguishing between the main file and additional files
2596 in this way seems rather dubious. */
2597 if (objfile == symfile_objfile)
c906108c 2598 {
9cce227f 2599 (*objfile->sf->sym_new_init) (objfile);
c906108c 2600 }
9cce227f
TG
2601
2602 (*objfile->sf->sym_init) (objfile);
2603 clear_complaints (&symfile_complaints, 1, 1);
2604 /* Do not set flags as this is safe and we don't want to be
2605 verbose. */
2606 (*objfile->sf->sym_read) (objfile, 0);
b11896a5
TT
2607 if ((objfile->flags & OBJF_PSYMTABS_READ) != 0)
2608 {
2609 objfile->flags &= ~OBJF_PSYMTABS_READ;
2610 require_partial_symbols (objfile, 0);
2611 }
2612
9cce227f 2613 if (!objfile_has_symbols (objfile))
c906108c 2614 {
9cce227f
TG
2615 wrap_here ("");
2616 printf_unfiltered (_("(no debugging symbols found)\n"));
2617 wrap_here ("");
c5aa993b 2618 }
9cce227f
TG
2619
2620 /* We're done reading the symbol file; finish off complaints. */
2621 clear_complaints (&symfile_complaints, 0, 1);
2622
2623 /* Getting new symbols may change our opinion about what is
2624 frameless. */
2625
2626 reinit_frame_cache ();
2627
2628 /* Discard cleanups as symbol reading was successful. */
2629 discard_cleanups (old_cleanups);
2630
2631 /* If the mtime has changed between the time we set new_modtime
2632 and now, we *want* this to be out of date, so don't call stat
2633 again now. */
2634 objfile->mtime = new_modtime;
9cce227f 2635 init_entry_point_info (objfile);
4ac39b97
JK
2636
2637 VEC_safe_push (objfilep, new_objfiles, objfile);
c906108c
SS
2638 }
2639 }
c906108c 2640
4ac39b97 2641 if (new_objfiles)
ea53e89f 2642 {
4ac39b97
JK
2643 int ix;
2644
ff3536bc
UW
2645 /* Notify objfiles that we've modified objfile sections. */
2646 objfiles_changed ();
2647
c1e56572 2648 clear_symtab_users (0);
4ac39b97
JK
2649
2650 /* clear_objfile_data for each objfile was called before freeing it and
2651 observer_notify_new_objfile (NULL) has been called by
2652 clear_symtab_users above. Notify the new files now. */
2653 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2654 observer_notify_new_objfile (objfile);
2655
ea53e89f
JB
2656 /* At least one objfile has changed, so we can consider that
2657 the executable we're debugging has changed too. */
781b42b0 2658 observer_notify_executable_changed ();
ea53e89f 2659 }
4ac39b97
JK
2660
2661 do_cleanups (all_cleanups);
c906108c 2662}
c906108c
SS
2663\f
2664
c5aa993b
JM
2665
2666typedef struct
2667{
2668 char *ext;
c906108c 2669 enum language lang;
c5aa993b
JM
2670}
2671filename_language;
c906108c 2672
c5aa993b 2673static filename_language *filename_language_table;
c906108c
SS
2674static int fl_table_size, fl_table_next;
2675
2676static void
fba45db2 2677add_filename_language (char *ext, enum language lang)
c906108c
SS
2678{
2679 if (fl_table_next >= fl_table_size)
2680 {
2681 fl_table_size += 10;
5417f6dc 2682 filename_language_table =
25bf3106
PM
2683 xrealloc (filename_language_table,
2684 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2685 }
2686
4fcf66da 2687 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2688 filename_language_table[fl_table_next].lang = lang;
2689 fl_table_next++;
2690}
2691
2692static char *ext_args;
920d2a44
AC
2693static void
2694show_ext_args (struct ui_file *file, int from_tty,
2695 struct cmd_list_element *c, const char *value)
2696{
3e43a32a
MS
2697 fprintf_filtered (file,
2698 _("Mapping between filename extension "
2699 "and source language is \"%s\".\n"),
920d2a44
AC
2700 value);
2701}
c906108c
SS
2702
2703static void
26c41df3 2704set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2705{
2706 int i;
2707 char *cp = ext_args;
2708 enum language lang;
2709
c378eb4e 2710 /* First arg is filename extension, starting with '.' */
c906108c 2711 if (*cp != '.')
8a3fe4f8 2712 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2713
2714 /* Find end of first arg. */
c5aa993b 2715 while (*cp && !isspace (*cp))
c906108c
SS
2716 cp++;
2717
2718 if (*cp == '\0')
3e43a32a
MS
2719 error (_("'%s': two arguments required -- "
2720 "filename extension and language"),
c906108c
SS
2721 ext_args);
2722
c378eb4e 2723 /* Null-terminate first arg. */
c5aa993b 2724 *cp++ = '\0';
c906108c
SS
2725
2726 /* Find beginning of second arg, which should be a source language. */
2727 while (*cp && isspace (*cp))
2728 cp++;
2729
2730 if (*cp == '\0')
3e43a32a
MS
2731 error (_("'%s': two arguments required -- "
2732 "filename extension and language"),
c906108c
SS
2733 ext_args);
2734
2735 /* Lookup the language from among those we know. */
2736 lang = language_enum (cp);
2737
2738 /* Now lookup the filename extension: do we already know it? */
2739 for (i = 0; i < fl_table_next; i++)
2740 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2741 break;
2742
2743 if (i >= fl_table_next)
2744 {
c378eb4e 2745 /* New file extension. */
c906108c
SS
2746 add_filename_language (ext_args, lang);
2747 }
2748 else
2749 {
c378eb4e 2750 /* Redefining a previously known filename extension. */
c906108c
SS
2751
2752 /* if (from_tty) */
2753 /* query ("Really make files of type %s '%s'?", */
2754 /* ext_args, language_str (lang)); */
2755
b8c9b27d 2756 xfree (filename_language_table[i].ext);
4fcf66da 2757 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2758 filename_language_table[i].lang = lang;
2759 }
2760}
2761
2762static void
fba45db2 2763info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2764{
2765 int i;
2766
a3f17187 2767 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2768 printf_filtered ("\n\n");
2769 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2770 printf_filtered ("\t%s\t- %s\n",
2771 filename_language_table[i].ext,
c906108c
SS
2772 language_str (filename_language_table[i].lang));
2773}
2774
2775static void
fba45db2 2776init_filename_language_table (void)
c906108c 2777{
c378eb4e 2778 if (fl_table_size == 0) /* Protect against repetition. */
c906108c
SS
2779 {
2780 fl_table_size = 20;
2781 fl_table_next = 0;
c5aa993b 2782 filename_language_table =
c906108c 2783 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b 2784 add_filename_language (".c", language_c);
6aecb9c2 2785 add_filename_language (".d", language_d);
c5aa993b
JM
2786 add_filename_language (".C", language_cplus);
2787 add_filename_language (".cc", language_cplus);
2788 add_filename_language (".cp", language_cplus);
2789 add_filename_language (".cpp", language_cplus);
2790 add_filename_language (".cxx", language_cplus);
2791 add_filename_language (".c++", language_cplus);
2792 add_filename_language (".java", language_java);
c906108c 2793 add_filename_language (".class", language_java);
da2cf7e0 2794 add_filename_language (".m", language_objc);
c5aa993b
JM
2795 add_filename_language (".f", language_fortran);
2796 add_filename_language (".F", language_fortran);
fd5700c7
JK
2797 add_filename_language (".for", language_fortran);
2798 add_filename_language (".FOR", language_fortran);
2799 add_filename_language (".ftn", language_fortran);
2800 add_filename_language (".FTN", language_fortran);
2801 add_filename_language (".fpp", language_fortran);
2802 add_filename_language (".FPP", language_fortran);
2803 add_filename_language (".f90", language_fortran);
2804 add_filename_language (".F90", language_fortran);
2805 add_filename_language (".f95", language_fortran);
2806 add_filename_language (".F95", language_fortran);
2807 add_filename_language (".f03", language_fortran);
2808 add_filename_language (".F03", language_fortran);
2809 add_filename_language (".f08", language_fortran);
2810 add_filename_language (".F08", language_fortran);
c5aa993b 2811 add_filename_language (".s", language_asm);
aa707ed0 2812 add_filename_language (".sx", language_asm);
c5aa993b 2813 add_filename_language (".S", language_asm);
c6fd39cd
PM
2814 add_filename_language (".pas", language_pascal);
2815 add_filename_language (".p", language_pascal);
2816 add_filename_language (".pp", language_pascal);
963a6417
PH
2817 add_filename_language (".adb", language_ada);
2818 add_filename_language (".ads", language_ada);
2819 add_filename_language (".a", language_ada);
2820 add_filename_language (".ada", language_ada);
dde59185 2821 add_filename_language (".dg", language_ada);
c906108c
SS
2822 }
2823}
2824
2825enum language
dd786858 2826deduce_language_from_filename (const char *filename)
c906108c
SS
2827{
2828 int i;
2829 char *cp;
2830
2831 if (filename != NULL)
2832 if ((cp = strrchr (filename, '.')) != NULL)
2833 for (i = 0; i < fl_table_next; i++)
2834 if (strcmp (cp, filename_language_table[i].ext) == 0)
2835 return filename_language_table[i].lang;
2836
2837 return language_unknown;
2838}
2839\f
2840/* allocate_symtab:
2841
2842 Allocate and partly initialize a new symbol table. Return a pointer
2843 to it. error() if no space.
2844
2845 Caller must set these fields:
c5aa993b
JM
2846 LINETABLE(symtab)
2847 symtab->blockvector
2848 symtab->dirname
2849 symtab->free_code
2850 symtab->free_ptr
c906108c
SS
2851 */
2852
2853struct symtab *
72b9f47f 2854allocate_symtab (const char *filename, struct objfile *objfile)
c906108c 2855{
52f0bd74 2856 struct symtab *symtab;
c906108c
SS
2857
2858 symtab = (struct symtab *)
4a146b47 2859 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2860 memset (symtab, 0, sizeof (*symtab));
10abe6bf
TT
2861 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2862 objfile->filename_cache);
c5aa993b
JM
2863 symtab->fullname = NULL;
2864 symtab->language = deduce_language_from_filename (filename);
1c9e8358 2865 symtab->debugformat = "unknown";
c906108c 2866
c378eb4e 2867 /* Hook it to the objfile it comes from. */
c906108c 2868
c5aa993b
JM
2869 symtab->objfile = objfile;
2870 symtab->next = objfile->symtabs;
2871 objfile->symtabs = symtab;
c906108c 2872
45cfd468
DE
2873 if (symtab_create_debug)
2874 {
2875 /* Be a bit clever with debugging messages, and don't print objfile
2876 every time, only when it changes. */
2877 static char *last_objfile_name = NULL;
2878
2879 if (last_objfile_name == NULL
2880 || strcmp (last_objfile_name, objfile->name) != 0)
2881 {
2882 xfree (last_objfile_name);
2883 last_objfile_name = xstrdup (objfile->name);
2884 fprintf_unfiltered (gdb_stdlog,
2885 "Creating one or more symtabs for objfile %s ...\n",
2886 last_objfile_name);
2887 }
2888 fprintf_unfiltered (gdb_stdlog,
2889 "Created symtab 0x%lx for module %s.\n",
2890 (long) symtab, filename);
2891 }
2892
c906108c
SS
2893 return (symtab);
2894}
c906108c 2895\f
c5aa993b 2896
c906108c 2897/* Reset all data structures in gdb which may contain references to symbol
c1e56572 2898 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c906108c
SS
2899
2900void
c1e56572 2901clear_symtab_users (int add_flags)
c906108c
SS
2902{
2903 /* Someday, we should do better than this, by only blowing away
2904 the things that really need to be blown. */
c0501be5
DJ
2905
2906 /* Clear the "current" symtab first, because it is no longer valid.
2907 breakpoint_re_set may try to access the current symtab. */
2908 clear_current_source_symtab_and_line ();
2909
c906108c 2910 clear_displays ();
c1e56572
JK
2911 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2912 breakpoint_re_set ();
1bfeeb0f 2913 clear_last_displayed_sal ();
c906108c 2914 clear_pc_function_cache ();
06d3b283 2915 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2916
2917 /* Clear globals which might have pointed into a removed objfile.
2918 FIXME: It's not clear which of these are supposed to persist
2919 between expressions and which ought to be reset each time. */
2920 expression_context_block = NULL;
2921 innermost_block = NULL;
8756216b
DP
2922
2923 /* Varobj may refer to old symbols, perform a cleanup. */
2924 varobj_invalidate ();
2925
c906108c
SS
2926}
2927
74b7792f
AC
2928static void
2929clear_symtab_users_cleanup (void *ignore)
2930{
c1e56572 2931 clear_symtab_users (0);
74b7792f 2932}
c906108c 2933\f
c906108c
SS
2934/* OVERLAYS:
2935 The following code implements an abstraction for debugging overlay sections.
2936
2937 The target model is as follows:
2938 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2939 same VMA, each with its own unique LMA (or load address).
c906108c 2940 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2941 sections, one by one, from the load address into the VMA address.
5417f6dc 2942 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2943 sections should be considered to be mapped from the VMA to the LMA.
2944 This information is used for symbol lookup, and memory read/write.
5417f6dc 2945 For instance, if a section has been mapped then its contents
c5aa993b 2946 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2947
2948 Two levels of debugger support for overlays are available. One is
2949 "manual", in which the debugger relies on the user to tell it which
2950 overlays are currently mapped. This level of support is
2951 implemented entirely in the core debugger, and the information about
2952 whether a section is mapped is kept in the objfile->obj_section table.
2953
2954 The second level of support is "automatic", and is only available if
2955 the target-specific code provides functionality to read the target's
2956 overlay mapping table, and translate its contents for the debugger
2957 (by updating the mapped state information in the obj_section tables).
2958
2959 The interface is as follows:
c5aa993b
JM
2960 User commands:
2961 overlay map <name> -- tell gdb to consider this section mapped
2962 overlay unmap <name> -- tell gdb to consider this section unmapped
2963 overlay list -- list the sections that GDB thinks are mapped
2964 overlay read-target -- get the target's state of what's mapped
2965 overlay off/manual/auto -- set overlay debugging state
2966 Functional interface:
2967 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2968 section, return that section.
5417f6dc 2969 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 2970 the pc, either in its VMA or its LMA
714835d5 2971 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
2972 section_is_overlay(sect): true if section's VMA != LMA
2973 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2974 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2975 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2976 overlay_mapped_address(...): map an address from section's LMA to VMA
2977 overlay_unmapped_address(...): map an address from section's VMA to LMA
2978 symbol_overlayed_address(...): Return a "current" address for symbol:
2979 either in VMA or LMA depending on whether
c378eb4e 2980 the symbol's section is currently mapped. */
c906108c
SS
2981
2982/* Overlay debugging state: */
2983
d874f1e2 2984enum overlay_debugging_state overlay_debugging = ovly_off;
c378eb4e 2985int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
c906108c 2986
c906108c 2987/* Function: section_is_overlay (SECTION)
5417f6dc 2988 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
2989 SECTION is loaded at an address different from where it will "run". */
2990
2991int
714835d5 2992section_is_overlay (struct obj_section *section)
c906108c 2993{
714835d5
UW
2994 if (overlay_debugging && section)
2995 {
2996 bfd *abfd = section->objfile->obfd;
2997 asection *bfd_section = section->the_bfd_section;
f888f159 2998
714835d5
UW
2999 if (bfd_section_lma (abfd, bfd_section) != 0
3000 && bfd_section_lma (abfd, bfd_section)
3001 != bfd_section_vma (abfd, bfd_section))
3002 return 1;
3003 }
c906108c
SS
3004
3005 return 0;
3006}
3007
3008/* Function: overlay_invalidate_all (void)
3009 Invalidate the mapped state of all overlay sections (mark it as stale). */
3010
3011static void
fba45db2 3012overlay_invalidate_all (void)
c906108c 3013{
c5aa993b 3014 struct objfile *objfile;
c906108c
SS
3015 struct obj_section *sect;
3016
3017 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
3018 if (section_is_overlay (sect))
3019 sect->ovly_mapped = -1;
c906108c
SS
3020}
3021
714835d5 3022/* Function: section_is_mapped (SECTION)
5417f6dc 3023 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3024
3025 Access to the ovly_mapped flag is restricted to this function, so
3026 that we can do automatic update. If the global flag
3027 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3028 overlay_invalidate_all. If the mapped state of the particular
3029 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3030
714835d5
UW
3031int
3032section_is_mapped (struct obj_section *osect)
c906108c 3033{
9216df95
UW
3034 struct gdbarch *gdbarch;
3035
714835d5 3036 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
3037 return 0;
3038
c5aa993b 3039 switch (overlay_debugging)
c906108c
SS
3040 {
3041 default:
d874f1e2 3042 case ovly_off:
c5aa993b 3043 return 0; /* overlay debugging off */
d874f1e2 3044 case ovly_auto: /* overlay debugging automatic */
1c772458 3045 /* Unles there is a gdbarch_overlay_update function,
c378eb4e 3046 there's really nothing useful to do here (can't really go auto). */
9216df95
UW
3047 gdbarch = get_objfile_arch (osect->objfile);
3048 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
3049 {
3050 if (overlay_cache_invalid)
3051 {
3052 overlay_invalidate_all ();
3053 overlay_cache_invalid = 0;
3054 }
3055 if (osect->ovly_mapped == -1)
9216df95 3056 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
3057 }
3058 /* fall thru to manual case */
d874f1e2 3059 case ovly_on: /* overlay debugging manual */
c906108c
SS
3060 return osect->ovly_mapped == 1;
3061 }
3062}
3063
c906108c
SS
3064/* Function: pc_in_unmapped_range
3065 If PC falls into the lma range of SECTION, return true, else false. */
3066
3067CORE_ADDR
714835d5 3068pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3069{
714835d5
UW
3070 if (section_is_overlay (section))
3071 {
3072 bfd *abfd = section->objfile->obfd;
3073 asection *bfd_section = section->the_bfd_section;
fbd35540 3074
714835d5
UW
3075 /* We assume the LMA is relocated by the same offset as the VMA. */
3076 bfd_vma size = bfd_get_section_size (bfd_section);
3077 CORE_ADDR offset = obj_section_offset (section);
3078
3079 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3080 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3081 return 1;
3082 }
c906108c 3083
c906108c
SS
3084 return 0;
3085}
3086
3087/* Function: pc_in_mapped_range
3088 If PC falls into the vma range of SECTION, return true, else false. */
3089
3090CORE_ADDR
714835d5 3091pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3092{
714835d5
UW
3093 if (section_is_overlay (section))
3094 {
3095 if (obj_section_addr (section) <= pc
3096 && pc < obj_section_endaddr (section))
3097 return 1;
3098 }
c906108c 3099
c906108c
SS
3100 return 0;
3101}
3102
9ec8e6a0
JB
3103
3104/* Return true if the mapped ranges of sections A and B overlap, false
3105 otherwise. */
b9362cc7 3106static int
714835d5 3107sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3108{
714835d5
UW
3109 CORE_ADDR a_start = obj_section_addr (a);
3110 CORE_ADDR a_end = obj_section_endaddr (a);
3111 CORE_ADDR b_start = obj_section_addr (b);
3112 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3113
3114 return (a_start < b_end && b_start < a_end);
3115}
3116
c906108c
SS
3117/* Function: overlay_unmapped_address (PC, SECTION)
3118 Returns the address corresponding to PC in the unmapped (load) range.
3119 May be the same as PC. */
3120
3121CORE_ADDR
714835d5 3122overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3123{
714835d5
UW
3124 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3125 {
3126 bfd *abfd = section->objfile->obfd;
3127 asection *bfd_section = section->the_bfd_section;
fbd35540 3128
714835d5
UW
3129 return pc + bfd_section_lma (abfd, bfd_section)
3130 - bfd_section_vma (abfd, bfd_section);
3131 }
c906108c
SS
3132
3133 return pc;
3134}
3135
3136/* Function: overlay_mapped_address (PC, SECTION)
3137 Returns the address corresponding to PC in the mapped (runtime) range.
3138 May be the same as PC. */
3139
3140CORE_ADDR
714835d5 3141overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3142{
714835d5
UW
3143 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3144 {
3145 bfd *abfd = section->objfile->obfd;
3146 asection *bfd_section = section->the_bfd_section;
fbd35540 3147
714835d5
UW
3148 return pc + bfd_section_vma (abfd, bfd_section)
3149 - bfd_section_lma (abfd, bfd_section);
3150 }
c906108c
SS
3151
3152 return pc;
3153}
3154
3155
5417f6dc 3156/* Function: symbol_overlayed_address
c906108c
SS
3157 Return one of two addresses (relative to the VMA or to the LMA),
3158 depending on whether the section is mapped or not. */
3159
c5aa993b 3160CORE_ADDR
714835d5 3161symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3162{
3163 if (overlay_debugging)
3164 {
c378eb4e 3165 /* If the symbol has no section, just return its regular address. */
c906108c
SS
3166 if (section == 0)
3167 return address;
c378eb4e
MS
3168 /* If the symbol's section is not an overlay, just return its
3169 address. */
c906108c
SS
3170 if (!section_is_overlay (section))
3171 return address;
c378eb4e 3172 /* If the symbol's section is mapped, just return its address. */
c906108c
SS
3173 if (section_is_mapped (section))
3174 return address;
3175 /*
3176 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3177 * then return its LOADED address rather than its vma address!!
3178 */
3179 return overlay_unmapped_address (address, section);
3180 }
3181 return address;
3182}
3183
5417f6dc 3184/* Function: find_pc_overlay (PC)
c906108c
SS
3185 Return the best-match overlay section for PC:
3186 If PC matches a mapped overlay section's VMA, return that section.
3187 Else if PC matches an unmapped section's VMA, return that section.
3188 Else if PC matches an unmapped section's LMA, return that section. */
3189
714835d5 3190struct obj_section *
fba45db2 3191find_pc_overlay (CORE_ADDR pc)
c906108c 3192{
c5aa993b 3193 struct objfile *objfile;
c906108c
SS
3194 struct obj_section *osect, *best_match = NULL;
3195
3196 if (overlay_debugging)
3197 ALL_OBJSECTIONS (objfile, osect)
714835d5 3198 if (section_is_overlay (osect))
c5aa993b 3199 {
714835d5 3200 if (pc_in_mapped_range (pc, osect))
c5aa993b 3201 {
714835d5
UW
3202 if (section_is_mapped (osect))
3203 return osect;
c5aa993b
JM
3204 else
3205 best_match = osect;
3206 }
714835d5 3207 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3208 best_match = osect;
3209 }
714835d5 3210 return best_match;
c906108c
SS
3211}
3212
3213/* Function: find_pc_mapped_section (PC)
5417f6dc 3214 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3215 currently marked as MAPPED, return that section. Else return NULL. */
3216
714835d5 3217struct obj_section *
fba45db2 3218find_pc_mapped_section (CORE_ADDR pc)
c906108c 3219{
c5aa993b 3220 struct objfile *objfile;
c906108c
SS
3221 struct obj_section *osect;
3222
3223 if (overlay_debugging)
3224 ALL_OBJSECTIONS (objfile, osect)
714835d5
UW
3225 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3226 return osect;
c906108c
SS
3227
3228 return NULL;
3229}
3230
3231/* Function: list_overlays_command
c378eb4e 3232 Print a list of mapped sections and their PC ranges. */
c906108c
SS
3233
3234void
fba45db2 3235list_overlays_command (char *args, int from_tty)
c906108c 3236{
c5aa993b
JM
3237 int nmapped = 0;
3238 struct objfile *objfile;
c906108c
SS
3239 struct obj_section *osect;
3240
3241 if (overlay_debugging)
3242 ALL_OBJSECTIONS (objfile, osect)
714835d5 3243 if (section_is_mapped (osect))
c5aa993b 3244 {
5af949e3 3245 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c5aa993b
JM
3246 const char *name;
3247 bfd_vma lma, vma;
3248 int size;
3249
3250 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3251 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3252 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3253 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3254
3255 printf_filtered ("Section %s, loaded at ", name);
5af949e3 3256 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
c5aa993b 3257 puts_filtered (" - ");
5af949e3 3258 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
c5aa993b 3259 printf_filtered (", mapped at ");
5af949e3 3260 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
c5aa993b 3261 puts_filtered (" - ");
5af949e3 3262 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
c5aa993b
JM
3263 puts_filtered ("\n");
3264
3265 nmapped++;
3266 }
c906108c 3267 if (nmapped == 0)
a3f17187 3268 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3269}
3270
3271/* Function: map_overlay_command
3272 Mark the named section as mapped (ie. residing at its VMA address). */
3273
3274void
fba45db2 3275map_overlay_command (char *args, int from_tty)
c906108c 3276{
c5aa993b
JM
3277 struct objfile *objfile, *objfile2;
3278 struct obj_section *sec, *sec2;
c906108c
SS
3279
3280 if (!overlay_debugging)
3e43a32a
MS
3281 error (_("Overlay debugging not enabled. Use "
3282 "either the 'overlay auto' or\n"
3283 "the 'overlay manual' command."));
c906108c
SS
3284
3285 if (args == 0 || *args == 0)
8a3fe4f8 3286 error (_("Argument required: name of an overlay section"));
c906108c 3287
c378eb4e 3288 /* First, find a section matching the user supplied argument. */
c906108c
SS
3289 ALL_OBJSECTIONS (objfile, sec)
3290 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b 3291 {
c378eb4e 3292 /* Now, check to see if the section is an overlay. */
714835d5 3293 if (!section_is_overlay (sec))
c5aa993b
JM
3294 continue; /* not an overlay section */
3295
c378eb4e 3296 /* Mark the overlay as "mapped". */
c5aa993b
JM
3297 sec->ovly_mapped = 1;
3298
3299 /* Next, make a pass and unmap any sections that are
3300 overlapped by this new section: */
3301 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3302 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3303 {
3304 if (info_verbose)
a3f17187 3305 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3306 bfd_section_name (objfile->obfd,
3307 sec2->the_bfd_section));
c378eb4e 3308 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
c5aa993b
JM
3309 }
3310 return;
3311 }
8a3fe4f8 3312 error (_("No overlay section called %s"), args);
c906108c
SS
3313}
3314
3315/* Function: unmap_overlay_command
5417f6dc 3316 Mark the overlay section as unmapped
c906108c
SS
3317 (ie. resident in its LMA address range, rather than the VMA range). */
3318
3319void
fba45db2 3320unmap_overlay_command (char *args, int from_tty)
c906108c 3321{
c5aa993b 3322 struct objfile *objfile;
c906108c
SS
3323 struct obj_section *sec;
3324
3325 if (!overlay_debugging)
3e43a32a
MS
3326 error (_("Overlay debugging not enabled. "
3327 "Use either the 'overlay auto' or\n"
3328 "the 'overlay manual' command."));
c906108c
SS
3329
3330 if (args == 0 || *args == 0)
8a3fe4f8 3331 error (_("Argument required: name of an overlay section"));
c906108c 3332
c378eb4e 3333 /* First, find a section matching the user supplied argument. */
c906108c
SS
3334 ALL_OBJSECTIONS (objfile, sec)
3335 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3336 {
3337 if (!sec->ovly_mapped)
8a3fe4f8 3338 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3339 sec->ovly_mapped = 0;
3340 return;
3341 }
8a3fe4f8 3342 error (_("No overlay section called %s"), args);
c906108c
SS
3343}
3344
3345/* Function: overlay_auto_command
3346 A utility command to turn on overlay debugging.
c378eb4e 3347 Possibly this should be done via a set/show command. */
c906108c
SS
3348
3349static void
fba45db2 3350overlay_auto_command (char *args, int from_tty)
c906108c 3351{
d874f1e2 3352 overlay_debugging = ovly_auto;
1900040c 3353 enable_overlay_breakpoints ();
c906108c 3354 if (info_verbose)
a3f17187 3355 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3356}
3357
3358/* Function: overlay_manual_command
3359 A utility command to turn on overlay debugging.
c378eb4e 3360 Possibly this should be done via a set/show command. */
c906108c
SS
3361
3362static void
fba45db2 3363overlay_manual_command (char *args, int from_tty)
c906108c 3364{
d874f1e2 3365 overlay_debugging = ovly_on;
1900040c 3366 disable_overlay_breakpoints ();
c906108c 3367 if (info_verbose)
a3f17187 3368 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3369}
3370
3371/* Function: overlay_off_command
3372 A utility command to turn on overlay debugging.
c378eb4e 3373 Possibly this should be done via a set/show command. */
c906108c
SS
3374
3375static void
fba45db2 3376overlay_off_command (char *args, int from_tty)
c906108c 3377{
d874f1e2 3378 overlay_debugging = ovly_off;
1900040c 3379 disable_overlay_breakpoints ();
c906108c 3380 if (info_verbose)
a3f17187 3381 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3382}
3383
3384static void
fba45db2 3385overlay_load_command (char *args, int from_tty)
c906108c 3386{
e17c207e
UW
3387 struct gdbarch *gdbarch = get_current_arch ();
3388
3389 if (gdbarch_overlay_update_p (gdbarch))
3390 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3391 else
8a3fe4f8 3392 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3393}
3394
3395/* Function: overlay_command
c378eb4e 3396 A place-holder for a mis-typed command. */
c906108c 3397
c378eb4e 3398/* Command list chain containing all defined "overlay" subcommands. */
c906108c
SS
3399struct cmd_list_element *overlaylist;
3400
3401static void
fba45db2 3402overlay_command (char *args, int from_tty)
c906108c 3403{
c5aa993b 3404 printf_unfiltered
c906108c
SS
3405 ("\"overlay\" must be followed by the name of an overlay command.\n");
3406 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3407}
3408
3409
3410/* Target Overlays for the "Simplest" overlay manager:
3411
5417f6dc
RM
3412 This is GDB's default target overlay layer. It works with the
3413 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3414 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3415 so targets that use a different runtime overlay manager can
c906108c
SS
3416 substitute their own overlay_update function and take over the
3417 function pointer.
3418
3419 The overlay_update function pokes around in the target's data structures
3420 to see what overlays are mapped, and updates GDB's overlay mapping with
3421 this information.
3422
3423 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3424 unsigned _novlys; /# number of overlay sections #/
3425 unsigned _ovly_table[_novlys][4] = {
3426 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3427 {..., ..., ..., ...},
3428 }
3429 unsigned _novly_regions; /# number of overlay regions #/
3430 unsigned _ovly_region_table[_novly_regions][3] = {
3431 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3432 {..., ..., ...},
3433 }
c906108c
SS
3434 These functions will attempt to update GDB's mappedness state in the
3435 symbol section table, based on the target's mappedness state.
3436
3437 To do this, we keep a cached copy of the target's _ovly_table, and
3438 attempt to detect when the cached copy is invalidated. The main
3439 entry point is "simple_overlay_update(SECT), which looks up SECT in
3440 the cached table and re-reads only the entry for that section from
c378eb4e 3441 the target (whenever possible). */
c906108c
SS
3442
3443/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3444static unsigned (*cache_ovly_table)[4] = 0;
c5aa993b 3445static unsigned cache_novlys = 0;
c906108c 3446static CORE_ADDR cache_ovly_table_base = 0;
c5aa993b
JM
3447enum ovly_index
3448 {
3449 VMA, SIZE, LMA, MAPPED
3450 };
c906108c 3451
c378eb4e 3452/* Throw away the cached copy of _ovly_table. */
c906108c 3453static void
fba45db2 3454simple_free_overlay_table (void)
c906108c
SS
3455{
3456 if (cache_ovly_table)
b8c9b27d 3457 xfree (cache_ovly_table);
c5aa993b 3458 cache_novlys = 0;
c906108c
SS
3459 cache_ovly_table = NULL;
3460 cache_ovly_table_base = 0;
3461}
3462
9216df95 3463/* Read an array of ints of size SIZE from the target into a local buffer.
c378eb4e 3464 Convert to host order. int LEN is number of ints. */
c906108c 3465static void
9216df95 3466read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3467 int len, int size, enum bfd_endian byte_order)
c906108c 3468{
c378eb4e 3469 /* FIXME (alloca): Not safe if array is very large. */
9216df95 3470 gdb_byte *buf = alloca (len * size);
c5aa993b 3471 int i;
c906108c 3472
9216df95 3473 read_memory (memaddr, buf, len * size);
c906108c 3474 for (i = 0; i < len; i++)
e17a4113 3475 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3476}
3477
3478/* Find and grab a copy of the target _ovly_table
c378eb4e 3479 (and _novlys, which is needed for the table's size). */
c5aa993b 3480static int
fba45db2 3481simple_read_overlay_table (void)
c906108c 3482{
0d43edd1 3483 struct minimal_symbol *novlys_msym, *ovly_table_msym;
9216df95
UW
3484 struct gdbarch *gdbarch;
3485 int word_size;
e17a4113 3486 enum bfd_endian byte_order;
c906108c
SS
3487
3488 simple_free_overlay_table ();
9b27852e 3489 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3490 if (! novlys_msym)
c906108c 3491 {
8a3fe4f8 3492 error (_("Error reading inferior's overlay table: "
0d43edd1 3493 "couldn't find `_novlys' variable\n"
8a3fe4f8 3494 "in inferior. Use `overlay manual' mode."));
0d43edd1 3495 return 0;
c906108c 3496 }
0d43edd1 3497
9b27852e 3498 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3499 if (! ovly_table_msym)
3500 {
8a3fe4f8 3501 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3502 "`_ovly_table' array\n"
8a3fe4f8 3503 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3504 return 0;
3505 }
3506
9216df95
UW
3507 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3508 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3509 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3510
e17a4113
UW
3511 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3512 4, byte_order);
0d43edd1
JB
3513 cache_ovly_table
3514 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3515 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3516 read_target_long_array (cache_ovly_table_base,
777ea8f1 3517 (unsigned int *) cache_ovly_table,
e17a4113 3518 cache_novlys * 4, word_size, byte_order);
0d43edd1 3519
c5aa993b 3520 return 1; /* SUCCESS */
c906108c
SS
3521}
3522
5417f6dc 3523/* Function: simple_overlay_update_1
c906108c
SS
3524 A helper function for simple_overlay_update. Assuming a cached copy
3525 of _ovly_table exists, look through it to find an entry whose vma,
3526 lma and size match those of OSECT. Re-read the entry and make sure
3527 it still matches OSECT (else the table may no longer be valid).
3528 Set OSECT's mapped state to match the entry. Return: 1 for
3529 success, 0 for failure. */
3530
3531static int
fba45db2 3532simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3533{
3534 int i, size;
fbd35540
MS
3535 bfd *obfd = osect->objfile->obfd;
3536 asection *bsect = osect->the_bfd_section;
9216df95
UW
3537 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3538 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3539 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3540
2c500098 3541 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3542 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3543 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3544 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3545 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c 3546 {
9216df95
UW
3547 read_target_long_array (cache_ovly_table_base + i * word_size,
3548 (unsigned int *) cache_ovly_table[i],
e17a4113 3549 4, word_size, byte_order);
fbd35540
MS
3550 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3551 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3552 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3553 {
3554 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3555 return 1;
3556 }
c378eb4e 3557 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3558 return 0;
3559 }
3560 return 0;
3561}
3562
3563/* Function: simple_overlay_update
5417f6dc
RM
3564 If OSECT is NULL, then update all sections' mapped state
3565 (after re-reading the entire target _ovly_table).
3566 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3567 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3568 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3569 re-read the entire cache, and go ahead and update all sections. */
3570
1c772458 3571void
fba45db2 3572simple_overlay_update (struct obj_section *osect)
c906108c 3573{
c5aa993b 3574 struct objfile *objfile;
c906108c 3575
c378eb4e 3576 /* Were we given an osect to look up? NULL means do all of them. */
c906108c 3577 if (osect)
c378eb4e 3578 /* Have we got a cached copy of the target's overlay table? */
c906108c 3579 if (cache_ovly_table != NULL)
9cc89665
MS
3580 {
3581 /* Does its cached location match what's currently in the
3582 symtab? */
3583 struct minimal_symbol *minsym
3584 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3585
3586 if (minsym == NULL)
3587 error (_("Error reading inferior's overlay table: couldn't "
3588 "find `_ovly_table' array\n"
3589 "in inferior. Use `overlay manual' mode."));
3590
3591 if (cache_ovly_table_base == SYMBOL_VALUE_ADDRESS (minsym))
3592 /* Then go ahead and try to look up this single section in
3593 the cache. */
3594 if (simple_overlay_update_1 (osect))
3595 /* Found it! We're done. */
3596 return;
3597 }
c906108c
SS
3598
3599 /* Cached table no good: need to read the entire table anew.
3600 Or else we want all the sections, in which case it's actually
3601 more efficient to read the whole table in one block anyway. */
3602
0d43edd1
JB
3603 if (! simple_read_overlay_table ())
3604 return;
3605
c378eb4e 3606 /* Now may as well update all sections, even if only one was requested. */
c906108c 3607 ALL_OBJSECTIONS (objfile, osect)
714835d5 3608 if (section_is_overlay (osect))
c5aa993b
JM
3609 {
3610 int i, size;
fbd35540
MS
3611 bfd *obfd = osect->objfile->obfd;
3612 asection *bsect = osect->the_bfd_section;
c5aa993b 3613
2c500098 3614 size = bfd_get_section_size (bsect);
c5aa993b 3615 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3616 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3617 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3618 /* && cache_ovly_table[i][SIZE] == size */ )
c378eb4e 3619 { /* obj_section matches i'th entry in ovly_table. */
c5aa993b 3620 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
c378eb4e 3621 break; /* finished with inner for loop: break out. */
c5aa993b
JM
3622 }
3623 }
c906108c
SS
3624}
3625
086df311
DJ
3626/* Set the output sections and output offsets for section SECTP in
3627 ABFD. The relocation code in BFD will read these offsets, so we
3628 need to be sure they're initialized. We map each section to itself,
3629 with no offset; this means that SECTP->vma will be honored. */
3630
3631static void
3632symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3633{
3634 sectp->output_section = sectp;
3635 sectp->output_offset = 0;
3636}
3637
ac8035ab
TG
3638/* Default implementation for sym_relocate. */
3639
3640
3641bfd_byte *
3642default_symfile_relocate (struct objfile *objfile, asection *sectp,
3643 bfd_byte *buf)
3644{
3019eac3
DE
3645 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3646 DWO file. */
3647 bfd *abfd = sectp->owner;
ac8035ab
TG
3648
3649 /* We're only interested in sections with relocation
3650 information. */
3651 if ((sectp->flags & SEC_RELOC) == 0)
3652 return NULL;
3653
3654 /* We will handle section offsets properly elsewhere, so relocate as if
3655 all sections begin at 0. */
3656 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3657
3658 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3659}
3660
086df311
DJ
3661/* Relocate the contents of a debug section SECTP in ABFD. The
3662 contents are stored in BUF if it is non-NULL, or returned in a
3663 malloc'd buffer otherwise.
3664
3665 For some platforms and debug info formats, shared libraries contain
3666 relocations against the debug sections (particularly for DWARF-2;
3667 one affected platform is PowerPC GNU/Linux, although it depends on
3668 the version of the linker in use). Also, ELF object files naturally
3669 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3670 the relocations in order to get the locations of symbols correct.
3671 Another example that may require relocation processing, is the
3672 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3673 debug section. */
086df311
DJ
3674
3675bfd_byte *
ac8035ab
TG
3676symfile_relocate_debug_section (struct objfile *objfile,
3677 asection *sectp, bfd_byte *buf)
086df311 3678{
ac8035ab 3679 gdb_assert (objfile->sf->sym_relocate);
086df311 3680
ac8035ab 3681 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3682}
c906108c 3683
31d99776
DJ
3684struct symfile_segment_data *
3685get_symfile_segment_data (bfd *abfd)
3686{
00b5771c 3687 const struct sym_fns *sf = find_sym_fns (abfd);
31d99776
DJ
3688
3689 if (sf == NULL)
3690 return NULL;
3691
3692 return sf->sym_segments (abfd);
3693}
3694
3695void
3696free_symfile_segment_data (struct symfile_segment_data *data)
3697{
3698 xfree (data->segment_bases);
3699 xfree (data->segment_sizes);
3700 xfree (data->segment_info);
3701 xfree (data);
3702}
3703
28c32713
JB
3704
3705/* Given:
3706 - DATA, containing segment addresses from the object file ABFD, and
3707 the mapping from ABFD's sections onto the segments that own them,
3708 and
3709 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3710 segment addresses reported by the target,
3711 store the appropriate offsets for each section in OFFSETS.
3712
3713 If there are fewer entries in SEGMENT_BASES than there are segments
3714 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3715
8d385431
DJ
3716 If there are more entries, then ignore the extra. The target may
3717 not be able to distinguish between an empty data segment and a
3718 missing data segment; a missing text segment is less plausible. */
31d99776
DJ
3719int
3720symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3721 struct section_offsets *offsets,
3722 int num_segment_bases,
3723 const CORE_ADDR *segment_bases)
3724{
3725 int i;
3726 asection *sect;
3727
28c32713
JB
3728 /* It doesn't make sense to call this function unless you have some
3729 segment base addresses. */
202b96c1 3730 gdb_assert (num_segment_bases > 0);
28c32713 3731
31d99776
DJ
3732 /* If we do not have segment mappings for the object file, we
3733 can not relocate it by segments. */
3734 gdb_assert (data != NULL);
3735 gdb_assert (data->num_segments > 0);
3736
31d99776
DJ
3737 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3738 {
31d99776
DJ
3739 int which = data->segment_info[i];
3740
28c32713
JB
3741 gdb_assert (0 <= which && which <= data->num_segments);
3742
3743 /* Don't bother computing offsets for sections that aren't
3744 loaded as part of any segment. */
3745 if (! which)
3746 continue;
3747
3748 /* Use the last SEGMENT_BASES entry as the address of any extra
3749 segments mentioned in DATA->segment_info. */
31d99776 3750 if (which > num_segment_bases)
28c32713 3751 which = num_segment_bases;
31d99776 3752
28c32713
JB
3753 offsets->offsets[i] = (segment_bases[which - 1]
3754 - data->segment_bases[which - 1]);
31d99776
DJ
3755 }
3756
3757 return 1;
3758}
3759
3760static void
3761symfile_find_segment_sections (struct objfile *objfile)
3762{
3763 bfd *abfd = objfile->obfd;
3764 int i;
3765 asection *sect;
3766 struct symfile_segment_data *data;
3767
3768 data = get_symfile_segment_data (objfile->obfd);
3769 if (data == NULL)
3770 return;
3771
3772 if (data->num_segments != 1 && data->num_segments != 2)
3773 {
3774 free_symfile_segment_data (data);
3775 return;
3776 }
3777
3778 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3779 {
31d99776
DJ
3780 int which = data->segment_info[i];
3781
3782 if (which == 1)
3783 {
3784 if (objfile->sect_index_text == -1)
3785 objfile->sect_index_text = sect->index;
3786
3787 if (objfile->sect_index_rodata == -1)
3788 objfile->sect_index_rodata = sect->index;
3789 }
3790 else if (which == 2)
3791 {
3792 if (objfile->sect_index_data == -1)
3793 objfile->sect_index_data = sect->index;
3794
3795 if (objfile->sect_index_bss == -1)
3796 objfile->sect_index_bss = sect->index;
3797 }
3798 }
3799
3800 free_symfile_segment_data (data);
3801}
3802
c906108c 3803void
fba45db2 3804_initialize_symfile (void)
c906108c
SS
3805{
3806 struct cmd_list_element *c;
c5aa993b 3807
1a966eab
AC
3808 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3809Load symbol table from executable file FILE.\n\
c906108c 3810The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3811to execute."), &cmdlist);
5ba2abeb 3812 set_cmd_completer (c, filename_completer);
c906108c 3813
1a966eab 3814 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3815Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3e43a32a
MS
3816Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3817 ...]\nADDR is the starting address of the file's text.\n\
db162d44
EZ
3818The optional arguments are section-name section-address pairs and\n\
3819should be specified if the data and bss segments are not contiguous\n\
1a966eab 3820with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3821 &cmdlist);
5ba2abeb 3822 set_cmd_completer (c, filename_completer);
c906108c 3823
1a966eab
AC
3824 c = add_cmd ("load", class_files, load_command, _("\
3825Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
3826for access from GDB.\n\
3827A load OFFSET may also be given."), &cmdlist);
5ba2abeb 3828 set_cmd_completer (c, filename_completer);
c906108c 3829
c5aa993b 3830 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3831 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3832 "overlay ", 0, &cmdlist);
3833
3834 add_com_alias ("ovly", "overlay", class_alias, 1);
3835 add_com_alias ("ov", "overlay", class_alias, 1);
3836
c5aa993b 3837 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3838 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3839
c5aa993b 3840 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3841 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3842
c5aa993b 3843 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3844 _("List mappings of overlay sections."), &overlaylist);
c906108c 3845
c5aa993b 3846 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3847 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3848 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3849 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3850 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3851 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3852 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3853 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3854
3855 /* Filename extension to source language lookup table: */
3856 init_filename_language_table ();
26c41df3
AC
3857 add_setshow_string_noescape_cmd ("extension-language", class_files,
3858 &ext_args, _("\
3859Set mapping between filename extension and source language."), _("\
3860Show mapping between filename extension and source language."), _("\
3861Usage: set extension-language .foo bar"),
3862 set_ext_lang_command,
920d2a44 3863 show_ext_args,
26c41df3 3864 &setlist, &showlist);
c906108c 3865
c5aa993b 3866 add_info ("extensions", info_ext_lang_command,
1bedd215 3867 _("All filename extensions associated with a source language."));
917317f4 3868
525226b5
AC
3869 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3870 &debug_file_directory, _("\
24ddea62
JK
3871Set the directories where separate debug symbols are searched for."), _("\
3872Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
3873Separate debug symbols are first searched for in the same\n\
3874directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3875and lastly at the path of the directory of the binary with\n\
24ddea62 3876each global debug-file-directory component prepended."),
525226b5 3877 NULL,
920d2a44 3878 show_debug_file_directory,
525226b5 3879 &setlist, &showlist);
c906108c 3880}
This page took 1.713795 seconds and 4 git commands to generate.